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ABSTRACT

Objective: The hippocampal subfields are of great interest within research due to a diagnostic connectivity
to neurodegenerative diseases, and increased access to ultra-high field MR imaging has made segmentation
of these subfields feasible. Automatic methods for segmentation of the hippocampal subfields have been
proposed. However, these methods show limitations with respect to segmentation of smaller subfields and
they are very time consuming. In current research, Convolutional Neural Networks (CNN) have been used
to segment brain structures and lesions, and the approach have shown fast and accurate segmentations. The
aim of this study was to develop a CNN based automatic method for hippocampal subfield segmentation
(DeepHSS) and explore the impact of a small dataset.

Method: DeepHSS consists of a preprocessing pipeline followed by a 12 layer, two pathways 3D CNN
trained using dense training. The training set includes 7T TSE MR images acquired from 15 subjects and
associated manual labels delineating six hippocampal subfields and Entorhinal Cortex. DeepHSS was
tested with 10 subjects. The segmentations by DeepHSS were compared to the corresponding manual
labels using the Dice Similarity Coefficient (DSC).

Results: DeepHSS showed fast segmentation of hippocampal subfields with an average foreground DSC
at 0,83±0.03. Highest average segmentation DSC was achieved for Subiculum (0.80±0.05) and Dendate
Gyrus (0.77±0.05) whilst the lowest average segmentation accuracy was found for Entorhinal Cortex
(0.49±0.14). The accuracy of the segmentation increased with the number of training subjects.

Conclusion: Using our automatic hippocampal subfield segmentation method, DeepHSS, we demonstra-
ted CNNs as an efficient method for automatic hippocampal subfield segmentation despite utilisation of a
small dataset. The results were comparable with results obtained using ASHS.
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1 INTRODUCTION

The human hippocampal formation is an anatomically complex brain structure, composed of two convoluted
sheets of gray matter and located centrally in the medial temporal lobe (Boutet et al., 2014; Giuliano et al.,
2017). This structure is of great interest within research areas concerning neurodegenerative diseases (Wisse
et al., 2017). Hippocampal volumetry and morphology are important biomarkers for both Alzheimer’s
Disease (AD) (Maruszak and Thuret, 2014; Small et al., 2011; Boutet et al., 2014), and Temporal Lobe
Epilepsy (TLE) (Coras et al., 2014), since this brain structure is target for structural changes in each
condition (Maruszak and Thuret, 2014; Small et al., 2011; Boutet et al., 2014; Coras et al., 2014). In AD,
the hippocampus is affected approximately 5,5 years before clinical diagnosis, which leaves potential for
early diagnosis and initialization of preventive treatment (Maruszak and Thuret, 2014; Panegyres et al.,
2016). The hippocampal formation consists of several subfields, all composed of seven structural layers but
with different cellular composition (Boutet et al., 2014). During AD disease progression, the subfields are
differently affected (Boutet et al., 2014; Small et al., 2011), which makes the monitoring of their structural
properties highly desirable (Small et al., 2011; Giuliano et al., 2017). The hippocampal subfields are small
structures and some of the subfield boundaries can not be consistently visualized in low-resolution MRI
(Wisse et al., 2017). In recent years, ultra-high field (7T) MRI has emerged, enabling detailed in vivo
visualization of the hippocampal subfields (van der Kolk et al., 2013; Boutet et al., 2014; Wisse et al.,
2017). This has induced an increased interest for segmentation of this brain region and several manual
delineation protocols have been published for hippocampal subfield segmentation (Giuliano et al., 2017).
The hippocampus is often divided into the following subfields: Cornu Ammonis (CA1-CA4), Dentate
Gyrus (DG), presubiculum, and Subiculum (Sub) (Boutet et al., 2014). However, due to the complexity
of the problem, manual delineation protocols are not consistent; the subfields’ boundaries are differently
defined and hippocampus might also include further or fewer subdivisions (Wisse et al., 2017; Giuliano
et al., 2017). In general, T2w MR images are the most widely used contrast for segmentation of the
hippocampal subfields, since it is easier to separate DG and CA in T2w images compared to T1w (Wisse
et al., 2017). On the other hand, T1w images allow easier perception of outer boundaries since the contrast
difference between gray and white matter is more distinct (Wisse et al., 2017; Winterburn et al., 2013).

The majority of hippocampal subfield volume measurements are based on manual segmentations, however
the disagreement between segmentation protocols limits comparative studies (Giuliano et al., 2017).
Furthermore, manual delineation is both laborious and time consuming (Wisse et al., 2017; Giuliano et al.,
2017). This substantiates a need of an accurate automatic hippocampal subfield segmentation method
(Giuliano et al., 2017). To date, two different approaches for automatic hippocampal subfield segmentation
have been developed using ultra-high field MRI (Wisse et al., 2016; Iglesias et al., 2015; Giuliano et al.,
2017). The first method, FreeSurfer 6.0, is a learning-based method (Iglesias et al., 2015), which utilizes a
generative MRI model and probabilistic atlas of the hippocampal anatomy in combination with Bayesian
inference to learn the hippocampal subfields from manually delineated labels (Iglesias et al., 2015). The
atlas was built with both low-resolution in vivo and ultra-high resolution ex vivo MRI (Iglesias et al., 2015),
which potentially reduces application possibilities as it includes prior information specific for an elderly
population (Giuliano et al., 2017). Furthermore, the method has reported difficulties with some subfield
boundaries (Iglesias et al., 2015). The second method, ASHS, is based on multi-atlas joint label fusion,
utilizing topological atlases with ultra-high resolution in vivo MRI and manually delineated labels, and an
adaptive boosting algorithm for output correction (Yushkevich et al., 2015; Wisse et al., 2016). ASHS is a
re-trainable tool-box, which entails this method to be generalizable to different populations (Giuliano et al.,
2017). ASHS is the only automatic hippocampal subfield segmentation method validated using ultra-high
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resolution MRI, and has obtained high accuracy for the larger subfields but low accuracy for smaller
subfields (Wisse et al., 2016). Both of the aforementioned methods are time consuming (FreeSurfer≥10
hours on single CPU, ASHS ≥ 24 hours on single CPU) (Iglesias et al., 2015; Wisse et al., 2016).

Convolutional Neural Networks (CNN) have shown fast and accurate segmentations of brain structures
and lesions in neuroimaging compared to corresponding manual and automatic segmentation methods
(Choi and Jin, 2016; Kamnitsas et al., 2017; Nie et al., 2016; Rajchl et al., 2017; Kleesiek et al., 2016;
Havaei et al., 2017; Moeskops et al., 2016; Pereira et al., 2016). Additionally, a CNN architecture can be
trained to fit different segmentation problems, e.g. Rajchl et al. (2017) segmented structures in images of
premature lungs and brains using the same network (Rajchl et al., 2017). In contrary to the aforementioned
automatic hippocampal subfield segmentation methods (González-Villá et al., 2016; Giuliano et al., 2017),
an approach using a CNN is not dependent on manual feature modelling nor complicated image processing
such as non-linear registration, as it learns the relevant image features automatically through convolutions
(LeCun et al., 2015; Prasoon et al., 2013). The performance of a CNN is influenced by several factors
including, data preprocessing, architecture design, and training strategy (LeCun et al., 2015; Pereira et al.,
2016). One discussed factor is the amount of data needed for a CNN to achieve reasonable results (Choi and
Jin, 2016; Moeskops et al., 2016). This issue was previously approached by Cho et al. (2015) who aimed to
classify various 2D CT images and found the training progress’ learning curve to converge towards a steady
state after training the CNN with more than 200 images (Cho et al., 2015). To our knowledge, the amount
of data required to train a CNN to segment brain structures in 3D MR images has not been investigated.

The aim of this study is to develop an automatic method for hippocampal subfield segmentation (Dee-
pHSS) in in vivo ultra-high resolution MR images, based on a convolutional neural network. Moreover, the
impact of a small training dataset is explored.

2 METHOD

The proposed hippocampal segmentation method, DeepHSS, is composed of two main components; a data
preprocessing pipeline and a CNN. The CNN is based on the framework DeepMedic, which was developed
by Kamnitsas et al. (2017).

2.1 Data

The dataset used in this study was previously utilized by Wisse et al. (2016) for validation of ASHS.
The dataset comprises brain scans acquired from 26 healthy subjects (46 % men, mean age: 59 ±9 years,
median Mini Mental Examination score (Folstein et al., 1975) 29, 25-30). For each subject a 7T T2w
TSE image (0.7 x 0.7 x 0.7 mm3 voxel size) and a manual delineated segmentation were available. The
following hippocampal subfields were contained in the manually delineated segmentations; CA1, CA2,
CA3, DG, Sub, Entorhinal Cortex (ERC), tail, and cyst (Wisse et al., 2016). 15 subjects were used for
training, 10 were used for test.

2.2 Preprocessing

All 7T TSE MR images were run through a preprocessing pipeline. The pipeline consisted of three steps.
To reduce the amount of excess image information, all images were initially masked with a whole brain
mask generated using BET2 (Jenkinson et al., 2015). Subsequently, to avoid covariate shifts in the CNN,
the masked images were normalized to have zero mean and unit variance. Finally, all images were bisected
by removing the left hemisphere. This was done to focus on the right hippocampus.
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2.3 CNN architecture and training

The CNN embedded in DeepHSS was developed using the DeepMedic framework described
by(Kamnitsas et al., 2017). An illustration of the CNN is present in Figure 1. The CNN was imple-
mented as a 3D architecture with two pathways. The two pathways were similarly constructed with eight
convolutional layers and kernels of size [3 x 3 x 3]. The number of kernels in each layer were [30 30 40
40 40 40 50 50] and layer 4, 6, and 8 were residual layers. The pathways were fed the same segments,
but one of the pathways were fed a version where all dimensions were down sampled by three. The
purpose of the down-sampled pathway was to find coarse features and use them to e.g. find the position
of the hippocampal subfields, letting the other pathway focus on finer details (Kamnitsas et al., 2017)
such as the subfield boarders and textual information. The convolutional layers were followed by two
fully connected layers, connecting both pathways, with 150 kernels of size 3 x 3 x 3 in each layer. The
activation function applied in both the convolutional and fully connected layers were PReLU. A softmax
layer was applied to classify the input segments’ voxels into nine classes, eight hippocampal subfields and
background. For post-processing, a CRF layer was implemented. This layer aimed to improve the softmax
layers classifications by refining weak predictions and utilizing voxel neighbourhood relations.

Convolu�onal layers (8)

- two pathways

Fully connected 

layers (2)

So�max layer CRF layer Input segments

Upsampling to 

normal resolu�on

Normal resolu�on

Low resolu�on

Ground truth labels

Figure 1. Schematic illustration of the CNN embedded in DeepHSS. The CNN consists of 12 layers
in total, with eight convolutional layers in each of two pathways, two fully connected layers, and two
classification layers.

The training strategy implemented was dense training, which was first suggested by Kamnitsas et al.
(2017). Dense training is a method based on dense inference, which is particularly relevant for training a
3D CNN, seeking an accurate and fast training. Dense training entail training with batches, which consist
of segments extracted with 50 % probability of having their centre voxel in foreground or background,
which alleviate class imbalance (Kamnitsas et al., 2017). The training consisted of 22 epochs and each
epoch included 20 subepochs. The optimizer algorithm implemented was RMSProp. Weight initialization,
batch normalization, and regularization methods were applied as described by Kamnitsas et al. (2017).
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2.4 Testing of DeepHSS

The performance of DeepHSS was qualitatively evaluated by means of visual inspection, and quantified
by comparing automatically generated segmentations to corresponding manually delineated segmentati-
ons with the similarity metric Dice Similarity Coefficient (DSC). DSC is a measure of how much two
segmentations overlap and was computed using the following equation (Dice, 1945):

Dice =
2TP

2TP + FP + FN
(1)

As overall performance measures, a foreground DSC and an average subfield DSC were calculated.
Results for subfield CA1, CA2, CA3, DG, Sub and ERC were included in both measures, and combined to
one class in the calculations of foreground DSC.

3 RESULTS

The performance of DeepHSS in relation to the number of training subjects is presented in Figure 2 and
Table 1. The average foreground DSC was 0.73 ± 0.07 when DeepHSS was trained with 3 subjects and the
foreground DSC improved until it reached 0.83 ± 0.03 for 15 subjects. The foreground DSC increased
exponentially as the number of training subjects increased until 9 subjects, were the curve, seen in Figure
2, bends and converge towards a steady state.
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Figure 2. Foreground DSC between manual segmentations and segmentations obtained using DeepHSS
as a function of the number of subjects used for training of the CNN. The network was trained using 3, 6,
9, 12, and 15 subjects. The graph illustrates an exponential correlation until 9 subjects where the learning
curve bends and converge towards a steady state.
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The DSC for all automatic hippocampal subfield segmentations using DeepHSS including overall average
measures are presented in Table 1. Training with 15 subjects, the highest subfield DSC was obtained for
DG (0.77 ± 0.05) and Sub (0.80 ± 0.05), and the average subfield DSC was 0.66 ± 0.08.

Table 1. Hippocampal subfield DSC, average subfield DSC and foreground DSC calculated
between segmentations obtained using DeepHSS and their corresponding manual delineated
segmentations. The network was trained using 3, 6, 9, 12, and 15 subjects.

3 subjects 6 subjects 9 subjects 12 subjects 15 subjects

CA1 0.48 ± 0.08 0.54 ± 0.07 0.56 ± 0.04 0.58 ± 0.07 0.61 ± 0.06
CA2 0.60 ± 0.06 0.64 ± 0.07 0.69 ± 0.05 0.69 ± 0.06 0.69 ± 0.05
DG 0.66 ± 0.08 0.72 ± 0.06 0.76 ± 0.04 0.77 ± 0.04 0.77 ± 0.05
CA3 0.54 ± 0.14 0.58 ± 0.12 0.60 ± 0.13 0.59 ± 0.18 0.59 ± 0.19
Sub 0.72 ± 0.11 0.77 ± 0.06 0.80 ± 0.05 0.80 ± 0.06 0.80 ± 0.05
ERC 0.42 ± 0.15 0.44 ± 0.11 0.46 ± 0.14 0.49 ± 0.17 0.49 ± 0.14

Average subfield DSC 0.57 ± 0.08 0.61 ± 0.06 0.64 ± 0.05 0.65 ± 0.07 0.66 ± 0.08

Foreground DSC 0.73 ± 0.07 0.78 ± 0.04 0.81 ± 0.02 0.82 ± 0.03 0.83 ± 0.03

Figure 3 presents a visualization of the best and worst predicted hippocampal subfield segmentation
obtained by DeepHSS trained with 15 subjects and the associated manual segmentations, all superimposed
onto the corresponding preprocessed 7T TSE MR image. The segmentations are presented in the coronal
and sagittal view.

The best hippocampal subfield segmentations obtained using DeepHSS and the corresponding manual
labels are visually very similar. However, small deviations are present due to disagreement of subfield
boundary. Two examples are marked by arrows in Figure 3. The worst hippocampal subfield segmentations
obtained using DeepHSS are affected by under-segmentations (see white arrows in first and third column,
Figure 3). Moreover, a few anatomical misdetections are observed outside of the hippocampus. As an
example, ERC has been incorrectly detected in the parahippocampal gyrus (see arrow in fourth column,
Figure 3).
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Figure 3. Coronal and sagittal views of the best and worst predicted hippocampal subfield segmentations
obtained using DeepHSS compared to the corresponding manual labels. The best performance has an
average subfield DSC at 0.74 whilst the worst performance scores an average subfield DSC at 0.48. Arrows
point out differences between the manual delineated segmentation and the automatic segmentation obtained
using DeepHSS.

