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Abstract:

The aim of this project is to correlate
thermal video with an accelerometer and
be able to connect tracklets made from
a video tracker to trajectories for each
person.
The project resulted in developing a
pipeline capable of detecting players,
tracking them, calculate acceleration in
the video to match with the acceleration
from the accelerometers and from this be
able to match accelerometer to tracklets.
The report covers all the blocks in this
process: Detection, tracking and match-
ing, where each block have been designed,
implemented and tested.
The proof-of-concept system has been
tested on a dataset made of half a field
in Gigantium sports arena, where the
participants played football. The system
shows promising results and that it is
possible to correlate thermal video with
an accelerometer, but the tracking system
requires more work to know if it can be
implemented in an automatic system.
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Projekt Opsummering (Danish)

I kapitel 1, blev projektforslaget introduceret, hvilket har ledt til en initierende
problemstilling.

Den initerende problemstilling var grundlag for den tekniske analyse i kapitel 2, hvor
tidligere arbejde indenfor projektets tema er undersøgt, med fokus på detektion og feature-
less tracking metoder. Derefter blev udstyr, som er anvendt i projektet undersøgt og testes,
der bliver bla. beskrevet det data udstyret giver og hvordan det anvendes. Undersøgelser
viser at accelerometerene ikke er synkroniseret med hinanden, hvilket resulterede i et behov
for at løse dette problem. Det data, som er optaget og brugt i projektet er vist og forklaret,
samt en beskrivelse af, hvordan ground truth labels er lavet. Den tekniske analyse slutter
til sidst af med en problemstilling, samt specifikationer og krav.

I kapitel 3, er et tracking system udviklet, som er i stand til at detektere og følge individuelle
spillere i et indørs scenarie. Tracking algoritmen kan detektere når der forekommer en
occlusion (når to personer står oveni hinanden, så der ikke kan skelnes forskel). Systemet
er derudover i stand til at detektere når en occlusion bliver separeret til individuelle
spillere igen. Trackeren giver informationer for hver tracklet, såsom: verdenskoordinater,
mængden af personer i tracket, samt hvor langtid personen er tracket. En metode til at
konvertere positioner om til acceleration er blevet implementeret, således det er muligt at
sammenligne accelerationen der er estimeret ud fra det termiske kameras video sammen
med accelerometernes målte data. For at kunne synkronisere accelerometer med video, er
der blevet anvendt en dot product maximisation. Når dataen er synkroniseret kan hvert
tracklet blive matched med hvert accelerometer og derved kan det bedste match findes.
I projektet er der anvendt flere forskellige metoder for test og evaluering af matching,
heriblandt: dot product maximisation, Russell-Rao og Hungarian algoritm.

I kapitel 4, er systemet blevet testet på et kaos scenarie, hvor en snippet fra dataen optaget
i Gigantium er blevet anvendt. Først blev tracking systemet testet, hvor CLEAR MOT
metrics findes, hvilket fortæller hvor robust trackeren er. Tracklets, fundet af trackeren,
blev brugt til at teste systems evne til at matche tracklets med accelerometerne. Dette
var testet med alle metoder præsenteret i design og implementation, kapitel 3. Senere blev
der matched mellem tracklet og accelerometer testet, for at finde ud af hvor meget af et
tracklet er nødvendig for at foretage et match. Til sidst blev der testet om systemet er i
stand til at forbinde tracklets efter en occlusion.

I kapitel 5, er konklusionenen af projektet, samt en diskussion på hvad der skal være fokus
i en fremtidig udvikling og hvad der skal gøres anderledes. Konklusionen på projektet er at
det er muligt at korrelere accelerometers data med video data og derved forbinde tracklets
til trajectories. Dog er resultaterne ikke så solide ved kaos scenariet, hvilket kan skyldes
den tracking metode der er blevet anvendt og synkroniserings problemer.
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1Introduction
Over the past years, self-tracking has become an increasing trend in society, which people
perform every day. Self-trackers measure a vast amount of information about themselves.
The data gathered spans from steps taken, sleeping patterns to amount of water consumed
each day.

The trend of self-tracking has lead to various companies and wearable gadgets making self-
tracking an integrated part of peoples lives. Wearables such as running shoes with sensors
to watches, capable of tracking your activity. Another big contributor helping with self-
tracking are the vast amount of applications developed for smartphones. An app named
"Sleep Cycle" is used for tracking your sleep by measuring how a person is moving during
sleep. From these measurements, the app is able to present the user with information
about when and how long they have been in different sleeping cycles. By tracking their
daily behaviour, people feel that they improve various aspects of their life.

People are becoming more interested in their health and the measuring of blood pressure
on daily basis has increased as well[2]. The desire to track health, activity and consumption
has lead to the medical sector taking an interest in their self obtained data. The data can
help the medical staff propose the best treatment based on this information. A research
group based in Vejle, Denmark is attempting to implement people’s own data into the
decision taking in terms of treatment[3].

The desire to obtain information in form of numbers about their activity has spanned into
the professional sports scene. In a higher degree, professional trainers are using information
about athletes to improve the training schedule. Companies like Trackman A/S[4] is a
technology company focused on radar equipment for golf and baseball. By presenting
golfers with information after each swing it enables the players to both visually see their
mistakes and what effect it has on their swing. Another company Sports Performance
Tracking[5] has developed a wearable GPS module which can be used to capture statistics
of sport players during training and games. The Sport Performance Tracking GPS only
works outdoor, which propose an issue for indoor sports activities.

At Aalborg University research has gone into tracking sports activities based on thermal
cameras. During the research of tracking sports players using thermal imagery, several
problem statements have been found. In research conducted it was found that automatic
tracking of sports athletes resulted in too many fragments of a trajectory (called tracklet
in the remainder of the report). This research have led to the project proposal in finding
a way to connect these to reduce the amount of tracklets.
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Group 1001 1. Introduction

1.1 Project Proposal

From thermal cameras a limited amount of information can be extracted compared to
colour cameras, which leads to issues when tracking people. This is especially the case
when it is attempted to detect and track individual players in sports . Due to the vast
amount of occlusions occurring in sport. Occlusion are the moments where a person is
walking in front of another person seen from the camera. This action leads to the two
people being detected as a single object. The issue with these occlusions is that once
the persons are no longer blocking each other, thereby separating from the occlusion (this
action is described by a split in the remainder of the report), it is hard to re-identify each
person, especially regarding thermal images. This issue results in a vast amount tracklets
instead of trajectories. The motivation behind this project is to develop a method to
improve the tracking of the individual players, by connecting the tracklets into trajectories.
The project will focus on a correlation between inertia sensors, mounted on players and
thermal camera recordings to connect the tracklets. In Figure 1.1 an example can be seen
which explains the problem and what the project achieve to solve.

1.2 Initial Problem Statement

An initial problem statement is made which provides basis for the Technical Analysis,
Chapter 2.

2



1.2. Initial Problem Statement Aalborg University

Figure 1.1: The figure shows the motivation for the project: Which is to take the broken
tracklets from the video and compare these to the data from the inertia sensors and then
be able to connect the broken tracklets into trajectories. The blue and green lines shows
information from two different persons. The circle is where the two persons occlude and
their individual tracking information is lost. The purpose is then to reconnect the two
tracklets as seen in the end result.

Is it possible to correlate data from thermal imaging with data from inertia sensor?
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2Technical Analysis
In this chapter the previous work conducted within this field of research at Aalborg
University will be looked upon along with some of the work within Feature-less Tracking
Methods. The devices used in the project will be presented and explained, furthermore
how to go from video position to an acceleration is explained. This will further lead into
preliminary tests of the devices and data gathering. The chapter will result in a problem
statement, specification and requirements.

2.1 Previous Work

This research topic has been an ongoing project at Aalborg University, which means
previous work has been conducted. In 2012, a paper was released which focused on
improving how sports arenas are utilised, which lead to a system observing the occupancy
through the use of thermal imaging. Through thermal imaging a lot of visible features such
as colours are lost, but it provides a certain anonymity for the people being recorded. The
report ended in a automatic detection of people, which could distinguish between empty,
few or many people in the sports arena.[6]

In 2013 the system was further developed to recognise specific sports types based on
signature heat maps. This system was based on detecting the persons in the sports arena
and how the people moved in the arena. The classification was done by applying Fischer’s
Linear Discriminant to the heat maps and calculating the mean coordinate to each class in
the training heat maps. The overall recognition rate achieved in this work was 90.76%.[7]

In 2014, tracking of the individual sport players was implemented. This was done by using
a Kalman Filter (KF) and Continuous Energy Minimization (CEM). From the results of
both methods it was concluded that the KF provided more tracks, but they are closer to
the ground truth. However the KF proved higher identity swaps than CEM, which leads
to more broken trajectories[8]. It is wished to have a high precision and therefore the
KF is more suitable for sports tracking. The increased amount of broken trajectories has
however lead to the research topic for this report.

2.1.1 Feature-less Tracking Methods

As explained in chapter 1 using thermal imagery propose some issues when detecting
and tracking people in a sport scenario. The lack of colour features and vast amount of
occlusion occurring in sport scenarios makes general tracking method less effective. In
general purpose surveillance, the first step is often to detect objects wanted. Next step
is to track the detected object through a series of frames. In order to have a basis for
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Group 1001 2. Technical Analysis

developing a such system, previous work conducted on tracking using thermal imagery is
investigated.

In 2004, Davis et al.[9] proposed detection based on a Gaussian background subtraction
method in order to define region of interest(ROI). In case of thermal halos surrounding the
people a Contour Saliency Map was used to extract the contours of people. A watershed
analysis was then applied to complete the contours in case of contour fragments. Their
method proved the ability to separate people within a ROI. However they also mention
issues if the thermal intensity of the people is similar to the background. Also the method
used had tendencies to result in creating false contours.

In 2007, Zin et al.[10] proposed a robust person detection with a far infrared camera.
The method proposed involved an initial extraction of head regions based on threshold
and morphology operations. From extracted head regions the upper and lower body was
estimated based on ratios.

In 2007 Dai et al.[11] proposed a detection and tracking method, for pedestrian tracking,
which involved several steps. First step was creating a layered representation where the
background was static objects and foreground was moving objects. In order to separate
the two layers a light version of Generalized Expectation Maximization was used. Once
the background and foreground is extracted a shape-based classification was used on the
foreground in order to remove non-pedestrian objects. This was done by two perimeters
being the compactness, r1 = p2

A , where p is the perimeter and A is the area of the moving
object, and leanness, r2 = lv

lh
, where l is the length of the contour horizontal and vertical.

Once the moving objects has been verified as pedestrians. Their tracking method is based
on position of feet, head and waist. The Hausdorf distance between the positions to the
previous positions was used to determine whether the pedestrian corresponds to the same
pedestrian in the previous frame.

In 2015, Jeon et al.[12] proposed an alternative background extraction method, where a
median filter was applied to a sequence of input images. Pixels in same position over the
processed sequence was then averaged. By using an average threshold for each row the
human objects in the background image is located. Once the human objects are located
they are erased by using a linear interpolation by the non human objects in the horizontal
line. By extracting the background and applying a Sobel kernel as edge detector to the
input image, the person objects was detected.

With this introduction of previous work within detection and tracking of persons using
thermal cameras, the following section will look at the devices which has been used in this
project for cross correlation between thermal image information and inertia data.

2.2 Devices Used in the Project

In this section the devices used for the project will be presented and explained, furthermore
the theory of how they work and their output will be described. Lastly which steps have
been used to synchronise the devices will be explained.
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2.2. Devices Used in the Project Aalborg University

2.2.1 Accelerometer

For this project the inertia sensor chosen is the accelerometer Axivity AX3 [1]. The
accelerometer kis used in order to record the acceleration of people. AX3 is a 3-axis
logging accelerometer, which outputs the acceleration in g [9.82 m/s2][13] on the sensors
X-, Y- and Z-axis. The device specifications can be seen in Table 2.1.

Specification for Axivity AX3
Parameter Value
Typical Capabilities
Memory 512 MB NAND flash non-volatile
Logging Frequencies Configurable 12.5 Hz - 3200 Hz
Maximum Logging Periods 30 days at 12.5 Hz or 14 days at 100 Hz
Real Time Clock
Type Quartz real time clock
Frequency 32.768 KHz
Precision ± 50 ppm (typical)
Accelerometer
Sensor Type MEMS
Range ±2/4/8/16 g
Resolution upto 13-bit

Table 2.1: Specifications for the accelerometer sensor Axivity AX3

Since this project is based on a correlation between several accelerometer and video data
it is important that the devices used in this project is synchronised. To test whether
the accelerometers is synchronised, it is chosen to start seven devices, using the same
settings; 25 Hz, 8 g range and start time based on a date and clock, which is taken
from the computer, using the software from Axivity. All accelerometers are strapped to
a stable surface and then moved around an area. It is expected the data collected from
the accelerometers are the same. The raw data are extracted from the accelerometers
and contains the acceleration, g, in X-, Y- and Z-axis. The data is then processed using
standard vector magnitude equation (2.1).

gxyz = (
√
g2x + g2y + g2z)− 1g (2.1)

As accelerometers measure the "true acceleration" there is always an added acceleration
due to gravity[14]. By subtracting 1 g, as seen in equation (2.1), this added acceleration is
removed. In order to understand the concept behind the added acceleration, when in rest;
Consider an accelerometer, consisting of 3 springs along X-, Y- and Z-axis, positioned on
a plane surface. The X- and Y-axis is parallel to the plane, while the Z-axis is orthogonal
from the plane. The accelerometer will in this case measure +1 g along the Z-axis, due to
the plane adding 1 g acceleration in order to keep the accelerometer in steady position. If
the accelerometer is free falling with no rotation around axis, all axis on the accelerometer
will measure 0 g, although the accelerometer is visually moving.

If the accelerometer were static mounted, only capable of moving along the 3-axes, the
Z-axis could be excluded, thereby removing the acceleration added by gravity, as the
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Group 1001 2. Technical Analysis

acceleration in the plane is the interesting part in this project. However since the
accelerometers are mounted on people, with unpredictable rotation around the X-, Y-
and Z-axis. Since this rotation is present the added acceleration due to gravity, is affecting
the acceleration in all 3 axis. In order to take the added acceleration into consideration
the 1g is subtracted when calculating the standard vector magnitude Equation (2.1).

The results of the test can be seen in Figure 2.1 and as the results show[15] the
accelerometers are not synchronised with each other. They start at different time and
therefore end at different time, but the number of samples from each sensor is the
same. This shows the accelerometers clocks are not synchronised with each other. In the
documentation for the accelerometers and software, it is said to synchronise the time with
the PC, from which they are started. However since the accelerometers are unsynchronised
it is required to shift the data in order to match the starting times for all accelerometers.
Another issue found from this test is that the sensors are sensitive or have low tolerance.
Only one sensor, Accelerometer3 is resting at 0 g, see Figure 2.2 for a better view, when
no movement is applied and the remaining accelerometers are resting around 0.1 g.
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Figure 2.1: Time sync test for the accelerometers, the figure shows results for 7 devices
started at the same time.
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Figure 2.2: A snippet of the no movement, sample 30-130 from Figure 2.1.

2.2.2 Thermal Camera

This section will give an explanation on how the thermal cameras work and the theory
behind, which is based on Gade et al.[16] unless otherwise specified. Furthermore the
camera which have been used in the project is described.

Traditional colour cameras (RGB), measure electromagnetic radiation, or photons, in the
visible light spectrum which have wavelengths between 390 and 700 nm. This range is
where the human vision can perceive photons and is also where the RGB camera work by
capturing the photons reflected or emitted by objects. [17].

Thermal cameras also measure electromagnetic radiation, but at a much higher wavelength,
between 0.7 and 1000 µm. Objects above 0 K emits radiation relative to its temperature
within this spectrum. Within the infrared spectrum there are five sub-bands, see Table 2.2.
Observe on Figure 2.3 that the emission from the body in NIR and SWIR sub-bands is
nearly zero, which requires illumination at the appropriate wavelengths. Due to these
spectrums different thermal sensors exist that focus on different sub-bands. Night-vision
cameras usually operate in the NIR or SWIR-range with an active illumination source,
where what is referred as thermal infrared (TIR) cameras operate in the MWIR and
LWIR range, where the black body peaks in this range, see Figure 2.3. Within this range
the cameras are able to measure direct emission from objects with temperatures between
190− 1000 K which emits radiation in the TIR spectral range.

How much thermal radiation an object emits is decided by two factors: its temperature
and emissivity. The perfect emitters are called black bodies, where their emissivity value is
1. Most materials are called grey bodies which have an emissivity between 0 and 1. Both
human skin and cloth has an emissivity very close to 1, which means a person’s appearance
in the thermal image is highly correlated to its temperature. Other high emissivity objects
can therefore cause troubles with detection of persons, but since the focus for the project is
inside a sports arena it is not expected to be any issue regarding objects with temperatures
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Group 1001 2. Technical Analysis

and emissivity in the same level as persons.

Table 2.2: Infrared sub-division

Name Abbreviation Wavelength [µm]
Near-infrared NIR 0.7-1.4
Short-wavelength infrared SWIR 1.4-3
Mid-wavelength infrared MWIR 3-8
Long-wavelength infrared LWIR 8-15
Far-infrared FIR 15-1000
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Figure 2.3: Spectral radiance emitted for black body objects at different temperatures

The camera used for the project is AXIS Q1922 10 mm[18], thermal camera which have a
resolution of 640x480 pixels and can record up to 30 fps. The camera creates a webserver,
where it is possible to connect and access to properties of the camera. It is possible to
make the camera run on a pre-defined date and time, sync with the computer or with
a Network Time Protocol server. It is possible to create a customised recording profile,
which gives the opportunity to change the fps and the codec of the recordings, it have
been chosen to record with 25 fps, due to the accelerometers being incapable of having a
sample rate of 30, but it is possible to pick 25 Hz. So the camera and accelerometer can
have the same sample rate, which makes it easier to compare data. The camera view can
be seen at Figure 2.4.

2.2.3 From Position to Acceleration

Since the project involves correlate video data with accelerometer data it is necessary to
make the two data types similar.

It is assumed that the initial positions of the players and the orientation of the
accelerometers are unknown it is impossible to create a trajectory from the accelerometer
data. Because of this it is chosen to estimate the acceleration from the tracklets.
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2.2. Devices Used in the Project Aalborg University

Figure 2.4: An example of the AXIS Q1922 camera view

Since the tracklets presents a position of the person on the field for each frame it is possible
to calculate the distance which the tracked person has moved. This distance is calculated
using the Euclidean distance Equation (2.2).

dist =
√

(xt − xt−1)2 + (yt − yt−1)2 (2.2)

Where dist is the distance between the two points the person have travelled in timestep,
t. The two points, pt and pt−1, consist each of an X- and Y-value.

With the distance from one frame to the next calculated, the speed which the player has
moved with can be calculated as seen in Equation (2.3).

v =
dist

∆t
(2.3)

Where v is the velocity(ms ) and ∆t is the time in seconds between frames. Since the video
is recorded using 25 fps, the ∆t is in this case 1/25 seconds.

After the velocity have been calculated it is now possible to calculate the acceleration for
the person.

a =
∆v

∆t
(2.4)

Where a is the acceleration (m
s2
), ∆v is the difference in velocity and ∆t is the time, between

the time steps.
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Group 1001 2. Technical Analysis

The acceleration is given by m/s2 where the accelerometer measures acceleration in g,
which as explained in section 2.2.1 where 1 g corresponds to 9.82 m

s2
. In order to have the

same unit the estimated acceleration is divided by 9.82.

2.2.4 Time-Sync Between Devices

As mentioned section 2.2.1, the accelerometer is not synchronised with each other and
therefore it is not synchronised with the video either. It is necessary to make sure both
are in synchronised else it will be impossible to correlate any data.

