IoTsec

Automatic Profile-based
Firewall for IoT Devices

TCPE
Python
Amnes1a

G ateway

DPIH
DDoSg (OSSL
Botnet

Lmuxrs. — Bashlite
Universal

1SEC

Firewall

i
Att

]
O
ﬁ

Automatic

Brute-force
on

IoTHTTP
DHCP Securit

DNSUDP
Malware

wn
n
T
Internet
UPnP
Profil
Enc ti
NAT PH

3
I—';:
(e
@
'—j

Telnet

O
s

Authors: AALBORG UNIVERSITY

Daniel Amkeer Sgrensen NETWORKS AND DISTRIBUTED

Nichlas Vanggaard SYSTEMS
MASTER’S THESIS

Supervisors:

Jens Myrup Pedersen 8TH JUNE 2017

AALBORG UNIVERSITET

Title:
ToTsec: Automatic Profile-based Firewall
for IoT Devices

Project:
Master’s Thesis

Project period:
February 2017 - June 2017

Authors:
Daniel Amkser Sgrensen
Nichlas Vanggaard

Supervisor:
Jens Myrup Pedersen

No. of pages: 112
Completed: 2017-06-08

10. Semester

Networks and Distributed Systems
Fredrik Bajers vej 7A

9220 Aalborg @
http://www.sict.aau.dk

Abstract:

IoT botnets have been used to take down
some of the biggest services on the Inter-
net in the fall of 2016.

This project investigates methods used to
protect IoT devices behind IGDs from IoT
botnets like Mirai. This is done by filter-
ing traffic to and from the devices, using
the firewall on an IGD.

The solution is based on a system that
generates profiles throughout a learning
phase. These profiles provide information
about the traffic to and from each IoT de-
vice connected to the IGD. The learning
phase is automatically started when new
devices are connected to the IGD.

When the learning phase has ended, a set
of firewall rules is generated for the device
and loaded into the IGD’s firewall. In the
final system evaluation, the results show
that the firewall rules, generated for the
IGD, prevent botnets from spreading and
participating in attacks.

The content of this report is freely available, but publication (with reference) may only be pursued in agreement with the author.

PREFACE

This project is a Master’s thesis, produced by two students in the Networks and Dis-
tributed Systems program on Aalborg University.

This project explores methods to secure loT devices, given recent massive DDoS attacks
have been made by botnets, consisting of IoT devices. This indicates that the security
implementation on IoT devices is insufficient, hence there is a need for improvement.

The research in this project shows that the attack vector used to infect new IoT devices
has been to brute force access to a Telnet server. Until 2017-04-06, where the botnet
Amnesia was discovered, which instead used an exploit to gain access to devices. The
design in this project was made before Amnesia was released.

In Chapter 2, an analysis of existing botnets and the vulnerabilities that they use are
made, which leads to potential solutions. Chapter 3 provides some background informa-
tion, which is used as reference material in the design and implementation. Chapters 4
and 5 describe the design and implementation of the solution in this project Finally,
Chapter 6 provides an evaluation of the solution.

Appendix A provides some information about the IoT devices which have been available
for this project. Appendix B provides information about a vulnerable Virtual Machine
made to mimic an exploitable IoT device. Both appendices can be read as extra infor-
mation to the project.

Appendices C and D provide some of the raw results to the system evaluation in Chap-
ter 6, hence they are recommended to be read when they are referred.

The source code and the results are submitted along with the project report.

DANIEL AMKER SORENSEN NICHLAS VANGGAARD

TABLE OF CONTENTS

1 Introduction

2 Problem Analysis

vi

2.1 Why Botnets Cause Problems
2.2 Analysisof Botnets
2.3 Introduction to Internet of Things (IoT)
2.4 How IoT Became Dangerous.
2.5 Security vs. Usability
2.6 Initial Problem Statement
2.7 Securing IoT Devices
2.8 Problem Statement Lo
2.9 Proposals
2.10 Delimitation L
2.11 Evaluation Metrics oL

Technical Analysis

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Exhaustive Key Search o 0.
Firmware Disassembly o o o
Alternative Authentication Methods
Network Address Translation
Types of [oT Equipment
Deep Packet Inspection
Data Encryption
Linux Router

System Design

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

System Overview
Profiles
Software Design
Server Application Design
Client Application Design
Smiffer
Traffic Profiler
Management Subsystem L L

12
14
16
17
18
20
20
24
25

27
27
30
31
36
38
39
40
43

5

g aQ @ »

Implementation

5.1 Dependency Injection (DI).
5.2 Events L
5.3 PySmiffer
54 PyProfiler
System Evaluation

6.1 Test Setup e
6.2 Profile generationo L
6.3 Firewall e
6.4 Port Scan
6.5 Results Interpretation oo
Closure

7.1 Conclusion e
7.2 Discussion e
7.3 Attacker’s Perspective

IoT Devices

Vulnerable Virtual Machine

Profiles

Firewall Results

71
71
73
74
80

85
85
86
88
91
92

103

105

107

111

vii

ABBREVIATIONS

4-tuple Tuple of {Source Address, Source
Port, Destination Address,
Destination Port}.

ALPN Application-layer Protocol
Negotiation.

AP Access Point.

API Application Programmable Interface.

ASCII American Standard Code for
Information Interchange.

AV Anti Virus.

Bash Bourne Again Shell.

C&C Control and Command.

CE Conformité Européenne.

CGN Carrier Grade NAT.

CIDR Classless Inter Domain Routing.
CUPP Common User Passwords Profiler.
DDoS Distributed Denial of Service.

DHCP Dynamic Host Configuration
Protocol.

DI Dependency Injection.

DNS Domain Name System.

DoS Denial of Service.

DPI Deep Packet Inspection.

DVR Digital Video Recorder.

GPU Graphical Processing Unit.

GRE Generic Routing Encapsulation.
HOTP Hash-based One Time Password.

viii

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol
Secure.

HULK HTTP Unbearable Load King.

TANA Internet Assigned Numbers
Authority.

ICMP Internet Control Message Protocol.
IGD Internet Gateway Device.

IoT Internet of Things.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

ISP Internet Service Provider.

JSON Javascript Object Notation.
LAN Local Area Network.

LSN Large Scale NAT.

MAC Media Access Control.

MITM Man in the Middle.

MPD Multiple Purpose Device.

NAS Network Attached Storage.

NAT Network Address Translation.
NAT-PCP NAT Port Control Protocol.
NTP Network Time Protocol.

OAuth Open Authorization Framework.
OSI Open Systems Interconnection.
PoC Proof of Concept.

RCE Remote Code Execution.

RDP Remote Desktop Protocol.

RE Regular Expression.

SNI Server Name Indication.

SPOF Single Point of Failure.

SSH Secure Shell.

SSL Secure Sockets Layer.

TCP Transmission Control Protocol.

TOR The Onion Router.

TOTP Time-based One Time Password.

UDP User Datagram Protocol.
UPnP Universal Plug and Play.

URL Uniform Resource Locator.

VNC Virtual Network Computing.

VPN Virtual Private Network.

WAN Wide Area Network.

ix

CHAPTER

1
INTRODUCTION

On 2016-10-21, two Distributed Denial of Service (DDoS) attacks were performed against
a company called Dyn. The first attack started at 11:10 UTC and ended at 13:20 UTC.
The second ran from 15:50 to 17:00 UTC.

Dyn is a Domain Name System (DNS) provider which is used by large companies,
including Twitter, Amazon, Tumblr, Reddit, Spotify and Netflix [1]. The attack on
Dyn meant that some users were unable to access the companies which use Dyn as their
DNS provider. The DDoS attack was made by a botnet called Mirai. Mirai consists of
Internet of Things (IoT) devices, where most are Digital Video Recorders (DVRs) and
IP cameras.

Such IoT devices become more and more popular. It is estimated that 50 billion ToT
devices are going to be connected in 2020 [2]. Even though people connect the devices,
they do not necessarily know if the devices are secure or care about it.

Accordingly, this project analyses botnets to find the attack vectors which are used to
infect IoT devices. When the analysis is completed, the project aims to find a solution
which protects against these attack vectors. Hence prevent botnets like Mirai from
existing. Since a lot of devices are already infected with malware (Mirai is estimated
to control 100.000 device by Dyn [3]), the solution must also protect these devices from
spreading malware to new devices.

CHAPTER

2
PROBLEM ANALYSIS

IoT refers to connecting everything to the Internet. Everything from light bulbs to smart
electricity meters. These devices are often small, with a low power consumption.

These devices are cheap, hence there has not been spent much money on security. The
lack of security makes the devices easy targets for attackers, malware and botnets.

This chapter aims to describe why such botnets of IoT devices are a problem to the
society. What an IoT device is, why people use them, and where the vulnerabilities occur
in IoT devices. This is followed by an initial problem statement, which summarises the
problem. Afterwards, a number of suggestions are made for the manufacturers, which
can increase the security of the IoT devices.

After these solutions are presented, a problem statement specifies exactly which problem
the project aims to solve. When the problem is specified, a number of proposed solutions
are presented to solve the problem. Finally, a delimitation is made, to ensure that the
solution can be completed within the time frame.

2.1 Why Botnets Cause Problems

The first botnet has its beginning in 1988, and was created by a student that wanted
to calculate the size of the Internet [4]. Since then, botnets have evolved and are often
linked with malicious intentions. This section gives a brief review of why botnets have
become a problem, and to whom they are a problem.

2.1.1 Activities by Botnets

Ordinary computer botnets use a number of different “attacks”.

Botnets are often created with the purpose to be sold or hired out to criminals. The
following list shows the activities that are performed using botnets, ordered by the most

2.2 ANALYSIS OF BOTNETS

valuable [5]. However, an activity can only be used for some time, whereafter the botnet
can proceed to the next activity on the list. In the end, when a botnet is old, and known
to security researchers, it can only be used for activities such as sending spam e-mails
or DDoS attacks.

1. Identity theft
Information stealing
Reputation theft
Botnet hosting services
Pay-per-install

Click fraud

Spam e-mail

© N ot~ W N

DDoS attack

The list is from 2011, before IoT botnets began to be a problem. If a list for IoT botnets
should be created, it probably looks a bit different. For example, it might be difficult to
perform identity theft from a DVR. Until now, the only attacks seen from IoT botnets
are DDoS attacks, and BrickerBot which destroys compromised devices.

Aside from the “activities” on the list, some botnets are also used for mining cryptocur-
rency, such as bitcoin. For example, an attacker called Folio was discovered around
2014-06-18 [6]. He managed to mine 500,000,000 dogecoin (a different cryptocurrency)
in just two months. At the time, they were worth $620,496. He did it by creating a
botnet, which were running on Network Attached Storage (NAS) devices from Synology
[6].

2.1.2 Summary

In this section, the traditional activities of botnets have been described. In the following
section, IoT botnets are analysed, in order to discover their activities and how they
infect devices.

2.2 Analysis of Botnets

As mentioned in Section 2.1, a botnet consists of a number of computers that are infected
with the botnet malware. These computers can be used for different things. In the past,
they were used to spread spam e-mails, and they are likely still used for that purpose.
Some botnets are also operated with worse intent, for example performing DDoS attacks.

This section analyses four IoT botnets, namely Mirai, BASHLITE, BrickerBot and Am-
nesia. Afterwards, a conventional computer botnet called Sasser is analysed.

4

ANALYSIS OF BOTNETS 2.2

Each section is divided into three subsections. The first subsection explains how the
devices are compromised by a botnet. The second subsection explains the purpose of
the malware, and the kind of attacks it is able to perform. Finally, the third subsection
describes how to mitigate against the attack vector that the botnet uses.

2.2.1 Mirai

Mirai is a huge botnet which consists primarily of IP cameras and DVRs. A DVR is
a device typically used to save video recordings from IP cameras. The botnet was first
discovered in 2016-08, and it targets Linux machines running busybox. Busybox is a
collection of tools, written in a minimalistic way, which makes them perfect for small
devices with limited power. The botnet propagates by brute forcing access to a Telnet
service, using a list of only 62 different usernames and passwords [7].

A reason why IoT devices are attacked instead of computers, could be that IoT devices
do not run Anti Virus (AV), which makes it easier to infect the devices. Furthermore,
the devices are available at all time, as people do not turn them off [8].

Attack Vector

The attack is performed by scanning randomly generated IP addresses, to check if port
23 is open (well-known port of Telnet). Though some of the source code seems to be
prepared to work with SSH as well [9]. If the port is open, different credentials are tried,
in a brute force manner. With a list of only 62 different usernames and passwords, Mirai
was able to infect as many as 500,000 devices. When Mirai was peaking in infecting new
bots, it reached 500 per second, according to the author of the Mirai [10].

Use case

The botnet was created to perform DDoS attacks in order to take down different services.
Originally designed by Minecraft security firms, in order to take down competitors’
Minecraft servers. The purpose of this is to get more users attracted to the attacker’s
servers, hence get a larger revenue. The first known attack was made against Krebs on
Security on 2016-09-20 [11].

Mirai has some different attacks it can execute [9]:

e UDP Generic

UDP VSE (Valve Source Engine - attack against specific game engine)
UDP DNS
UDP flood
TCP SYN

2.2 ANALYSIS OF BOTNETS

TCP ACK
TCP STOMP
e GRE IP
GRE eth
HTTP flood

Mitigation

In order to prevent a botnet as Mirai, three simple things can be done. As it only gains
access through Telnet, the Telnet port should not be exposed to the Internet. And if
the Telnet service must be publicly available, the credentials should first be changed —
by the user — in order to create more unpredictable passwords. But in general Telnet
should never be used as it is an unencrypted protocol, instead Secure Shell (SSH) should
be used. The most effective strategy would be to disable the Telnet service by default,
and power users that require the feature can enable it themselves.

2.2.2 BASHLITE

BASHLITE is a botnet first launched in September 2014 [12]. It peaked at approxi-
mately 1 million infected devices. It is known under many aliases, such as Lizkebab,
LizardStresser, Qbot, Torlus or Gafgyt [13]. It has been used to DDoS banks, telecom-
munication companies and government agencies in Brazil in 2016 [14], with bandwidths
up to 400 Gbps.

Attack Vector

According to multiple sources [15, 16, 17, 18], BASHLITE exploits the Bourne Again
Shell (Bash) ShellShock vulnerability that can be used for Remote Code Execution
(RCE) [19].

However, from looking at the leaked source code of BASHLITE, published on GitHub,
there are no identifiable ShellShock exploits in the code [20].

Instead, BASHLITE uses a Telnet scanner and a small set of usernames and passwords,
and identifies BusyBox based systems upon successful login. The set of credentials
include 6 usernames and 14 passwords.

Use case

After installation of the botnet software on the devices, the botmaster has access to a
small range of commands, where some are attacks:

ANALYSIS OF BOTNETS 2.2

e PING — Determine if bot is alive.

e GETLOCALIP — Determine the bot’s IP address.

e SCANNER ON|OFF — Use the Telnet scanner to infect other devices.
e HOLD — Attack by establishing connections and holding them open.
e JUNK — Attack by sending random strings of junk.

e UDP — Attack using UDP flooding.

e TCP — Attack using TCP flooding.

e KILLATTK — Stop ongoing attack.

LOLNOGTFO — Stop the botnet software on the device.

Mitigation

Since BASHLITE propagates through Telnet scanning, disabling Telnet access from the
Internet is a good mitigation. If remote shell access is required, it should be configured
securely with strong passwords and use SSH.

Another mitigation point against BASHLITE is to patch against known vulnerabilities,
as multiple sources claim that it also propagates using the ShellShock vulnerability.
ShellShock was publicly announced 2014-09-24 [21].

2.2.3 BrickerBot

BrickerBot is a new botnet that “bricks” devices after they are compromised. “Bricking”
a device implies that the device is unusable afterwards, essentially turning it into a brick.
This is probably done to force people — and through extension, manufacturers — to start
caring about security on their IoT devices [22]. Therefore, attackers created the botnet,
which only purpose is to spread itself and brick the devices afterwards.

It was first seen on 2017-03-20. The first sample was named “BrickerBot.1” by researcher
Pascal Geenen. A few hours later, he also found another very similar botnet called
“BrickerBot.2”. “BrickerBot.2” is a bit slower than “BrickerBot.1”, but more thorough
in the scanning and destruction of the devices.

One month later, Pascal Geenen discovered a third, “BrickerBot.3”, which distributes
faster than “BrickerBot.1” and is even more thorough than “BrickerBot.2” [23, 24].

Attack Vector

The attack vector is similar to both Mirai and BASHLITE, it uses Telnet, and it looks
like it uses a default set of passwords. But unlike Mirai and BASHLITE, it does not

2.2 ANALYSIS OF BOTNETS

download a binary and distribute itself. The fact that it does not distribute itself, also
means that it is distributed by a set of servers. Those servers are running on the The
Onion Router (TOR) network, which makes it practically impossible to track the people
behind it [23, 24]. The TOR network routes traffic encrypted through multiple nodes,
such that the source address is masked.

Use Case

After the botnet has access to the device, it runs a series of commands:

busybox cat /dev/urandom > /dev/sda &
busybox cat /dev/urandom > /dev/sdb &
busybox cat /dev/urandom > /dev/mtdblockl &

fdisk -C 1 -H 1 -S 1 /dev/sda

route del default; iproute del defaut; ip route del default; \

rm -rf /* 2>/dev/null &

sysctl -w net.ipv4.timestamps=0;sysctl -w kernell.threads-max=1

halt -n -f

reboot

Listing 2.1: Some of the commands executed by BrickerBot, dots represent more similar

commands.

As it can be seen on Listing 2.1, it first tries to write random data to the disk — line 1
— 3. Afterwards, it changes the partition table using invalid parameters, or at least non
optimal parameters, on line 5. On line 7, it deletes the default route, after this it does
not have access to the Internet. Line 8 removes all files on the system. Line 9 changes
two kernel parameters, it disables TCP timestamps and changes the maximum number
of threads to one (on a normal ARM processor it is set to ~ 10,000). Finally it halts
(power off) the system, and if it fails, it reboots. After this reboot, it is most likely not
be able to boot again, due to all the damage. It might be nearly impossible to get the
device to work again.

Mitigation

As this botnet also gains access through the Telnet service, the botnet can be mitigated
in the same way as Mirai and BASHLITE. Specifically by blocking access to the Telnet
server.

2.2.4 Computer Botnets

In Sections 2.2.1 to 2.2.3, it is apparent that IoT botnets mainly use a brute-force
approach to infecting devices. Looking at the non-embedded device world, e.g. regular
computers running Windows or similar, there are also a number of botnets using the
same approach.

ANALYSIS OF BOTNETS 2.2

One example is the Morto worm [25], which connects to Windows systems using Mi-
crosoft’s Remote Desktop Protocol (RDP). Another example, Ragebot, uses the Virtual
Network Computing (VNC) protocol to brute-force its way into computer systems [26].
These two examples are not that different from the IoT kind described earlier.

However, there are many botnets for regular computers that rely on different approaches
for compromising machines. The most popular approach, in the past few years, seems to
be relying on human nature, by using phishing e-mails or similar, to trick the user into
executing the malware [27, 28, 29]. This is however not the same automated approach
to infecting users, as it requires the user to run the malware.

Sasser

Another method that can also be considered automated is by using a vulnerability. There
have not been any well-known botnets of this kind lately, but going back ten years, there
have been numerous. One example is the Sasser worm, discovered in April 2004, which
spread to Microsoft Windows XP and Windows 2000 computer systems that had not
been patched [30]. This was a big problem then, because to patch the system, it had
to be connected to the Internet, but when connected, it would be vulnerable to Sasser.
According to some security experts, Sasser is estimated to infected more than a million
computers [31].

Discussion

In this section, some methods of exploitation have been described. Conferring [32], and
not looking at malware which utilized social engineering (persuading a user into doing
what you want), the trend is that 10 — 15 years ago, malware spread through vulnera-
bilities, and now it spreads through brute-forcing weak credentials. This development
can possibly be attributed to that there were more exploitable vulnerabilities 10 years
ago than there is now, and also that brute-forcing is faster now than then, as processors
are faster now.

The reason for excluding social engineering in this section is that the solution is educating
users, instead of relying on software to catch it all.

In the end, vulnerabilities are certainly going to be exploited, and exploits that are
more difficult to patch than others, can lead to larger and more long-lasting botnets.
Therefore, given a large pool of devices that use insecure credentials, such as mentioned
in Sections 2.2.1 to 2.2.3, it is not difficult to imagine why the brute-force approach has
been utilized in many IoT botnets already.

Actually, after the initial botnet analysis had been written, a new botnet was discovered,
which is described in Section 2.2.5.

2.2 ANALYSIS OF BOTNETS

2.2.5 Amnesia

Amnesia is a new botnet, first discovered on 2017-04-06 by Paloalto. It uses an old
vulnerability that was publicly disclosed on 2016-03-22, by a security researcher named
Roten Kerner [33].

This attack method is the same as used in ordinary computer botnets, as mentioned in
Section 2.2.4.

Amnesia is only known to infect DVRs, but up to 227,000 DVRs run a firmware which
contains the bug [33].

Attack Vector

Amnesia is probably the first known IoT botnet, which does not attack by brute forcing
the Telnet service. Instead it uses the Hypertext Transfer Protocol (HTTP) server,
which is exposed on the DVR. There is a bug in the HTTP server software that allows
an attacker to perform RCE, by crafting a malicious HT'TP request.

The DVR only has one user account, which is the root user that has unrestricted access
on the system.

Through the Uniform Resource Locator (URL), it is possible to setup a reverse shell
using a program called netcat. By establishing a reverse shell, the attacker gains direct
access to operating the device as the root user, and do not have to continue using the
same bug [34].

After the device is infected, the first thing the bot does is to check if the device is a
honeypot running in a virtual machine like VirtualBox, VMware or QEMU. A honeypot is
a controlled environment that security researchers use to attract malware and analyse
it.

This check is done by looking at /sys/class/dmi/id/product_name and /sys/class/
dmi/id/sys_vendor If one of these files contains the name of one of the previously
mentioned virtual machines, Amnesia instead tries to delete everything, by executing
the commands in Listing 2.2.

‘rm -rf / --no-preserve-root > /dev/null 2> /dev/null &
|rm -rf ~/ > /dev/null 2> /dev/null &

‘rm -rf ./ > /dev/null 2> /dev/null &

|rm -rf / --no-preserve-root > /dev/null 2> /dev/null
|rm -rf ~/ > /dev/null 2> /dev/null

|rm -rf ./ > /dev/null 2> /dev/null

Listing 2.2: Amnesia deleting everything.

As it can be seen in Listing 2.2, it first starts removing everything in the background
and in parallel (line 1 to 3 ends with an ampersand, which launches a sub-shell in the
background). Afterwards, it tries to remove everything again, but by running the remove
commands sequentially (no ampersand in the end of line 4 to 6). This manoeuvre is

10

ANALYSIS OF BOTNETS 2.2

probably made, to make it harder for security researchers to investigate the malware by
using sandboxes.

If the virtual machine check passes, Amnesia creates some files in order to ensure, the
devices are still infected after a reboot. Afterwards, Amnesia connects to a Control and
Command (C&C) server, and waits for further commands [33].

Use Case

Just like Mirai and BASHLITE, Amnesia can be used to perform DDoS attacks:
e HTTP flooding
e User Datagram Protocol (UDP) pulsed flooding
e UDP flooding
e HTTP Unbearable Load King (HULK) doser
e NICK — change nickname of device
¢ BOTKILLER — kill other bot on the system
e [P — get the bots Internet Protocol (IP)

o GET — download a file from a server

Mitigation

To avoid a DVR being infected, the only thing the user can do is to close port 80, which
is the default port for HI'TP traffic. However, the web server might be used to control
the operation of the DVR and view the camera feeds. If access to this feature is desired,
then closing the port hinders that. The port is likely opened by the Universal Plug and
Play (UPnP) service described in Section 2.4.1.

Otherwise the manufacturer has fix the bug in the firmware, but even though the bug
is from 2016-03-22, Paloalto have not been able to find an update that fixes the bug.

2.2.6 Summary

As stated in this section botnets are using various techniques to gain access to computers.
But in IoT botnets, the trend has been to use Telnet rather than exploiting bugs in
firmware. However recently, the new botnet Amnesia changed that, when the botnet
exploited a bug in the firmware. Table 2.1 shows a comparison of the IoT botnets in the
analysis.

In order to understand why IoT devices are such an interesting target for botnets at the
moment, the next section explains what an IoT device is, and why it is useful in botnets.