4 DISCUSSION

This study demonstrates CNNs as an efficient method for automatic hippocampal subfield segmentation
despite utilazation of a small dataset. The proposed method, DeepHSS, consists of a preprocessing pipeline
and a two-pathway deep CNN, which was developed using the Deepmedic framework by Kamnitsas et al.
(2017). DeepHSS was trained and validated using in vivo T2w ultra-high field MR images and associated
manual segmentations, which have previously been used to validate ASHS. DeepHSS demonstrated a fast
segmentation process (1.25 h) and achieved segmentation accuracy comparable with manual segmentations
and segmentations performed by ASHS. The performance of the method demonstrates the flexibility of
CNNs, and supports this as an easy adaptive method for various segmentation problems, as previously
stated by Rajchl et al. (2017).

The performances of DeepHSS and ASHS are presented in Tabel 2. It is notable that DeepHSS performs
better for the small subfields (CA2 and CA3) than ASHS, whereas ASHS performs better for the largest
subfield (CA1) than DeepHSS.
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Table 2. Dice similarity measure for right hippocampus subfi-
elds. A comparison between results obtained using DeepHSS
and ASHS (Wisse et al., 2016).
Hippocampal subfield DeepHSS (DSC) ASHS (DSC)

CA1 0.61 ± 0.06 0.83 ± 0.02
CA2 0.69 ± 0.05 0.65 ± 0.09
DG 0.77 ± 0.05 0.84 ± 0.03
CA3 0.59 ± 0.19 0.54 ± 0.13
Sub 0.80 ± 0.05 0.78 ± 0.04
ERC 0.49 ± 0.14 0.75 ± 0.06

Wisse et al. (2016) obtained the lowest accuracy for CA2, CA3 and ERC, and explained this by a
correspondingly low manual interrater repeatability for these subfields (0.27 < ICC < 0.88) (Wisse et al.,
2016). Additionally, the anterior and posterior boundaries of these subfields are based on geometric rules
rather than visibility of textual changes (Wisse et al., 2016). DeepHSS is affected by the same limitations of
the training data, which is exemplified by misclassification of ERC in the hippocampal gyrus (see Figure 3).
Misclassification outside of the hippocampal formation was found for CA1 as well, which in combination
with an observed CA1 under-segmentation explain its low DSC. Since CA1 is the largest subfield it is
hypothesized that the segmentation of this subfield is more dependant on textual features than the smaller
subfields.

The number of necessary training subjects to obtain accurate segmentations was investigated by training
the network in parallel using 3, 6, 9, 12, and 15 subjects. We found a relation between an increased number
of subjects and an increased segmentation accuracy converging towards a steady state. This finding is
consistent with existing research by Cho et al. (2015), who found the training progress’ learning curve
to converge towards a steady state after training the CNN with more than 200 images, classifying 2D CT
images of various body parts (Cho et al., 2015). Hence, the optimum size of training sets vary for different
classification problems. Our segmentation problem can be considered homogeneous with a standardised
acquisition protocol between subjects, which is in contrary to Cho et al. (2015), where images were
acquired using different settings. Moreover, the anatomy of hippocampus is homogeneous between subjects
compared to e.g Kamnitsas et al. (2017) who segmented brain tumours and lesions. However, due to unclear
boundaries between each hippocampal subfield, and high manual interrater variability it can be difficult for
a CNN to distinguish between each class.

We presented a deep learning approach for resolvement of the complex hippocampal subfield segmentation
problem, which compared to multi-atlas based methods has potential to be more robust, since it is
independent on complex non-linear registrations and feature engineering (González-Villá et al., 2016).
This approach share properties with the multi-atlas based method, ASHS, which also benefits from a
type of supervised machine learning. As previously discussed in a review by González-Villá et al. (2016),
multi-atlas techniques show good results within brain segmentation, since the atlases provide spatial
information and adds robustness, whereas supervised classifiers are able to model structure appearance
and improve initial segmentations (González-Villá et al., 2016). A supervised CNN also utilizes both of
these properties, however, as the feature extraction is in-depended on human domain expertise and found
by automatic optimization, a combination of the most prone features is found in the training dataset and

8



Jacobsen, Nøhr and Hansen et al. Automatic hippocampus subfield segmentation using CNN

used for segmentation (LeCun et al., 2015). This makes it highly desirable in problems where complex
underlying correlations are present.

Neither DeepHSS or ASHS has yet been challenged by the problem of distinguishing patients from
controls. Feeding the CNN more information could give it a base for further development of connectivities
between features, and possibly achieve higher accuracy. Moreover, as investigated by Çitak-Er et al. (2017),
a CNN could be utilized as a diagnostic tool finding wider relations between biomarkers.
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Danish summary
Demens er et globalt problem, som ca. 46,8 millioner mennesker levede med i 2015. Den
hyppigste årsag til demens er alzheimers, og risikoen for at udvikle alzheimers i løbet af livet
ligger på ca. 10.5 %. Alzheimers udvikles over årtier og starter med en lang asymptoma-
tisk periode, efterfulgt af kognitiv funktionsnedsættelse, og, i de sene stadier af sygdommen,
demens. Tidlig diagnose af Alzheimers er vigtig, da der er evidens for, at behandling har
bedre effekt, hvis den påbegyndes på et tidligt stadie. Alzheimers diagnosticeres i dag via
en række biomarkører, heriblandt hippocampus atrofi. Allerede ca. 5,5 år før alzheimers
diagnosen stilles, begynder hippocampus at degenerere forskelligt fra normal aldersbetinget
degenerering. Degenereringen hos alzhimers patienter sker asynkront i de forskellige underre-
gioner af hippocampus, og i forlængelse af, at ultrahøjtopløselig MRI har gjort det muligt at
observere disse underregioner mere detaljeret end tidligere, er det blevet foreslået at anvende
volumetriske målinger af disse underregioner som biomarkører for alzhimers.

På nuværende tidspunkt opfattes manuel segmentering af regionerne som gold standard.
Dog er de manuelle segmenteringsprotokoller som udgangspunkt subjektive, tidskrævende og
stiller store krav til optegnerens erfaring. For at imødekomme disse problemer, er der blevet
udviklet automatiske segmenterings metoder. Der eksisterer to metoder til segmentering af
hippocampus regioner i ultrahøjtopløselig MRI; ASHS og FreeSurfer. Disse metoder har vist
lovende resultater, dog har ASHS problemer med at finde de små regioner, imens udviklerene
af FreeSurfer har vurderet at de volumetriske mål for regionerne fundet med FreeSurfer skal
fortolkes forsigtigt.

Convolutional Neural Networks (CNNs) er blevet foreslået som en alternativ tilgang
til segmenterings problemer og har vist lovende resultater for segmentering af forskellige
hjernestrukturer og læsioner i MRI billeder. En af fordelene ved disse netværker er, at de
automatisk lærer de features, som karakteriserer problemet. Yderligere undgås avanceret
preprocessering af billederne som ikke lineær registrering, hvilket de førnævnte automatiske
segmenterings metoder benytter.

Formålet med dette projekt er, at udvikle en CNN basseret automatisk metode til seg-
mentering af underregionerne i hippocampus i ultrahøjtopløselige MR billeder.

En automatisk metode til segmentering af hippocampus regioner (DeepHSS) blev udviklet
på baggrund af et litteraturstudie og initielle test. DeepHSS omfatter preprocessering og et 2
pathway, 12 lag dybt, 3D CNN. CNNet i DeepHSS er baseret på det allerede udviklede skelet,
DeepMedic. Den første del af netværket er to ens parallelle pathways, som består af 8 convo-
lutional layers. Begge pathways får de samme input-billedsegmenter, men den ene pathway
får en downsamplet version. De to pathways er efterfulgt af to fully-connected layers. I både
de convolutional layers og de fully-connected layers benyttes aktiveringsfunktionen PReLU.
Efter de fully-connected layers klassificeres hvert voxel til en af de 8 klasser ved brug af et
softmax lag. Det sidste lag er et CRF lag, der benyttes til postprocessering. Netværket var
trænet ved at bruge en metode, der hedder Dense træning.

Da DeepHSS var færdigudviklet blev det trænet på et datasæt bestående af 7T T2w
TSE billeder af 15 raske forsøgspersoner samt tilhørende manuelle segmenteringer, hvori
de følgende underregioner af hippocampus er segmenteret: Corneas Ammonis (CA1, CA2,
CA3), Dentate Gyrus (DG), Subiculum (Sub), Entorhinal Cortex (ERC), tail, and cyst.
Efterfølgende blev DeepHSS testet på et tilsvarende datasæt indeholdende data for 10 raske
forsøgspersoner.
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DeepHSS blev evalueret ved sammenligning med manuelle segmenteringer via dice score og
visuel inspektion. DeepHSS opnåede en forgrund dice score på 0,83 ± 0.03. De højeste dice
scores blev fundet for subiculum (0,80 ± 0.05) og Dendate Gyrus (0.77 ± 0.05), mens den
laveste dice score blev fundet for Entorhinal Cortex (0.49 ± 0.04). Sammenhængen mellem
træningsdatasættets størrelse og præstationen af DeepHSS blev også undersøgt, og der blev
observeret en tydelig sammenhæng mellem størrelsen af datasættet og DeepHSS præstation.

DeepHSS demonstrerede en hurtig segmenteringsproces og opnåede en segmenteringsnø-
jagtighed sammenlignelig med manuel segmentering og segmenteringer opnået ved brug af
eksisterende automatiske metoder. Den gode præstation viser, at CNNer er fleksible, og at
metoden er let adaptiv til andre segmenteringsproblemer. Sammenlignet med ASHS havde
DeepHSS bedre dice score for de små regioner, mens ASHS havde en markant bedre dice for
den største region. En af årsagerne til, at DeepHSS har en forholdsvis lav dice score for den
største region er, at DeepHSS klassificerer områder andre steder i hjernen som dette subfield.
Ved visuel inspektion blev det vurderet, at DeepHSS gennerelt fandt de korrekte grænser for
den største region.
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Chapter 1
Introduction
Dementia is a rising issue worldwide and in 2015 was the estimated number of individuals
living with dementia 46.8 million. Due to an increasing elderly population, this number will
double every 20 years onwards, reaching 131.5 million affected people in 2050. [Prince et al.,
2015] Alzheimer’s Disease (AD) is the most common cause of dementia, and during a lifetime,
the average risk of evolving AD is 10.5 percent. AD evolves over decades, and starts with a
long asymptomatic period, the preclinical period. [Sperling et al., 2011] This is followed by
Mild Cognitive Impairment (MCI), either amnestic (aMCI) or non-amnestic, and for many of
the affected patients, the final stage of the disease is AD related dementia. Patients with aMCI
are more likely to evolve AD dementia. Symptoms seen in MCI patients are characterized
by cognitive and functional decline, such as memory and languages impairment. Dementia
emerges when the progression of decline becomes severe enough to interfere with daily living
activities. [Panegyres et al., 2016]

The first vague diagnosis criteria for AD were based on observed cognitive skills, but
definite diagnosis was solely stated after post-mortem examinations. Early diagnosis of AD
is important, since evidence for higher potential for a better outcome when treatment is
initiated in the preclinical stage is present. New diagnostic criteria were formed in 2011,
in which various biomarkers were included. Thereby, the importance of finding the most
reliable and precise biomarkers for diagnosis of AD during the preclinical stage was recognized.
[Panegyres et al., 2016]

Pathologically, AD is characterized by the development of amyloid plaques and neurofib-
rillary tangles, which cause neuronal loss and eventually neuronal death. One of the earliest
affected brain structures is the hippocampus, for which reason hippocampal atrophy has been
incorporated as a diagnostic criteria. In most cases, hippocampus is considerably damaged
at the time of diagnosis. However, the rate of atrophy in hippocampus diverge from normal
approximately 5.5 years before AD diagnosis is given, thus there is a potential for utilization
of this biomaker. [Maruszak and Thuret, 2014]

The hippocampal formation is a complex structure which can be divided into several
subfields [Wisse et al., 2017]. It have been suggested that volumetric measurements of these
subfields are more promising biomarkers than whole hippocampus volume [Small et al., 2011;
Maruszak and Thuret, 2014; Boutet et al., 2014]. Additionally, segmentation of the subfields
are important for other neurodegenerative diseases [Small et al., 2011] e.g. drug-resistant
temporal lobe epilepsy [Coras et al., 2014; Boutet et al., 2014; Small et al., 2011]. However,
segmentation of especially the smaller subfields can be difficult [Wisse et al., 2017]. 3T MRI
is widely used in clinical practise, however, an increased number of researchers have access
to 7T MRI, also considered ultra-high resolution MRI [van der Kolk et al., 2013]. With the
increasing accessibility to ultra-high resolution MR images, the possibility for investigation
of smaller anatomical structures in the brain in vivo are evolving [van der Kolk et al., 2013].

To date, manual segmentation of hippocampal subfields is the “golden standard" and
several manual protocols have been proposed [Wisse et al., 2017]. However, manual segmen-
tation is labour intensive and time consuming, especially in high resolution images where one
segmentation takes approximately 50 hours. For this reason, a lot of resources are required
to carry out a study involving manual segmentation, which can be a problem for laborato-
ries with limited resources. [Iglesias et al., 2015] Another issue is that manual segmentation
can be inconsistent when performed by different experts [Choi and Jin, 2016]. To overcome
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2 Chapter 1. Introduction

these issues automatic segmentation methods have been proposed. [Iglesias et al., 2015] How-
ever, when the automatic methods for segmentation of hippocampal subfields are compared
to the manual methods limited validity is shown. Consequently, a need for an automatic
segmentation method for hippocampal subfields is still present. [Wisse et al., 2017]

Initial problem statement

What properties describe the problem of hippocampal subfield segmentation, how is this
problem approached so far and what methods could serve as alternatives?



Chapter 2
Background
In order to segment hippocampal subfields, knowledge about the anatomical structure of the
subfields, how these are affected by AD, and their appearance in MR images are essential.
Consequently, these topics are addressed in the first section of the problem analysis. The
next section concerns the present automatic segmentation methods for hippocampal subfields
segmentation. Finally, an alternative segmentation approach is discussed, and studies using
this approach for other segmentation problems are reviewed.

2.1 Hippocampus and Alzheimer’s Disease
The human brain contains two hippocampi, which are located in the medial temporal lobes
of the brain, and includes the subiculum, dendate gyrus and hippocampus proper. They
play a key role in consolidation of information from both short term and long term memory,
associative learning, and spatial processing. [Burgess et al., 2002; Hartley et al., 2013] The
hippocampus can be divided into several subfields, which usually contains: Corneas Ammonis
1-4 (CA1-CA4), Presubiculum (Pre), Subiculum (Sub) and Dendate Gyrus (DG), however,
more subfields can be distinguished [Giuliano et al., 2017]. Each subfield consists of 7 layers
of different cellular composition. [Boutet et al., 2014] Figure 2.1 illustrates the hippocampali
in a 7T single subject MR image.

CA1

CA2
CA3

Sub

CA4/DG

Pre

Figure 2.1: In vivo T2w 7T MRI slice capturing the hippocampi in a coronal view. Position of subfield
CA1-4, DG, Pre, and Sub are marked by arrows. Inspired by [Wisse et al., 2016].