There are different methods to synchronise the devices. One method is to make the
players perform a distinct movement on the camera, such as a jump and then evaluate the
acceleration of all the accelerometers to find the jump. After analysing the output of the
accelerometer when jumping, it is found difficult to locate when the person jumps and when
the person is landing. Another method is to calculate the acceleration for each person’s
movement in the video feed and match with the accleration from the accelerometers. In
Figure 2.5 the acceleration for the video have been estimated and the acceleration measured
by the accelerometer is seen.
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Figure 2.5: In the top graph the estimated acceleration from the video is seen and in the
bottom graph the measured acceleration from the accelerometer is seen. The camera and
accelerometer is set to start at same time, but it can be seen the two graphs resembles
each other, but camera has started recording before the accelerometer.

In order to overcome the asynchronous time issue an mathematical method is tested from
Koutra et al.[19], the paper states methods such as Dot Product or Russell-Rao can be used
to match. To calculate at which data sample the measured acceleration fits the estimated
acceleration best, it have been chosen to use the dot product to calculate the similarity of
the two vectors.

Consider vector a being the estimated acceleration, vector b being the measured
acceleration data and θ being the angle between the vectors in Equation (2.5). The
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calculation of dot product for these two vectors is here shown.

a • b =

n∑
i=1

||ai|| · ||bi|| · cos(θ) (2.5)

Consider these two vectors as time series. The correlation is then done by applying a time
coefficient τ to one of the time series as seen in Equation (2.6).

ri =
n∑
i=1

||ai|| · ||bi+τ || · cos(θ) (2.6)

Where τ = 0, 1, 2, 3, ..n and ri is resulting vector of the correlation. The results of the
correlation can be seen in Figure 2.6
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Figure 2.6: This graph represent the correlation result over the two vectors. The dashed
black line represent the maximum, which is at τ = 110. The maximum represent the τ
where the two vectors resemble each other the most.

By calculating a dot product maximisation between the two vectors it is possible to
synchronise the two time series. As it is seen in Figure 2.6, the two vectors resembles
best by shifting the video acceleration vector with 110 samples. This can be seen in
Figure 2.7.
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Figure 2.7: In this graph the two data vectors are shown. The estimated acceleration has
in this case been scaled for visual purposes. The first 110 data points from the estimated
acceleration has been removed to synchronise the two vectors. As it can be seen the two
vectors now fit each other in the periods where no movement is happening.

2.3 Data Gathering

Since previous work and data gathering conducted by Aalborg University on the sports
arenas has consisted on data without inertia measuring there was currently no recorded
data, which could be used for this project. Data used in this project was therefore recorded
by the authors. The first data recording conducted was used in the preliminary test seen
in section 2.2.4. This data was recorded using a single person, with an accelerometer
mounted on the waist, in an indoor environment at Aalborg University. The preliminary
test was created in order to investigate the possibility of correlating the two data types.
The recording was performed in a 3.5x3.5m area and lasted 5 min. The corners was marked
during the recording, in order know the pixel position of each corner.

As the preliminary test showed positive results on a single player it was decided record
a larger dataset with several players. The recording was conducted in Gigantium sport
arena. A single thermal camera was placed 8.75 meters above the field positioned from the
side. From this position the camera was able to capture half of an indoor handball field in
which the test was conducted. A frame from the camera can be seen in Figure 2.8.
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Figure 2.8: Viewpoint from camera positioned 8.75 m above the ground.

Before the test players entered the field a calibration was made. This was done by dividing
the field into 5x5m. During the recording a person would then stand at each corner of
these squares, the world coordinate and pixel position is then saved. The divided field can
be seen in Figure 3.12. The total size of the field was 15.5x20m.

After measuring the corners, 9 people was equipped with an accelerometer each. The test
then proceeded by having 5 players on the field at the time. one player would remain
through the entire recording as this player is goalkeeping. The remaining 4 players were
then split into two teams. every 2 minute two players leaves the field and two new players
enters to take their place. This was done in order to simulate a match where substitutions
would occur. The recording lasted 12 min with a frame rate of 25 per second.

2.3.1 Ground Truth Creation

In order to correlate the accelerometer data and acceleration from the video and to later
verify tests a ground truth is required. To obtain the ground truth information from the
video a program has been developed. The program consist of presenting each frame of the
video in chronological order. Each time a player is entering the scene it is then possible to
mark their position by clicking on the pixel in the frame. Once the mark has been placed
it is possible to move the mark using the arrow keys, in the case the mark is slightly miss
placed.
When clicking "space"-button the mark is saved for the specific frame. Once saved the
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program will automatically proceed to the next frame. The program can only take one
mark per frame, so once a person has been marked he will be manually tracked until he
leaves the field. If no mark is set, when all players in the frame is already marked, space
can be used to continue to the next frame without saving any information.
By using this program to track each person entering the scene till they leave the scene,
it has been possible to create a ground truth set for each player. Additionally to add the
feature of foresee if a still standing player will begin to move soon an additional image
is shown which can be manually adjusted to show x amount of frames in the future or
past of the current frame, this is done to make the ground truth data more accurate.
The program also presents the marks which has already been placed for the other players
which are in the scene. An example of the ground truth program can be seen in Figure 2.9.
The ground truth collection resulted in 42 trajectories of the players over 12 minutes of
recording. These images also displays how the position of the players has been done. By
placing the mark at between the feet of the players in an attempt to mark the position of
the players.

(a) Current frame. (b) Future frame.

Figure 2.9: (a) Displays the current image to be marked. (b) Displays the future image 5
frames ahead. As seen in (a), all players have been marked, seen at the blue dots at their
feet. If the image were clicked a green dot would appear in that position, representing a
new player.

2.3.2 Data Definition

In this section the different data recorded through this project will be described and named
for further references. All trajectories described in this section is the ground truth data,
created as seen in previous section 2.3.1.

Dataset 1 Contains the recording conducted at Aalborg University, where a single person
wearing a single accelerometer, was running around for 5 minutes in a square of 3.5x3.5m.

(a) Contains a single trajectory for the person.

Dataset 2 This dataset contain recordings conducted in Gigantium sports arena. The
video contain 12 minutes and 3 seconds video recorded in 25 fps (a total of 18075 frames).
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In the dataset people play football, normally five people are on the field where one of them
is the goalkeeper. Approximate every 2 minute two people gets substituted with two new
people. A total of 9 different people enter or leave the field during the recording. Since
people are not staying on the field the entire time, there have been created two different
sub-datasets.

(a) This sub-dataset contains 9 trajectories corresponding to the full trajectories of each
person recorded during the test.

(b) This sub-dataset contains 42 trajectories. Each trajectory presents the position of a
player from the frame where he enters the field and untill he leaves the field.

2.4 Summary of Technical Analysis

In the previous work, section 2.1, conducted at Aalborg University it was found that
tracking in a sport environment resulted in many tracklets, due to the vast amount of
occlusion occurring in sports. It has been found that identifying the individual players
after an occlusion is hard when using thermal cameras, where colour features are lost. In
section 2.2, the devices used in this project have been explained. Research conducted on the
accelerometers have shown that the accelerometers clocks are unsynchronised, despite being
started at same time. In section 2.2.3 the conversion from video information to acceleration
have been presented, which in section 2.2.4 led to a preliminary test of matching the video
information with the data from the accelerometer. The test showed that the accelerometer
and camera was not synchronised either. A method based on dot product maximisation
was presented for synchronising the accelerometer data with the video. In section 2.3 the
data gathered and labelled in this project is presented.
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2.5 Problem Statement

Based on the analysis of the initial problem statement section 1.2 and the summary of the
Technical Analysis, chapter 2 the following problem statement is formulated:

How can a system be developed to connect broken tracklets into trajectories, using thermal
video- and accelerometer-data?

2.6 Specifications and Requirements

In the following Table 2.3, the specification and requirements will be listed for the project.

Table 2.3: Specification and requirements

Req. # Description Specification Reference
1) Detection Must be able to segment persons from the background. section 2.1.1
2) Detection Must be able to detect all persons on the field. section 2.1.1
3) Tracking Must be able to track a single person. section 2.1
4) Tracking Must be able to detect when an occlusion occurs. section 1.2
5) Tracking Must be able to detect when an occlusion splits into individuals. section 1.2
6) Tracking Must be able to detect when an occlusion splits into a new occlusion. section 1.2

7) Dataprocessing Must be able to calculate the world position of each person
based on the pixel position of the detected person. section 2.2.3

8) Dataprocessing Must be able to calculate the acceleration based on world positions. section 2.2.3
9) Dataprocessing Must be able to synchronise accelerometer data with video recording. section 2.2.4
10) Dataprocessing Must be able to match trackless/trajectories with accelerometers section 2.2.4
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3Design and Implementation
In this chapter the different parts of the systems are described and designed. First there
will be an introduction to the system illustrated with a flowchart.

3.1 Description of the System

The overall system Figure 3.1 is a setup of a thermal camera and accelerometers for
each person who are on a field. The accelerometers output the acceleration in each axis
and the camera output a thermal image, where the persons on the field stands out to
its background. From this the pixel positions can be extracted from each person and
these can be converted to world coordinates of the field. The world coordinates are
then used to estimate the acceleration from one image to another. It is then possible
to match the estimated acceleration from the video with the measured acceleration from
the accelerometers and then find the best match between the devices.
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Figure 3.1: In this flowchart it is seen how the full pipeline is designed. The chart is read
from the left where the acceleration measurements are seen and to the right the information
provided by the camera is seen.
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3.2 Detection and Tracking

Figure 3.2: Flow chart of detec-
tion method used to detect the
players on the field. Each con-
tour found is verified by the size
of the contour.

In section 2.3.1 it was shown how ground truth player
trajectories could be created using a simple program.
However the process of creating trajectories for each
player occuring during the video is a time consuming
task, and a natural step is therefore to implement a
simple detection and tracking method. By having a
automatic tracking system removes the need of manually
track each player in a potential finished product.

3.2.1 Detection

First step of the tracking is to detect the players
in each frame. The detection step can be seen in
Figure 3.2. Before the detection can be applied it
is necessary to extract the foreground, to do several
different background subtraction techniques exist. Due
to previous experience from the group, Mixture of
Gaussians[20], (MOG) algorithm have been applied from
OpenCV’s library. A series of 300 frames of the
background, without any players on the field has been
used to train the background subtractor. MOG has been
used to accommodate potential changes, due to noise in
the thermal camera sensor or changes in temperatures
for the background.

A median filter is applied to each frame to reduce
potential noise. Once trained, the background image is
applied to each frame in the video in order to determine
the foreground. Once the foreground is extracted the
image is thresholded. The threshold in the grey scaled
image has been found experimentally and is set to 117.
After the threshold have been applied the contours of
each player stands out.

To remove potential noise, the minimum size of a contour
belonging to a person is found. If a contour is not equal
or greater to the minimum size it is either discarded or
saved. The minimum size threshold for a contour has
likewise been experimentally found. Since the contour
size of a player varies based on their position in the field
the size is set such that the players furthest from the
camera is minimum requirement to be accepted.
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Mixture of Gaussian

As mentioned for the background subtraction a mixture of Gaussian (MOG) have been
used, the method is made by Zivkovic [20]. The MOG method is modelling each pixel
as a mixture of Gaussians and it use online approximation to update the model. For the
method to work it is assumed that every pixel’s intensity in the video can be modelled
using a Gaussian mixture model. The special about Zoran’s MOG version is that it is able
to select the appropriate number of Gaussian distributions for each pixel compared to the
traditional which have a predefined K amount of Gaussian distributions. This provides
better adaptability for varying scenes such as noise hitting the thermal camera sensor
which in an image is illustrated similar to illumination changes.

Contour Detection

For this project the contour detection method is based on Suzuki [21]. Suzuki proposed
a method to find the boundaries by using a kernel seen in Figure 3.3. In this case i
corresponds to the row number and j is the column number.

(a) horizontal kernel (b) vertical kernel

Figure 3.3: By applying the horizontal kernel in each row of the image the outer borders
are found, when both conditions in the kernel are fulfilled, a leftmost border is found. If
only j + 1 condition is fulfilled, the kernel is currently within a contour. When none of
the conditions are fulfilled the kernel has reached the rightmost border in that row. The
vertical kernel is likewise applied to the binary image.

In Figure 3.4 an example of how a contour is found by applying the kernels from Figure 3.3
can be seen. In this figure each value corresponds to a pixel in a binary image.
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(a) Input to contour kernels.

0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 2 2 2 2 2 : 0
0 0 2 1 1 1 1 1 1 : 0
0 0 2 1 1 1 1 1 : 0 0
0 0 0 2 1 1 1 : 0 0 0
0 0 0 0 2 1 : 0 0 0 0
0 0 0 0 0 2 : 0 0 0 0
0 0 0 2 2 1 1 2 0 0 0
0 0 0 2 1 1 1 1 2 0 0
0 0 2 1 1 1 1 1 1 : 0
0 2 1 1 1 1 1 1 1 : 0
0 0 2 : : : : : : : 0
0 0 0 0 0 0 0 0 0 0 0

(b) Output of contour kernels.

Figure 3.4: The pixel values with 0 corresponds to the points where only the i,j element
is fulfilled. The pixel values with 2 corresponds to where both condition of the kernel is
fulfilled and indicates the top and left borders of the contour. The pixel values 1 indicates
the filling of the contours. The pixels with : corresponds to the right and bottom most
contour borders, meaning that 0 of the conditions for the kernels are fulfilled.

As it can be seen in Figure 3.4 the contours has been found.

3.2.2 Tracking

When all contours has been found by the detector in each frame, a tracking method based
on contours from previous frame to next frame has been implemented. This tracking
method keeps the trajectories of all players detected and tracked throughout the video.
A few terminology expressions is explained in order to improve the understanding. An
occlusion is defined as a contour containing more than a single person. A split is when an
occlusion is separates into two or more contours. A flowchart of the tracking method can
be seen in Figure 3.5.

The input to the tracking algorithm are a list of NewContours for the current frame
and a list of TrackedContours from the previous frames. It is then first determined if
any persons is present in the current frame by checking the amount of NewContours. If
any new contour is present, it is matched with the TrackedContours to check if the new
contour is corresponding to a tracked contour. If the new contour is not corresponding to
any tracked contours, a new ID is created. If the new contour is corresponding to a tracked
contour it is checked if multiple tracked contours are part of the new contour. If this is
the case the new contours is added to the OcclusionList along with the tracked contours.

If this is not the case it is checked if multiple of the new contours are matched with a
tracked contour. If this is the case the new contours is added to the SplitList along with
the tracked contour.

If the new contour is not in the SplitList or OcclusionList it is added to the SingleList
containing the new contours matched with the corresponding tracked contours. From the
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SingleList the tracked contours are updated with new information contained in the new
contours, such as position and number of persons.

To handle the occlusions and splits occurring in a frame it is first checked if any elements
in the SplitList are matching with the OcclusionList. In the case no elements are
matching new IDs are created for the splits and occlusions. If elements are found in
both the OcclusionList and SplitList, the SplitToOcclusion function will be used, see Code
snippet 3.1 for pseudo code, explaining the function.

1 for split in splitlist:
2 if split in occlusionList:
3 createNewPlayer from occlusion
4 remove split from splitlist
5 remove occlusion from occlusionlist
6 if splitList:
7 createNewPlayer from splitList
8 if occlusionList:
9 createNewPlayer from occlusionList

Code snippet 3.1: Pseudo code for splitToOcclusion-function

By generating a binary contour image of each tracked contour and each new contour it is
possible to find the similarities between two contours by multiplying the images together.

Figure 3.5: Presents the process of tracking each player found by the detection algorithm.
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The number of white pixel presented in the resulting images correspond to how many
pixels in the previous contour is also present in the new contour. Since we are working
with 25 fps it is considered impossible to move outside your contour in the previous frame.
An example of this can be seen in Figure 3.6.

(a) previousContourImage (b) newContourImage (c) Result

Figure 3.6: (a) Image from tracked contour. (b) A matching contour from the new
contours. (c) The result of multiplying the images together. As it can be seen the result
display the contour pixels which are equal from the previous to the next frame.

In Figure 3.6 an example of single previous contour tracked to the next contour of same
person. In Figure 3.7 and example of a person going from being a single person into an
occlusion. Notice how two previous contour images share the same new contour image and
therefore share the same position.

(a) Previous
contour image.

(b) Previous
contour image.

(c) New contour
image.

(d) Resulting
contours.

(e) Resulting
contours.

Figure 3.7: (a) and (b) previous tracked contours. (c) contour in new frame. (d) and (e)
resulting images after multiplying each of the previous contours with the new contour. As
it can be seen from this example it can be determined that the two previous contours is
entering an occlusion with each other.

As seen in Figure 3.7 it is possible to determine when two individuals are entering an
occlusion with each other. Likewise will Figure 3.8 show how it is determined if an occlusion
is splitting into two contours.

(a) Previous
contour image.

(b) New contour
image.

(c) New contour
image.

(d) Resulting
contours.

(e) Resulting
contours.

Figure 3.8: (a) previous tracked contour. (b) and (c) contours in new frame. (d) and
(e) resulting images after multiplying each of the previous contours with the new contour.
As it can be seen from this example it can be determined that the previous contours is
splitting into two individual players.
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With Figure 3.8 explaining how the splitting of an occlusion is handled it concludes how
the tracking method is working. Next section will explain how the tracking information
obtained is saved.

3.2.3 ID Class

In order to further use the information found from the detection and tracking method, a
Python class has been created. This class was created to save various information found
by the tracking algorithm. In Table 3.1 the information saved for each tracked contour
can be found.

Table 3.1: The python class created to control the data obtained from the tracking method.

ID Class and description of indices
IDname This saves the number of a tracked contour, corresponding to when it entered the frame.
contour Contains the last updated contour.
WorldX Contains the last updated world coordinate X.
WorldY Contains the last updated world coordinate Y.
PixelX Contains the last updated pixel coordinate X.
PixelY Contains the last updated pixel coordinate Y.
WorldHistory Contains a history of all world positions where the tracked contour has been.
PixelHistory Contains a history of all pixel positions where the tracked contour has been.
PeopleCount Contains the number of players within this contour.

Parents Contains a list of previous ContoursID which the tracked contour have been part of
This is mainly used during occlusions and splits.

Frames Contains a list of frames in which the ID has been in the frame.

3.2.4 Example of Tracking

To follow up on how the tracker works, Figure 3.5, and how it handles splits and occlusion,
Figures 3.6 to 3.8 shows examples from the images in Dataset 2. In these example images
the contours containing a single person is coloured green and contours containing more than
one person, also known as an occlusion, are coloured red. First example, see Figure 3.9,
shows how the system handles when two persons walk close enough for their contours
to collide which the system interpret as an occlusion. It stops the tracking of the two
colliding persons (ID52 and ID53 ), Figure 3.9a and starts tracking of the occlusion (ID54 ),
Figure 3.9b. Later in Figure 3.9c the occlusion splits again and it stops tracking of ID54
and begins to track two new IDs, one for each person (ID55 and ID56 ), Figure 3.9c. The
reason it dedicate new ID’s is the that it is a challenging task to distinguish which of the
persons belonged to which ID pre-occlusion.

(a) Frame – 3941 (b) Frame – 3942 (c) Frame – 3977

Figure 3.9: Each image is cropped and shows a bounding box around each contour and
the text indicates the contours corresponding ID. (a) 4 persons, 4 contours. (b) after an
occlusion happened between ID52 and ID53, now called ID54. (c) after 34 frames ID54,
splits into two new contours which create ID55 and ID56.
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In Figure 3.10 a more chaotic scenario is happening, where two occlusions (ID8 and ID9 ),
Figure 3.10a are present and in next frame both occlusions splits at the same time. The
figure shows that the system can handle these scenarios and give a new ID to each contour
(10, 11, 12 and 13 ), Figure 3.10b.

