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Abstract 

The aim of this thesis is to develop a rooftop solar energy potential estimation for the country of Denmark - 

particularly a dataset containing individual buildings with attribute data on rooftop area in m2, estimated to 

receive a range of solar irradiation in watt hours per square meter per day (Wh/m2/day). A technique often 

applied within potential estimation of solar energy at larger scales, involves a form of sampling. These 

samples are examined in detail and results at that scale are extrapolated. This approach is applied and 

based on the following assumption: Buildings of a comparable size and in a like context, will on average 

receive similar amounts of solar radiation in Wh/m2/day on similar proportions of rooftop area. However, a 

lack of time did not allow for a full calculation of the rooftop solar energy potential of the entire building 

stock. Therefore, the focus shifted to validating early results, to provide insight into and comment on the 

reliability of the often-used approach of sampling and extrapolation, in solar energy potential estimations. 
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1. INTRODUCTION 

 

 

Insight into the potential of solar energy across the stock of buildings at a large scale, can support renewable 

energy planning efforts at multiple administrative levels. The aim of this thesis is to develop a rooftop solar 

energy potential estimation for the country of Denmark - particularly a dataset containing individual buildings 

with attribute data on rooftop area in m2, estimated to receive a range of solar irradiation in watt hours per 

square meter per day (Wh/m2/day).  

 The study limits itself to the solar energy potential on rooftops for several reasons. Roof space 

on buildings are commonly used to implement solar conversion technologies, such as solar heating and solar 

photovoltaics (PV). As it is elevated space and often with unobstructed vision of the sky. Furthermore, the 

implementation of these technologies on rooftops means that it is applied on existing land-use. Thus, it does 

not require space that forgoes other opportunities, while at the same time being near existing energy grids. 

Moreover, these buildings are owned by different actors that have varied means and incentives, impacting 

their ability and willingness to support the growth of renewable energy exploitation within the energy 

system, with their investment. On the other hand, there is the current lack of understanding of this potential. 

Previous large-scale studies conducted in the country of Denmark include Ahm and Vedde (2011) and Møller 

et al. (2012), which use very different approaches. And at the level of the individual buildings there exists a 

solar atlas called Sunmapper1. In addition, there is Danmarks Meteorologiske Institut (DMI), which provides 

country wide solar energy potentials based on meteorological data (DMI, 2012).  

 For the chosen study area, these existing large-scale estimates are rough and/or uncertain, 

while detailed potential estimations are provided for individual roofs only. Thus, there is a clear knowledge 

gap that this thesis aims to address. An additional aim is to provide for a degree of reproducibility. This is 

done through automation of the main data handling and modelling steps that are part of methodology with 

the use of scripting. It allows the process itself to be implemented more consistently and increase the 

transparency of the methodology and how it is applied. 

 Like in the cases of Møller et al. (2012) and Sunmapper, Geographic Information Systems (GIS) 

are used as a platform to support this thesis. It is highly suitable to support potential estimations with a 

strong spatial component and are heavily utilized in solar energy potential estimations. A technique often 

applied within potential estimation of solar energy at larger scales, involves a form of sampling. These 

samples are examined in detail and results at that scale are extrapolated. Due to practical limitations, this 

approach is applied and based on the following assumption: 

 

•  Buildings of a comparable size and in a like context, will on average receive similar amounts of solar 

radiation in Wh/m2/day on similar proportions of rooftop area. 

 

 However, meanwhile a method was devised and automated, a lack of time did not allow for a 

full calculation of the rooftop solar energy potential of the entire building stock. Therefore, the focus shifted 

                                                           
1 Sunmapper project website: https://www.sunmapper.com 
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to validating early results, to provide insight into and comment on the reliability of the often-used approach 

of sampling and extrapolation, in solar energy potential estimations. The current structure of the report takes 

this shift of attention into account and has as guiding research question: 

 

Is sampling a sound methodology in estimating the geographical potential of rooftop solar conversion 

technologies on a large scale? 

 

The sub-questions that are to help answer this research question are: 

 

• What is the state of GIS based potential estimation for solar conversion technologies? 

 

• What variables are needed for an appropriate sampling strategy? 

 

 

 There are many ways in which potential estimations of solar energy conversion technologies, 

such as PV, are conducted. Accordingly, the first sub-question is important, because an assessment of the 

current state of GIS-based approaches, can help understand why the approaches differ and how this 

influences the result that interested parties, such as policy makers, rely on. The second sub-question is there 

to provide recommendations on what kind of data is needed to make reliable potential estimations 

considering the object under study, that of rooftops.  