To date, it is difficult to study the hippocampal subfields in neuroimaging due to a dis-
agreement between segmentation protocols in current literature. A variety of segmentation
protocols are proposed based on different definitions and terminology of the subfields’ bound-
aries. Consequently, comparison between study results are unprecise. It is even difficult to
compare results between studies investigating similar phenomena and populations. Conse-
quently, a need of a standardised method is present. [Wisse et al., 2017]

3



4 Chapter 2. Background

2.1.1 Degeneration of the hippocampal subfields

Neurofibrillary tangles, amyloid plaques and consequently hippocampal atrophy are, as de-
scribed in section 1, features characterizing AD. In early stages of AD, years before cognitive
deficits are visible, the hippocampal subfields are affected. When the neurofibrillary tangles
target the hippocampus, the first affected subfield is CA1, then subiculum, and next CA2
and CA3. Parallel to neurofibrillary tangles, synapse and neuronal loss are observed, and the
most prominent neuronal loss is seen for CA1. The size of CA1 is hardly reduced in normal
ageing individuals but for an individual with AD the atrophy diverge from the normal rate
years before diagnosis. [Maruszak and Thuret, 2014] Thereby, CA1 has been suggested as a
biomarker for AD [Joie et al., 2013; Maruszak and Thuret, 2014; Boutet et al., 2014]. Think-
ness meassurements of layers within CA1 have been found to distinguish AD and non-AD
subjects better than whole hippocampus volume [Joie et al., 2013]. Apart from showing a
decreased size of CA1 for AD patients, the literature also shows a smaller volume of the
CA1-2 transition zone and subiculum. These findings correlate with the observed level of
neural loss for these structures. [Maruszak and Thuret, 2014]

2.1.2 Appearance of hippocampal subfilds at MRI

Both T1-weighted (T1w) and T2w MRI are used for hippocampal subfield segmentation. In
figure 2.2 a 7T T1w and a 7T T2w image of hippucampus are illustrated. The most commonly
used contrast for segmentation is T2w, since the boundary between the CA and the DG is
more distinct. [Wisse et al., 2017] The contrast difference between subfields are in general
more distinct in T2w images compared to T1w. However, the difference in contrast between
gray and white matter is unclear in T2w images, for which reason segmentation of the whole
hippocampus is easier in T1w, where the low intensity gray matter in hippocampus stands out
against the surrounding high intensity white matter and the lower intensity cerebral spinal
fluid. [Winterburn et al., 2013] Segmentations of hippocampus based on multimodal MRI,
where information from both modalities are used, can thereby be an advantage leading to a
more accurate segmentation. [Iglesias et al., 2015]

(a) (b)

Figure 2.2: Coronal views of hippocampus proper in a slice from a T1w 7T MR image (a) and a T2w 7T
MR image (b). The T2w image was resampled to the T1w image.

Another feature highly influencing the accuracy of the segmentation is the image res-
olution. The higher field strength of the MR scanner, the higher spacial resolution can be
obtained. Compared to both 1,5T and 3T, 7T MRI can provide a more anatomically detailed
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visualization of the hippocampus, since the contrast between white and grey matter also in-
creases with the resolution. [van der Kolk et al., 2013] Even though 7T MRI can provide a
resolution of the hippocampus allowing identification of layers within the different subfields
[Boutet et al., 2014], more detailed maps would allow even better visualization. In order to
achieve a higher resolution than possible by 7T single subject MRI, a minimum deformation
average (MDA) MRI model may be generated. This model improves structural delineation
and image contrast [Ullmann et al., 2013], and the signal-to-noise ratio increases for every
new subject included in the model generation [Evans et al., 2012]. Furthermore, the model
captures the mean and variability of the population, and can therefore be seen as a population
prior [Janke and Ullmann, 2015]. Further methodical information about MDA is found in
Appendix A. In figure 2.3 a hippocampus is illustrated in a 3T MRI, 7T MRI and 7T MDA
MRI model.

(a) (b) (c)

Figure 2.3: Coronal views of hippocampus proper in a slice from a 3T T1w single subject (a), 7T T1w single
subject (b), and a T1w 7T MDA MRI model (c). The image resolution is 1mm isotropic, 0.5mm x 0.533mm
x 0.533mm, and 0.3mm isotropic, respectively. The 3T MRI and the 7T MRI are acquired from the same
subject.

2.2 Methods for segmentation of hippocampal subfields
To date, three open source automated methods for hippocampal subfield segmentation exist
[Giuliano et al., 2017; Pipitone et al., 2014; Wisse et al., 2016; Iglesias et al., 2015]. Two of
these methods were developed using 7 T MRI [Wisse et al., 2016; Iglesias et al., 2015], whilst
one of these were validated on 7 T data [Wisse et al., 2016]. All three methods are based on
atlases. Table 2.1 presents an overview of the three segmentation methods.

Table 2.1: Automatic methods for hippocampal subfield segmentation. All methods are altas-based, but rely
on different datasets and methodical approaches.

Source Data Segmentation approach
Pipitone et al. [2014] Developed with in vivo 3T

T1w images, validated on
1.5T and 3T T1w images

Multi-atlas segmentation (MAGet-Brain)

Iglesias et al. [2015] Developed with in vivo 1.5T
and ex vixo 7T. Validated on
T1w and T2w MRI 1,5 and
3T.

Combines a probabilistic atlas and Bayesian
inference. (FreeSurfer version 6.0) Build on
previous version descriped by Leemput et al.
[2009].

Yushkevich et al.
[2015]; Wisse et al.
[2016]

Developed and validated us-
ing in vivo 7T T1w and T2w
images

Multi-atlas based method combined with ma-
chine learning (ASHS). ASHS was described
by [Yushkevich et al., 2015] and later validated
by [Wisse et al., 2016].
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2.2.1 Methods developed with 7T MRI

The method developed by Iglesias et al. is called FreeSurfer 6.0, and is a parametric atlas
based method developed on the basis of FreeSurfer 5.3 by Leemput et al.. The atlases utilized
for this method were constructed with both in vivo and ex vivo MRI data. The in vivo data
was T1w and obtained from 39 subjects using a 1,5T MR scanner, and had thirty-six brain
structures delineated by labels, including the left and right hippocampus. The structures
around hippocampus were delineated with the purpose of adding contextual information to
the atlas. From 15 subjects the ex vivo MRI data was acquired using a 7T scanner less than
24h post-mortem. Thirteen labels distinguishing the hippocampal subfields and layers were
generated by seven manual labellers using all ex vivo scans and based on a protocol made
for the purpose. The constructed atlas described the prior probabilities of label occurrences
and were used to segment MRI scans using a generative model. The generative model uses a
likelihood distribution to predict how a labelled image (each voxel is attributed to a unique
label) is translated into an MRI image (each voxel has an intensity). The segmentation
is an optimization problem and bayesian inference is used to solve it, by searching for the
most likely label given the atlas and the observed intensities of the image. The method
was validated using in vivo MRI scans with different resolutions (1.5T or 3T) and contrasts
(T1 and/or T2) from three databases. Iglesias et al. reported visual replicable automatic
hippocampal subfield segmentations when compared qualitatively to manual segmentations
from Winterburn et al.. Furthermore, Iglesias et al. stated that utilization of both T1w and
T2w MRI for the validation improved the segmentations. Iglesias et al. [2015] had issues
with blurring of some of the boundaries e.g. the boundaries between CA subfields. Figure
2.4 is an illustration of three coronal slices with the associated automatic (using both T1w
and T2w MRI) and manual segmentation results used for the qualitative evaluation. Results
for automatic hippocampal subfield segmentations at standard resolution (1mm) MRI were
described as volumetric results which should be interpreted with caution due to low contrast
and resolution of the input data. [Iglesias et al., 2015] Using FreeSurfer the computation
time for one subject was 20-40 minutes for the segmentation, and 10 hours for preprocessing,
when calculated on a single core cpu. [Iglesias et al., 2015]
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Figure 2.4: Three coronal slices with the associated automatic and manual hippocampal subfield segmenta-
tion results. Labeling protocols used for FreeSurfer and manual segmentations, respectively, did not match.
11 out of 13 subfields were detected in present views. The Modified from Iglesias et al. [2015].
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Yushkevich et al. suggested a non-parametric multi-atlas approach, refereed to as ASHS
[Yushkevich et al., 2015]. It was originally developed using 3T in-vivo MR images, but later
modified to run with 7T in-vivo MR images both for training and validation [Wisse et al.,
2016]. ASHS was build with two pipelines; a training pipeline and a segmentation pipeline.
For the training, ASHS includes 26 atlases each consisting of one T1w, one T2w MR image,
and one set of manual labels drawn from the T2w image, delineating 6 hippocampal subfields
and entorhinal cortex (ERC). In the training leave-one-out joint label fusion was utilized,
running through all atlases, and for each obtained automatic segmentation, this was compared
to the corresponding manually generated segmentation. A classifier was then trained to find
systematic patterns of errors between the two segmentations. The atlases and the parameters
of the trained classifier were utilized as input for the segmentation pipeline, which was used
for segmentation of a new, unlabelled subject. Joint label fusion was employed in order
to obtain a multi-atlas segmentation for the unlabelled subject. Subsequently, the trained
classifiers were applied for correction of the segmentation. [Yushkevich et al., 2015; Wisse
et al., 2016] ASHS enables new users to apply their own atlas and retrain the software.
Wisse et al. validated ASHS using 7T data. Wisse et al. compared manual and automatic
segmentations, and achieved the best segmentation with a generalized dice score at 0,85,
whilst the worst segmentation had a generalized dice score at 0,75. Figure 2.5 illustrates a
segmentation result with a median generalized dice score (0.80). The validation showed that
ASHS generated high accuracy results for larger subfields (CA1, DG and Sub), whilst it had
difficulties with the smaller subfields (CA2, CA3) and ERC. However, the authors concludes
these errors to be comparable to disagreements between manual raters. ASHS required >24
hours for segmentation of one new subject on a single core cpu. [Wisse et al., 2016]

M
a

n
u

a
l 

la
b

e
ls

A
S

H
S

 s
e

g
m

e
n

ta

�

o
n

CA1 Sub ERC DG CA3 CA2

Figure 2.5: Three coronal slices with the associated automatic and manual hippocampal subfield segmen-
tations from ASHS. Results illustrating the median performance of ASHS. Dice score was at 0.80. 6 out of 7
subfields was detected in present views. Modified from Wisse et al. [2016].
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The aforementioned methods are atlas based and when compared to manual segmentation
methods, the atlas based methods show promising results for the larger subfields, but for the
smaller structures the methods show limitations [Wisse et al., 2017; Iglesias et al., 2015;
Giuliano et al., 2017]. FreeSurfer has been criticised for being ungeneralisable to younger
populations, since its atlas was constructed from an elderly mortal population. Moreover,
even though ASHS is able to be re-trained with new datasets, and thereby generalisable to
various populations, it does not contain the ability to include other contrasts than T2w an
T1w MR, like susceptibility weighted imaging (SWI) or quantitative susceptibility mapping
(QSM), for which reason, it does not exploit the full potential of ultra-high field imaging.
[Giuliano et al., 2017]

2.3 Convolutional Neural Network
In research, neural networks are getting more popular and have been proposed as an alterna-
tive approach for segmentation problems, being able to include a wide number of contrasts
and modalities. Especially Convolutional Neural Networks (CNN) have shown promising
results in segmentation of brain structures and lesions in biomedical imaging. The CNNs
presented in the literature differ in architecture and training strategy, but they all follow
some basic characteristics. [Choi and Jin, 2016; Kamnitsas et al., 2017; Nie et al., 2016;
Rajchl et al., 2017; Kleesiek et al., 2016; Havaei et al., 2017; Moeskops et al., 2016; Pereira
et al., 2016] In this Section are these characteristics elaborated.

2.3.1 Convolutional Neural Network architecture

A CNN architecture contains at least one sequence of layers, and some of the basic layers are;
convolutional layers, fully-connected layers, and a classification layer, as illustrated in figure
2.6. [Gu et al., 2017; LeCun et al., 2015]

Convolu�onal 
 layers

Fully connected
layers 

Classificaion 
layer

Output 
segmenta�on 

Input Image

Figure 2.6: Illustration of a convolutional neural network with three types of layers; convolutiolan layer,
fully-connected layers, and a classification layer. Modified from Mamoshina et al. [2016].

Typically, the first layers in a CNN are convolutional layers, which are used to extract
features. These layers are typically locally connected.[LeCun et al., 2015] When a layer
is locally connected each node in the layer is connected to a single node in the previous
layer [Vieira et al., 2017]. In each node of a convolutional layer a feature map is created
using convolution and a filter. [LeCun et al., 2015] Fully-connected layers often follow the
convolutional layers. These layers merge the information from the extracted features to find
global information. [LeCun et al., 2015] The final layer in a CNN is a classification layer
classifying each of the pixels/voxels. [Gu et al., 2017] Each layer contain several nodes. The
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nodes of a layer is connected to the nodes of a previous layer through weights, referred to as
filter banks. In each node a weighted sum is calculated from the inputs from the previous
layer and the result is passed through a non-linear function, called an activation function.
[LeCun et al., 2015]

2.3.2 Training Convolutional Neural Network

CNNs need to be trained to identify the weights in the network. The training is a global
optimization problem. Thereby an error function needs to be minimized to find the optimal
set of weights. [Gu et al., 2017] A common method used to train the networks is backpropa-
gation. The first step in this approach is to initialize all unknown weights to a random value.
Subsequently, a training image is passed through the network and an output is calculated.
This step is called forward propagation. Since the output is calculated based on random
parameters the output will also be random. To quantify the total error of the output in
relation to the real output an error function is used. Next, backprobagation starts, and this
procedure works backwards calculating the gradients of the error in relation to the weights
in all the layers of the network starting from the output layer to the input layer. Based on
their contribution to the total error a new set of weights are calculated to reduce the output
error. The forward propagation and backpropagation is repeated for all the training images
to find the set of weights most suitable for this training set.

When a network is trained it can be too closely fitted to the training set resulting in
overfitting, and this might cause poor classification of the test data [Arbabshirani et al.,
2016]. Overfitting is especially a problem in neuro-imaging, where the number of voxels
in each image often is higher than the number of training sets. [Arbabshirani et al., 2016]
Overfitting can be prevented using regularization methods [Gu et al., 2017].

2.4 Segmenting brain structures and lesions using Convolu-
tional Neural Networks

Segmentation problems involving structures and lesions in the brain have recently been ap-
proached using CNNs [LeCun et al., 2015; Choi and Jin, 2016]. The CNNs presented in
the literature aim to segment; striatum [Choi and Jin, 2016], lesions[Kamnitsas et al., 2017],
haemorrhage [Kamnitsas et al., 2017], tumors [Kamnitsas et al., 2017; Havaei et al., 2017;
Pereira et al., 2016], infant brain structures [Nie et al., 2016], and different tissues [Moeskops
et al., 2016]. Table 2.4 presents an overview of the CNNs and contains; study reference,
objective of the study, data used, and architecture of the CNN.

Table 2.2: State-of-the-art methods for segmentation of brain structures based on CNNs. The table content
provides a coarse overview of the CNNs objective, applied data, and architecture.

Study Objective Data Architecture of neural network
Choi and
Jin [2016]

Segmentation
of striatum

The data set contained 20 T1w
MRI scans of healthy subjects.
15 scans were used for training
and validation. 5 scans were
used for test.

A global network was used to find the
rough location of the Striatum and chop-
ping the original image. The chopped
output image of the global network was
given as input to a local network, which
found the detailed structures of stria-
tum. Both networks were build of six 3D
convolutional layers and the final layer
for classification was a softmax layer
(striatum or background).
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Kamnitsas
et al.
[2017]

Segmentation
of brain haem-
orrhage, lesion
and tumour

Trained and tested on 3 differ-
ent datasets one for each dis-
ease, with 274>N>28. In all
three cases multiple MRI con-
trasts were used.

Dual pathway, 11-layers 3D CNN. The
two pathways were used to gain both
local and larger contextual information,
and they are composed of convolutional
layers. The pathways were merged and
followed by, fully connected layers, a
softmax layer, and lastly a CRF layer.
Code available online.

Nie et al.
[2016]

Segmentation
of gray mat-
ter, white
matter, and
cerebrospinal
fluid in images
of infants brain

A small dataset of T1, T2,
and fractional anisotropy im-
ages were used for training and
validation.

For each modality a CNN was made.
The CNNs were composed of three con-
volutional layer groups followed by two
de-convolutional layers. The final layer
was a softmax unit, classifying the in-
put to one of the four categories. The
CNN was trained for each of the modali-
ties. Finally, the high-layer features from
three CNNs were fused together to make
the output segmentation.

Kleesiek
et al.
[2016]

Discriminate
between non-
brain and brain
tissue in images
from clinical
routine and
with several
modalities.

T1 images of healthy sub-
jects from three databases
(N=135) were used for test-
ing. Additionally, one multi-
modal (non-enhanced and con-
trast enhanced T1, T2 and T2-
FLAIR) dataset (N=53) with
recurrent brain tumours was
used for testing and training.

3D CNN consisting of seven convolu-
tional layers. Max-pooling was applied
after the first convolutional layer. The fi-
nal layer was a softmax layer, which clas-
sified if a voxel was brain or non-brain
tissue.