(a) Frame – 3238 (b) Frame – 3239

Figure 3.10: Each image is cropped and shows a bounding box around each contour and
the text indicates the contours corresponding ID. (a) consist of two occlusions ID8 and
ID9 with two people in each. (b) next frame where both occlusions splits into four persons
occlusion ID8 becomes ID10 and ID12 and occlusion ID9 becomes ID11 and ID13.

At Figure 3.11 is another special scenario, where an occlusion between two persons exist
(ID49 ), Figure 3.11a with another person (ID46 ) close to the occlusion. In the next frame
the occlusion splits, and ID46 collide with the upper person in the occlusion resulting in a
new occlusion. The program is still able to detect this scenario, and the information saved
for the new occlusion (ID50 ) is that it consist of two persons and ID51, Figure 3.11b,
consist of one person.

(a) Frame – 3706 (b) Frame – 3707

Figure 3.11: Each image is cropped and shows a bounding box around each contour and
the text indicates the contours corresponding ID. (a) consist of one occlusions ID49 with
one person ID46 close to the occlusion. (b) next frame the lower person in the previous
occlusion splits and becomes ID51 but the upper person in the previous occlusions gets
close enough to ID46, and occlude into ID50
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3.3 From Pixel to World Coordinates

In this section the procedure which is required to go from the camera’s pixel coordinates
to real world coordinates will be described.

First it is necessary to calibrate the field, this is mentioned in section 2.3, but to summarise
it is done by using measuring tape and then at every 5 meter from top left a person will
stand. This makes it possible to extract pixel coordinates for the same place. The process
is done for the entire field for Dataset 2 on 15.5m x 20m with a total of 25 measurement
points. As mentioned every 5 meter in both x- and y-axis have been measured which
makes it possible to generate tiles as mentioned by Gade et al.[22]. The idea with the tiles
is when a person enters a tile, the calibration for this tile will be used and further when a
person exits and enter a new tile, the calibration will be changes which makes the pixel to
world process more precise.

The field is measured and the corresponding pixel locations is found, see Figure 3.12.
With four known points it is possible to make a transformation matrix for each tile in the
field, this can be done by using OpenCV’s getPerspectiveTransform function[23], which
takes four source and destination points as input and then it returns the transformation
matrix for these points. It is also possible use findHomography from OpenCV, where
the getPerspectiveTransform is the base for findHomography, the great thing with
findHomography is the fact that it can take more than four points and it use a method
called RANSAC which is able to reject outliers if at least 50% + 1 of the data points is
okay.

Figure 3.12: The image is showing the calibrated points on the field and their corresponding
real world coordinates, one tile is consisting of a square of four points.

Since only four points have been measured for each tile and the correct pixel locations for
the same points are extracted it is chosen to use the base-method getPerspectiveTransform.
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The code for generating a list containing each tile in the field can be seen in Figure 3.13.

Figure 3.13: Flowchart is explaining how the system calibration is done in the system.

With the tileList created it is now possible to go from pixel to world coordinate, but first
it is necessary to know which tile the pixel belongs to, see Figure 3.14. The figure explains
how this is done by creating a polygon from each tile, by using their four corner coordinates
in the image. Then you can control if the pixel is within the polygons boundary or outside,
if the pixel is within, the correct tile is found and then the transformation matrix for this
tile can be used to calculate the pixel to world conversion. If it is not within, the program
creates the next tile polygon, until there are no more tiles left to be checked. If the pixel
is not within the tile yet, the program will find the tile with smallest distance to the pixel
which will be used to calculate from pixel to world coordinates. Another option is to
discard if the person is outside the tiles, but it have been decided not to and instead take
it into consideration.
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Figure 3.14: Flowchart telling how the system decide which of the calibrated tiles from
Figure 3.13 it needs to use to calculate the corresponding world coordinate.

3.3.1 Perspective Transformation

Once the tile have been located the following explains the process in going from pixel- to
world-coordinates.

To transform four points (xi, yi) to the four points (ui, vi) for i = 0, 1, 2, 3 we use a
perspective transform of the form seen at Equations (3.1) and (3.2), the method is based
on [17].

ui =
a0xi + a1yi + a2
c0xi + c1yi + 1

(3.1)

vi =
b0xi + b1yi + b2
c0xi + c1yi + 1

(3.2)

This gives eight unknown coefficients a0, a1, a2, b0, b1, b2, c0, c1 which can be calculated by
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solving the linear system, Equation (3.3).

x0 y0 1 0 0 0 −x0u0 −y0u0
x1 y1 1 0 0 0 −x1u1 −y1u1
x2 y2 1 0 0 0 −x2u2 −y2u2
x3 y3 1 0 0 0 −x3u3 −y3u3
0 0 0 x0 y0 1 −x0v0 −y0v0
0 0 0 x1 y1 1 −x1v1 −y1v1
0 0 0 x2 y2 1 −x2v2 −y2v2
0 0 0 x3 y3 1 −x3v3 −y3v3





a0
a1
a2
b0
b1
b2
c0
c1


=



u0
u1
u2
u3
v0
v1
v2
v3


(3.3)

To test whether this is correct, an example from the upper left tile will be used, see
Equations (3.4) to (3.11).

(x0, y0) = (148, 187) (3.4)

(x1, y1) = (241, 183) (3.5)

(x2, y2) = (230, 217) (3.6)

(x3, y3) = (123, 221) (3.7)

(u0, v0) = (0, 0) (3.8)

(u1, v1) = (5, 0) (3.9)

(u2, v2) = (5, 5) (3.10)

(u3, v3) = (0, 5) (3.11)

The system of equations will then be, see Equations (3.12) to (3.19).

148a0 + 187a1 + a2 = 0 (3.12)

241a0 + 183a1 + a2 − 1205c0 − 915c1 = 5 (3.13)

230a0 + 221a1 + a2 − 1150c0 − 1085c1 = 5 (3.14)

123a0 + 221a1 + a2 = 0 (3.15)

148b0 + 187b1 + b2 = 0 (3.16)

241b0 + 183b1 + b2 = 0 (3.17)

230b0 + 217b1 + b2 − 1150c0 − 1085c1 = 5 (3.18)

123b0 + 221b1 + b2 − 615c0 − 1105c1 = 5 (3.19)

When solving this system the results for the coeffecients can be seen at Equations (3.20)
to (3.22).

a0 = −0.40841, a1 = −0.30030, a2 = 116.60 (3.20)

b0 = −0.56061, b1 = −1.3034, b2 = 252.04 (3.21)

c0 = −0.0030251, c1 = −0.041678 (3.22)

The required transformation from Equations (3.1) and (3.2) can be seen at Equations (3.23)
and (3.24)

u =
−0.40841xi +−0.30030yi + 116.60

−0.0030251xi +−0.041678yi + 1
(3.23)

v =
−0.56061xi +−1.3034yi + 252.04

−0.0030251xi +−0.041678yi + 1
(3.24)
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When inserting the pixel coordinates from the corners it can be confirmed that the
transformation work correctly.

3.4 Synchronising Accelerometers and Video

In this section a test have been conducted on Dataset 2a, from section 2.3.2, recorded in
Gigantium sports arena. The test is an extended version of the preliminary test which have
been conducted in section 2.2.4. Where the goal was to test if dot product maximisation is a
viable method for matching accelerometer data with estimated acceleration. This section
presents the second preliminary test conducted in order to both test the dot product
maximisation, but will also be used to synchronise the accelerometer and video data.

The position history extracted from the video of the players is used to estimate the
acceleration for each trajectory as seen in section 2.2.3. For all players in the video, the
acceleration will be calculated and a dot product will be found between the estimated
acceleration and each measured acceleration from the accelerometers. As previous
experience have shown in section 2.2.1 there is an issue with time synchronisation
between the accelerometers, where the clock within the accelerometer is not synchronised
and therefore start at separate real world times. Furthermore accelerometers are not
synchronised with the video as experienced in section 2.2.4. Because of the synchronisation
issue it has been decided to shift the video in negative and positive direction by inserting
zeros as previously done in section 2.2.4. By performing dot product maximisation in both
directions, it is possible to determine whether the accelerometers started recording before
or after the camera and how many samples is needed to synchronise the data.

As explained in Dataset 2a the dataset consist 9 trajectories being the full trajectories of
the 9 players recorded. The 9 players are through the video leaving the camera view when
a substitution is happening or when the ball is leaving the field of view. The test will
involve matching the 9 ground truth trajectories to the 9 accelerometers using dot product
maximisation. Each trajectory is matched with all 9 accelerometers, both without shifting
and shifting in negative and positive direction.

In Figures 3.15 and 3.16 estimated video acceleration for person0 have been plotted,
matched with accelerometer0 and accelerometer1 ’s data. As seen person0 enters the field
three times during the entire video, seen by three spikes with nearly no activity between.
When comparing Figures 3.15 and 3.16 it is noticeable that accelerometer0 ’s data contains
the third spike, where accelerometer1 is resting. By visually judging the two matches, it
is seen that accelerometer0 ’s data matches the trajectory for person0. Comparing the
calculated dot product, above each graph, it is seen that accelerometer0 have a better
match to the ground truth data than accelerometer1.

All results of the dot product maximisation for the 9 persons matched to all accelerometers
can be seen in appendix A.1. The top matches for each person can be seen in Table 3.2.
As seen five out of nine players are matched correctly, when no shift and positive shift
is applied, but when negative shift is applied it matches six out of nine correctly. Notice
that person7 is matched to accelerometer6, when no shift and positive shift is applied and
with its accelerometer7, when negative shift is applied. Also take note that the dot product
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Figure 3.15: person0 matched with accelerometer0, from top the bottom it shows; no
shift, shift in positive direction and shift in negative direction. In the title for each graph
the number e.g. middle graph tells +5 which indicates how much the video is shifted in
positive direction. As seen on the figure it is shifted with very small samples compared to
Figure 3.16
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Figure 3.16: person0 matched with accelerometer1, from top the bottom it shows; no
shift, shift in positive direction and shift in negative direction. As seen here video is
shifted considerably more in order to fit the accelerometer, with negative shift it is shifted
with 199 samples to fit best.
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during negative is significantly higher. When looking at person2 and person3 ’s results it is
seen that both are matched with accelerometer3, but the dot product between person3 and
accelerometer3 is significantly higher and with less shifting required than person2 matched
with accelerometer3. Since a person can only be matched to one accelerometer, it makes
sense to look at second best match in cases such as person2. As seen in Table A.3 the
second best match for person2 is accelerometer6, where no shift applied. However when
both positive and negative shift is applied, person2 matches with accelerometer2.

Table 3.2: Table showing the result of each video trajectory matched to all accelerometers,
there are three columns, no shift, positive shift and negative shift representing if the video
have been shifted or not. Then it shows columns with which acceleromter it have been
matched and the resulting dot product. Lastly if its shifted there is a column showing how
much for the best match.

Results
No Shift Positive Shift Negative ShiftVideo Acc. Dot Acc. Shift+ Dot+ Acc. Shift– Dot–

person0 acc0 14518.33 acc0 5 16062.74 acc0 6 16133.56
person1 acc1 10193.76 acc1 2 10633.86 acc1 109 12642.14
person2 acc3 12976.63 acc3 10 13916.21 acc3 62 14393.84
person3 acc3 18088.68 acc3 2 18659.21 acc3 73 24559.12
person4 acc6 5380.56 acc6 11 5783.74 acc6 366 6422.89
person5 acc8 3413.56 acc8 26 3700.06 acc8 191 4038.75
person6 acc6 13642.12 acc6 5 14606.98 acc6 72 16654.60
person7 acc6 12530.91 acc6 407 13600.24 acc7 117 13766.39
person8 acc8 8758.56 acc8 25 9225.99 acc8 135 11654.01

The results shows that to some extend it is possible to match the estimated acceleration
from video information with a players corresponding accelerometer. Some persons in the
dataset spend little time on the field, which makes it harder to separate them from the
others on the field at the same time. This is specifically seen for person5, whose estimated
acceleration is matched better with other players accelerometer, in appendix Table A.6.
This is caused due to person5 only entering the field once during the recording as see in
Figure 3.17. What is also seen from this accelerometer is that even when person5 is on
the field very little movement is measured by the accelerometer.

The resting acceleration for each accelerometer is variant, as seen in Figure 2.2, since the
video and accelerometer is rarely at full rest in the test, it might be relevant to floor the
acceleration if it is below a certain threshold. For the accelerometers the threshold is set
to 0.2 g, based from the results in Figure 2.2. If the acceleration is less than the threshold
it is set to 0, the thought behind this is to make the accelerometers rest at the same value
and therefore the matches might become stronger. The results of this, see appendix A.1.2,
shows no changes in the matches, but person7, see appendix Table A.8, with shift in
negative direction, the necessary amount of samples to be shifted is 121 compared to 117
without threshold. As a natural cause of flooring under the threshold the length of the
graph is reduced and the dot product is therefore likewise reduced.

As seen the data recording involve both time synchronisation issues and accelerometer
measurements outside the field. Both of these can cause issues when matching

34



3.4. Synchronising Accelerometers and Video Aalborg University

0 2500 5000 7500 10000 12500 15000 17500
0

20

A
cc

el
er

at
io

n
[g
] [person5 - person5], • = 591.16

Video

Accelerometer

0 2500 5000 7500 10000 12500 15000 17500
0

20

A
cc

el
er

at
io

n
[g
] [person5 - person5], shifted +458 samples, • = 648.54

Video +shifted

Accelerometer

0 2500 5000 7500 10000 12500 15000 17500
Samples

0

20

A
cc

el
er

at
io

n
[g
] [person5 - person5], shifted –6 samples, • = 611.41

Video –shifted

Accelerometer

Figure 3.17: As it is seen in these graphs person5 only enters the field once during recording
(blue data). It is however also seen that person5 is very stationary when it is on the field.
Due to this low activity other accelerometers data might fit better. In positive direction
it needs to be shifted 458 samples, where in negative direction it needs to be shifted 6
samples.

the trajectories with the accelerometers. It is attempted to improve the results by
time synchronising the accelerometers with the video and remove the accelerometer
measurements performed outside the camera view.

This is done by determine how much shift each accelerometer needs to be in sync with the
video. The shift have been calculated by moving the video in both positive and negative
direction over each accelerometer and the result with highest dot product (best match)
have been saved. By looking at the dot results and shift in both positive and negative
direction from Table 3.2, it can be concluded that the negative direction shift have most
impact and overall gives a greater dot than positive shift and without shift.

The only person where negative shifting is not superior is person5, where the negative
shift produces a dot value of 611.41 and the positive shift, 648.54. It is not significant
greater and when comparing the amount of samples to be shifted, it needs to be shifted 6
samples in with negative shift and 458 during positive shift. As 458 samples corresponds
to 18.32 seconds. Since the other persons will all be shifted in the negative direction it
will not make sense to shift person5, so significantly in the opposite direction of the other
accelerometers.

To shift the accelerometer so it is synchronised with the video it is necessary to move all
accelerometers in positive direction by the amount of samples shown in negative shift at
Table 3.2. The reasoning behind this is that the shift is calculated by shifting the video,
while keeping the accelerometers steady, and an opposite movement is therefore required
when video is kept static.

Last step is to remove the noise measured by the accelerometers when a person is not
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present in the camera view. This is done checking for each time@£ step if the ground
truth data contains information. If the the ground truth does not contain any data for the
specific time step, the accelerometer data is set to zero for the corresponding person.

An example from the results after the sync can be seen at Figure 3.18, the important thing
to notice is the upper figure shows spikes in the acceleration even though there are no video
acceleration of the person, this can give some noise when comparing another person who
have activity in this area since they match better with some small activity than with no
activity.
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Figure 3.18: Figure showing the video track for person3 and accelerometer3 with no
changes in the top figure and in the bottom figure it shows after they have been
synchronised and their noise when not appearing in the video have been removed.

3.4.1 Matching 9 Trajectories With 9 Accelerometers

In section 3.4 the raw accelerometer data was held up against the video acceleration
data created for each person. As seen the system was not capable matching all
accelerometers with their corresponding players. The results from this section however
helped synchronising the individual accelerometer data with the video. By having the
accelerometers synchronised with the video it was further possible to remove noise and
movement happening when the players was not occurring in the frames. By using the
negative shift calculated in section 3.4, because of their general higher dot product.
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Table 3.3: Here is the dot product results for each person’s trajectory matched to all
accelerometers, the table shows the normalized dot product results in each row. The green
boxes mark a correct match and the red boxes mark an incorrect match.

Traj. / Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 1.00 0.59 0.42 0.43 0.16 0.01 0.48 0.54 0.24
person1 0.82 1.00 0.40 0.23 0.26 0.03 0.26 0.62 0.35
person2 0.67 0.50 1.00 0.93 0.24 0.03 0.72 0.76 0.55
person3 0.41 0.14 0.42 1.00 0.01 0.02 0.69 0.48 0.24
person4 1.00 0.65 0.84 0.90 0.55 0.00 0.82 0.66 0.07
person5 0.35 0.45 0.47 0.81 0.10 0.18 0.00 0.66 1.00
person6 0.55 0.24 0.44 0.87 0.01 0.00 1.00 0.54 0.16
person7 0.78 0.64 0.68 0.84 0.15 0.05 0.60 1.00 0.53
person8 0.36 0.44 0.60 0.76 0.08 0.09 0.32 0.69 1.00

In Table 3.3 it can be seen that synchronisation and noise removal has improved the results
found in section 3.4. In the negative shift results shown in Table 3.2 matched 6 out of
9 persons to their corresponding accelerometers. In Table 3.3 it is seen that 7 out of
9 persons are now matched to their corresponding accelerometers. Specifically person4
is now correctly matched with its corresponding accelerometer. In order to improve the
results further the optimisation algorithm known as Hungarian algorithm or Munkres-
Kuhn algorithm is applied.

Hungarian Algorithm

The Hungarian algorithm is an optimisation algorithm developed to solve assignment
problems based on the cost of each task for each worker. Hungarian algorithm can assign
task either based on minimising the cost or maximising the effectiveness. In our case the
Hungarian algorithm will be used to maximise the effectiveness of each player with the
accelerometers, by using the dot product.

The Hungarian algorithm for maximisation consist of the following steps[24, 25]:

Step 1: Negate all elements in n × n matrix and subtract the lowest value from
all elements in matrix.

Step 2: Subtract the minimum row value from all elements in row.

Step 3: Subtract the minimum column value from all elements in column.

Step 4: Cover all zeroes in matrix with minimum number of lines. If number of
lines < n proceed to step 5. If number of lines = n proceed to step 6.

Step 5: Subtract lowest uncovered value from all uncovered value and add lowest
uncovered value to all values covered by twice. Return to step 4.

Step 6: For each row and column containing a single zero mark that zero as
accepted. Exclude zeroes occurring in rows or columns with accepted
zeroes as false and repeat step 6 if all workers are not assigned.
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For the purpose of showing how the algorithm works with all steps in affect an example is
presented step-by-step in appendix A.1.4 to explain how the Hungarian algorithm works
when maximising the effectiveness. In Table 3.4 shows the results of the Hungarian
algorithm.

Table 3.4: Here is the results of Table 3.3, but with Hungarian algorithm applied. The
green boxes mark a correct match. Each row shows the row normalized dot product.