 The structure of the rest of the thesis is as follows: First, is the methodology chapter, in which 

the existing literature is examined and the applied methodology is presented. Second, the results in which 

first the outcomes of the applied sampling strategy are discussed followed by a testing of the assumption. 

Third, a discussion chapter, where the methodology applied is evaluated along with the results it produces. 

Lastly, is the conclusion that returns to the research and sub-questions and to provide an answer as well as 

further recommendations for future studies. 
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2. Literature review and related work 
 

 

This chapter examines the existing literature and related work in the study area of Denmark. First, it presents 

a hierarchical perspective frequently used in the practice of potential estimation of renewable energy 

resources. Second, the chapter assesses the developments in the potential estimation of solar energy, by 

describing the literature on solar radiation modelling. Third, an examination of the literature on potential 

estimation of rooftop solar photovoltaics (PV) is presented. This will give insight into the variety of methods 

applied in the equally varied contexts, which have influenced the methods used in this thesis. The next 

chapter will present this methodology.  

 

2.1 Potential estimation of renewable energy resources 
 

Hoogwijk (2004) presents a hierarchical perspective on potential estimation in her work on the global and 

regional potential of renewable energy resources2. At the base of this hierarchy is the theoretical limit of a 

primary resource.  This is the energy of the sun reaching the surface of the earth for solar based conversion 

technologies. 

The geographical potential of solar energy is dependent on the conditions at the location it 

radiates, such as: elevation, slope, aspect, material (reflectance) and context that may or may not cause 

shadowing effects. These factors cause spatial variation of solar radiation at the earth’s surface. Accordingly, 

the geographical potential also relates to suitability of a location which is dependent on the applied 

conversion technology and imposed constraints. Usually, the aim is to estimate how much space in m2 or km2 

is suitable within a study area, given an applied technology such as an average solar panel. Section 2.3, that 

examines the existing literature on potential estimation of rooftop solar photovoltaics, will show that this 

can be operationalized in many ways with significant differences for the estimation of the geographical 

potential (Ibid, 2004). 

After the geographical potential comes the technical potential, which is the ability of a 

conversion technology to convert the primary energy resource into secondary energy, at a location judged 

suitable. For example, the potential kWh/m2 a solar panel installation with a certain certified efficiency rate 

can produce over a period of a year. The economic potential can be derived from the technical potential and 

is based on the competitiveness with alternative energy resources and conversion technologies. This will 

determine what would be economically viable to implement.  

The implementation potential is described as what can be implemented into the current 

energy system within a certain time frame and dependent on incentives and constraints, for example: 

governmental policies, aesthetical considerations and financial means (Ibid, 2004). This potential can be 

higher (or lower) than the economic potential, but never higher than the technical potential (Ibid, 2004). An 

example of when the implementation potential can be higher than the economic potential is when regardless 

                                                           
2 Based on: Van Wijk, A. J. M., Coelingh, J. P. (1993). Wind power potential in the OECD countries. Utrecht University, 
Department of Science, Technology and Society, pp. 35. 
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of economic competitiveness, the choice is made to invest in sustainable energy conversion technologies like 

solar PV based on environmental considerations. 

This thesis is concerned with quantifying the spatial variation of clear-sky global solar 

irradiation in Wh/m2/day on rooftop space across Denmark. Thus, it stops at the geographical potential. No 

specific conversion technology is used to determine potential in terms of total suitable area. The aim is to 

develop a base dataset that can serve a wide range of potential estimations of different solar conversion 

technologies, implemented on rooftops and in the context of Denmark. 

 

2.2 Solar radiation modelling 
 

Computational solar radiation models are based on empirical and meteorological research into the behavior 

of the sun and solar energy, and their interaction with the Earth and its atmosphere. This research examines 

the effects of atmospheric particles, slope, orientation, latitude, elevation, reflectance, obstructions that 

create shadows and the position of the sun in relation to the earth, to derive physically based and empirical 

formulas. Such efforts date back to the early 20th century and are reexamined and updated to this day (e.g. 

Ångstrøm, 1924, Shreve, 1924, Liu and Jordan, 1960, Robinson, 1966, Kondratyev, 1970, Nunez, 1980 and 

Scharmer and Grief, 2000). The developments in this literature are neither discussed in detail nor are the 

empirical formulas and how they have developed with time. Only the basic understanding of the factors that 

influence solar energy here on earth are provided.  