Rajchl
et al.
[2017]

Segmentation
of objects from
bounding box
annotations

For testing T2 MR scans
(1.5T) acquired from 55 fe-
tal subjects (30 healthy and
25 with intrauterine growth re-
striction) were used. For train-
ing an equal amount of patches
(105) from a training database
was used for each class.

The CNN was composed of two con-
volutional layers both followed by a
max-pooling layer. Next was a fully-
connected layer followed by the output
layer making the classification to fore-
ground or background. DeepCut was
used as the optimisation approach.

Havaei
et al.
[2017]

Brain tumour
segmentation

T1, T1C, T2 and Flair scans
from 65 patients with different
grade of tumour.

Two pathway CNN; a local pathway with
a small receptive field and a global with
a large receptive field. Both the local
and global pathways were composed of
convolutional layers, pooling layers, the
activation function max-out, and a soft-
max output layer.

Moeskops
et al.
[2016]

Tissue classi-
fication and
segmentation
of five healthy
groups ranging
from infants
to adults (6-8
tissue classes)

5-20 subjects in each test class
(neonatal, young adults and
adults), T2 or T1w, 3T or 1,5T
MR scans.

CNN with three pathways all composed
of three convolutional layers followed
by a fully connected layer. After the
fully connected layers the three path-
ways were connected to a softmax layer
for the classification. For two of the
three pathways max-pooling was used af-
ter the convolutional layers.

Pereira
et al.
[2016]

Segmentation
of two types of
brain tumors:
Low Grade
Gliomas and
High Grade
Gliomas

T1, T1 with contrast, T2 and
FLAIR scans of 65 different
subjects.

Two CNNs were build, one for each of
the tumor types. The CNNs got 4
images as input. One of the CNN’s
was composed of 6 convolutional layers,
where layer three and five were followed
by max pooling and the last three layers
were fully connected layers. The other
CNN was composed of 9 layers. The
structure was the same as for the pre-
vious described CNN except for the re-
moval of two convolutional layers.
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2.4.1 Architecture of the state-of-the-art CNNs

The architecture of the state-of-the-art CNNs presented in table 2.4 differ. Most of the CNNs
employed a 2D architecture [Nie et al., 2016; Rajchl et al., 2017; Havaei et al., 2017; Moeskops
et al., 2016; Pereira et al., 2016] whereas Choi and Jin, Kamnitsas et al., and Kleesiek et al.
proposed 3D architectures [Choi and Jin, 2016; Kamnitsas et al., 2017; Kleesiek et al., 2016].
The advantage of the 3D CNN architecture is the inclusion of 3D contextual information.
However, compared to the 2D CNNs the 3D CNNs have an increased number of parame-
ters and require significant memory. Additionally, the computational requirements of the 3D
CNNs are larger due to the computationally expensive 3D convolutions. There are different
approaches to overcome these issues, e.g. Kamnitsas et al. applied a technique called dense-
inference, which reduce inference time by avoiding repeated convolutions on the same voxels.
[Kamnitsas et al., 2017]
Some of the CNNs are structured conventionally with a single sequence of layers [Pereira
et al., 2016; Kleesiek et al., 2016; Rajchl et al., 2017], as described in Section 2.3.1, while
other CNNs are made of multiple pathways [Kamnitsas et al., 2017; Nie et al., 2016; Havaei
et al., 2017; Moeskops et al., 2016] or a serial of networks [Choi and Jin, 2016]. The reason-
ing behind using multiple pathways was often to archive different feature levels [Kamnitsas
et al., 2017; Havaei et al., 2017; Moeskops et al., 2016; Choi and Jin, 2016]. Kamnitsas et al.
and Havaei et al. both proposed a dual pathway CNN, with the purpose of getting detailed
features from one of the pathways, and obtain higher level features (e.g. location) from the
other pathway [Kamnitsas et al., 2017; Havaei et al., 2017]. Kamnitsas et al. obtained de-
tailed features by feeding one of the pathways a MRI segment with the original resolution,
and the higher level features were obtained using a down-sampled version of the same MRI
segment for the other pathway [Kamnitsas et al., 2017]. Havaei et al. achieved the different
levels of features by applying different receptive fields. To obtain detailed features a 7 x 7
receptive field was used in one of the pathways, whereas a 17 x 17 receptive filed was used
in the pathway obtaining the higher level features [Havaei et al., 2017]. Moeskops et al. also
proposed a multiple pathway CNN to obtain different levels of features [Moeskops et al.,
2016]. Just as Havaei et al., receptive fields of different size were applied. However, in this
case a three pathway CNN was suggested with receptive fields of 25 x 25, 51 x 51, and 75 x
75 voxels [Havaei et al., 2017]. Similarly, Choi and Jin exploited information from features
of different levels. In this approach a two serial CNN was build consisting of a global and a
local CNN. First the global CNN found the approximate location of the striatum and based
on the result the input image was cropped. Subsequently, the cropped image was fed to the
local CNN where a more detailed structure was segmented. The purpose of the two serial
CNN was to reduce the computational burden and avoid segmentation of brain structures
similar to striatum in the whole images. [Choi and Jin, 2016] Nie et al. made a three pathway
network, one pathway for each of the modalities they found interesting. The pathways were
trained separately. Thereby, biases and weights were specially optimized for each modality.
[Nie et al., 2016]

The state-of-the-art CNNs were composed of a different number of layers and features,
but convolutional layers and fully connected layers were always applied. Pooling layers were
frequently applied [Nie et al., 2016; Kleesiek et al., 2016; Rajchl et al., 2017; Havaei et al.,
2017; Moeskops et al., 2016; Pereira et al., 2016] and the output layer translating the networks’
output to classification predictions was in most cases a softmax output layer [Choi and Jin,
2016; Kamnitsas et al., 2017; Nie et al., 2016; Kleesiek et al., 2016; Havaei et al., 2017;
Moeskops et al., 2016; Pereira et al., 2016]. The softmax layer was used for two class problems
[Choi and Jin, 2016; Kleesiek et al., 2016; Rajchl et al., 2017; Kamnitsas et al., 2017] and multi-
class (4 ≥ classes ≤ 9) problems [Nie et al., 2016; Havaei et al., 2017; Pereira et al., 2016;
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Moeskops et al., 2016; Kamnitsas et al., 2017]. In order to optimize the predicted classification
both Kamnitsas et al. and Rajchl et al. applied a Conditional Random Field (CRF) algorithm
as post processing [Kamnitsas et al., 2017; Rajchl et al., 2017]. This algorithm incorporates
pixel/voxel neighbourhood pattens for correction of the classification predictions from the
softmax layer [Sutton and McCallum, 2012]. In practise, this improves the fineness of the
segmentation [Zheng et al., 2016]. The most frequently used activation function was Rectified
Linear unit (ReLU) [Choi and Jin, 2016; Nie et al., 2016; Kleesiek et al., 2016; Rajchl et al.,
2017; Moeskops et al., 2016; Pereira et al., 2016] but also Parametric Rectified Linear Unit
(PReLU) [Kamnitsas et al., 2017] and max-out was used [Havaei et al., 2017].

2.4.2 Training of the state-of-the-art CNNs

Training of a CNN is an optimization problem, where a loss function is used to fit the CNN to
the training data (see Section 2.3.2) [Gu et al., 2017]. The loss functions used for training of
the state-of-the-art CNNs were in most cases based on cross entropy [Kamnitsas et al., 2017;
Moeskops et al., 2016], or a variant of cross entropy such as the categorical cross entropy
[Rajchl et al., 2017; Pereira et al., 2016] or Kullback-Leibler [Kleesiek et al., 2016]. Choi and
Jin suggested a more simple loss function based on mean square error [Choi and Jin, 2016].
For the training Nie et al. applied an already developed method called Caffe [Nie et al., 2016].
Caffe is a deep learning framework, which can be applied for training, testing, fine-tuning,
and deploying of CNNs [Jia et al., 2014].

To avoid overfitting different regularization methods can be applied. One regularization
method is application of more training data than parameters in the model. If only a small
dataset is available, other regularization methods can be used. These include among other
early stopping of the training before the parameters are fitted 100 percent to the training
data, reducing the number of parameters by shared weights, use of a validation set to find
the optimal time to stop the training [Nowlan and Hinton, 1992], L1 and L2 regularization
[Kamnitsas et al., 2017], and dropouts [Srivastava et al., 2014]. In the dropout method
random nodes are removed in each training session, and consequently the network is not
dependent on the specific features describing each of the training set. [Srivastava et al., 2014]

The regularization method applied by the state-of-the-art CNNs was in most cases dropout
[Choi and Jin, 2016; Kamnitsas et al., 2017; Rajchl et al., 2017; Havaei et al., 2017; Moeskops
et al., 2016; Pereira et al., 2016]. In adition to dropouts, Kamnitsas et al. [2017] used L1
and L2 regularization. In some cases the regularisation method was not described [Nie et al.,
2016; Kleesiek et al., 2016].

2.4.3 Factors influencing segmentation performance

Several factors influence the segmentation performance of a CNN, and one factor is network
architecture. Havaei et al. investigated if a 3D architecture would improve the segmentation
performance in comparison with a 2D architecture. The performance did not improve when
using a 3D architecture, but the computation time increased significantly [Havaei et al.,
2017]. In contrary, when Kamnitsas et al. applied a 3D network the average dice score of the
segmentation performance increased from 61,5 % to 66,6 % [Kamnitsas et al., 2017].

CNN architectures including both a local and a global pathway result in better segmenta-
tions than single pathway architectures, and joint training of the two pathways lead to better
results compared to separate training of the two pathways [Havaei et al., 2017]. Kamnitsas
et al. argue, that the advantage of a two pathway architecture is the down-sampled pathway
which finds the global structures allowing the other pathway to focus on detailed patterns
associated with ambiguous areas and fine structures [Kamnitsas et al., 2017].
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Another architectural factor influencing the performance is the size of the kernels. Pereira
et al. suggest a deeper network with smaller kernels, since this architecture has shown to
perform better in more cases compared to a less deep network with larger kernels. A network
applying smaller kernels, typically with a size of 3x3x3, has fewer weights and allows utiliza-
tion of a deeper network architecture. A more non linear segmentation is thereby possible.
[Kamnitsas et al., 2017; Pereira et al., 2016] Kamnitsas et al. and Rajchl et al. experienced
increased performance when adding a CRF layer for post processing [Kamnitsas et al., 2017;
Rajchl et al., 2017]. Small architecture details might not be important for the performance
of a CNN, since the CNN optimize the weights and biases by itself [Moeskops et al., 2016].

A second factor influencing the performance of CNNs are the choice of preprocessing.
Pereira et al. investigated the influence of several factors such as preprocessing, data aug-
mentation, activation functions and the effect of smaller kernels in deeper networks, and the
factor increasing the accuracy of the CNN the most was preprocessing [Pereira et al., 2016].
Kamnitsas et al. also suggested preprocessing to be an important factor, which could increase
the performance of their developed CNN [Kamnitsas et al., 2017]. Pereira et al. suggested
to use an intensity normalization method for preprocessing to overcome variation in the in-
tensities of the same tissues across acquisitions and subjects [Pereira et al., 2016].

A third factor influencing the performance of a CNN is the data set applied for training
[Kleesiek et al., 2016]. Havaei et al. had issues using manually segmented training data due to
large variations in the manual segmentations [Havaei et al., 2017]. Havaei et al. and Kleesiek
et al. suggested to train with segmentations from several segmentation methods [Havaei
et al., 2017; Kleesiek et al., 2016]. Kamnitsas et al. observed a drop in the performance of
the their system, when the data being segmented was clinical data from databases different
from the training data set, and they suggested to allow for this in a data augmentation step
[Kamnitsas et al., 2017]. Moeskops et al. suggested to use more training data with higher
diversity to obtain a more generalized CNN, but they also considered this might result in
lower performance of the segmentations [Moeskops et al., 2016]. Pereira et al. also suggested
the size of the training data set to be an important factor in overfitting, and suggested that
a larger dataset can reduce overfitting. Data augmentation can be obtained by rotating an
original patch to generate new patches [Pereira et al., 2016].

2.4.4 Evaluation of the state-of-the-art CNNs

The CNNs presented in Table 2.4 obtained a segmentation performance with a better or
similar accuracy compared to conventional manual methods [Choi and Jin, 2016; Kamnitsas
et al., 2017; Rajchl et al., 2017] and conventional automatic methods such as FreeSurfer [Choi
and Jin, 2016; Kleesiek et al., 2016; Rajchl et al., 2017; Havaei et al., 2017]. In comparison with
the conventional methods CNNs have the advantage, that features are automatically learned
and consequently manual feature engineering is avoided [Rajchl et al., 2017; Kleesiek et al.,
2016]. Additionally, the same CNN can have the ability to fit different types of problems, i.e
Rajchl et al. utilized the same network for both segmentation of premature lung and brain
structures [Rajchl et al., 2017; Choi and Jin, 2016; Kamnitsas et al., 2017; Rajchl et al., 2017].
CNNs require less computational time for one segmentation than conventional methods e.g.
the computation time using the CNN developed by Choi and Jin was approximately 1.5 min
applying a CPU and only a few seconds when a GPU was applied, whereas the computation
time was approximately 10 h using FreeSurfer. [Choi and Jin, 2016; Kamnitsas et al., 2017;
Rajchl et al., 2017]. One of the disadvantages of CNNs are that the training process is
computationally heavy and time consuming. However, several parameters in the architecture
and preprocessing can reduce the required training time. These include e.g. smaller kernels
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[Kamnitsas et al., 2017; Pereira et al., 2016], reduced search area [Rajchl et al., 2017; Moeskops
et al., 2016], implementation on GPU [Havaei et al., 2017], and usage of 2D architectures
instead of 3D architectures [Moeskops et al., 2016], normalization of input data, and data
augmentation [Pereira et al., 2016].
In conclusion; throughout the presented papers a range of different proposals for how the
CNNs should be developed, trained, and tested have been presented. However, the state-of
the-art CNNs also have some similar features and they all show promising results and form
a basis for further development.



Chapter 3
Project aim
Dementia is a world wide problem, with almost 50 million people suffering from the disease.
No cure for dementia exists, but preventive treatment can postpone impairment. To exploit
the treatment best, the patient should be treated as early as possible, which requires early
diagnosis. For AD patients, changes in the hippocampi occur approximately 5.5 years before a
diagnosis is given, and these changes are i.e. present as a volume decrease of different subfields
within hippocampus, among these CA1, CA2, and subiculum. During the last decade 7T
MRI has made it possible to observe these subfields in vivo, which opens the opportunity of
earlier AD diagnosis.

Several protocols for manual segmentation of hippocampal subfields in 7T MR images
have been developed, however, the diverseness of the protocols induce high variation between
the segmentation results obtained through studies, and the method is highly resource de-
manding. The time and labour requiring perspectives in manual segmentation have resulted
in several attempts to develop automatic segmentation methods for hippocampal subfields.
These automatic methods show promising results, but have problems identifying smaller
subfields accurately and are very time demanding.

In current research, Convolutional Neural Networks (CNNs) have shown accurate and
fast segmentations of brain structures and lesions in MR images compared to manual and
automatic atlas based segmentation methods. A segmentation method based on a CNN is not
dependent on manual feature modelling nor complicated image processing such as non-linear
registration, as it learns the relevant image features automatically through convolutions.
Moreover, it has been demonstrated, that one CNN can be used for several segmentation
problems.

Aim

The aim of this study is to develop an automatic method for hippocampal subfield segmenta-
tion (DeepHSS) in in vivo ultra-high resolution MR images, based on a convolutional neural
network. Furthermore, the potential of this approach is explored in relation to existing meth-
ods for hippocampal subfield segmentation.

• Determine optimal configurations for the CNN applied in DeepHSS.
• Investigate if automatic segmentation methods can be applied to generate ground truth
labels and used to train the CNN in DeepHSS.

• Validate hippocampal subfield segmentations obtained using DeepHSS and compare to
segmentations obtained using excising methods.