Traj. / Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 1.00 0.59 0.42 0.43 0.16 0.01 0.48 0.54 0.24
person1 0.82 1.00 0.40 0.23 0.26 0.03 0.26 0.62 0.35
person2 0.67 0.50 1.00 0.93 0.24 0.03 0.72 0.76 0.55
person3 0.41 0.14 0.42 1.00 0.01 0.02 0.69 0.48 0.24
person4 1.00 0.65 0.84 0.90 0.55 0.00 0.82 0.66 0.07
person5 0.35 0.45 0.47 0.81 0.10 0.18 0.00 0.66 1.00
person6 0.55 0.24 0.44 0.87 0.01 0.00 1.00 0.54 0.16
person7 0.78 0.64 0.68 0.84 0.15 0.05 0.60 1.00 0.53
person8 0.36 0.44 0.60 0.76 0.08 0.09 0.32 0.69 1.00

As seen in Table 3.4 the Hungarian algorithm is matching the acceleration for each person,
estimated from the video with its corresponding accelerometer data.
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3.5 42 Trajectories Matched to 9 Accelerometers

With the synchronised accelerometers from section 3.4, it is possible to investigate how
robust the dot product together with the Hungarian algorithm is, by matching the
trajectories to the 9 accelerometers. The 42 trajectories is presented in Dataset 2b,
section 2.3.2. As explained the trajectories starts when a player enters the field and ends
when the player leaves the field.

There will be conducted seven different methods to investigate the impact they have on
the results in this section:

Method 1: Will show how strong the dot product is to get correct matches.

Method 2: Will show how strong the dot product is, using Hungarian algorithm with no
learn.

Method 3: Will show how strong row normalized dot product is, using Hungarian
algorithm with no learn.

Method 4: Will show how strong dot product is, using Hungarian algorithm with learn.

Method 5: Will show how strong row normalized dot product is, using Hungarian
algorithm with learn, to get correct matches.

Method 6: Is using a different similarity method proposed by Koutra et al.[19], as
mentioned in section 2.2.4. This method is using binarized data to calculate
the Russell-Rao dissimilarity using Hungarian algorithm with no learn.

Method 7: This method is using binarized data to calculate the Russell-Rao dissimilarity
using Hungarian algorithm with learn.

The results from all the methods can be found in appendix A.2, where the dot product,
row normalized dot product and binarized data for each trajectory is matched with all
accelerometers. In Table 3.6 the correct and false predictions is shown. a minimised
version of this table can be seen below in Table 3.5. A more thorough explanation of each
method and the results is presented in the remaining part of this section.

Table 3.5: Shows a minimised table of the results in Table 3.6

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Total 18
(42.86%)

22
(52.38%)

20
(47.62%)

31
(73.81%)

35
(83.33%)

39
(92.86%)

42
(100.00%)

Method 1 – Dot Product

In this method the 42 trajectories are matched with the 9 accelerometers. The highest dot
product calculated for a single trajectory to the 9 accelerometers are taken as the match.

As seen in Table 3.6 this results 35.71% of the trajectories being correctly matched with
its corresponding accelerometer.
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Method 2 – Dot Product, Hungarian No Learn

The input to the Hungarian algorithm, presented in section 3.4.1, is found using two
different methods. In this section the no learn method is explained where the learn method
is going to be explained in Method 4. The trajectories presented in Figure 3.19 represent
the time samples in which each trajectory is present in the video. The input matrix is
found as following: Seen in Figure 3.19 trajectory 2 is the first trajectory that ends, which
is affected by other trajectories. As seen trajectory 1 is present with trajectory 2. The first
input matrix to the Hungarian algorithm is therefore trajectory 1 and trajectory 2. Since
trajectory 1 have an impact on future trajectories only the results for trajectory 2 can be
accepted from the first calculation. As seen that the next trajectory that ends is trajectory
3. Since trajectory 3 is affected by trajectory 4-6 and trajectory 1. The input to the next
Hungarian calculation is therefore the above mentioned trajectories. Since trajectory 3
ends first, only the result of this trajectory is accepted. This process continues until all
trajectories have been matched with an accelerometer. The process can be explained by
the following steps:

Step 1: Find the next trajectory which stops, call it trajstop.

Step 2: Take all the trajectories in the same timespan as trajstop.

Step 3: Run Hungarian on trajectories.

Step 4: Save match result for trajstop.
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Figure 3.19: Showing each trajectory and how many samples they appear in the video, the
only two trajectories which stops at the same time is trajectory 33 and 41.

As seen in table 3.6 this results in 52.38% trajectories being matched to the correct
accelerometers.
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Method 3 – Row Normalized Dot Product, Hungarian No Learn

This method use similar method as explained in Method 2, where Hungarian no learn
is applied. The dot product results is however row normalized, meaning that for each
trajectory the dot products for each accelerometer is divided by the highest dot product
for this trajectory.

As seen in Table 3.6 the method resulted in 42.38% trajectories being matched to the
correct accelerometer, which compared to the results of Method 2 is severely worse results.

Method 4 – Dot Product, Hungarian Learn

In this method a Hungarian learn is introduced. In Method 2 the method for no learn
method was explained and the learn is an addition to this method. Hungarian learn is
based on the fact that two trajectories present at same time can not belong to the same
accelerometer. In first Hungarian calculation seen in Method 2 states that trajectory 2 is
classified. As an example lets state that trajectory 2 is classified to accelerometer1. Since
trajectory 1 is present at the same time as trajectory 2, it is given that trajectory 1 cannot
be matched with accelerometer1. By setting the dot product for accelerometer1 to the
value 0 in trajectory 1 further Hungarian calculations using trajectory 1, will remove the
possibility of trajectory 1 being matched to accelerometer1. The process seen in Method 2
gets a fifth step added:

Step 1: Find the next trajectory which stops, call it trajstop.

Step 2: Take all the trajectories in the same timespan as trajstop.

Step 3: Run Hungarian on trajectories.

Step 4: Save match result for trajstop.

Step 5: Remove the result from the trajectories in the same timespan as trajstop.

As seen in Table 3.6 the method resulted in 73.81% of the trajectories being matched to
the correct accelerometer. The results of the learning method exceeds the results presented
for Method 2.

Method 5 – Row Normalized Dot Product, Hungarian Learn

In this method the row normalized dot product is used as input to Hungarian algorithm
with learn. As seen in Table 3.6 the method resulted in 83.33% trajectories being matched
to the correct accelerometer. As seen the results exceeds Method 4 ’s results.
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Method 6 – Russell-Rao, Binarized Data, Hungarian No Learn

As mentioned in section 2.2.4, other graph matching methods such as Russell-Rao can
be used. In order to use this method the acceleration data for the 42 trajectories and
accelerometer data needs to be translated into binary data[26]. This is done as seen in
Code snippet 3.2.

1 for i in range(len(data)):
2 if videoData[i] > 0:
3 videoData[i] = 1
4 if accData[i] > 0:
5 accData[i] = 1

Code snippet 3.2: Pseudo code showing how Dataset 2b have been binarized

On the binarized data the Russell-Rao dissimilarity algorithm will be applied. Russell-Rao
method computes the dissimilarity between two boolean vectors (u and v). The Russell-
Rao is then calculated as seen in equation (3.25).

n− cij
n

(3.25)

where cij is the number of occurrences where u[k] = i and v[k] = j for k < n, which
mean that u[k] = v[k] = 1. n is the total number of samples. The reason for investigating
Russell-Rao is that this algorithm does not take the magnitude of the vectors into account,
as dot product does [19, 26].

Once the Russell-Rao is calculated between the trajectories and accelerometers the
Hungarian algorithm with no learn is applied. As seen in Table 3.6 the method results in
92.86% of the trajectories being matched to the correct accelerometer.

Method 7 – Russell-Rao, Hungarian Learn

In this method the same binarized data as seen in Method 6 is used to calculate the
Russell-Rao dissimilarity using Hungarian algorithm with learn is applied. As seen in
Table 3.6 this method resulted in 100.00% of the trajectories being matched to the correct
accelerometer.
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Table 3.6: Table showing each tracklet in dataset 2b and their ground truth person match.
Method 1 is the best match with dot proudct. Method 2 is after an Hungarian with
no learn have been applied. Method 3 is Hungarian with no learn on normalized results.
Method 4 is where Hungarian with learn have been used. Method 5 is Hungarian with
learn on row normalized dot product, Method 6 is Russell-Rao using Hungarian with no
learn. Method 7 is Russell-Rao using Hungarian with learn

Trac. GT. Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7
0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1 2 8 7 8 7 8 7 8 7 2 3 2 3 2 3

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 6 3 7 6 3 6 3 6 3 6 3 3 7 6 3

4 3 3 3 6 7 3 3 2 7 3 3 3 3 3 3

5 8 3 7 3 7 3 7 3 7 8 3 8 3 8 3

6 7 7 3 7 3 7 3 7 3 7 3 7 3 7 3

7 3 3 3 6 7 6 7 2 7 3 3 3 3 3 3

8 6 6 3 6 3 6 3 6 3 6 3 6 3 6 3

9 6 8 7 6 3 8 7 6 3 6 3 6 3 6 3

10 0 0 3 0 3 0 3 0 3 1 7 0 3 0 3

11 1 0 7 0 7 0 7 1 3 8 7 1 3 1 3

12 8 1 7 8 3 1 7 2 7 8 3 8 3 8 3

13 8 0 7 2 7 0 7 2 7 0 7 8 3 8 3

14 3 6 7 6 7 6 7 3 3 3 3 3 3 3 3

15 6 6 3 6 3 6 3 6 3 6 3 6 3 6 3

16 0 0 3 0 3 0 3 0 3 0 3 0 3 0 3

17 2 3 7 3 7 3 7 2 3 2 3 2 3 2 3

18 4 2 7 2 7 2 7 4 3 4 3 4 3 4 3

19 6 7 7 6 3 7 7 6 3 6 3 6 3 6 3

20 2 2 3 4 7 2 3 2 3 2 3 2 3 2 3

21 0 1 7 0 3 0 3 0 3 0 3 0 3 0 3

22 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3

23 2 1 7 0 7 1 7 2 3 2 3 2 3 2 3

24 8 8 3 8 3 8 3 8 3 8 3 8 3 8 3

25 5 8 7 8 7 8 7 5 3 5 3 5 3 5 3

26 0 1 7 0 3 0 3 0 3 0 3 0 3 0 3

27 8 3 7 8 3 8 3 8 3 8 3 5 7 8 3

28 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

29 2 3 7 3 7 3 7 2 3 2 3 2 3 2 3

30 3 0 7 2 7 2 7 8 7 0 7 3 3 3 3

31 6 6 3 2 7 2 7 6 3 6 3 6 3 6 3

32 0 0 3 0 3 0 3 0 3 5 7 0 3 0 3

33 2 6 7 6 7 3 7 2 3 2 3 2 3 2 3

34 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

35 7 0 7 7 3 7 3 7 3 7 3 7 3 7 3

36 4 6 7 2 7 6 7 4 3 0 7 4 3 4 3

37 4 3 7 3 7 3 7 6 7 0 7 4 3 4 3

38 6 6 3 4 7 6 3 4 7 6 3 6 3 6 3

39 6 6 3 6 3 3 7 8 7 6 3 6 3 6 3

40 8 6 7 6 7 6 7 4 7 8 3 1 7 8 3

41 1 6 7 1 3 6 7 1 3 1 3 1 3 1 3

Total 18
42.86%

22
52.38%

20
47.62%

31
73.81%

35
83.33%

39
92.86%

42
100.00%

3.5.1 Conclusion

The results shows that a Hungarian with learn (Method 4-5 ) is significantly better than dot
product only and Hungarian with no learn (Method 2-3 ). An issue which can occur with
Hungarian learn method, is that if misclassification happens, see at trajectory4, Method 4,
the error results in other trajectories being classified incorrectly. In Method 6 and 7 it is
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seen that Russell-Rao out performs the dot product and row normalized dot product. In
Method 7 the results ended in 100.00 %, which makes this method the best for this specific
dataset. What is important to note is that the trajectories used in this dataset are the full
trajectories when the players are present in the scene. This means that Russell-Rao might
have issues when these trajectories are broken due to occlusions resulting in even smaller
trajectories, where multiple trajectory might fit equally well to the same accelerometer. In
this case the magnitude which is present in the dot product might end up being better to
match smaller trajectories.

3.6 Certainty Threshold

In this section it will be attempted to use a threshold in order to verify the certainty of
tracklet choice. The row normalized dot product in combination with Dataset 2b is used
in order to visualise the effect of the certainty threshold. The True Positive, False Positive,
True Negative and False Negative is defined.

True Positive (TP): Maximum value corresponds to the ground truth accelerom-
eter and remaining results are below the threshold.

False Positive (FP): Maximum value does not correspond to ground truth
accelerometer and remaining results are below threshold.

False Negative (FN): Maximum value corresponds to ground truth accelerometer
and remaining results are not below threshold.

True Negative (TN): Maximum value does not correspond to ground truth
accelerometer and remaining results are not below threshold.

To find the best certainty threshold a FN vs. FP graph has been created, which visualise
how the threshold effect the results. Be cause the row normalized dot product is used, the
maximum value for each tracklet is 1. Since all other values for each tracklet is below the
maximum, the threshold will vary from 0 to 1. In Figure 3.20 the graph showing the FP
against FN.
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Figure 3.20: In this graph the FP and FN rates for a given threshold is displayed.

In this system it is preferred to not have any FP as these are are not matching the ground
truth, but still below the threshold. By looking at Figure 3.20 it is seen that if the FP is
to be kept at a minimum the threshold needs to be 0.57. If the TP and TN is included in
the graph as seen on Figure 3.21.
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Figure 3.21: In this graph the previous FN and FP is displayed along with the TP and
TN rates for a given threshold.

As seen here if the threshold is set to 0.57 the number of TP will only be 4. However if the
threshold is 0.72 the number of TP will be 7 at the cost of FP being 1. If the threshold is
increased further it is seen that the FP increase very quickly from this point.

When applying the certainty threshold it is seen that 8 tracklets of 42 are matched with
an accelerometer. This leads to 34 tracklets unmatched with an accelerometer.
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Another approach which has been attempted using the certainty threshold is to remove all
values below the set threshold for each tracklet. After these have been removed it is then
attempted to match the accelerometers using the Hungarian learn and no learn. The test
results is seen in Table 3.7, where it is also seen that the thresholds 0.57 and 0.72 as these
are discussed above.

Table 3.7: This table presents the trajectories matched to the correct accelerometer. The
top bar corresponds to which Hungarian Method.

Hungarian No learn Learn No learn Learn
Threshold 0.57 0.72
True (3) 17 14 16 17
False (7) 25 28 26 25
Correct 40.48% 33.33% 38.10% 40.48%

When comparing the results from Table 3.7 with the results from Table 3.6 it is seen that
by applying a certainty threshold the results of the Hungarian becomes significantly worse.

As a conclusion to this investigation it can be seen that by applying a threshold to the
results, the system is only able to predict 8 out of 42 tracklets to a accelerometers, when
Hungarian is not used. If a threshold larger than 0.72 is chosen the number of FP increase
substantially. It it is also seen that when the row normalized dot product values below the
certainty threshold is set to 0 in the input matrix. The Hungarian algorithm is performing
significantly worse.
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4Acceptance Test
In this chapter the system designed will be tested. A set of tests have been conducted
on the system in order to evaluate the sub-modules. First the tracker will be tested on
a snippet of the video being the first 3.5 minutes of the video recorded in Gigantium. A
CLEAR MOT evaluation will be performed in order to see how the tracker is performing.
The tracklets produced from the tracker is then used in order to test the ability of matching
the tracklets with the accelerometer data.
In order to test how long tracklets are required in order for the matching method to perform
as intended and when misclassifications might occur.
Lastly the systems ability to reconnect tracklets after an occlusion has separated is tested
by using a snippet where an occlusion occurs and separates.

4.1 Test of the Tracking System

In this section the implemented tracker will be tested in two ways; One on how well it
tracks persons. Second is a full-system test.

The test have been conducted on the Gigantium sports arena dataset, mentioned in
Dataset 2. The first 5250 frames (3 min and 30 sec) of the 18075 frames big dataset
have been used for the test. The tracker produced a total of 200 tracklets. Out of the
200 tracklets 123 of them contain a single person which means the remaining 77 tracklets
consist of occluded persons.
As explained in Table 3.1, each tracklet is indicated by an ID which contains the number of
people within this ID. Which is how the data have been filtered to only save the tracklets
containing a single person. Furthermore out of the 123 tracklets with one person, 18 of
these contain less than 3 data samples. Since an acceleration cannot be calculated from 1 or
2 samples, these have likewise been excluded. Therefore a total of 105 tracklets containing
a single person and have more span over more than 2 samples, have been found, which is
used to conduct the two tests for the tracking system.

Since the purpose of the project is to reconnect tracklets from individual players after
an occlusion, the single player tracklets are the focus of this project. In Figure 4.1a the
single player tracklets found by the tracker for the first 5250 frames are shown. In order to
visually compare the tracker and ground truth, the ground truth trajectories for the first
5250 frames is shown in Figure 4.1b.
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(a) Tracklets of single persons found by the
tracking algorithm.

(b) Ground-truth trajectories from first 5250
frames

Figure 4.1: Both figures shows data for the first 5250 frames from the Gigantium, Dataset 2.
(a) Shows the tracklets found by the automatic tracking system. (b) shows the ground
truth trajectories. The colours corresponds to the individual players, where in Figure 4.1a
the colours corresponds to a tracklet, but does not indict which player the tracklet
corresponds to.

What is important to notice on Figure 4.1, is that the tracklets of all the single persons
match the ground-truth tracklets visually quite well.

To test how strong the tracker is compared to ground truth the CLEAR MOT Metrics will
be calculated.

4.1.1 CLEAR MOT Metrics

CLEAR MOT is a "Multiple Object Tracking Performance"-method for testing tracking
techniques, used to compare results between tracking techniques.

The procedure which is proposed by Bernardin et al.[27] will now be explained: Assuming
that for every frame, t, a multi object tracker outputs a set of hypotheses h1, . . . , hm for
a set of visible objects o1, . . . , on. Then the evaluation for the procedure can be explained
by the following steps:
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For each time frame, t :

Step 1: Create the best possible matches between hypotheses hj and objects oi.
Step 2: For every found match compute the error in the object’s position estimation.
Step 3: Accumulate all errors:

a) Count all objects which does not have a match to a hypotheses, call these: misses.
b) Count all hypotheses which have no match to any real objects, call these: false

positives.
c) Count all occurences where the hypothesis for an object changed compared to the

previous frames, call these: mismatch errors.

When following these steps it is now possible to calculate the performance metrics, which
is defined by Bernardin et al.[27]:

Multiple object tracking precision (MOPT), Equation (4.1).

MOTP =

∑
i,t d

i
t∑

t ct
(4.1)

dit is the distance between an object oi and its corresponding hypothesis hj , which is the
total error in the estimated position for the matched pairs over all frames. It is then
averaged over the total number of matched made, ct. The MOTP evaluate the trackers
ability to precisely estimate an object positions.

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

(4.2)

mt is the number of misses, fpt is the number of false positives and mmet is the number of
mismatches, gt is the total number of objects present in all frames. The MOTA accounts for
all errors made by the tracker over all frames, the result will tell the tracker’s performance at
detecting objects and keeping their trajectories, independent of the precision for the object
locations. MOTA is derived from three error ratios shown in Equations (4.3) to (4.5).

m =

∑
tmt∑
t gt

(4.3) fp =

∑
t fpt∑
t gt

(4.4) mme =

∑
tmmet∑
t gt

(4.5)

Lastly Bernardin et al. propose a threshold T, which means that all the match between an
object oi and hypothesis hj should not be made if their distance exceed a certain threshold
T. The threshold exist since it is not valid to speak about an error in position estimation
but instead should argue that the tracker has missed the object and is tracking something
else, when exceeding T.