11

2.3 INTRODUCTION TO INTERNET OF THINGS (I0T)

Botnet name: Devices infected Attacks

Mirai ~ 500,000 DDoS

BASHLITE 1,000,000 DDoS

BrickerBot N/A Destroys the infected device
Amnesia N/A but up to 270,000 vulnerable devices DDoS

Table 2.1: Comparision of IoT botnets.

2.3 Introduction to Internet of Things (IoT)

People have a tendency to connect more devices to their home network — everything
from thermostats and smoke detectors to egg counters. This concept is known as IoT.

In order to understand why IoT devices are popular targets for botnets, this section
explains what an IoT device is. But also what makes it an interesting target.

2.3.1 What is IoT

The concept IoT refers to connecting everything to the Internet. This has a number
of advantages, as the connected items can at be monitored at all time and controlled
remotely. For example, Kamstrup has created smart meters, which replaces the old
analog electricity meters. Such a smart meter falls under the category of IoT. With such
a meter, the consumers do not have to manually report the amount of electricity they
have used. And the electricity provider knows with certainty that they receive correct
measurements. Another benefit of such a smart meter is that the consumer can monitor
how much power is used in the household over time [35].

As it can be seen, there are a number of advantages of connecting different devices to
the Internet. Other applications could be an IoT thermostat for the radiator that can
turn off the radiator when nobody are home, and of course turn it on, when somebody
is coming home. Such a thermostat can be seen on Figure 2.2. It can also be used, when
the house is empty for a period, e.g. while on holiday. Such that the radiator is turned
off, until the day you are returning home from holiday. Doing this can potentially save
a lot of money in a household.

A smoke detector can also be connected to the Internet, this gives the opportunity that
it can send an e-mail or even call you and the fire department in case of fire, example
seen on Figure 2.3. With an ordinary smoke detector, it only makes a sound to wake
you up if you are at home. But if nobody is home, no one notices that the house is on
fire [36].

12

INTRODUCTION TO INTERNET OF THINGS (I0T) 2.4

Figure 2.1: Kamstrup Figure 2.2: IoT thermo-
Omnipower smart meter. stat.

A3 . S8 g8

~O

.

Figure 2.3: IoT smoke de- Figure 2.4: IoT egg
tector. holder.

You can even get an egg counter, which informs you, when there are only a few eggs left
in the fridge (Figure 2.4) [37].

As it can be seen, an IoT device can be almost everything, but typically it is a small
device. The devices are typically always on and connected to the Internet.

There are different sectors within IoT, e.g. consumer products and industrial products,
while industrial products often follow stricter specifications, consumer products are gen-
erally not governed by any rules. This project focuses on consumer IoT devices, since
they are the primary target of the known IoT botnets.

These devices generate different kinds of traffic, some of them only communicate with
one specific server, while others host different services by themself. This is elaborated
in Section 3.5.

2.3.2 Summary

As described in this section, IoT devices do not have malicious intention when manu-
factured. Nor can any device make any harm alone, first when they are infected by a
botnet do they become dangerous.

The next section explains how IoT devices can get infected, but also why they are
dangerous when infected.

13

2.4 How 10T BECAME DANGEROUS

2.4 How IoT Became Dangerous

All devices, not only IoT devices, which are connected to the Internet, are typically
connected through an Internet Gateway Device (IGD). An IGD is a device that routes
traffic between the Internet Service Provider (ISP) network and the home network. The
IGD typically has features such as Wi-Fi and are often delivered as an all in one device
by the ISPs. A typical consumer IGD has a built-in firewall, which offers protection for
the devices connected to it.

Even though the IoT devices are protected to an IGD, they can still become a threat.
This section explains how the devices that are protected by a firewall are able to cir-
cumvent it.

2.4.1 UPnP

As the IGD provides a firewall, it is not possible to access a service provided behind the
firewall unless there is made a rule for this service.

A standard firewall on a consumer IGD does not (or at least should not) have any pre-
defined rules. So no IoT devices should work before such a rules is created. As it is
difficult to the average user, to make rules which allow services through the firewall, a
set of protocols named UPnP exist.

With some of the protocols in UPnP it is possible for a devices connected to an IGD to
send a request to the IGD and make a rules which allows the service. Another protocol
which is capable of making such rules is called NAT Port Control Protocol (NAT-PCP).

These protocols are created to help users setup their firewalls to allow traffic to devices
behind it. But unfortunately, if the manufacturers of the IoT devices do not secure it
correctly, it may introduce the risk of attackers significant. If the developers use UPnP
to grant access to unused services, such as Telnet or SSH, or other services which the
average user does not need. Then an attacker may gain access to the device through
these services. This could be done either by making an exhaustive key search described
in Section 3.1, or by determining the default credentials.

2.4.2 Default Credentials

When a network connected device is sold, it often has factory defaults settings installed.
Within these settings, a default password to administer the device can sometimes be
found. This is often the case with consumer IGDs, and many other network devices,
such as IP cameras and DVRs.

It may be too difficult for the average user to change the password, hence it is left as
the default. If the user does not change the password, it remains the default password
throughout the life of the device.

14

How 10T BECAME DANGEROUS 2.4

Leaving a default password unchanged is equivalent to no security at all, or worse, it
may provide a false sense of security for ignorant users. An ignorant user, might believe
that having a default password instead of no password is secure.

But unless the default password is randomly generated, and only printed on a sticker
on the device, this is wrong. Because if the same password is used on multiple devices,
there is a high risk that an attacker can guess the password, or even that the password
is written in the manual. Hence attackers have easy access to the devices, because they
know the password, and UPnP services have setup a rule in the firewall for the device.

It might be as simple as searching for “default password + brand + model” on Google.
In many cases, this yields the correct set of credentials for the device.

If the password is the same across multiple devices, the attacker could also download
the firmware and extract the password, as described in Section 3.2.

2.4.3 No Restrictions

As the IoT devices are connected to the IGD as any other computer, the devices have
the same access as the computer does. That means, if an attacker succeeds in gaining
access to an IoT device, he can generate any kind of traffic, because there are no limits
on the IGD. Therefore, the attacker can infect other devices from the IoT device, or
perform other attacks on the Internet.

However it is a necessity for the IGD to allow all outgoing traffic by default, otherwise
an ordinary computer would not be able to access e.g. websites.

2.4.4 Firmware Bugs

Another problem with ToT devices is that it might be difficult to upgrade the firmware.
For example, the user might have to manually download the firmware to a computer and
then upload the firmware to the IoT device. This is a problem, as an IP camera could
be running an old Linux distribution, where there are known security vulnerabilities. If
multiple IP cameras use old firmwares, which contain bugs, attackers might have easy
access to the device through the bugs.

Using bugs was often used in the past for computer botnets, as described in Section 2.2.4.
But also recently seen in an IoT botnet — Amnesia — as described in Section 2.2.5.

2.4.5 Summary

This section has explained four weaknesses that can lead to compromised IoT devices,
and cause them to be used to perform attacks on the Internet. The UPnP protocol can
be used to allow incoming traffic to an IoT device, without the owner’s knowledge. In
combination with weak passwords or firmware bugs, this can lead to exploited devices.

15

2.5 SECURITY VS. USABILITY

Exploited devices can then be used to perform attacks and spread botnet malware to
other devices.

However, the UPnP protocol has been created for the convenience of users, for example
to help them setup remote access for their devices. While it is convenient for the user,
it can pose a security risk. The compromise between security and usability is discussed
in the next section.

2.5 Security vs. Usability

In this section, the compromise between security and usability is discussed. The basic
assumption is that mechanisms that increase security usually comes with a compromise
in usability, since more effort is required from the user’s side.

2.5.1 Security

A point where security can often be improved is in authentication processes. An au-
thentication process is the confirmation of the user’s credentials.

Credentials

An evident place which can provide improved security, is the use of unique credentials.
It has been described in Sections 2.2.1 and 2.2.2 that the Mirai and BASHLITE botnets
were able to infiltrate devices through common credentials. Therefore, by using unique
credentials, the aforementioned botnets could have been prevented.

Another point to credentials is that they should be hard to guess through brute force
attacks, as explained in Section 3.1. In order to increase the difficulty of finding the
correct password, passwords should be long and complex.

Another feature that can be implemented, in order to improve security, is to use two-
factor authentication.

Two-factor Authentication

Section 3.3.3 describes how two-factor authentication works. Basically, two steps are
needed, the first is to log in with a username and password, as before. A second step
could then be to type in a code, which is sent to a phone after the first step has been
verified.

This requires an attacker to both find the credentials and then have access to the user’s
phone as well.

16

INITIAL PROBLEM STATEMENT 2.6

A third place to improve security is to ensure that the firewall, in the IGD, is protecting
the devices the outside.

Firewall

By default the firewall should prevent incoming connections, such that devices are not
exposed to the Internet. However, some devices might actually need to receive such
connections, and therefore the firewall must be configured to allow it.

2.5.2 Usability

The three aforementioned examples should each improve security, but they can also
decrease usability.

The first example of using strong unique passwords, makes it practically impossible to
remember the passwords. Therefore, many users choose to use weak passwords and even
reuse the passwords for multiple services, since they are more convenient for the user to
remember.

In the second example about two-factor authentication, if the second step is to receive a
text message with random unique code to type in. Then it requires the users to always
have their phones with them, when they need access to services.

The third example, the firewall, is an example where users prefer convenience over
security. To avoid the need for the user to configure firewall rules manually, the UPnP
and NAT-PCP protocols were created, such that the rules are automatically generated.
Some manufacturers use this tool to allow incoming traffic to all the services on their
device. For example, the IP camera analysed in Section 3.2, has a working Telnet server
running. If a firewall rule is automatically made, such that the Telnet server is available
from the Internet, the camera would be vulnerable to both Mirai and BASHLITE.

2.5.3 Summary

As it can be seen in this section, security can be improved, but it is often (if not always)
more difficult or time consuming for the user. And in many cases, convenience is chosen
over security, which is taken advantage of by attackers.

This project tries to deal with the compromise between security and usability, by creating
a secure solution, which does not require any user interaction.

2.6 Initial Problem Statement

As described in Section 2.2, IoT botnets are an increasing problem [38]. Mainly due to
the huge amount of IoT devices that use a set of default credentials that can easily be

17

2.7 SECURING I0T DEVICES

brute forced. In Sections 2.2.1 to 2.2.3, it was mentioned that the problem can be solved
by disabling the Telnet service.

However, more recent IoT botnets have been discovered that use vulnerabilities in the
firmwares of IoT devices. This shows a progression of IoT botnets, where attackers find
different ways to infiltrate devices. The use of vulnerabilities can be more challenging
to protect against [39].

First of all, the vulnerabilities can exist in the intended functionality of a device, and
thereby it cannot be blocked by turning off a service. Instead, it requires a patch of
the security issue. Depending on the manufacturer, it can take a long time to patch
a vulnerability, if it even gets done. Some IoT devices may simply not contain the
necessary features to receive updates.

Therefore, this project aims to find a method of protecting IoT devices from being
infiltrated. And even if a device has been infiltrated, a way to protect against it being
used for malicious purposes.

To protect all the IoT devices in a household, the solution is going to be implemented
on the IGD. By doing this, all the devices connected to the IGD are protected.

Therefore, an analysis is made of different aspects that should be considered when de-
signing such a security system.

2.7 Securing IoT Devices

In Section 2.4, some of the reasons why IoT devices may be insecure are expressed.
This section presents methods that the manufacturer could implement, in order to make
their devices more secure. The methods presented are: limiting services, alternative
authentication methods, whitelisting traffic and firmware upgrades.

2.7.1 Limit Services

If an IoT device is operating as a host, as explained in Section 3.5.1. For example, an
IP camera which hosts an HTTP server where the user can log in and watch the video
stream from the camera.

If that is the purpose of the device, there is no reason to have a Telnet server running
as well. As written in Sections 2.2.1 and 2.2.2, this is exactly what has been exploited.

This does not only apply to Telnet services, it applies to all kinds of unused services. The
manufacturers should try to limit the ways to connect the device, in order to minimise
the possible attack vectors.

18

SECURING 0T DEVICES 2.7

2.7.2 Alternative Authentication

If the IoT device is hosting a service, for example an HT'TP service with a login page. The
manufacturer can avoid simple passwords by using alternative authentication methods.
For example, two-factor authentication can be used in addition to credentials. With
two-factor authentication the user has something more than the password, e.g. e-mail
account. When the user tries to log in to the device, the device sends an e-mail to
the account with a PIN code that must be typed in, after the username and password.
Two-factor authentication is explained further in Section 3.3.3.

A different method is public-key authentication. With public-key authentication, a pair
of asymmetric keys are generated, a private key for the user, and a public key which can
be distributed to services where the user logs in. The service can then authenticate the
user, as they have access to the private key. Asymmetric keys are explained further in
Section 3.3.1.

A third method is Open Authorization Framework (OAuth), which is a centralized
authorization solution. This can be used to create a secure authentication server on
the Internet, which can authorize access to individual devices. The OAuth method is
explained further in Section 3.3.2.

2.7.3 Whitelist Traffic

In the event that a device has been compromised, the attacker has access to do anything
on the device. At least that is what the analysis has learned.

However, the manufacturer could put an internal firewall in place, which would only
allow outgoing traffic to specific host names, IP addresses and ports. Thereby, creating
a whitelist of traffic that is permitted.

2.7.4 Firmware Upgrade

Firmware upgrades are a very critical feature that should be supported. If there exists
a bug in firmware version, there is a high risk that it will be exploited by attackers.
Using such a bug for creating botnets has been done multiple times on computers, as
explained in Section 2.2.4. And recently, it has been seen in IoT botnets as described in
Section 2.2.5.

When a vulnerability is present in the firmware, there is nothing the user can do to
protect the device, except blocking all incoming traffic on the IGD. If all incoming
traffic is blocked, then the user is not be able to access the device from anywhere, but
his own local network. If the device is an IP camera, and the user wants to use it view
a video stream remotely, then that is prevented by the firewall

19

2.9 PROPOSALS

2.7.5 Summary

This section has mentioned a few ideas that the manufacturers can use to improve
security in their devices. However, it seems that not all of the manufacturers take
security as important as they should. For example, white-label products from China are
often found to be insecure [40].

One could argue that the manufacturer have a responsibility, as they are selling a lot of
devices, which have a high risk of being infected by a botnet. While some manufacturers
may take responsibility and improve, a solution is needed to improve the security in
general. This is what this project aims to find, as explained in the next section.

2.8 Problem Statement

From the beginning of this chapter and up to this section, several IoT botnets have
been explained (in Section 2.2). Some of the security issues (in IoT devices) have been
described (in Section 2.4) and an explanation for their existence has been given (in
Section 2.5). A number of solutions that manufacturers can apply have been described
(in Section 2.7), but a solution that can protect insecure devices is necessary.

The problem statement of this project is:
How can a universal solution be created that protects IoT devices in a household?
To answer this, the following questions should be answered:
e How can IoT botnets be stopped?
e How can different IoT devices be protected universally?
e How can such a security solution work without user input?
e How can information about IoT devices be shared in order to improve the solution?

In the next section, a number of proposals are described, which can solve the above
questions.

2.9 Proposals

In this section, five proposals for the a software solution are proposed. The proposals
can stand alone, but in principle they can also be combined.

After each proposal, the advantages and disadvantages are listed. In the end of this
section, the proposals are summarised, and a solution is chosen to be developed.

20

PROPOSALS 2.9

2.9.1 Manufacturers Create Profiles

This proposal requires the manufacturer to create a profile of the device they are selling.
This profile should contain services which are provided by the IoT device, e.g. Telnet,
nginx (web-server) or other services. Furthermore, it should contain all the IP addresses
and domain names that the device contacts, and which protocols are used in this com-
munication. This profile should then be saved in a central repository. This repository
should, ideally, contain profiles for all the IoT devices.

On the IGD, a piece of software should be running, and detect when a new device is
connected. When a new device is connected, the software should download the profile
for the device, and reconfigure the firewall to allow for the specified traffic. Such that
the device only has limited access, both out- and ingoing traffic.

Pros
e Each device only has access to exactly what it needs, because the manufacturers
know which services it provides and which domain names it accesses.

e The software executed on the IGD is lightweight.

Cons

e It may be difficult to persuade manufacturers to create the profiles.

e If a device has a Telnet server, should the manufacturer give access to the server
or not. If the Telnet server is opened, the device is still exposed to the threat from
existing botnets. But if it is closed, the people who actually need it, cannot get
access to it.

2.9.2 Community Creates Profiles

In line with the proposal in Section 2.9.1, this proposal also relies on profiles. But
instead of relying on the manufacturers to create profiles, a community of enthusiasts
create profiles for the devices. The software on the IGD could in principal be much like
the software from the proposal in Section 2.9.1.

But in this proposal, there is a risk of multiple profiles being created for the same device,
therefore it must be able to, in some way, choose between the different profiles in the
repository.

21

2.9 PROPOSALS

Pros

e Independent of the manufacturers.

e Possibility of more profiles per device, maybe a more advanced one (e.g. Tel-
net/SSH access) and a basic one (only access to the basic stuff).

e Could be used along with Section 2.9.1.

Cons

e New devices will not have a profile before an enthusiast has created one, and
uploaded it to the repository.

2.9.3 Auto Generate Profile
The profile should contain the same informations as in Sections 2.9.1 and 2.9.2. There-
fore, this proposal might be used along with either one or both of the previous ideas.

The idea behind auto generated profiles is that the software on the IGD automatically
downloads a profile from the repository if it exists. But if there is no profile available,
it starts recording traffic generated on the newly connected IoT device. Based on the
traffic, it generates a new profile, which only allows the traffic which has actually been
detected. By doing so, the device cannot — after the profile is generated — participate in
a DDoS attack, because it only allows communication with the IP addresses or domain
names, which the IGD recorded in the learning phase.

Pros

e It works for brand new devices without profiles.
e Independent of manufacturers.

e Independent of community.

Cons

e There is a risk that a device without a profile, can get infected before it has a
generated secure profile.
e The profile might not cover the entire traffic pattern of the device, if it doesn’t

access all services during the learning phase.

22

PROPOSALS 2.9

2.9.4 Virtual Private Network (VPN)

A different method of securing IoT devices is to deny all connections to the services
hosted on the IoT devices. Such that services like Telnet, and web servers cannot be
accessed from the Internet, but only from the local computers.

To access the services, a VPN connection has to be established, e.g. from a phone to the
IGD. If a phone is used, an application for the VPN should be made. The functionality
of this application is to setup a VPN connection and then open another application — e.g.
the application used for viewing a video feed. When this is done, the video application,
and only the video application, is connected to the IGD through the VPN connection.

This method can also be used together with the previous mentioned methods. E.g. if a
device has some restrictions, due to the profile assigned to the device — e.g. telnet), the
user can still get access to it through the VPN connection.

Pros

e Does not depend on how the devices operate.

e The IGD only has to run a VPN server.

Cons
e It might be difficult for people to understand why they need an additional appli-
cation, to view the video from IP camera.

e No data restrictions (destination IP/URL and type of traffic etc.), if a device is
infected.

2.9.5 Auto Scanning of New Devices

A final proposal is to perform vulnerability scanning, on all new IoT devices connected
to the IGD. Such a scan can be done, by using either OpenVAS, Nessus or a similar
software.

When one of these programs has scanned the IoT device, any known vulnerabilities have
been discovered. or if any of the services, provided by the IoT device, uses a weak
password.

After the scan, it should automatically be determined whether or not the services should
be allowed access from the Internet.

23

2.10 DELIMITATION

Pros

e Weak passwords can sometimes be found.

e All known vulnerabilities is discovered.

Cons

e Such vulnerability scanners are very heavy to run, therefore it might be impossible
to host them on the IGD.

e Vulnerability scanner may trigger security implementations in devices that can
lock out the user (throttling).

2.9.6 Summary

The first three proposals rely on a profile for each IoT device. When a device is connected
and recognised, the profile for the device is downloaded, and a set of firewall rules is
generated for the device. To generate the profile, either the manufacturer or a community
has to create it, or in the third proposal, the profile is generated by the IGD, if it does
not exists in the repository.

The fourth proposal works by utilising a VPN connection, when the services has to be
accessed from the Internet.

The fifth proposal only exposes the device to the Internet, if the service is approved by
a scanner, e.g. Nessus or OpenVAS.

In this project, the focus is to continue with the third proposal, which is going to be
implemented as a program to run on the IGD. This program identifies new devices, when
they are connected to the IGD. When the IGD has enough information about the device,
it searches a repository for a profile that matches the device. If the repository does not
have a matching profile for the device, the IGD can generate a profile automatically.

This solution has been chosen, because it gives the opportunity to include the first and
second proposal in the future. Such that, both the manufacturer and a community
can also create profiles for the devices. But if the manufacturers do not want to create
profiles, the program still functions. Similarly the program does not rely on a community
to create the profiles.

2.10 Delimitation

Due to the time frame of the project, there are a few limitations, which are listed below.

First of all, the software in this project is only a Proof of Concept (PoC). Therefore, the
software is run on a regular computer, instead of an IGD. The computer has the same

24

EvarLuaTiON METRICS 2.11

functionality as an IGD, which includes a Dynamic Host Configuration Protocol (DHCP)
server, Network Address Translation (NAT) and Wi-Fi. Besides that, the repository is
omitted, and the focus is on generating profiles, which match the devices, and from the
profiles generate firewall rules.

Furthermore, the recognition of different protocols (HTTP, Telnet etc.) is limited to a
small number of protocols.

At last, there is an assumption that the devices connected to the IGD are only be
IoT devices. So there are no computers or phones, which have non-deterministic traffic
patterns. The last assumption is reasonable, as it can be beneficial for security reasons to
divide a home into multiple network segments (segmentation). With this segmentation,
the software should only analyse and profile the IoT device subnet.

2.11 Evaluation Metrics

In order to verify the software, a number of metrics are defined. The metrics are based
on the analysis in the this chapter, and are the basis for the remaining part of the
report. Each metric is described in a subsection, the number of the subsection is used
for reference later in the report.

2.11.1 Prevent Spreading of Botnets

As mentioned in Section 2.2, botnets spread from IoT device to IoT device. Hence the
software must prevent an infected device from spreading malware to other devices on
the Internet. By preventing this, the software slows down the spread of botnets, and
if the software is used on all IGDs in the world, it can effectively prevent botnets from
spreading.

2.11.2 Prevent Denial of Service (DoS) attacks

In addition to preventing botnets from spreading, the software must also prevent already
infected IoT devices from participating in DDoS attacks as mentioned in Sections 2.2.1
to 2.2.3.

2.11.3 Operate without User Interaction

Section 2.5 states that security measures often reduces usability, therefore people may
deprioritise security. Accordingly, the software must not require, or at least require a
minimum of, interaction from the user.

25

2.11 EVALUATION METRICS

2.11.4 No Side Effect on IoT devices

In Section 2.3.1, it can be seen that an IoT device can be almost anything, and may not
be easy to configure. As follows the software must work seamlessly with the IoT devices,
such that all the intended functionality is still working after the profile is applied.

2.11.5 Auto Profile Time

To minimise the risk of the IoT device being infected while the IGD is in the learning
phase, the profile must be fully generated after the IoT device has been set up by the
user. This is important as some botnets spread quickly, as mentioned in Section 2.2.1.
Mirai was able to infect up to 500 new devices per second, when it peaked.

2.11.6 Long Time Verification

For the software to be considered as working, it must not block any legitimate traffic
to or from the device, as it might break the functionality of the device. Or worse,
it might prevent the device from updating its firmware (Section 2.4.4), if it cannot
communicate with server hosting the firmware upgrades. Therefore, there must be no
dropped packages by the firewall for 24 hours after the device has been profiled.

2.11.7 Summary

A summary of the metrics is listed below.

2.11.1 Prevent botnets from spreading.

2.11.2 Prevent an infected IoT device from participating in DDoS attacks.

2.11.3 Require no interaction from users.

2.11.4 Work seamlessly with the IoT devices.

2.11.5 Profile must be generated, after an IoT device is connected and configured.

2.11.6 After the firewall rules are generated and applied, there must be no (non-
malicious) dropped packets to or from the devices within 24 hours.

This section marks the end of the problem analysis chapter. In the next chapter, a
technical analysis is presented, which describes the technologies that are used in the
design chapter.

26

CHAPTER

3
TECHNICAL ANALYSIS

This chapter contains reference material which is used in the design and implementation
chapters, along with more technical descriptions of topics referenced from the problem
analysis.

3.1 Exhaustive Key Search

This section provides insight into the problem mentioned in Section 2.4.2, where it is
described that an attacker can gain unauthorized access by guessing the password that
is used [41, p. 23-30]. This attack also commonly known as a brute force attack.