3.1 Scope
The proposed automatic method for hippocampal subfield segmentation is named DeepHSS.
The method was developed mainly to segment the subfields within hippocampus prober and
subiculum, since these subfields according to literature are first affected in AD (see Sec-
tion 2.1.1), and results were compared to results obtained using the exciting methods ASHS
and FreeSurfer (see Section 2.2). The main component of DeepHSS is a supervised CNN,

15



16 Chapter 3. Project aim

for which reason a dataset containing labelled single subject 7T MR images was needed for
training. Since, manual ground truth (GT) labels were not available in the initial stages of
DeepHSS development, these had to be generated automatically. It was decided to use one
of the aforementioned open source segmentation tools (see Section 2.2) for generation of GT
labels. To provide best possible conditions, the segmentation was performed on 7T MDA
models with both T1w and T2w contrast, and subsequently warped into subject space. Later
in the development of DeepHSS manual GT labels became available and were applied in the
final stages of DeepHSS development.

DeepHSS was developed using the public available CNN framework DeepMedic, described
by Kamnitsas et al. [2017]. DeepMedic is a well structured network, which allows creation of
CNNs for segmentation of structures through a set of configuration files. The development of
the CNN within DeepHSS required considerable memory and had to be run on a GPU. For
this reason, the supercomputer Abacus was utilized as computational tool. Hardware and
software specifications are described at: https://abacus.deic.dk/setup/hardware.

The following chapters contain a description of DeepHSS. Chapter 4 is documentation of the
method behind DeepHSS. Chapter 5 contains initial tests of DeepHSS conducted through
the development process, and Chapter 6 contains the final test of DeepHSS. Two different
datasets were used for the initial tests and the final test due to known availability at the
time. Both datasets are described within the chapter of the corresponding test.



Chapter 4
Proposed solution: DeepHSS
This Chapter contains a description of DeepHSS, which was developed for hippocampal sub-
field segmentation in ultra-high resolution MRI. The description covers preprocessing of the
data, network architecture, and network training schedule. An overview of the chapter can
be seen in figure 4.1.

Data
preprocessing

Network
architecture

Training
1) 2) 3)

Figure 4.1: Flowchart illustrating the development of DeepHSS. The input data is firstly preprocessed and
fed to step three, training. Secondly, the network architecture is build. Thirdly the network’s weights are
determined through an iterative training process, which is denoted by the green arrow.

In the first step of DeepHSS, the data is preprocessed in order to standardise the data
and reduce runtime. In the second step, the network architecture is set up. As described in
Section 3.1, the proposed network is based on the open source CNN framework, DeepMedic.
In step three of the network development, the build network’s weights are determined through
an iterative training process, denoted by the green arrow in Figure 4.1.

4.1 Data preprocessing
The data was preprocessed through three steps: Firstly, whole brain masks were generated
using the Brain Extraction Tool (BET2) [Jenkinson et al., 2015] and applied to the 7T MR
images using the tool mincmath in order to reduce the amount of excess image information,
and thereby make the network computational lighter.

Subsequently, to deal with covariate shifts the input MR images were normalized to have
zero mean and unit variance using MATLAB. Covariate shifts, which are changes in the
distribution (e.g mean, standard division) of an image, can occur to images processed in
neural networks if the network is fed images with different distributions. When covariate
shifts occur this can lead to a reduced inference of the network [Shimodaira, 2000].

Finally, the 7T MR images and their respective GT label images were bisected by removal
of the image part corresponding to left brain hemisphere. Bisection was performed to avoid
unwanted segmentation due to symmetric properties of the brain. This issue was discovered
and is described through the initial tests of DeepHSS, described in Chapter 5. The bisection
was performed using the tool mincreshape.
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4.2 Network architecture
The CNN in DeepHSS is build as a 3D network with two pathways both containing eight convolutional layers. The convolutional layers are
followed by two fully connected layers and a classification layer developed to classify the voxels into nine classes. The classifications are finally
post-processed by a CRF layer, using the GT labels and neighbourhood relations. The network architecture is illustrated in figure 4.2.

Convolu�onal layers (8)

- two pathways

Fully connected 

layers (2)

So�max layer CRF layer Input segments

Upsampling to 

normal resolu�on

Normal resolu�on

Low resolu�on

Ground truth labels

Figure 4.2: Schematic illustration of the 3D CNN imbedded in DeepHSS. The input to the network is 7T TSE MRI volumes, from where input segments are extracted.
Segments of full resolution are fed into the upper pathway of the network, whereas downsampled segments are fed to the lower pathway of the system. After eight
convolutoonal layers, the data is processed trough two fully connected layers and classified by a softmax layer. The classification is finally corrected with a CRF layer at
the end of the network, using the GT labels and neighbourhood relations. Inspired by Kamnitsas et al. [2017].
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The CNN architecture is divided into five parts; Overall network configurations, convo-
lutional layers, fully connected layers, classification layers, and activation functions. All of
these are elaborated in the following sections.

4.2.1 Overall network configurations

With the objective of building a network, which has the potential of gaining the highest
performance possible, the CNN in DeepHSS was build with a 3D architecture. As described
in Section 2.4.4, Havaei et al. and Kamnitsas et al. dissagree whether the benefits of a 3D
network make up for the increased computation time compared to a 2D network. However,
since deepMedic form the base for the CNN embedded in DeepHSS, and Kamnitsas et al.
[2017] found DeepMedic to gain higher performance with a 3D architecture, a 3D architecture
was chosen. The CNN in DeepHSS was build using a two-pathway approach. This approach
was picked with the purpose of incorporating both coarse and fine details of the input images.
A two-pathway approach has, as stated in Section 2.4.4, been found to be beneficial for
localization of the region of interest. Since a CNN, which is able to handle half brain images,
is desired in order to avoid image dependent, unnecessary preprocessing, the two-pathway
approach was seen as useful for hippocampal subfield segmentation. The two pathways were
designed to be similar, however, with inspiration from Kamnitsas et al., the input to the
sub-sampled pathway was down sampled by three.

4.2.2 Convolutional layers

The pathways in DeepHSS were both composed of convolutional layers. The first convolu-
tional layer in each pathway was build to handle images preprocessed as described in Section
4.1. As described in section 2.4.4, it is beneficial to use small kernel sizes and deeper networks
when employing a 3D architecture. Consequently, the size of the kernels were chosen to be
3x3x3, and the number of convolutional layers was chosen to be eight. The number of kernels
per layer was chosen to be [30 30 40 40 40 40 50 50]. The network was build with tree residual
layers; 4, 6, and 8. These specific values were selected with inspiration from Kamnitsas et al..

4.2.3 Fully connected layers

The convolutional layers were followed by two fully connected layers, which had the purpose
of combining all prior information. The fully connected layers were implemented as a linear
classifier, which performs global reasoning and generates global semantic information [Gu
et al., 2017]. With inspiration from Kamnitsas et al. the CNN implemented in DeepHSS was
implemented with 150 kernels of size 3x3x3 in each fully-connected layer.

4.2.4 Classification layers

In order to translate the output from the fully connected layers to a statistical classification
of each voxel in the input image, a softmax layer was implemented. As presented in Section
2.4, several of the state-of-the-art CNNs contain a softmax layer as the classification layer,
for which reason this exact type of classifier was chosen.

For post-processing, a CRF layer was implemented as the final layer in the CNN. As
stated in Section 2.4, a CRF layer can be beneficial since it is able to refine coarse and weak
voxel-level label predictions, and therefore corrects the initial classification and effectively
improves the fineness of the segmentation.
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4.2.5 Activation function

The activation function applied in all nodes of the layers were a rectifier of the type PReLU.
This function is a refinement of the ReLU function, where all negative values are multiplied
by a learnable parameter. PReLU was chosen, since it has shown reduced errors compared
with ReLU. Additionally, networks applying rectifiers are in general easier to train compared
to networks using sigmoid-like activation functions. [He et al.]

As described in Section 4.1, covariate shifts can occur when the input images to a network
have different distributions. However, the input from one layer to another can vary too, which
induce internal covariate shifts. [Ioffe and Szegedy, 2015] To handle internal covariate shifts a
method called batch normalization, proposed by Ioffe and Szegedy [2015], was applied to all
hidden layers of the network. When applying batch normalization the input to the activation
functions in the network is normalized by whitening it to have zero mean and unit variance.
This is done in mini-batches, as it would be impractical to do it for the whole layer. [Ioffe
and Szegedy, 2015]

4.3 Network training
The CNN in DeepHSS was trained using the training method dense training, which was
proposed by Kamnitsas et al. [2017]. The first step in the training is initialisation of the
network’s weights. Next, the weights are determined by using an optimization algorithm to
minimize a cost function, as described in Section 2.3. Due to the overall training method,
dense training, each epoch of the optimization algorithm contains a number of subepochs, in
which image segments are randomly extracted from the training images. The segments are fed
to the network, which classify each voxel. Subsequently, the cost function calculates the cost
between the CNN’s classifications and GT labels. When the training has iterated through
the subepochs in one epoch an overall cost for the epoch is calculated. Next, the learning
rate is lowered and the CNNs weights are updated utilizing the optimization algorithm.
The training also includes regularization to avoid overfitting. An illustration of the training
process is presented in Figure 4.3.
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Figure 4.3: Broad overview of the training cycle. Each training epoch is composed of several subepochs,
in which several segments are subtracted from the training images. The CNN makes a classification of the
image segments, and a cost function is used to calculate the cost between the CNN’s classification and the GT
labels. Next, the overall cost is calculated for the whole epoch, the learning rate is lowered, the cost function
is minimized, and the network’s weights are updated.

In this Section the components composing the training is elaborated.

4.3.1 Training approach: Dense training

The training method dense training is an alternative approach to the common training
method, called patch-wise training. The main difference between the two methods is how
the image is fed to the network. In the patch-wise training approach, the images are divided
into patches, which have the size of the CNN’s receptive field. All patches are extracted
randomly from the training images to form a batch. In one training epoch the whole batch
is processed, and the output is a prediction of the center voxel of each patch. The principal
behind patch-wise training is illustrated in Figure 4.4a. However, when handling large 3D
networks, the patch-by-patch method becomes computationally heavy, especially since large
batches are desired to increase the accuracy of the predictions. This issue is met by applying
dense inference, which is the base of dense training. [Kamnitsas et al., 2017]

Dense inference is a technique, which can be applied to fully-convolutional networks when
the size of the input to the network is larger than the size of the CNN’s receptive field. When
this is the case, the dimensions of the feature maps increase and likewise does the dimensions
of the classification feature maps, and for each map an output will be generated for each stride
of the receptive field of the input. Thereby, a prediction of several voxels positioned next
to each other in the image can be obtained simultaneously. Using this technique, repeated
convolutional calculations of the same voxel in overlapping patches are avoided, as would be
the case using the patch-wise training method, and this reduces memory loads and calculation
costs. The most optimal performance of dense inference is when the whole image is processed
in one forward pass. However, this is computational expensive especially for large 3D networks
and large datasets. To address this issue multiple image segments are extracted and used as
input. To ensure the representation of the region of interest, in this case each hippocampal
subfield, the segments are extracted with the content being with 50% probability of belonging
to either background or foreground, foreground being one of the hippocampal subfields, as
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illustrated in figure 4.4b. In multi-class problems, like this, the frequency of which the
foreground’s classes are extracted comply with real distribution of the classes relative to the
background. [Kamnitsas et al., 2017]

(a) (b)

Figure 4.4: Figure (a) and (b) are illustrations of how a 7T TSE MR image is fed differently to a network
dependent on the training type. (a) is an example of five randomly extracted patches, which are applied as
input for patch-wise training. (b) shows three image segments used as input to a network when dense training
is applied.

4.3.2 Weight initialisation

Proper initialisation of the weights in a network is an important factor for convergence of the
weights. Deep networks are often initialized by attributing the network’s weights a random
value from a gaussian distribution which has a fixed standard deviation. However, when
this initialization method is applied to deep networks they have difficulties converging. To
overcome this issue some authors have developed initialization methods taking variations in
standard distribution into account. [He et al.] developed an initialization method, which
base the initialization of weights on the variance of the response for each layer. [He et al.]
This method shows good results for networks using non linear activation functions [He et al.],
which are the type of activation function applied in DeepHSS’s CNN (see 4.2). Consequently,
this method was used for initialization of the CNN’s weights.

4.3.3 Optimisation algorithm

It was chosen to use an optimization algorithm with adaptive learning rate, since these meth-
ods perform better compared to non-adaptive methods such as stochastic gradient descent.
The reason for this is, that adaptive methods find the learning rate automatically, which
induce avoidance of getting trapped in a local suboptimal minima, and consequently, the
algorithms find the minima faster. A few methods with adaptive learning rate exist. One
of them is ADAM and this method was initially implemented, as it takes the advantages
from two other adaptive learning rate methods named AdaGrad and RMSProp. Addition-
ally ADAM has shown slightly better results compared to these. [Ruder, 2016] However, as
described in Chapter 5, when testing the CNN using ADAM, the training progress contained
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some unacceptable fluctuations, for which reason RMSProp was used instead. For more in-
formation about advantages and disadvantages for non-adaptive and adaptive learning rate
methods see Appendix C.

4.3.4 Cost function

The CNN’s weights, θ, were determined by minimizing the cost function in each epoch of the
optimization algorithm. When dense training is applied the cost function can be described
by: [Kamnitsas et al., 2017]

J(Θ; Is, cs) = − 1
B · V

B∑
s=1

V∑
V =1

log(pcv
s
(xv)), (4.1)

where B is the number of image segments composing a batch, Is and cs are the true labels
of the V voxels in the sth segment in the batch, cv

s is the true label of voxel v in segment s,
pcv

s
is the predicted posterior probability for class cv

s , and xv is the position of the class in
the classification feature map.

4.3.5 Regularisation

As described in Section 2.4.4, overfitting often occurs in neuroimaging and can be avoided
using regularisation methods. The regularisation methods; dropout, L1 regularisation, and
L2 regularisation were applied in DeepHSS’s CNN.

As described in Section 4.2, the last four layers of the CNN are two fully connected layers,
a softmax layer, and a CRF layer. 50 % dropout was applied to the second fully connected
layer and the softmax layer. The regularization method dropout is elaborated in Section
2.4.2.

The usage of L1 and L2 regularisation implies, that two extra terms are added in the cost
function, one for L1 and one for L2. In L1 regularisation the term is the sum of the weights,
and in L2 regularization the term is the sum of the square of the weights. When the T1
and T2 terms are added to an cost function, the weights decrease, causing less influence by
some features, and for the T1 term several weights will be equal to zero, resulting in a sparse
weight vector. Thereby, several features are ignored which is believed to be beneficial. [Ng,
2004] The two therms are scaled by an adjustable parameter, which was set to 0.000001 for
L1 and 0.0001 for L2.



24 Chapter 4. Proposed solution: DeepHSS



Chapter 5
Initial data and test
This Chapter contains a description of the initial tests of DeepHSS. In the first Section is
the dataset used for the tests described including the acquisition details and the method for
generation of the ground truth labels. The next Section concern the initial tests, in which
the purpose, method, results and discussion of each test is presented.

5.1 Data
A T1w and T2w 7T MRI acquired from three healthy subjects were available for this project.
Additionally, a T1w and a T2w MDA MRI model where available for hippocampal subfield
label generation.