When using these definitions and equations it is possible to calculate the CLEAR MOT
metrics, the threshold have been set to T = 50 cm which is the same threshold used from
Bernardin et al.[27][28]. The results can be in Table 4.1.

49



Group 1001 4. Acceptance Test

Table 4.1: Results for the CLEAR MOT metrics on the first 5250 frames from Gigantium
Dataset 2.

MOTP (cm) m fp mme MOTA
20.29 32.06% 6.69% 0.15% 61.10%

The MOTP shows a result of 20.29 cm is the average position error, which is not bad,
considered the position is based on the bottom centre of the bounding box, so a variance
to the ground truth is expected.
The results shows a high ratio of misses m on approximate 32 %, this is mainly due to the
ground truth data have the data from occlusions, but in the tested data for the tracker, all
tracklets with an occlusion have been removed, because the system does not know, which
object oi an occlusion hypothesis hj belongs to, since both persons have the same position
when they are occluded, as explained section 3.2.2.
There is a false positive rate, fp on nearly 7 % which is primarily matches, who are above
the set threshold.
Also it is expected to have a low ratio of mismatched, mme since the occlusions have been
removed from the tracking data and that is mainly where mismatches can occur.
Lastly the MOTA gives a score of 61 % which tells how many matches are correct.

The threshold can be adjusted and the following Figure 4.2 shows what effect the threshold
have on the MOTA score and MOTP value.
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Figure 4.2: Shows what happens to the MOTA score and MOTP value when adjusting the
threshold over a range from 10 to 150 cm.

As it can be seen in Figure 4.2 when the threshold hits 50 cm, it gains nearly nothing in
MOTA score, but the MOTP value still increase a bit afterwards.

Since there is a lack of occlusion information in data from the tracking system this will
increase the misses in the system, it can then be relevant to see how well the tracker
performs if the segments where the occlusions are present is removed from the MOT
results.
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CLEAR MOT Metrics – Without Any Occlusions

It is only possible to get the results without occlusion by using the ground truth data where
the tracker have not detected any occlusions on the field. So by using the information which
the tracker developed have, when an occlusion occur on the field. It is then possible to
skip all samples where an occlusion occur. The results for this can be seen in Table 4.2.

Table 4.2: Results for the CLEAR MOT metrics on the first 5250 frames from Gigantium
Dataset 2., where the MOT metrics have only been calculated if no occlusion appeared on
the field, at the frame t.

MOTP (cm) m fp mme MOTA
19.51 6.77% 9.42% 0.01% 83.80%

The MOTP value is a bit better than previous Table 4.1, furthermore the miss ratiom have
been reduced significantly, because segments where occlusions occur have been removed.
The fp have increased a bit.
Mismatches, mme is nearly 0, which makes sense since the occlusions have been removed
and therefore it is near impossible for the system to make mismatches since it is mostly
due to the occlusion that a mismatch can occur.
Lastly the MOTA score have gone up by approximate 22%, showing that the system makes
less error, when no occlusion occurs.

Lastly how the threshold impact MOTA score and MOTP value can be seen in Figure 4.3.
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Figure 4.3: Shows what happens to the MOTA score and MOTP value when adjusting the
threshold over a range from 10 to 150 cm.

The figure is shaped in the same way as the previous, Figure 4.2, where it is mainly around
threshold T = 50 where the MOTA score stops increasing.

The next section will be the full system test, which will show how robust the tracker is to
provide information which can be estimated to an acceleration and then matched to the
accelerometers.
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4.2 Matching Tracking Results to Accelerometers

This test is using the same methods from section 3.5, but instead of using the labelled
positions of each person, the automatic tracking data have been used, presented in
section 4.1.1. The test is done to test how well the system performs in a "chaos"-scenario.
Each tracklet and their length is shown in Figure 4.4. The test will be conducted in a
similar way as in section 3.5 and the results can be seen in Table 4.3.
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Figure 4.4: Figure shows each tracklet start and end frame of the data generated from
section 3.2, tracklets smaller than 2 samples is removed as well as tracklets with occlusions.

Table 4.3: The results of 105 tracklets are listed as true match or false match, over the seven
different methods done in section 3.5. To summarise the methods; Method 1: Dot product
only. Method 2: Hungarian no learn. Method 3: Hungarian no learn with row normalized
data. Method 4: Hungarian learn. Method 5: Hungarian learn with row normalized data.
Method 6: Hungarian no learn, Russell-Rao. Method 7: Hungarian learn, Russell-Rao

Match Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7
True (3) 24 24 18 25 21 28 33
False (7) 81 81 87 80 84 77 72
Correct 22.86% 22.86% 17.14% 23.81% 20.00% 26.67% 31.43%

The results shows that the data is challenging considered that the system have to match
tracklets with as few samples as 3. These are extremely difficult to match especially when
the system relies on different activity and with 3 samples it is hard to judge which person
the trajectory belongs to. Out of the 105 trajectories there are a total of 87 tracklets which
have less than or equal to 100 samples, equivalent of 4 seconds.

In Table 4.3 it is interesting to note that the row normalized data does not improve any
results compared to using dot product, as the opposite were experienced in section 3.5,
where the Method 4 was improved with 9.52% but in the "Chaos"-scenario it gets worse
than using Hungarian on the dot products. Furthermore the Russell-Rao is in general
better than the other methods, which is also shown in section 3.5. It is seen that with
Hungarian no learn, Method 6 scores nearly 3 percentage point more than Method 4,
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which is dot product with Hungarian learn. The best results is achieved is Method 7,
where Russell-Rao with Hungarian learn scores approximate 5 percentage point more than
the second best.

4.2.1 Conclusion of the Test

The results show that Russell-Rao is the best approach when handling this type of data
where there are clear areas with no activity. Method 7 scores approximate 31 % correct
matches, which is not enough to say the approach can be used to successfully track a sport
during practice, but it is also important to note that these results are on a "Chaotic"-
scenario, with a lot of broken trajectories due to the tracker. This also implies that it is
worth to improve the method used for tracking.

4.3 Test of Minimum Samples Required for Matching

In this section, the robustness in matching between accelerometer and tracklet is being
tested.

The idea behind this test is to take two persons on the field, one person moving a bit, call
it ID0, and another person moving fast, call it ID1. Then the ID0 ’s trajectory will be kept
as it is, but ID1 trajectory will be split in the middle, so it creates two tracklets, lets call
the tracklets for ID1, ID1(a) and ID1(b).
Then it will be matched to the two accelerometer representing the two persons on the field.
It is expected that trajectory ID0 will be matched to its own accelerometer, acc0 and both
tracklets ID1(a) and ID1(b) will both be matched to its own accelerometer, acc1.
Then one sample will be removed in the end of ID1(a) and the beginning of ID1(b) and it
will run again.
Then an extra sample will be removed and the step will be repeated until the two tracklets
from ID1 will be matched to the wrong accelerometer.
The test will then show how many samples is necessary in a tracklet for the system to
match it correct. The necessary steps for the test can be summed up:

Step 1: Find two trajectories traj0, traj1, in the same timespan (t0, . . . , tn)
Step 2: Split traj1 into two tracklets, tracklet0, tracklet1
Step 3: Remove q sample from end of tracklet0 and beginning of tracklet1
Step 4: Match traj0, tracklet0 and tracklet1 to the two accelerometers acc0, acc1
Step 5: Repeat step 3–4 with a new, q-value.

To be able to investigate how robust it is, a simple scenario will be used: A snippet of
the Gigantium test, Dataset 2, have been extracted, which consist of one person mainly
standing still and then a person running across the field. The total tracklets length is 100
frames (4.04 seconds) and goes from frame 760 to 860, the snippet start and end can be
seen at Figure 4.5, and each ID’s trajectory.
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(a) Frame – 760 (b) Frame – 860

Figure 4.5: Each image is cropped and shows a bounding box around each contour and
the text indicates the contours corresponding ID. (a) is the start of the snippet (b) is the
end of the snippet, each ID and their corresponding path through the snippet is indicated
by the line, ID0 trajectory is the blue line and ID1 is the red line.

It is important to note that the trajectory in Figure 4.5b is only representing their position
through the snippet. The position is calculated to an acceleration and is then matched to
the two persons accelerometers.

The results for the test gives that the first tracklet ID0(a), which lose samples in the end,
get matched wrong after it lost 16 samples which gives a remaining 34 samples in the
tracklet. Furthermore ID0(b) which lose samples from the beginning, get matched wrong
after it lost 25 samples from the tracklet, resulting in 25 samples remaining.

The test have only been conducted on one snippet, which gives limited results to conclude
on. Though the test shows that it is desirable to have a tracklet of more than 25 samples
and even better if it is above 34 samples. The data, the test have been conducted on is
consisting of a running person ID1 and a slow walking person ID0, which is the two states
a person is usually in. This puts even more weight on that it is desirable to have more
than 34 samples of a tracklet, to be able to match correct.

4.4 Connecting Tracklets After an Occlusion

In this section, the systems ability to reconnect tracks after an occlusion has occurred is
tested, which is related to the question formulated in the Problem Statement, section 2.5.

In order to test whether its even possible a snippet of the video have been selected, where
an occlusion happens. The positional data is extracted from the automatic tracking system
made in section 3.2. The snippet is chosen such that the players are tracked before and
after the occlusion. The snippet contains 3 players on the field. One of the players is the
goalkeeper and the two other players are occluding. In Figure 4.6a the first frame of the
snippet is seen. In Figure 4.6b the first frame where the occlusion is happening is seen. In
Figure 4.6c the first frame after the occlusion is splitting is seen. In Figure 4.6d the last
frame of this snippet is seen. The snippet spans over total of 81 frames.
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(a) Frame – 3057 (b) Frame – 3093

(c) Frame – 3116 (d) Frame – 3138

Figure 4.6: (a) first frame of snippet. (b) occlusion starts (c) occlusion stops (d) last
frame of snippet. From the first frame to the start of the occlusion takes 35 frames. The
occlusion occurs over a span of 23 frames. From the occlusion end to the last frame in
the snippet 16 frames occurs. The green marks the boundary boxes of each person or red
boundary boxes marks the occlusion and the number indicates their ID dedicated by the
system. Note: All subfigures have been cropped.

As seen the number of frames before and after the occlusion are sparse, which means that
tracklets before and after the occlusion is less than two seconds long.

In this test the row normalized dot product is used, as this proved, in section 3.5, to
be superior to the dot product. All though Russell-Rao proved superior than the row
normalized dot product it would not make sense to look at it in this example. As all 3
accelerometers are within the snippet, the binarized data hereof will be 1 over the entire
snippet. Because of this the result of Russell-Rao will be the same for all 3 accelerometers
to each tracklet. The results of the row normalized dot product can be seen in Table 4.4.

Table 4.4: Row normalized dot product for the tracklet to each accelerometer. As seen
the occlusion ID3, is without any numbers as the occlusion is excluded as explained in
appendix A.3.

Track. / Acc. GT acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
ID0 7 0.00 0.00 0.58 0.00 0.00 0.00 0.00 1.00 0.66
ID1 2 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.98 1.00
ID2 8 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.93 1.00
ID3 occ.
ID4 2 0.00 0.00 0.53 0.00 0.00 0.00 0.00 1.00 0.74
ID5 8 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.99 1.00
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As can be seen in Table 4.4 all of the tracklets have a tendency to get a high normalized
dot product when matched with acc7. However it can also be seen that ID0 is matched
with all accelerometers the tracklet, but is only a good match with acc7. Also note that
ID3 is coloured dark and has no data. This is because the occlusion is excluded from the
test.

When performing Hungarian algorithm on the 5 tracklets it is important to notice that
ID0 is present over the entire snippet as seen in Figure 4.6. ID1 and ID2 is ending at the
same time as these two occlude. The first Hungarian is therefore performed between ID0,
ID1 and ID2. The result of this is seen in Table 4.5.

Table 4.5: First Hungarian algorithm input matrix. The green cells indicates how the
Hungarian algorithm has optimised.

Track. / Acc. GT acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
ID0 7 0 0 0.58 0 0 0 0 1 0.66
ID4 2 0 0 0.86 0 0 0 0 0.98 1
ID5 8 0 0 0.70 0 0 0 0 0.93 1

From ground truth seen in Table 4.4 it can be seen that the Hungarian algorithm correctly
classify the three tracklets. However since only tracklets, ID1 and ID2 ends here, the
Hungarian result from these two is accepted. The second Hungarian calculated is between
tracklets, ID0, ID4 and ID5, as can be seen in Table 4.6.

Table 4.6: Second Hungarian algorithm input matrix. The green cells indicates how the
Hungarian algorithm has optimised.

Track. / Acc. GT acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
ID0 7 0 0 0.58 0 0 0 0 1 0.66
ID4 2 0 0 0.53 0 0 0 0 1 0.74
ID5 8 0 0 0.65 0 0 0 0 0.99 1

As seen in Table 4.6 the result of the Hungarian does not match with the ground truth.
As seen here the no learn method is applied, but if learning method, as explained in
section 3.5, Method 4, is applied to the Hungarian results from the first input matrix. The
values from acc2 and acc8 is removed from ID0, which can be seen in Table 4.7.

Table 4.7: Here the results of Hungarian is seen when learning from the first Hungarian is
applied.

Track. / Acc. GT acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
ID0 7 0 0 0 0 0 0 0 1 0
ID4 2 0 0 0.53 0 0 0 0 1 0.74
ID5 8 0 0 0.65 0 0 0 0 0.99 1

As seen in Table 4.7 it is seen by applying the learning the results of the Hungarian
algorithm results in the correct ground truth. In Figure 4.7a the tracklets found by the
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tracking, which has been tested in this section is seen. By using the results of the hungarian
with learn the 4 broken tracklets can be combined as seen in Figure 4.7b.

(a) The tracklets found by the tracking sys-
tem are seen. each tracklet are represented
by a different colour as their coherence is un-
known.

(b) Here tracklets are connected by the
results of the Hungarian algorithm. The
tracklets are coloured, such that matched
tracklets share the same colour.

Figure 4.7: Here the tracklets of the occlusion snippet is seen. (a) Shows the tracklets
before the matching is performed. (b) Shows the coherence between tracklets when the
matching after the matching is performed.

To be able to make a defining conclusion about if the system is capable of connecting
broken tracklets after an occlusion occurs in a convincing matter. It is necessary to have
more data to test on, unfortunately the snippet of the Gigantium data, Dataset 2 have
really limited scenarios where there are 35+ samples before and occlusion and also after
they separated from the occlusion. Instead after the split they tend to occlude within a
few samples again.
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4.5 Conclusions of the Acceptance Test

In this section the results in chapter 4 will be concluded together with the specifications
from section 2.6, to control if all the specifications have been kept.

Requirement 1 and 2 states that the detection must be able to segment persons from the
background and be able to detect all persons present on the field have been succeeded. In
sections 4.1 and 4.2 a snippet of the Gigantium dataset, Dataset 2 have been used which
have manually been labelled. All persons are detected correctly on the field, and no false
positives have been detected.

Requirement 3-6 states that the system should be able to track a single person, detect
when an occlusion occurs, detect when an occlusion separate into individuals (also known
as a split) and lastly should be able to if an occlusion separate into individuals, but one
of the individuals become a part of a new occlusion.
All these scenarios are presented in the design and implementation, sections 3.2.2 and 3.2.4,
where an example of each scenarios is seen. It is also seen in section 4.2, where each tracklet
have been manually labelled to ensure a ground truth. This was done by looking through
all frames to ensure the tracker is working correctly.

The system must be able to go from a detected pixel coordinates to its corresponding
world coordinate, requirement 7. This was designed in section 3.3, but also been proved in
section 4.1, where Figure 4.1 shows the movement of all tracklets and trajectories on the
field in world coordinates.
Requirement 8 states that the system must be able to calculate an acceleration based
on tracklets. The theory behind this calculation is presented in section 2.2.3 and has
been implemented into the tracker. In section 3.4 it is seen that the system is able to
synchronise the accelerometers with the video data, as stated in requirement 9. The
acceleration is used in section 4.2 to make the final test, where the system can match
tracklets with the accelerometers. Requirement 10 states that the system should be able
to match accelerometers to their corresponding video data, which is successfully done with
42 video tracklets to 9 accelerometers in section 3.5. If the tracklets found by the tracker
is used only 31.43 % of the tracklets are correctly matched.
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5Conclusion and Discussion

5.1 Project Summary

In chapter 1, the project proposal was introduced which lead to an initial problem
statement.

The initial problem statement was base for the technical analysis, chapter 2 which looked
into previous work in the field with focus on detection and feature-less tracking methods.
Then the devices chosen for the project have been examined. The analysis found that the
accelerometers are not synchronised between themselves, so this resulted in a need to solve
this issue. Furthermore the datasets used in the project have been shown and how the
ground truth labelling was conducted. Lastly the technical analysis ended with a problem
statement, specification and requirements, used for further design and development.

In chapter 3 a tracking system has been developed which can detect and track individual
players in an indoor sport scenario. The tracking algorithm is able to detect occlusions and
occlusions separating into individual players. The tracker is able to provide information
about each ID: Some of the key informations found for each tracklet is the world
coordinates, number of people in the ID and the time span. A method for converting
the tracklets into acceleration has been implemented, such that it can be compared to the
acceleration measured by the accelerometers mounted on the waist of the players. In order
to synchronise the accelerometers and video, a dot product maximisation is used. Once
the data is synchronised the tracklet’s acceleration from the video can then be matched
to the accelerometers data. Several methods have been tested and evaluated for matching
the tracklets with the accelerometers, where Russell-Rao provided the best results.

In chapter 4 the system have been tested in parts, first the tracking system have been
tested in regards of CLEAR MOT metrics, which gave results telling how robust the
tracker is. Furthermore the tracker was tested with all the methods which have been used
in the design and implementation chapter 3, these methods have been tested on the chaos
scenario, where a snippet of the Gigantium, dataset 2, have been used.
Furthermore the matching between tracklets and accelerometers have been tested on how
much of a tracklet is needed to make a correct match.
Lastly a test have been conducted to test if it is possible to connect broken tracklets after
an occlusion have ended.
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5.2 Assessment

The project have investigated if it is possible to develop a system which is able to connect
broken tracklets into trajectories, as formulated in section 2.5. This resulted in a pipeline
which contains a tracker capable of tracking players in a football match. As seen in the
results the tracker is able to detect scenarios of occlusions and the separation of these. The
chaotic scene however produce a vast amount of tracklets of varying lengths. When it is
attempted to match the tracklets from the tracker using various different methods it is seen
that 31.43% of the tracklets are correctly matched with the accelerometers. It is however
found that some of the issue with matching these accelerometers is the sparse length of
the tracklets. The methods proposed in this project shows a potential in matching inertia
sensor data with thermal video data. The group evaluates a better implementation of the
tracker can significantly improve the results of the system.

5.3 Discussion

In this section further work and different approaches which could have been used in this
research is discussed.

Time Synchronised Devices In this research unsynchronised devices has been used. In
order to create a more optimal system it would required that all devices would be
synchronised to the same clock. By having synchronised devices it would also give a
better view of how well the system developed would perform.

Tracking system Designed in this project is based on contours. Even though the tracker
performs as intended it would be beneficial to look into other tracking methods. In
previous work at AAU it was seen that both Kalman Filter an Continuous Energy
Minimization was used with promising results. In the same work a method for
splitting mildly occluded people have been implemented. Splitting these occlusions,
could increase the length of the tracklets before the individuals enter the occlusion
and therefore it could help with making the tracking system proposed in this report
stronger.

Parent Information One of the informations which the current tracker is providing
is the information about the parents. The thought behind the parent
information was to create a sort of family tree. When two people occlude
their IDs are saved in the occlusion ID. By creating a family tree it would limit
the number of accelerometers which the tracklets can be matched too after
the occlusion, since the track before occlusion might have been matched to an
accelerometers before the occlusion happens.