In this section, there is differentiated betweens keys, which are fixed length bit sequences
of ones and zeros, and passwords, which are variable length sequences of limited character
sets.

3.1.1 Types of Brute Force Attacks

There are two types of brute force attacks: online and offline. The difference between
the two is whether the attacker can verify the result locally (offline), or if it has to be
done remotely (online). In order to know whether the correct key is found, the result
must be verified.

Password Cracking

In an offline attack this is done by comparing the result with a known result. Listing 3.2
shows the hash of an input string, which could be a password. The output hash can
then be compared with the known hash.

27

3.1 EXHAUSTIVE KEY SEARCH

In online attacks, it is done by asking a remote service to verify the result. Listing 3.1
shows the attempt to log in using the password “12345”. This means that offline attacks
are often much faster, as there is no network communication necessary.

[root@kali ~] time sshpass -v -p 12345 ssh admin@203.0.113.23
SSHPASS searching for password prompt using match "assword"
SSHPASS read: admin@203.0.113.23°’s password:

SSHPASS detected prompt. Sending password.

SSHPASS read:

Permission denied, please try again.
SSHPASS read: admin@203.0.113.23°’s password:
SSHPASS detected prompt, again. Wrong password. Terminating.

real Om2.300s
user Om0 .006s
sys 0m0.012s

Listing 3.1: Online verification of guess. The program sshpass is used to send the
password, and time is used to measure how long it took.

‘[root@kali ~“] time echo 12345 | openssl sha256 -r
| £332e3bc9222cd7564990a794789954409977013966fb1a8f43c35776b833a95 *stdin

| real 0m0 .004s
| user 0m0.004s
| sys 0m0.000s

Listing 3.2: Offline verification of guess. The program openssl is used to hash the input
12345.

There are some technical challenges involved in both types of attack. For example, in
order to perform an offline attack, the attacker must acquire data that can be used
to verify whether a guess is correct. To brute force a password, this typically means
acquiring a hash of the password. In simple terms, a hash is an irreversible computation
of an input that always yields a fixed length output.

Encryption Key Cracking

To brute force an encryption key, such as one used in SSL, the attacker needs to know
what the plaintext corresponding to the ciphertext looks like. An exact plaintext may
not be necessary, depending on the protocol that is encrypted. In certain cases it can
be sufficient to determine that all the characters are printable (ASCII codes between 32
and 127), e.g. if the protocol is text based, such as HTTP.

Online Attack Prevention

In online attacks, other measures can be taken to prevent brute force attacks, e.g. throt-
tling, by limiting the number of attempts that can be made in a time span per IP or
account. However, with throttling there is a possibility that an attacker can instead
perform denial of service, by locking out login attempts to a certain account or from a
certain IP. This is one of the risks when using throttling.

28

EXHAUSTIVE KEY SEARCH 3.1

On Linux, the package fail2ban (https://www.fail2ban.org) is an example of a way to
throttle login attempts. This package works by analyzing log files for login attempts,
and then blocking the source IP address from connecting after multiple wrong attempts.

3.1.2 Entropy

The difficulty of guessing the correct key (or password) depends on the entropy of the
key. Entropy is a measure for the number of different possibilities that can be the correct
solution.

For a key, which is a fixed length bit sequence, the entropy is equal to the amount of
bits in the sequence. However, this is only correct if the sequence is randomly generated
using a cryptographically strong random number generator.

For a password that is randomly generated (using a good random number generator),
the entropy can be calculated using Equation (3.1). However, passwords that are human
generated, or follows any rules quickly diminishes the amount of entropy, as the number
of symbols at each position is reduced. This is especially true, if the password is generated
using natural language words.

H =1L logy, N (3.1)

Where H is the entropy in bits, and L is the password length, and NV is the number of
symbols.

3.1.3 Special Cases with Passwords

In addition to using natural language words in a password, there are other mistakes
that reduce the difficulty of brute forcing passwords. One example is using a password
that is included in a known password lists, such as rockyou.txt, which contains 14,344,391
passwords [42].

Another issue is using personal information in a password, e.g. birth date, names, pets’
names and so on. Attackers can use tools such as Common User Passwords Profiler
(CUPP) that can generate a password list based on many combinations of known infor-
mation about a user [43].

However, this is not something that can be used in automated botnets such as Mirai, as
it requires personal information, which can be difficult to gather automatically, without
already being on the inside.

3.1.4 Summary

This section has described a weakness that can be exploited by attackers, which exist in
many devices and configurations, due to negligence from manufacturers and users. In

29

3.2 FIRMWARE DISASSEMBLY

the next section, a means of utilising brute force attacks to retrieve the default password
of a device is described, by extracting a firmware image of a device. Brute force attacks
are then used to crack the hash used in the image.

In Section 3.3, different authentication methods are described, which can be used in
place of passwords, or together with, to increase security.

3.2 Firmware Disassembly

This section describes a method for gaining insight into the software stack that is running
on IoT devices. This method, however, only relates to devices that are running a Linux
operating system or similar. Devices that run embedded applications require different
approaches.

In this section, the firmware image of an IP camera is used and reverse engineered.
The specific firmware image is of a NEXUS FW series camera. The firmware image is
downloaded from:

http://www.cinema-shop.dk/nexus-235fw.html.

The downloaded file is a RAR file, this file is extracted. The RAR file contains a ROM
file.

The ROM file is a binary file which contains the entire firmware for the IP camera. This
ROM is scanned using a Linux program called binwalk. The program binwalk can scan
binary files, looking for known file signatures, and then extract files within the binary
file.

The binwalk scan discovers that the ROM contains a JFFS2 image. This image is
extracted and mounted, it contains a complete Linux filesystem with everything included,
see Listing 3.3.

drwxr-xr-x 2 1000 1000 0 Jul 8 2015 bin

drwxr-xr-x 2 1000 1000 0 Jul 9 2013 boot

drwxr-xr-x 2 1000 1000 0 Jul 9 2013 dev

drwxrwxrwx 6 0 0 0 Aug 8 2014 etc

drwxrwxrwx 2 0 0 0 Sep 29 2011 font

drwxr-xr-x 2 1000 1000 0 Jul 9 2013 home

lrwxrwxrwx 1 1000 1000 9 Jul 8 2015 init -> sbin/init
drwxr-xr-x 3 0 0 0 Dec 15 2014 jb_config
lruxrwxrwx 1 0 0 10 Jul 8 2015 komod -> /tmp/komod
drwxrwxrwx 2 0 0 0 Jul 8 2015 1lib

lrwxrwxrwx 1 1000 1000 11 Jul 8 2015 linuxrc -> bin/busybox
drwxr-xr-x 2 1000 1000 0 Jul 9 2013 lost+found
-rw-r--r-- 1 1000 1000 1341 Apr 21 2011 mkimg.rootfs
-rw-r--r-- 1 1000 1000 431 Apr 21 2011 mknod_console
drwxr-xr-x 11 1000 1000 0 Dec 15 2014 mnt

drwxr-xr-x 2 1000 1000 0 Jul 9 2013 nfsroot
drwxr-xr-x 2 1000 1000 0 Jul 9 2013 opt

drwxr-xr-x 2 1000 1000 0 Jul 9 2013 proc

drwxr-xr-x 2 1000 1000 0 Jan 22 2015 root

drwxrwxrwx 2 0 0 0 Jul 8 2015 sbin

drwxr-xr-x 2 1000 1000 0 Jul 9 2013 share

-rwxr--r-- 1 0 0 3781 Feb 25 2016 start.sh

30

NN NN
ot w

ALTERNATIVE AUTHENTICATION METHODS 3.3

‘ drwxr-xr-x 2 1000 1000 0 Jul 9 2013 sys
4 ‘drwxr—xr—x 2 1000 1000 0 Jul 9 2013 tmp
‘ drwxr-xr-x 7 1000 1000 0 Dec 15 2014 usr
‘ drwxr-xr-x 2 1000 1000 0 Jul 9 2013 var

Listing 3.3: Contents of JFFS2 image.

In a file named /etc/init.d/S10mpp, which is part of the Linux init system, it is
determined that it runs a Telnet server. The Telnet server is unnecessary, and the user
manual does not mention this service anywhere, neither is the password shown in the
user manual.

The password has been determined using a program called “John the ripper”. “John
the ripper” is a tool for determining the plaintext behind a hash value, by exhaustive
key search, as explained in Section 3.1. The hash of the root user password is found in
/etc/passwd, and its value is:

1.£YI0cXG$YX0oBDAWHEN6IKFXD3y j5/

The prefix 1 specifies that it is the MD5crypt algorithm that is used to hash the
password. The following .£fYIOcXG$ is the salt, which is used to prevent rainbow table
attacks.

The password has been brute forced using a machine with 64 CPU cores (AMD Opteron
6272) in about 48 hours, and the password is anni2013. Here the password has been
cracked relatively quickly, and without the use of Graphical Processing Units (GPUs),
which can make the process significantly faster.

The quick discovery of the plaintext password is also related to the used hashing al-
gorithm MD5crypt, which is obsolete. Instead a modern and secure hashing algorithm
should be used, such as bcrypt. The bcrypt algorithm is around 16 times slow to
compute than MD5crypt [44].

3.2.1 Summary

This section has described a method for finding weaknesses in IoT devices on the market,
by analysing the firmware that is released on the Internet. The process that is followed is
fairly simple, as soon as the firmware image has been extracted, the entire Linux system
can be inspected.

Since Linux is a standardised in the way that the file system is structured, it should be
possible to write scripts that determine various information about firmware images. In-
formation that can be useful for attackers, for finding weaknesses that may be exposed.

3.3 Alternative Authentication Methods

In Sections 3.1 and 3.2, it has been established that passwords can be weaknesses in com-
puter systems. Therefore, this section describes alternative methods for authentication

31

3.3 ALTERNATIVE AUTHENTICATION METHODS

that can also apply to IoT systems.

The methods that are analysed are: public-key authentication, OAuth and two-factor
authentication, where either Hash-based One Time Password (HOTP) or Time-based
One Time Password (TOTP) are commonly utilised.

3.3.1 Public-key Authentication

Public-key authentication is often used by system administrators to manage Linux
servers, since it allows login without entering a password. Instead authentication is per-
formed by cryptographically signing a message by using public-key cryptography [45].
If an entity is able to sign a message such that it can be validated using a specific public
key, then it proves that the entity has access to corresponding private key.

The SSH protocol implements support for public-key authentication (example seen on
Listing 3.4), but there is also support for it in applications that rely on Secure Sockets
Layer (SSL). In SSL, the server can be configured to request a client certificate, which is
essentially a public key that is verified by another party. By proving that the client has
access to the corresponding private key, it can utilise the certificate to authenticate itself
during a SSL handshake. The browser typically prompts the user to select a matching
certificate, this is seen on Figure 3.1.

A benefit of using public-key authentication over e.g. a symmetric key approach, is
that when using public keys, no secret information is stored on the server side. A
symmetric key approach would indicate that the same key is stored on both the server
and the client, which means that if the server is compromised, it might be possible to
reuse keys recovered to compromise other servers. This is not the case with public-key
authentication, as the public key does not unlock access to the server.

OpenSSH_7 .4pl1, LibreSSL 2.5.0
debugl: Reading configuration data /etc/ssh/ssh_config
debugl: Connecting to github.com [192.30.253.112] port 22.
debugl: Connection established.
debugl: identity file /Users/user/.ssh/id_rsa type 1
(...snip...)
debugl: Server host key: ssh-rsa

SHA256 : nThbg6kXUpJWG17E1IGOCspRomTxdCARLviKw6E5SYS8
debugl: Host ’github.com’ is known and matches the RSA host key.
debugl: Found key in /Users/user/.ssh/known_hosts:55
(...snip...)
debugl: Authentications that can continue: publickey
debugl: Next authentication method: publickey
debugl: Offering RSA public key: /Users/user/.ssh/id_rsa
debugl: Server accepts key: pkalg ssh-rsa blen 279
debugl: Authentication succeeded (publickey).
Authenticated to github.com ([192.30.253.112]:22).
(...snip...)

Listing 3.4: SSH handshake that uses public-key authentication.

32

ALTERNATIVE AUTHENTICATION METHODS 3.3

 New Tab

® https://example.com

EEE Seclect a certificate

Select a certificate to authenticate yourself to example.com:443

Subject Issuer Serial
Test User Test Intermedia CA 1001

Certificate information Cancel m

*=in incognito tabs won't stick around in your

Figure 3.1: Browser prompting for a client certificate during SSL handshake.

3.3.2 Open Authorization Framework (OAuth)

The OAuth is an authentication and authorization framework that can be used to grant
third parties access to resources, without the third party needing to have access to
sensitive user credentials [46].

In the OAuth standard there are four entities, which act according to Figure 3.2.

The Client represents the entity that wants to access data that is stored on the Resource
Server.

The Resource Owner represents the user, which owns the data. It is the Resource Owner
that grants access to the data on a Resource Server to a Client.

The Authorization Server issues access tokens that can be used by the client to access
data on the Resource Server. This is only done after it has been authorized by the
Resource Owner.

Using OAuth for IoT Devices

To use the OAuth protocol to implement authentication and authorization in IoT de-
vices, the different entities would then be:

The Client is the user-agent or application that wants to access the IoT device.

The IoT device is the Resource Server.

The Resource Owner is the user, which can grant access to the Client to access the

Resource Server.

33

3.3 ALTERNATIVE AUTHENTICATION METHODS

——(A) Authorization Request—p»]
Resource
o Owner
l@——(B) Authorization Grant
(C) Authorization Grant——p»
. Authorization
Client
Server
l@———(D) Access Token
(E) Access TokenN——p»!
Resource
Server
l@——(F) Protected Resource

Figure 3.2: OAuth authentication flow.

The Authorization Server is a service hosted by the manufacturer, which is responsible
for accepting the user’s credentials, and allowing password recovery and similar services.
The Authorization Server can also implement other means to increase security, such as
identifying where the user connects from, sending notifications about suspicious activity
or implementing two-factor authentication.

Considerations

When using the OAuth protocol to authenticate user access to IoT devices, a new Single
Point of Failure (SPOF) is created, the Authorization Server. If the Authorization Server
is taken offline, it becomes impossible to access the device, without an independent means
of authentication.

The Authorization Server must also be secured, as it contains the keys that can grant
access to many IoT devices at the same time. However, considering that there is prac-
tically unlimited resources compared to an IoT device, and it is easier and faster to
upgrade a single service, compared to many thousands of IoT devices, it may still be
able to increase security in the devices. The Authorization Server should be secured in
the same way that other web services are secured.

3.3.3 Two-factor Authentication

Two-factor authentication indicates that multiple factors participate in authentication
attempts. Typically, a password is one of the factors, and then a second factor is added
to overcome the weaknesses that exist by using password authentication. A common
schema is to require “something that you now” with “something that you have”, where
a password is “something that you know” and a physical device, smartphone or similar

34

ALTERNATIVE AUTHENTICATION METHODS 3.3

is “something that you have” [41, Chap. 7.6]. The benefit is that if the technique is
implemented securely, only the person fulfilling both requirements can be authenticated.

RSA SecurlID

For the physical factor, there are multiple possibilities. Some of the earliest digital
solutions is the RSA SecurID, which is a physical device with a display that can gen-
erate a time limited code. This code must then be used together with a password to
authenticate. The RSA SecurID is seen on Figure 3.3 [47].

Figure 3.3: A RSA SecurID code generator.

Smart Phone Application

Another solution that has received a lot of attention in this decade is using a smartphone
application, such as the Google Authenticator, FreeOTP or similar. These applications
can generate HOTPs or TOTPs, which are used for authentication, similar to the RSA
SecurID [48]. A benefit of smartphone applications over a separate physical device, is
that a smartphone is something that is typically brought with you.

TOTP is a method for generating a code that is dependent on the current time, and
thereby ensuring that it is time limited. This requires that the time is synchronized
between the TOTP generator and validator.

The other method, HOTP, generates codes based on a counter. Whenever a code has
been used, the counter is incremented, and a new code is valid the next time. This
ensures that each code can only be used a single time, but it is not time limited as
TOTP is.

However, this solution relies on the security of the smartphone to keep the secret infor-
mation needed for the codes safe. If the smartphone has been compromised, it can also
compromise the security gained by two-factor authentication. Therefore, this solution is
considered less secure than the RSA SecurlD.

SMS or Phone Call
A third solution is either sending a text message to the user, or calling the user’s phone

to confirm the login. This is a more universal solution, since it does not require a
smartphone for implementation. However, if the phone has been compromised, text

35

3.4 NETWORK ADDRESS TRANSLATION

messages may still be forwarded without the knowledge of the user, and as such the
method is less secure than the RSA SecurlD.

3.3.4 Summary

This section has described alternative authentication methods that can be used instead
of accepting username and password as credentials for IoT devices. The methods that
have been described should each increase the difficulty in gaining unauthorized access
to IoT devices.

In the remaining part of this chapter, network related techniques are described.

3.4 Network Address Translation

This section describes a technique that is widely used on the Internet, namely NAT.
NAT was invented as a way to connect more computers to the Internet, than there were
IP addresses for. With NAT it is possible to extend the

232 = 4,294,967, 296 addresses

to connect practically unlimited numbers of computers, as NAT can be used in a nested
fashion, by implementing multiple layers of NAT. Multiple layers of NAT have been
adopted by many newer ISPs, as they are assigned only 1024 TP addresses for their
customers. This is known as Large Scale NAT (LSN) or in some cases Carrier Grade
NAT (CGN).

NAT works by translating the IP address of a Local Area Network (LAN) computer,
when it accesses the Internet. Then by recording this translation in an internal connec-
tion table, the NAT gateway reverses the translation when a response is received from
the Internet server.

3.4.1 Private IP Addresses

To facilitate this method, LAN computers must be assigned IP addresses that are not in
use on the Internet, or the consequence is that some parts of the Internet are inaccessible.
This is handled by the three private IP address assignments in [49], which specifies that
the networks — specified using Classless Inter Domain Routing (CIDR) notation —
cannot exist on the Internet:

10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16.

CIDR notation is a used to express a network including its size. The number after the
slash indicates the number of one bits in the subnet mask. For example, 192.168.0.0/16
is equal to network 192.168.0.0 and subnet mask 255.255.0.0, since 255.255.0.0 has 16
one bits set (from the most significant side).

36

NETWORK ADDRESS TRANSLATION 3.5

The three private IP address spaces contain
932-8 | 932-12 4 932-16 _ 17 801,328 addresses

that can be locally administered, without impacting any Internet related activity.

On top of this assignment, an address space for LSN has been reserved, which can be
used by ISPs. This address space for LSN is not routable from the Internet, and must
only exist within ISPs’ networks. The network for LSN in CIDR notation is:

100.64.0.0,/10

which again allows for
232-10 — 4,194, 304 addresses

and an ISP can theoretically reuse this space for every public IP address they own.

3.4.2 Implicit Security

Even though NAT breaks the host-to-host connection principle of the Network layer, it
implicitly denies ingoing traffic to devices that are behind NAT. While this decreases
the attack surface significantly, because no server applications can be accessed from the
Internet that problem could have been solved without NAT by using a firewall.

3.4.3 Considerations Regarding NAT

A consideration regarding NAT, and especially in the context of LSN, is the increased
computational requirements. When using NAT, every single packet that flows through
the gateway, must be rewritten by the NAT code, and the translations must be remem-
bered for as long as the connection is active. This increases the requirements to the
equipment that ISPs are using for their access network.

3.4.4 Summary

In this section, NAT has been described, and the widespread use of it. It should be
noted that with the implementation of Internet Protocol version 6 (IPv6), NAT is no
longer required, as there is going to be enough addresses for all devices.

In the next section, different types of IoT devices are described, and how they commu-
nicate with Internet based services.

37

3.5 TYPES OF 10T EQUIPMENT

3.5 Types of IoT Equipment

This section describes some of the different ways IoT devices communicate with e.g.
cloud services or simply the corresponding mobile applications. By determining any
patterns in traffic from IoT devices, it is easier to create profiles of them.

There are multiple ways that IoT devices can operate, to be controlled and communicate
with other services. A basic scheme of Internet services is the client-server model, where
a client contacts a server that is hosting a service. This scheme can be utilized in two
ways, either the IoT device is the client, which is contacting a remote service. Or the
IoT device can be the server, and accepting connections from clients.

3.5.1 IoT Device acting as a Server

In the case where the IoT device is acting as a server, a server program is running on
the IoT device. There are two possibilities for clients, it can either be a LAN device,
which connects directly without being routed by the IGD. Or it can be a remote Internet
device, which is communicating through the IGD.

In the first case, it is possible to eavesdrop on the traffic if it passed through the IGD on
the data-link layer, e.g. if the client and server are bridged through the IGD. However
this may not always be the case, if two devices are connected using a switch that is
separate from the IGD. In this situation, the traffic between the client and the server is
not going to flow through the IGD.

The second case is complicated by the appearance of one or more NAT gateways, and
it may not be possible to connect to the device remotely. If the IGD is behind a LSN,
it may simply not be possible to accept incoming connections from the Internet. If it
is not, then incoming connections require configuration in the IGD, in order to forward
new connections to the IoT device.

When the IoT device is hosting a server program, it can become the target of a vulner-
ability. There exist many vulnerabilities that rely exploiting a weakness in a service, by
crafting a malicious request. Some of the exploits that are well known are e.g. Shell-
Shock, Heartbleed and various SMB exploits in the Windows operating system. If the
IoT device is then accessible from the public Internet, it can be compromised by attack-
ers, if they have found a vulnerability to exploit.

3.5.2 IoT Device acting as a Client

On the other hand, if the IoT device is acting as the client, which connects to the
Internet, it does not need to accept incoming request. Instead it connects to another
service, and acts as a client. This situation can bypass the restrictions that are imposed
by NAT gateways.

38

DEEP PACKET INSPECTION 3.6

When the IoT device is the client, it is more difficult to attack, as the attacker has
to position himself between the IoT device and the service it is contacting. Thereby
performing a Man in the Middle (MITM) attack. If an attacker manages to position
himself, he can then serve crafted responses to the client. While this is considerably more
difficult, due to the necessity of the MITM position, it can also be used to compromise
the device.

First of all, a DoS attack can be performed, by simply dropping the traffic between
the IoT device and the remote service. Another attack could be an IoT device that
repeatedly checks for new firmware updates on the Internet. In the MITM position, it
can be possible to serve a malicious firmware update to the device.

3.5.3 Summary

In this section, two different models for how IoT devices are connected to Internet based
services have been described.

Of course, IoT devices can be a combination of both. Even if the device operates as a
server, it can still use clients programs to perform other activities, e.g. synchronizing
time using Network Time Protocol (NTP) or checking for firmware upgrades, and in
combination with either, it could also be performing DNS lookups. In the next section,
the behaviour of IoT devices is be determined, by using Deep Packet Inspection (DPI).

3.6 Deep Packet Inspection

In this section, a technique known as DPI is described. This technique can be used
to identify traffic on the Internet. In DPI, the payload of network traffic is inspected
to determine which protocol is being used. This is opposed to only inspecting simple
numbers, such as source and destination ports, which can only tell limited information
about the communication. For example, traffic going to port 80 would be identified as
HTTP traffic, due to the port number registration with the Internet Assigned Numbers
Authority (IANA). However, this may not be truthful, as there are no limitations in
place to prevent the port for being used for other protocols. And a service can also run
on a different port than the IANA assigned.

This is where DPI enters the picture. By looking at the payload of the communication,
instead of only e.g. port numbers, it can be determined more precisely what protocol
is being used. Following the HTTP example, only if the first payload coming from the
client contains something like “METHOD url HTTP/1.x” is it HTTP traffic. Similarly
the response from the server also have to follow certain rules about the what it sends.
By looking into these payload, it becomes possible to identify traffic, regardless of which
port numbers it is communicating on. And by identification, it also becomes possible to
block activity.

39

3.7 DATA ENCRYPTION

By using DPI, it also becomes possible to generate more precise profiles of devices, as
with the HT'TP example, the client sends a User Agent string — containing the software
version it is running — and the server often includes a software version as well.

However, DPI can be very resource intensive, as it requires checking the payloads with
different matchers, until the correct protocol is identified. The definition of a matcher
here, is something that is looking for a specific protocol in a payload. The more protocols
that can be matched, the more processing time is required to inspect individual payloads.

3.6.1 Summary

In this section, DPI has been described, which can be used to identify network traffic
more precisely than by relying on port numbers and IP protocols. DPI is impaired by
the use of data encryption, this is further described in the next section. Encrypted data
is more difficult to identify using DPI, since only the outer unencrypted layer can be
analysed.