5.1.1 Data acquisition

The data was acquired using a 7T whole body MRI scanner (Siemens Healthcare, Erlangen,
Germany). The gradient system of the scanner was a SC72 with a slew rate of 200 mT/m/s
and a maximum gradient strength of 70 mT/m. For the radio frequency transmission and
reception a 7T Tx/32 channel Rx head array (Nova Medical, Wilmington, MA, USA) was
used. [Janke et al., 2016]

The T1w images were whole brain scans obtained by a prototype MP2RAGE sequence
(WIP 900) with the resolution 0,5mm x 0,533mm x 0,5mm. During both acquisitions the
following parameters remained constant: TR = 4330ms, TI1/TI2 = 750/2370ms, TE =
2.8ms, flip angles = 5 and 6 degrees, and GRAPPA = 3. [Janke et al., 2016]

The T2w images were orthogonal to the main axis of the hippocampus and were obtained
by a 2D Turbo Spin Echo (TSE) sequence. Both subjects were imaged three times and to
reduce the extend of data to be processed and increase SNR the three acquisitions per subject
were averaged. The following parameters remained constant: resolution = 0.2x0.2x0.8mm,
flip angle = 134 degree, and TR = 10.3s. [Janke et al., 2016]

In Figure 5.1 (a) a sagittal slice from a 7T single subject scan with MP2RAGE contrast
is presented, and the corresponding sagittal slice from the same subject’s 7T single subject
scan with TSE contrast is presented by Figure 5.1 (b).

25
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(a) (b)

Figure 5.1: Figure (a) and (b) are sagittal slices from a single subject 7T MRI. Figure (a) is with MP2RAGE
contrast whilst Figure (b) is a TSE contrast. The 7T MP2RAGE single subject scan covers the whole brain
whereas the 7T TSE single subject scan covers a slice of the brain including both hippocampi.

5.1.2 7T MDA MRI models

The two MDA MRI models are included with the purpose of constructing ground truth labels
for the single subject scans. Both models are probabilistic and generated using the method
described by Janke and Ullmann and Grabner et al.. One of the models are with MP2RAGE
contrast and the other model is with TSE contrast. The 7T MP2RAGE MDA model are
based on 48 single subject 7T MP2RAGE scans, whilst the TSE 7T MDA model are based on
26 single subject 7T TSE scans. [Janke et al., 2016] Acquisition of the utilized single subject
7T scans are described in Section 5.1.1. A general description of how the MDA models were
generated can be found in Appendix A. In Figure 5.2 (a) a sagittal slice of the 7T MP2RAGE
MDA model is shown, whilst a sagittal slice of the 7T TSE MDA model is presented by Figure
5.2 (b).
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(a) (b)

Figure 5.2: Figure (a) and (b) are sagittal slices from the 7T MRI MDA models. The model illustrated in
Figure (a) is with MP2RAGE contrast and the model illustrated in Figure (b) is with TSE contrast. The 7T
MP2RAGE MDA model covers the whole brain whereas the 7T TSE MDA model covers a part of the brain
including the hippocampus.

The models are freely available at http://imaging.org.au/Human7T/TSE and
http://imaging.org.au/Human7T/MP2RAGE

5.1.3 Ground truth hippocampal subfield labels

In order to gain a complete input data set for the DeepHSS, ground truth (GT) labels for
each single subject 7T MR image are needed. In the initial tests the GT labels were generated
using three methods:

1. Segmenting the single subject 7T MR images using ASHS.
2. Segmenting the MDA MRI models using FreeSurfer version 6.0 and warping the seg-

mentations from model space to subject space
3. Segmenting the MDA MRI models using ASHS and warping the segmentations from

model space to subject space

For method 1. the GT labels were simply generated by applying ASHS to the single
subject 7T MR images. For both method 2. and 3. the MP2RAGE and the TSE 7T
MDA model were utilized by the automatic segmentation methods to achieve as reliable
hippocampal subfield labels as possible. Subsequently, the labels were warped from model
space into subject space using the inverse transformations obtained when the single subject
7T MR images were wrapped to the model space during the MDA model generation. The
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labelling process is illustrated in Figure 5.3, and the shell script used for the process is present
in Appendix B.

Figure 5.3: Illustration of how the ground truth labels are generated. The 7T MRI MDA models, which are
coregistered in the MP2RAGE model space, are labelled using FreeSurfer. Subsequently, both the labels for the
TSE contrast and the labels for the MP2RAGE contrast image are warped into their respective subject spaces.
Due to the nature of MDA model generation, this takes a few steps. a.1: inverse non-linear transformation
are applied to the labels in order to warp the MP2RAGE labels from model to subject space. b.0: the TSE
labels are warped from MP2RAGE model space to TSE model space using both inverse non-linear and linear
transformation. b.1: inverse non-linear transformation are applied to the TSE labels in order to warp those
from model to zero center subject space. a.2 and b.2: the coordinate systems of the label images are alternated
to fit the related information of the TSE image and MP2RAGE image in subject space.

Figure 5.4 presents a comparison between labels constructed using ASHS on MDA mod-
els and then warped into subject space and labels constructed directly in subject space with
ASHS. Figure 5.5 is an illustration of the labels obtained using FreeSurfer and ASHS, respec-
tively, superimposed onto the 7T TSE MDA model.
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(a) (b)

(c) (d)

(e) (f)
CA1 CA2 CA3 CA4/DG Sub Misc

Figure 5.4: Coronal (a-b), sagittal (c-d) and transverse (e-f) view of the hippocampal subfield labels obtained
using ASHS at the MDA models and warped into subject space (a,c,e) and directly in subject space (b,d,f). All
labels are superimposed onto the corresponding 7T TSE MRI. Outer boundaries of labels generated directly
in subject space follow the hippocampus smoother, this is visually clear in the coronal view.
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Figure 5.5: Hippocampal subfield labels obtained by FreeSurfer (a, c, e) and ASHS (b, d, f), respectively, in
the coronal (a, b), sagittal (c, d), and the transverse view (e, f) superimposed onto the 7T TSE MDA model.
FreeSurfer divides the hippocampus into 11 subfields whilst ASHS devides the hippocampus into 6 subfields
and adds further 5 subfields outside of hippocampus proper. Most of these are beyond the cropped view.
The labels obtained using ASHS does in general have more smooth boundaries than the labels obtained using
FreeSurfer, and some subfields are more accurately delineated by edges following changes in the TSE contrast.
Examples of this are pinpointed with black arrows in all three views.
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5.1.4 Data augmentation

Data augmentation was utilized, due to the limited size of the dataset. The augmentation
exploits that each subject has two hippocampi which are diverse from each other by mirroring
each subjects left hippocampus ground truth labels and each subject’s 7T MR images. Figure
5.6 illustrates both the right and the mirrored left hippocampus in the same cropped coronal
7T MP2RAGE MR slice.

(a)

(b)

(c)

Figure 5.6: Coronal view of all three subjects (a, b, and c) at their respective 7T TSE MR image slice. The
slices captures both hippocampi, which are of different shapes.

5.2 Initial tests
The initial tests aim to investigate; if DeepHSS is capable of segmenting hippocampal sub-
fields, the influence of input labels, and if it is beneficial to train the CNN in DeepHSS with
GT labels generated using existing automatic segmentation methods on MDA models.

For the initial tests a small dataset (N=6) was available, as explained in Section 5.1. Con-
sequently, 6-fold cross-validation was applied for evaluation of the performance in all initial
tests. In each fold, the CNN was trained with five subjects and tested with the last subject,
resulting in six subtests. To quantify DeepHSS performance in the tests a foreground dice
score (DSC), an overall score for all subfields, was calculated between DeepHSS segmenta-
tions and the manual segmentations. To better understand how the training progressed the
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foreground DSC was in all tests calculated for every second epoch throughout the training.

5.2.1 Test 1: Segmentation of hippocampal subfields and experience with
optimizer algorithm

This test aims to investigate if DeepHSS is capable of segmenting hippocampal subfields.

Method

The CNN in DeepHSS was set up to take one modality, MP2RAGE, as input. The GT labels
were produced using FreeSurfer on the 7T MDA models whereupon the labels were warped
from model space to subject space, as described in Section 5.1.3. The MP2RAGE MR images
were masked with a whole brain mask.

Results

Figure 5.7 illustrates the segmentations using DeepHSS in relation to the GT labels. All
labels are superimposed onto the corresponding MR image with MP2RAGE contrast.

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Coronal, sagittal, and transverse view of the hippocampal subfield segmentation obtained using
multispectral segmentation with FreeSurfer via model space (a-c) and the predicted segmentations (d-f), all
superimposed onto the corresponding 7T MP2RAGE MR image.

As seen in Figure 5.7 DeepHSS manages to segment the hippocampal subfields. The
foreground DSC between the segmentations obtained using DeepHSS and the manual seg-
mentations for every second epoch of the training process is presented in Figure 5.8.
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Figure 5.8: Six graphs illustrating foreground DSC as a function of number of training epochs. The graphs
are fluctuating and does not represent a continuous increasing DSC. The optimizer algorithm used was ADAM.

As seen in Figure 5.8, the foreground DSC between the CNN’s segmentations of the test
data and the GT segmentation fluctuates as the network is trained with more epochs.

Discussion

It was possible to find subfields within hippocampus, however, the graphs illustrating the
training process were oscillating unexpectedly. The foreground DSC was expected to converge
towards a steady state as the number of training epochs increased. These fluctuations in the
DSC might be due to the optimization algorithm ADAM having difficulties finding the global
minimum. To overcome this issue, the optimizer was changed to RMSProp, since RMSProp
has shown a performance comparable to ADAM (see section C).

To investigate whether the CNN became more stable by changing the optimizer, this test
was redone after changing the optimization algorithm. The foreground DSC between the
DeepHSS segmentations and the GT segmentation for every second epoch are illustrated in
Figure 5.9.
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Figure 5.9: Six graphs illustrating foreground DSC as a function of number of training epochs. The optimizer
algorithm used was RSMprops.

As seen in Figure 5.9, the graphs reaches a plateau after 2-4 training epochs. The training
progressions in Figure 5.9 fluctuates less compared to 5.8, thereby a more stable training
progress is achieved when the optimization algorithm is RMSprops compared to ADAM.
Consequently, RMSprop was applied as the CNN’s optimizer.

5.2.2 Test 2: Optimal inputlabels and image modalities

The aim of this test is to investigate which automatic method can generate the most optimal
GT labels and if TSE or MP2RAGE images should be applied for training of the CNN in
DeepHSS: FreeSurfer on MDA models warped to subjectspace or ASHS on MDA models
warped to subject space.

Method

For this test the CNN in DeepHSS was trained using four different versions of GT labels and
associated single subject 7T MR images with different modalities:

1. FreeSurfer labels generated in model space and warped to subject space and single
subject 7T MP2RAGE MR images

2. FreeSurfer labels generated in model space and warped to subject space and single
subject 7T TSE MR images

3. ASHS labels generated in model space and warped to subject space and single subject
7T MP2RAGE MR images
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4. ASHS labels generated in model space and warped to subject space and single subject
7T TSE MR images

Results

The training progress of the CNN trained with FreeSurfer labels and MP2RAGE modality,
FreeSurfer labels and TSE modality, ASHS labels and MP2RAGE modality, and ASHS labels
and TSE modality can be seen in Figure 5.9, 5.10, 5.11, and 5.12, respectively.
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Figure 5.10: Six graphs illustrating the foreground DSC as a function of number of training epochs. The
CNN in DeepHSS was trained using FreeSurfer labels generated in model space and warped to subject space
and single subject 7T TSE MR images.
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Figure 5.11: Six graphs illustrating the foreground DSC as a function of number of training epochs. The
CNN in DeepHSS was trained using ASHS labels generated in model space and warped to subject space and
single subject 7T MP2RAGE MR images.
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Figure 5.12: Six graphs illustrating the foreground DSC as a function of number of training epochs. The
CNN in DeepHSS was trained using ASHS labels generated in model space and warped to subject space and
single subject 7T TSE MR images.

The two best performances were observed when the CNN in DeepHSS was trained using
FreeSurfer generated labels and MP2RAGE images and ASHS generated labels and TSE
images. The average DSC for segmentations obtained utilizing FreeSurfer and MP2RAGE
images was 0.64 ± 0.02 whereas it was 0.63 ± 0.08 when ASHS and TSE images were applied.
It is observed that the CNN trained with FreeSurfer labels and MP2RAGE images overall
obtains the highest DSC. When visualising the segmentations it was noticed that the network
segmented parts of the opposite hippocampus as seen in Figure 5.13.

Figure 5.13: Coronal view of the hippocampal subfield segmentation obtained using DeepHSS trained with
7T TSE images acquired from 5 subjects and GT labels obtained using FreeSurfer and MDA models.
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Discussion

As it appears from the results, the network trained with GT labels generated using FreeSurfer
performs best on MP2RAGE MR images whilst the network trained with ASHS generated
labels performs best on TSE scans. Furthermore, when the FreeSurfer generated GT labels
and MP2RAGE images were applied a slightly better performance was obtained compared
to when the ASHS generated GT labels and TSE images were applied.

As described in Section 2.2.1 the segmentation performed by ASHS was compaired to
manual segmentation with DSC whereas FreeSurfer was validated by visual inspection. Ad-
ditionally, Giuliano et al. [2017] states that the volumetric results for each subfield should be
carefully interpreted when FreeSurfer is used for segmentation. For this reason it was cho-
sen to use ASHS for labelling despite DeepHSS performed slightly better when using labels
generated by FreeSurfer.

It was considered suspicious that the performance of ASHS and FreeSurfer were almost
similar. For this reason the input labels were investigated, and an error in the warping from
model space to subject space was found as illustrated in Figure 5.4. For this reason it was
decided to use ASHS direct on the subject for future tests.

During the tests segmentation of the opposite hippocampus was observed, and it was
unclear if these incorrect segmentations were caused by the data mirroring when the data
was augmented, or if it was caused by similarity between the left and right hippocampus’
local features (e.g. textual features). To clarify this, a network was trained with two of the
non mirrored subjects and tested on the last subject. The results of this test can be seen
in Figure 5.14 and as the arrows indicates the network still segments parts of the opposite
hippocampus. Thereby, the segmentations in the opposite hippocampus must be due to the
network’s use of local features. For this reason, the scans were bisected to only contain the
right hippocampus in future tests.

Figure 5.14: Coronal view of the hippocampal subfield segmentations obtained using DeepHSS trained with
2 training subjects.

5.2.3 Test 3: Adjusted DeepHSS

The aim of this test is to evaluate the performance of DeepHSS when implementing the
parameters discussed in Section 5.2.2.

Method

ASHS was applied to 7T TSE MR images in subjectspace to obtain GT labels. The GT
labels are illustrated in Section 5.1.3. In contrary to previous tests the CNN in DeepHSS was
fed scans containing exclusively the right part of the brain.
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Results

The training progress of the CNN contained in DeepHSS trained with TSE images and GT
labels generated using ASHS is illustrated in Figure 5.15.
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Figure 5.15: Six graphs illustrating the training process for all subtests. The CNN was trained with 7T TSE
MR images and GT labels obtained using ASHS in subject space.

As seen in Figure 5.15 the network obtained a foreground DSC of approximately 0.9 in
all six subtests after 8 training epochs. An example of the segmentations obtained using
DeepHSS and the associated GT label is illustrated in Figure 5.16.
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(a) (b) (c)

(d) (e) (f)

Figure 5.16: Coronal, sagittal, and transverse view of the hippocampal subfield segmentation obtained
using multispectral segmentation with ASHS directly in subject space (a-c), and predicted segmentations
using DeepHSS, all superimposed onto a 7T TSE MR image.

As seen in Figure 5.16 the segmentation obtained by the network are comparable to the
GT labels generated by ASHS. The average DSC for the subfields in this test was 0.75 ±
0.05.

Discussion

The results obtained in this test, where GT labels are generated using ASHS directly in
subjects space, were better compared to the results in test 2 (see Section 5.2.2), when ASHS
was used to generate GT labels in model space. The average DSC for the individual subfields
increased from 0.63 ± 0.08 in test 2 to 0.75 ± 0.05 in this test. This is the opposite result
of what was expected, since utilization of the 7T MDA models, should have improved the
quality of the GT labels. The reason might be the potential error in the warping process
from model space to subject space, described in Section 5.2.2, or bisection of the images in
this test.



Chapter 6
Final data and test
This Chapter presents the final test of DeepHSS. First, the dataset and the GT labels used
for the test are described. Subsequently, the test are elaborated and the results are discussed.