Dataset The dataset presented in this research displays a very chaotic game of football
on half an indoor field. Since the field which the players can move in is limited,
occlusions are more likely to occur. It also propose the issue that the players left
the camera view, when the ball was accidental shot off the field. A few things could
have been done different.

Scenario Set-up One of the thing that could have been done was planning a
few scenarios in form of planned routines, which would be planned to present
occlusions and other scenarios.
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Full Field Recording One of the reasons that a vast amount of occlusion occurs
in the recordings from Gigantium is that the field is limited, which result in the
players not being able to run longer distances.

No Substitutions Since substitutions happened through the recording and the
accelerometers were recording during the time where the players was off the
field. In order to prevent these unwanted measurements, it would have been
preferred if no substitutions happened. In cases where the ball leaves the field
a none participating person would get the ball.

Graph Matching Methods In this project three different graph matching methods have
been investigated, dot product, normalized dot product and Russell-Rao. For further
development alternative graph matching methods could be looked into.

Accelerometer Sampling-Rate Should have been higher, so it was possible to make
synchronisation by looking at e.g. jump, with 25 Hz it is hard to distinguish the
jump itself and synchronise it to video due to the interpolation the sensor chip is
doing.
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AAppendix

A.1 Matching Between Devices - Data

These tables shows results from matching the videos full trajectory for each person to all 9
accelerometers. The top of each table shows which person’s video track is getting matched.
Then there are four main columns; First shows which accelerometer the person’s video track
is matched to. "No Shift"-column, shows the dot product between the match. "Positive
Shift"-column, shows both shift and result of dot product maximisation after the video
have been shifted from 0-500 samples in positive direction for all accelerometers. "Negative
shift"-column, shows the same as positive shift but in negative direction. Furthermore
each column shows the variance which consist of the result divided by the best match.
The highest dot product for each column is marked in each table.

A.1.1 Match

In this section it shows matches without any changes to the data.

Table A.1

Video Track for person0
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 14518.33 1.00 5 16062.74 1.00 6 16133.56 1.00
acc1 10013.18 0.69 86 10534.03 0.66 199 11008.21 0.68
acc2 7064.71 0.49 36 7622.58 0.47 31 7437.08 0.46
acc3 7944.70 0.55 486 10999.28 0.68 111 9632.14 0.60
acc4 4113.92 0.28 15 4402.03 0.27 418 5051.19 0.31
acc5 4156.15 0.29 3 4383.18 0.27 345 4551.41 0.28
acc6 11094.11 0.76 327 12341.12 0.77 126 11805.19 0.73
acc7 8449.22 0.58 384 8861.37 0.55 478 9621.73 0.60
acc8 6033.23 0.42 0 6033.23 0.38 451 6523.80 0.40
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Table A.2

Video Track for person1
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 9246.81 0.91 297 10319.17 0.97 280 10693.90 0.85
acc1 10193.76 1.00 2 10633.86 1.00 109 12642.14 1.00
acc2 5152.05 0.51 15 5500.43 0.52 178 5693.24 0.45
acc3 3980.92 0.39 491 6112.25 0.57 499 4880.09 0.39
acc4 4360.99 0.43 127 4790.54 0.45 413 5747.41 0.45
acc5 3397.53 0.33 16 3563.21 0.34 36 3543.81 0.28
acc6 6745.27 0.66 410 7754.99 0.73 20 7040.93 0.56
acc7 6495.31 0.64 373 7310.07 0.69 181 7318.20 0.58
acc8 5381.63 0.53 369 5734.78 0.54 473 6179.61 0.49

Table A.3

Video Track for person2
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 9572.46 0.74 371 10779.62 0.77 76 10091.03 0.70
acc1 8565.82 0.66 380 9023.84 0.65 140 8984.40 0.62
acc2 11275.50 0.87 1 11585.11 0.83 120 13600.88 0.94
acc3 12976.63 1.00 10 13916.21 1.00 62 14393.84 1.00
acc4 7280.23 0.56 382 8160.69 0.59 156 7991.78 0.56
acc5 3241.15 0.25 391 3779.66 0.27 490 3683.36 0.26
acc6 11527.48 0.89 9 11554.92 0.83 454 12327.27 0.86
acc7 9350.80 0.72 456 10266.03 0.74 469 10784.84 0.75
acc8 8216.35 0.63 7 8495.86 0.61 206 8544.52 0.59

Table A.4

Video Track for person3
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 9940.59 0.55 350 10908.90 0.58 25 10636.09 0.43
acc1 6079.78 0.34 485 7616.87 0.41 407 6722.43 0.27
acc2 8366.98 0.46 442 9181.81 0.49 131 10067.61 0.41
acc3 18088.68 1.00 2 18659.26 1.00 73 24559.12 1.00
acc4 4584.85 0.25 249 6027.40 0.32 15 4934.58 0.20
acc5 3616.86 0.20 454 4269.11 0.23 499 3947.38 0.16
acc6 16832.42 0.93 17 16959.97 0.91 96 18956.44 0.77
acc7 9677.12 0.53 466 10507.62 0.56 342 10713.18 0.44
acc8 5968.89 0.33 349 7004.44 0.38 235 6851.99 0.28
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Table A.5

Video Track for person4
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 5351.59 0.99 73 5695.14 0.98 40 5682.25 0.88
acc1 4223.79 0.79 97 5219.35 0.90 6 4383.14 0.68
acc2 3850.50 0.72 231 4153.32 0.72 95 4515.25 0.70
acc3 4822.67 0.90 10 4982.36 0.86 76 5493.74 0.86
acc4 2507.01 0.47 370 3188.75 0.55 22 2579.50 0.40
acc5 859.35 0.16 2 884.97 0.15 494 1424.01 0.22
acc6 5380.56 1.00 11 5783.74 1.00 366 6422.89 1.00
acc7 3366.08 0.63 3 3520.93 0.61 427 4072.24 0.63
acc8 1590.03 0.30 489 2565.87 0.44 11 1629.10 0.25

Table A.6

Video Track for person5
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 1653.83 0.48 424 2134.74 0.58 372 2199.42 0.54
acc1 1895.30 0.56 19 2095.40 0.57 491 2544.35 0.63
acc2 2010.10 0.59 486 2765.61 0.75 121 2215.17 0.55
acc3 3036.18 0.89 69 3410.58 0.92 26 3372.18 0.83
acc4 1842.45 0.54 349 2166.45 0.59 434 2353.20 0.58
acc5 591.16 0.17 458 648.54 0.18 6 611.41 0.15
acc6 3140.46 0.92 466 3464.75 0.94 6 3164.31 0.78
acc7 2118.22 0.62 194 2673.27 0.72 25 2362.93 0.59
acc8 3413.56 1.00 26 3700.06 1.00 191 4038.75 1.00

Table A.7

Video Track for person6
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 9452.08 0.69 30 9760.12 0.67 369 10667.23 0.64
acc1 5725.93 0.42 495 6081.57 0.42 467 6484.00 0.39
acc2 6811.65 0.50 96 6857.15 0.47 214 7670.54 0.46
acc3 12250.47 0.90 141 13331.36 0.91 119 14587.63 0.88
acc4 3445.21 0.25 285 4324.61 0.30 1 3490.51 0.21
acc5 3469.00 0.25 69 3582.73 0.25 498 3912.58 0.23
acc6 13642.12 1.00 5 14606.98 1.00 72 16654.60 1.00
acc7 8363.50 0.61 463 8973.07 0.61 104 9704.11 0.58
acc8 3443.00 0.25 107 4115.22 0.28 491 5253.95 0.32
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Table A.8

Video Track for person7
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 11432.71 0.91 142 11966.32 0.88 36 12328.60 0.90
acc1 9667.81 0.77 428 10607.24 0.78 481 10644.01 0.77
acc2 9218.52 0.74 185 10154.48 0.75 489 9671.40 0.70
acc3 11707.23 0.93 495 12958.25 0.95 313 12908.31 0.94
acc4 7008.35 0.56 187 7344.67 0.54 449 7518.60 0.55
acc5 4288.88 0.34 87 4492.26 0.33 241 4800.07 0.35
acc6 12530.91 1.00 407 13600.24 1.00 75 13483.75 0.98
acc7 11836.52 0.94 9 12042.92 0.89 117 13766.39 1.00
acc8 8498.40 0.68 80 8837.49 0.65 432 9365.79 0.68

Table A.9

Video Track for person8
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 4684.37 0.53 327 5630.38 0.61 123 5613.41 0.48
acc1 5272.46 0.60 11 5565.70 0.60 119 6011.92 0.52
acc2 5657.74 0.65 42 6241.22 0.68 109 6562.39 0.56
acc3 7796.05 0.89 273 8316.93 0.90 99 8566.18 0.74
acc4 5344.54 0.61 363 6402.69 0.69 445 6256.34 0.54
acc5 2582.09 0.29 122 2754.27 0.30 0 2582.09 0.22
acc6 7188.15 0.82 495 8207.96 0.89 5 7770.71 0.67
acc7 6272.59 0.72 332 7246.15 0.79 124 6763.16 0.58
acc8 8758.56 1.00 25 9225.99 1.00 135 11654.01 1.00
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A.1.2 Match with Threshold

In this section it shows matched where the data have been thresholded so if the value
is less than 0.2 g it will be set to 0 g. These tables shows results from matching the
videos full trajectory for each person to all 9 accelerometers with threshold. The top of
each table shows which person’s video track is getting matched. Then there are four main
columns; First shows which accelerometer the person’s video track is matched to. "No
Shift"-column, shows the dot product between the match. "Positive Shift"-column, shows
both shift and result of dot product maximisation after the video have been shifted from
0-500 samples in positive direction for all accelerometers. "Negative shift"-column, shows
the same as positive shift but in negative direction. Furthermore each column shows the
variance which consist of the result divided by the best match. The highest dot product
for each column is marked in each table.

Table A.10

Video Track for person0
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 13482.49 1.00 5 15034.02 1.00 6 15090.97 1.00
acc1 8396.24 0.62 86 8896.95 0.59 199 9436.05 0.63
acc2 5593.32 0.41 36 6216.12 0.41 6 6017.64 0.40
acc3 6808.12 0.50 486 9974.14 0.66 111 8530.26 0.57
acc4 3317.35 0.25 72 3651.97 0.24 418 4213.00 0.28
acc5 2651.33 0.20 3 2860.10 0.19 345 3062.89 0.20
acc6 10010.13 0.74 327 11312.18 0.75 126 10747.22 0.71
acc7 7110.61 0.53 384 7574.75 0.50 478 8323.38 0.55
acc8 4975.51 0.37 0 4975.51 0.33 451 5487.94 0.36

Table A.11

Video Track for person1
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 8348.56 0.90 297 9495.35 0.98 280 9824.50 0.83
acc1 9248.64 1.00 2 9708.80 1.00 109 11818.95 1.00
acc2 3992.54 0.43 15 4383.08 0.45 162 4586.54 0.39
acc3 3135.89 0.34 491 5405.54 0.56 458 4024.81 0.34
acc4 3676.01 0.40 127 4148.92 0.43 413 5086.06 0.43
acc5 2131.09 0.23 16 2307.31 0.24 85 2298.65 0.19
acc6 5776.23 0.62 410 6877.93 0.71 20 6127.30 0.52
acc7 5350.84 0.58 373 6314.82 0.65 181 6283.94 0.53
acc8 4507.73 0.49 369 4945.88 0.51 473 5372.87 0.45
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Table A.12

Video Track for person2
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 7705.20 0.66 371 9020.29 0.72 76 8267.91 0.63
acc1 6055.54 0.52 380 6605.89 0.52 140 6457.80 0.49
acc2 9669.94 0.83 1 9978.49 0.79 132 12064.39 0.92
acc3 11629.38 1.00 10 12606.48 1.00 62 13057.34 1.00
acc4 5901.75 0.51 382 6998.31 0.56 156 6653.62 0.51
acc5 1255.73 0.11 391 1825.35 0.14 490 1688.94 0.13
acc6 10034.62 0.86 9 10074.74 0.80 454 10816.28 0.83
acc7 7615.66 0.65 456 8616.07 0.68 469 9100.29 0.70
acc8 6825.04 0.59 346 7155.79 0.57 187 7159.10 0.55

Table A.13

Video Track for person3
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 8007.16 0.48 350 9009.55 0.52 25 8749.34 0.37
acc1 3194.52 0.19 485 4842.48 0.28 407 3982.50 0.17
acc2 6438.01 0.38 432 7280.25 0.42 131 8295.81 0.35
acc3 16838.00 1.00 2 17414.73 1.00 73 23514.38 1.00
acc4 3430.56 0.20 249 4938.37 0.28 14 3798.25 0.16
acc5 1585.16 0.09 459 2337.59 0.13 499 2000.26 0.09
acc6 15474.95 0.92 17 15602.96 0.90 96 17769.34 0.76
acc7 7920.80 0.47 441 8780.65 0.50 342 9052.71 0.38
acc8 4542.31 0.27 349 5650.95 0.32 235 5496.08 0.23

Table A.14

Video Track for person4
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 4738.77 0.98 73 5061.57 0.96 40 5081.62 0.86
acc1 3388.15 0.70 97 4385.79 0.83 6 3537.83 0.60
acc2 3124.56 0.65 231 3413.39 0.65 95 3831.78 0.65
acc3 4261.25 0.88 10 4402.34 0.84 76 4951.19 0.84
acc4 2215.85 0.46 370 2897.63 0.55 22 2277.68 0.39
acc5 34.47 0.01 10 52.21 0.01 494 625.78 0.11
acc6 4831.96 1.00 11 5271.13 1.00 366 5898.95 1.00
acc7 2695.26 0.56 3 2834.98 0.54 427 3443.79 0.58
acc8 1057.13 0.22 489 2077.18 0.39 11 1084.91 0.18
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Table A.15

Video Track for person5
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 1212.62 0.39 424 1723.08 0.50 372 1788.45 0.47
acc1 1368.89 0.44 19 1558.31 0.46 491 2090.76 0.55
acc2 1630.00 0.52 486 2440.84 0.71 121 1846.23 0.49
acc3 2844.90 0.91 69 3224.09 0.94 26 3190.80 0.84
acc4 1407.73 0.45 349 1748.04 0.51 434 1960.78 0.52
acc5 128.21 0.04 458 202.21 0.06 84 141.64 0.04
acc6 2832.45 0.91 466 3171.29 0.93 15 2847.69 0.75
acc7 1723.54 0.55 194 2313.83 0.68 25 1990.17 0.53
acc8 3127.04 1.00 26 3415.64 1.00 191 3781.23 1.00

Table A.16

Video Track for person6
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 8060.61 0.64 20 8372.94 0.62 369 9289.05 0.59
acc1 3470.85 0.28 495 3928.39 0.29 467 4257.00 0.27
acc2 5246.43 0.42 96 5307.46 0.39 214 6154.02 0.39
acc3 11177.32 0.89 127 12285.15 0.91 119 13537.01 0.86
acc4 2665.37 0.21 285 3732.26 0.28 1 2710.10 0.17
acc5 1882.52 0.15 68 2021.36 0.15 498 2303.75 0.15
acc6 12513.83 1.00 5 13537.67 1.00 72 15660.75 1.00
acc7 6940.11 0.55 463 7662.51 0.57 104 8384.90 0.54
acc8 2279.68 0.18 107 3002.91 0.22 498 4158.22 0.27

Table A.17

Video Track for person7
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 9632.99 0.87 142 10195.44 0.84 36 10563.96 0.86
acc1 7348.61 0.66 428 8335.09 0.68 481 8389.39 0.68
acc2 7457.78 0.67 185 8449.42 0.69 489 7889.59 0.64
acc3 10376.23 0.93 495 11642.93 0.95 313 11668.48 0.95
acc4 5729.59 0.52 187 6100.73 0.50 449 6219.40 0.51
acc5 2312.49 0.21 392 2558.12 0.21 242 2819.21 0.23
acc6 11104.21 1.00 407 12193.85 1.00 75 12054.95 0.98
acc7 10231.86 0.92 9 10443.72 0.86 121 12259.86 1.00
acc8 7152.98 0.64 80 7539.54 0.62 432 8055.95 0.66
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Table A.18

Video Track for person8
No Shift Positive Shift Negative ShiftAcc. Dot Var. Shift Dot Var. Shift Dot Var.

acc0 3421.90 0.43 327 4410.44 0.53 180 4380.29 0.40
acc1 3667.41 0.46 3 4008.10 0.48 119 4510.87 0.41
acc2 4480.63 0.57 42 5110.15 0.61 109 5393.93 0.49
acc3 7114.00 0.90 103 7650.56 0.91 99 7875.96 0.72
acc4 4384.23 0.56 363 5477.61 0.66 445 5248.46 0.48
acc5 1335.24 0.17 294 1546.68 0.18 0 1335.24 0.12
acc6 6225.28 0.79 495 7287.92 0.87 5 6801.04 0.62
acc7 5167.80 0.65 332 6247.54 0.75 124 5744.61 0.53
acc8 7890.72 1.00 25 8361.31 1.00 135 10899.52 1.00
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A.1.3 Match figures

Figures of all persons video trajectory matched with all accelerometers, can be found in
the extra material in the folder "Figures", where each folder is representing one person’s
trajectory. Inside the folder the match to each accelerometer can be found as a pdf file.
For example to see person6 video trajectory matched to accelerometer2 can be seen like
this: "Figures/person6/person2.pdf".
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A.1.4 Match using Hungarian Algorithm

In this section the intermediate results for the Hungarian Algorithm method is showed.
The algorithm steps are explained in section 3.4.1, each step necessary on an example is
shown in the upcoming tables, what happens from table to table is explained in its caption.
The values used as input matrix are the results of a preliminary test, which shows each
step.

Table A.19: The initial matrix.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 14518.33 10031.18 7064.71 7944.7 4113.92 4156.15 11094.11 8449.22 6033.23
person1 9246.81 10193.76 5152.05 3980.92 4360.99 3397.53 6745.27 6495.31 5381.63
person2 9572.46 8565.82 11275.5 12976.63 7280.23 3241.15 11527.48 9350.8 8216.35
person3 9940.59 6079.78 8366.98 18088.68 4584.85 3616.86 16832.42 9677.12 5968.89
person4 5351.59 4223.79 3850.5 4822.67 2507.01 859.35 5380.56 3366.08 1590.03
person5 1653.83 1895.3 2010.1 3036.18 1842.45 591.16 3140.46 2118.22 3413.56
person6 9452.08 5725.93 6811.65 12250.47 3445.21 3469 13642.12 8363.5 3443
person7 11432.71 9667.81 9218.52 11707.23 7008.35 4288.88 12530.91 11836.52 8498.4
person8 4648.37 5272.46 5657.74 7796.05 5344.54 2582.09 7188.15 6272.59 8758.56

Table A.20: All values are negated, because a profit Hungarian result is wanted.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 -14518.33 -10031.18 -7064.71 -7944.7 -4113.92 -4156.15 -11094.11 -8449.22 -6033.23
person1 -9246.81 -10193.76 -5152.05 -3980.92 -4360.99 -3397.53 -6745.27 -6495.31 -5381.63
person2 -9572.46 -8565.82 -11275.5 -12976.63 -7280.23 -3241.15 -11527.48 -9350.8 -8216.35
person3 -9940.59 -6079.78 -8366.98 -18088.68 -4584.85 -3616.86 -16832.42 -9677.12 -5968.89
person4 -5351.59 -4223.79 -3850.5 -4822.67 -2507.01 -859.35 -5380.56 -3366.08 -1590.03
person5 -1653.83 -1895.3 -2010.1 -3036.18 -1842.45 -591.16 -3140.46 -2118.22 -3413.56
person6 -9452.08 -5725.93 -6811.65 -12250.47 -3445.21 -3469 -13642.12 -8363.5 -3443
person7 -11432.71 -9667.81 -9218.52 -11707.23 -7008.35 -4288.88 -12530.91 -11836.52 -8498.4
person8 -4648.37 -5272.46 -5657.74 -7796.05 -5344.54 -2582.09 -7188.15 -6272.59 -8758.56

Table A.21: The absolute value of lowest element (18088.68) is added to all elements.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 3570.35 8057.5 11023.97 10143.98 13974.76 13932.53 6994.57 9639.46 12055.45
person1 8841.87 7894.92 12936.63 14107.76 13727.69 14691.15 11343.41 11593.37 12707.05
person2 8516.22 9522.86 6813.18 5112.05 10808.45 14847.53 6561.2 8737.88 9872.33
person3 8148.09 12008.9 9721.7 0 13503.83 14471.82 1256.26 8411.56 12119.79
person4 12737.09 13864.89 14238.18 13266.01 15581.67 17229.33 12708.12 14722.6 16498.65
person5 16434.85 16193.38 16078.58 15052.5 16246.23 17497.52 14948.22 15970.46 14675.12
person6 8636.6 12362.75 11277.03 5838.21 14643.47 14619.68 4446.56 9725.18 14645.68
person7 6655.97 8420.87 8870.16 6381.45 11080.33 13799.8 5557.77 6252.16 9590.28
person8 13440.31 12816.22 12430.94 10292.63 12744.14 15506.59 10900.53 11816.09 9330.12
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Table A.22: The lowest value in each row is subtracted from all elements in row. The
subtraction value can be see under the subVal column.