3.7 Data Encryption

This section describes some of the different ways that data is encrypted on the Internet,
and also some ways of identifying the application, even though the data is encrypted.
Data encryption is becoming more widely used everywhere, many websites have begun
to offer Hypertext Transfer Protocol Secure (HTTPS) instead of HTTP, and certain
websites are now only accessible using HTTPS. When HTTPS is used, it becomes im-
possible to determine, what is being transmitted between the server and the client, as
SSL is being used [50].

The SSL protocol, is an accepted practice whereby to establish a secure communication
channel, over an insecure medium — e.g. the Internet [41, Chap. 2]. On the inside of the
secure communication channel, an application protocol can exchange messages without
the risk of being tampered with or eavesdropped on.

When data encryption is used, it becomes difficult to do DPI, as is mentioned in the
previous section, Section 3.6. However, there can still be gathered certain information,
which is exchanged in plaintext, when the secure channel is established. When using
SSL for example, the protocol consists of multiple messages, where information can
extracted, the handshake protocol is shown in Figure 3.4.

3.7.1 Messages Exchanged by the SSL Handshake Protocol
ClientHello

In the first message, which is always sent by the client of an SSL session, it is possible
to determine the supported Cipher Suites, Compression Methods and Extensions. A

40

DatA ENCRYPTION 3.7

Client Server

Client_tegy,,

ccﬂl.[il! ale

exchangt
or_Ke =
server

. uest
certificate re
jo_dont

server hel

Time

'V oy
N.-rl'r'l"u-,g‘. veripy

Chap, B¢ _Ciphey- Ko
L, 0

W*

o cipher SpPes

chan

SSL Handshake Protocol

Figure 3.4: Messages exchanged in the SSL. Handshake Protocol.

Cipher Suite is a combination of a Key Exchange algorithm, Authentication algorithm,
and Data Encryption algorithm. In low resource environments, such as smaller IoT
devices, the number of Cipher Suites that are supported may be limited to save resources,
and the same goes for Compression Methods and Extensions. The supported Cipher
Suites, Compression Methods and Extensions can then be used to coarsely divide devices
between multiple groups.

Two of the useful Extensions that can be used to get more information about the con-
nections are Server Name Indication (SNI) and Application-layer Protocol Negotiation
(ALPN). The SNI extension is used when a server hosts multiple virtual servers on the
same IP address, in order to determine the correct certificate to present to the client. The
value of the SNI extension is the domain name that was resolved to find the IP address
of the server. The other extension, ALPN, is used to negotiate the application-layer
protocol to be used inside the encrypted channel.

Both of these extensions can contain information that can be used to distinguish between
different SSL connections.

41

3.8 DATA ENCRYPTION

ServerHello

In the ServerHello message, which follows immediately after the ClientHello message, the
server responds with the selected Cipher Suite and Compression Method. This does not
grant much information, as the server only selects between those sent in the ClientHello.

ServerCertificate

Immediately after sending the ServerHello message, the server follows up with the
ServerCertificate message. In this message, it is possible to gather information about the
remote server that the client connected to. For example, the server certificate contains
information such as Valid From, Valid To, Common Name (Domain Name), information
about the certificate issuer, and information about the server’s public key, see Figure 3.5.
All of this information is something that persists for a longer period of time, but is not
completely static.

Version

Serial Number

Signing Algorithm; for

Signature Algorithm ID

Issuer (CA) X.500 Name

Validity Period

Subject X.500 Name

Example, SHA1withRSA

<«—— CA’s Identity
<«—— Lifetime of This Cert

<«—— User’s Identity

Algorithm D
Subject Public ot

Key Info

User’s Public Key (Bound to
User’s Subject Name)

Public Key Value

Issuer Unique ID

Subject Unique ID

Other User Info; for Example,
subAltName, CDP

Extension

G J

(CA Digital Signature) <— Signed by CA’s Private Key

Figure 3.5: Example of an X.509 certificate, which is used in an SSL handshake.

The other SSL handshake messages are related to the key exchange procedure, and
setting up the negotiated cipher suite, and as such do not contain useful information.
Therefore they are omitted in this section.

3.7.2 Summary

This section has briefly described the SSL protocol, which is used for most encrypted
communication between client and server programs. There are, of course, other encryp-
tion protocols in use, but SSL is the most prevalent one, since basicly any traffic can be
transmitted inside the encrypted channel.

The next section describes some of the Linux related tools that can be used to set up
firewalling, routing, virtual network namespaces and more.

42

LiNnux ROUTER 3.8

3.8 Linux Router

This section describes the procedure that is used to create a router on the Linux oper-
ating system. The Linux kernel is capable of forwarding traffic between interfaces, and
performing filtering and NAT in the process.

3.8.1 Forwarding

By default, forwarding is disabled and must be enabled in the system to create a
router. Forwarding can be enabled in the kernel, by setting the kernel parameter
net.ipv4.ip_forward to 1. Listing 3.5 shows how to enable forwarding.

‘[root@router] sysctl -w net.ipv4d.ip_forward=1

1
2 |net.ipvé4.ip_forward = 1

Listing 3.5: Enabling forwarding in the kernel.

When forwarding has been enabled, the Linux kernel is permitted to forward received
packets, where the destination address does not belong to the system. The packet is
forwarded to the interface that the routing table has selected for the destination address.

Listing 3.6 shows an example of a routing table in Linux. In the routing table, it can be
seen that the two networks 192.51.100.0/24 and 192.168.0.0/24 are locally connected, in
other words, the system has interfaces with addresses in those networks.

The route which begins with “default” is selected for outgoing traffic that is not matched
by other routes. This is the default gateway.

I | [root@router ~] ip route

2 | default via 198.51.100.1 dev ethO

3 ‘192.168.0.0/24 dev ethl proto kernel scope link src 192.168.0.1

4 ‘198.51.100.0/24 dev ethO proto kernel scope link src 198.51.100.91

Listing 3.6: Linux routing table example.

This setup is sufficient that devices on the 192.168.0.0/24 network can transmit pack-
ets to the Internet, through the Linux router. However, other hosts on the Internet
cannot reply to 192.168.0.0/24, since it is a private IP address space, as mentioned in
Section 3.4.1. Therefore, the Linux router must perform NAT. In the Linux kernel, NAT
happens in the netfilter framework.

3.8.2 Netfilter

Netfilter is a framework in the Linux kernel that offers the features required for NATing,
firewalling and connection tracking. It does so by providing a set of hooks, where traffic
can be manipulated when it moves through the kernel. Two hooks are registered by the
iptables tables nat and filter, where NAT and firewalling occur respectively. Each
table contains chains, which are a set of rules that are processed in the order they occur.

43

3.8 LINUX ROUTER

NAT

In the nat table, NAT can be performed. All the traffic that is being sent from the
Linux router go through the POSTROUTING chain in the nat table. In this table, the
source address can be manipulated through a rule.

Listing 3.7 shows a rule being added. The rule specifies that all traffic with source
address in 192.168.0.0/24 being transmitted on the ethO network interface, should have
the source address translated (masqueraded) to the current IP address of the ethO
interface.

1 ‘[root@router "] iptables -t nat -A POSTROUTING -s 192.168.0.0/24 -o eth0 -j

<> MASQUERADE
root@router ~] iptables -t nat -nvL POSTROUTING

pkts bytes target prot opt in out source destination

2 | [
3 | Chain POSTROUTING (policy ACCEPT O packets, O bytes)
|

0 0 MASQUERADE all -- % ethO 192.168.0.0/24 0.0.0.0/0

Listing 3.7: Inserting a rule to translate the source address.

Through this rule, outgoing traffic is NAT ’ed and LAN devices can communicate with
Internet devices. Netfilter handles the reverse translation automatically.

Firewall

In order to create a firewall in the Linux router, the filter table is used. As the name
implies, it is where packets are filtered. Packets that are forwarded in the Linux router
pass through the FORWARD chain of the filter table. In this chain, it is possible to
permit or deny specific connections.

An example of a firewall policy is shown in Listing 3.8.

[root@router ~] iptables -A FORWARD -m state --state ESTABLISHED ,RELATED -j
<~ ACCEPT

[root@router ~] iptables -A FORWARD -s 192.168.0.0/24 -o ethO -j ACCEPT

[root@router ~] iptables -A FORWARD -j DROP

[root@router ~] iptables -nvL FORWARD --line

Chain FORWARD (policy ACCEPT O packets, O bytes)

num pkts bytes target prot opt in out source
— destination

1 0 0 ACCEPT all -- % * 0.0.0.0/0
<~ 0.0.0.0/0 state RELATED ,ESTABLISHED

2 0 0 ACCEPT all -- * ethO 192.168.0.0/24
<~ 0.0.0.0/0

3 0 0 DROP all -- = * 0.0.0.0/0

<~ 0.0.0.0/0

Listing 3.8: Example of a firewall policy in a Linux router.

In the firewall policy shown in Listing 3.8, rule 1 permits packets belonging to established
connections, rule 2 accept traffic that arrives from the LAN network and is routed to
the Internet. Rule 3 specifies that all packets should be dropped. However, the last rule
does not affect the rules before it, since when a packet has been ACCEPT ed it stops
progressing through the chain.

44

LiNnux ROUTER 3.8

3.8.3 Summary

In this section, a description of how to create a Linux router, NAT gateway and firewall
has been made. The instructions have been basic, compared to the possibilities in
iptables. This section is the end of the technical analysis, where techniques that are
used in the following chapters have been described. In the next chapter, the design of
the solution is described.

45

CHAPTER

4
SYSTEM DESIGN

This chapter presents the design of the solution proposed in Section 2.9.3. The chapter
starts with a system overview to present the big picture of the solution. After the
overview, the system is divided into parts, starting with the profiles, which define the
IoT devices. Followed by the architecture of the software, and then the plugins used in
the software.

4.1 System Overview

On Figure 4.1 a diagram of a typical home network is seen. As it can be seen both
Multiple Purpose Devices (MPDs) and IoT devices are connected to the IGD. To protect
all devices behind the IGD, the solution is a program that is hosted on the IGD, as traffic
to all devices — IoT devices and MPDs — goes through the IGD. Though, this project
only focuses on the IoT devices, as mentioned in Section 2.10.

The solution is a system that uses profiles to filter traffic for connected devices. The
profiles are created by the system itself, when a new device is connected. This is done
by analysing traffic to and from the device, and using DPI to learn specific protocols
used by the device.

A new profile is started whenever a device is connected and an IP address is assigned.
It is assumed that a device retains the same IP address, if it is disconnected and then
reconnected. This can be done by creating static DHCP allocations. When the profile
has been completed, it can be converted to firewall rules and applied to the IP address
of the device, in the IGD firewall.

47

4.2 PROFILES

Multiple purpose device

———
A &

Desktop

0T devices Internet

Thermostat

Camera

Figure 4.1: Top view diagram of a typical local area network.

4.2 Profiles

A profile defines a device, and includes two components. The first component is infor-
mation about what traffic is accepted to and from the IoT device. The other component
is information that can be used to identify the device, thereby a unique fingerprint.

4.2.1 Traffic Information

In order to describe the traffic that should be accepted, the profile must include infor-
mation about what servers are running on the device, and what it connects to on the
Internet. Since DNS is used to resolve the IP endpoints on the Internet, DNS queries
must also be included in the profile. These three elements should describe the Internet
traffic that a device produces.

4.2.2 Fingerprint Information

To create a fingerprint of a device, the above information about Internet traffic can be
useful. For example, two devices that contact the same domain name are more likely to
be related. While true in some cases, there are also more generic Internet services that
different devices can connect to, for example NTP servers.

By using DPI, it is also possible to determine specific protocols, and information such as
protocol version or software versions. This information can be included in the fingerprints
as well.

Along with traffic information, which flows to the Internet, there is also traffic that only
reaches the LAN. For example, the DHCP protocol and Media Access Control (MAC)
addresses never reach the Internet. From the DHCP protocol, the device can provide

48

PROFILES 4.2

a host name, which can be included in the fingerprint. MAC addresses are defined as
two 24-bit values, where the first value is a vendor prefix, and the remaining part is a
number assigned by the vendor. The vendor prefix can be included in the fingerprint,
since it indicates which vendor produces a device.

The information to be included in the profile is listed here:
e Host name of device.

Vendor prefix of MAC address.

DNS queries made by device.

Services running on device.

Services contacted by device (device acts as client).

4.2.3 DHCP Request

The host name and vendor prefix of MAC address of the device can be found in the
DHCP request. The DHCP request is essentially the first message that the IoT device
sends, since it used to configure the device with an IP address.

From the DHCP request, the host name of the device can be learned and the MAC
address can be recorded. The host name and the vendor prefix of MAC address are used
in the fingerprint of the device.

An example of a DHCP acknowledgement can be seen in Listing 4.1.

Bootstrap Protocol (Request)

Client MAC address: Tado_10:47:el (ec:e5:12:10:47:el)
Magic cookie: DHCP

Option: (50) Requested IP Address
Length: 4
Requested IP Address: 192.168.1.93
Option: (12) Host Name
Length: 4
Host Name: tado

Listing 4.1: Excerpt of a DHCP acknowledgement from a Tado bridge. Content produced
by Wireshark.

4.2.4 IoT Device as Server

If a device hosts any services which should be reported, this is done by analysing the
incoming traffic to the device. If a new connection is made to the device, the protocol
it uses is analysed and what port it is running on. The connection is then tracked, and
the response from the device, tells which software that the host is running. E.g. a web
server can both be hosted using Apache or nginx.

49

4.2 PROFILES

On Figure 4.2, a flowchart explaining the process of a client connection to a IoT device
is shown.

IGD Report SSH traffic
\/\
- . Report HTTP
Data to loT device New connection Yesp| Track traffic
\/\
Report Telnet
No traffic
' \/\

Do not track

Figure 4.2: Flow chart of detection of services hosted on devices.

4.2.5 10T Device as Client

In addition to Section 4.2.4, when a device contacts remote hosted services, it should
also be reported.

If the client contacts other remote services, both the protocol is reported, but also the
destination domain name or IP, depending on whether it has made a DNS query or not.

IGD Report SSH traffic
\/\
Data frqm loT New connection >—Yesp Track Report HTTP
device traffic
\/\
Report Telnet
No traffic
A 4 —

Do not track

Figure 4.3: Flow chart of IoT device contacting server.

4.2.6 DNS Queries

If the IoT devices contact remote services, it might also make a DNS query. If such a
query is made, it is reported, and both the domain name and resolved IP is reported.
An excerpt of a DNS response is seen in Listing 4.2. In this listing, it can be seen that
a device asks for the IP address of the domain name i.my.tado.com, in the response
there are two IPs addresses, both should be reported.

50

SOFTWARE DESIGN 4.3

Domain Name System (response)
Questions: 1
Answer RRs: 2

i.my.tado.com: type A, class IN, addr 54.171.136.152
i.my.tado.com: type A, class IN, addr 52.48.170.120

Listing 4.2: An excerpt of a DNS response from a DNS query on my.tado.com. Content
produced by Wireshark.

Based on a query like the one seen on Listing 4.2, a mapping between the domain name
and IP address is saved in the profile. An example of a report is shown on Figure 4.4.

DNS Query Report
IP 192.168.1.110
Query i.my.tado.com

54.171.136.152
52.48.170.120

Response

Figure 4.4: DNS query report.

4.2.7 Summary

The parameters for the profile have been chosen, the chosen parameters are: “Host
name”, “vendor prefix of MAC”, “services on device”, “services contacted by device”
and “DNS queries made by device”. The next section explains how the software for the
IGD is designed in order to create these profiles, along with how the profiles should be
shared such an IGD can download them instead of creating them.

4.3 Software Design

This section describes the general design of the software that creates profiles and handles
how the profiles are shared. From a global perspective, there should be a central place
to exchange profiles, where the IGD can lookup an existing profile for a device. This
should benefit, in the long term that the devices can be identified more quickly and more
reliably.

Other than the centralized repository of profiles, software has to be designed to run on
the IGD. The software on the IGD handles analysing packet traffic and building profiles
from the data.

Therefore, two applications are designed in the following sections. The two applications
behave according to the client-server model, where the software on the IGD, can be
considered a client that requests resources that are on the server, namely the centralized

o1

4.4 SERVER APPLICATION DESIGN

repository. In the following, the two applications are named: Client Application and
Server Application. Figure 4.5 shows the one-to-many relationship between the server
and clients.

Server Application:

Repository

o4 |

IGD1 IGD2 IGDn

Figure 4.5: Client-server model nature of the applications.

4.4 Server Application Design

The Server Application is used by the Client Application, and must provide certain
features to it. The Client Application uses the Server Application to query existing
profiles, download specific profiles and upload profile information related to a device.

Since these features are only used by the Client Application, when there is a new device
connected to it, it only needs to access the Server Application at that time. Therefore,
there is no need for the Client Application to maintain a persistent connection with the
Server Application at all times.

Whenever the Client Application needs to access the Server Application, it can do so
in a session context, by sending a request and receiving a response. This approach
is well supported by a RESTful Web Service, where the Client Application can use
HTTP requests to access resources on the Server Application. Each request can then be
processed and finished, and the session can be ended, until the Client Application needs
to send the next request.

In Section 4.4.1, the functionality provided by the Server Application is described.

52

SERVER APPLICATION DESIGN 4.4

4.4.1 Functions

Tables 4.1 to 4.3 described the functions that are defined in the Server Application.

Function Name: | Query Existing Profiles

Input: A full or partial Profile is accepted as input.
Output: If found, any existing Profiles are returned.
Procedure:

1. Search in Profile database using input Profile.

2. If found, return the Profile that has most identical
features.

3. If not found, send an appropriate response.

Table 4.1: Function: Query Existing Profiles.

Function Name: | Download Profile

Input: A Profile identifier
Output: An existing Profile
Procedure:

1. Search in Profile database using identifier.
2. If found, return the Profile.
3. If not found, send an appropriate response.

Table 4.2: Function: Download Profile.

Function Name: | Upload Profile

Input: A Profile
Output: Status message
Procedure:

1. Look for relevant existing Profiles.

2. If found, merge the incoming Profile with the existing.

3. If not found, create a new Profile in the repository
using the input.

Table 4.3: Function: Upload Profile.

4.4.2 Repository Operation

The repository must store profiles in a kind of database. The underlying database type
is decided by the implementation. In order to merge profiles, and thereby increase the
confidence that each profile provides, an algorithm must determine the similarity of two
profiles. This should be done based on the fingerprint information that is included in
the profile.

53

4.4 SERVER APPLICATION DESIGN

4.4.3 Security Issues

Since the Server Application hosts device profiles that the Client Application trusts,
precaution should be taken against malicious profiles. Namely, a way to prevent an
attacker from uploading a profile which allows any traffic, thereby opening a hole in the
solution.

The issue arises from the fact that anything that the Client Application sends, can
be forged by an attacker. Therefore, an approach to determine whether a profile is
legitimate must be found. A number of approaches are described below.

Consensus

One approach is to first consider a profile legitimate, when a number of similar profiles
have been uploaded, and a consensus has been found. By doing this, a single uploaded
profile cannot be spread to all Client Applications.

However, if an attacker controls a botnet, they can then upload multiple similar profiles
and succeed anyway. Therefore, this approach is not secure enough on its own.

Verified Account

Another approach could be to require users running the Client Application to register
and get verified. Verification could be through linking social media accounts, or verifying
phone numbers etc. A verified account would then be required to upload profiles.

This increases the difficulty for an attacker that wants to upload a malicious profile. But
it also decreases the usability from the user’s perspective, who now has to register to
use the system, and become verified.

Digital Signature

A third approach could be to make the Client Application sign the profiles before up-
loading them. However, since the Client Application would contain the key material to
sign the profile, an attacker can still use the key to generate a malicious profile.

If this approach is combined with previously described Consensus approach, it would
require an attacker to acquire multiple keys. The keys would need to be distributed with
the IGD, in order be able to trust them. Therefore, an attacker needs to acquire many
IGDs.

This approach has no usability impact on the user, since it would be handled from the
IGD manufacturer’s side.

54

CLIENT APPLICATION DESIGN 4.5

4.4.4 Summary

In this section, the design of the Server Application has been described. Three ap-
proaches have been described to overcome a security issue that an attacker can generate
fake profiles. The chosen solution is to use consensus and digital signature to prevent
forgery of profiles. In the next section, the design of the Client Application is described.

4.5 Client Application Design

In the previous Section 4.4, the Server Application design has been described. In this
section, the Client Application design is described.

The primary objective of the Client Application is to generate profiles from network
traffic, in order to identify devices and create a model of their behaviour. The Client
Application communicates with the Server Application, to retrieve existing information
about a device. Information that is automatically learned from other IGDs, or provided
by communities or manufacturers.

4.5.1 Traffic Inspection

In order to generate a profile about a device, the Client Application is required to
inspect network traffic. Because the software runs on an IGD, it has complete access to
all the traffic that are routed between networks. Effectively, it is in a man-in-the-middle
position.

Traffic that is not routed — in other words, traffic between two devices on the same
network — is not necessarily captured by the IGD. However, if a home network is
segmented into a MPD network and an IoT device network, then that requires routing,
and traffic must go through the IGD.

4.5.2 Profile Generation

When a new device gets physically connected to the network, it starts with a clean
slate. Then as it starts to communicate, e.g. configuring an IP address using DHCP or
checking for firmware upgrades, further information can be gathered about the device.

The information that is gathered can then be used to generate a profile that characterizes
a device’s behaviour. Whenever the Client Application encounters a type of traffic that
the profile does not contain, it is added to the profile. This is done until the profile
generation is stopped.

95

4.5 CLIENT APPLICATION DESIGN

4.5.3 Profile Management

When a profile is generated, it should be sent to the Server Application, in order to
share it with other users. Likewise, the Server Application should also be queried when
a new device is connected, to retrieve an existing profile. These two tasks should happen
automatically.

When a device is connected, and a preliminary fingerprint of it has been generated, the
Server Application can be queried. A preliminary fingerprint could be just the MAC
vendor prefix, host name, and the first DNS query that the device makes. Using this
information, it can be determined if there is a device that resembles it, or if it is an
unrecognised new device.

Similarly, when a profile has been generated for an unrecognised device, it should be
sent to the Server Application.

4.5.4 Subsystems

In Sections 4.5.1 to 4.5.3 three tasks have been described. The Client Application is the
combination of these three tasks. There are two ways to design the application, either
all three tasks live in the same application, or they can be separate applications.

By creating one application, it can be simpler to communicate between the three tasks,
as it can be done without encoding and decoding information to transfer it between
tasks. Similarly, it might be able to run faster than three separate applications, since
its memory is shared between all three tasks, and data can be accessed more directly.

However, by creating three separate applications, it is possible to move an application to
a more powerful device if it is necessary. It is also possible to impose different restrictions
on the three applications, since they do not require the same privileges necessarily.

The Client Application is divided into three applications, since the security benefits of
privilege separation outweighs the limited performance gain from a single application.

The three subsystems are shown on Figure 4.6, and perform the following tasks:

Sniffer

e Receive packet traffic, either on the wire (network interface) or from a file (pcap).

e Track related packets, such as used by Transmission Control Protocol (TCP) hand-
shakes, or requests and responses in a UDP based protocol, for example DNS.

e Decode application-layer protocols by using DPI techniques.

e Output information in the format of reports, which contain information about the
host, and the traffic detected.

56

CLIENT APPLICATION DESIGN 4.5

Profiler

e Receive information in the format of reports.

e Track services that devices interact with as a client, and services that devices host
as servers.

e Track DNS queries, in order to substitute IP addresses in reports with domain
names.

e Provide a real-time picture of the devices on the network.

Management

e Get notifications from the Profiler when a new device is connected.

e When preliminary information about a device has been collected, query the Server
Application.

e When a profile is completed by the Profiler, upload it to the Server Application.

e Manage which profiles are active, and thereby manage the firewall rules on the

IGD.
Management REST E
Configure Firewall Subsystem l— We_b — -
Service
|l
. Profiles Web Service
Control |
Y
Profiler
Subsystem
Reports

@_Ethernet Traffic— Subsystem

i |

Sniffer

IGD

Figure 4.6: Overview of subsystems in the Client Application.

There are more benefits to three applications rather than one. For example, the sniffer
has to handle a lot of data, because every packet must be inspected to determine if it

57

4.6 SNIFFER

starts a new session or connection. However, the profiler only has to handle data coming
from the sniffer, which only generates reports when certain events occur.

Therefore, those two subsystems can be optimised for different properties, where the
sniffer should be optimised to process data quickly, the profiler can be more flexible,
since it does not have the same speed requirement.