6.1 Data

A dataset from [Wisse et al., 2016] became available late in the process of DeepHSS’s devel-
opment. The dataset contains 7T T2w MRI images acquired from 26 subjects (46 % men,
mean age: 59 ±9 years, median Mini Mental Examination score [Folstein et al., 1975] 29,
25-30), and manual delineated GT labels for each MRI.

6.1.1 Data acquisition

The images were acquired using a 7T MRI scanner (Philips Healthcare, Best, the Nether-
lands) with a 16-channel receive coil and a volume transmit coil (Nova Medical, Wilmington,
Massachusetts) [Wisse et al., 2016].

The T2w MR images were obtained by a 3D TSE (TSE factor 182) sequence. The
following parameters remained constant: resolution = 0.7x0.7x0.7mm, flip angle = 120 degree,
TR = 3.158s, matrix size of 356x357x272, nominal TE of 0.301s, and a 2D sensitivity encoded
with the acceleration factors 2.0 (anterior-posterior) x 2.8 (right-left). [Wisse et al., 2016] A
sagittal and transverse slice from a 7T MR image with TSE contrast is presented in Figure
6.1.

(a) (b)

Figure 6.1: Sagittal (a) and transverse (b) slice from a 7T MRI with TSE contrast.

41



42 Chapter 6. Final data and test

As described in Chapter 4, the MR images were masked and bisected. A coronal view of
one full 7T TSE MR image with corresponding brain mask is illustrated in Figure 6.2.

(a) (b)

Figure 6.2: Coronal slice from a 7T MRI with TSE contrast, and the corresponding mask. Due to low
contrast in the medial temporal lobes, these are barely included by the mask.

6.1.2 Ground truth hippocampal subfield labels

For GT labels, manual segmentations were available for each of the subjects. The following
hippocampal subfields were segmented in the GT labels; Corneas Ammonis (CA)1,(CA2),
CA3, Dentate Gyrus (DG), Subiculum (Sub), Entorhinal Cortex (ERC), tail, and cyst. For
the manual labelling Wisse et al. [2016] used an in-house developed software based on MeVis-
Lab (MeVis Medical Solutions, Bremen, Germany23). [Wisse et al., 2016]

Figure 6.3 illustrates one manual label in all three anatomical views superimposed onto
the corresponding bisected, masked 7T TSE MR image.

(a) (b) (c)

CA1 CA2 CA3 DG Sub ERC Cyst Tail

Figure 6.3: Manual hippocampal subfield labels from Wisse et al. [2016] illustrated in the coronal (a), sagittal
(b), and the transverse view (d). Eight hippocampal subfields were delineated.
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6.2 Test

A new and larger dataset (N=26) with manual segmentations became available late in the
development process of DeepHSS, as described in Section 6.1. Besides allowing for training
with more subjects, the size of the new dataset allowed for investigation of the required
amount of training subjects, a factor influencing the performance of a CNN and the risk of
overfitting (see Section 2.4.3).

6.2.1 Method

The CNN in DeepHSS was trained five times using a different number of training subjects;
3, 6, 9, 12, and 15, resulting in five subtests. The number of training epochs was set to
22 for all training sessions. DeepHSS was tested with 10 subjects in every subtest, and the
performance was quantified by comparing predicted segmentations to the corresponding GT
labels using DSC.

6.2.2 Results

To investigate the training progress of the CNN in DeepHSS a DSC for the whole fore-
ground (all hippocampal subfields) was calculated between the segmentations obtained using
DeepHSS and the GT labels for every second epoch for one test subject. In Figure 6.4 the
foreground DSC as a function of training epochs for the subject is illustrated when the net-
work was trained with 3, 6, 9, 12, and 15 subjects. As illustrated in 6.4, the foreground DSC
increased as the training proceeded, but the learning rate reached a steady state around 14th

epoch.
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Figure 6.4: Foreground DSC for one test subject between segmentations obtained using DeepHSS and the
GT labels at every second training epoch. Each graph represents the training progress for the network trained
using 3, 6, 9, 12, and 15 subjects, respectively

DSC for all hippocampal subfields are presented in Table 6.1. Results from all subtests
are represented.

Foreground DSC as a function of training subjects is illustrated in Figure 6.5.
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Table 6.1: DSC between segmentations obtained using DeepHSS and manual segmentations, when the
network in DeepHSS is trained using 3, 6, 9, 12, and 15 subjects.

3 subjects 6 subjects 9 subjects 12 subjects 15 subjects
CA1 0.48 ± 0.08 0.54 ± 0.07 0.56 ± 0.04 0.58 ± 0.07 0.61 ± 0.06
CA2 0.60 ± 0.06 0.64 ± 0.07 0.69 ± 0.05 0.69 ± 0.06 0.69 ± 0.05
DG 0.66 ± 0.08 0.72 ± 0.06 0.76 ± 0.04 0.77 ± 0.04 0.77 ± 0.05
CA3 0.54 ± 0.14 0.58 ± 0.12 0.60 ± 0.13 0.59 ± 0.18 0.59 ± 0.19
Sub 0.72 ± 0.11 0.77 ± 0.06 0.80 ± 0.05 0.80 ± 0.06 0.80 ± 0.05
ERC 0.42 ± 0.15 0.44 ± 0.11 0.46 ± 0.14 0.49 ± 0.17 0.49 ± 0.14

Average subfield DSC 0.57 ± 0.08 0.61 ± 0.06 0.64 ± 0.05 0.65 ± 0.07 0.66 ± 0.08

Foreground DSC inclu-
sive tail and cyst

0.74 ± 0.07 0.79 ± 0.03 0.82 ± 0.02 0.83 ± 0.03 0.84 ± 0.03

Foreground DSC ex-
cluding tail and cyst

0.73 ± 0.07 0.78 ± 0.04 0.81 ± 0.02 0.82 ± 0.03 0.83 ± 0.03
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Figure 6.5: Foreground DSC between segmentations obtained using DeepHSS and the associated GT labels
as a function of training dataset size. (b) is made using the same data as (a), but is plotted in a semilogarithmic
coordinate system.

The lowest performance of DeepHSS was obtained when training with 3 subjects (fore-
ground DSC = 0.74 ± 0.07, average DSC = 0.57 ± 0.08) and the highest performance was
obtained when the network trained using 15 subjects (foreground DSC = 0.84 ± 0.03, average
DSC = 0.66 ± 0.08). The average DSC of DeepHSS increased as the number of training sub-
jects increased and the DSC for the individual subfields mainly increased, but were stagnant
in some cases.

Training with 15 subjects, the hippocampal subfields with the highest DSC were Sub
and DG (> 0.77), whilst the lowest DSC were achieved for subfield CA3 and ERC (> 0.49).
Average subfield DSC was 0.66±0.08. Tail and cyst were omitted from this calculation for
comparative reasons. Foreground DSC including tail and cyst were 0.84±0.03, excluding tail
and cyst the foreground DSC were 0.83±0.03.

Figure 6.6 presents a visualization of the best and worst automatic segmentation of hip-
pocampal subfields obtained by DeepHSS trained with 15 subjects and the associated manual
segmentations. By comparison of the best hippocampal subfield segmentations obtained using
DeepHSS and the corresponding manual GT labels illustrated, those are found very similar.
However, small deviations are present due to disagreement of subfield boundary, which are
marked by arrows in Figure 6.6. The worst hippocampal subfield segmentations obtained us-
ing DeepHSS are affected by under-segmentations. Moreover, a few anatomical misdetections
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are observed. As an example, ERC has been incorrectly detected in the parahippocampal
gyrus (see Figure 6.6, arrow in fourth column, Figure 3).
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Figure 6.6: Coronal and sagittal views of the best and worst predicted hippocampal subfield segmentations
obtained using DeepHSS compared to the corresponding GT labels. The best performance has an average
subfield DSC at 0.74 (exclusive tail and cyst) whilst the worst performance scores an average subfield DSC at
0.48 (exclusive tail and cyst). Arrows point out differences between the segmentations.

6.2.3 Discussion

The proposed automatic hippocampal subfield segmentation method, DeepHSS, consists of
a preprocessing pipeline and a two-pathway deep CNN, which was developed using the
Deepmedic framework [Kamnitsas et al., 2017]. DeepHSS was trained and validated us-
ing ultra-high field in vivo T2w MR images and associated manual segmentations, which
have previously been used to validate ASHS. DeepHSS demonstrated a fast segmentation
process (an hour and a quarter) and achieved high segmentation accuracy comparable to
manual segmentations and segmentations obtained using existing automatic methods. The
high performance of the method demonstrates the flexibility of CNNs, and supports this as
an easy method to apply for various segmentation problems.

Number of training subjects

The foreground DSC for all hippocampal subfields improved as the number of training sub-
jects increased. However, it was observed that the foreground DSC increased less as more
training subjects were applied, indicating the learning rate was converging towards a steady
state. This finding is consistent with existing research by Cho et al. [2016], who reached a
steady state after applying 200 images in the training of a CNN, classifying CT images of
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various body part [Cho et al., 2016].
Approaching a steady state using only 15 training subjects could be explained by the homo-
genety of the segmentation problem at hand, as low variability of the hippocampus anatomy
between subjects are observed. For example Wisse et al. [2016] measured the volume of the
manually segmented hippocampal subfields for the same dataset applied in this test, and
the subfield with the largest standard deviation was CA1, which was only 1.53±0.23 mL. If
the dataset included a wider population, e.g. AD patients, more training subjects might be
necessary to obtain accurate segmentations, since the hippocampus properties would vary
more. If AD patients were included the volume of the subfileds would differ more, due to the
atrophy of hippocampal subfields [Maruszak and Thuret, 2014].

Another reason why a steady state was approched applying a small dataset is, that the
images in the dataset were acquired similarly using the same scanner and acquisition settings.
Cho et al. [2016] reached a steady state after 200 training images using a dataset composed
of CT images, which were acquired using different acquisition settings, such as radiation
dosage, and different image reconstruction filters [Cho et al., 2016]. When images are acquired
differently more training images might be necessary for the network to learn and compensate
for these differences.

The quality of the dataset and associated labels might also influence the required number
of training subjects. In the initial tests (see Section 5.2.3) a performance of approximately 0.9
was obtained when training with only 6 subjects. However, the quality of the dataset applied
in the initial test were higher compared to the dataset used in this Section, as illustrated in
Figure 6.7.
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Figure 6.7: Coronal and sagittal views of two subjects from the dataset used in initial tests and dataset used
in this final test, respectively.

Higher image quality results in e.g. more clear borders, by which the subfields appear more
clear. Additionally, the labels used in the initial tests were based on automatic segmentation
of the subfields. Automatic segmentation methods find the statistical most likely position of
the subfields and is not influenced by subjective observations. Thereby it might be easier for
an other automatic method to find similar labels.

DeepHSS’s segmentation performance

When the CNN in DeepHSS was trained with 15 subjects it was possible to segment the
hippocampal subfields (0.49 < DSC < 0.80).

The performances of DeepHSS and ASHS were compaired and are presented in Tabel
6.2. It is notable that DeepHSS performs better for the small subfields (CA2 and CA3) than
ASHS, whereas ASHS performs better for the largest subfield (CA1). Wisse et al. [2016]
obtained the lowest accuracy for CA2, CA3 and ERC, and explained it by a correspondingly
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low interrater repeatability for these subfields (0.27 < ICC < 0.88). Additionally, the anterior
and posterior boundaries of these subfields are based on geometric rules rather than visibility
of textual changes. [Wisse et al., 2016]

Table 6.2: Dice similarity measure for right hippocampal subfields. A comparison between results obtained
using DeepHSS, and ASHS by Wisse et al. [2016]. The difference between scores were estimated by the
formula. * one subject was removed from the test dataset

Hippocampal subfield DeepHSS (DSC) DeepHSS (DSC)* ASHS (DSC)
CA1 0.61 ± 0.06 0.61 ± 0.06 0.83 ± 0.02

CA2 0.69 ± 0.05 0.70 ± 0.04 0.65 ± 0.09

DG 0.77 ± 0.05 0.78 ± 0.03 0.84 ± 0.03

CA3 0.59 ± 0.19 0.63 ± 0.02 0.54 ± 0.13

Sub 0.80 ± 0.05 0.81 ± 0.04 0.78 ± 0.04

ERC 0.49 ± 0.14 0.53 ± 0.09 0.75 ± 0.06

DeepHSS is affected by the same limitations of the training data as Wisse et al. [2016].
The accuracy of CA1 when segmented using DeepHSS was low. By visual inspection of the
CA1 segmentation it was noticed that DeepHSS overall performs accurate segmentation of
CA1 compared to the manual segmentation. The low accuracy of CA1 can be explained by
undersegmentation, as seen in Figure 6.6, and other parts of the brain outside hippocampus
being misclassified as CA1, as illustrated in Figure 6.8.

(a) (b)

Figure 6.8: The Figure illustrates a sagittal slice from a single subject 7T MRI with TSE contrast (a)
without labels and (b) with labels obtained using DeepHSS. The red area left to the hippocampus are voxels
misclassified as CA1.

Another factor reducing the overall average performance of DeepHSS is a notably whose
performance for one subject. As seen in Table 6.1 the average subfield DSC when training
the CNN in DeepHSS with 15 subjects is 0.66 ± 0.08, and the subject having a notably whose
performance has a average DSC of 0.48, which is far lower than the standard deviation. As
presented in Table 6.2, removal of this subject increase the average DSC and reduce the
standard deviation for all but one subfield. The poor segmentation for this subject can be
explained by variation in the dataset, i.e. the scan of this subject seems to have a different
contrast compared to the scan of the subject for which DeepHSS performs the best, see Figure
6.6.
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Appendix A
Minimum deformation averaging
Minimum deformation averaging (MDA) is a method used to create models visualizing the
average morphology of a population. From the chosen population the model only includes
consistent structures which can be aligned using non-linear registration. Before the MDA
model can be generated the dataset representing the population is pre-processed by manual
inspection to identify and remove obvious artefacts. Additionally, the intensities of the dataset
is normalized to remove very low or high intensities. From the pre-processed dataset a MDA
model is build by iterating through a sequence of four steps, as illustrated in figure A.1.
[Janke and Ullmann, 2015]

1) Registration

Initial model

Sub. 1

Sub. 2

Sub. n

Tn

T1

T2

2) Average trans-
formation (Ta)

3) Warp to model space
Sub. 1

Sub. 2

Sub. n

Mean model

T1-1 and Ta

T2
-1 and Ta

Tn
-1 and Ta

Model space
4) Weighted aver-
aging process 

if iterations < 3 use linear registration in 1) 

if iterations > 3 use non-linear registration in 1) 

STD model

Figure A.1: Illustration of how a MDA model is generated through a iterative process of four steps. In step
1) is the initial model aligned to each subject using registration and in step 2) is the transformations used to
achieve the alignments averaged. In step 3) is the subject images transformed into model space. Lastly, the
mean and the STD model is obtained using a weighted averaging process. Modified from [Janke and Ullmann,
2015]

