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The work presented in this report, have
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be semantic segmentation where objects in
the world should be segmented and classi-
fied. The traditional way to solve there
issues is by supervised learning, e.g. using
Convolutional Neural Networks. Instead
it was tried to develop a system, which is
able to automatically learn a representa-
tion of features or object categories. The
chosen method was to utilize a generative
model, specifically a Generative Adver-
sarial Method for semi-supervised learn-
ing, following the famous Richard Feyn-
man quote: What I cannot create, I do not
understand.. The system was therefore
encouraged to generate data, that should
look like masks in a semantic segmenta-
tion task. Unfortunately the system never
approached something satisfactory in that
regard. Furthermore the system was de-
veloped with a Region Proposal Network,
that would feed the model with regions
that it might find interesting.
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Chapter 1

Introduction
A survey from September 2016 by International Federation of Robotics, predicts that
between 2017 to 2019 industrial robots will see an average growth of at least 13 % per
year, resulting in more than 1.4 million industrial robots being installed [1]. Furthermore
they released a survey regarding service robots, which they project will reach almost 42
million in 2019, showing that there in the coming years is a big market and interest in
robots for both industrial and service use [2].

According to the ISO 8373 standard from 2012, which specifies the vocabulary and defi-
nitions related to robotics, a robot is defined as:

”Actuated mechanism programmable in two or more axes with a degree of autonomy,
moving within its environment, to perform intended tasks.”

Furthermore a more precise classification for industrial and service robots is provided,
mostly this is characterized by their intended purpose. A service robot is defined as
performing useful tasks for humans or equipment and include robots in areas like cleaning,
medical assistance, toys and public relation [24].

Industrial robots used for e.g. automation often perform repetitive tasks in a clean envi-
ronment and is therefore often not equipped with sensors to understand the world around
it. Since service robot is often placed in more noisy environments, e.g. a public relation
robot placed in a store, they need to understand what is located around it and how to
interact to it.

Understanding the world is a complex problem though, it contains thousands of category
objects, which can both look very different within the same category and visually similar
within different categories. Conditions also have a strong impact on the task, e.g. lighting,
distance, angle, pose or occlusion all have an affect on how an object appear.

1.1 Initial Problem Statement
The focus of the project, is related to enabling a robot to autonomously interact with its
surroundings. In order to make this possible, a vision based system that can localize and
categorize objects is needed.

Tousch et al. [47], Fan et al. [11] both define the world as being hierarchal and arguing that
it can be used to improve image annotation and segmentation, having a prior knowledge
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3 CHAPTER 1. INTRODUCTION

of objects. A car is more likely to be on a road, while a sofa is more likely to be in a
living room.

Furthermore the world can be divided into different building blocks, such as objects, stuff
and planes. In this case objects are things like a TV, mug or car, stuff is grass, mountains
and buildings, while planes is floors, walls or the sky.

The focus should be on understanding objects in the world and not planes and stuff.

Knowing the location and category of an object is not enough to understand your sur-
roundings, being able to differentiate between objects of the same class is likewise a
necessity, another focus should therefore be to differentiate between same class object.

The initial problem statement, which will be the basis for the preliminary analysis, is
thereby expressed as:

How can a system be developed, that utilizes computer vision techniques to allow robots to
understand objects within their environments.







Part I

Preliminary Analysis
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Chapter 2

Computer Vision
When discussing computer vision, there are a set of approaches worth discussing, these
are: classification, object localization, semantic and instance segmentation.

• Classification consist of assigning a global label to an image.

• Localization aims at localizing an object within an image.

• Object detection aims at detecting if a specific object is present in the given
image.

• Semantic segmentation consist of creating a pixel-wise classification of an image,
meaning each pixel should be assigned to a class.

• Instance segmentation is a one level increase in difficulty compared to semantic
segmentation, its goal is to be both class and instance aware.

A visual explanation of the tasks mentioned, is seen in figure 2.1.

Figure 2.1: Comparison between four tasks within computer vision, classification and localiza-
tion is a single object task, while object detection and semantic segmentation is a multi object
task. Instance segmentation create a pixel-wise classification like semantic, but also differs be-
tween instances within the same class.

The focus for this project is within segmentation, for which two metrics is normally used
for showing the accuracy of the system. These are class accuracy, which is the classification
accuracy as described above and pixel accuracy, which is the average accuracy of the pixel-
wise classification.
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Chapter 3

Related Work
In the coming sections, methods used for both semantic and instance segmentation will
be looked into, the reason for this is that since they are closely related, it is relevant to
research both fields.

The papers described are chosen based on how recent they are, novelty of their methods
and the datasets their proposed methods are tested on.

3.1 Semantic Segmentation
This section will look into different methods that have previously been used to perform
semantic segmentation. First methods that creates segmentations without region proposal
is described, followed by a description of the methods that do. At the end a comparison
of the results the mentioned methods have obtained is conducted.

3.1.1 Proposal free approach
Couprie et al. [8] Uses RGB-D images, the images is rescaled to 240× 320px and is first
preprocessed by normalization, the depth image is treated as an additional channel. The
RGB-D image is given as input to a multi-scale convolutional Neural Network (CNN),
meaning there are multiple copies of the same CNN which are fed different scales of the
image.

The CNN consist of three stages, the first two contain a convolutional layer, a non-linear
activation followed by a max pooling layer while the last stage only consist of convolutional
layers. For classification two fully-connected layers are used, in the second layer the multi-
scaled features are concatenated. Superpixels are used to smooth the predictions during
post-processing.

Long et al. [35] introduces fully convolutional networks (FCN), which discard the classifi-
cation layer and substitute the normal fully-connected layers in a CNN with convolutional
layers, this allow for end-to-end training and make the network indifferent to the size of
the input image. Since CNNs include subsampling they use deconvolution to upsample
the feature maps to the size of the input image. The architecture consist of convolutional
layers followed by pooling layers, to get a finer a finer pixel prediction, they add skip
layers between layers which they fuse together. This results in three networks FCN-32,

7



3.1. SEMANTIC SEGMENTATION 8

FCN-16 and FCN-8, named after the upsampling that is needed.

Zheng et al. [52] uses Conditional Random Fields (CRF) for the pixel-wise labeling, using
an image a CRF models the pixel labels as random variables for a Markov Random Field
(MRF). They formulate the mean-field algorithm of CRF as a stack of CNN layers, by
stacking multiple mean-field iterations, it becomes equivalent to treating the inference
as a Recurrent Neural Network (RNN). The idea is that the FCN stage predicts pixel
labels without considering the structure of the image, while the CRF-RNN stage makes
structured predictions. The architecture of the FCN stage is the FCN-8 introduced in
Long et al. [35].

In Lin et al. [33] they utilize a CNN for feature extraction, specifically they resize the input
image to three scales and feed them to three architectural similar CNNs and upsample
them to have the same spatial size before fusing them to a final feature map. By looking
at rectangular regions of the whole image and combining CRF nodes that lie within a
spatial range of each other, they create a CRF graph. A FCN is then fed the feature
vector from the corresponding location of each CRF node to get the unary potential.
Likewise they create edge features by concatenating corresponding feature vectors of two
connected nodes, these are fed to another FCN to get the pairwise potential. Combining
these results in a low resolution prediction, to address this they first apply three mean
field iterations, to get a coarse prediction followed by bilinear upsampling and a dense
CRF for post-processing, which sharpens the object boundaries and generates the final
high-resolution prediction.

