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Abstract:

In this report, we propose a novel source parameter
estimator for stereophonic mixtures, allowing for pan-
ning parameter estimation on multi-channel audio,
even if the source pitches and harmonic amplitudes
are unknown. The presented method does not require
prior knowledge of the number of sources present in
the mixture. The estimator is formulated using an un-
supervised learning framework, using Bayesian statis-
tics, allowing for optimal segmentation of the stereo-
phonic signal, based on maximum a posteriori mod-
elling of source parameters.

In the proposed method, we model the distribu-
tion of panning parameters with a Gaussian mixture
model (GMM). Then we estimate the model parame-
ters by using the maximum a posteriori (MAP) esti-
mation based on the expectation-maximization (EM)
algorithm. In order to avoid one cluster being mod-
eled by two or more Gaussians, we utilize a sparse
distribution modeled by the Dirichlet distributions as
the prior of the GMM mixture probabilities, along
with a model pruning algorithm. Moreover, to obtain
a better time segmentation of the stereophonic mix-
tures, we propose to apply a segmentation scheme
that guarantees the global optimality, based on the
cost function of the maximum a posteriori model. The
developed estimator is evaluated through simulations
on synthetic signals as well as on real audio signals.
These simulations show that the developed estimator
performs good in terms of source parameter estima-
tion and number or sources in the stereophonic mix-
ture.
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Preface

This master’s thesis is written by Jacob Meller Hjerrild, at the Department of Architec-
ture, Design and Media Technology on Aalborg University during the 10th semester in
the project period spanning from February 1, 2017 to May 22, 2017. During the project
period, I was affiliated with the Audio Analysis Lab group at Aalborg University. The
thesis is concerned with the estimation of source parameters in stereophonic mixtures.
This is a new problem and it has only been an active part of research during the recent
year in the Audio Analysis Lab, where it has been shown that more efficient and a
more precise multi-pitch estimator can be achieved by knowing the stereophonic pan-
ning parameters when applied to stereophonic music. The few approaches so far for
solving this estimation problem have been based on tools from parametric multi-pitch
estimation, that requires a preceeding pitch estimate in order to estimate the panning
parameters. In this thesis, however, a different approach is taken based on unsuper-
vised learning, using Bayesian statistics. The unsupervised learning approach offers
the advantage that no prior knowledge of pitch is needed for solving the estimation
problem. By taking this approach, new knowledge from unsupervised learning of
stereophonic mixtures has been added into the Audio Analysis Lab group and this
may be important for future research work. Furthermore, the problem of estimat-
ing the stereophonic panning parameters, is in general a new research subject within
the audio signal processing community and therefore the proposed solution brings
novelty and has no explicit precursor.

The contents of the thesis is a description of the proposed solution. An introduc-
tion in Chapter 1, is concerned with the definition of the stereophonic parameters and
the signal model parameters and assumptions. Chapter 1 also serves the purpose of
defining the measurement space which is basis for the unsupervised learning by clus-
tering. Chapter 2 describes the clustering as a maximum likelihood approach. Chapter
3 concludes Chapter 2 by applying Bayesian maximum a posterior model order selec-
tion that is basis for a proposed component annihilation. Chapter 4 is concerned with
the proposal of a stereophonic segmentation scheme based on the parameters of the
Gaussian mixture model. In chapter 5, the proposed solution is evaluated trough
experimentation. The thesis is concluded in chapter 6. In the appendices, a few inter-
mediate test results are shown.

The reader should be aware of the following typographical conventions of this
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thesis: All figures, tables and equations are referred to by the number of the chapter
they are used in, followed by a number indicating the number of figure, table or equa-
tion in the specific chapter. Hence, each figure has a unique number, which is also
printed at the bottom of the figure along with a caption. An example is Figure 2.1,
which means the first figure in Chapter 2. The same applies to tables and equations,
the latter of which have no captions. Appendices are referred to by capital letters in-
stead of chapter numbers. At the very end of the report, a bibliography is listed which
contains all sources of research used for reference.

I would like to thank my supervisor Prof. Mads Greesbell Christensen who have
guided and inspired me through this master project as well as the projects conducted
on the 7th and 8th semester. They have been a significant part of what I have achieved
during the learning process that I went through in the recent years. This guidance also
played a great part in setting up a three month internship at the company AM3D A/S,
which was a great learning experience and an eye opener for me, in terms of working
in the industry of signal processing as an engineer. Lastly, I am grateful towards all
staff members in the Media Technology of Aalborg University who have always been
helpful and welcoming which has been of valuable support for me, to accomplish the
realization of my masters degree.



Nomenclature

()T matrix transpose

arg max f(x) the value of x which maximizes f(x)

det(-) determinant

(‘) estimator or an estimate

E expectation operator

N(x;u,C) x has a Gaussian distribution with mean vector y and covariance matrix C
X matrix

x vector

Iy the N x N identity matrix

] imaginary unit

p(-)  probability distribution

p(-,-) joint probability distribution

X scalar

x)  the value of x at the ith iteration
AIC  Akaike information criterion
BIC  Bayes information criterion

BSS  blind source separation

CH Calinski-Harabasz

DAW digital audio workstation

DFT discrete Fourier transform
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EM  expectation-maximization
GMM Gaussian mixture model
MAP maximum a posteriori

MDL minimum description length
ML  maximum likelihood

MLE maximum likelihood estimate
MMDL mixture-MDL

PA  public adress

VRC variance ratio criterion
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Chapter 1

Introduction

The stereophonic source parameters of the mixture created in recording studios, have
recently been shown to improve multi-pitch estimation [1]. Pitch estimation is im-
portant and has many applications such as separation [2], enhancement [3], transcrip-
tion [4], classification [5], and source localization [6]. The latter of which is closely
related to the virtual source positioning technique [7], which has a central role in this
thesis.

1.1 Motivation

The problem of estimating source parameters in stereophonic mixtures, is a new prob-
lem and it has only been an active part of research during the recent years in the
Audio Analysis Lab. The reason for this new interest is that it has been shown that
improvement in precision can be achieved for the multi-pitch estimator, by know-
ing the stereophonic panning parameters [8] when applied to music mixtures. Music
mixtures involves interdependent harmonic structures, between sources, and spectral
overlap is a common problem within multi-pitch estimation of musical content [9, 10,
11]. Music mixtures are mainly available in stereo and Weiss et al. [12] proposed a
novel stereophonic maximum likelihood multi-pitch estimator, that utilizes the pan-
ning parameters, by assuming that these are known. To the authors knowledge, only
one approach exists for solving this problem of estimating panning parameters [13],
which is based on convex optimization techniques, but it requires a preceeding pitch
estimate in order to estimate the panning parameters. No solution exists for explicit
estimation of stereophonic amplitude and delay panning parameters without pitch in-
formation. This thesis proposes such an algorithm.
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1.2 Source Positioning

The stereophonic virtual source positioning is based on human spatial perception and
psycho physics of sound [14]. Virtual positioning of sound sources can be described
with amplitude and time-delay ratios between the stereophonic channels. The ampli-
tude and time-delay ratios are basic for the human auditory spatial perception and
these features are also applied within array processing [15, 16] and blind source sep-
aration (BSS) [17] of speech signals. BSS methods are well suited to speech mixtures,
due to the sparse structure of speech which leads to the assumption of W-disjoint
orthogonality [18]. The BSS algorithm of [19] builds a weighted histogram in time-
frequency domain, and requires manual inspection for the parameter estimates or
prior knowledge of the number of speakers. Time-frequency amplitude ratios have
also been applied for stereo upmixing techniques [20], without explicit estimation of
source parameters. The BSS methods are generally operating in the time-frequency
domain, which implicitly requires a uniform time segmentation of the signals. How-
ever, usually we can not know the number of sources in advance and the signal content
is changing over time and therefore a varying segment length can be appropriate.
The following proposal is a method that does not require prior knowledge of
the number of sources present in the mixture. The estimator is formulated using an
unsupervised learning framework, using Bayesian statistics, allowing for optimal seg-
mentation of the stereophonic signal, based on maximum a posteriori modelling of
source parameters. In the proposed method, the distribution of panning parameters
are modelled with a Gaussian mixture model (GMM). The model parameters are esti-
mated by using the maximum a posteriori (MAP) estimation based on the expectation-
maximization (EM) algorithm. With suitable priors on the parameters, the MAP esti-
mator can be used for model selection [21] and [22] of the components in the Gaussian
mixture. In order to avoid one cluster being modelled by two or more Gaussians, this
approach is modeled by the Dirichlet distributions as the prior of the GMM mixture
probabilities, along with a model pruning algorithm. To obtain a better time seg-
mentation, we propose to apply a sterophonic segmentation scheme that guarantees
the global optimality, based on the cost function of the maximum a posteriori model.
The rest of this report is organized as follows: The remaining part of Chapter 1,
is concerned with the definition of the stereophonic parameters and the signal model
parameters and assumptions. Chapter 1 also serves the purpose of defining the mea-
surement space which is basis for the unsupervised learning by clustering. Chapter
2 describes the clustering as a maximum likelihood approach. Chapter 3 concludes
Chapter 2 by applying Bayesian maximum a posterior model order selection that is
basis for a proposed component annihilation. Chapter 4 is concerned with the pro-
posal of a stereophonic segmentation scheme based on the parameters of the Gaussian
mixture model. In chapter 5, the proposed solution is evaluated trough experimenta-
tion. The thesis is concluded in chapter 6. In the appendices, a few intermediate test
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results are shown.

1.3 The Panning Parameters

The panning parameters discussed in this report is a product of the mixing process
applied in sound studios. To enhance the sound quality and to ease the virtual per-
ceived separation of sound sources in a stereo mixture the sound engineer can apply
various effects, such as amplitude and delay panning. Other effects such as reverb,
equalization and dynamic effects are usually also applied, but are of no interest in the
remaining report. Amplitude and delay panning is exactly the two parameters that
we estimate in this report, since they carry spatial information that is equivalent to
direction and positioning in a real geometric setup.

1.3.1 Delay Panning

The delay panning parameter is directly related to the time delay that humans ex-
perience when a sound signal is propagated through the air from some source and
received at each ear at separate time instances. Such a delay changes the perceived
direction of the sound source [14]. It has been shown that a constant time delay to
one of the speakers is frequency dependent in terms of virtual source positioning [23].
Though amplitude panning is the traditional post processing “way to go” for sound
engineers, delays are being added as part of post processing mixing procedure both
to correlate phases of microphones and to change directivity of sources. Lastly, delays
longer than 1 ms can be applied to achieve depth and dimension, by virtually placing
the sound source mostly in the channel where the signal arrives first [24].