To enable the first step in the first iteration an initial model must be chosen, e.g. the
subject with the highest signal-to-noise ratio. The initial model is then symmetrically aligned
and blurred to remove the features of the subject. In the first step, the initial model is aligned
to each subject using affine registration and normalized cross correlation as the similarity
measure. On the basis of the alinements model-to-subject transformations are obtained
and an average transformation can be determined in the second step. In the third step,
each image is transformed into the model space by applying the inverted model-to-subject
transformations and later the average transformation. In the final step, the mean and the
standard deviation (STD) model is created by applying a weighted averaging process to the
STD image. This process compare each voxel of the subject image to the corresponding voxel
in the mean STD image and quantify the match using a z-score. Finally, masks are made for
each of the subject images by using a z-score threshold and these masks are used to make the
first version of the mean and the STD model. In the next iteration the first version is applied
as the initial model, and the four steps are repeated minimum three times until the model
is stable. The process is repeated again using non-linear registration to align larger features
such as large brain structures and the overall brain shape. To track the fitting process and
determine when the final model is achieved the STD model can be used. [Janke and Ullmann,
2015]
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Appendix B
MDAmodel based generation of ground
truth labels
#!/bin /bash
#
#SBATCH −−account aauhpc_fat # account
#SBATCH −−nodes 1−6 # number o f nodes
#SBATCH −−time 15 : 00 : 00 # max time (HH:MM: SS)
#SBATCH −−job−name=DataLabe l l ing
#System va r i a b l e s

export FREESURFER_HOME=/path/ to / f r e e s u r f e r
source $FREESURFER_HOME/SetUpFreeSurfer . sh
export SUBJECT_DIR1=/path/ to / sub j e c t /

echo " Setup done "
echo "Running segmentat ion − recon−a l l −a l l "

recon−a l l − i MP2RAGEmodel . n i i −s <name>
recon−a l l −s <name> −a l l
recon−a l l −s <name> −hippocampal−s ub f i e l d s −T2 TSEmodel . n i i t2on ly
recon−a l l −s <name> −hippocampal−s ub f i e l d s −T1T2 TSEmodel . n i i t1 t2
echo " Segmentation done "

echo "Use vo l c en t r e to warp Subject i n to Zero sub j e c t space \
f o r resampl ing p r o t e r t i e s "

vo l c en t r e −ze ro_di rcos $SUBJECT_DIR1/s16_sb_subjectSpace_MP2RAGE .mnc \
$SUBJECT_DIR1/s16_sb_subjectSpace_MP2RAGE_ZeroCenter .mnc \

vo l c en t r e −ze ro_di rcos $SUBJECT_DIR1/s16_sb_subjectSpace_TSE .mnc \
$SUBJECT_DIR1/s16_sb_subjectSpace_TSE_ZeroCenter .mnc \

echo "Warp segmentat ions in to sub j e c t space "
echo "Running mincresample MP2RAGE model space to \
MP2RAGE zero cent r e space , lh and rh "

mincresample −nearest_neighbour −t rans fo rmat ion \
$SUBJECT_DIR1/0005−s16_sb_20150518_150218_6_mri . xfm \
$SUBJECT_DIR1/ lh . h ippoSfLabels−T1−t1t2 . v10 .mnc \
$SUBJECT_DIR1/ lh . hippoSfLabels_s16_MP2RAGE_zeroCentreSpace .mnc \
− l i k e $SUBJECT_DIR1/s16_sb_subjectSpace_MP2RAGE_ZeroCenter .mnc
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mincresample −nearest_neighbour −t rans fo rmat ion \
$SUBJECT_DIR1/0005−s16_sb_20150518_150218_6_mri . xfm \
$SUBJECT_DIR1/rh . h ippoSfLabels−T1−t1t2 . v10 .mnc \
$SUBJECT_DIR1/rh . hippoSfLabels_s16_MP2RAGE_zeroCentreSpace .mnc \
− l i k e $SUBJECT_DIR1/s16_sb_subjectSpace_MP2RAGE_ZeroCenter .mnc

echo "Running antsApplyTransforms and mincresample , MP2RAGE model space to
TSE model space "
echo "TSE lh "

antsApplyTransforms −n NearestNeighbor −t \
$SUBJECT_DIR1/CC_zchopped_original_tse0_inverse_NL . xfm − i \
$SUBJECT_DIR1/ lh . h ippoSfLabels−T1−t1t2 . v10 .mnc −r \
$SUBJECT_DIR1/tseModel_L15_hippocampus−TSE−7T−sym−mincanon_v0 . 8 .mnc −o \
$SUBJECT_DIR1/ lh . hippoSfLabels_s16_TSE_TSEmodelSpaceOnlyCC .mnc

mincresample −nearest_neighbour −t rans fo rmat ion \
$SUBJECT_DIR1/ tseModelSpace2mp2rage_Modelspacelsq6_manualinit . xfm \
$SUBJECT_DIR1/ lh . hippoSfLabels_s16_TSE_TSEmodelSpaceOnlyCC .mnc \
$SUBJECT_DIR1/ lh . hippoSfLabels_s16_TSE_TSEmodelSpace .mnc \
− l i k e $SUBJECT_DIR1/tseModel_L15_hippocampus−TSE−7T−sym−mincanon_v0 . 8 .mnc \
−i nver t_trans fo rmat ion

echo "TSE rh "

antsApplyTransforms −n NearestNeighbor −t \
$SUBJECT_DIR1/CC_zchopped_original_tse0_inverse_NL . xfm − i \
$SUBJECT_DIR1/rh . h ippoSfLabels−T1−t1t2 . v10 .mnc −r \
$SUBJECT_DIR1/tseModel_L15_hippocampus−TSE−7T−sym−mincanon_v0 . 8 .mnc −o \
$SUBJECT_DIR1/rh . hippoSfLabels_s16_TSE_TSEmodelSpaceOnlyCC .mnc

mincresample −nearest_neighbour −t rans fo rmat ion \
$SUBJECT_DIR1/ tseModelSpace2mp2rage_Modelspacelsq6_manualinit . xfm \
$SUBJECT_DIR1/rh . hippoSfLabels_s16_TSE_TSEmodelSpaceOnlyCC .mnc \
$SUBJECT_DIR1/rh . hippoSfLabels_s16_TSE_TSEmodelSpace .mnc \
− l i k e $SUBJECT_DIR1/tseModel_L15_hippocampus−TSE−7T−sym−mincanon_v0 . 8 .mnc \
−i nver t_trans fo rmat ion

echo "Mincresample TSE model space to zero cent r e model space "
echo "TSE lh "

mincresample −nearest_neighbour −t rans fo rmat ion \
$SUBJECT_DIR1/s16_sb/0012−average−normStepSize−norm−clamped−norm−i s o . xfm \
$SUBJECT_DIR1/ lh . hippoSfLabels_s16_TSE_TSEmodelSpace .mnc \
$SUBJECT_DIR1// lh . hippoSfLabels_s16_TSE_zeroCentreSpace .mnc \
− l i k e $SUBJECT_DIR1/s16_sb_subjectSpace_TSE_ZeroCenter .mnc

echo "TSE rh "
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mincresample −nearest_neighbour −t rans fo rmat ion \
$SUBJECT_DIR1/s16_sb/0012−average−normStepSize−norm−clamped−norm−i s o . xfm \
$SUBJECT_DIR1/rh . hippoSfLabels_s16_TSE_TSEmodelSpace .mnc \
$SUBJECT_DIR1/rh . hippoSfLabels_s16_TSE_zeroCentreSpace .mnc \
− l i k e $SUBJECT_DIR1/s16_sb_subjectSpace_TSE_ZeroCenter .mnc

Illustration of ground truth: Sagittal and transverse view

(a) (b) (c)

(d) (e) (f)

Figure B.1: Sagittal view of the hippocampal subfield segmentation obtained using multispectral segmen-
tation with ASHS. The segmentation was generated using both the T1w (a-c) and T2w (d-f) 7T MDA MRI
model. a and e has the outline of the labels superimposed unto them. c and f has the filled labels superimposed
unto them. The white arrows in b and c points out the posterior end of hippocampus, where the labels does
not fully cover.

(a) (b) (c)

(d) (e) (f)

Figure B.2: Transverse view of the hippocampal subfield segmentation obtained using multispectral seg-
mentation with ASHS. The segmentation was generated using both the T1w (a-c) and T2w (d-f) 7T MDA
MRI model. a and e has the outline of the labels superimposed unto them. c and f has the filled labels
superimposed unto them.
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(a) (b) (c)

(d) (e) (f)

Figure B.3: Sagittal view of the hippocampal subfield segmentation obtained using multispectral segmen-
tation with ASHS. The segmentation was generated using both the T1w and T2w 7T MDA MRI model and
warped into subject space. a-c is a slice capturing the hippocampus at a T1w 7T scan, whilst d-f is a slice
capturing the hippocampus at a T2w 7T scan. a and e has the outline of the labels superimposed unto them.
c and f has the filled labels superimposed unto them. All labels has been post processed to have 6 labels.

(a) (b) (c)

(d) (e) (f)

Figure B.4: Transverse view of the hippocampal subfield segmentation obtained using multispectral segmen-
tation with ASHS. The segmentation was generated using both the T1w and T2w 7T MDA MRI model and
warped into subject space. a-c is a slice capturing the hippocampus at a T1w 7T scan, whilst d-f is a slice
capturing the hippocampus at a T2w 7T scan. a and e has the outline of the labels superimposed unto them.
c and f has the filled labels superimposed unto them. All labels has been post processed to have 6 labels.



Appendix C
Optimization algorithms and perfor-
mance measures
Optimization algorithms
The most commonly used optimization algorithm to minimize an error function and find
a NN’s parameters is Gradient Decent (GD). Overall, there exist three versions of GD;
Batch Gradient Decent(BGD), Stochastic Gradient Decent(SDG), Mini-batch gradient de-
scent. These optimizers differ in the amount of data they use to make the computations and
the amount of data determine a trade-off between computation time and the accuracy of the
network’s parameters. BGD computes the error function’s gradient for the parameters for
the whole training set, whereas SGD updates the parameters for each training data in the
training set. Consequently, BGD preform redundant calculations and SDG is usually faster
than BGD. On the other hand, SGD can cause fluctuations of the error function, which can
complicate convergence to the minimum. These issues are not experienced for BGD. [Ruder,
2016]

Mini-batch gradient descent takes the best from both methods by calculating the gradient
of the error function for N mini-batches. This approach compute the gradient for the mini-
batches very efficient and lead to a more stable convergence. [Ruder, 2016]

The GD methods are frequently applied in research as optimizer. However, challenges are
experienced using these methods, among these are:

1. The learning rate must be manually chosen
2. Application on small datasets
3. Can get trapped in a suboptimal local minima
4. Slow at finding the minima.

To accommodate for these challenges adaptive learning rate methods were developed.
Among these are AdaGrad, which is gradient based and adapt the learning rate to the fre-
quency of the parameters. Consequently, the method is good when data is sparse. Addi-
tionally, the method increase the robustness of SGD and have been used to train large NN
with success [Ruder, 2016]. In the GD methods the parameters of a network was all updated
at once and the learning rate was the same during training. In the contrary, at time step t
AdaGrad apply different learning rates of each of the parameters and the learning rates are
modified at each time step. Thereby, manual adjustment is avoided. The main weakness of
AdaGrad is, that the learning rate always decrease and at some point become infinitesimally
small. [Ruder, 2016] A method developed to solve this problem is RMSProp, which is also an
adaptive learning rate method. RMSProp solve AdeGrad’s diminishing learning rate by di-
viding the learning rate by an exponentially decreasing average of squared gradients. [Ruder,
2016]

A third adaptive learning rate method is Adam, which take the advantages from AdaGrad
and RMSProp. [Kingma and Ba, 2015] Adam’s pseudo-code is illustrated in figure C.1. Like
RMSprop, Adam applies an exponentially decreasing average of past squared gradients (vt),
but in addition Adam also uses an exponentially decreasing average of past gradients (mt).
mt and vt correspond to the estimate of the gradients’ first moment (mean) and second
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moment (variance), respectively. Another difference between RMSprop and Adam is, that
Adam added a bias-correction. [Ruder, 2016]

Figure C.1: Pseudo-code of how Adam function. In algorithm the operations are all elementwise. Kingma
and Ba [2015] suggest ε = 10−8, α = 0.001, β1 = 0.9, and β2 = 0.999. From Kingma and Ba [2015].

Overall, the adaptive learning rate methods are better compared to the GD, due to
the four points listed above. Among the adaptive learning rate methods the best choice of
optimizer might be Adam. RMSprop and Adam are very similar and they both compensate
for AdaGrad’s weakness. However, compared to RMSprop Adam have shown a slightly better
performance in the end of the optimization when the gradients are sparser. [Ruder, 2016]

Performance measures
To evaluate the performance the network the accuracy, sensitivity, specificity and dice score
was calculated on test data. This was done regularly throughout the training procedure,
allowing to follow the performance of the CNN as a function of the number of training
epochs.

Accuracy was used to evaluate the performance of the proposed CNN and is the number
of correct classifications of the validation data voxels and the formula can be seen in equation
C.1.

Accuracy = TP + TN

TP + FP + FN + TN
(C.1)

where TP is the number of voxels for a subfield classified true, TN is the number of
background voxels classified true, FP is the number of voxels for a subfield classified false,
and FN is the number of background voxels classified false.

Sensitivity was calculated as well to give a measure of the proposed CNN’s ability to
correctly classify the voxels of a hippocampal subfield. Sensitivity is calculated using equation
C.2

Sensitivity = TP

TP + FN
(C.2)

To quantify the CNN’s ability to correctly classify the background’s voxels specificity was
calculated too as precented in equation C.3
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Specificity = TN

FP + TN
(C.3)

Lastly, dice score was calculated to evaluated the performance, since this method is often
used to compare brain structure segmentations [Choi and Jin, 2016; Kamnitsas et al., 2017;
Nie et al., 2016; Kleesiek et al., 2016; Havaei et al., 2017; Moeskops et al., 2016; Rajchl et al.,
2017; Pereira et al., 2016]. Dice score measures the overlap between two segmentations and
the formula can be seen in equation C.4

Dice = 2TP
2TP + FP + FN

(C.4)

where GT is the ground true segmentation and Seg is the segmentation performed by the
proposed CNN. [Havaei et al., 2017]
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Appendix D
Abstract to ESMRMB 2017 annual
scientific meeting
This abstract was submitted to ESMRMB the 23rd of May 2017.

#655 3D convolutional neural network for hippocampal subfiels
segmentation in ultra-high resolution MRI

N. Jacobsen1, B.D. Hansen1, A.K. Noehr1, L.R. Oestergaard1, S.B. Petersen1, S. Bollmann2

1 Aalborg, DK, Aalborg University, Department of Health Science and Technology
2 St Lucia, AU, The University of Queensland, Centre for Advanced Imaging

Machine Learning
Scientific Session

Purpose / Introduction

Recent studies suggest that volumetric measurements of hippocampal subfields could deliver
biomarkers for an early detection of Alzheimer’s Disease [1,2,3,4,5,6], and increased access to
7T MRI have made segmentation of these subfields feasible [7,1]. Atlas-based methods for
automatic segmentation of the hippocampal subfields have been proposed. However, these
methods show limitations with respect to segmentation of smaller subfields and they are
very time consuming [8,9,10]. In current research, Convolutional Neural Networks (CNN)
have been used to segment brain structures and lesions, and the approach shows fast and
accurate segmentations [11,12,13,14,15,16,17,18]. This study aims to explore CNNs as a fast
and reliable method for hippocampal subfield segmentation.

Subjects and method

We used MP2RAGE and TSE contrast minimum deformation average models [18,19,20] to
generate high-quality training labels. To achieve this we segmented the subfields in the
high-resolution model space using FreeSurfer and transferred the labels to 3 healthy subjects
utilizing the transformation matrices obtained during the average model construction. To
further augment the dataset we flipped the 3 subjects and the corresponding labels.

The proposed segmentation method is a supervised 3D CNN developed using the frame-
work DeepMedic [11]. The network has two parallel pathways consisting of 8 convolutional
layers, 2 fully-connected layers, a softmax layer, and a CRF layer. The network was trained
using an approach based on dense inference [11]. The network was trained on 5 subjects
and tested on the left-out subject (Leave-one-out cross validation) to achieve a segmentation
performance measurement. The predicted labels were compared to the training labels using
dice scores.
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Results

Figure F.1 represents average dice score through a training period of 15 epochs for each of
the 6 subtests. The total average dice score was 0.9031±0.0182. Training time was between
19 and 20 hours. Figure F.2 illustrates the predicted segmentations for subtest 5 after 15
training epochs, compared to ground truth labels.
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Discussion / Conclusion

It was possible to segment hippocampal subfields with an average dice score of 0.9031±0.0182.
As illustrated in figure 2 the labels used as ground truth show some inconsistency in the
boundaries for the subfields, reducing the requisite of the CNNs training and thereby the
quality of the predicted segmentations.

The high precision regardless of the ground truth labels shows that CNNs with the right
configurations and regularization methods are highly adaptable to new tasks, and perform
well on segmentation tasks despite small datasets. Increasing the training dataset could
reduce errors further and increase accuracy.
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