Schulz and Behnke [43] uses RGB-D images to create patches that are inversely propor-
tional to the depth. These patches are upsampled using bilinear interpolation and fed
to a shallow feed forward CNN architecture. In all they use eight input maps: The raw
RGB image, four maps containing a simplified Histogram of Oriented depths (HOD) and
one for the height. The best results are achieved using CRF for post-processing.

In Chen et al. [7] they use a FCN version of a Residual Network (ResNet) with 101 layers,
where they use atrous convolutions throughout the network. Atrous convolutions add
strides within the kernel, adding zeros in between the filter values. Resulting in an increase
of the receptive field, which means that the degree of downsampling of the feature maps
is reduced. They construct four parallel networks using atrous convolutions with different
sampling rates (stride in the kernel) and fuse them together at the end. Furthermore
they utilize multi-scale image representation, using three scales of the input and bilinear
interpolation for fusing the feature maps. For preprocessing the feature maps are fed to
a fully-connected CRF, compared to dense CRF which tries to smooth the prediction,
fully-connected CRFs tries to improve detailed local structures of the image.

Lin et al. [34] creates an architecture they call RefineNet, to utilize multi-scale image
representation the system contain several separate RefineNets, that can take an arbitrary
amount of inputs. Normally the smaller scale output from the previous ResNet and a
current scale image. The inputs for each ResNet is fed to two consecutive simplified
ResNet nodes, since the inputs have different scale they upsample the feature maps and
fuse them by summation. The feature map is then given to a chained residual pooling
network, which goal is to capture background context, specifically it is built as a chain
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of multiple blocks consisting of a pooling layer with stride 1 and a convolutional layer.
The blocks takes the output from the previous as input blocks and consecutively sum the
outputs. A last ResNet node is added before outputting the prediction. Lastly they feed
the high-resolution feature maps to a dense softmax layers to form a dense score map,
bilinear interpolation is then used to match the scale of the original image.

In Huang et al. [23] they also utilize a RNN, they built the system on top of a VGG-16
network, followed by a Gated Recurrent Unit (GRU) with explicit long range contextual
dependency (RNN-ELC). The idea is that since an image is processed from left to right,
top to bottom, two pixels placed vertical of each other is highly contextually related,
but processed at vastly different time steps and would therefore not be seen as related
using a normal RNN. Specifically they have four parallel branches, each responsible for
calculating the dependencies in the four directions away from a spatial position in the
feature map. These are then concatenated before being fed to two blocks containing an
unpooling layer followed by convolutional layer for the final prediction and in order to
upsample to the size of the original image.

Li et al. [31] also uses RNN, but the Long Short-Term Memorized (LSTM) method and
processing RGB-D images. They process the RGB and depth map separately, encoding
the depth map as an HHA image and feeding it into three convolutional layers, followed by
a vertical context memory network layer. The RGB network utilizes the same architecture
as in Chen et al. [7], before also being fed to a vertical context memory network layer,
which is then fused with the depth context using a horizontal bi-directional memory
network to get RGB-D context. The output is then concatenated with feature maps
extracted from the RGB image, since it provides richer information than the depth images,
it is then fed to a last convolutional layers with softmax activation to perform the pixel-
wise scene labeling.

3.1.2 Proposal-based approach
Gupta et al. [18] proposes to use RGB-D images, they first create a contour map, tak-
ing advantage of the depth information, utilizing contour detection they generate region
proposals. For each region proposal a HHA map is made and is separately fed to a mod-
ified a Region-based Convolutional Neural Network (R-CNN). The same is done for the
RGB regional proposal, they are both given as input to a Support Vector Machine (SVM)
that classifies the detected object. In order to perform pixel-wise labeling they utilize
superpixels.

Hong et al. [22] proposes to decouple the classification and segmentation, which they argue
allows them to use pretrained models for the classification and only train the segmentation
network. They adopt the VGG-16 CNN for classification. Between the two networks is a
bridging layers, which takes the output from the last pooling layers and constructs class
specific activation maps which is the given as input to the segmentation network. They
adopt a deconvolution network as was first introduced in Noh et al. [37] for this step,
which is a contrast equivalent network to their classification network, utilizing unpooling
and deconvolution layers resulting in a prediction map with the same scale as the input
image. Softmax is used for the pixel-wise classification.
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in Caesar et al. [6] they use selective search to get free-form region proposals. Multiple
convolutional layers are given the input image and the bounding box region of the feature
maps and free-form region is given as inputs to multiple fully connected layers working in
parallel, followed by a classification and softmax layer for pixel-wise classification.

3.1.3 Summary
Table 3.1 shows the results the mentioned methods have obtained.

Table 3.1: Comparison of semantic segmentation papers.

PASCAL
VOC 2011
Test set

PASCAL
VOC 2012
Test set

Pascal Context NYUDv2 SIFT Flow SUN-RGBD
(37 classes)

Data type Mean IU Mean IU Mean IU Pixel acc. Class acc. mIU Pixel acc. Class acc. mIU Pixel acc. Class acc. mIU
Proposal Free

[8] (2013) RGB-D 64.5 63.5

[35] (2015) RGB
(+HHA for NYUD) 62.7 62.2 37.6 65.4 46.1 34.0 85.2 51.7 39.5

[52] (2015) RGB 72.4 72.0 39.3
[33] (2015) RGB 75.3 43.3 70.0 53.6 40.6 88.1 53.4 44.9
[43] (2015) RGB-D 73.4 73.7
[7] (2016) (CRF-ResNet-101) RGB 79.7 45.7
[34] (2016) (ResNet-152) RGB 83.4 47.3 73.6 58.9 46.5 80.6 58.5 45.9
[23] (2016) RGB 64.5 41.4 87.8 46.7

[31] (2016) RGB +
HHA 49.4 48.1

With Proposal
[18] (2014) RGB +HHA 60.3 28.6 31.3
[22] (2015) RGB 66.6
[37] (2016) RGB 72.5
[10] (2016) RGB 75.2
[5] (2016) RGB 32.5 84.3 64.0

As can be seen, for semantic segmentation the proposal-based methods does not achieve
better results than the proposal free methods, though It can also be seen that incorpo-
rating depth data in general improves the results, which fits with the tests conducted by
the respective authors.

Having looked at previous work for semantic segmentation, the next section will focus on
methods used for instance segmentation.

3.2 Instance Segmentation
In Liang et al. [32] proposes to use two networks, one for semantic classification and use
that for fine-tuning the instance segmentation network. For semantic segmentation they
utilize the architecture introduced in Chen et al. [7] and uses a fine-tuned VGG-16 CNN
for classification. A fully-connected CRF is used for pre-processing in order to smooth
the segmentation prediction.