1.3.2 Amplitude Panning

Amplitude panning is the general method for altering the perceived direction of a
sound source in a sound field between two or more loud speakers. Amplitude pan-
ning is an approximation of source localisation and its application ranges from stereo-
phonic amplifiers to multichannel speaker setup and professional multi-channel mix-
ing desks, DAW’s etc. Most often the user/engineer of a mixing desk can configure
the the perceived direction of each individual sound source in the mix by turning
one knob, attached to a trim pot that controls the signal voltage level to each speaker
output. If the desk is digital, the user has a similar digital knob or slider interface.

Amplitude panning can be applied to multi-speaker setups, while the most common
speaker configuration is a stereo setup, consisting of a left and a right speaker, with
two audio channels being played back (one for each loudspeaker), whether it is a
home audio hi-fi system, PA (Public Adress) system, headphone system etc. The
stereophonic configuration is shown in Figure 1.1, where the listener is placed in orego,
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Figure 1.1: Stereophonic Configuration

fronting the x-axis in (x = y = 0). Amplitude panning in the sterephonic configuration
is explained in the following sub section.

1.3.3 Stereophonic Amplitude Panning

Figure 1.1 shows the stereophonic sound configuration patented by Blumlein[25]. The
listener is situated equidistant to each speaker in orego. The listener perceives an
illusion of an auditory event, that is placed in a specific point on a two dimensional
arc between the two speakers. The auditory event is moved by changing the signal
amplitudes of the signal in the left and right channel. Amplitude panning is described
by Ville Pulkki [7] in a vector based framework that allows two- and three dimensional
speaker setups. Amplitude panning can be formulated at time t, by applying a signal
x(t) to both loudspeakers with different amplitudes, and gain factors for left and right
channel respectively. In general the signal x;(f) is then

xi(t) = gix(t), i=12,---,N (1.1)

where x;(t) is the signal applied to the i" loudspeaker and g; is the gain factor of
the corresponding channel and N = 2 is the number of speakers in stereo configura-
tion. While the virtual source is moving along the arc, the distance to the the listener
should be constant. For the stereophonic configuration the vectorial distance of the
gain factors g1 and g» equals a constant C

gi+s=C (1.2)
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The relation between the gain factors and the perceived virtual source direction has
been derived for panning in the stereophonic configuration by Bauer [26] as the “stereo-
phonic law of sines”, where the acoustic shadow of the head is not taken in to account
and the sine law is assumed valid at all frequencies. For the sine law, the listener is
situated symmetrically between the speakers in orego, facing along the x-axis in Fig-
ure 1.1. The stereophonic sine law is described by the ratio of the difference and sum
of the gain factors as,
g _ 1= (1.3)
singg @1+
where ¢ is the perceived angle and ¢ is the speaker base angle. It is required that
0° < ¢pp < 90°, —¢po < ¢ < ¢pp and g1, g2 € [0,1]. An extension of the sine law is the
tangent law, originally proposed by Bernfeld [27] as

tang _ 81-8 (1.4)
tangp g1+

The tangent law behaves similar to the sine law with very small difference, taking some
of the listeners head complexity into account. Ville Pulkki [7] formulates the vector
based approach as a reformulation of the tangent law, called the vector based ampli-
tude panning (VBAP). Figure 1.2 visualizes the vector based framework of the stereo
configuration, that is used in the remaining of this report to describe the estimated
amplitude panning angle, shown in results and in figures.

Gain Vector Relation to Virtual Sound Source Positioning

To ease the understanding of the amplitude panning parameter it is convenient for
the human reader to consider the parameter as a perceived angle in a carthesian co-
ordinate system, since a music listener is normally placed in front of two speakers as
mentioned in Section 1.3.3. To present the gain ratios as angles we apply the stereo
vector base virtual sound source positioning [7]. A backwards amplitude panning
algorithm serves the purpose of estimating the gain parameters. As visualized in Fig-
urel.1l, each loudspeaker has a base angle ¢y = +45° to the x-axis direction that the
listener is facing towards; the listener is situated equidistant to each speaker in (x = y).
The angle ¢ describes the virtual source position respective to the x-axis. The trigono-
metric functions are used for the panning gain since they fit the unit circle, thus they
retain unity power along an arc as 1 = cos? + sin®. The gains are then

gx = cos 0 (1.5)

gy = sinf (1.6)
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Figure 1.2: Stereophonic configuration with vector formulation

where 6 = ¢ + ¢o. If we define a loudspeaker base matrix L
L=[1]" (1.7)

consisting of two unit length loudspeaker vectors 1; = [I11/12]7 and 1, = [lo112]" point-
ing toward each speaker. In Figure 1.2, the unit vector p points towards the virtual
source as a linear combination of the gained loudspeaker vectors

p’ =gl (1.8)

This equation can be solved for the gain vector, by applying the inverse loudspeaker
base matrix
g = pTL’1 (1.9)

The loudspeaker base matrix L is unitary and L' exists under the conditions 0° <
$o < 90°, = < ¢ < ¢ and g1,92 € [ 0,1] . Finally, we can estimate the panning
angle 0 as

0 = arctan Z() (1.10)

The amplitude panning angle applied to sources in a stereo mixture, can be estimated
as shown from the obtained gain factors. The trigonometric functions used in this
computation, estimates within the domain of the loudspeaker base matrix L with a
span of 90°. In professional studios the aperture of loudspeakers is typically 60°.
However, this relation between to the tangent law is linear and is simply solved by
normalization to a wider domain by multiplication. This was a description of the pan-
ning parameters that is the subject of estimation in the following thesis. The panning
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parameters are used for source identification, which means that we estimate the num-
ber of sources in the stereophonic mixture, using these. In the following sections the
signal model and the associated assumptions are defined.

1.4 Signal Model

In this section, the signal model and assumptions are introduced. Consider an M-
channel music mixture consisting of K unknown sources corrupted by white Gaussian
noise at time instant 7. The data in the m™ channel is represented as x,,(1n) € RY,

Xu(n) = [xn(n) xp(n+1) ... xp(n+N-1)]T (1.11)

for m = 1,..., M. The signals captured by channel m, relating to the k' source are

attenuated by gain coefficient g, r and delayed by T, » depending on their perceptional
virtual positioning, given by the panning parameters. The signal mixture is modelled
as a linear superposition of K attenuated and delayed sources embedded in noise

em,k(”)/
K

Xm(n) = Z gm,ksk(n - fsTm,k> + em,k(n) (112)
k=1

where g,y and T, are the attenuation and delay applied to the source si(n), re-
spectively and f; is the sampling frequency. Considering stereophonic mixtures with
M = 2 for a stereo loudspeaker setup, amplitude panning is the traditional proce-
dure [26, 7] for virtual source positioning. In the post-processing of a every music
production, delays can be added to enhance the spatial perception [14]. The trigono-
metric functions are often used for the panning attenuation because they induce a
constant perceived distance between listener and the virtual source, described by
1 = cos? + sin?. The gains for channel m are expressed as [28],

O, f =1
o = {cos , form (113)

sinf,, form =2

where 6 = ¢ + ¢ is a sum of the perceived angle ¢ and the speaker base angles
+¢y = 45°. Under the conditions 0° < ¢p < 90°, —¢pp < ¢ < ¢p and g1,8» € [0,1] the
gains can be expressed as,

g =pl™ (1.14)

where the unit-vector p points towards the virtual source with L as a unitary loud-
speaker base matrix. For the stereophonic mixture (M = 2), we simplify notation by
modelling attenuation and delay parameters as ratios between the frequency repre-
sentations of active sources in the two channels.
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1.4.1 Estimating the Panning Parameters

When only source k is active, the frequency representation in each stereophonic chan-
nel is,

N .
Sip(w) =Y se(n)e 1", (1.15)
n=1
N . -
Sok(w) = ) yes(n)e 10m%, (1.16)
n=1

w is the frequency grid, 6y = f;7y is the relative delay of source k between the channels
and <y is the relative attenuation factor corresponding to the ratio of attenuation of
source k between the channels. The panning parameters 7 and Jj, that are associated
with active sources in each frequency point can be computed as,

Sz,k(w)‘ 1 Sl,k(w)>
Sik(w) ’wlsz,k(w) (1.17)

(ks 0k) = <

where we must ensure that,
| WmaxOmax| < 7 (1.18)

to avoid phase ambiguity. Our aim is to estimate the panning parameters (v, d) for
all K sources, along with an optimal segment length N, given only the stereophonic
mixture in (1.4). The kth panning parameter is associated with only the kth source
component, under the assumption that only one source is dominant at each frequency
point. This is described by the approximate disjoint orthogonality expressed as [18],

Sip(w)S1i(w) =0 Vw,k #i (1.19)

Subject to this assumption, we apply a segmentation of the signal x,, (1) into segments
of size N, that provides an improved separation of the clusters in (1.4.1). The optimal
segmentation scheme is described in Section 5.1.1. The estimated amplitude and delay
ratios, which often is refered to as the measurement vectors, are described from the
spectral content of each channel in the stereophonic mixture as,

1 X1 (a))
’wlxz(w)> (1.20)

Xz(w)

(1,) = (‘Xl(w)

where X, (w) is the discrete Fourier transform of x,, (7). In this domain K is unknown
and we can expect the parameters to cluster in some form. Music mixtures often have
a long duration of several minutes and we assume that such mixtures have stationary
panning parameters throughout the full mixture i.e. a 3 minute song. We will collect
measurement vectors and perform segmentation to select parts of the signal that car-
ries relevant information of the measurement vectors. A great part of the noisefloor
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in the spectrum is removed which also lowers computional complexity. We define an
indicator function b(w) as,

b(w) {1' X1 ()] X2 ()| > X1 |T[Xa] /N) (1.21)

0, otherwise

where X,,(w) is the pre-whitened DFT of x,,(n). It is possible to pick a specific num-

ber of measurement vectors by increasing the threshhold on the indicator function and
improve on computational complexity. This was a description of the signal model
and the main assumptions in this contex. We will end this chapter by introducing a
time-panning domain visualization, which we call the panogram. The next chapter
will explain the clustering of measurement vectors.