Traj. / Acc. acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8 subVal
person0 0 4487.15 7453.62 6573.63 10404.41 10362.18 3424.22 6069.11 8485.1 (-3570.35)
person1 946.95 0 5041.71 6212.84 5832.77 6796.23 3448.49 3698.45 4812.13 (-7894.92)
person2 3404.17 4410.81 1701.13 0 5696.4 9735.48 1449.15 3625.83 4760.28 (-5112.05)
person3 8148.09 12008.9 9721.7 0 13503.83 14471.82 1256.26 8411.56 12119.79 (-0)
person4 28.97 1156.77 1530.06 557.89 2873.55 4521.21 0 2014.48 3790.53 (-12708.12)
person5 1759.73 1518.26 1403.46 377.38 1571.11 2822.4 273.1 1295.34 0 (-14675.12)
person6 4190.04 7916.19 6830.47 1391.65 10196.91 10173.12 0 5278.62 10199.12 (-4446.56)
person7 1098.2 2863.1 3312.39 823.68 5522.56 8242.03 0 694.39 4032.51 (-5557.77)
person8 4110.19 3486.1 3100.82 962.51 3414.02 6176.47 1570.41 2485.97 0 (-9330.12)

Table A.23: The lowest value in each column is subtracted from all elements in column.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 4487.15 6050.16 6573.63 8833.3 7539.78 3424.22 5374.72 8485.1
person1 946.95 0 3638.25 6212.84 4261.66 3973.83 3448.49 3004.06 4812.13
person2 3404.17 4410.81 297.67 0 4125.29 6913.08 1449.15 2931.44 4760.28
person3 8148.09 12008.9 8318.24 0 11932.72 11649.42 1256.26 7717.17 12119.79
person4 28.97 1156.77 126.6 557.89 1302.44 1698.81 0 1320.09 3790.53
person5 1759.73 1518.26 0 377.38 0 0 273.1 600.95 0
person6 4190.04 7916.19 5427.01 1391.65 8625.8 7350.72 0 4584.23 10199.12
person7 1098.2 2863.1 1908.93 823.68 3951.45 5419.63 0 0 4032.51
person8 4110.19 3486.1 1697.36 962.51 1842.91 3354.07 1570.41 1791.58 0
subVal (0) (0) (-1403.46) (0) (-1571.11) (-2822.4) (0) (-694.39) (0)

Table A.24: It is attempted to cover all zero values with minimum amount of lines. In
this case it requires minimum of 7 lines to cover all zeroes. If the minimum is lower than
number of rows and columns next step is used.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 4487.15 6050.16 6573.63 8833.3 7539.78 3424.22 5374.72 8485.1
person1 946.95 0 3638.25 6212.84 4261.66 3973.83 3448.49 3004.06 4812.13
person2 3404.17 4410.81 297.67 0 4125.29 6913.08 1449.15 2931.44 4760.28
person3 8148.09 12008.9 8318.24 0 11932.72 11649.42 1256.26 7717.17 12119.79
person4 28.97 1156.77 126.6 557.89 1302.44 1698.81 0 1320.09 3790.53
person5 1759.73 1518.26 0 377.38 0 0 273.1 600.95 0
person6 4190.04 7916.19 5427.01 1391.65 8625.8 7350.72 0 4584.23 10199.12
person7 1098.2 2863.1 1908.93 823.68 3951.45 5419.63 0 0 4032.51
person8 4110.19 3486.1 1697.36 962.51 1842.91 3354.07 1570.41 1791.58 0

Table A.25: The lowest unmarked value, white cells, (28.97) is subtracted from all
unmarked values and added to all double marked values, dark blue cells.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 4487.15 6050.16 6602.6 8833.3 7539.78 3453.19 5374.72 8485.1
person1 946.95 0 3638.25 6241.81 4261.66 3973.83 3477.46 3004.06 4812.13
person2 3375.2 4381.84 268.7 0 4096.32 6884.11 1449.15 2902.47 4731.31
person3 8119.12 11979.93 8289.27 0 11903.75 11620.45 1256.26 7688.2 12090.82
person4 0 1127.8 97.63 557.89 1273.47 1669.84 0 1291.12 3761.56
person5 1759.73 1518.26 0 406.35 0 0 302.07 600.95 0
person6 4161.07 7887.22 5398.04 1391.65 8596.83 7321.75 0 4555.26 10170.15
person7 1098.2 2863.1 1908.93 852.65 3951.45 5419.63 28.97 0 4032.51
person8 4110.19 3486.1 1697.36 991.48 1842.91 3354.07 1599.38 1791.58 0
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Table A.26: The zeroes are again covered with minimum amount of lines. Again the
number of lines is lower than number of rows and procedure is reapplied

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 4487.15 6050.16 6602.6 8833.3 7539.78 3453.19 5374.72 8485.1
person1 946.95 0 3638.25 6241.81 4261.66 3973.83 3477.46 3004.06 4812.13
person2 3375.2 4381.84 268.7 0 4096.32 6884.11 1449.15 2902.47 4731.31
person3 8119.12 11979.93 8289.27 0 11903.75 11620.45 1256.26 7688.2 12090.82
person4 0 1127.8 97.63 557.89 1273.47 1669.84 0 1291.12 3761.56
person5 1759.73 1518.26 0 406.35 0 0 302.07 600.95 0
person6 4161.07 7887.22 5398.04 1391.65 8596.83 7321.75 0 4555.26 10170.15
person7 1098.2 2863.1 1908.93 852.65 3951.45 5419.63 28.97 0 4032.51
person8 4110.19 3486.1 1697.36 991.48 1842.91 3354.07 1599.38 1791.58 0

Table A.27: Lowest unmarked value (97.63) is subtracted from all unmarked values and
added to double marked values.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 4389.52 5952.53 6602.6 8735.67 7442.15 3453.19 5277.09 8387.47
person1 1044.58 0 3638.25 6339.44 4261.66 3973.83 3575.09 3004.06 4812.13
person2 3375.2 4284.21 171.07 0 3998.69 6786.48 1449.15 2804.84 4633.68
person3 8119.12 11882.3 8191.64 0 11806.12 11522.82 1256.26 7590.57 11993.19
person4 0 1030.17 0 557.89 1175.84 1572.21 0 1193.49 3663.93
person5 1857.36 1518.26 0 503.98 0 0 399.7 600.95 0
person6 4161.07 7789.59 5300.41 1391.65 8499.2 7224.12 0 4457.63 10072.52
person7 1195.83 2863.1 1908.93 950.28 3951.45 5419.63 28.97 0 4032.51
person8 4207.82 3486.1 1697.36 1089.11 1842.91 3354.07 1697.01 1791.58 0

Table A.28: Minimum lines to cover is found to 8.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 4389.52 5952.53 6602.6 8735.67 7442.15 3453.19 5277.09 8387.47
person1 1044.58 0 3638.25 6339.44 4261.66 3973.83 3575.09 3004.06 4812.13
person2 3375.2 4284.21 171.07 0 3998.69 6786.48 1449.15 2804.84 4633.68
person3 8119.12 11882.3 8191.64 0 11806.12 11522.82 1256.26 7590.57 11993.19
person4 0 1030.17 0 557.89 1175.84 1572.21 0 1193.49 3663.93
person5 1857.36 1518.26 0 503.98 0 0 399.7 600.95 0
person6 4161.07 7789.59 5300.41 1391.65 8499.2 7224.12 0 4457.63 10072.52
person7 1195.83 2863.1 1908.93 950.28 3951.45 5419.63 28.97 0 4032.51
person8 4207.82 3486.1 1697.36 1089.11 1842.91 3354.07 1697.01 1791.58 0

Table A.29: Lowest unmarked value (171.07) is subtracted from unmarked values and
added to double marked values.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 4389.52 5952.53 6773.67 8735.67 7442.15 3453.19 5277.09 8387.47
person1 1044.58 0 3638.25 6510.51 4261.66 3973.83 3575.09 3004.06 4812.13
person2 3204.13 4113.14 0 0 3827.62 6615.41 1278.08 2633.77 4462.61
person3 7948.05 11711.23 8020.57 0 11635.05 11351.75 1085.19 7419.5 11822.12
person4 0 1030.17 0 728.96 1175.84 1572.21 0 1193.49 3663.93
person5 1857.36 1518.26 0 675.05 0 0 399.7 600.95 0
person6 4161.07 7789.59 5300.41 1562.72 8499.2 7224.12 0 4457.63 10072.52
person7 1195.83 2863.1 1908.93 1121.35 3951.45 5419.63 28.97 0 4032.51
person8 4207.82 3486.1 1697.36 1260.18 1842.91 3354.07 1697.01 1791.58 0
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Table A.30: Minimum number of lines is found to 8.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 4389.52 5952.53 6773.67 8735.67 7442.15 3453.19 5277.09 8387.47
person1 1044.58 0 3638.25 6510.51 4261.66 3973.83 3575.09 3004.06 4812.13
person2 3204.13 4113.14 0 0 3827.62 6615.41 1278.08 2633.77 4462.61
person3 7948.05 11711.23 8020.57 0 11635.05 11351.75 1085.19 7419.5 11822.12
person4 0 1030.17 0 728.96 1175.84 1572.21 0 1193.49 3663.93
person5 1857.36 1518.26 0 675.05 0 0 399.7 600.95 0
person6 4161.07 7789.59 5300.41 1562.72 8499.2 7224.12 0 4457.63 10072.52
person7 1195.83 2863.1 1908.93 1121.35 3951.45 5419.63 28.97 0 4032.51
person8 4207.82 3486.1 1697.36 1260.18 1842.91 3354.07 1697.01 1791.58 0

Table A.31: Lowest unmarked value (1030.17) is subtracted from unmarked values and
added to double marked values.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 3359.35 5952.53 6773.67 7705.5 6411.98 3453.19 4246.92 7357.3
person1 2074.75 0 4668.42 7540.68 4261.66 3973.83 4605.26 3004.06 4812.13
person2 3204.13 3082.97 0 0 2797.45 5585.24 1278.08 1603.6 3432.44
person3 7948.05 10681.06 8020.57 0 10604.88 10321.58 1085.19 6389.33 10791.95
person4 0 0 0 728.96 145.67 542.04 0 163.32 2633.76
person5 2887.53 1518.26 1030.17 1705.22 0 0 1429.87 600.95 0
person6 4161.07 6759.42 5300.41 1562.72 7469.03 6193.95 0 3427.46 9042.35
person7 2226 2863.1 2939.1 2151.52 3951.45 5419.63 1059.14 0 4032.51
person8 5237.99 3486.1 2727.53 2290.35 1842.91 3354.07 2727.18 1791.58 0

Table A.32: Minimum number of lines is 8.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 3359.35 5952.53 6773.67 7705.5 6411.98 3453.19 4246.92 7357.3
person1 2074.75 0 4668.42 7540.68 4261.66 3973.83 4605.26 3004.06 4812.13
person2 3204.13 3082.97 0 0 2797.45 5585.24 1278.08 1603.6 3432.44
person3 7948.05 10681.06 8020.57 0 10604.88 10321.58 1085.19 6389.33 10791.95
person4 0 0 0 728.96 145.67 542.04 0 163.32 2633.76
person5 2887.53 1518.26 1030.17 1705.22 0 0 1429.87 600.95 0
person6 4161.07 6759.42 5300.41 1562.72 7469.03 6193.95 0 3427.46 9042.35
person7 2226 2863.1 2939.1 2151.52 3951.45 5419.63 1059.14 0 4032.51
person8 5237.99 3486.1 2727.53 2290.35 1842.91 3354.07 2727.18 1791.58 0

Table A.33: Lowest unmarked value (145.67) is subtracted from unmarked and added to
double marked.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 3359.35 5952.53 6773.67 7559.83 6266.31 3453.19 4101.25 7211.63
person1 2074.75 0 4668.42 7540.68 4115.99 3828.16 4605.26 2858.39 4666.46
person2 3204.13 3082.97 0 0 2651.78 5439.57 1278.08 1457.93 3286.77
person3 7948.05 10681.06 8020.57 0 10459.21 10175.91 1085.19 6243.66 10646.28
person4 0 0 0 728.96 0 396.37 0 17.65 2488.09
person5 3033.2 1663.93 1175.84 1850.89 0 0 1429.87 600.95 0
person6 4161.07 6759.42 5300.41 1562.72 7323.36 6048.28 0 3281.79 8896.68
person7 2371.67 3008.77 3084.77 2297.19 3951.45 5419.63 1059.14 0 4032.51
person8 5383.66 3631.77 2873.2 2436.02 1842.91 3354.07 2727.18 1791.58 0
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Table A.34: The minimum number of lines to cover all zeros is 9. This means that the
algorithm can proceed to choose which persons belongs to which accelerometers.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 3359.35 5952.53 6773.67 7559.83 6266.31 3453.19 4101.25 7211.63
person1 2074.75 0 4668.42 7540.68 4115.99 3828.16 4605.26 2858.39 4666.46
person2 3204.13 3082.97 0 0 2651.78 5439.57 1278.08 1457.93 3286.77
person3 7948.05 10681.06 8020.57 0 10459.21 10175.91 1085.19 6243.66 10646.28
person4 0 0 0 728.96 0 396.37 0 17.65 2488.09
person5 3033.2 1663.93 1175.84 1850.89 0 0 1429.87 600.95 0
person6 4161.07 6759.42 5300.41 1562.72 7323.36 6048.28 0 3281.79 8896.68
person7 2371.67 3008.77 3084.77 2297.19 3951.45 5419.63 1059.14 0 4032.51
person8 5383.66 3631.77 2873.2 2436.02 1842.91 3354.07 2727.18 1791.58 0

Table A.35: By first looking at all the zeros which are alone in each row. These zeros
is painted green first. The zeros for this example is corresponding to row 1, 2 4, 7, 8
and 9. Since these zeros are alone in the row the accelerometers which they relate to are
therefore chosen for the specific person. Because of this the zeros additional zeros in the
same column as a green zero is painted red. Now the zeros that stand alone in the column
can be painted green. This is happening in column 5. The additional zeros for the row
can now be removed. By continuing in this pattern it can be seen that each accelerometer
is matching the person that the zero is showing.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 0 3359.35 5952.53 6773.67 7559.83 6266.31 3453.19 4101.25 7211.63
person1 2074.75 0 4668.42 7540.68 4115.99 3828.16 4605.26 2858.39 4666.46
person2 3204.13 3082.97 0 0 2651.78 5439.57 1278.08 1457.93 3286.77
person3 7948.05 10681.06 8020.57 0 10459.21 10175.91 1085.19 6243.66 10646.28
person4 0 0 0 728.96 0 396.37 0 17.65 2488.09
person5 3033.2 1663.93 1175.84 1850.89 0 0 1429.87 600.95 0
person6 4161.07 6759.42 5300.41 1562.72 7323.36 6048.28 0 3281.79 8896.68
person7 2371.67 3008.77 3084.77 2297.19 3951.45 5419.63 1059.14 0 4032.51
person8 5383.66 3631.77 2873.2 2436.02 1842.91 3354.07 2727.18 1791.58 0

Table A.36: Here the results of the Hungarian algorithm is shown on the original matrix.
As it can be seen all persons are matched with their own accelerometer.

Traj./Acc acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
person0 14518.33 10031.18 7064.71 7944.7 4113.92 4156.15 11094.11 8449.22 6033.23
person1 9246.81 10193.76 5152.05 3980.92 4360.99 3397.53 6745.27 6495.31 5381.63
person2 9572.46 8565.82 11275.5 12976.63 7280.23 3241.15 11527.48 9350.8 8216.35
person3 9940.59 6079.78 8366.98 18088.68 4584.85 3616.86 16832.42 9677.12 5968.89
person4 5351.59 4223.79 3850.5 4822.67 2507.01 859.35 5380.56 3366.08 1590.03
person5 1653.83 1895.3 2010.1 3036.18 1842.45 591.16 3140.46 2118.22 3413.56
person6 9452.08 5725.93 6811.65 12250.47 3445.21 3469 13642.12 8363.5 3443
person7 11432.71 9667.81 9218.52 11707.23 7008.35 4288.88 12530.91 11836.52 8498.4
person8 4648.37 5272.46 5657.74 7796.05 5344.54 2582.09 7188.15 6272.59 8758.56
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A.2 42 To 9 Trajectories

A.2.1 Dotproducts for all tracklets matched with each accelerometer

Table A.37: Table showing each tracklet and their dot product with each accelerometer.