For instance segmentation they use the predicted category locations to predict the specific
object locations and create a bounding box. The coordinate map from the bounding box
is then used as input to the network. Furthermore they utilize multi-scale prediction, for
the larger layers they subsample them before being concatenated, the idea is that they
get more accurate pixel-wise prediction by incorporating the spatial coordinate maps. A
1× 1 convolutional layer is then used for the final pixel-wise prediction.
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Dai et al. [9] proposes to use a cascade of multitasking networks, where one network is re-
sponsible for generating bounding boxes, one generates mask instances for each bounding
box and the last one categorizes these. Each of these stages uses the VGG-16 architecture
and functions as a second input to the next stage, with the first input being a feature
map extracted from the input image.

In Wu et al. [49] proposes to use a semantic segmentation network to calculate a score
map and use bounding-box regression as a localization network. The transform maps are
then applied to the score maps and search for and keep the local maximum of detected
instances. A mask is then generated for each instance and using non-maximum suppres-
sion, which is responsible of thinning and making the edges of the mask sharper, a final
instance segmentation is generated.

The semantic segmentation network uses the architecture of a fully convolutional resnet
and are trained separately of the localization network. Furthermore, when a layer sub-
samples the feature map, they add a skip layer that uses atrous convolution instead.

Uhrig et al. [48] proposes to extend the FCN-8 architecture with three output channels;
semantic segmentation, estimated instance depth and instance directions respectively.
They use template matching on the direction prediction to extract the instance centers,
adjust the templates aspect ratio depending on the semantic class prediction and further
scale it based on the predicted depth class. Using non-maximum suppression within the
template matchings, they get a representation of temporary instance centers, from which
they determine the instances location. To get the final instance segmentation they look
at the information from each channel. If there is any incomplete instance proposals they
see if it is biased to a certain direction, if there is any neighboring candidates with the
same semantic class and depth in that direction, they are fused into one instance. They
further merge their instance predictions with the pixel-wise semantic labeling channel of
the FCN.

In Pinheiro et al. [38] use a FCN version of the VGG-A architecture, they modify it
by adding a top-down network that fuses the corresponding earlier feature map from
the bottom-up network and upscales them using a refinement module. The network
is trained to generate object masks and they argue that the architecture results in a
more pixel-accurate segmentation and is better at separating objects. The network is
trained in two stages, first the feed-forward network is trained to generate coarse pixel-
wise segmentation and afterwards refinement modules are trained. When converged they
combine the networks and train them together.

Arnab and Torr [3] first uses a semantic segmentation network combined with higher
order CRF, which is a modified CRF trained for object proposal potential Arnab et al.
[4]. Combining the semantic segmentation with the bounding box output from a object
detector they identify instances of which they use CRF on to smooth the pixel-wise
segmentation.

Zhang et al. [51] creates regions by extracting three different sizes of patches in a densely
overlapping fashion. From these patches they softly score a pixel-wise instance prediction.
They then utilize a densely connected Markov Random Field (MRF) in order merge the
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soft predictions. In order to get the soft prediction they fine-tune a FCN, based on VGG-
16 and trained on ImageNet, for instance segmentation. The FCN predicts up to five
instances, plus the image background, while the MRF is restricted to a maximum of nine
instances per image. For the MRF colour is not used as a feature, as they argue two
instances can have the same color or it can be deceiving due to shadows, saturation and
specularities.

In Li et al. [30] they propose a system that is able to be trained end-to-end, they utilize
Faster R-CNN in order to generate region proposals. For each region they use a sliding
window approach, for which they use a single pretrained ResNet FCN to calculate two
likelihoods for the pixel belonging to some object instance inside or outside of the object
boundary. Jointly using the two score maps, softmax is used to predict the pixel-wise
foreground probability, while a max operation produces the pixel-wise classification prob-
ability. In order to classify the whole proposed region, average pooling is used on all of
the pixels likelihoods. For inference the system proposes 300 Regions-Of-Interest (ROI)
which are then passed through a bounding box regression in order to refine the prediction.
Using Non-Maximum Suppression (NMS) the ROIs with a large amount of overlapping
are filtered out.

Ren and Zemel [40] also proposes a network that can be trained end-to-end, but using a re-
current network with an attention model. They divide the network into four components,
external memory that keeps track of the state of segmented objects, a region proposal
network, a segmentation network and a scoring network, that verifies if an object have
been found.

The external memory is used to save information about the object boundaries from all
previous steps, they argue that this helps the network reason about occluded objects and
where to look next.

The region proposal network consist of Long Short-Term Memory (LSTM) network, in
order to be sure to get enough information in the bounding box, the network is allowed
to look at different locations for each time step. A linear layer is given the output of the
LSTM’s hidden state in order to predict the exact box coordinates.

In the segmentation network a pretrained FCN, as described in Long et al. [35], is used to
pre-process the input, while a deconvolution network as Noh et al. [37] is used to predict
the pixel-wise segmentation. Furthermore they calculate the relative angle towards the
instance center, in order to force the model to encode more detailed information about
the boundaries.

The scoring network is used to determine the amount of objects in the image, specifically
it takes information from both the region proposal and segmentation network to produce
the score. If the score gets below a predefined threshold, it is assumed that all objects
have been segmented and the process terminates.
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3.2.1 Summary
In table 3.2 a comparison between the methods described in this section is shown.

Table 3.2: Comparison of instance segmentation papers.

PASCAL
VOC 2012

Validation set

PASCAL
Context

KITTI
(test set)

City Scape
(all)

MSCOCO
(test-dev-set)

Data Type AP r Mean IU MWCov MUCov AP mAP AUC
[32] (2015) (VGG-16) RGB 58.7
[9] (2015) (ResNet-101) RGB 63.5 44.3
[49] (2016) RGB 60.9 44.5
[48] (2016) RGB 79.7 75.8 8.9
[38] (2016) (MSCOCO validation set only) RGB 20.9
[3] (2016) RGB 58.3

[51] (2016) RGB
73.7

(74.1 with
post-processing)

54.3
(55.2 with

post-processing)

[30] (2016) (ResNet-101) RGB
49.5

(59.9 with
extra processing)

[40] (2016) RGB 80.0 66.9 9.5

One thing to notice, is that all the methods use region proposals, showing that though a
CNN can be good at localizing objects within its frame, it does not know how to actually
distinguish between them. Another thing to consider, is that all of the methods handle the
problem, both semantic and instance segmentation, in the same manner, using supervised
learning to get the system to segment the image and classify its objects within a finite
number of classes.



Chapter 4

Problem Statement
As mentioned in the initial problem statement, the basis for the project is to see if a
computer vision system can be developed, that allows a robot to understand their envi-
ronment.

One way to accomplish this, could be generative models, which learns about our world, by
generating data like it. Based on the initial problem statement and preliminary analysis,
the final problem statement is expressed as:

Can a system be developed, which unsupervised can learn to perform semantic segmenta-
tion, by encouraging it to generate similar data.
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Chapter 5

System Overview
In this chapter the overall system architecture will be introduced. For each subsystem a
short description of its purpose will be given, which will be ground work for the detailed
explanations in the following chapters. The system can be seen in figure 5.1.

Figure 5.1: Overview of the full system architecture.

The first subsystem is a Region Proposal Network (RPN), based on a Convolutional
Neural Network (CNN), it will be fed with an RGB image of a scene. The networks
purpose is to generate a finite number of Regions Of Interest (ROI), Since the RPN is
not responsible for classifying the objects within the scene, these proposals will be class
agnostic and only look for objects, e.g. ignoring walls, floors, grass and the sky. Further
details about the system is available in chapter 7.