1.4.2 Visualizing the Amplitude Angle as a Panogram

A visual output of the panning angle can be used to identify the various sources in a
stereo mix based on their panning coefficient. This can be acomplished via the ampli-
tude panning ratio in (1.4.1). The computation is very fast and the output is shown
in Figure 1.3 for a multi-pitch mixture of two instruments, trumpet and horn, playing
the notes C4 (262 Hz) and F#4 (370 Hz), respectively. This specific mixture is also used
in an experiment in [12]. The algorithm for the panogram in Figure 1.3 is based on

Panogram

[\

—_

Time [sec]

(=)

40 -30  -20 -10 0 10 20 30 40
Estimated Angle [deg]

=]
~
T

-40  -30 20 -10 0 10 20 30 40
Estimated Angle [deg]

Mean Energy (Normalized)

Figure 1.3: Panogram of a multi-pitch mixture of two instruments, trumpet and horn.

searching through the power ratio of the absolute discrete Fourier transform of the
two stereo channels. Consider a stereo input signal x(n) consisting of both x1 (1) and
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x2(n)) at time instant n. At each time instant we compute the amplitude ratio vy, (w)
using 1.4.1 and lastly marginalize by summing over all frequencies and at each time
instant 1, the panogram p(6) is a vector function of 6 and can be expressed the power
at each panning angle. More Panograms can be found in Appendix B. The visual in-
spection and manual peak finding in an objective function or histogram created from
time-frequency domain ratios, is used within the research area of blind source sepa-
ration [18, 17, 19] and also used for channel upmix texhniques [20], however the aim
in this thesis is to automatically estimate the panning parameters. Hence, we do not
consider the approach of BSS and resynthesis of source signals.

In this chapter the signal model and assumptions has been defined. The measurement
space has been described as consisting of stereophonic panning parameters that we
could expect to cluster in some form. Therefore, we continue in the next chapter with
the definition of the approach that is utilized for clustering algorithm, which is based
on the Bayesian posterior modelling. Therefore, we start by defining the clustering
problem as a likelihood description.



Chapter 2

Clustering

Once the measurement space containing the distribution of estimated panning param-
eters is well defined, it is the aim to estimate the number of sources and the source
parameters as an unsupervised learning task, with no prior information given of the
source parameters. The problem of finding clusters in a set of measurement vectors can
be approached by using probabilistic techniques or non-probabilistic techniques. An
example of a non-probabilistic clustering technique is the k-means algorithm [29]. The
immediate K-means algorithm requires an input that specifies the number of clusters
to estimate. We have modelled the source parameter distribution using the probabilis-
tic clustering technique, as a mixture of Gaussians.

2.1 Estimation of Source Parameters

The source parameters are estimated by maximizing the likelihood. The maximum
likelihood estimates are the parameters of the model that describe the observed mea-
surement vectors the best, i.e. the parameters that maximizes the probability of the
observed data, x, given the parameters,

8 = arg max L£(8|x) = arg max p(x|0) (2.1)
0 0

where 8 is a vector containing the model parameters. In the following the proba-
bilistic model is described along with the K-means clustering algorithm that is used
for initialization. We describe the maximum likelihood estimator, using latent vari-
ables and finally we consider the model order selection as both a probabilistic and
non-probabilistic method.

2.2 Finite Mixtures

The following section is a brief description of the general model of finite mixtures,
which the Gaussian mixture model belongs to. We have found the Gaussian mixture

11
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to be well suited for modelling the source parameter distribution. The research issue
of order selection is relevant, when aiming to jointly estimate source parameters and
number of sources in the stereophonic mixture. We can describe the sterophonic mix-
ture as a finite mixture of K random sources described as probability density functions,

pe(x), k=1,...,K 2.2)

We observe a set of random independent distributed samples, coming from these
probability density functions. We define the prior probability of observing data from
source si as p(sx) = ak, and the conditional probability of the data given source sy is
p(x|sk) = pr(x), thus the joint probability p(x,si) is expressed as aypi(x). Finally, the
unconditional probability density is,

K
p(x) = kz api(x) (2.3)
=1

Which means we that the unconditional density is a finite mixture of component den-
sities pr(x) weighted by their prior, referred to as the mixing probabilities which we
denote aj for the kth source. The mixing probabilities has the general constraint of
summing to one.

2.2.1 Parameterization of the finite mixtures of Gaussians
The unknown parameter vector is denoted by 6. In general for a finite mixture model
it will be consisting of the mixing probability and the unknown parameters,
0 = {61,62,. . .,ek,[)cl,()éz,. . .,(Xk}
The conditional densities related to the source components are then given by,

K
p(x|0) = Y axp(x|6)
k=1

By assuming that sources are Gaussian distributions with arbitrary covariance the
conditional density is modelled as,

p(x|6k) = N (x|p, Cx)

the parameter vector contains the mean y, and covariance Cy for i =k, ..., K,

0= {}ll,‘uz,...,ﬂk,Cl,Cz,...,Ck,,(Jél,IXQ,...,(Xk}

The aim is now to estimate the parameter set 6 from the given observations. An
order selection procedure will estimate the given number of sources, while panning
parameters are given by the mean of the mixture components. However, the task
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of assigning points to mixture components is not trivial to do automatically, since
the observed data with unknown classes, can be clustered in to an arbitrary number
of classes, dependent on the choice of model and how the model is being fitted to
the observations. The aim in such an unsupervised learning task, by model based
clustering is that each component models one cluster.

K
Y ar=1 and 0<a <1 (2.4)
k=1

as any probability the mixing probability is required to take a value between 0 and 1.
The finite mixture in this general form is possible to parameterize with the unknown
parameters and by applying some model to the distribution, we can build a convenient
estimator, as we will do in the following section.

2.2.2 The Gaussian mixture model as a likelihood

As discussed in Section 2.4, the K-means assigns every measurement vector uniquely
to one cluster as a hard assignment. However, it is not clear that a measurement vector
which is placed midway between two cluster centers is assigned appropriately, relative
to the cluster center which can affect the precision of the parameter estimates. By using
probabilistic models such as the Gaussian mixture model (GMM), the assignments can
reflect this level of uncertainty as a soft assignment of measurement vectors to clusters.
Furthermore, the mixture model is good at representing class conditional densities in
supervised learning, because mixtures can approximate arbitrary densities, i.e. two
strongly non-Gaussian classes, can be modelled by mixtures of each class conditional
density [30]. On the contrary, in the unsupervised learning task it is a matter of fitting
the model sparsely to the data without overfitting to parameter space. Therefore,
the Gaussian mixture model will firsly be described as a likelihood, followed by an
interpretation as an a posteriori distribution, penalizing higher model orders.

Using the GMM framework, the full parameter space is modelled as a Gaussian mix-
ture distribution i.e. a linear superposition of Gaussians,

K
p(x) = I;lvék/\/(x\ﬂ, C) (2.5)
K (o)t
p(x) = k21ak(2|7éi|%) exp{ - ;(x—‘uk)TCk_l(x—Iuk)} (2.6)

where p, is the mean and Cy is the covariance of the kth Gaussian. The mixing proba-
bilities {ay,...,ax} are constrained to

K
Zﬂékzl, Ogakgl (27)
k=1
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and can be interpretted as the prior probabilities of having the class k,

(x — Vk)TCk_l(X - .”k)} (2.8)

N —

K -4
p(x) =) pk)p(x|6) = ) “kL)l) exp { -

where each 6y is the parameter specifying the kth component. The parameter vector is
defined as,

@E{Dél,...,DéK,‘ul,...,}chl,...,CK} (29)

The parameter vector specifies the full mixture as the complete set of parameters.
Observing a set of N independent distributed samples X = {xj,...,xy}, the log-
likelihood function corresponding to a K-source mixture is,

N K
L(6]X) =Inp(X|a,u,C) = ) In { Y N (x|, Ck)} (2.10)
n=1 k=1

Maximizing the log-likelihood of (2.10), turns out to be a complex problem mainly
due to the summation inside the logarithm. The logarithm function of (2.10) does not
act directly on the Gaussian, but also on the summation over k. If we differentiate the
log-likehood and set it to zero it will not have a closed form solution. However, we can
maximize the likelihood function with the expectation-maximization (EM) algorithm.
In the following section we proceed with a general description of the EM in the context
of fitting a mixture of Gaussians to the measurent vectors.

2.2.3 Fitting the Gaussian mixture as a maximum likelihood solution

A powerful method for finding the maximum likelihood solutions to models with
latent variables is the EM algorithm [31, 32]. Due to the inner sum of (2.10), it is
necessary to view the problem by defining a K-dimensional binary latent variable z
that for a given n has k latent variables where only one of these is equal to 1, while the
rest are equal to 0. This means that the vector z has K possible states and z; € {0,1}
and YK ;z; = 1. We can then view a; as the prior probability p(zx = 1) = ay, ie.
the probability of z; equals 1. In these terms the marginal distribution over z can be
written in the form,

K
p(z) = [ 2.11)
k=1
The conditional distribution of x given z is also a Gaussian and can be described by,
K
p(x|z) = T TN (x|p, Co)* (2.12)

k=1
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We are now able to work with the joint distribution p(x,z) = p(z)p(x|z). By sum-
ming the joint distribution over all possible states of z, we can obtain the marginal
distribution of x as,

K
p(x) =) p(2)p(xlz) = }_ N (x|p, C)

z k=1

Which is equivalent to the form of the Gaussian mixture expressed as a linear superpo-
sition of Gaussian distributions as given by (2.2.2), only now there is a corresponding
latent variable for each measurement vector x,. Observing a set of N independent
distributed samples X = {x1,...,xn}, the log-likelihood function corresponding to a
K-source mixture can now be expressed for the complete measurent vectors {X,Z}
containg both the observed data X and the latent variable Z [33]. The log-likelihood is
then expressed as,

N K
Inp(X, Z|e, 11, C) = Y Y zpi{In{a} + In N (xu|pty., Cic) } (2.13)
n=1k=1

Since the logarithm now acts directly on the Gaussian distribution, it leads to much
simpler solution for the maximum likelihood. In practice, the values of the latent
variables are unknown, thus we consider the expectation with respect to the posterior
distribution of the latent variables, which takes the form,

N K
p(Z|X/[Xk/,uk/Ck HH OCkN xl’l‘,uklck)znk (214)
k=1

Where o) = % ZnNzl zn k- The expected value of the complete data log-likelihood func-
tion is now,

N K
Ez[Inp(X, Z|a, u,C)] = 2 Z B(zi) {In{ar} + In N (x|, C) } (2.15)

Where B(zx) is a quantity that plays an important role as the conditional probability
of z given x. By viewing a; as the prior probability of zy = 1 and B(zx) as the corre-
sponding posterior once we have observed x. The quantity B(z;) is also referred to as
the responibility htat component k takes for explaining the observation of x.