In short, outside of the earth’s atmosphere on a horizontal plane the energy of the sun is 

estimated to be is 1,367 W/m2 (Scharmer and Grief, 2000). Upon hitting the earth’s atmosphere, it is reduced 

to 342 W/m2, due to the geometry of the Earth. This is further modified by the movement of the sun as seen 

from a position on the earth, which depends on the latitude, day of the year and time of day. Longitude 

influences the precise sunrise and sunset times in terms of Civil Time3. Solar radiation reaching the surface 

of the Earth is influenced by the length of the path through the atmosphere, cloud cover, and the particles 

that make up the atmosphere itself, which reflect, scatter and absorb part of this irradiance (Ibid, p. 34). At 

the surface of the Earth the location (latitude), slope, aspect, height and reflectance impact global irradiance 

at specific locations (Ibid, 2000).  

Global solar radiation consists of three components: direct, diffuse and reflected radiation. 

Direct radiation is unaffected by objects obstructing direct vision of the sun, such as trees, buildings or cloud 

cover and in clear-sky conditions is the largest component of global radiation. Diffuse radiation is that which 

is scattered by the atmosphere and comes from all directions. When the sky is overcast the diffuse 

component makes up most of the global radiation measured at a location. Reflected radiation is reflected by 

different surfaces in the direction of the location where radiation is measured and is the smallest component 

of global radiation (Scharmer and Grief, 2000). Most of these factors are incorporated to a varying degree in 

solar radiation models.  

Early computational models make use of the complex formulas describing the above-

mentioned interactions, to tabulate or graphically map solar radiation at locations of interest. Instead of 

                                                           
3 In Solar Time or Local Apparent Time (LAT) sunrise and sunset times are independent of longitude and noon is when 
the sun is at its greatest elevation. In Civil Time or Local Mean Time (LMT) the sun rises and sets earlier by 4 minutes 
per degree latitude eastward in each time zone. 
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having to calculate them manually. Particularly of interest were those areas where meteorological data is 

sparse, like in mountainous terrain (e.g. Garnier and Ohmura, 1968 and 1970, Williams, et al 1972). However, 

the amount of points that could be calculated within a reasonable time frame were limited due to the 

capability of the hardware at the time. Thus, the results involved a degree of generalization across a study 

area.  

 In the late 1980s and 1990s three developments helped to increase the amount of detail of 

the modelling results. First, the introduction of Digital Surface Models (DSM) modelling complex terrain 

features that could be used as input data to model solar irradiation. A DSM is a grid of values indicating the 

elevation of a surface at each grid cell, with reference to a common base height, which is usually at sea level.  

The second is the increase of computational power to apply the complex formulas and third is the 

implementation of solar radiation models into GIS platforms allowing them to be used consistently and make 

the models more accessible (Hetrick et al, 1993, Dubaya and Rich, 1995, Kumar et al. 1997).  

Two such models implemented in well-known GIS platforms are rsun for the open source 

platforms of GRASS GIS and QGIS, and Solar Analyst provided in the Spatial Analyst extension of the 

commercial GIS platform ArcGIS. There are other solar radiation models available, such as DAYSIM4 (Reinhart, 

2001, used in Jakubiec and Reinhart, 2013). These are not examined in detail here, but are other options that 

can be explored for solar radiation modelling. Solar Analyst has gone through several iterations, with first the 

SOLARFLUX model (Hetrick et al. 1993), then by the model developed by Kumar et al (1997) and in early 2000 

by its current implementation developed by Fu and Rich (1999, 2002). r.sun was first introduced in 2004 by 

Hofierka and Suri (2004, 2007) and implemented in the GRASS GIS platform (Neteler and Mitasova, 2008). A 

new iteration is presented in Hofierka and Zlocha (2012) called v.sun, which can process 3D vector data 

instead of a DSM. 

 

                                                           
4 DAYSIM: http://daysim.ning.com/ 

Figure 1 Visualization of the viewshed methodology (Fu and Rich, 1999, p. 6) 
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Both the r.sun and Solar Analyst use a DSM as their main input, but the main difference is how 

they account for topographical features that create shadows. The Solar Analyst model calculates a 360 

degree viewshed on each grid cell and the procedure is described by Fu and Rich (1999 and 2002), as similar 

to lying down and using a fish-eye lens to capture the immediate surroundings. The model provides a 

parameter where the user can specify how many directions the surroundings are sampled, from which it 

reconstructs the horizon. The more directions it can sample the surrounding from a single cell, the horizon 

can be constructed with more detail. The result would be used to modify the amount of solar irradiation on 

the calculated location in those directions where the horizon blocks, fully or partially, the direct radiation 

from the sun. Figure 1, from their paper, visualizes this horizon. The dark area is what obstructs direct solar 

radiation, while the white area would indicate unobstructed vision of the sky and the sun. 