The second block in the system, is used for preprocessing the ROIs before feeding them to
the next subsystem. First of all, it makes sure that each ROI have the proper size, since
it is undesirable to warp the images, the system will make crop the ROIs into smaller
ROIs if too large or pad them if too small. It is also responsible for storing the location
of each ROI, in the context of the original scene image. Furthermore it makes sure that
the target and RGB images are correctly aligned, a detailed explanation is available in
section 7.4.

16



17 CHAPTER 5. SYSTEM OVERVIEW

Each ROI is given as input to the Generative Adversarial Network, which have two main
purposes. First of all it is responsible for creating the object mask for the ROI and
secondly it classifies the object, shown in the ROI. Further details regarding theory and
architecture, is available in chapter 8.

The last block in the system is in regard to post-processing of the image, the main purpose
is to stitch the predicted mask ROIs, such that the complete full resolution masked scene
is restored. The specific details about the system is available in chapter 9.

For each ROI proposal output by the RPN, the three other subsystems will process the
data, in order to complete the whole scene image.

As seen, two of the subsystems are based on deep learning techniques, the upcoming chap-
ter will look further into the fundamental methods and reasoning behind such systems.



Chapter 6

Deep Learning Based Systems
As explained in chapter 5, the proposed system consist of two subsystem, namely a
Region Proposal Network and a Generative Adversarial Network, these are based on deep
learning technologies. In this chapter the reasoning behind deep learning will be explained,
specifically in regards to the technique Convolutional Neural Network (CNN), for which
the most important elements will get a detailed explanation.

Deep learning is a subset of techniques within machine learning, it mainly differs in how
data is processed. Using traditional machine learning techniques, e.g. within computer
vision, involves hand-crafting the features that will be used for classifying the data. This
is needed, since these techniques traditionally have issues processing raw data, but it can
also be difficult and most importantly, time consuming. Moreover, a feature extraction
method that performs well on one task, seldom performs well on another comparable task,
e.g. recognizing different objects in an image [29] .

In tasks, that we as humans perform intuitively, such as recognizing speech or faces, can
be hard to design features for, as we ourself might have issues describing what we see
or hear. Deep learning removes the necessity for hand-crafting features, by learning and
improving from experience, e.g. seeing data and trying to learn concepts about what have
been presented to it. This means that, depending on the complexity of the task at hand,
large amounts of data is needed, the availability of readily made large datasets are also
one of the reasons behind deep learning gaining popularity the later years. In the case
of supervised deep learning, a rule of thumb is that training on 5.000 examples per class
will result in acceptable results, while 10 million examples per class will exceed human
performance [17].

Deep learning is referenced as such, since it tries to create a hierarchy of feature concepts,
learning data representations in multiple layers by changing its internal parameters. In
the first layers it will register edges, corners and contours, later it will register whole
parts of an object, resulting in high-level features. The corresponding complexity of these
networks, puts a larger demand on the computational hardware, increased availability of
especially Graphical Processing Units (GPU) can therefore be seen as a key reason for
making deep learning possible [17]. GPUs are designed to compute instructions in parallel
by having more cores, which are clocked at a lower frequency than the cores in a Central
Processing Unit (CPU) though, in general they also have a higher memory bandwidth.
This also means that their efficiency is correlated with the amount of data they are being
asked to work with. Previous experiments have shown that in the case of deep learning,
GPUs are 10-30× faster, compared to CPUs [44].
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In later years, deep learning have become a synonym with Artificial Intelligence (AI) and
have proven its effectiveness in several fields of research and at various tasks, e.g. speech,
Natural Language Processing (NLP), robotics and computer vision, the latter is the focus
for this project [29].

6.1 Convolutional Neural Network
As mentioned above, when working with computer vision, the most commonly used tech-
nique is CNN, which is also the basis for this project. A challenge within computer vision
is related to size and location of objects within an image, where traditional machine learn-
ing have issues. CNNs are inspired by research in cat’s visual cortex, which showed that
their receptive field consisted of a interconnected system of layers, that covered the en-
tire visual field, CNNs have shown to overcome this problem by taking advantage of the
strong spatially local correlation in images, this is done by using weight sharing in each
feature map [28]. This also results in the number of free weights being reduced signifi-
cantly, compared to e.g. a comparable Multi-Layer Perceptron (MLP) where all neurons
are connected. Furthermore, because a CNN consist of multiple layers of non-linear map-
pings, conventional classifiers are linear, it is able to become sensitive to minute details
and insensitive to large irrelevant details, such as position, pose, size and lighting [29].

6.1.1 Convolutional Layer
The convolutional layer is the core of a CNN, it performs the mathematical operation
of convolution across the width and height of its input and a dot product along the
depth, resulting in a stack of 2-dimensional feature maps. These feature maps represent
’activated’ regions from the input layer, meaning a region at a spatial position where
features specific to the used kernel activates. The depth of the output is a hyperparameter,
which is equivalent to the amount of kernels that the network should use on the input.
The network learns which features are important by updating the kernels values for each
iteration through the training data.

Unlike traditional neural networks where every output neuron interacts with every input
neuron, CNNs use local connectivity, this is accomplished by using a kernel that is smaller
than the input, this ensures that the spatial structure of an image is taken into consider-
ation. Meaning that each neuron in the feature map uses the same kernel in the spatial
dimensions, while the neurons along the depth axis only receives input from a small local
part of the image. A visual explanation of this can be seen in figure 6.1, the neurons in
the feature maps look at a small region of the image.
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Figure 6.1: Principle behind the convolutional layer, to the right is an RGB input image, with
a kernel moving along its height and width. The corresponding output is a volume of feature
maps.

Another feature of the convolutional layer is parameter sharing, it is based on the as-
sumption that if a feature is useful at one spatial position, it is most probably useful at
another spatial position. This means that a feature map will share the same parameters
along its width and height, an illustration can be seen in figure 6.2 [17].

Figure 6.2: Illustration of parameter sharing, the same kernel is moved along the width and
height of the red channel. Each channel will have its own kernel and the resulting feature map
is a dot product between them..

As the figure shows, the kernel is moved along the width and height of the input image,
computing the dot product between the values in the patch and the ones in the kernel.
The process is repeated for each colour channel, which each have its own kernel and the
final feature map value for the spatial position is the sum of their contributions. Taking
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normalization into account, each channel contribution can be divided by the sum of kernel
values.

The bias of the kernels are normally initialized as a constant, 0, while the weights are
initialized randomly. Different functions exist to initialize the weights, e.g. Gaussian,
HeNormal and GlorotNormal and their uniform variations.

Gaussian initialization gets its weights from a Gaussian distribution with N (µ, σ2), where
µ is the mean, typically 0, and σ2 the variance.

HeNormal initialization also samples its weights from a Gaussian distribution, with mean
0, but with standard deviation

√
2

fanin
, where fanin is the number of input neurons.

GlorotNormal again samples its weights from a Gaussian distribution, with mean 0 and
a standard deviation

√
2

fanin+fanout
, where fanout is the number of output neurons.