D‘kN(x“’lk/ Ck)
Y N (xlp, Cr)

B(zk) = p(zr = 1x) = E[z] = (2.16)

The responsibility B(z;) applies different weight for each parameter estimate, which
turns out to be crucial for the model selection procedure for the mixture model, as
described in Section 3.0.2.
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2.3 Maximizing the likelihood

Now that we have defined the log-likelihood by using latent variables to describe the
complete data, we are ready to apply the EM-algorithm for the Gaussian mixture
models. The condition that must be satisfied at the maximum of a likelihood function
is found by setting the derivatives of In p(X|a, u, C) in (2.10) to zero. First the mean
parameter:

d
—Inp(x|la,u,C) =0 (2.17)
Pl 1.C)

NGO

= LN (xalp, C)) -
Where it is interesting that the responsibility of (2.2.3) appears naturally, and the ex-
pression is equivalent to,

(xn — ) =0 (2.18)

N
Y B(zuk)C (% — ) =0 (2.19)
n=1
When we multiply by C; we can rearrange the expression to,
1 N
= — Z k)X 2.20
K N; ,12:1 ,B( n,k) n ( )

where Ny = Y, B(z,x), can be interpretted as the effective number of points as-
signed to cluster k. Therefore, y, for the kth Gaussian component is obtained by
taking a weighted mean of all the points in the measurent vectors. The weight is given
by the posterior probability 5(z, ) that component k was for generating x;,.

The maximum likelihood solution for the covariance Cy is found by,

d
ic, Inp(x|a,u,C) =0 (2.21)
1 ¥ T
G = Z Blzn) (xn — pye) (% — p1y.) (2.22)
Nk n=1

where each measurement vector also is weighted by the responsibility B(z,x). The
maximum likelihoog solution for the mixing probability is derived in [33] and it is,

_ Ne
"N

where Ny = Y\, B(z,,x)- This means that the mixing coefficient for the kth compo-
nent is given by the average responsibility which the component takes for explaining
the measurement vectors. It is now possible to proceed with the EM-algorithm to ob-
tain the maximum likelihood estimate for the particular case of the Gaussian mixture
model.

a (2.23)
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EM-algorithm for the complete measurent vectors

1. Choose an initial value for the parameter vector 6°!9.

2. (E-step). Evaluate p(Z|X, 6°'9), by evaluation of the responsibilties of the current
parameter values.

N (xy i Ck)

Znk) = (2.24)
Plend) = & Nl ©)
3. (M-step). Evaluate 0"V, re-estimating the parameters using the current proba-
bilities,
LY B
Pr = . Znk )X
Nk = n n
1 T
Cr = N. 2 Bz k) (%n — py) (% — )
k n=1
_ N
MEN

where N, = YN | B(Zni)-

4. Evaluate the log-likelihood

N K
L(0]x) =Inp(X|a,u,C) = gln{ Z N (X |11, Ck)}

k=1

Check for convergence. If no convergence, then update, 8°9 < "¢ and go to
step 2.

We have considered how to use the EM-algorithm to maximize the likelihood, when
there are discrete latent variables. This has been derived for the Gaussian mixture
model. In the following we will also use the EM-algorithm for finding the the max-
imum a posterior solutions (MAP). Since our aim is to estimate a given number of
clusters and their respective source parameters from the measurent vectors alone, we
will use the MAP model. The MAP model adds a prior p(0) to the log-likelihood
expression in (2.10). The prior is defined over the parameters and a suitable choice of
the prior will improve the model selection.

Bvap = arg max {In p(X|0) +1Inp(0)} (2.25)
0

Model selection is explained in Section 3. In the following section we will describe the
non-probabilistic clustering method of K-means. We use this algorithm for initializa-
tion and furthermore, the model selection criteria of Calinski-Harabasz fits well to the
K-means algorithm and we will explain this connection also.
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2.4 Initialization using K-Means Clustering

Given the unlabelled measurent vectors, the aim is to estimate the corresponding un-
known parameter vector 8, which can be done using the non-probabilistic method of
K-means. Once we have estimated which points go to which cluster, we can estimate
a Gaussian mean and covariance for that cluster. It is unlikely that the guess is right
the first time, but based on the initial estimates of parameters, it is possible to make
a better guess at pairing points with components, in an iterative procedure using the
EM-algorithm. We consider the problem of identifying clusters of measurement vec-
tors in a multidimensional space. We observe N observations of the measurent vectors
X1,...,Xn. In general the variable x is D-dimensional. However, we have defined two
parameters in this study (D = 2). Each cluster center is represented by u, after we
have assigned each point in the measurent vectors to a given cluster. The assignment
of a measurement vector x, to cluster k is described by the binary indicator variable
by € {0,1}. The aim is to minimize the sum of squares distance from each mea-
surement vector to its closest center vector u;. We can now describe a cost function |
as,

xn — | (2.26)

N K
] = 2 2 bn,k
n=1k=1

Finding the values of b, and p, that will minimize | is done by using an iterative
optimization procedure, involving two steps for each iteration. To begin the iterations,
some initial values are assigned to p,. The two iterative steps are,

* Minimize | with respect to b, x, with p; fixed.
* Minimize | with respect to p, with b, s fixed. .

The assignment of the nth measurement vector to the closest cluster center can be
expressed as,
. _ . 2
1, 1fk—argm1n|\xn—yj]|
b = i (2.27)
0, otherwise

Since the cost function ] is a quadratic function of y, we differentiate with respect to
#, and set it to zero,

d N
o) = 2Y byi(xn—py) =0 (2.28)
Hi n=1
and solve for u,,
: n = ot b (2.29)
k ZnN:l bn,k ‘

which expresses that p; is the mean of all measurement vectors x, assigned to clus-
ter k. The iteration over these two steps are guaranteed to reach convergence. The
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K-means assigns every measurement vector uniquely to one cluster, and it is not clear
that a measurement vector which is placed midway between two cluster centers is as-
signed appropriately, but by using probabilistic models such as the Gaussian mixture
model (GMM), the assignments can reflect this level of uncertainty. For initialization
of the EM-algorithm by deliberately overfitting, i.e. choosing a K much larger than the
expected value, the K-means algorithm assures that the true parameter are among the
estimates, making it convenient to use it for initialization of the GMM-EM algorithm
before applying the MAP model selection to the GMM-model.

Model selection using K-means

It is possible to evaluate the k-means for different number of clusters and then choose
the optimal number of clusters based on the variance ratio criterion [34]. The variance
ratio criterion (VRC) is based on the ratio between the overall between-cluster variance
and the overall within-cluster variance. We run a short experiment with 7 sources.
From the scatter plot in Figure 2.1, we can see that the correct number of clusters have
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Figure 2.1: Model selection using the Calinski Harabasz criterion on mixture of seven sources.

been found in this specific case. However, the K-means clustering algorithm can be
stuck in a local minimum rather than the global and it is therefore dependent on the
initialization to be well considered. An initialization of the K-means have been pro-
posed as the K-means++ algorithm by [35], a variant that chooses centers at random
from the measurement vectors, but weighs the measurement vectors according to their
squared distance, squared from the closest center that has already been chosen. This
gives a faster convergence and overcomes some of the local minimum problems. Al-
though the K-means clustering algorithm offers no accuracy guarantee, its simplicity
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is very appealing in practice, thus it is widely used for clustering.

Calinski Harabasz Evaluation

The selected clusters in the measurent vectors shown with black plus signs in Fig-
ure 2.1, were subjected to a cluster validation algorithm called the Calinski-Harabasz [34]
or the Variance Ratio Criterion (VRC), which is similar to the Inter-Intra class dis-
tance [36]. The validation algorithm selects the subset of clusters that maximizes the
cluster separability. It is based on the Euclidean distance measure between measure-
ment vectors in the measurent vectors. The assumption of mutually exclusive clusters
leads to the assumption that the expectation vectors of the different cluster centroids
are discriminating [36]. The optimal measure is a monotonically increasing function of
the distance between expectation vectors and an increasing function of the scattering
around the expectatations. The conditional expectation of the measurement vectors
given the cluster is the sample mean fi;:

e =< ) Xk (2.30)

where x ,, are measurement vectors from cluster Cy. The unconditional expectation of
the measurement vector x is the sample mean of the full measurent vectors ji:

=5 L (2.31)

5 n=1

where Ns; = ) N is all samples in the set. The scattering of vectors from a given class
Ck is:
1 & T
Sk = 5 2 (en — i) Xk — i) (2.32)
k n=1

It is analogous to a covariance matrix. The scatter matrix describing the noise is called
the within-scatter matrix S;,. Averaged over all classes it describes the average scatter
within classes.
1 K
Sw =) NS 2.33
v =N k; kSk (2.33)
Complementary to the within-scatter S, is the between scatter matrix S, that describes
the scattering of class dependent sample means around the overall average:

1 & o
Sp = A Y Ni(iye — i) (fy — )’ (2.34)
§ k=1
With these definitions we can express the Calinski-Harabasz criterion as,

_iNs_k

CHk_Sw k—1

(2.35)
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To determine the optimal number of clusters, we maximize CHj with respect to k.
The optimal number of clusters is the solution with the highest Calinski-Harabasz
index value. The rightmost fraction of (2.35) is different from the inter-intra class
distance ratio of [36]. Basically, this fraction expresses that we maximize the criterion
by explaining large amount of observations by few clusters. The scatter within and
scatter between ratio can be regarded as a signal to noise ratio, but it does not alter the
underlying tendency of the K-means clustering algorithm, to overfit the measurement
space and get stuck in a local miximum. Therefore, it seems reasonable to use the
probabilistic method for cluster evaluation and only the K-means for initialization.
Figure 2.2 shows the correct estimated model order, however the K-Means clustering
algorithm is stuck in a local minimum and has therfore missed one of the true clusters.
Since it is a strong criterion for non-probabilistic model order selection which fits well
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Figure 2.2: Model selection using the Calinski Harabasz criterion on a mixture of seven sources. In this
specific evaluation the K-means is overfitting to the measurements compared to Figure 2.1.

to the K-means clustering, which is a minimizer of the squared error, we will test
its ability to be used for segmentation in Section 5.1.2, only then we normalize the
Calinski-Harabsz criterion to the measurement space as,

(2.36)

The normalized objective functions of the two given examples of Figure 2.1 and 2.2 are
shown in Figure 2.3.
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Figure 2.3: The normalized Calinski Harabasz objective functions of Figure 2.1 and 2.2.



Chapter 3

Model Order Selection

One advantage of the mixture model approach to clustering is that it allows the use
of approximate Bayes factors to compare models. A thorough comparison of Bayes
factors can be read in [37]. The model order selection and the segmentation can be
done with a maximum a posteriori (MAP) criterion. The MAP estimator is,

Bviap = arg max {Inp(x|0) +Inp(6)} (3.1
0

where p(0) is the prior on the parameters and x is the observed data. We will introduce
the MAP criterion in the following.