The management subsystem only interacts with the profiler, and controls when to stop
a profile generation process. This removes some of the complexity of the profiler, since
it should only focus on generating the profiles. The management subsystem is then a
dedicated system to manage the Client Application on the IGD.

4.5.5 Summary

In this section, the overall design goals of the Client Application have been described.
The design specifies three subsystems that should exchange data by producing reports
in the sniffer, which are consumed in the profiler. The profiler and the management
subsystem then exchange data in the format of profiles. In the next sections, Sections 4.6
to 4.8, the designs of the sniffer, profiler and management subsystem are elaborated.

4.6 Sniffer

In this section, the design choices of the Sniffer are elaborated. The Sniffer handles
analysing packet traffic, and sending reports of detected traffic to the Traffic Profiler.

The Sniffer is designed in layers, according to the Open Systems Interconnection (OSI)
model. This is done as protocols are nested, and therefore the lower layer protocols
should be decoded first.

The lowest layer in the Sniffer handles receiving Ethernet packets from a network in-
terface or from a PCAP file. These packets are then passed to the next layer, which
decodes the IP headers, for Internet Protocol version 4 (IPv4) and IPv6 respectively.
Thereafter, both TCP and UDP can be decoded and in the end, the packet is passed to
the application layer decoders.

Whenever a layer detects what it is looking for, it can report that it has detected
something. Following the overall architecture, this is the output of the Sniffer. A
complete flowchart for the Sniffer is shown on Figure 4.7.

The following subsections describe the layers that the Sniffer must contain.

58

SNIFFER 4.6

adA11ay13
aulwialag

sassalppe
JOVIN 8p0odag

19%9ed Buiwoosu|

¢ AV

99

€ d3AV

7 d3AV]

vga_
dan
| JapesaH 1XaN sassalppe 109030.d sassalppe
dan aulwialeg 9Ad| apodaq aulwialag Ad| 9p02aQ
awk
Buoes] Buoel]
||||||| uonvauU0)D siaqunu uod . LORIBULDT) siaquinu uod
! opnasd dan apodag ! p:otma dd.1 3poded
H wiopad H
1 1
“ T “ _
! u@o&ma ! peojAed
T T
uoI93UU0d MBN & :
m UoI193UU0d M3N
1 1
H sjoo0jo.d |020301d H 1090301d sjoo030.d
' JaAe| uoneoldde J19AeT uoneo)ddy - J19AeT uoneo)ddy — = 1ake| uoneoidde
H dan pauoddns aulwialag H aulwialag d21 pavoddns
1 1
‘ i
“ 1
1

uoday

uoI98UU0D MBN

yoday

uoday

uonoaUU0D MaN

L AV

Figure 4.7: Flowchart of sniffer design.

4.6 SNIFFER

4.6.1 Layer 2

On layer 2, a module must handle incoming packet traffic, and decode MAC addresses
and EtherType from the Ethernet header (Figure 4.8). EtherType is used to determine
which protocol the payload is using, e.g. IPv4 or IPv6.

0 31

0

39 Preamble

64 Destination MAC
128 Source MAC
160 EtherType

Payload
CRC

Figure 4.8: The Ethernet header.

The notable EtherType values to support are listed below:
e 0x0800 — IPv4.

e 0x860D — IPVO6.

4.6.2 Layer 3

On layer 3, there are two protocols that should be supported, IPv4 and IPv6. From this
layer, IP addresses should be decoded, and determined what the next layer protocol is.
The IPv4 and IPv6 headers are shown on Figures 4.9 and 4.10 respectively.

Where the IPv4 header has room for options inside the header, it has been moved outside
of the header in IPv6, and the header has a fixed length. In order to add IP related
options in IPv6, the Next Header field is used, and a chain of headers is constructed.
However, the Next Header field is also used to specify the transport layer protocol. This
is a difference between IPv4 and IPv6 that is necessary to handle in the application,
since the transport layer protocol is always specified at the same position in IPv4, but
it might not be in IPv6. Therefore, in the IPv6 decoder, headers should be recursively
decoded until a transport layer protocol Next Header value is found.

60

SNIFFER 4.6

0 31
0| Ver. | THL TOS Total Length
32 Identifier Flags | Fragment Offset
64 TTL Protocol Header Checksum
96 Source Address
128 Destination Address
160 Options Padding

Figure 4.9: The IPv4 header.

0 31
0| Ver. | Traffic Class Flow Label
32 Payload Length Next Header | Hop Limit
64
Source Address
128

Destination Address

Figure 4.10: The IPv6 header.

4.6.3 Layer 4

On layer 4, there are two main protocols in use, TCP and UDP. Both TCP and UDP
use port numbers to allow multiple connections to and from a host. The most notable
differences between the two protocols are that TCP is stream-oriented, reliable and has
built in algorithms to determine available bandwidth, where UDP is message-oriented,
unreliable and does not use any algorithms to determine bandwidth.

TCP

The stream-oriented nature of TCP uses three-way handshake for establishing connec-
tions, and a pair of two-way handshakes to close them. These handshakes can be tracked
and used to determine the duration of a connection, amount of traffic etc. By tracking
connections, it is also possible to accurately determine the first (and subsequent ones)
message that is sent, which can be analysed with DPI. The TCP header is shown on

61

4.6 SNIFFER

Figure 4.11, where port numbers, sequence and acknowledge numbers and flags are used
to perform connection tracking.

0 31
0 Source Port Destination Port
32 Sequence Number
64 Acknowledgement Number
o
96 | Daa aeEEEEEEE Window Size
128 Checksum Urgent Pointer

Figure 4.11: The TCP header.

UDP

In the message-oriented nature of UDP, it can be difficult to determine which message
is the first, since there is no concept of connections in the protocol. Instead, UDP passes
datagrams (messages) between hosts, to transmit application layer data. There is no
reliable way to track “connections”, since they do not exist, but it is possible to relate a
message to another message, by looking at the Tuple of {Source Address, Source Port,
Destination Address, Destination Port} (4-tuple).

This way, a pseudo connection can be tracked, whenever a message arrives on a 4-tuple,
but there is no method to identify when the connection is closed. The method that is
commonly used in stateful firewalls, is to mark the connection as closed after a timeout
period without activity. This is the most that can be done, without looking into the
payload.

0 Source Port Destination Port

32 Length Checksum

Figure 4.12: The UDP header.

ICMP

Internet Control Message Protocol (ICMP) is a protocol used to deliver diagnostic or
control messages in IP networks. It is used to perform the ping command, which
sends/receives ICMP Echo Request/Reply.

However, it is also used to deliver error notifications, such as Destination Unreachable,
which should also be handled by the application, in order to untrack filtered connec-
tions, such as when a UDP packet is sent to a port number, where nothing is listening.
Listing 4.3 shows an ICMP error notification, when a UDP packet is delivered to port

62

SNIFFER 4.6

10000, and nothing is listening for it. The listing also shows that the entire IP packet,
including the UDP header and payload was returned to the sender.

Internet Control Message Protocol

Type: 3 (Destination unreachable)

Code: 3 (Port unreachable)

Checksum: 0x394c [correct]

Unused: 00000000

Internet Protocol Versionm 4, Src: 127.0.0.1, Dst: 127.0.0.1
(...Truncated...)
Protocol: UDP (17)
Header checksum: 0x78e2 [validation disabled]
Source: 127.0.0.1
Destination: 127.0.0.1

User Datagram Protocol, Src Port: 53163, Dst Port: 10000
Source Port: 53163
Destination Port: 10000
Length: 13
Checksum: Oxfe20 [unverified]

Data (5 bytes)
Data: 616263640a
[Length: 5]

Listing 4.3: ICMP Port Unreachable message.

4.6.4 Layer 7

On layer 7, the Sniffer handles decoding of application layer data. By inspecting the
payloads of TCP or UDP packets, it is possible to distinguish between protocols that
are supported by the applications.

In the application, it should be possible to extend this layer with numerous protocols,
since new application layer protocols are created every once in a while. On the lower
layers, new protocols do not suddenly emerge, since they often require operating system
level support, which is not the case with application layer protocols.

The application should support two general cases, text-based protocols and binary pro-
tocols. The definition of a text-based protocol, is one that uses only printable American
Standard Code for Information Interchange (ASCII) characters for normal operations.
Binary protocols on the other hand, do not consist of only printable characters, but may
include any byte value from 0-255.

Text-based Protocols

In general, text-based protocols should be easier to distinguish, since there is more
information transmitted, and therefore less ambiguity. Examples of text-based and
binary protocols are shown in Listing 4.4 and Figure 4.13.

In the HTTP example, the application can look for the “GET / HTTP/1.1” line, followed
by a list of key-value pairs (separated by colon), until it finds a double line feed.

63

1
2
3
4

4.6 SNIFFER

| GET / HTTP/1.1

| Host: example.com

| User-Agent: curl/7.54.0
| Accept: */x*

Listing 4.4: An example HTTP request.

Binary Protocols

However, in the DNS example, the DNS header (Figure 4.13) is shown, which is followed
by the questions for the DNS server. In that case, there is virtually no consistent
information to look for (as with “GET / HTTP/1.1”), the first two bytes is an ID that
can contain any value between 0-65535.

The ID is virtually useless, except it is used to match the response packet with, but it
does not provide a definitive clue that it is a DNS query. After the ID, certain flags are
sent, depending on the query, which provides some basis for matching, and then four
16-bit numbers are sent, which indicate the number of domain names to look up. The
application can reasonably assume that these numbers are close to zero, since a query
often looks up a single name at a time.

0 1D

16 |5| OPCODE |2 |2 |22 RCODE
32 QDCOUNT

48 ANCOUNT

64 NSCOUNT

80 ARCOUNT

Figure 4.13: The DNS header.

4.6.5 Reports

The previous 4 subsections, Sections 4.6.1 to 4.6.4, have described how traffic should
be analysed on the different layers of the OSI model. As stated initially in this section,
whenever a layer detects that which it is looking for, it can produce a report that is used
by the Traffic Profiler.

In Section 4.2, a list of information that a profile must include is shown. To create a
profile containing that information, the following reports are necessary:

64

SNIFFER 4.6

DHCP Acknowledgement Report

Whenever a device has been powered on, and it is configured to retrieve an IP address
automatically (through DHCP), it sends out a DHCP request, in order to configure its
own IP address. The DHCP server on the network responds to the request, and provide
an IP address to the device, which sends the final message in the DHCP protocol, the
acknowledgement. This acknowledgement contains the MAC address of the device, the
given IP address, and a host name, if the device is configured to provide it.

This report covers the first three points on the list in Section 4.2.

DNS Query Report

When a client wants to connect to server, through a domain name, it must first resolve
the IP address pointed to by the domain name. This is done through the DNS protocol.
The DNS query, and the response to it, contain the domain name of the query and the
resolved IP.

This report covers the 4th point on the list in Section 4.2.

New Connection Report

This report should be generated whenever a new TCP connection is established, or a
new packet has arrived on an untracked TCP 4-tuple.

This report covers the 5th and 6th point on the list in Section 4.2, but only to the level
that IP addresses and port numbers are known. In order to determine which service is
running, DPI can be used to generate reports from the traffic after the connections are
established. This is described in the next report.

Application Layer Protocol Report

After a connection has been established, only the involved IP addresses and ports are
known. In order to determine which protocol is used in a connection, it is necessary to
use DPI to look at the payloads.

By looking for specific patterns in payloads, the application layer protocols can be de-
termined. When the protocol has been determined, a report should be generated. In
certain cases, it is possible to gain information about the software running on either end.
If this can be determined, it should also be included in the report.

65

4.8 TRAFFIC PROFILER

4.6.6 Summary

This section has described the design choices regarding the Sniffer part of the application.
Sections 4.6.1 to 4.6.4, have described how traffic is analysed on different layers, and
Section 4.6.5 has described what reports are necessary to generate the profiles that are
described in Section 4.2.

In the next section, the Profiler subsystem is described, which uses the reports that are
produced by the Sniffer subsystem.

4.7 Traffic Profiler

The previous section, Section 4.6, describes the subsystem that analyses network traffic,
and generates reports that can be used to build device profiles. This section describes
the design of the Traffic Profiler subsystem, which combines multiple reports of the same
device into a profile. The end goal is to produce profiles, such as specified in Section 4.2,
for each device that is connected to the network.

The Traffic Profiler subscribes to reports generated by the Sniffer. Each time a report
is received, the Traffic Profiler should check if the device is currently being profiled. If
it is, the information of the report is added to the existing profile. If it is not, a new
profile generation is started for the new device.

Internally, the Traffic Profiler must treat each device independently. Reports that are
received regarding one device, must not have any side effects on other developing profiles.
The rationale is that the devices are independent, and the profiles must accurately
represent one device.

The flowchart on Figure 4.14 shows the process of the Traffic Profiler subsystem. The
horizontal lines represent the boundaries of the different subsystems, where to Manage-
ment subsystem is on the top, the Sniffer on the bottom, and the Traffic Profiler is in the
middle. The Sniffer generates reports, which are processed by the Traffic Profiler. The
data of the reports are stored into a profile storage, which contains developing profiles.

The Management subsystem accesses the profile storage, in order to extract profiles and
share them with the Server Application, and perform other management features of the
Client Application. The connection to the profile storage should be in a real time manner
such that the Management subsystem can get notified about profile changes.

On Figure 4.15, an example is shown where a profile is updated due to incoming re-
ports. The first report “(1)” is the result of a DNS query, where the Tado device is
resolving “i.my.tado.com”, and the response is an A record, containing the two IPs
“54.171.136.152” and “52.48.170.120”.

The second report “(2)” shows the TCP connection initiated to one of those two IPs
on port 443, where the profiler should substitute the IP for domain name, since it has
learned that from the first report.

66

MANAGEMENT SUBSYSTEM 4.8

Management
Subsystem

Record Data from

- : Profile
Report in Profile

Storage

 — Reports

Shniffer
Subsystem

IGD

Figure 4.14: Flow chart of profiler design.
4.8 Management Subsystem

The Management subsystem is responsible for managing the process of generating pro-
files. It is also the part of the Client Application, which communicates with the Server
Application. The communication to the Server Application is already established to be
a RESTful Web Service.

Since the subsystem is responsible for managing profile generation, it must have access to
the profiles that are in generation. This should happen through a real-time connection,
where changes in profiles are pushed to the Management subsystem, instead of repeat-
edly retrieving all the profiles. This behaviour is more efficient, and the Management
subsystem can react faster than if it is polling.

Figures 4.16 and 4.17 show the interaction between these two subsystems.

Following the sequence on Figure 4.17, the Profiler automatically starts profiling new
devices that are connected. Every time a change is made in a profile, the Management
subsystem is notified, and it can decide how to proceed. When a device is connected for
the first time, the Management system queries the Server Application, after receiving
initial data about the device. Such as MAC address and host name.

67

4.8 MANAGEMENT SUBSYSTEM

Device IP address Host Name DNS queries Clients Servers

Philips Hue 192.168.1.100 Philips-hue

Tado 192.168.1.110 tado

DNS Query Report
P 192.168.1.110
Query

Response

New Connection Report

IP 192.168.1.110 |(2)
Dest. '\+
Port
y
Device IP address Host Name DNS queries Clients Servers

Philips Hue 192.168.1.100 Philips-hue

Tado 192.168.1.110 tado

Figure 4.15: Example of how a profile is updated when reports are processed.

If a profile is found on the Server Application, it is downloaded and the Management
subsystem configures the IGD according to the profile. Profile generation is also stopped
on the Profiler, as the only traffic that is detected, is already permitted by the profile.

If a profile is not found, the Profiler continues building a profile, as explained in Sec-
tion 4.7. When the profile is considered complete, the Management uploads the profile
to the Server Application, and configures the IGD’s firewall according to the generated
profile. Determining when a profile is complete, e.g. represents a device completely, can
be difficult, as there could be periodic traffic, which does not occur while training the
profile. But a simple way is to consider the profile complete after a period of time where
there has been no changes in the profile.

Profile

Changes

Profiler Management
Control g

Messages

Figure 4.16: The interaction between the Profiler and the Management subsystem.

68

MANAGEMENT SUBSYSTEM 4.8

A new profile is) |
started as the :] Create Profile | Query
result of a new Existing
device receiving I Profile

Profile Update

Profile:
IP, MAC, Host name L "
Query Profile

an IP (DHCP).

T)

[f

- — Found
Existing
Profile N Stop Profile Setup firewall
Generation according to
profile

|

i

|
=i
_

i

|

New _r
Profile Not Found

Continuing profile
generation

Profile is
updated further,

Profile Update

due to traffic
to/from the device

Profile. Update

No updates in
period of time

A

top Profil I
S(Bzﬂer;;igﬁ Setup firewall
according to
| profile

-G ------ 00—~

I
I
I
I
I
I
I
I
I
I
I
Upload Profile l
OK \
I
I
I

Figure 4.17: Sequence diagram showing how the Management subsystem and Profiler
cooperate.

69

4.8 MANAGEMENT SUBSYSTEM

When a profile is completed, or downloaded, it should be added to the firewall on the
IGD. In this case, the profile should be transformed into firewall rules that are applicable
on the IGD. The transformation is dependent on the firewall software, which depends
on the operating system of the IGD. Therefore, the process of transforming a profile to
firewall rules, has to been done on an implementational level, and there is not a specific
design to it.

4.8.1 Summary

This section has described the design of the Management subsystem in the Client Ap-
plication. The subsystem manages the Profiler application, and makes decision about
when a profile is complete. It also interacts with the Server Application, in order to find
an existing profile or upload a profile that has been generated. Finally, the subsystem
handles configuration of the IGD firewall, when a profile should be added to the firewall
configuration.

70

CHAPTER

5
IMPLEMENTATION

This chapter describes the implementation of the design in Chapter 4. As the software
is only a PoC, it implements a small amount of protocols. The implementation is pro-
grammed in Python, as it has the required functionality to build the application, and
there are existing libraries that can be used for packet sniffing.

The implementation is, as specified in the design, split into three subsystems. Some of
these subsystems use some common software patterns, namely dependency injection and
event busses. These patterns are initially described in Sections 5.1 and 5.2. Then the
subsystems are described individually.

The first subsystem is the PySniffer module. This module captures network traffic and
analyses it. Based on this analysis, reports are generated and dispatched to the next
subsystem, PyProfiler.

PyProfiler generates a profile for each device based on the information in the reports it
receives. Finally, based on the generated profiles, a set of firewall rules is generated by
PyProfiler. The names PySniffer and PyProfiler represent the traditional Python way
to name libraries, e.g. py*.

5.1 Dependency Injection (DI)

In Section 4.5.4, the Client Application is separated into three subsystems. The three
subsystems can then be verified independently, before they are integrated into the com-
plete system. In order to verify the subsystems, Dependency Injection (DI) is used to
separate components within the subsystems.

DI is a technique, where a component supplies a dependency to another component,
by injecting it into the dependent component. This is opposed to the dependent com-
ponent having a tightly coupled connection to the dependency. DI is shown on Fig-
ure 5.1, and the tightly coupled case is shown on Figure 5.2. On both figures, the Car

71

5.1 DEPENDENCY INJECTION (DI)

class has a method called setVehicleSpeed, which in this example, should call the
setRotationSpeed on the engine, by multiplying the speed in km/h by a constant to
determine the engine speed in RPM.

Car PetrolEngine
ine- ; - speed: Number
- engine: IEngine setRotationSpeed(speed [rpm])
setVehicleSpeed(speed [km/h]) [----1
i
1
1
1
1
1
i
1
<<dependency>> <<implementation>>
i 1

1

' <<interface>>
1 -
! IEngine
1

1

1

setRotationalSpeed(speed [rpm])

Figure 5.1: Car example using Dependency Injection (DI).

Car PetrolEngine
- engine: PetrolEngine <<instantiate>>_ | - speed: Number
setVehicleSpeed(speed [km/h]) setRotationSpeed(speed [rpm])

Figure 5.2: Car example without Dependency Injection (DI).

On Figure 5.2, the Car object autonomously instantiates a PetrolEngine. In order to
write a unit test, which verifies that setting the vehicle speed accurately sets the rotation
speed of the engine, the test must create a Car object. Creating a Car object, results
in the instantiation of a PetrolEngine object. The unit test then has to measure the
output of the PetrolEngine, and the unit test also fails, if it is the engine that is broken,
but not the car itself.

On Figure 5.1, the Car instead depends on any type of engine (IEngine). Therefore, a
unit test can create a fake engine, which follows the interface, and pass the fake engine
to the Car. By this abstraction, the unit test is isolated to the Car class, which can be
verified without requiring a functioning PetrolEngine class.

72

EVENTS 5.2

5.1.1 Summary

In this section, the DI pattern has been described. By writing the application code
following this pattern, the components become more loosely coupled. This is beneficial,
since it is simpler to verify that the components are working as intended.

Another benefit is that, in order to follow the pattern, the code must have a higher
level of abstraction. Since the components may only depend on the availability of a
component following the specification. This, in turn, should make it simpler to exchange
one implementation of a component with another. For example, to select between two
components that recognise the same protocol.

In the next section, another concept is explained, which also assists in separating the
different components.

5.2 Events

Along with DI, another technique is used to separate the different components in the
subsystems, the “publish—subscribe” pattern. This pattern specifies that the interac-
tions between components are published by the sender component, and received by any
component that subscribes to them. There can then be multiple receiver or none at all.

Evgent] > l Subscriber

Figure 5.3: Publisher sending event to multiple subscribers.

Publisher

By performing this inversion of control, the components become loosely coupled, as they
interact through generic messages, instead of function calls. It also simplifies the way
of creating one-to-many relationships between components, where one sender interacts
with many receivers. Since the sender can be oblivious to who receives the messages
that it sends. By extension, this makes it simpler to create multiple components that
receive messages from the same sender.

This pattern is useful in the Sniffer subsystem, where there is a layered architecture.
For example, the IPv4 module subscribes to packets from the Ethernet module, but the
Ethernet module does not know about the IPv4 module. Similarly, the IPv6 module
can also subscribe to packets from the Ethernet module.

Listing 5.1 shows a simple implementation of the pattern, where a publisher can emit
an event to multiple subscribers. The subscribe method should be passed a callback
function, which is subscribed to the event. When the publisher wants to send a message
to the subscribers, the message is passed to the publish method.

73

5.3 PYSNIFFER

class Event:
def init__(self):

self.subscribers = set ()

def subscribe(self, callback):
self .subscribers.append(callback)

def publish(self, message):
for subscriber in self.subscribers:
subscriber (message)

Listing 5.1: Event emitter.

5.2.1 Summary

In this section, the “publish-subscribe” pattern has been described. This pattern sim-
plifies the process of passing data from one component to multiple components, without
a predefined list of receivers. It can used to extend the subsystem with new components
that support new protocols.

5.3 PySniffer

PySniffer is the module that captures all the traffic passing through the IGD. It performs
DPI on the captured packets, in order to generate reports, describing which protocols
are used, and the endpoints. To do so, a Python library called Scapy is used, the usage
of Scapy is explained in Section 5.3.1.

The analysis of the Internet packets is done using a plugin system, where plugins can
emit events, as described in Section 5.2, when they find packets following their matching
criteria. These plugins operate on different layers in the OSI model, specifically layers
3,4 and 7.

5.3.1 Scapy

Scapy is a Python library that can analyse and manipulate network traffic. It can both
send and receive packets. In this project, it is used for sniffing packets on the IGD. After
a packet is received, Scapy decodes the packet. For example, a DNS header contains
many values, which are at a specific offset in the UDP payload, see Figure 4.13.

Scapy has mappings of the offsets, such that each value can be retrieved as shown below:
ancount = packet[’DNS’].ancount

This returns the ancount value from a DNS packet, which is the number of answers in
a response. If a value is required from a different layer, it can be accessed similarly, by
exchanging “DNS” with e.g. “IP” or “TCP”.

74

PYSNIFFER 5.3

Without Scapy, these offsets must be specified manually, in order to decode the packets.
An example hereof is found below:

ancount = packet[x + y + z + ¢]

In this example, x, y and z are the lengths of Ethernet, IP and UDP headers respectively
and q is the offset of ancount in the DNS header.

5.3.2 Reports

Reports are used as an interface between PySniffer and PyProfiler. PyProfiler reads the
reports and uses them to generate a profile for each device, based on these reports. The
reports are generated at layer 4 and layer 7, in the PySniffer software.

Layer 4 reports describe which transport protocols are used for the device, hence it
contains source and destination IP and ports, along with the protocol, either TCP or
UDP.