6.1.2 Pooling Layer
The main purpose of a pooling layer is to merge similar features into one, in order to make
the network robust to relative positions in an image. this is done by downsampling the
spatial dimensions while keeping the depth of the feature maps. Including pooling layers
in the network have the added benefit of making the system less prone to overfitting [29]
[17].

One implementation of a pooling layer is max pooling, which works by running a specified
kernel with a predefined stride through the feature maps. The output for each kernel
operation is the highest value within the neighborhood.

Average pooling is another option, unlike max pooling its output is the average of the
values in the kernel neighborhood, the output is rounded to nearest integer. An example
showing the results of the two, given the same image values, can be seen in figure 6.3, a
feature map of size 4× 4 and a kernel with size (2× 2) and stride (2,2) is used. For the
rest of the report, it will always be assumed that stride is the same in both the x and y
direction.
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Figure 6.3: Example showing the difference between max and average pooling, when a 2 × 2
kernel with a stride of 2 is

6.2 Activation Layer
The output of e.g. a convolutional layer is a weighted sum of linear activations, each of
these is then sent through a non-linear function. Some of the more common activation
functions are Rectified Linear Units (ReLU), TanH and Sigmoid, a graphical comparison
between the three can be seen in figure 6.4.

Figure 6.4: Graphical presentation of the three activation functions; ReLU, Sigmoid and Tanh.

ReLU is defined by the function f(x) = max(0,x), meaning that it thresholds the gradient
in the range [0,∞], the drawback of this is that if a neuron gets clamped to 0, then the
gradient will be zero, resulting in a ”dead neuron”. At the same time it can be prone to
exploding gradient as x increases, which also causes the neurons to not be updated.
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Sigmoid is defined as f(x) = 1
(1+e(−x) , it tries to compress the activation between [0,1].

Because of this Sigmoid tends to suffer from vanishing gradient.

The tanH activation fuction is defined as f(x) = tanh(x) = 2σ(2x)− 1, it can be seen as
a scaled Sigmoid in the range [−1,1].

ReLU have shown to be the most popular activation function, because of its simple nature
it is computationally cheap, while it have also proven to learn faster than the others when
used in a CNN [29] [15].

6.2.1 Fully-Connected and Decision Layer
In order to map the high-level spatial representations of the CNN, into a lower dimen-
sional global representation, a common technique is to use one or several concurrent fully
connected layers at the end, though recent research have shown that fully-convolutional
networks performs well for pixel-wise tasks [35]. A fully connected layer is a Multi-Layer
Perceptron (MLP), meaning all neurons in a layer have full connection to the neurons in
the previous layer. In e.g. a classification task, the fully-connected layer will have the
same output dimensions as the number of available classes and holds the unnormalized log
probabilities for each class. The last layer is the decision layer and consist of an activation
function, for a classification problem the softmax function is typically used.

Softmax is a linear classifier, it calculates a normalized probability of the output from the
decision layer. Softmax can be expressed as:

P (y = j|x) = expxT wj∑K
k=1 expxT wk

(6.1)

P (y = j|x) is the predicted probability for a specific class, given data x. wj is the weights
for that class and K is the number of classes.

6.2.2 Loss Layer
The loss layers purpose is to calculate how the system should be penalized, based on the
predicted distribution and true probability from the forward pass and ground truth.

For a binary classification objective, cross entropy normally follows a softmax activation
and can be expressed as:

E = −
∑

i

pi · log qi (6.2)

Which can be seen as a measure of similarity or error between the true class pi and the
predicted class qi. Staying with the classification example, the goal for the network is to
minimize the cross entropy between the true and predicted distribution. If the objective
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was multi classification, e.g. with three possible classes, the cross-entropy is computed as:

E = −
3∑

i=1
(pi · log(qi)) + ((1− pi) · log((1− qi)) (6.3)

Having looked at how to calculate the output error of the forward pass, the next step is
to discuss how to use it to improve the network.

6.2.3 Back-propagation
The way that the network learns and improves, is by updating the weights and biases
throughout the network, such that the output comes closer to the ground truth, this is
done by using a backward pass. Intuitively explained, back-propagation moves backwards
through the network, computing the gradient for the weights in each layer based on the
output loss. The principle behind back-propagation, using a MLP with three hidden
layers and two outputs as an example, is shown in figure 6.5.

Figure 6.5: Principle behind back-propagation in a MPL with one input Xi, three layers of
hidden units Hi and two outputs Yi.

Following the red arrows backwards through the network, the gradient, or error, would
be calculated using the chain rule. As an example, after a forward pass, the sum of errors
in the output nodes is computed: Etotal = E(Y1) + E(Y2). It is then desired to calculate
how much a change in W13 affect Etotal, which is done as;

∂Etotal

∂W13
= ∂Etotal

∂Y1(out)
∗
∂Y1(out)

∂Y1(in)
∗
∂Y1(out)

∂W13
(6.4)
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Notice that each node have an input and output which the error needs to be calculated
between, for simplicity bias is not included. The process is continued backwards through
the system, with each computed gradient dependent on the gradients that came before it.

Knowing the gradients in regards to the output error, the weights needs to be updated,
this is done by using a optimizer function, e.g. Stochastic Gradient Descent (SGD). For
a CNN, which utilizes parameter sharing, as described above, only a single set of weights
needs to be updated for each feature map. SGD updates the parameters W using few
training sample, as seen in equation 6.5:

Wt+1 = Wt − α · ∇W `(Wt;xi, yi) (6.5)

Where xi and yi are data points from the training set that are sequentially fed to the
network. Typically this would be in the form of a minibatch, which is a subset of images
within a batch. A batch is the amount of images that the network will be conditioned
on throughout an epoch. The idea behind feeding the networa k images in the form of
minibatches, is to update its internal parameters based on the result of several predictions,
which will make the network better at generalizing and thereby converge in a stable
manner. α is the learning rate which determines the step size in the gradient direction,
since SGD can have issues with overshooting or oscillation, the learning rate is often set as
a small value or decreasing over time. ∇W `(Wt;xi,yi) is the gradient of the loss function,
given the input data.

The result of this, is that the network can be slow to converge, various optimization al-
gorithms have therefore bee proposed to used in combination with SGD, e.g. Nesterov
momentum or Adaptive Moment Estimation (Adam). Using a standard momentum term,
if the gradient is moving down a slope, the velocity will continue to accumulate, resulting
in faster convergence, but since the gradient is calculated with regards to the current pa-
rameters, it can also result in overshooting if it hits an upgoing hill. Nesterov momentum
prevents this by approximating the position of the next parameters and updating the
gradients based on this, meaning it can start to slow down if a hill shows up. SGD with
Nesterov momentum can be expressed as:

Wt+1 = Wt − γ · vt−1 + α · ∇W `(Wt − γ · vt−1) (6.6)

Where vt−1 is the velocity and γ is the momentum factor, which is a value in the range
[0; 1].