There exists several approaches for finding a solution to the model order estimate.
Two of these are very often used [38, 39], namely the AIC and the MDL, the latter of
which formally coincides with the BIC [40]. In the following we will describe the MDL
as a special case MAP criterion in the following section. The AIC is given as [39],

M, = arg min {—Inp(x]|8, M) + N, } (3.2)
My
The MDL is,
A N
M = arg min { —Inp(x|6, My) + 7’) lnN} (3.3)
My

where M is the selected model, x is the observed measurement vector, p(x|8, M)
is the probability density function of the data given the model parameters and the
model, 6 is the parameter vector and 8 is the maximum likelihood of 6 and N,, is the
dimension of 6.

3.0.1 The Asymptotic MAP criterion

The principle of the MAP is choosing the model M that maximizes the posterior
probability given the observed data x,

o~

M = arg max p(M|x) (3.4)
M

23
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expressed by using Bayes method,

M = arg max PXMIPM)

3.5
N p(x) (3.5)

Choosing a uniform prior p(M) to not favour any model beforeh and noting that
once x is observed p(x) is constant and the MAP model reduces to the likelihood of
the observed data given the model,

—

M = arg max p(x| M) (3.6)
M

where the likelihood is dependent on the parameters, 0. In the Bayesian framework
we obtain the marginal density of the measurents given the model, by integrating the
parameters out [38],

pOxiM) = [ plxl6, M)p(6.M)do 67)

The asymptotic approximation to this integral is found by assuming high amounts
of data, when the most significant peaks occur in the likelihood function around the
maximum likelihood estimates 6. (3.7) becomes equal to [39],

-1/

pxlM) = (2m)™ /2 det ()" p(x|d, M)p(6]M) (33)

where H is the Hessian of the log-likelihood function when evaluated at the 0,

2
7 0 ln(p(x|9,M)‘ (3.9)

060007

By neglecting terms of order O(1), the assymptotic MAP expression is found by taking
the negative logarithm of (3.8), where the term 27tN»/? can be assumed constant for
asymptotic signal length N, while a weak prior on p(6|M) has been used [39] to
obtain the MAP expression [38],

—~

M = arg min { —Inp(x|6, M) + %ln det(ﬁ)} (3.10)
M

where the first term is the log-likelihood and the last term is the penalty added. The
first term of the criterion decreases when the complexity of the model increases, and
by contrast, the second term increases and acts as a penalty for using additional pa-
rameters to model the data. The penalty term is found by noting that the Hessian
in (3.9) can be replaced by the Fisher information matrix since the error it introduces
is smaller than the neglected terms of order O(1) [38, 39]. The Hessian is then,

5o 9*In(p(x|0)
HN—E{W}' (3.11)
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Under the assumptions of the observed measurement being real, independent and
identically distributed, we can write,

detfl = O(N?) (3.12)

The interested reader can find specific details on this assumption in [39]. The expres-
sion in (3.10) then reduces to,

—

R N
M = arg min —Inp(x|6, M) + 7;7 InN (3.13)
M

which is the MDL that formally coincides with the BIC. For the case of the multivariate
Gaussian distribution with arbitrary covariance N, = d +d(d +1)/2, where d is the
dimensionality of the feature space. The expression in (3.13) is not valid for all signal
processing families of models. In fact, for the Gaussian mixture model this rule will
not be directly appropriate for model order selection without applying priors to the
parameters as decribed in Section 3.0.2. Figure 3.1 and 3.2 shows the AIC and the
asymptotic MAPD, refered to as the BIC under the described assumptions. Both figures
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k

Figure 3.1: AIC, as a function of model order for fitting a mixture of seven sources with the Gaussian
mixture model.

show the criterion applied to a mixture of seven sources from the SQAM database,
using the MAP criterion implemented by the EM-algorithm. From both of the figures
it is clear that the criterion results in a monotonically decreasing function of the model
order. This tendency to overfitting is due to the fact that the measurement vectors
does not have equal weight in each parameter estimate in the Gaussian mixture model.
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Figure 3.2: BIC, as a function of model order, for fitting a mixture of seven sources with the Gaussian
mixture model.

The penalty term that is dependent on N can be altered to become appropriate for a
Gaussian mixture model, which will be described in the following section.

3.0.2 Suitable Prior on the Mixing Probabilities

With suitable priors on the parameters, the MAP estimator can be used for model
selection. In particular, [21] and [22] put the Dirichlet prior on the mixing probabili-
ties, of the components in the Gaussian mixture model, and [41] applied the “entropic
prior” on the same parameters to favor models with small entropy. All of these have
in common that they used the MAP estimator to drive the mixing probabilities associ-
ated with unnecessary components toward extinction. Based on an improper Dirichlet
prior, [30] suggested to use minimum message length criterion to determine the num-
ber of the components, and further proposed an efficient algorithm for learning a finite
mixture from multivariate data which we have adopted for source estimation based on
panning parameters. It is the model called mixture-MDL (MMDL), which is described
in the following section.

3.1 Mixture MDL (MMDL)

If we recall the parameter vector of the Gaussian mixture model as,

O ={61,0,...,0(01,00,...,0r}
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Once we have estimated one source parameter i.e. 6 the sample size “seen” by this
parameter is Naj due to the mixing probability weighting [30]. The penalty term
becomes dependent on not only the number of measurement vectors N, but also on
the mixing probabilities a. The full derivation of the MMDL criteria is derived in [30],
where it is described how the Fisher information for 6, for one observation from
component k becomes Na,Z(6;). The prior on the parameters of the asymptotic MAP
expression for mixtures is,

p(6;) = k(Np;—l) InN + I\zlp Y In(nay) (3.14)
k

We will adopt this criterion from [30]. The mixture-MDL is,

Oivmvpr = arg min {—Inp(x[6;) + p(6x)} (3.15)

6;

The key observation of the MMDL is that the prior p(6y) is not only a function of k
and for a fixed k it is not a ML estimate. For fixed kK, MMDL has a simple Bayesian
interpretation [30]:

K N,,
p({ag, ..., 0p}) exp{ 7;: Z } (3.16)

Which is a Dirichlet-type improper prior, which can be used on the mixing probability
in the maximum a posteriori (MAP) estimator for model selection.

The procedure is then as follows: We start with a large number of randomly initialized
components and search for the MAP solution using the iterative procedure of the EM
algorithm. The prior drives the irrelevant components to extinction. In this way,
while searching for the MAP solution, the number of components is reduced until
convergence is achieved. See [42] for details on Dirichlet type prior relation to the
standard MDL. The MMDL minimization criteria and the complete algorithm that is
implemented is described in [30],

6 = arg min £(0|X) (3.17)
0
with
L(6]|X) = arg min { —Inp(X]|0)
0

szl Ney kN k(N,+1)

T, tythn 12+2} (3.18)

where a; > 0 and N, is the number of parameters specifying each component. The
MMDL mixture model is including the component-wise EM algorithm CEM? [43].
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The expected number of measurement vectors generated by the kth component of
the mixture is Nay, which is the sample size seen by the 0y, thus the optimal (in the
MDL sense) for each 6y is N,/2log(Nay) [30]. The MMDL promotes sparseness in
the sense that it is intialized with much higher k than expected, and the EM-MMDL
will then set some a; = 0 by killing the weakest component and then restart the CEM?
algorithm [43].

3.2 Model Pruning by Component Annihilation

The following section is the proposed method for component annihilation for stereo-
panning estimation. In the following description, this method is described as a post-
processing procedure. However, it is desirable to implement the functionality of this
method as part of the likelihood-model in the segmentation algorithm which still re-
mains unsolved. In the end ef this section the model pruning will be described as a
Bayesian interpretation.

3.2.1 Opverfitting a Gaussian Mixture Model to Panning Parameter Space

The challenge of overfitting, a Gaussian mixture to the distribution space is ambigu-
ous. Itis the case that the MMDL will estimate a model order k that is equal to or larger
than the true order. However, the GMM-model is designed to describe every single
measurement vector as being part of a Gaussian distribution. The ambiguouity is that
the overfitting of the Gaussian mixture model can be exploited for the initialization of
the EM-algorithm, which is also the case for the algorithm of MMDL [30]. By starting
with k, where k is much larger than the true/optimal number of mixture components,
the adopted algorithm is robust with respect to initialization of the EM-algorithm. The
MMDL algorithm applies component annihilation, by adopting a Dirichlet prior on the
mixing probabilities [44, 30], and selects the number of components by annihilating
the weakest component in the M-step of an iterative component-wise EM (CEM?) [43].
This procedure leads to a smaller model order and still describes every measurement
vector as being part of a Gaussian distribution. It is important to notice that every true
parameter is then described by at least one or more of the clusters.

3.2.2 Component Metrics for Model Pruning

After model order selection has been applied using the Mixture-minimum description
length algorithm, each true panning parameter vector is described by one or more
components. Therefore, we have applied a post-processing step to select the true
number of clusters from prior spatial knowledge of the covariance in each conditional
distribution. In the following this procedure is described, starting with the practical
view and lastly we interpret the model pruning as a Bayesian posterior.
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The model pruning post-processing step selects clusters from an analysis on each
cluster covariance compared to the number of estimated points embedded in each
cluster. We know from [18] that due to the non-disjoint spectral overlap of sources, the
variance increases in the amplitude panning direction. Therefore, we propose to select
clusters with largest amount of estimated points, relative to the size of their respective
embedding covariances and their rotational angle in the parameter space. We describe
this for the kth covariance Cy in the following and in the following we will interpret
it as a Bayesian posterior. Because the panning parameters are two dimensional, we
define C; geometrically as an ellipsoid by applying the singular value decomposition
as,

C, =Uzv’ (3.19)

where U and V are orthonormal rotation matrices and the diagonal of X contains the
principal axes a? and b%. We compute the angle 0 of the principal axes a to the x-axis,

6 = tan (uz /ul)*1 (3.20)

we center Cj by subtracting the mean pu; as d = C; — ;. The x and y coordinates of
each estimate is given as,

(x,y) = (dq cos@ + dysin6, —d; sin6 + d, cos H) (3.21)

We count the number of points inside cluster k. The specific point (x,y) is inside the

ellipse k if,
2 2

Y

o + W <1 (3.22)
k k

Lastly we compute the size of C; as the determinant of C; and we compute the
“shadow” of the covariance on the x-axis as

Sk = ay cos 0 + by sin 6 (3.23)

3.2.3 Annihilation Steps

The following component annihilation steps uses the source parameters after the
MMDL has been applied and by comparing these to the measurements, the true clus-
ters are selected and the rest of the measurement vectors will be removed. In this
initial implementation, implemented as a post processing model pruning algorithm,
we have two rules applied which is:

1. If a cluster shares an estimated point with a smaller cluster, all points that is only
part of the bigger cluster is removed. The overlapping bigger clusters are refered
to as sticky clusters.