Tracklet acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
0 0.00 0.00 0.00 604.82 0.00 0.00 0.00 0.00 0.00
1 1760.71 1493.07 3723.54 3515.18 0.00 0.00 2984.49 3502.82 3961.70
2 0.00 0.00 130.91 658.67 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 1264.35 1653.77 0.00 0.00 1496.16 618.37 1101.34
4 0.00 0.00 1179.41 1845.11 0.00 0.00 1404.39 539.03 963.75
5 142.09 64.26 1991.73 3083.46 0.00 0.00 2347.30 1889.16 2395.72
6 9167.73 7586.81 8064.99 9911.97 1718.02 583.23 7095.64 11804.52 6220.07
7 101.73 0.00 1241.66 2100.36 0.00 0.00 1815.59 1345.77 1204.15
8 0.00 0.00 405.92 1158.32 0.00 0.00 1242.19 699.75 470.02
9 108.62 0.00 270.21 253.59 0.00 0.00 276.70 287.53 384.98
10 3915.10 3090.30 1241.09 1515.97 0.00 0.00 1311.26 3130.14 2153.26
11 4283.10 3807.79 1200.78 2103.18 3.57 0.00 2242.73 3454.00 1452.89
12 1426.66 1505.27 823.99 0.00 0.00 0.00 0.00 1088.85 1287.77
13 185.61 139.50 57.52 0.00 0.00 0.00 0.00 89.94 58.04
14 2760.70 2352.61 1247.83 4709.41 193.17 0.00 4759.96 4003.54 0.00
15 3259.44 3001.36 1083.89 4772.18 28.78 0.00 5049.56 3927.50 0.00
16 2215.06 1175.25 284.71 822.67 7.14 0.00 1299.30 1168.81 0.00
17 184.98 108.68 855.80 1630.59 27.22 0.00 1354.16 1251.74 0.00
18 2871.50 2762.36 3193.67 1893.48 2470.90 15.64 1718.43 2973.04 178.30
19 129.58 0.00 232.24 267.73 137.57 0.00 286.22 353.75 0.00
20 704.93 1043.37 1059.25 300.49 885.74 0.00 275.91 752.36 0.00
21 2886.37 3062.20 2369.06 117.66 2229.25 0.00 109.82 1503.83 0.00
22 4063.95 6081.45 2672.49 283.91 2689.70 309.39 0.00 2859.10 1929.17
23 2012.68 2780.31 1986.95 0.00 1825.68 5.93 0.00 987.19 94.25
24 402.06 642.86 70.00 0.00 670.54 124.01 0.00 570.69 1309.17
25 1118.13 1446.50 1513.42 2591.95 327.74 591.16 0.00 2118.22 3209.29
26 1068.62 1208.68 0.00 49.75 59.58 189.89 0.00 919.35 1179.79
27 902.89 1244.44 2180.84 3545.27 0.00 661.07 8.73 2416.97 3513.27
28 38.81 217.09 1569.95 3006.01 0.00 401.20 0.00 1352.77 2099.33
29 1400.03 58.88 2934.06 3101.32 0.00 357.90 1498.99 1546.62 1965.18
30 1302.70 0.00 1191.54 1122.28 0.00 19.52 1214.63 752.84 69.33
31 2744.64 0.00 2182.07 2060.86 9.26 0.00 2910.68 1481.47 15.06
32 4412.61 46.59 2157.36 3742.13 39.87 0.00 4243.51 1159.82 149.89
33 1527.92 192.94 712.99 1884.60 15.14 0.00 2026.17 528.50 151.69
34 3114.49 9.27 998.41 3912.46 44.74 0.00 3141.80 631.98 50.41
35 44.49 0.00 16.77 17.64 0.00 0.00 32.11 29.38 0.00
36 315.16 0.00 70.54 362.16 10.33 0.00 373.65 0.00 0.00
37 1348.23 173.64 528.45 1836.09 25.73 0.00 1648.05 0.00 133.10
38 878.97 0.00 214.77 972.47 20.00 0.00 1409.76 0.00 0.00
39 390.70 330.13 408.75 711.70 5.51 0.00 920.16 0.00 268.50
40 88.16 255.38 146.85 16.17 2.87 0.00 463.83 0.00 187.00
41 44.86 304.06 173.97 4.83 1.81 0.00 425.54 0.00 211.16
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A.2.2 Dotproducts for all tracklets matched with each accelerometer,
normalized

Table A.38: Table showing each tracklet and their dot product normalized with each
accelerometer.

Tracklet acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
0 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
1 0.44 0.38 0.94 0.89 0.00 0.00 0.75 0.88 1.00
2 0.00 0.00 0.20 1.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.76 1.00 0.00 0.00 0.90 0.37 0.67
4 0.00 0.00 0.64 1.00 0.00 0.00 0.76 0.29 0.52
5 0.05 0.02 0.65 1.00 0.00 0.00 0.76 0.61 0.78
6 0.78 0.64 0.68 0.84 0.15 0.05 0.60 1.00 0.53
7 0.05 0.00 0.59 1.00 0.00 0.00 0.86 0.64 0.57
8 0.00 0.00 0.33 0.93 0.00 0.00 1.00 0.56 0.38
9 0.28 0.00 0.70 0.66 0.00 0.00 0.72 0.75 1.00
10 1.00 0.79 0.32 0.39 0.00 0.00 0.33 0.80 0.55
11 1.00 0.89 0.28 0.49 0.00 0.00 0.52 0.81 0.34
12 0.95 1.00 0.55 0.00 0.00 0.00 0.00 0.72 0.86
13 1.00 0.75 0.31 0.00 0.00 0.00 0.00 0.48 0.31
14 0.58 0.49 0.26 0.99 0.04 0.00 1.00 0.84 0.00
15 0.65 0.59 0.21 0.95 0.01 0.00 1.00 0.78 0.00
16 1.00 0.53 0.13 0.37 0.00 0.00 0.59 0.53 0.00
17 0.11 0.07 0.52 1.00 0.02 0.00 0.83 0.77 0.00
18 0.90 0.86 1.00 0.59 0.77 0.00 0.54 0.93 0.06
19 0.37 0.00 0.66 0.76 0.39 0.00 0.81 1.00 0.00
20 0.67 0.99 1.00 0.28 0.84 0.00 0.26 0.71 0.00
21 0.94 1.00 0.77 0.04 0.73 0.00 0.04 0.49 0.00
22 0.67 1.00 0.44 0.05 0.44 0.05 0.00 0.47 0.32
23 0.72 1.00 0.71 0.00 0.66 0.00 0.00 0.36 0.03
24 0.31 0.49 0.05 0.00 0.51 0.09 0.00 0.44 1.00
25 0.35 0.45 0.47 0.81 0.10 0.18 0.00 0.66 1.00
26 0.88 1.00 0.00 0.04 0.05 0.16 0.00 0.76 0.98
27 0.25 0.35 0.62 1.00 0.00 0.19 0.00 0.68 0.99
28 0.01 0.07 0.52 1.00 0.00 0.13 0.00 0.45 0.70
29 0.45 0.02 0.95 1.00 0.00 0.12 0.48 0.50 0.63
30 1.00 0.00 0.91 0.86 0.00 0.01 0.93 0.58 0.05
31 0.94 0.00 0.75 0.71 0.00 0.00 1.00 0.51 0.01
32 1.00 0.01 0.49 0.85 0.01 0.00 0.96 0.26 0.03
33 0.75 0.10 0.35 0.93 0.01 0.00 1.00 0.26 0.07
34 0.80 0.00 0.26 1.00 0.01 0.00 0.80 0.16 0.01
35 1.00 0.00 0.38 0.40 0.00 0.00 0.72 0.66 0.00
36 0.84 0.00 0.19 0.97 0.03 0.00 1.00 0.00 0.00
37 0.73 0.09 0.29 1.00 0.01 0.00 0.90 0.00 0.07
38 0.62 0.00 0.15 0.69 0.01 0.00 1.00 0.00 0.00
39 0.42 0.36 0.44 0.77 0.01 0.00 1.00 0.00 0.29
40 0.19 0.55 0.32 0.03 0.01 0.00 1.00 0.00 0.40
41 0.11 0.71 0.41 0.01 0.00 0.00 1.00 0.00 0.50
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A.2.3 Russell-Rao for all tracklets matched with each accelerometer

Table A.39: Table showing each tracklet and their results from Russell-Rao when matching
to each accelerometer.

Tracklet acc0 acc1 acc2 acc3 acc4 acc5 acc6 acc7 acc8
0 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.000
1 0.072 0.067 0.210 0.118 0.000 0.000 0.103 0.182 0.170
2 0.000 0.000 0.006 0.006 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.050 0.050 0.000 0.000 0.050 0.043 0.048
4 0.000 0.000 0.051 0.051 0.000 0.000 0.051 0.044 0.050
5 0.010 0.004 0.119 0.109 0.000 0.000 0.098 0.114 0.119
6 0.302 0.285 0.417 0.366 0.124 0.134 0.279 0.564 0.295
7 0.006 0.000 0.065 0.065 0.000 0.000 0.053 0.065 0.065
8 0.000 0.000 0.035 0.035 0.000 0.000 0.035 0.035 0.035
9 0.007 0.000 0.022 0.021 0.000 0.000 0.022 0.022 0.022
10 0.121 0.114 0.078 0.049 0.000 0.000 0.048 0.121 0.060
11 0.160 0.177 0.092 0.098 0.011 0.000 0.097 0.177 0.052
12 0.041 0.041 0.041 0.000 0.000 0.000 0.000 0.041 0.041
13 0.009 0.009 0.009 0.000 0.000 0.000 0.000 0.009 0.009
14 0.076 0.090 0.075 0.157 0.077 0.000 0.139 0.157 0.000
15 0.080 0.099 0.041 0.126 0.038 0.000 0.126 0.126 0.000
16 0.036 0.036 0.007 0.036 0.004 0.000 0.036 0.036 0.000
17 0.007 0.014 0.052 0.052 0.048 0.000 0.039 0.052 0.000
18 0.076 0.085 0.142 0.072 0.150 0.007 0.057 0.150 0.009
19 0.004 0.000 0.023 0.023 0.024 0.000 0.024 0.024 0.000
20 0.016 0.011 0.035 0.022 0.035 0.000 0.022 0.035 0.000
21 0.071 0.065 0.069 0.003 0.071 0.000 0.004 0.071 0.000
22 0.142 0.160 0.080 0.013 0.077 0.089 0.000 0.160 0.079
23 0.053 0.060 0.060 0.000 0.060 0.003 0.000 0.060 0.005
24 0.018 0.023 0.005 0.000 0.008 0.022 0.000 0.023 0.023
25 0.065 0.078 0.074 0.072 0.007 0.141 0.000 0.141 0.134
26 0.075 0.075 0.000 0.002 0.004 0.075 0.000 0.075 0.063
27 0.040 0.049 0.075 0.077 0.000 0.116 0.001 0.118 0.118
28 0.002 0.012 0.070 0.075 0.000 0.075 0.000 0.075 0.075
29 0.025 0.007 0.097 0.095 0.000 0.068 0.029 0.097 0.070
30 0.035 0.000 0.041 0.043 0.000 0.004 0.038 0.043 0.006
31 0.087 0.000 0.088 0.086 0.016 0.000 0.090 0.055 0.001
32 0.153 0.005 0.151 0.145 0.086 0.000 0.125 0.053 0.006
33 0.078 0.024 0.100 0.071 0.055 0.000 0.090 0.021 0.025
34 0.117 0.001 0.117 0.117 0.085 0.000 0.089 0.012 0.002
35 0.002 0.000 0.002 0.002 0.000 0.000 0.002 0.002 0.000
36 0.022 0.000 0.022 0.022 0.022 0.000 0.016 0.000 0.000
37 0.064 0.017 0.076 0.060 0.076 0.000 0.061 0.000 0.018
38 0.021 0.000 0.021 0.021 0.021 0.000 0.021 0.000 0.000
39 0.030 0.049 0.075 0.027 0.042 0.000 0.075 0.000 0.050
40 0.006 0.040 0.042 0.002 0.013 0.000 0.041 0.000 0.042
41 0.005 0.046 0.046 0.001 0.016 0.000 0.045 0.000 0.045
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A.3 Matching Tracking Results to Accelerometers

Table A.40: Table 1 out of 2, next table is table A.41, this table is showing each trajectory
from the automatic tracking section 3.2 and their ground truth person match. Method 1
is the best match with dot proudct. Method 2 is after an Hungarian with no learn have
been applied. Method 3 is Hungarian with no learn on normalized results. Method 4
is where Hungarian with learn have been used. Method 5 is Hungarian with learn on
row normalized dot product, Method 6 is Russell-Rao using Hungarian with no learn.
Method 7 is Russell-Rao using Hungarian with learn

Tracklet GT Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7
0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 6 2 7 2 7 2 7 7 7 7 7 2 7 6 3

4 8 3 7 3 7 2 7 8 3 3 7 2 7 8 3

5 3 3 3 3 3 3 3 3 3 8 7 3 3 3 3

6 7 6 7 6 7 8 7 6 7 6 7 2 7 7 3

8 3 3 3 2 7 3 3 2 7 2 7 3 3 2 7

9 2 3 7 3 7 3 7 3 7 8 7 3 7 3 7

12 8 3 7 3 7 3 7 3 7 3 7 3 7 2 7

13 6 7 7 2 7 2 7 2 7 2 7 3 7 3 7

15 3 7 7 7 7 7 7 7 7 7 7 3 3 2 7

16 2 7 7 7 7 7 7 0 7 2 3 3 7 3 7

18 3 7 7 2 7 2 7 2 7 2 7 3 3 2 7

19 2 7 7 7 7 7 7 7 7 3 7 3 7 3 7

20 8 7 7 4 7 8 3 4 7 7 7 7 7 6 7

21 6 7 7 8 7 6 3 8 7 8 7 7 7 8 7

27 3 7 7 8 7 7 7 8 7 7 7 3 3 2 7

28 2 7 7 7 7 7 7 7 7 2 3 3 7 3 7

30 8 8 3 8 3 8 3 2 7 3 7 3 7 2 7

31 6 8 7 7 7 7 7 7 7 7 7 6 3 3 7

32 3 8 7 6 7 2 7 3 3 2 7 7 7 6 7

33 2 8 7 8 7 8 7 8 7 8 7 7 7 8 7

37 2 2 3 2 3 2 3 8 7 2 3 6 7 3 7

39 3 6 7 6 7 6 7 8 7 8 7 3 3 3 3

43 3 3 3 3 3 8 7 3 3 3 3 3 3 2 7

51 8 3 7 6 7 3 7 2 7 3 7 3 7 2 7

52 2 8 7 8 7 2 3 8 7 7 7 6 7 3 7

53 3 8 7 8 7 8 7 7 7 8 7 6 7 6 7

54 6 3 7 3 7 6 3 3 7 7 7 3 7 8 7

56 3 6 7 7 7 6 7 7 7 7 7 7 7 3 3

57 2 6 7 2 3 6 7 8 7 8 7 7 7 6 7

59 3 6 7 7 7 6 7 7 7 7 7 7 7 3 3

60 2 3 7 2 3 3 7 8 7 8 7 7 7 6 7

62 3 3 3 7 7 2 7 8 7 2 7 7 7 3 3

63 2 6 7 2 3 2 3 7 7 8 7 7 7 6 7

66 2 3 7 2 3 3 7 7 7 3 7 3 7 6 7

68 3 3 3 3 3 3 3 2 7 8 7 7 7 2 7

69 8 3 7 7 7 2 7 7 7 3 7 3 7 8 3

74 6 2 7 2 7 2 7 3 7 2 7 3 7 6 3

75 3 2 7 7 7 6 7 7 7 3 3 6 7 6 7

77 6 6 3 2 7 8 7 3 7 2 7 3 7 8 7

78 3 8 7 8 7 8 7 8 7 8 7 7 7 2 7

80 2 8 7 6 7 6 7 7 7 2 7 2 3 8 7

81 8 3 7 8 3 3 7 2 7 3 7 8 3 6 7

82 3 3 3 3 3 3 3 3 3 7 7 7 7 3 3

83 6 3 7 2 7 2 7 2 7 3 7 2 7 2 7

86 3 3 3 6 7 6 7 6 7 7 7 2 7 3 3

87 6 3 7 6 3 3 7 8 7 6 3 3 7 6 3

88 2 3 7 3 7 3 7 3 7 0 7 2 3 7 7

89 7 3 7 8 7 7 3 8 7 6 7 6 7 2 7

92 3 7 7 8 7 7 7 2 7 2 7 6 7 6 7

93 2 7 7 7 7 7 7 7 7 3 7 6 7 8 7
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Table A.41: Table 2 continuation of table A.40, this table is showing each trajectory from
the automatic tracking section 3.2 and their ground truth person match. Method 1 is
the best match with dot proudct. Method 2 is after an Hungarian with no learn have
been applied. Method 3 is Hungarian with no learn on normalized results. Method 4
is where Hungarian with learn have been used. Method 5 is Hungarian with learn on
row normalized dot product, Method 6 is Russell-Rao using Hungarian with no learn.
Method 7 is Russell-Rao using Hungarian with learn

Tracklet GT Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7
94 8 3 7 6 7 6 7 7 7 6 7 6 7 2 7

97 2 6 7 6 7 7 7 7 7 3 7 6 7 2 3

100 3 7 7 7 7 7 7 7 7 6 7 3 3 2 7

104 8 3 7 6 7 3 7 2 7 3 7 6 7 6 7

105 3 3 3 2 7 7 7 5 7 2 7 6 7 8 7

106 2 7 7 6 7 7 7 6 7 7 7 6 7 3 7

108 3 7 7 8 7 8 7 8 7 3 3 3 3 6 7

109 6 3 7 2 7 2 7 2 7 2 7 7 7 3 7

114 3 8 7 2 7 8 7 6 7 8 7 7 7 8 7

115 2 8 7 8 7 3 7 2 3 2 3 3 7 3 7

117 3 3 3 6 7 3 3 6 7 8 7 3 3 8 7

118 2 3 7 6 7 6 7 7 7 6 7 3 7 2 3

121 3 6 7 7 7 7 7 2 7 7 7 6 7 3 3

123 8 6 7 6 7 6 7 6 7 6 7 3 7 2 7

126 8 2 7 2 7 2 7 2 7 3 7 7 7 3 7

127 2 3 7 8 7 8 7 8 7 8 7 7 7 8 7

128 3 8 7 7 7 7 7 7 7 7 7 3 3 3 3

130 3 3 3 2 7 2 7 2 7 2 7 7 7 8 7

131 2 2 3 7 7 3 7 8 7 3 7 3 7 2 3

133 8 3 7 2 7 2 7 2 7 2 7 2 7 8 3

134 2 2 3 6 7 6 7 6 7 6 7 7 7 6 7

135 6 2 7 6 3 6 3 8 7 8 7 6 3 2 7

137 3 2 7 3 3 3 3 6 7 3 3 2 7 3 3

138 8 7 7 6 7 6 7 6 7 6 7 3 7 2 7

141 6 7 7 3 7 7 7 3 7 8 7 3 7 6 3

142 3 7 7 8 7 7 7 8 7 7 7 7 7 7 7

143 7 7 3 2 7 2 7 2 7 2 7 7 3 8 7

144 2 7 7 7 7 7 7 7 7 0 7 2 3 7 7

146 7 7 3 3 7 7 3 8 7 7 3 3 7 8 7

147 2 7 7 0 7 0 7 3 7 0 7 0 7 0 7

154 8 8 3 8 3 0 7 0 7 3 7 7 7 2 7

155 0 8 7 8 7 8 7 8 7 0 3 8 7 8 7

157 8 8 3 8 3 8 3 2 7 6 7 0 7 0 7

158 2 7 7 3 7 8 7 4 7 8 7 6 7 6 7

160 1 8 7 1 3 8 7 1 3 1 3 7 7 1 3

162 1 7 7 2 7 2 7 0 7 1 3 1 3 1 3

163 0 7 7 1 7 7 7 1 7 7 7 1 7 2 7

165 1 7 7 2 7 1 3 0 7 1 3 1 3 1 3

166 0 7 7 1 7 1 7 1 7 7 7 1 7 2 7

171 1 2 7 2 7 2 7 1 3 2 7 1 3 1 3

172 0 2 7 2 7 2 7 0 3 7 7 1 7 2 7

174 1 7 7 2 7 7 7 1 3 7 7 0 7 1 3

175 0 7 7 0 3 7 7 0 3 0 3 0 3 2 7

177 8 7 7 1 7 8 3 8 3 8 3 0 7 0 7

178 1 7 7 4 7 7 7 4 7 7 7 7 7 1 3

179 2 7 7 2 3 2 3 2 3 2 3 7 7 8 7

182 1 0 7 0 7 0 7 0 7 0 7 1 3 1 3

184 2 1 7 0 7 1 7 2 3 7 7 1 7 2 3

185 0 1 7 1 7 2 7 1 7 1 7 1 7 8 7

187 1 1 3 1 3 1 3 0 7 7 7 1 7 1 3

192 0 0 3 0 3 0 3 0 3 1 7 0 3 1 7

198 8 2 7 1 7 1 7 1 7 2 7 0 7 0 7
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