Nesterov helps in adapting our update function based on the slope, using Adam instead,
our updates can also be adapted to the individual parameters, depending on their impor-
tance. In order to do this, Adam incorporates an adaptive learning rate into the update
function. Adam estimates the first and second order moment, which are expressed as:

mt = β1 ·mt−1 + (1− β1)ġt (6.7)

vt = β2 · vt−1 + (1− β2)ġ2
t (6.8)

Wheremt is the biased first moment estimate and vt is the biased second moment estimate.
The β components are exponential decay rates and gt is the gradients at timestep t. Since
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the moments are initialized as 0, they tend to be biased towards 0 at the initial time
steps t when using small decay rates, β values close to 1. In order to counteract this,
bias-corrected estimates are computed as:

m̂t = mt

1− βt
1

(6.9)

v̂t = vt

1− βt
2

(6.10)

The final update rule, thereby becomes:

Wt+1 = Wt − α ·
m̂t√
v̂t + ε

(6.11)

Overall, using Adam compared to e.g. Nesterov momentum means that less time can
be spend on fine tuning the hyperparameters, while still achieving fast convergence and
good results. The authors behind Adam, suggest using the default values of: beta1 = 0.9,
beta2 = 0.99 and the smoothing term ε = 10−8. Furthermore, Adam have shown to work
well with sparse gradients, which can become a problem for larger networks or throughout
training [26].

6.3 Summary
The goal of this chapter have been to give an overview of deep learning methods, especially
in regards to CNNs. In section 6.1, some of the most important aspects and methods of
CNNs was explained, this included back-propagation and an explanation of how a network
learns.

One aspect not mentioned is in regards to the size of a network and the effect it have on
its performance. As mentioned earlier, each of these layers learn to distinguish different
features and the deeper the network the more sophisticated the features potentially be-
come. This has resulted in a trend of continuously making the networks deeper, as an
example, AlexNet, which won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [42] in 2012 with a top-5 error rate of 15.30 %, consisted of five convolutional
layers and had 60 million parameters [27]. GoogLeNet, who won the competition in 2014
with a top-5 error rate of 6.70 %, in comparison consisted of 22 layers, but had 12x fewer
parameters than AlexNet [46].

Another contender in ILSVRC 2014 was the VGG network, which architecture is based on
AlexNet. They experimented with designing a base network and then made the network
deeper by adding convolutional layers. The smallest network had eight convolutional
layers and the largest 16, all of them was followed by three fully-connected layers, the
largest of these networks had 144 million parameters. In their ILSVRC submission they
achieved an error rate of 7.3 %, which they later improved to 6.8 %. Most importantly,
they showed that by using a standard architecture they could significantly improve the
results, simply by making the network deeper [45].
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Making a network deeper does not necessarily result in better results as it introduces new
problems. As mentioned in subsection 6.1.1, it is common practice to utilize a Gaussian
or uniform distribution to initialize the network parameters. which have shown to result in
the network stopping to learn. Studies have shown that the gradients, calculated through
back-propagation, becomes smaller and smaller when moving from the output to the input
layer, resulting in the first layers learning slower then the last layers, this is known as the
vanishing gradient problem. In general the problem is that, because the gradient in the
early layers are a product of terms from all past layers, the gradient becomes unstable,
if the parameters are initialized too large it might become a exploding gradient problem
[14] [36]. An illustration of this can be seen in figure 6.5, where the bars within each
node represent the gradient and how it vanishes when approaching the first layers.

In order to counteract this, several methods can be utilized, besides a pooling layer, this
could be bbbdropout and batch-normalization layers,



Chapter 7

Region Proposal Network
As mentioned in 5, the first module in the system is the Region Proposal Network (RPN).
The objective of the network is to locate objects within the given scene, which can then
be fed to the next module in the system. This chapter will start by giving an overview of
how the RPN functions and its inspiration, move on to the architecture of the network,
before looking into the specific settings for the system during training and testing. Lastly,
the ROI image processing will be described, to give an explanation on the data, that is
fed into the GAN.

7.1 Overview
As mentioned above, the RPN is used to generate object proposals within a frame, in
order to efficiently accomplish this, the system needs to:

1. Be fast - In order to make real-time applications a possibility.

2. Have a high recall rate, no matter the object size.

3. Have a good generalization towards unseen objects.

Various object proposal methods exists, such as Selective Search, based on superpixels
and used in e.g. regional-based CNN (R-CNN) and fast R-CNN [13] [12]. Selective Search
is slow when generating a large amount of region proposals, instead the RPN is based on
the one introduced in faster R-CNN [41].

The RPN can be seen as running in two steps:

1. Find all possible locations of objects within the given frame and create a list of
region proposal.

2. Final classification: For each region proposal, obtained in the previous step, perform
binary classification to decide whether it belongs to an object or background class.

Since the following systems are dependent on the ROIs output from the RPN, as an object
not detected in this stage can not be processed in the following subsystems. The system
is setup to generate a number of proposals, that should both be large enough detect all
the objects within the frame, while not slowing down the system significantly.

28
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7.2 Network Architecture
As mentioned, the Region Proposal Network is based on the network proposed in [41]. In
Faster R-CNN, they utilize an initial network to generate feature maps, from which they
both generate object proposals and classifies the object, making the network trainable
end-to-end. The original RPN uses a VGG-16 architecture to generate the initial feature
maps. For this project, it have instead been changed to a ResNet (Residual Network),
which architecture was first proposed in [19], the network was later revised in [20], the
network have shown state of the art performance for classification tasks, e.g. the ResNet
with 1001 layers achieved an accuracy of 4.92 % on the CIFAR-10 dataset and 22.71 %
on the larger CIFAR-100 dataset.

As mentioned in section 6.3, deep networks can have trouble with vanishing or exploding
gradients, ResNet tries to solve this by incorporating shortcut connections that performs
identity mapping. The idea is to create a ”direct” path for the gradient during back-
propagation and thereby solve the issue with unstable gradients in layers further away
from the output. Another added benefit from this, is that it allows deep networks to be
trained from scratch. The RPN network is seen in figure 7.1:

Figure 7.1: Overview of the architecture used in the Region Proposal Network.

Furthermore the figure shows the basic architecture of the ResNet, with a down-sampling
block, followed by an identity block.

A ResNet is build up of these blocks, in the used implementation each down-sampling
block is followed by two identity mappings, each of the blocks consist of three pairs
of Batch Normalization, Activation and Convolution. In each of the blocks the first
convolution have a kernel with size 1 × 1 and the following two have a kernel with size
3× 3 and a stride of 1. In the down-sampling block, the first convolution have its stride
set to 2 and a convolution with kernel size 1 × 1 and stride 2 is added to the shortcut
connection. The depth of the feature maps is increased within each down-sampling block.

As with Faster R-CNN, a mini network with a kernel size of 3 × 3 is used as a sliding
window across the ResNets output feature map, before being split into two convolutional
outputs with kernel size 1 × 1. The classification output utilizes a softmax activation
while the other one performs linear regression, in order to generate the bounding box
coordinates. In order for the binary classifier to learn to distinguish between objects, the
21 classes, including background, of the PASCAL VOC 2012 dataset is used, but changed
to the two classes of object or background.
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For each of the sliding-windows, multiple region proposals a predicted, the number of
proposed regions is defined by the amount of anchors used. As in the paper, three scales
and aspect ratios for these windows is used, this includes the scales: [128, 256, 512] and
three ratios: [[1,1], [1,2], [2,1]], resulting in nine anchors at each sliding window position.
These anchors helps the network in being translation-invariant and makes it possible to
detect objects with multiple scales and aspect ratios.