2. A geometric threshold is applied based on det(Cy), the number of points em-
bedded in C; and the shadow s on the x-axis as described by (3.2.4) and (3.2.4).



30 Chapter 3. Model Order Selection

The two steps described as rule 1 and rule 2, is always carried out with step 1 first.
Step 1 removes every “sticky” cluster. Once the sticky clusters have been removed,
each remaining clusters is measured with the ratio described by (3.2.4) and (3.2.4).
An example of these two steps are shown in Figure 3.3. It is noticeable that only

8 All Param. estimates

s .| - Param. estimates after pruning step 1
or «— Contour ellipsoids
4 - .

Delay [samples]
o

-40  -30 20 -10 0 10 20 30 40
Amplitude Panning Angle [deg.]

Figure 3.3: Component annihilation step 1 has been applied to the parameter estimates of a mixture of
4 sources. All ellipsoids represent a cluster. The ellipsoids containing orange dots are not sticky and are
kept. All blue clusters will be ignored following step 1.

by removing the sticky clusters we have reduced the number of clusters from 14 to
5, when the true numbers of clusters is 4. All clusters shown as ellipsoids which are
embedding estimates in blue are the sticky clusters which are now ignored. It is easy to
see that one of the orange clusters has a lower density than the remaining 4 clusters.
In order to remove clusters with relative low density and high correlation between
parameters, we apply step 2. Another point to notice is that the one of the low density
clusters also differs from the remaining in the angle of its principal component, which
shows a relative higher correlation between the two given features, thus it has a greater
variance in both directions since it spans a larger region, but especially the variance
in the amplitude panning direction is interpretted a sign of non-disjoint orthogonality
in the source mixture [18]. Figure 3.5 shows the ratio function of (3.2.4). We note
that between k = 4 and k = 5 there is a ratio difference on the order of 102, which
often is sufficient for a fixed thresholding. Figure 3.5 shows the parameter space after
step 2 has been applied. It can be seen that the 4 true clusters now has been found
after model pruning. Lastly, the full Gaussian mixture is shown in Figure 3.6. From
this figure it can be seen that the problem is not a convex one, and there is at least
6 local minimum. It is worth noticing that one of the true clusters has a lower peak
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%107 Ratio function

8,

my
my

Figure 3.4: The ratio as a function of number of estimated clusters (3.2.4). It has been applied to the
mixture of 4 sources.
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Figure 3.5: Component annihilation step 1 and step 2 has been applied to the parameter estimates of a
mixture of 4 sources. All ellipsoids represent a cluster. The ellipsoids containing orange dots are kept
after model pruning.
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Figure 3.6: The estimated Gaussian mixture. This mixture contains measurement vectors from 4 sources
from the SQAM database.

likelihood value. Thus, it has relative low mixing probability and spans a larger region
than the other true cluster estimates. The procedure of model pruning by component
annihilation has kept this specific cluster because it has a low variance in the amplitude
direction when comparing to the other clusters, by using (3.2.4) and it is still embedds
many meaurement vectors since it has been kept after the ratio function of (3.2.4) has
been applied. In the following is a description of the metrics that has been defined for
this component annihilation criteria.

3.24 Thresholding on the Cluster Angle and size

The spectral overlap of mixture sources magnifies the variance in the amplitude pan-
ning direction [18] . In the case of disjoint orthogonality, the covariance would be very
small and diagonal or have greatest variance in the delay-direction. Therefore we can
apply a threshold from the rotation angle 6 and the size of the region relative to the
given number of estimates in the region. We define a variable 0 < p; < 1 which is the
percentage of points that is inside the kth cluster. We notice that the mixing parameter

ff is proportional to defzc). We define a metric of peakiness m for the kth source as,

_ Pk
M= det(Cx)sk (324)
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where s; is the amplitude shadow, sy = a; cos 6y 4 by sin 6. The metric my carries
implicit information of both the size and angle of the kth cluster region, that includes
a percentage of all the estimated points (after sticky clusters have been removed). From
all metrics m we define a threshold where m; is relative to the smallest m = my. The
metric ratio is,

ratiop — % (3.25)
1

Through experiments, we have found that this method of component annihilation
has good performance for precisely estimating the number of sources in the mixture
and the panning parameters. In the following we will interpret this with Bayesian
terminology as a posterior probability by comparing it to the K-nearest neighbour
classifier.

3.2.5 Bayesian Interpretation of the Metrics for Annihilation

In the following we describe the model pruning method as a posterior probability, by
comparing it to the K-nearest neighbour technique. To do this, we make use of Bayes
theorem and apply the K-nearest neighbour method for classification to each cluster
separately. Let us suppose that we have a data set with N samples, where Nj points
belongs to class Ci, so that ), Ny = N. If we wish to classify a point x with the K-
nearest neghbour method, we draw a hypersphere that is centered on x, containing K
points irrespective of their class. Suppose this sphere has volume V(x) and contains
K} points belonging to class C. An estimate of the density associated with each class
is then [33, 36],

R _ K
Similarly, the unconditional density is given by,
v K
and the class priors are given by,
N N
p(Co) = 55 (3.28)

We can combine these three equations using Bayes’ theorem to obtain the posterior
probability of class membership

PXICOP(C) _ K

e < (3.29)

p(Cilx) =

Which means that we can minimize the risk of misclassification, by assigning the point
x to the class having the largest posterior probability corresponding to Ki/K. Such a
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classification can be expressed as:

N

Cr(x) =Cr with k= aﬁmix{ﬁ(x]Ck)ﬁ(Ck)}

= arg max KN }—ar max{Ki} (3.30)
z:glK N;V(x) Niotal z:glK NiotaV (x) '

We can compare this expression to the threshold in (3.2.4) of the model pruning
method, where my = m with pj the percentage of points inside cluster k and the
volume of the hypersphere determined by det(Cy) which is weighted relative to the
shadow sy, to prefer the clusters that have lowest variance in the amplitude direction.
In Figure 3.2.5 showing the parameter space it is clear that the covariance assumption
described above in Section 3.2.3 holds and all 7 true clusters have been estimated cor-
rectly. The selected clusters are shown in orange and the unselected clusters are shown
in blue. The true cluster covariances are either very small and close to diagonal or they
are larger and have dominant variance mainly in the delay direction (upwards). We
notice that the MMDL algorithm in this case chose a k = 18. Notice that the 11 "wrong
clusters" are large with random covariance structure and rotation angle. Figure 3.9
shows the ratio function in (3.2.4). We note that between k = 7 and k = 8 there is a
ratio difference on the order of 10'®, which often is sufficient for a fixed threshold.

-10

log-likelihood

-15

-40 -20 0 20 40
Amplitude Panning Angle [deg.] Delay [samples]

Figure 3.7: Gaussian mixture of 7 sources. From this figure it can be noticed that the two right most

components has a low mixing probability.



3.2. Model Pruning by Component Annihilation

mg

Delay [samples]

Param. estimates before pruning

8 — T - Param. estimates after pruning T T
C9ntour ellipsoids
6L ‘ — |
4l A
7L A
ok A
2+ A
4+ A
6t .
gL . . . . . . . .
40 30 20 -10 O 10 20 30 40
Amplitude Panning Angle [deg.]
Figure 3.8: Before and after pruning.
" 107 | Ratio fpnctioq ]
12 ¢ 1
10+ 1
gl ,
gl ]
4t ,
2l ,
0r 30-23

6 6.5 7 7.5 8 8.5 9 9.5 10

Figure 3.9: Ratio function of 7 sources shown in Figure 3.7
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Chapter 4

Segmentation of the Stereophonic
Signal

4.1 Optimal Time Segmentation for Signal Modelling

In the following we describe the optimal time segmentation scheme which we propose
for source parameter estimation based on the MAP-model clustering algorithm. The
goal is to achieve better segmentations of time, entailing a better local model. Once
the chosen signal modelling technique can be quantified as a cost function, that is
additive over distinct segments, a time segmentation based on [45] guarantees the
global optimality of the scheme.

4.1.1 Segmentation of the Stereophonic Signal

The characteristics of the observed stereophonic signal are varying over time with
different durations. Consequently, a fixed segment length is not optimal for the MAP-
clustering model. Using the MAP criterion, the cost associated with the different
outcomes from the set of segment lengths is additive and can be compared, and the
optimal can be chosen as the one that minimizes the cost (3.1). The implementation
of the segmentation scheme is based on a dynamic programming in [46, 47, 48]. The
implemented algorithm is outlined in the algorithm showed in Figure 4.1. A mini-
mal segment length, Nnin generating a block of samples and dividing the signal into
M blocks. Since this will give 2M~! ways of segmenting the signal into M blocks
a maximum number of blocks Knax is defined to ease on computational complexity,
since very high segment length is assumed to be generating noise in the distribution.
The maximum number of samples in one segment iS Nmax = KmaxNmin. A dynamic
programming algorithm, computes the optimal segment length kopt for all blocks,
m =1,..., M, starting at m = 1 moving continously to m = M. For every block, the
cost of all new block combinations are reused from earlier blocks. When the end of

37
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the signal is reached, the optimal segmentation of the signal is found, starting with
the last block and continuing through the signal to the beginning. Starting at m = M,
setting the number of blocks in the last segment to kopi(M). The next segment ends
at block m = M — kopt(M) and includes kopt(M — kopt(M)) blocks. This is continued
untill m = 0.

while m X Nyiv <length(signal) do
Initialize K = min([m, Kmax])-
fork=1to K do
block of signal touseism —k+1,...,m
estimate (4, d) from (1.4.1) and (1.4.1)
compute L£(60[X) (,_+1)m from (3.1)
if m =1 then
L(6X) k) = L(OX) (m—kr1)m + L(O1X)1 (k)
else
L(01X) ) = L(81X) (m—k+1)m
end if
end for
end while
m=M
while m > 0 do
number of blocks in segment is kopt(17)
m = m — kopt(m)
end while

Figure 4.1: Optimal segmentation algorithm, based on the MAP-cost function.