Layer 7 reports contain information about which application layer protocol is in use,
and what software and version it is using. This could be an IoT device connecting to a
HTTP server, using curl version 7.54.0. The report would then contain the IPs of the
client and server, along with curl 7.54.0, since it is the HT'TP client and version, used
by the IoT device. An example of a report is found on Figure 5.4.

HTTP Report
Client IP 192.168.1.110
Server IP 54.76.229.21

User-Agent curl/7.54.0

Figure 5.4: HTTP report, with user agent “curl”.

If, on the other hand, it was a DNS report, it would contain the source and destination
IPs and the domain name queried, together with the DNS responses. Such a report is
found on Figure 4.4.

5.3.3 Layer 3

The plugins on layer 3 divide the Ethernet traffic into IPv4 and IPv6 traffic. When
using Scapy, it can be done by checking if the packet contains an IP or IPv6 layer.

If a packet is either an IPv4 or an IPv6 packet, an event is emitted, and the plugins on
the higher layers receive it if they are subscribing to the event.

75

5.3 PYSNIFFER

Decode IPv4
Pvas addresses
Ethernet traffic X Pass to transport
IP version layer
Decode IPv6
IPv6> addresses

Figure 5.5: Flowchart of layer 3 plugin separation.

5.3.4 Layer 4

On the transport layer, two plugins are created, to perform TCP and UDP connection
tracking.

UDP

This plugin tracks all UDP connections, a flowchart is shown on Figure 5.6. The plugin
subscribes to packets, from both the IPv4 module and the IPv6 module.

When a packet is received, the protocol number is decoded. If the protocol is UDP, the
source and destination IPs and ports are decoded. If this 4-tuple is tracked, the packet
is recorded on the existing tracked connection. On the other hand, if it is not tracked,
the 4-tuple is saved to a list with tracked connections. A connection is tracked, if the
4-tuple is already saved, and the 4-tuple has been used within the last 300 seconds which
is the default UDP tracking time for Linux.

If the received packet instead uses the ICMP protocol, then the ICMP type of the packet
is decoded. If the ICMP type is “Destination Unreachable”, a report is created stating
that a device has tried to access a closed port.

onnectiol
already
tracked?

Decode
UDP»{ source/destination
IPs and ports

Yes

Network traffic

ICMP No
L J
7 R Destination port
destination Track new
Do not track No— " reachable” >~ YeS™ closed connection
?

Figure 5.6: Flowchart of the UDP plugin.

Pass to
application layer

PYSNIFFER 5.3

TCP

This plugin tracks TCP connections. If a new TCP connection is found, this layer keeps
track of the connection, using the sequence and acknowledge numbers defined in the
TCP protocol. A new tracked connection generates an event for other plugins on higher
layers, which they can subscribe to, and receive the payload without keeping track of
the specifics in the TCP protocol, such as the Three-way handshake, acknowledgement
and retransmission.

Pass to
application layer

TCP control

Do not track Check seq and
packet ack number

Figure 5.7: Flowchart of the TCP plugin.

5.3.5 Layer 7

On the application layer, packets are already tracked on a connection level, meaning
that each plugin can subscribe to new connections being established.

When a new connection is established, the plugins can subscribe to receive traffic on the
connections. Thereby the plugins can operate using a state machine, where a plugin can
look for multiple packets arriving in a certain order.

If a packet does not match the current state of the state machine, the plugin then un-
subscribes from the connection, as it has determined that the application layer protocol
is not the one that is detected by this plugin. Similarly, if the state machine reaches
its final state, the plugin can generate a report, which contains information about the
protocol in use.

Several plugins have been implemented, and these plugins are described below.

DHCP

The DHCP plugin subscribes to all new UDP connections, if a DHCP request packet is
found, it waits for the DHCP ACK packet.

A report is generated based on the DHCP ACK packet, with the IP address, host name
and MAC address of the IoT device which sent the DHCP request.

77

5.3 PYSNIFFER

Report IP, MAC
and Host name

Protocol? DHCP. Message-type DACK

Not DHCP Not ACK
Y y

Do not track

. Wait for ACK
connection

Figure 5.8: Flowchart of the DHCP plugin.

DNS

The DNS plugin subscribes to the UDP plugin, to receive all new UDP connections.

Each DNS session has an ID, which is random generated, this ID is decoded by the
plugin when the first DNS packet is received, the query. After the DNS query is received
and decoded, the plugin waits for the DNS response. When the response is received a
report is generated, with the domain name, IP of IoT device, and the IP in the response.
If the response has multiple IPs, they are all included in the report.

Wait for DNS query and

response response

A
Continue

Yes.
Response?

No
Response No Ignore
Do not track

Figure 5.9: Flowchart of the DNS plugin.

Yes

Query waiting?

SSL

This plugin subscribes to a TCP connection. In order to determine if a connection uses
SSL, the payloads are examined for messages of the SSL protocol. The SSL handshake
protocol begins messages with the byte 0x16, which can be used to track SSL messages.
When an SSL session is found from the analysis, a report is generated.

By extending the SSL module, it is possible to extract the server certificate, and the
cipher suite that is used for the connection. This can then be included in the report.

78

PYSNIFFER 5.3

. Report
. Is Wait for .
TCP session Client Hello? Yes—p» Server Hello SSL session
No
Continue

Is
Server Hello?

Stop tracking SSL [«-No Yes.

Figure 5.10: SSL plugin flowchart.

Telnet

Telnet subscribes to the TCP plugin. When a new TCP connection is established,
the Telnet plugin looks for Telnet commands. The Telnet commands are structured as
follows:

Command start byte + Command byte + Value byte

The Command start byte is an identifier, which always has the value 255, and the
Command byte is the actual command, which has a value between 240 and 255.

Multiple Telnet commands can be sent in succession.

If this criteria is met, the plugin waits for a response from the server, to verify that a
server is running, and a report is generated.

elnet command
in TCP payload

Telnet report

<

TCP session

es

No

A

Do not track
session

Figure 5.11: Telnet plugin flowchart.

Regular Expression (RE)

The Regular Expression (RE) plugin checks protocols that are text-based and use pat-
terns which can be matched using RE. In this case, it is used for SSH and HTTP.

79

5.4 PYPROFILER

For example, in order to identify the SSH protocol. The string the RE plugin matches
against could look like SSH-2.0-0penSSH_7.5. The RE used to match that string looks
like:

~SSH-(?P<software>.+?)\r?$

This RE searches for “SSH-" in the beginning of a line. It captures the following text
until it meets a “Carriage Return” (\r), and returns it in a variable called “software”.

Regular
Expression
(RE)
Generate
TCP session Yesp DecOde software application layer
version report
No

Do not track
connection

Figure 5.12: TextMatch plugin flowchart.

5.3.6 Summary

In this section, the implementation of PySniffer has been explained. It is described how
the implementation captures and analyses packets, and how the reports are generated.
The next section is going to describe the implementation of PyProfiler, which uses the
reports that are generated by PySniffer.

5.4 PyProfiler

This submodule, PyProfiler, processes reports generated in PySniffer. Based on these
reports, a profile is generated for each IoT device. From this profile, a set of firewall
rules is generated. Though the “management subsystem” is not implemented, due to
limited time. Instead a script is made, which takes a profile as input and returns a set
of firewall rules for the device, which should manually be loaded into the firewall. This
script serves as a PoC of the ability to generate firewall rules from the profiles that are
generated.

80

PYPROFILER 5.4

5.4.1 Profiles

Based on reports generated by PySniffer, described in Section 5.3.2, a profile is generated.
This profile contains everything reported about each IoT device.

Table 5.1 shows a representation of an example profile. The profile contains a DNS
query to resolve updates.example.com, where firmware updates could be retrieved. The
DNS query leads to an HT'TP request, which is shown in the clients section. The device
could then be managed through an HTTPS Application Programmable Interface (API)
on port 443, shown in the servers section.

Profile
Name ExampleDevice
Protocol Port Service
Servers
TCP 443 SSL
. Protocol Destination Port Service
Clients
TCP 203.0.113.65 80 HTTP
Query Response
DNS queries 203.0.113.65

updates.example.com
203.0.113.66

Table 5.1: Example of a profile.

5.4.2 Web Server

While developing the application, it is necessary to look into the generated profiles in
real time. Therefore a simple web page has been created to provide a real time overview
of the profiles. This web page uses the real time connection that the Management
subsystem is anticipated to use.

The real time connection sends out notifications when there is a change to the internal
data structure that contains the profiles in PyProfiler. By encoding these notifications
using Javascript Object Notation (JSON) and sending them over a WebSocket connec-
tion, they can be interpreted by an HTML and Javascript web page. A WebSocket
connection is substituted for a regular socket, since it can be opened directly from a web
page, therefore receiving the notifications directly from PyProfiler.

The web page is shown on Figure 5.13.
5.4.3 Firewall Rules
After a profile has been generated, it can be converted to firewall rules that can protect

the device. In this project, the firewall is running on Linux and therefore using the
netfilter framework, which is configured through the iptables tool.

81

5.4 PYPROFILER

tado
192.168.1.100

Servers:
Clients:

» connecting to 192.168.1.1:udp/53 ()
* connecting to i.my.tado.com.:tcp/443 ssl-client ()

DNS gueries:

. i.my.tado.com.‘ 54.72.3.36, 52.212.221.252

Figure 5.13: Screenshot of the web page that shows real time profiles.

The profiles contain three sections as seen in Table 5.1. From the servers section, in-
coming traffic can be allowed on the recorded ports. For outgoing traffic, listed in the
clients section, traffic can be allowed to the specific IPs and ports. However, since out-
going traffic uses DNS to resolve the IP address, the domain name should be taken into
consideration. Since the IP addresses that the DNS queries resolve to can change over
time.

Incoming Traffic

Incoming traffic can be allowed through a single iptables rule:
iptables -A FORWARD -p tcp -d 192.168.0.100 --dport 443 -j ACCEPT

Where tcp can be exchanged for udp, if that is the case. And 192.168.0.100 and 443
represent the device’s IP address and service port.

Outgoing Traffic
Outgoing traffic that is going directly to an IP address, which is not resolved by DNS,
can be allowed with a single rule:

iptables -A FORWARD -p tcp -s 192.168.0.100 -d 203.0.113.44 --dport 80
-j ACCEPT

Where tcp can be exchanged for udp, if that is the case. And 192.168.0.100,203.0.113.

and 80 represent the device’s IP address, the Internet server’s IP address and service
port respectively.

However, if the traffic is going to a domain name, which has been recorded in the profile.
Then the rule should show that. Iptables does not support domain names dynamically,
they are resolved statically when the rule is added. Therefore, the two tools dnsmasq
and ipset can be used together to provide a dynamic list of IP addresses that the rule
matches.

Dnsmasq is a DNS resolver and ipset is an in-memory dynamic list of IP addresses, which
can be referenced by iptables. Dnsmasq has an option to add resolved IP addresses

82

44

PYPROFILER 5.4

of specific domain names to an ipset set. This can be accomplished by the following
configuration line in dnsmasq:

ipset=/updates.example.com/updates_example_com

Every time dnsmasq resolves updates.example.com, the corresponding IP address is
added to the ipset set named updates_example_com.

Subsequently, traffic to updates.example.com can be allowed by the following rule:

iptables —-A FORWARD -p tcp -s 192.168.0.100 -m set --match-set
updates_example_com dst --dport 80 -j ACCEPT

Where the —~—match-set option specifies that the destination IP address should be looked
up in the updates_example_com ipset set.

5.4.4 Summary

In this section, the PyProfiler subsystem has been explained. This subsystem interprets
the reports that are generated by the PySniffer subsystem, and use them to create
profiles. These profiles can be viewed in real time through a web page, and after the
learning phase, they can be used to generate firewall rules.

These firewall rules can then be installed in the IGD, where they only permits traffic
that matches the profile.

In the next chapter, the application is tested, in order to verify if the metrics in Sec-
tion 2.11 are fulfilled.

83

CHAPTER

§
SYSTEM EVALUATION

This chapter documents the evaluation of the metrics described in Section 2.11.
Initially the test setup is described, then the tests are described.

Profile generation is evaluated in the first test. The second test evaluates the behaviour
of the devices after the firewall rules are added. The final test is a port scan, which
shows if any of the learned ports are closed, after the firewall rules are applied.

After each test, the results are presented and evaluated against the metrics in Sec-
tion 2.11.

6.1 Test Setup

The test setup consists of a computer which acts as DHCP and NAT. This computer is
connected to the Internet, and to two Access Points (APs). One AP for IoT devices, and
one for MPD devices. Each AP is connected to different subnets, the IoT AP is connected
to subnet 192.168.1.0/24, and the MPD AP is connected to subnet 192.168.0.0/24.
The complete setup is found on Figure 6.1.

Every IoT device gets an IP addresses in the 192.168.1.0/24 subnet and the MPDs get
IP addresses in the 192.168.0.0/24 subnet.

The following devices are used in the test.

Philips Hue.

Tado thermostats.

DEVELCO Squid.link.

Virtual machine with exploit.

85

6.2 PROFILE GENERATION

10T devices

Internet

Multiple purpose device

|

Subnet
192.168.1.0/24

Wireless
Access Point

Subnet
192.168.0.0/24

Wireless
Access Point

—— SO0
_'//!7, £S5

Desktop Smartphone

ok {

Thermostat

Camera

Figure 6.1: The system setup in the test.

A short description of Philips Hue, Tado, and DEVELCO Squid.link is found in Ap-
pendix A. The Virtual Machine is described in Appendix B. The Virtual Machine mim-
ics an ToT device, this is running a service which is exploitable, the exploit is used after
the firewall rules are generated, and it is tested if the Virtual Machine is able to make
an outgoing connection, in order to spread malware to other devices, or generate a DoS
attack. The Virtual Machine is only used in the profile learning phase and in the exploit
test.

With the setup in place, the profile generation is explained in the next section.

6.2 Profile generation

This section describes the test of the profile generation.

Initially the procedure is described, followed by the generated profiles which are pre-
sented and discussed.

After the profiles are presented, the firewall rules are shown and discussed, and finally
a port scan of the devices, before and after the firewall rules are applied.

6.2.1 Procedure

First off, the computer is connected to the Internet, and the two APs are connected to
the computer. After the computer is connected to the Internet, it configures the two

86

1
2
3
4
5

6

PROFILE GENERATION 6.2

subnets, and starts the PySniffer and PyProfiler. When the software is running, the
computer is connected to the two APs.

Afterwards, a phone and a second computer are connected to the MPD AP, these are
used to configure the IoT devices.

When the phone and the computer are connected to the MPD subnet, the IoT devices
are connected the IoT AP. Each IoT device is configured from the factory settings.
When all the devices are fully configured, the profiling is stopped and the firewall rules
are generated.

6.2.2 Execution

All the devices were connected, and the profiler generated the profiles. A profile from
the web interface for Tado can be seen on Figure 6.2. The total time to make the profiles
was 17 minutes, that included registering profiles for Philips Hue and Tado. When the
setup of all the devices were done, the profiler was turned off, and the firewall rules were
generated.

6.2.3 Generated Profiles

On Figure 6.2, a profile from the web interface can be seen. Similarly in Appendix C,
the profiles for Philips Hue, DEVELCO Squid.link and the virtual machine can be seen.
From these profiles, it is seen which services are used by the IoT devices, and which
services the IoT devices hosts. On Figure 6.2 it can be seen that Tado does not host
any services, and it only uses two remote services. One of the remote services is the
DNS server hosted on the IGD. The other service is a management service hosted by
the company Tado.

tado
192.168.1.100

Servers:
Clients:

s connecting to 192.168.1.1:udp/53 ()
= connecting to i.my.tado.com.:tcp/443 ssl-client ()

DNS queries:

s i.my.tado.com.: 54.72.3.36, 52.212.221 752

Figure 6.2: The profile shown in the web interface.

The firewall rules generated from this profile are shown below on Listings 6.1 and 6.2.

|Chain IN_192.168.1.100 (1 references)
‘target prot source Destination
‘ACCEPT all 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED

| ACCEPT icmp 0.0.0.0/0 0.0.0.0/0
‘LOG all 0.0.0.0/0 0.0.0.0/0 LOG flags O level 4 prefix "pyprofiler:"
|DROP all 0.0.0.0/0 0.0.0.0/0

Listing 6.1: Ingoing firewall rules for Tado.

87

1
2
3
1
5

6

6.3 FIREWALL

From the rules on Listing 6.1, it can be seen that it accepts ingoing connections, which
are established by the device. Furthermore, all ICMP traffic is allowed, this choice is
made as some users might find it useful to ping their device to check if the device is
online.

Listing 6.2 shows the outgoing traffic rules.

‘Chain 0UT_192.168.1.100 (1 references)
‘target prot source destination
‘ACCEPT all 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED

| ACCEPT udp 0.0.0.0/0 192.168.1.1 udp dpt:53

‘ACCEPT tcp 0.0.0.0/0 0.0.0.0/0 match-set set_bd1123a0 dst tcp dpt:443

| LOG all 0.0.0.0/0 0.0.0.0/0 LOG flags O level 4 prefix "pyprofiler:"
|DROP all 0.0.0.0/0 0.0.0.0/0

Listing 6.2: Firewall rules for Tado outgoing traffic.

On Listing 6.2, related connections are allowed similarly to the ingoing rules. The second
rule permits traffic to the IGD’s DNS server, however this rule has no effect, since traffic
going to the IGD does not pass through the FORWARD chain. The third rules uses an
ipset set, match-set set_bd1123a0, which is a set of IPs addresses. These addresses
come from the response of a DNS lookup. The ipset set is seen on Listing 6.3.

Name: set_bd1123a0

}
\éﬁ:212.221.252
| 54.72.3.36

Listing 6.3: Ipset set for domain name i.my.tado.com.

In this case, only two IPs addresses are permitted by the rule.

This tests concludes that metric Section 2.11.3 can be fulfilled, but the user manually
has to run a script, it still requires a little user interaction.

With the firewall in place, the next section describes the tests of the devices with the
firewall rules implemented.

6.3 Firewall

This section describes the test of the devices after the firewall is setup. This includes 3
separate tests. In all the tests, the firewall is logging if any packets are dropped according
to the firewall rules.

In the first test, the IoT devices are used, and all the different functions are tested.
The behaviour of the devices are examined and it is checked if they behave as expected.
Furthermore, the firewall log is checked if any packets have been dropped. It is expected
that no packets are dropped, and the devices function properly.

In the second test, the Virtual Machine is exploited, and a reverse shell is sought to be
established to the attacker’s machine. In this test, it is expected that the firewall drops
the traffic and the packets should be logged by the firewall.

88

FiIREwALL 6.3

The third test is a test running for 24 hours. After the test, it is be investigated if any
packets are dropped by the firewall. If the system works as expected, no packets should
be dropped.

6.3.1 Functionality Test

The functionality test is made on the 3 IoT devices, and the Virtual Machine, to make
sure they respond as intended. Throughout the test, it was realised that there were some
dropped packets on the DEVELCO Squid.link device, not that it had any noticeable
effect on the device. The device tried to contact 2.pool.ntp.org, which is a NTP
server for time synchronisation. For some reason, the DEVELCO Squid.link device
did not contact it throughout the profile learning phase, hence it is not allowed by the
firewall.

Because of the dropped packet, it was decided to start the profiling again, and leave it
running for 30 minutes. After 30 minutes, the profiles were generated and the firewall
was configured again. After the firewall configured, the devices were rebooted, in order
to make sure that new connections were established.

6.3.2 Results

These results are from the second profile generated. As it turned out that the first set
of profiles was incomplete. The firewall logs are shown in the 24 hour test Section 6.3.5.

Tado

The temperature on a thermostat is changed from the app, and the actuator moved in
the thermostat device. In this test, it is seen that no packets were dropped in the firewall
log. The firewall log is shown in Listings 6.4 and 6.5 in Section 6.3.5.

Philips Hue

Controlling the light which includes, turning it on and changing colour, logging into the
application and controlling it both locally and remotely. All functions worked as they
should, and from the log of the firewall, it is seen that no packets were dropped. The
firewall log is shown in Listings D.1 and D.2 in Appendix D.

DEVELCO Squid.link

The HTTP server is accessed and it works as expected. From the firewall, it can also
be seen that there are no dropped packets. The firewall log is shown in Listings D.3
and D.4 in Appendix D.

89

6.3 FIREWALL

6.3.3 Exploit Test

The Virtual Machine described in Appendix B is running a HTTP server, which had
an exploit that made it possible to perform RCE through the URL. After the firewall is
enabled, the exploit is used and it is attempted to create a reserve shell, as explained in
Appendix B.2.

6.3.4 Results

After the firewall is enabled the HTTP server is still accessible, and the vulnerability
in the HT'TP server could still be used. Though, after the firewall is enabled, it is not
possible for the machine to create an outgoing connection to the attacker’s IP address.

6.3.5 24 Hours Test

In the 24 hours test, the devices are turned on for 24 hours in order to investigate if they
try to connect to anything which is not allowed by the firewall. The 24 hour period is
included in the functionality test in Section 6.3.1.

This test is made to ensure that the devices do not try to connect to anything which
is not included in the firewall. With a correct profile, this should only happen if an
attacker tries to gain access to the device. Or if the device is already compromised, and
it is trying to establish a connection to other devices (e.g. trying to infect other devices).

6.3.6 Results

This section presents the results of the four devices, namely Tado, Philips Hue, DE-
VELCO Squid.link and the Virtual Machine. The main thing, which is investigated in
these results is the number of packets transmitted, and the number of dropped packets.

The firewall log output for Philips Hue, DEVELCO Squid.link and Virtual Machine are
found in Appendix D.

1 \Chain 0UT_192.168.1.100
Chain IN_192.168.1.100 2 | pkts bytes target prot
pkts bytes target prot 3 ‘ 5284 309K ACCEPT all
2715 205K ACCEPT all 4 \ 9 9 ACCEPT udp
5|
|
|

0 0 ACCEPT icmp 3 132 ACCEPT tcp
0 0 LOG all 6 0 0 LOG all
0 0 DROP all 7 0 0 DROP all
Listing 6.4: Iptables rules for Tado, Listing 6.5: Iptables rules for Tado,
number of packets sent and dropped number of packets sent and dropped
ingoing traffic. outgoing traffic.

By looking at Listing D.2 in Appendix D, it can be seen that one of the rules in the
firewall for Philips Hue only matches one packet throughout the 24 hours.

90

PORT ScaN 6.4

As it is seen on Table 6.1, the Virtual Machine has some dropped packets because it is
exploited, and it tried to establish an outgoing connection which is not allowed by the
firewall rules.

Total number of Total number of

accepted packets dropped packet
Devices Ingoing Outgoing | Ingoing Outgoing
Tado 2958 5756 0 0
Philips Hue 6748 7106 0 0
DEVELCO Squid.link 1347 1702 0 0
Virtual Machine 229 232 0 24

Table 6.1: Summary of results from firewall rules. The first three devices do not have
any dropped packets, which indicates that the firewall rules work. However, the Virtual
Machine has some dropped packets, which indicates that it cannot communicate with
the IP address it is trying to.

According to Table 6.1, the three IoT devices do not have any dropped packets. Thus it
can be concluded that the firewall does not have any impact on the IoT devices, hence
metric Section 2.11.4 is fulfilled. Besides that, there are no dropped packets after 24
hours which was metric Section 2.11.6.

Since the Virtual Machine has some dropped packets in Table 6.1, it demonstrates that it
cannot establish a connection to the IP which it is trying. Thereby it cannot participate
in a DDoS attack, furthermore it also prevents it from spreading the malware to other
device. This fulfils the metrics Sections 2.11.1 and 2.11.2.

6.4 Port Scan

This section compares a port scan on the Wide Area Network (WAN) side of the IGD,
before and after the firewall rules are applied on the IGD.

Tado

The Tado device does not have any ports open on the device, hence the firewall rules do
not change this result.

I | A11 1000 scanned ports on 192.168.1.100 are closed (639)\

2 | or filtered (361)

3 ‘ Nmap done: 1 IP address (1 host up) scanned in 13.88 seconds

Listing 6.6: Port scan of Tado, without firewall rules.

91

L

5 ‘

2 ‘
3

1
2

3
4

6.5 RESULTS INTERPRETATION

Philips Hue

From Listings 6.7 and 6.8 it can be seen that before the firewall rules are applied, it had
both port 80 and 8080 open. But after the firewall rules are applied, port 80 is available,
and since no packets are dropped, port 8080 has not been used.

PORT STATE SERVICE | |PORT STATE SERVICE
80/tcp open http 2 ‘SO/tcp open http
8080/tcp open http-proxy
Listing 6.7: Port scan of Philips Hue, Listing 6.8: Port scan of Philips Hue,
without firewall rules. with firewall rules.