7.3 Training
During training, we follow the original procedure for the RPN, while discarding the object
detection part of Faster R-CNN; Each anchor is assigned a label of being an object or
not. Furthermore they are divided into positive and negative samples, where the positive
samples are defined as having the highest Intersection-Over-Union (IoU) with a ground
truth bounding box or an anchor has an IoU overlap higher than 0.7 with any ground
truth box. If the anchors have an IoU lower than 0.3 for all the ground thruth boxes,
they are labeled as negative samples, anything in between is discarded. 256 anchors is
randomly sampled within the input image and the positive and negative samples are split
equally, unless there is not enough positive samples, in which case more negatives are
used Since the proposed regions by the RPN is used as input to the rest of the system,
it is decided to only use 32 regions, these are split evenly between positive and negative
samples, unless there is less than 16 positive samples, in which case more negative samples
are used. Since the Generative Adversarial Network should be able to distinguish between
objects and background, this is acceptable.

In order to make sure that the RPN proposes ROIs that can be used when training the
GAN, it is pretrained for 100 epochs, such that it have a sense of objectness. Unlike the
original paper, the network is trained using the Adam optimizer, with a learning rate of
0.00001 and the default β values of 0.9 and 0.999. For classification, the loss function is
the binary cross entropy, while the regression loss is a smooth L1 distance between the
proposed coordinates and ground truth.

7.4 ROI Image Processing
After the RPN have found the objects of interest, they will need to be prepared for the
GAN to receive it as input. An overview of the system can be seen in figure 7.2.
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Figure 7.2: Overview of the preprocessing module.

The system receives the batch of region proposals and processes them one by one. The
main objective of the system is to correct the size of each ROI, since the GAN needs to
receive a specific image size. The reason for this, is that GANs are harder to train as
the resolution increases, since there is extra details to learn, the result is that it outputs
images of worse quality if the image resolution is too large. Until now, robustly producing
images of high resolution, involves more complex solutions, like stacking multiple GANs
together [50]. For this project the images will have the dimensions: 256× 256× 3.

Since part of the objective for the GAN is to create a mask of the image, it is undesirable
to warp the image in order to resize it, as is otherwise common practice for CNNs. If a
ROI is too small, a black border is added to the image in the given direction, the border
is always evenly split between the two affected sides. If the image is too large, the amount
of needed splits it should be divided into is determined instead, since it is always rounded
up to nearest integer, it is necessary to add a small border to the cropped ROIs afterwards
to get the correct dimensions. Each of the new splits are then used as ROIs, but stacked
together when preparing them as a minibatch to feed the GAN. As mentioned in section
7.3, the RPN is asked to only forward 32 region proposals, since the training of system
is done on an Asus ROG Strix NVidia GeForce GTX 1070 GPU with 8 gb of RAM,
a minibatch with 32 256 × 256 × 3px images is too large. Splitting some ROIs results
in an even larger minibatch, to counteract this, the system is restricted to not feed the
GAN with more than 16 images at a time and otherwise it will be split into multiple
minibatches.

An example of an input image, for which region proposals are first generated, before
preprocessing the proposals, can be seen in figure 7.3.
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Figure 7.3: Example of an input image, with unprocessed region proposals provided by the RPN,
where one ROI is too wide and therefore cropped and padded to match the expected dimensions.

The examples here have shown using an RGB image, but the labeled target images goes
through the same process, in the same order, such that the image pairs always match
each other.

7.5 Summary
This chapter have looked into the system used for generating region proposals, which is
largely based on the Region Proposal Network of Faster R-CNN, but decoupled from the
Fast R-CNN classification network.



Chapter 8

Generative Adversarial Network
Having explained how the data is retrieved and processed before reaching the Generative
Adversarial Network, this chapter will explain how the data is utilized.

8.1 Overview
Generative Adversarial Networks is a generator framework that utilizes two networks and
pits them against each other [16].

As originally explained by the authors, the two networks can be seen as taking the role of
a counterfeiter and a police officer, in this case the generator is the counterfeiter, while the
adversarial network is the police officer. The counterfeiters goal is to create fake currency,
that are convincing enough for the police officer not being able to tell the difference.
Since the counterfeiter have never seen real currency, he will start by creating something
random and hand it to the police officer. Depending on how good he is, the police officer
will either believe it is real currency or not, If he rejects it, the counterfeiter will be told
what should happen for him to believe it was real. The counterfeiter thereby have to go
back and try again, the next time the police officer may believe it is real, in that case he
have an adversary that tells him it was wrong and show him how it should have looked.

This approach corresponds to a minimax two player game, in which the two networks
forces each other to improve.

Keep this game going and at some point, the police officer should be unable to tell the
difference. The minimax game is defined by:

min
G

max
D

(D,G) = Ex px(x)[logD(x)] + Ez pz(z)[log(1−D(G(Z)))] (8.1)

If this is actually the case is still an open question, as it is not known if a Nash Equilibrium
exist, where the generator wins.

Though the theory sounds simple, the networks are hard to train, as their now is two
connected deep networks, for which back-propagation needs to move through.

The First GAN was developed using Multi-Layer Perceptrons, but later versions are using
deep convolutional GANs (DCGAN) instead and have shown able to generate realistic
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data [39]. Which discovered that:

1. Batch normalization should be used in both networks.

2. Avoid pooling and use convolutional stride instead.

3. Use ReLU activations in both networks.

Furthermore, with the networks being able to generate realistic images, might mean that
they have learned to understand their structure.

8.2 Generative Adversarial Network Variations
With time, variations of GAN have shown up, as an example, figure 8.1 shows an
comparison between DCGAN, mentioned above and two of the newer variations for image
generation.

Figure 8.1: Comparison between some of the best known GAN architectures, used for image
generation.

Taking a closer look at the DCGAN to begin with, it can be seen that the generator
input is random noise from a uniform distribution in the range [−1, 1], which it uses to
encode the learned a data representations, Furthermore, during training, the discrimi-
nator interchangeably receives either real or fake data as input, defined by a Bernoulli
distribution.

The Conditional GAN incorporates the class labels and inputs them to both of the net-
works, The result is that they have been ”conditioned” on that variable, meaning that
during testing, the output of the generator can be controlled by inputting the correct
label.
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InfoGAN does almost the same, but instead of the ground truth labels, they use a latent
variable. They also include an auxiliary network, which shares most of its parameters
with the discriminator, but instead of determining if an image is fake or real, it tries to
classify the image as a latent variable.

8.3 Image-To-Image Translation
The networks mentioned above are all used to generate images, from a noise input. An-
other approach is to use a variation of the conditional GAN, which instead of a label,
is conditioned on an image. The result is that the generator will learn to translate im-
ages between domains, e.g. colour a black and white image, this process is known as
image-to-image translation [25].

In figure 8.2 the principle behind the conditional GAN used for image-to-image trans-
lation in [25] is shown. As can be seen, both networks now receive the real input image
instead.

Figure 8.2: The conditional GAN used for image-to-image translation in [25] and the proposed
enhancements.