Figure 4.2 - Figure 4.4 shows the Gaussian mixture that has been evaluated at each
point in the MAP log-likelood function of (3.1). Each of these figures is a representa-
tion of the clusters that we have modelled and what is shown in these is firstly the 3D
representation of the mixture with a contour on the “ground” plane. In the top of each
of these figures, the measurement vectors are shown in 2D, along with the ellipsoid
that we use in the algorithm for model pruning and also for the Gaussian moddeling
in general. What is noteceable from Figure 4.2 is to the left a more scatterd mixture
form than to the right. The reason for this is that Figure 4.2a is the modelled mixture
with uniform segmentation, while Figure 4.2b is modelled with the optimal segmenta-
tion scheme. Figure 4.3a and Figure 4.3b is representing a mixture of 2 sources, which
is indeed clear to see from the figures after optimal segmentation. Lastly, the Gaussian
mixtures visualized in Figure 4.4a and Figure 4.4b shows an example of a mixture
of 5 sources, where the optimal segmentation scheme has removed one of the true
clusters. In these figures it is noticeable that the right most cluster at approximately
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(b) Gaussian mixture after optimal segmentation.
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Figure 4.2: Comparison of Gaussian mixtures with uniform and optimal segmentation on a mixture of 4

sources.
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42° amplitude panning angle is removed, which could be caused by the proximity the
closest cluster along with the low mixing probability of this specific cluster. The most
important issue to conside in this respect, is that although the segmentation scheme
will reach the global optimality based on given criteria of the model used for segmen-
tation, the model that is applied might not be the optimal for the given purpose. This
was a brief, but sufficient description of the optimal segmentation scheme that use the
MAP criteria. In this chapter we have shown the practical implementation along with
some visual results on the Gaussian mixture model.
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(a) Gaussian mixture after uniform segmentation.
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(b) Gaussian mixture after optimal segmentation.
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Figure 4.3: Comparison of Gaussian mixture with uniform and optimal segmentation on a mixture of 2
sources.
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Figure 4.4: Comparison of Gaussian mixture with uniform and optimal segmentation on a mixture of 5
sources.



Chapter 5

Experiments

5.1 Experiments on Proposed Methods

In the following the different proposed methods are tested through simulations on
synthetic signals and real audio from the SQAM database [49]. To represent real
music the synthetic signal are based on guitar recordings from which the amplitudes
and phases have been extracted, by using an inharmonic approximate non-linear least
square (ANLS) pitch estimator [9]. By testing the segmentation with synthetic signals,
we can create a ground truth to when each source is active. The following proposed
methods are being tested:

¢ Signal segmentation using the MAP log-likelihood criteria.

- Segmentation of known synthetic guitar mixture of 2 sources.

- Segmentation of real audio containing 2 sources from the SQAM database.
* Source Parameter Estimation for uniform segmentation with model pruning.

— Precision measure on synthetic guitar signals of various duration.
* Source Parameter Estimation for applied optimal segmentation.

— Precision measure on synthetic guitar signals of various duration, using the
MAP log-likelihood criteria.

— Precision measure on synthetic guitar signals of various duration, using the
Calinski Harabasz criteria.

— Segmentation criteria performance in 50 iterations on synthetic guitar sig-
nals of various duration, using the MAP log-likelihood criteria.

— Segmentation criteria performance in 50 iterations on synthetic guitar sig-
nals of various duration, using the Calinski Harabasz criteria.

43
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All synthetic signals were generated with 20 harmonic amplitudes and phases. The
fundamental frequencies are representing notes that can be played on a guitar in the
range fo € [80,1700]Hz, randomly applied. f; was set to 44100 Hz.

5.1.1 Segmentation of Known Segments on Synthetic Guitar

The segmentation is tested on a synthetic signal with a source ground truth. The syn-
thetic signal has a duration of 15 seconds and white Gaussian noise has been applied
to the signal with an SNR of 50 dB. The synthetic signal is consisting of two sources
with a minimum active signal duration of 300 ms and note duaration as multiples of
300 ms. The signal is segmented according to the MAP MMDL criteria of (3.1), where
the minimum segment length Nyin = 150 ms and the maximum number of blocks
Kmax = 20 meaning that the maximum length of a segment is 3 s. A representative ex-
ample of the chosen segment length as a function of time is shown in Figure 5.1.1 with
white vertical lines. In the top the two active sources are shown time domain along

left signal right signal active source indicat0r|

—_—

Amplitude

Frequency [Hz]

—_ —_
(e} W
S S
(e} S

500

Time [sec]

Figure 5.1: Optimal segmentation on known synthetic guitar signal, using the MAP log-likelihood crite-
ria.

with a black horizontal line indicating which source is active at which time (the input
segment ground truth). In the background the signal frequency content is shown to
give a detailed view of the signal content. Generally the chosen segments are long if
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the content is not changing. Each segment contains some valuable information and
seperates active input segments of the two sources. The four notes played from 0 to
4 sec (with same fy) will consistenlty produce two underlying clusters, and we would
expect the segments to be long but random. When the silent period starts a shorter
segment length is chosen in all three silent periods starting at [3.6, 5.4, 8] sec. The note
at 5 s. is clearly chosen, and the next three notes has an overlap that is segmented in
to two parts, where only the second part has two active sources. The following notes
after the silence at 8 s is chosen precisely in 300 ms segments each. Lastly, the long

active source indicat0r|

left signal right signal
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S @
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Figure 5.2: This is a visual example of signal segmentation on two sources from the SQAM database. This
figure is left for the reader to analyse visually (a bit like interpretation of art). There is more segmentation
figures like this in Appendix C

note from 12-15 s. is chosen in longer segments of 600 ms, but in order to separate
the underlying clusters, the two overlapping notes in the end is chosen in segments
in their respective note duration, even though they both overlap with the longer note.
This indicates that the panning model, describes the signal in a precise way consid-
ering the source panning parameters, independently of the pitch information. The
resulting distribution of parameter estimates can be seen in Figure 5.1.1. It is clear that
k = 2, after segmentation and thresholding.
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Figure 5.3: Signal segmentation on two sources from the SQAM database. There is more segmentation
figures like this in Appendix C
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Figure 5.4: Parameter space with and without optimal segmentation and thresholding for the synthetic
signal in Figure 5.1.1

5.1.2 Parameter Estimation Performance on Synthetic Guitar

The following test is testing the performance of the proposed estimator and precision
of the estimates for both uniform segmentation and optimal segmentation for the MAP
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log-likelihood criteria and in this test we compare to the Calinski-Harabasz criteria
as well. The uniform segmentation has a segment size of 300 ms and the optimal
segmentation scheme can choose segment sizes in the range of 100 ms to 2000 ms in
100 ms intervals. The performance measures in this test are:

¢ Correctly estimated sources. A correct cluster is defined as an error below one
half degree amplitude panning angle.

¢ RMSE of the amplitude angle estimates.
* RMSE of delay estimates.
¢ Estimated model order.

The test is based on 50 iteration for various durations as seen form the Figures 5.5-
5.10. The synthetic signals used in the test have a segmentation ranging from 300 ms
to 3000 ms in steps of 300 ms. They all contain 70% silence divided in to the same the
segment durations. They are all consisting of a 2-5 source mixture. ~ From Figure 5.5
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Figure 5.5: Correct cluster estimates on synthetic guitar signals as a function of signal duration. This is
the proposed estimator with model order selection by model pruning and uniform segmentation.

it can be seen that the correct amount of cluster estimates is directly proportional to the
duration of signal under test. Which means that the more data we gather, the more
correctly we can estimate the sources in the mixture. From the Figure 5.5, it seems
that in the duration range of 2-10 seconds, the performance is getting exponentially
better, however this should be always be seen relative to the synthetic signal under test.
From these specific 50 iterations it seems that the performance peaks at 99% correctly
estimated clusters.
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Figure 5.6: Correct cluster estimates on synthetic guitar signals as a function of signal duration. This is the
proposed estimator with model order selection by model pruning with the applied optimal segmentation,
using two different criterias.
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Figure 5.7: RMSE of the amplitude angle estimates on synthetic guitar signals as a function of signal
duration. This is the proposed estimator with model order selection by model pruning with the applied
optimal segmentation, using two different criterias.
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Figure 5.8: RMSE of the delay estimates on synthetic guitar signals as a function of signal duration.
This is the proposed estimator with model order selection by model pruning with the applied optimal
segmentation, using two different criterias.
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Figure 5.9: Model order estimates on synthetic guitar signals as a function of signal duration. This is the
proposed estimator with model order selection by model pruning with the applied optimal segmentation,
using two different criterias.
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Figure 5.10: Model order estimates on synthetic guitar signals for all 50 iterations. More of these examples
can be found in Appendix A.

Figure 5.9 shows the performance comparison of the uniform segmentation ver-
sus the optimal segmentation for shorter duration on the range 2-10 seconds. From
this specific comparison it seems that by applying the optimal segmentation scheme,
it is possible to achieve an improvement in the number of correct cluster estimates,
especially for the shorter durations. The case of optimal segmentation based on MAP
log-likelihood criteria, the improvement is approximately 5-10% correctly estimated
clusters for the shorter durations. Similarly, by using the the Calinski-Harabasz crite-
ria, an improvement is also possible in the same duration range.

It is implied from the test that both of the criterias under test offers improvement
and it seems as if the MAP log-likelihood has the best performance for the shorter du-
rations in terms of correct cluster estimates. However, when considering the precision
results shown in Figure 5.7 and Figure 5.8 the two criterias under test, differs from
this result. For this specific measure the Calinski-Harabasz criteria performs best for
all durations in the short term range from 2-10 seconds. Where we have concluded
that the performance in terms of correct number of cluster estimates was best for the
MAP log-likelihood criteria, in this case it performs the worst when considering the
precision of the correct estimates. It it even more unprecise than the uniform segmen-
tation. It should be noted here, that because the global optimality is reached using the
optimal segmentation, based on a given model, the model can still be inappropriate.

Lastly, Figure 5.9 shows that the model order estimates improves with signal dura-
tion. It is again noticeable that for the shorter duration range, the MAP log-likelihood
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Estimates MAP opt. seg. uniform seg.
Correct Parameters (err. £ < 0.5°) 94.6% 84.5%
Correct Model Order 89.1% 58.4%
Amplitude Angle (RMSE) 0.1° 0.07
Delay (RMSE) 0.33 samples 0.03

Table 5.1: Source parameter test results for real audio from the SQAM database in 100 iterations. The
true number of clusters is in the range 2-5.

performs well, better than the Calinski-Harabasz and the uniform segmentation. How-
ever, non of the optimal segmentation schemes performs as well one could expect for
this measure. The uniform worst case model order estimates would be for the uniform
segmentation of 2 seconds signal duration. This case is shown in Figure 5.10 where
it can be seen that the estimated model order is this specific case always underdeter-
mined, meaning that the estimates are below the true value, but only with an error of
one or two number of clusters, which is way better than what we saw from the MAP
directly without model pruning as described in in section 3.2. More of these model
order plots can be found in Appendix A.