DEVELCO Squid.link

DEVELCO Squid.link has 3 ports open, namely 22, 80 and 10000. After the firewall
rules are applied, it is only port 80 which is allowed, and again no packets are dropped,
hence port 22 and 10000 are unused.

| PORT STATE SERVICE | | PORT STATE SERVICE
‘ 22/tcp open ssh 2 ‘SO/tcp open http
3 | 80/tcp open http
| 10000/ tcp open
Listing 6.9: Port scan of DEVELCO Listing 6.10: Port scan of DEVELCO
Squid.link, without firewall rules. Squid.link, with firewall rules.

6.4.1 Summary

Below, a table with the results is found, it can be seen that on both Philips Hue and
DEVELCO Squid.link, there are ports which are not used — in this test at least. Tado,
on the other hand does not have any ports open, since it is not hosting any services.

Open ports
Device Before profile After profile
Tado None None
Philips Hue 80, 8080 80
DEVELCO Squid.link | 22, 80, 10000 80

6.5 Results Interpretation

From the results in Table 6.1 in Section 6.3, it can be seen that no packets to the devices
are dropped. This means the devices functions as intended.

92

RESULTS INTERPRETATION 6.5

But on Listing D.2 in Appendix D, it can be seen that only one packet matches a rules
in the Philips Hue outgoing chain. That packet could easily have been neglected in
the learning phase, if that had happened, packets would have been dropped, hence the
functionality of the devices would not have been complete.

In the evaluation, the learning phase is only 30 minutes, but in the final version it should
automatically be determined when profile is complete. However, in the current version
this is not implemented, which is a feature that should be implemented.

A complete overview of the results are found on Table 6.2.

Metric: Fulfilled | Comment

2.11.1 Prevent botnets from spreading v From Section 6.3.3, it is seen
that the firewall prevents
unknown connections.
2.11.2 Prevent DoS attacks v From Section 6.3.3, it is seen
that the firewall prevents
unknown connections.

2.11.3 Operate without user interaction X As a script has to be exe-
cuted, it requires some user
interaction.

2.11.4 No side effect on IoT device v Since there are no dropped

packets after 24 hours, it
does not effect the IoT de-
vices, as shown in Sec-
tion 6.3.5.

2.11.5 Auto profile time X This is not fulfilled, as the
time had to be increased to
30 minutes for the learning
phase.

2.11.6 Long time verification v According to Section 6.3.5,
this is passed.

Table 6.2: A table showing a summary of the results, and the metrics which are fulfilled.

93

CHAPTER

7
CLOSURE

This chapter concludes the project “loTsec: Automatic Profile-based Firewall for IoT
Devices”. First, conclusions on the project are presented, which summaries the answers
of the problem statement. Afterwards, a discussion is made, which contains sugges-
tions for improving the solution, further work and alternative solutions. Finally, an
attacker’s perspective is provided, which illustrates some system weaknesses that may
be exploitable.

7.1 Conclusion

On 2016-10-21, Twitter, Amazon, Tumblr, Reddit, Spotify, Netflix and more were un-
available due to the DNS provider Dyn being DDoS attacked. This attack was performed
by the botnet Mirai, which consisted of 100,000 IoT devices that have been compromised
due to inadequate security. Due to a Telnet server on the devices, Mirai was able to gain
access to them by using a credential list of 62 usernames and passwords.

This attack has inspired this project, where an analysis of IoT botnets have been per-
formed. In this analysis, the weak points of IoT devices have been examined, in order to
bring recommendations on how to improve security on IoT devices. During the initial
analysis, the only attack vector that was used is to brute force credentials on a Telnet
server, however on 2017-04-06 the Amnesia botnet was discovered. Amnesia uses a vul-
nerability in the software on specific IoT devices, which can be used for RCE and by
doing so compromise the device.

The correct way to solve security issues in Internet-connected devices, is for the man-
ufacturers to make the devices secure by design. For instance, the average user does
not need a Telnet server on their IP camera. Since only manufacturers can improve the
security on the devices, there is a demand for a universal solution that protects inse-
cure devices. The purpose of this project is to design and implement such a universal
solution.

This solution is made to run on IGDs, where it is possible to analyse and influence
the Internet traffic to and from the IoT devices. From this analysis, a profile can be

95

7.2 DISCUSSION

generated for each IoT device, which is done automatically based on traffic that is seen in
a learning phase. After the learning phase has ended, the device has been profiled, and
from this profile firewall rules can be generated that can be added to the IGD firewall.
This way, different restrictions can be applied to different devices at the same time. By
restricting the outgoing traffic that IoT devices can send, botnets are prevented from
trying to infect other devices.

Since the profiles are generated automatically from observed traffic, user input is not
required, this benefits the average user who expects things to just work. Additionally,
by sharing generated profiles through a repository, users can receive existing profiles for
devices that have just been connected, and prevent infection during the learning phase.

Profiles that are shared through the repository are identified by a fingerprint of the
observed traffic. If the fingerprint already exists, the confidence of a profile can be
improved by adding a locally generated profile. This can also be used to prevent against
malicious profiles being uploaded, by requiring a certain number of independent sources
before accepting it as a legitimate profile.

From the system evaluation, the capability of the solution has been assessed. It is shown
that the generated profiles support the traffic that flows to and from the tested IoT
devices. After the firewall has been configured with the devices’ profiles, the functionality
of each device still works perfectly. During the 24 hour period after profiling, the devices
do not send or receive any traffic that was not specified in the profile. Finally, when the
virtual machine was exploited, any outgoing connections were successfully stopped by
the solution.

This concludes that a universal solution has been created that successfully can protect
IoT devices in the household.

7.2 Discussion

This project has proven that an automated security solution can be made that hinders
the spread of IoT botnets. However, the solution still requires more work before it is
ready for consumer use. The repository application is only conceptually designed in this
project, and it should be completed to facilitate sharing between IGDs.

Besides that, the learning phase ran for fixed amount of time, which is 30 minutes. While
this works with the three devices tested in the project, specifically Tado, Philips Hue
and DEVELCO Squid.link, there is no guarantee that it works for all IoT devices. A
different device could contact a server after 31 minutes, which would be excluded from
the profile, and therefore not be able to communicate with it. Therefore, a solution to
when the learning phase should end must be found before the system can be released.

Another aspect, which is not taken into consideration is firmware upgrades, since after
the learning phase is completed, the profile cannot be changed. This means that, if e.g.
Philips Hue decides to add another service, which is hosted on the Philips Hue bridge,
it is not be permitted in the firewall. Or similarly if Philips decides to change the NTP

96

DiscussioN 7.3

servers used by Philips Hue, it would also be blocked by the firewall, since it is not
included in the profile, and it is currently not possible to change the profile. On the
same note, if Philips decides to stop using e.g. a NTP server, it is still included in the
profile, and hence the firewall.

Furthermore, it should be decided how the solution is distributed. In Section 4.4.3, it
has been described that profiles must be signed by the application, to inhibit malicious
profiles from being shared. This requires a unique key for each instance of application,
in order to count the number of unique profiles made for the same device. These keys
must be managed by the repository, and therefore be distributed with the solution. One
way of doing this, is to distribute the solution with an IGD and thereby embed a unique
key. Though this limits the distribution to only selected IGDs.

In addition to distributing the solution with the IGDs, a read-only version could also be
released. This version would be without a key, and as such can only download profiles
or generate local ones that cannot be shared. Thereby, it is possible to distribute it to
existing IGDs, through firmware upgrades.

7.2.1 Future Use of This Solution

This solution should be considered a short-term countermeasure against IoT botnets,
since security should be part of the design of IoT devices. Hopefully, manufacturers
become better at creating secure loT devices in the future, and thus removes the problem
that this solution solves.

It is estimated that there will be 50 billion IoT devices connected in 2020, and if the
security of the devices is not improved, it is going to become a serious issue. According
to the research, which this project is based on, the attacks have only been against non-
critical services, but it could easily be used to attack critical infrastructure as well.

7.2.2 Alternative Solutions

Rather than trying to fix broken products, an alternative approach could be to remove
broken products from the Internet. Similar to the Conformité Européenne (CE) label,
which shows that a product comply with rules within its product category. A certifica-
tion process and label could be introduced for consumer IoT products. This certification
process could verify that a product is following the best practices at the time of devel-
opment, and complying with specific security guidelines.

Certification processes are also used within many of the existing IoT technologies, such as
ZigBee, Z-Wave and Bluetooth etc. These certifications show that devices are conforming
to the specifications of that technology.

Through this certification process, manufacturers could also be required to specify what
Internet traffic it participates in. And thereby, high quality profiles can be produced,
which can be used by this project.

97

7.3 Attacker’s Perspective

In this section, the solution is analysed from an attacker’s perspective, who would like
to compromise the system. The methods that are described are not complete attacks
that can be carried out, but rather entry points that possibly can be exploited.

7.3.1 Profile Generation

Since the system relies on automatic profile generation, it is possible that it can be
exploited to additional information in the profile, which in turn permits more traffic in
the firewall. In order to exploit this vulnerability, the attacker must be able to affect
multiple profile learning phases, since the system relies on multiple profiles to improve
the confidence in them.

Accordingly, the attacker must compromise the IoT device during the learning phase,
and use it to connect to his own Internet service. This causes additional traffic to be
recorded in the profile. If the attacker chooses to use a DNS name to connect to the
Internet service, it is the DNS name that is recorded in the profile. By doing so, the
attacker is able to change the IP address dynamically, since the system permits traffic
to IP addresses that have been resolved behind a DNS name.

This attack vector enables specific IoT devices that are already vulnerable (since the
attacker must be able to compromise it, to affect the profile generation) to participate
in attacks.

7.3.2 Change Wi-Fi Network Association

This attack vector only affects IoT devices that are connected by Wi-Fi, not ethernet.
If a device can be compromised, and an attacker can do RCE on it and by doing so
acquire system privileges, the attacker could try to connect the device to a different Wi-
Fi network. By doing this, the IoT device can be switched to a less restrictive network,
e.g. the MPD network offered by the IGD. This, of course, requires the network security
key to associate with the network, which is something that the attacker must brute force
or otherwise circumvent.

7.3.3 Summary
This section has brought up two possible attack vectors that can be used to circumvent

the system. However, both attack vectors require an IoT device that already contains a
vulnerability such that an attacker can compromise the device.

98

BIBLIOGRAPHY

1]

[10]

(2016, Oct) Hacked Cameras, DVRs Powered Today’s Massive Internet Outage.
[Online]. Available: https://krebsonsecurity.com/2016,/10/
hacked-cameras-dvrs-powered-todays-massive-internet-outage/

(2016, Jun.) Reality Check: 50B IoT devices connected by 2020 — beyond the
hype and into reality. [Online]. Available: http://www.rcrwireless.com/20160628/
opinion /reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tagl0

(2016, Oct) Good news: The hackers who broke the internet last week are less
powerful than originally believed. [Online]. Available: https://qz.com/820003/
dyn-dns-ddos-the-mirai-botnet-is-smaller-than-originally-thought /

(2013, Nov.) How the first botnet changed the internet forever. [Online]. Available:
https://www.dailydot.com/crime/robert-morris-botnet-virus-changed-internet/

(2011) How Criminals Build Botnets for Profit. [Online]. Available:
https://www.damballa.com/downloads/r_pubs/
DoD-Cyber-crime_Gunter- Ollmann_How-Criminals- Profit.pdf

(2014, Jun.) A Guy Mined $600K of Dogecoin with a Botnet of Storage Devices.
[Online]. Available: https://motherboard.vice.com/en_us/article/
dogecoin-could-well-be-the-hackers-cryptocurrency-of-choice

(2016, Oct) Mapping Mirai: A Botnet Case study. [Online]. Available:
https://www.malwaretech.com/2016,/10/mapping-mirai-a-botnet-case-study.html

(2016, 8) MMD-0056-2016 - Linux/Mirai, how an old ELF malcode is recycled.
[Online]. Available:
http://blog.malwaremustdie.org/2016 /08 /mmd-0056-2016-linuxmirai-just.html

(2016, Oct) Mirai-Source-Code. [Online|. Available:
https://github.com/jgamblin /Mirai-Source-Code/search?q=ssh&type=Code

(2016, Nov) The State of security in the Connected Home. [Online]. Available:
https://medium.com/@QLumaHome/
the-state-of-security-in-the-connected-home-2a979b76f85b#.gmdby8io0

99

https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
http://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
http://www.rcrwireless.com/20160628/opinion/reality-check-50b-iot-devices-connected-2020-beyond-hype-reality-tag10
https://qz.com/820003/dyn-dns-ddos-the-mirai-botnet-is-smaller-than-originally-thought/
https://qz.com/820003/dyn-dns-ddos-the-mirai-botnet-is-smaller-than-originally-thought/
https://www.dailydot.com/crime/robert-morris-botnet-virus-changed-internet/
https://www.damballa.com/downloads/r_pubs/DoD-Cyber-crime_Gunter-Ollmann_How-Criminals-Profit.pdf
https://www.damballa.com/downloads/r_pubs/DoD-Cyber-crime_Gunter-Ollmann_How-Criminals-Profit.pdf
https://motherboard.vice.com/en_us/article/dogecoin-could-well-be-the-hackers-cryptocurrency-of-choice
https://motherboard.vice.com/en_us/article/dogecoin-could-well-be-the-hackers-cryptocurrency-of-choice
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
http://blog.malwaremustdie.org/2016/08/mmd-0056-2016-linuxmirai-just.html
https://github.com/jgamblin/Mirai-Source-Code/search?q=ssh&type=Code
https://medium.com/@LumaHome/the-state-of-security-in-the-connected-home-2a979b76f85b#.gmdby8io0
https://medium.com/@LumaHome/the-state-of-security-in-the-connected-home-2a979b76f85b#.gmdby8io0

[11] (2017, Jan) Who is Anna-Senpai, the Mirai Worm Author? [Online|. Available:
https:
//krebsonsecurity.com/2017/01 /who-is-anna-senpai-the-mirai-worm-author/

[12] (2016, Sep) BASHLITE Botnets Ensnare 1 Million IoT Devices. [Online].
Available:
http://www.securityweek.com/bashlite-botnets-ensnare- 1-million-iot-devices

[13] (2017, Mar) There’s a 120,000-Strong IoT DDoS Botnet Lurking Around.
[Online]. Available: http://news.softpedia.com/news/
there-s-a-120-000-strong-iot-ddos-botnet-lurking-around-507773.shtml

[14] (2017, Mar) LizardStresser IoT botnet launches 400Gbps DDoS attack. [Online].
Available: http://www.computerweekly.com /news/450299445 /
LizardStresser-IoT-botnet-launches-400Gbps-DDoS-attack

[15] (2017, Mar) BASHLITE Malware Uses ShellShock to Hijack Devices Running
BusyBox. [Online]. Available: http://www.securityweek.com/
bashlite-malware-uses-shellshock-hijack-devices-running-busybox

[16] (2017, Mar) BASHLITE Malware leverages ShellShock Bug to Hijack Devices
Running BusyBox. [Online]. Available:
https://thehackernews.com/2014/11/bashlite-malware-leverages-shellshock.html

[17] (2017, Mar) A new BASHLITE variant infects devices running BusyBox. [Online].
Available: http://securityaffairs.co/wordpress/30225/cyber-crime/
bashlite-exploits-shellshock.html

[18] (2017, Mar) BASHLITE Affects Devices Running on BusyBox. [Online].
Available: http://blog.trendmicro.com/trendlabs-security-intelligence/
bashlite-affects-devices-running-on-busybox/

[19] (2017, Mar) Bash Vulnerability Leads to Shellshock: What it is, How it Affects
You. [Online]. Available:
http://blog.trendmicro.com/trendlabs-security-intelligence/
shell-attack-on-your-server-bash-bug-cve-2014-7169-and-cve-2014-6271/

[20] (2017, Mar) Github: anthonygtellez/BASHLITE. [Online]. Available:
https://github.com/anthonygtellez/BASHLITE

[21] (2017, Mar) CVE-2014-6271: remote code execution through bash. [Online].
Available: http://seclists.org/oss-sec/2014/q3/650

[22] (2017, Feb.) IoT? I don’t care. [Online]. Available:
https://www.scmagazine.com /iot-i-dont-care/article /634990 /

[23] (2017, Apr.) BrickerBot, the permanent denial-of-service botnet, is back with a
vengeance. [Online]. Available: https://arstechnica.com/security/2017/04/
brickerbot-the-permanent-denial-of-service-botnet-is-back-with-a-vengeance/

100

https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
http://www.securityweek.com/bashlite-botnets-ensnare-1-million-iot-devices
http://news.softpedia.com/news/there-s-a-120-000-strong-iot-ddos-botnet-lurking-around-507773.shtml
http://news.softpedia.com/news/there-s-a-120-000-strong-iot-ddos-botnet-lurking-around-507773.shtml
http://www.computerweekly.com/news/450299445/LizardStresser-IoT-botnet-launches-400Gbps-DDoS-attack
http://www.computerweekly.com/news/450299445/LizardStresser-IoT-botnet-launches-400Gbps-DDoS-attack
http://www.securityweek.com/bashlite-malware-uses-shellshock-hijack-devices-running-busybox
http://www.securityweek.com/bashlite-malware-uses-shellshock-hijack-devices-running-busybox
https://thehackernews.com/2014/11/bashlite-malware-leverages-shellshock.html
http://securityaffairs.co/wordpress/30225/cyber-crime/bashlite-exploits-shellshock.html
http://securityaffairs.co/wordpress/30225/cyber-crime/bashlite-exploits-shellshock.html
http://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-affects-devices-running-on-busybox/
http://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-affects-devices-running-on-busybox/
http://blog.trendmicro.com/trendlabs-security-intelligence/shell-attack-on-your-server-bash-bug-cve-2014-7169-and-cve-2014-6271/
http://blog.trendmicro.com/trendlabs-security-intelligence/shell-attack-on-your-server-bash-bug-cve-2014-7169-and-cve-2014-6271/
https://github.com/anthonygtellez/BASHLITE
http://seclists.org/oss-sec/2014/q3/650
https://www.scmagazine.com/iot-i-dont-care/article/634990/
https://arstechnica.com/security/2017/04/brickerbot-the-permanent-denial-of-service-botnet-is-back-with-a-vengeance/
https://arstechnica.com/security/2017/04/brickerbot-the-permanent-denial-of-service-botnet-is-back-with-a-vengeance/

[24]

[25]

[26]

[27]

[36]

[37]

[38]

(2017, Apr.) BrickerBot: Back With A Vengeance. [Online|. Available: https://
security.radware.com/ddos-threats-attacks/brickerbot-pdos-back-with-vengeance/

(2011, Sep) Morto Post Mortem: Dissecting a Worm. [Online]. Available:
https://www.imperva.com/blog/2011/09/morto-post-mortem-a-worm-deep-dive/

(2017, Jan) Bot Chatter: Ragebot Botnet Malware Morphs. [Online|. Available:
https:
//securityintelligence.com /news/bot-chatter-ragebot-botnet-malware-morphs/

(2013, Nov) You're infected—if you want to see your data again, pay us $300 in
Bitcoins. [Online]. Available: https://arstechnica.com/security/2013/10/
youre-infected-if-you-want-to-see-your-data-again-pay-us-300-in-bitcoins/

(2011, May) XP AntiSpyware 2011. [Online|. Available:
http://www.precisesecurity.com/rogue/xp-anti-spyware-2011

(2014, Nov) Regin: nation-state ownage of GSM networks. [Online]. Available:
https://securelist.com/blog/research /67741 /
regin-nation-state-ownage-of-gsm-networks/

(2004, April) W32.Sasser.Worm. [Online]. Available: https:
//www.symantec.com/security response/writeup.jsp?docid=2004-050116-1831-99

(2004, May) Sasser net worm affects millions. [Online]. Available:
http://news.bbc.co.uk/2/hi/technology /3682537 .stm

(2017, Mar) Timeline of computer viruses and worms. [Online]. Available:
https://en.wikipedia.org/wiki/Timeline_of computer_viruses_and_worms

(2017, Apr.) New IoT/Linux Malware Targets DVRs, Forms Botnet. [Online].
Available: http://researchcenter.paloaltonetworks.com/2017,/04/
unit42-new-iotlinux-malware-targets-dvrs-forms-botnet /

(2016, Mar.) Remote Code Execution in CCTV-DVR affecting over 70 different
vendors . [Online]. Available: http:
//www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html

OMNIPOWER intelligente elmalere sikrer det fulde udbytte af dit smart grid.
[Online|. Available:
https://www.kamstrup.com/da-dk/produkter-loesninger/smart-grid /elmaalere

(2016, Oct) The Best Smart Smoke Alarm. [Online]. Available:
http://thewirecutter.com/reviews/best-smart-smoke-alarm/

(2013, Dec) Quirky Egg Minder review. [Online]. Available:
https://www.cnet.com/products/quirky-egg-minder/review/

K. Angrishi, “Turning Internet of Things(IoT) into Internet of Vulnerabilities
(IoV) : IoT Botnets,” IEEE, vol. 17, Feb 2017.

101

https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-back-with-vengeance/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-back-with-vengeance/
https://www.imperva.com/blog/2011/09/morto-post-mortem-a-worm-deep-dive/
https://securityintelligence.com/news/bot-chatter-ragebot-botnet-malware-morphs/
https://securityintelligence.com/news/bot-chatter-ragebot-botnet-malware-morphs/
https://arstechnica.com/security/2013/10/youre-infected-if-you-want-to-see-your-data-again-pay-us-300-in-bitcoins/
https://arstechnica.com/security/2013/10/youre-infected-if-you-want-to-see-your-data-again-pay-us-300-in-bitcoins/
http://www.precisesecurity.com/rogue/xp-anti-spyware-2011
https://securelist.com/blog/research/67741/regin-nation-state-ownage-of-gsm-networks/
https://securelist.com/blog/research/67741/regin-nation-state-ownage-of-gsm-networks/
https://www.symantec.com/security_response/writeup.jsp?docid=2004-050116-1831-99
https://www.symantec.com/security_response/writeup.jsp?docid=2004-050116-1831-99
http://news.bbc.co.uk/2/hi/technology/3682537.stm
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
http://researchcenter.paloaltonetworks.com/2017/04/unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/
http://researchcenter.paloaltonetworks.com/2017/04/unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
https://www.kamstrup.com/da-dk/produkter-loesninger/smart-grid/elmaalere
http://thewirecutter.com/reviews/best-smart-smoke-alarm/
https://www.cnet.com/products/quirky-egg-minder/review/

[39]

[40]

[49]

[50]

102

(2016, Dec) Zero-day exploits could potentially turn hundreds of thousands of IP
cameras into IoT botnet slaves. [Online]. Available: https://www.cybereason.com/
zero-day-exploits-turn-hundreds-of-thousands-of-ip-cameras-into-iot-botnet-slaves/

(2017, Mar.) Multiple vulnerabilities found in Wireless IP Camera (P2P)
WIFICAM cameras and vulnerabilities in custom http server. [Online]. Available:
https://pierrekim.github.io/blog/2017-03-08-camera-goahead-0day.html

M. Stamp, Information Security, Principles and Pratice, 2nd ed. Wiley, 2011.

rockyou.txt. [Online]. Available:
http://scrapmaker.com/view /dictionaries/rockyou.txt

Common User Passwords Profiler. [Online]. Available:
https://github.com/Mebus/cupp

(2015, 03) Password Cracking With Amazon Web Services - 36 Cores. [Online].
Available: http://blog.nullmode.com/blog/2015/03/22/36-core-aws-john/

J. Galbraith et al., “Secure Shell Public Key Subsystem,” Internet Requests for
Comments, RFC Editor, RFC 4819, 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4819

D. Hardt, Ed., “The OAuth 2.0 Authorization Framework,” Internet Requests for
Comments, RFC Editor, RFC 6749, 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6749

(2017, Jun.) RSA SECURID SUITE. [Online|. Available:
https://www.rsa.com/en-us/products/rsa-securid-suite

D. M'Raihi et al., “HOTP: An HMAC-Based One-Time Password Algorithm,”
Internet Requests for Comments, RFC Editor, RFC 4226, 2005. [Online].
Available: https://tools.ietf.org/html/rfc4226

Y. Rekhter et al., “Address Allocation for Private Internets,” Internet Requests
for Comments, RFC Editor, RFC 1918, 1997. [Online]. Available:
https://tools.ietf.org/html/rfc1918

T. Dierks et al., “The Transport Layer Security (TLS) Protocol Version 1.2,”
Internet Requests for Comments, RFC Editor, RFC 5246, 2008. [Online].
Available: https://tools.ietf.org/html/rfc5246

(2017, Jun.) Tado API. [Online]. Available:
http://blog.scphillips.com/posts/2017/01 /the-tado-api-v2/

(2017, Jun.) hue Developer Program. [Online]. Available:
https://www.developers.meethue.com/

(2017, Jun.) Squid.link Gatewat. [Online|. Available:
https://www.develcoproducts.com/products/gateways/squidlink-gateway /

https://www.cybereason.com/zero-day-exploits-turn-hundreds-of-thousands-of-ip-cameras-into-iot-botnet-slaves/
https://www.cybereason.com/zero-day-exploits-turn-hundreds-of-thousands-of-ip-cameras-into-iot-botnet-slaves/
https://pierrekim.github.io/blog/2017-03-08-camera-goahead-0day.html
http://scrapmaker.com/view/dictionaries/rockyou.txt
https://github.com/Mebus/cupp
http://blog.nullmode.com/blog/2015/03/22/36-core-aws-john/
https://tools.ietf.org/html/rfc4819
https://tools.ietf.org/html/rfc6749
https://www.rsa.com/en-us/products/rsa-securid-suite
https://tools.ietf.org/html/rfc4226
https://tools.ietf.org/html/rfc1918
https://tools.ietf.org/html/rfc5246
http://blog.scphillips.com/posts/2017/01/the-tado-api-v2/
https://www.developers.meethue.com/
https://www.develcoproducts.com/products/gateways/squidlink-gateway/

APPENDIX

A
[OT DEVICES

This appendix briefly describes the functionality of the IoT devices used in this project.
The devices used in this project are devices which have been available from the beginning,
either from the university, or personally owned devices.