By threating semantic segmentation as an image-to-image translation, going from an scene
input image to a generated masked image, instead of a pixel-wise classification problem,
a new network can be proposed. The network is inspired by the auxiliary network in
the infoGAN and can be seen next to the conditional GAN. The basic idea, is that
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implementing an auxiliary network that shares its weights with the discriminator, an
almost cost free, in terms of parameters and processing time, object classifier could be
incorporated. The auxiliary network would thereby help classifying the objects within
each ROI.

In mask R-CNN, they decouple the classifier and mask, their results showed that once
the whole object had been classified, it was sufficient to predict a binary mask without
concern for the classes, making training easier [21].

8.4 Proposed Generative Adversarial Network Ar-
chitecture

Taking a closer look at the proposed GAN, for semantic segmentation the generator will
be given a region proposal from the real data, from which it will generate a new image.
For the discriminator, the task will no longer be to determine if the generated image is
fake or not. Instead it will receive the input image, that the fake image was conditioned
on and determine if the pair looks real or not.

Figure 8.3: Overview of the proposed Generative Adversarial Network.

The task of the auxiliary network is then to predict a class given the image pair.

Training the GAN is done in two steps, first the discriminator is trained alone, receiving
either a fake generated image or a real image. Afterwards the generator is trained, this
is done through the whole GAN, meaning that the weights in the discriminator is frozen,
the generator then generates an images, sends it to the discriminator and is then updating
using back-propagation throughout both networks. The generator is therefore never shown
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a labeled image and will only learn how to generate the mask using back-propagation from
the discriminator, making the semantic segmentation semi-supervised.

All weights are initialized using a uniform distribution and uses the Adam optimizer with
a learning rate of 0.0002, β1 = 0.5 and β2 = 0.99.

Furthermore, in order to stabilize training, label flipping and label smoothing is incorpo-
rating. Label flipping is used for both networks and randomly flips the labels to confuse
the networks. Label smoothing adds a smoothing term to the discriminator labels, such
that it is between 0.9 and 1.

8.4.1 Generator Network Architecture
The generator network utilizes the same U-Net architecture as found in [25] and can be
seen in figure 8.4.

Figure 8.4: Overview of the architecture used for the generator network.

The architecture follows a standard autoencoder, with a parallel encoder - decoder layout.
In order to retain information from the input image, the feature maps from the parallel
encoder layers are concatenated in the decoder part. In the encoder part, the activation
function is Leaky ReLU with alpha = 0.2, which help stabilizing training according to
[39], in the decoder it uses a ReLU. All weights are initilized using a uniform distribution.
Otherwise it uses a kernel of size 4× 4 and stride (2,2) throughout both the encoder and
decoder layer, the three first layers in the decoder implements Dropout with a probability
of 20 %. Dropout is a regularization term, which helps prevent overfitting, by dropping
random units, in a GAN it stabilizes the training.

Lastly the output is the activation function tanh, in [39] they found using the bounded
activation function, helped the network learn faster and better cover the color space of the
data distribution. The generator uses the l1 loss term, which might result in less sharp
results, but more stable training.

8.4.2 Discriminator Network Architecture
The discriminator network have leaky ReLU in all of its layers and also uses kernels with
size (4× 4), but with stride (1,1) as downsampling is handled by maxpooling layers. The
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discriminator output first utilizes a convolution to reduce the depth to 1, its output is a
sigmoid activation which returns a scalar in the range [0,1], representing the probability
of real data.

The auxiliary network include an average pooling layer followed by two fully connected
layers, reducing the parameters to the number of classes, in this case 21. The output is a
softmax.

Figure 8.5: Overview of the architecture used for the discriminator network.

The discriminators loss function is binary crossentropy, while it is categorical crossentropy
for the classifier.

8.5 Summary
Having presented the full network, it is time to look at the training results.
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Image Post-processing
The post-processing system is the last part of the complete system and is part of the
validation of the system. Since the GAN makes predictions on cropped regions of a high
resolution image, it is desirable to stitch these together to create a segmented image with
same resolution as the input image.

This is the main purpose of the post-processing system, when testing, the coordinates
for the region proposals are saved, together with their original dimensions. This way,
the system can remove the black border if necessary and if a region have been split, it
start by concatenating those together. Lastly a black canvas with the same dimensions
as the input image is created, into which each ROI can be placed as they were before. As
an example, figure 9.1 shows how an input image have been cropped according to the
ROIs, how the bounding boxes are located within the frame and the stitched result. The
blue bounding boxes on the right, represent bounding boxes that were not split doing
the pre-processing step, while the red bounding boxes were split and had to be stitched
separately, before being placed on the canvas.

Figure 9.1: Example of an input image, where the region proposals have been cropped, remem-
bered and stitched back together again. The blue bounding boxes are region proposals which have
not been split in order to match the required dimensions, while the red bounding boxes have been
split
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As can be seen, the stitching works as intended, but the result can also end up looking
less impressive. An example is figure 9.2, where the GAN have generated images for
each region proposed for the input image, which are then stitched together.

Figure 9.2: Example where outputs from the generator, predicting on ROIs from the input
image, have been stitched together.

If the RPN have not included a relevant area, as the top of the front guys head, it will
show as a black square. It can also be seen that, if the generator does not generate smooth
edges on its images, the areas where the ROIs meet, are very noticeable.

All training and testing is done using the PASCAL VOC 2012 dataset, which consist of
21 classes in the object detection and segmentation task.
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Evaluation
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Chapter 10

Acceptance Test
Unfortunately, the GAN have not been able to produce satisfactory results, meaning an
acceptance test have not been conducted.
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Chapter 11

Closure
11.1 Conclusion
The goal for the project was to create a system that could learn a representation of our
world, this should have been done by encouraging a Generative Adversarial Network to
generate segmentation masks. Since GANs have trouble generating high-quality images
larger than 256px, a Region Proposal Network was implemented, the network was trained
to distinguish between objects and background and was responsible for proposing regions
to feed the generator. A preprocessing module was implemented as well, which biggest
task was to make sure that the generator would receive correctly dimensioned Regions Of
Interest. These systems worked as intended and fed the GAN with the proper data.

A post-processing system was also implemented, which was mostly used during testing.
The system would undo the work done by the RPN and preprocessing module, stitching
the generated images into a high resolution image.

Unfortunately, GANs can be hard to train, depending on the problem, they might need a
lot of training iterations, before they start producing convincing results. Furthermore, if
one of the networks becomes too overpowered compared to the other one, the weak one
will stop learning. Normally it is desired to have the discriminator perform a little better
than the generator.

The overall conclusion is that the desired results was not obtained. The generator never
learned to output a good mask, though some experiments showed that it got an idea of
the correct color to use for the object, meaning that it might have been a question of
training time.

11.2 Discussion
With the results in mind. there is a lot to consider for future work. First of all, the
classifier would need to be tested and the same with the precision of the Region Proposal
Network.

For the GAN, there are several things that could still be experimented with, as training is
more difficult and takes longer, one option is to try with smaller images, e.g. 64× 64× 3.
Since the network have shown to produce good results on smaller more specific datasets,
an option could be to try another dataset, this could for example be the MSCOCO dataset.
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Another option is to let the network keep training, as the loss for some experiments still
seems to improve.

Figure 11.1: Plot of training loss for the generator and discriminator
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