5.1.3 Parameter Estimation Performance on real audio

The estimation of source parameters are tested on the SQAM-CD signals in 100 it-
erations. In this part, the estimation of panning parameters are tested for optimal
segments and fixed segments. Panning Parameters implicitly has the model order, as
dimensionality. For each iteration, a mixture consists of minimum 2 and maximum 5
randomly picked source components, mixed according to (1.4). Each source signal is
normalized to have an absolute maximum amplitude of 1. The duration of each mix-
ture is varying, and is defined from the audio signal in the mixture with the shortest
duration, which is minimum 16 seconds for files on the SQAM-CD. The files contain-
ing pink noise has been removed from the test set. The fixed segment size is set to
600 ms. and all mixtures are passed through the thresholding of (1.4.1). All applied
panning parameters to sources are stereo simulations, which means that every pair
of consecutive sources, will be panned equally to each side. Other than that all pan-
ning parameters applied are random. The applied optimal segmentation scheme in
this test is only the MAP log-likelihood. The results are shown in Table 5.1. We
measure the estimated model order, number of correct parameter estimates, and the
root mean square error for both source parameters. Clearly, there is an improvement
by applying the optimal segmentation scheme, with a correct number of parameter
estimates of 94.6% compared to 84.5% with uniform segmentation. The model or-
der i.e. the correct estimate of the number of sources is also clearly improved by the
time-segmentation scheme. It seems that by applying the segmentation scheme the es-
timator loses some of the precision in the parameter estimates, both for the amplitude
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and delay estimates, which was exactly the case for the test on synthetic signals with
the segmentation scheme based on the MAP log-likelihoos criteria.

In this chapter we have tested the proposed sterophonic source parameter estima-
tor. The tests have shown promising results for the unsupervised learning algorithm
and by modelling the measurement space as a Gaussian mixture the estimation of
source parameters are very precise when the proposed MAP estimator with uniform
segmentation and it is implied that for relative short signals an improvement in clus-
ter estimates nad model order is possible by applying the proposed time segmentation
scheme.



Chapter 6

Conclusion

In this thesis, we have proposed a novel source parameter estimator for stereophonic
mixtures, allowing for panning parameter estimation on multi-channel audio, even if
the source pitches and harmonic amplitudes are unknown. To the authors knowledge,
it has not been established before that the stereophonic panning parameters, have been
estimated explicitly without a preceeding pitch estimate. The presented method does
not require prior knowledge of the number of sources present in the mixture. The pro-
posed estimator is formulated in an unsupervised learning framework, using Bayesian
statistics for the modelling of the parameter space. The Bayesian approach offers some
attractive advantages over i.e. the classical approach for blind source separation, as
we outlined in the introduction. One of the great advantages is that the Bayesian ap-
proach offers the complete and optimal solution in terms of the posterior distribution
on which all probabilistic statements about the problem are based. The maximum a
posterior model formulation opens the possibility of estimating the number of sources
and applying optimal time segmentation of the stereophonic signal.

Initially we defined the stereophonic signal model, and the relations to virtual sound
source positioning. This lead to the definition of the stereophonic panning parameter
estimates computed from the Fourier transform. In the proposed method, the distribu-
tion of stereophonic panning parameters is modelled with a Gaussian mixture model.
The model parameters are estimated by using the maximum a posteriori estimation
based on the expectation-maximization algorithm. In order to avoid one cluster being
modelled by two or more Gaussians, we have utilized the Dirichlet distributions as
the prior of the GMM mixture probabilities. This was done by adopting a Mixture-
MDL algorithm. The MMDL algorithm was extended by applying a model pruning
algorithm, based on the determinants of component covariances and angles between
subspaces in the mixture distribution. This extension has been shown to perform bet-
ter than the original MMDL in terms of model order selection of source components
in the Gaussian mixture model. To obtain a better time segmentation of the stereo-
phonic mixtures, we have proposed a segmentation scheme that guarantees the global
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optimality, based on the maximum a posteriori formulation.

The developed estimator was evaluated through simulations on synthetic guitar
signals as well as on a real audio signal from the SQAM database. These simula-
tions showed that the developed estimator performs well in terms of source parameter
estimation and in estimating number or sources in the stereophonic mixture for the
uniform segmentation. The estimator improves its performance proportional to the
signal duration. The simulations showed that the optimal time segmentation can be
successfully applied to stereophonic mixtures to improve the performance of correct
source estimates, in particular, on the short signal durations.

Although applicable for stereophonic source parameter estimation on synthetic

and real audio signals, the proposed estimator is still subject to unsolved problems
and open to further research. For example, the proposed method for time segmen-
tation is based on the MMDL, thus the asymptotic MAP, for modelling of Gaussian
distributions of varying sample sizes. Although, an improvement has been shown, it
is possible that the effect of this is that small sample time segments is favored as Gaus-
sians, while they are truly noise from the estimates. Through experiments we have
compared this criteria to the Calinski-Harabasz, which shows higher precision in the
estimates, which is promising for further research. Another limitation of the proposed
estimator which still remains unsolved, is the implementation of the model pruning
algorithm. The model pruning shows very good results with fewer errors than the
clean MMDL, and the error sizes after model pruning is greatly improved. It would
be desirable to extend the proposed estimator to handle the model pruning as part of
the maximum a posterior criteria, instead of a post processing algorithm. This is also
a subject for further research.
Through this thesis, new knowledge from unsupervised learning of stereophonic mix-
tures has been obtained and this may be important for future research work. Further-
more, the problem of estimating the stereophonic panning parameters, is in general a
new research and the proposed solution has no explicit precursor, but shows promis-
ing results.
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Appendix A

Examples of Model Order Estimates

In the following some examples of model order estimates are shown. This is shown for
the proposed estimator with MAP model pruning and uniform segmentation. What
is noticeable from all figures showing various durations, is that when the model order
is estimated wrongly, it is mainly an error of one or two orders below the true value.
Which is promising result compared tot he original order estimates without model
pruning as seen in section 3.2.
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Figure A.1: Model order estimates on synthetic guitar signals for all 50 iterations.
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Appendix A. Examples of Model Order Estimates
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Figure A.2: Model order estimates on synthetic guitar signals for all 50 iterations.
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Figure A.3: Model order estimates on synthetic guitar signals for all 50 iterations.
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Figure A.4: Model order estimates on synthetic guitar signals for all 50 iterations.
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Figure A.5: Model order estimates on synthetic guitar signals for all 50 iterations.
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Appendix A. Examples of Model Order Estimates
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Figure A.6: Model order estimates on synthetic guitar signals for all 50 iterations.
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Figure A.7: Model order estimates on synthetic guitar signals for all 50 iterations.
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Figure A.8: Model order estimates on synthetic guitar signals for all 50 iterations.
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Figure A.9: Model order estimates on synthetic guitar signals for all 50 iterations.
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Appendix A. Examples of Model Order Estimates
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Figure A.10: Model order estimates on synthetic guitar signals for all 50 iterations.
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Figure A.11: Model order estimates on synthetic guitar signals for all 50 iterations.



Appendix B

Estimation the Amplitude Panning
Angle

It is possible to estimate the panning angle by doing a simple search within the fre-
quency domain. This was an initial estimator of the amplitude panning parameter.
What is interesting about the following algorithm is that it requires very little amount
of data for a simple estimate and therefore it is interesting to use this simple algorithm
to make estimates in time-pan domain as we often see the time-frequency domain ref-
ered to as the spectrogram; we refer to time-plot plot as the panogram. The algorithm
is introduced in Section 1.4.2. In this section we show the panogram representations of
stereo mixture of instruments. All panning parameters have been applied by using the
Digital Audio Workstation (DAW) called Logic Pro. Therefore all panning parameters
are applied without the use of our model, but only estimated using out model. As
it is seen, the mean energy of the amplitude panning parameter estimates are at the
correct location. The panning knob interface of a DAW like Logic Pro, is based on a
loudspeaker aperture of 60°.
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Figure B.2: Panogram of a mix of celloes. In Logic Pro these are panned on the given knob to 28. This
fits with a ratio of 60/90 because the estimate is based on a loudspeaker aperture of 90°.
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This fits with a ratio of 60/90 because the estimate is based on a loudspeaker aperture of 90°.
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Appendix C

Segmentation Visualized in
Time-Frequency Domain

This section shows the segmented signals in time-frequency domain. It is possible
that these figures can be visually inspected, to give an idea or an understanding of the
optimal segmentation scheme, based on the MAP MMDL criteria. Every figure in the
following is either representing a mixture of 2 sources or a mixture of three sources. It
would make the most sense to understand the segmentation from two sources. When
looking at the spectrograms of three sources, it can make sense sometimes, while other
times it does not. There is two main reasons for this. Firstly, the separation of sources
is based on the underlying distribution of the clusters using the given criteria, and
furthermore, while the segmentation scheme reaches the global optimum, the model
might not be optimal. Secondly, we can visualize the left and right channel as we
do in these figures, and we can visualize the left or the right spectrum as we do in
these figures. However, we have not visualized the seperate sources that the mixtures
consists of. It is important to have in mind, while looking at these representations,
that the segmentation is based on the clustering of the sources that is not clear in the
figure.
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Figure C.1: This is a visual example of signal segmentation on a mixture two sources from the SQAM
database. This figure is left for the reader to analyse visually (a bit like interpretation of art).
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Figure C.2: Signal segmentation a mixture on two sources from the SQAM database.



74

Appendix C. Segmentation Visualized in Time-Frequency Domain
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Figure C.3: Signal segmentation on a mixture two sources from the SQAM database.
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Figure C.4: Signal segmentation on a mixture three sources from the SQAM database.
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Figure C.5: Signal segmentation on a mixture three sources from the SQAM database.
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Figure C.6: Signal segmentation on a mixture three sources from the SQAM database.
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Appendix C. Segmentation Visualized in Time-Frequency Domain
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Figure C.7: Signal segmentation on a mixture three sources from the SQAM database.
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Figure C.8: Signal segmentation on a mixture three sources from the SQAM database.
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Appendix C. Segmentation Visualized in Time-Frequency Domain
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Figure C.9: Signal segmentation on a mixture three sources from the SQAM database.
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Figure C.10: Signal segmentation on a mixture three sources from the SQAM database.
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Appendix C. Segmentation Visualized in Time-Frequency Domain
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Figure C.11: Signal segmentation on a mixture three sources from the SQAM database.
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Figure C.12: Signal segmentation on a mixture three sources from the SQAM database.
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Appendix C. Segmentation Visualized in Time-Frequency Domain
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Figure C.13: Signal segmentation on a mixture three sources from the SQAM database.
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Figure C.14: Signal segmentation on a mixture three sources from the SQAM database.
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