The used devices are limited to three devices, namely a Tado thermostat, a Philips Hue
and a IoT gateway from Develco called DEVELCO Squid.link.

A.1 Tado

The Tado set used in this project is a “Smart Radiator Thermostat”, this includes a
bridge which is connected to the internet, and one (or more) smart Radiator Thermostats
which controls the valve on the radiator. The bridge sends commands to the thermostats,
which the bridges receives from a remote management service.

The management service gets information from a smartphone application. This is used
to detect if the phone is home, or away — hence if the Thermostats should be on or off
[51].

A.2 Philips Hue

Philips Hue consists of a bridge and some bulbs. Like Tado, the bridge is connected
to the Internet, and sends commands to the light bulbs. The lights can be controlled
from an application on a smartphone. Contrary to the Tado bridge, the Philips Hue
bridge hosts 2 services, a web server on port 80 and an unknown service on port 8080.
This means the Philips Hue bridge can be used without Internet access, if both the
smartphone and the bridge are connected to the same network. But the Philips Hue
bridge also communicates with a remote server, to make it possible to connect to the
hue remotely without port forwarding [52].

103

Arp. A IoT DEVICES

A.3 DEVELCO Squid.link

The DEVELCO Squid.link IoT bridge, is a bridge which can be used to connect different
IoT devices to the Internet, e.g. it could replace the Philips Hue bridge. E.g. Kamstrup
uses such a bridge to connect their smart electricity meter to the Internet, hence give
the costumers access to the data from the smart meters.

Unfortunately, without access to any smart meters, it is only possible to watch the bridge
communicate with the Internet.

The bridge provides a web server on port 80, and an SSH server on port 22, finally it
also has an unknown service on port 10000 [53].

104

1
2

APPENDIX

B
VULNERABLE VIRTUAL MACHINE

In the System Evaluation chapter, a virtual machine has been utilised, to demonstrate
that outgoing traffic is blocked. This virtual machine is supposed to be vulnerable, such
that an attacker can control it. The virtual machine is described in this appendix.

B.1 Setup

In the virtual machine, a web server mimics an IoT device. When browsing the web
server, a static message is shown, see Listing B.1.

| <h1>DVR System</hi>
‘<p>We1come to this poorly secured DVR system.</p>

Listing B.1: Static message of the web server.

However, hidden in the cgi-bin folder, which can hold executable files to show dynamic
content, a script has been created. This script, named cmd has a vulnerability that
allows RCE. The script is seen on Listing B.2.

#!/usr/bin/python

import os, urllib.parse
from subprocess import PIPE, Popen

def cmdline (command):
process = Popen(args=command,stdout=PIPE,she11=True)
return process.communicate () [0].decode(’utf-8’)

qs = urllib.parse.parse_qs(os.environ[’QUERY_STRING’])
print ()
print (cmdline(gs[’cmd’]1[0]))

Listing B.2: Script that has a RCE vulnerability.

From inspection of Listing B.2, it can be determined that it accepts arbitrary commands
and executes them. On lines 5-7, a function is defined that accepts a command and

105

ArP. B VULNERABLE VIRTUAL MACHINE

executes it in a shell. On lines 9-11, a command is extracted from the query string, and
the function is called and the output is sent to the requestor.

The script is very insecure, and no measures have been added to prevent execution of
malicious commands. However, it has been protected by a password, such that only the
manufacturer has access to it. The web server used is the built in httpd in busybox,
where a configuration line:

/cgi-bin:admin:admin

secures the cgi-bin directory with the hard to guess username and password admin and
admin.

B.2 Exploitation

To exploit the vulnerability that has been created, a client can craft a malicious request.
For example, the user id which the web server is running as can be determined through
the request:

http://admin:admin@192.168.1.130/cgi-bin/cmd?cmd=id
which returns something a response like:
uid=99 (nobody) gid=99(nobody) groups=99(nobody)

Afterwards, an attacker could initiate a reverse shell, for example, to get more direct
access to the system. The following request can be used:

http://.../cgi-bin/cmd?cmd=nc%20203.0.113.99%20443%,20-e%20/bin/sh
Where the encoded command is
nc 203.0.113.99 443 -e /bin/sh

Which establishes an outgoing connect to 203.0.113.99 on port 443 and launches a shell,
which the attacker can use.

106

APPENDIX

C
PROFILES

This appendix contains the profiles and firewall rules generated for Philips Hue, DE-
VELCO Squid.link and the virtual machine.

Philips Hue

The generated profile can be seen on Figure C.1, which shows the result from the web
interface. The firewall rules that have been generated from the profile are shown in
Listings C.1 and C.2.

Chain IN_192.168.1.120 (1 references)
target prot source destination

ACCEPT all 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED

ACCEPT icmp 0.0.0.0/0 0.0.0.0/0

ACCEPT udp 0.0.0.0/0 0.0.0.0/0 udp dpt:68

ACCEPT tcp 0.0.0.0/0 0.0.0.0/0 tcp dpt:80

LOG all 0.0.0.0/0 0.0.0.0/0 LOG flags O level 4 prefix "pyprofiler:"
DROP all 0.0.0.0/0 0.0.0.0/0

Listing C.1: Iptables rules for Philips Hue ingoing traffic.

Chain 0UT_192.168.1.120 (1 references)

target prot source destination

ACCEPT all 0.0.0.0/0 0.0.0.0/0 state RELATED ,ESTABLISHED

ACCEPT udp 0.0.0.0/0 192.168.1.1 udp dpt:53

ACCEPT wudp 0.0.0.0/0 0.0.0.0/0 match-set set_49c18b0d dst udp dpt:123
ACCEPT wudp 0.0.0.0/0 0.0.0.0/0 match-set set_28fc68cf dst udp dpt:123
ACCEPT wudp 0.0.0.0/0 0.0.0.0/0 match-set set_fe6bb532 dst udp dpt:123
ACCEPT wudp 0.0.0.0/0 0.0.0.0/0 match-set set_727c5739 dst udp dpt:123
ACCEPT tcp 0.0.0.0/0 0.0.0.0/0 match-set set_18872aa8 dst tcp dpt:80
ACCEPT tcp 0.0.0.0/0 0.0.0.0/0 match-set set_b790e2c0 dst tcp dpt:80
ACCEPT tcp 0.0.0.0/0 0.0.0.0/0 match-set set_a717c899 dst tcp dpt:80
ACCEPT tcp 0.0.0.0/0 0.0.0.0/0 match-set set_4ad8b32a dst tcp dpt:80
ACCEPT tcp 0.0.0.0/0 0.0.0.0/0 match-set set_628bd55b dst tcp dpt:443
ACCEPT tcp 0.0.0.0/0 0.0.0.0/0 match-set set_8399d78e dst tcp dpt:80
LOG all 0.0.0.0/0 0.0.0.0/0 LOG flags O level 4 prefix "pyprofiler:"
DROP all 0.0.0.0/0 0.0.0.0/0

Listing C.2: Iptables rules for Philips Hue outgoing traffic.

107

[

Y Ut R W N =

1

0o

w N e

SIS

Arp. C PROFILES

DEVELCO Squid.link

The generated profile can be seen on Figure C.2, which shows the result from the web
interface. The firewall rules that have been generated from the profile are shown in
Listings C.3 and C.4.

Chain IN_192.168.1.120 (1 references)
destination

target
ACCEPT
ACCEPT
ACCEPT
ACCEPT
LOG
DROP

prot
all
icmp
udp
tcp
all
all

source
.0

0.

[elelelNeNe)

O O O oo

.0

[elelNelNeNel

.0/0
.0/0
.0/0
.0/0
.0/0
.0/0

O O O O OO

.0

[eleiNelNeNel

.0.0/0

.0/0
.0/0
.0/0
.0/0

[el el Ne]

.0.0/0

state RELATED ,ESTABLISHED

udp dpt:68
tcp dpt:80

LOG flags O level 4 prefix "pyprofiler:"

Listing C.3: Iptables rules for DEVELCO Squid.link ingoing traffic.

Chain 0UT_192.168.1.120 (1 references)
destination

target
ACCEPT
ACCEPT
ACCEPT
ACCEPT
ACCEPT
ACCEPT
ACCEPT
ACCEPT
LOG
DROP

Virtual Machine

prot
all
udp
udp
udp
udp
udp
tcp
udp
all
all

source
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0

o

[elelelNeNeNeNeNeo e

o

O O O O OO O OO

o

[elelelNeNeNeNeNeo e

0.0.
192.
.0.

0

9

O OO OO

ONOOOO

0.0/0

168.1.

0.0/0
.0/0
.0/0
.0/0
.0/0

o O oo

.168.1.
.0.0/0
0.0.

0.0/0

state RELATED ,ESTABLISHED
1 udp dpt:53

match-set set_2cla2c78 dst

match-set set_e7271e40 dst

match-set set_7fbcfaba dst

match-set set_123dac95 dst

match-set set_c8c20897 dst
1 udp dpt:67

LOG flags 0 level 4 prefix

udp
udp
udp
udp
tcp

dpt:
dpt:
dpt:
dpt:
dpt:

123
123
123
123
64201

"pyprofiler:"

Listing C.4: Iptables rules for DEVELCO Squid.link outgoing traffic.

The generated profile can be seen on Figure C.3, which shows the result from the web
interface. The firewall rules that have been generated from the profile are shown in
Listings C.5 and C.6.

Chain IN_192.168.1.130 (1 references)
destination

target
ACCEPT
ACCEPT
ACCEPT
ACCEPT
LOG
DROP

prot
all
icmp
udp
tcp
all
all

source
.0.
.0/0
.0/0
.0/0
.0/0
.0/0

[l NeoNel

.0

O O O oo

[Nl Nl

0/0

O O O O O o

.0.

.0.

[el el eNe]

0.0/0
.0/0
.0/0
.0/0
.0/0
0.0/0

[el el Ne]

state RELATED ,ESTABLISHED

udp dpt:68
tcp dpt:80

LOG flags O level 4 prefix "pyprofiler:"

Listing C.5: Iptables rules for virtual machine ingoing traffic.

Chain 0UT_192.168.1.130 (1 references)
destination
0.0.0.0/0

target
ACCEPT
ACCEPT
ACCEPT
LOG
DROP

108

prot
all
udp
tcp
all
all

source

0.0.0.

0
0.
0
0

0
.0
0
0

0/0

.0/0
.0/0
.0/0
.0/0

192.168.1.

0.0.0.0/0
0.0.0.0/0
0.0.0.0/0

state RELATED,ESTABLISHED
1 udp dpt:53

match-set set_2b0e2f72 dst tcp dpt:80
"pyprofiler:"

LOG flags O level 4 prefix

Listing C.6: Iptables rules for virtual machine outgoing traffic.

ProriLes Arpr. C

Philips-hue

192.168.1.110
Servers:

e udp/68 ()

» tcp/80 hitp-server (None)

Clients:

e connecting to 192.168.1.1:udp/53 ()
connecting to 3.openwrt.pool.ntp.org..udp/123 ()
connecting to 2.openwrt.pool.ntp.org.:udp/123 ()
connecting to 1.openwrt.pool.ntp.org.:udp/123 ()
connecting to 0.openwrt.pool.ntp.org.:udp/123 ()
connecting to www.ecdinterface.philips.com.:tcp/80
http-client (None)
connecting to dep.cpp.philips.com.:tcp/80 hitp-client (None)
connecting to diagnostics.meethue.com.:tcp/80 ()
connecting to bridge.meethue.com.:tcp/80 ()
connecting to ws.meethue.com.:tcp/443 ssl-client ()
connecting to dcs.cpp.philips.com.:tcp/80 http-client (Mone)
connecting to 185.107.14.32:udp/123 ()
connecting to 5.186.56.205:udp/123 ()
connecting to 192.36.143.130:udp/123 ()
connecting to 213.5.39.34:udp/123 ()
connecting to 192.168.1.1:udp/67 ()

DNS queries:
* 3.0penwrt.pool.ntp.org.: 83.151.158.44, 92.246.24.228,

194.239.123.230, 95.154.26.34
= 2.0penwrt.pool.ntp.org.: 2a01:51c0:1000:23:80:69:163:42,
77.68.158.228, 2001:df1:801:a005:3::1, 2001:638:504:2000::34,

217.116.227.3, 5.103.128.88, 2a03:4000:6:b0f7:1:ea7.dead:beef,
78.156.100.202

« l.openwrt.pool.ntp.org.: 193.200.91 90, 195.234.155.123
77.66.33.146, 217.198.210.102

« O.openwrt.pool.ntp.org.: 77.243.43.213, 92.246.24.228,
5.186.56.172, 217.116.227.3

» www.ecdinterface.philips.com.: 162.13.31.14

o dcp.cpp.philips.com.: 5.79.62.93

» diagnostics.meethue.com.: 130.211.67.12

* bridge.meethue.com.: 130.211.93.93

« ws.meethue.com.: 104.155.18.91

* dcs.cpp.philips.com.: 5.79.11.202

Figure C.1: Philips Hue profile.

109

Arp. C PROFILES

gw-4349
192.168.1.120
Servers:

e udp/68 ()

e tcp/80 hitp-server (None)

Clients:
e connecting to 192.168.1.1:udp/53 ()

connecting to 0.pool.ntp.org.:udp/123 ()
connecting to 3.pool.ntp.org.:udp/123 ()
connecting to 2.pool.ntp.org.:udp/123 ()
connecting to 1.pool.ntp.org.:udp/123 ()
connecting to demo.smartamm.com.:tcp/64201 ()
connecting to 192.168.1.1:udp/67 ()
connecting to 193.162.159.97:udp/123 ()
DNS queries:
e 0.pool.ntp.org.: 5.186.56.172, 77.243.43.213, 92.246.24.228,
217.116.227.3
e 1l.pool.ntp.org.: 193.200.91.90, 195.234.155.123, 77.566.33.145,
217.198.219.102

e 2.pool.ntp.org.: 2001:1448:208:33::146, 2001:67c:28c8:12::123,
2001:67¢:564::12, 2001:67¢:238:256::34, 217.116.227.3,
78.156.100.202, 77.68.158.228, 5.186.56.205

e 3.pool.ntp.org.: 83.151.158.44, 92.246.24.228, 194.239.123.230,
95.154.25.34

e demo.smartamm.com.: 77.233.239.156

e 3.227.116.217.in-addr.arpa.:

e nip2.ngdc.net.: 217.116.227.3

Figure C.2: DEVELCO Squid.link profile.

DVR
192.168.1.130
Servers:
+ udp/68 ()
= icp/80 http-server (None)
Clients:
s connecting to 192.168.1.1:udp/53 ()
s connecting to example.com.:icp/80 hitp-client
{(b'curl/7.54.07

DNS queries:
. Example.com.: 93.184.216.34

Figure C.3: Virtual machine profile.

110

APPENDIX

D
FIREWALL RESULTS

Appendix of the firewall log output after 24 hours.

Philips Hue

These are the results from the ingoing and outgoing chain for Philips Hue. It can be
seen that it makes contact with a server, but also has incoming traffic. But no packets
are dropped, which is the goal of this test.

On Listing D.2, it can be seen that one of the rules is only matched once. This is
problematical, as there is a high risk that it would not be included in the profile, and
traffic would be dropped as consequence.

Chain IN_192.168.1.110 1 | Chain 0UT_192.168.1.110
pkts bytes target prot 2 pkts bytes target
6106 486K ACCEPT all 3 0 0 ACCEPT

{

0 0 ACCEPT icmp 119 9044 ACCEPT

0 0 ACCEPT udp 5 122 9272 ACCEPT

337 22620 ACCEPT tcp 6 130 9880 ACCEPT

0 0 LOG all 7 112 8512 ACCEPT

0 0 DROP all 19 6176 ACCEPT

.. . 9 96 4992 ACCEPT
Listing D.1: Iptables rules for Philips 0 15 780 ACCEPT
Hue, number of packets sent and 11 11 572 ACCEPT

12 5 260 ACCEPT
1 52 ACCEPT
14 0 0 LOG
0 0 DROP

dropped ingoing traffic.

Listing D.2: Iptables rules for Philips
Hue, number of packets sent and
dropped outgoing traffic.

111

=

Y Ul o W

[

Arp. D FIREWALL RESULTS

DEVELCO Squid.link

The DEVELCO Squid.link has no dropped packets.

Chain IN_192.168.1.120

pkts bytes target
804 57538 ACCEPT
0 O ACCEPT
0 0 ACCEPT
0 0 ACCEPT
0 0 LOG
0 0 DROP
Listing D.3: Iptables

rules for DEVELCO Squid.link, number
of packets sent and dropped ingoing
traffic.

Virtual Machine

Chain 0UT_192.168.1.120
pkts bytes target
576 33093 ACCEPT
0 0 ACCEPT
131 9956 ACCEPT
133 10108 ACCEPT
131 9956 ACCEPT
89 6764 ACCEPT
2 120 ACCEPT
0 0 LOG
0 0 DROP
Listing D.4: Iptables

rules for DEVELCO Squid.link, number
of packets sent and dropped outgoing
traffic.

The Virtual Machine has some dropped packets, but it is due to the exploit test. The
dropped packets show that the firewall is working.

Chain IN_192.168.1.100
pkts bytes target
185 20301 ACCEPT
0 0 ACCEPT
0 0 ACCEPT
44 2640 ACCEPT
0 0 LOG
0 0 DROP

Listing D.5: Iptables rules for Virtual
Machine, number of packets sent and
dropped ingoing traffic.

112

Chain 0UT_192.168.1.130
pkts bytes target
230 14837 ACCEPT
0 0 ACCEPT
2 120 ACCEPT
24 1360 LOG
24 1360 DROP

Listing D.6: Iptables rules for Virtual
Machine, number of packets sent and
dropped outgoing traffic.

	Frontpage
	Titlepage
	Preface
	Table of Contents
	Abbreviations
	1 Introduction
	2 Problem Analysis
	2.1 Why Botnets Cause Problems
	2.1.1 Activities by Botnets
	2.1.2 Summary

	2.2 Analysis of Botnets
	2.2.1 Mirai
	2.2.2 BASHLITE
	2.2.3 BrickerBot
	2.2.4 Computer Botnets
	2.2.5 Amnesia
	2.2.6 Summary

	2.3 Introduction to iot
	2.3.1 What is iot
	2.3.2 Summary

	2.4 How iot Became Dangerous
	2.4.1 upnp
	2.4.2 Default Credentials
	2.4.3 No Restrictions
	2.4.4 Firmware Bugs
	2.4.5 Summary

	2.5 Security vs. Usability
	2.5.1 Security
	2.5.2 Usability
	2.5.3 Summary

	2.6 Initial Problem Statement
	2.7 Securing iot Devices
	2.7.1 Limit Services
	2.7.2 Alternative Authentication
	2.7.3 Whitelist Traffic
	2.7.4 Firmware Upgrade
	2.7.5 Summary

	2.8 Problem Statement
	2.9 Proposals
	2.9.1 Manufacturers Create Profiles
	2.9.2 Community Creates Profiles
	2.9.3 Auto Generate Profile
	2.9.4 vpn
	2.9.5 Auto Scanning of New Devices
	2.9.6 Summary

	2.10 Delimitation
	2.11 Evaluation Metrics
	2.11.1 Prevent Spreading of Botnets
	2.11.2 Prevent dos attacks
	2.11.3 Operate without User Interaction
	2.11.4 No Side Effect on iot devices
	2.11.5 Auto Profile Time
	2.11.6 Long Time Verification
	2.11.7 Summary

	3 Technical Analysis
	3.1 Exhaustive Key Search
	3.1.1 Types of Brute Force Attacks
	3.1.2 Entropy
	3.1.3 Special Cases with Passwords
	3.1.4 Summary

	3.2 Firmware Disassembly
	3.2.1 Summary

	3.3 Alternative Authentication Methods
	3.3.1 Public-key Authentication
	3.3.2 oauth
	3.3.3 Two-factor Authentication
	3.3.4 Summary

	3.4 Network Address Translation
	3.4.1 Private IP Addresses
	3.4.2 Implicit Security
	3.4.3 Considerations Regarding NAT
	3.4.4 Summary

	3.5 Types of IoT Equipment
	3.5.1 IoT Device acting as a Server
	3.5.2 IoT Device acting as a Client
	3.5.3 Summary

	3.6 Deep Packet Inspection
	3.6.1 Summary

	3.7 Data Encryption
	3.7.1 Messages Exchanged by the SSL Handshake Protocol
	3.7.2 Summary

	3.8 Linux Router
	3.8.1 Forwarding
	3.8.2 Netfilter
	3.8.3 Summary

	4 System Design
	4.1 System Overview
	4.2 Profiles
	4.2.1 Traffic Information
	4.2.2 Fingerprint Information
	4.2.3 dhcp Request
	4.2.4 iot Device as Server
	4.2.5 iot Device as Client
	4.2.6 dns Queries
	4.2.7 Summary

	4.3 Software Design
	4.4 Server Application Design
	4.4.1 Functions
	4.4.2 Repository Operation
	4.4.3 Security Issues
	4.4.4 Summary

	4.5 Client Application Design
	4.5.1 Traffic Inspection
	4.5.2 Profile Generation
	4.5.3 Profile Management
	4.5.4 Subsystems
	4.5.5 Summary

	4.6 Sniffer
	4.6.1 Layer 2
	4.6.2 Layer 3
	4.6.3 Layer 4
	4.6.4 Layer 7
	4.6.5 Reports
	4.6.6 Summary

	4.7 Traffic Profiler
	4.8 Management Subsystem
	4.8.1 Summary

	5 Implementation
	5.1 di
	5.1.1 Summary

	5.2 Events
	5.2.1 Summary

	5.3 PySniffer
	5.3.1 Scapy
	5.3.2 Reports
	5.3.3 Layer 3
	5.3.4 Layer 4
	5.3.5 Layer 7
	5.3.6 Summary

	5.4 PyProfiler
	5.4.1 Profiles
	5.4.2 Web Server
	5.4.3 Firewall Rules
	5.4.4 Summary

	6 System Evaluation
	6.1 Test Setup
	6.2 Profile generation
	6.2.1 Procedure
	6.2.2 Execution
	6.2.3 Generated Profiles

	6.3 Firewall
	6.3.1 Functionality Test
	6.3.2 Results
	6.3.3 Exploit Test
	6.3.4 Results
	6.3.5 24 Hours Test
	6.3.6 Results

	6.4 Port Scan
	6.4.1 Summary

	6.5 Results Interpretation

	7 Closure
	7.1 Conclusion
	7.2 Discussion
	7.2.1 Future Use of This Solution
	7.2.2 Alternative Solutions

	7.3 Attacker's Perspective
	7.3.1 Profile Generation
	7.3.2 Change Wi-Fi Network Association
	7.3.3 Summary

	Bibliography
	A IoT Devices
	A.1 Tado
	A.2 Philips Hue
	A.3 DEVELCO Squid.link

	B Vulnerable Virtual Machine
	B.1 Setup
	B.2 Exploitation

	C Profiles
	D Firewall Results