 The Solar Analyst model calculates both direct and diffuse radiation, not the reflected 

component. Because Fu and Rich argue that this is only a small component of the global radiation and 

modelling the reflectance of a surface, which depends on the properties of the latter, is a complex interaction 

to account for (1999). Direct solar radiation is calculated on the basis of a so-called sun map. It maps and 

tracks the position of the sun across the sky throughout the day and year based on the latitude of the study 

area and specified time range. The time range, defined in day(s) of the year and hourly time step define from 

how many positions it will calculate direct radiation, which are represented by sectors.  

 Figure 2 is an example of a sun map, which each sector represented by a distinct color. It 

visualizes the directions from which direct solar radiation will be calculated between June 21st and December 

21st. The previous image, showing the horizon is places on top of this sun map and acts as a modifier of direct 

irradiation, reducing the amount of irradiation coming from those specific directions. 

 

 

Figure 2 Example of a sun map (Fu and Rich, 1999, p. 7) 
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 Diffuse irradiation comes from all parts of the sky, obstructed and unobstructed, due to the 

scattering of radiation by the atmosphere (and clouds). To calculate the diffuse component the model creates 

a so-called sky map (figure 3). It also consists of multiple sectors, representing different zenith and azimuth 

angles for which it calculates the diffuse component of solar radiation that it contributes to the radiation at 

each cell. When more sectors are specified, the calculation will take longer to complete, but the results will 

be more precise. This sky map is also modified by the horizon map, by overlaying the former with the latter, 

which reduces the diffuse radiation coming from those directions. 

 

 

The effects of other atmospheric attenuators of solar radiation can be set through two 

additional parameters. One is transmittivity and the other the diffuse proportion of global radiation. With 

the latter, a static modifier is applied to the global radiation reducing direct radiation component of global 

irradiation or increasing it (to mimic cloud cover or real-sky effects). Transmissivity is the ratio between 

energy reaching the earth’s surface and what is received at the upper atmosphere, the lower this value the 

more direct radiation is scattered or absorbed by the atmosphere and vice versa. Transmissivity and the 

diffuse radiation component have an inverse relationship, if the former increases the latter decreases. 

The rsun model of Hofierka and Suri (2004) base its formulas on the European Solar Radiation 

Atlas (Scharmer and Grief, 2000). They argued at the time that existing implementations, like Solar Analyst, 

are build either on a simplified representation of the fundamental physics, or do not provide flexibility when 

it comes to the input data that reflect cloud cover and other atmospheric attenuators. For example, instead 

of setting a constant value mimicking the effects of atmospheric transmissivity and cloud cover, for the entire 

study area, it is possible to input raster data that can spatially vary these effects. Moreover, instead of using 

a fixed latitude, this is assessed per grid cell, which means that across larger areas where latitudinal 

differences have an impact, the latter’s effect is considered.  

Figure 3 Example of a sky map (Fu and Rich, 1999, p. 8) 
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Furthermore, it offers the ability to calculate the reflected component of global irradiation. 

But its ability to do so is limited to the DSM that is used, which captures height values and vertical surfaces 

are not as clearly modelled, since the height values recorded mainly parallel to the ground. But with its 

inclusion it is possible to set either a constant reflectance value (albedo) or input a raster in which this is 

spatially varied. The Solar Analyst does not offer this option, but it will allow users of rsun to try and 

approximate the reflected component, which in highly urbanized areas is likely more prevalent. 

Similar to the Solar Analyst model, the user inputs a time frame in days, and a time step in 

hours, or a fraction of an hour. Based on the user preferences it can output a surface with direct, diffuse, 

reflected or global radiation values, or all of them, for each time step, or aggregated across the set time 

frame. Like the Solar analyst model, it also calculates a horizon that models the surroundings which may or 

may not obstruct a clear view of the sky and/or sun, but does so in a different manner. The method is as 

follows: for each location on a DSM it compares the height values of the adjacent pixels in a set amount of 

directions. If the adjacent pixel is higher than the starting pixels it increases the angle, until that angle is 

higher than any adjacent cell in that direction, or if it reaches the border or a study area. If this is done for a 

large study area, it considers the curvature of the Earth. The output is a surface with horizon angles in degrees 

separately for each requested direction. The more directions the horizon is sampled, the horizon will be 

constructed with more detail but this will increase the processing time. Figure 4 below shows an example of 

modelled solar radiation values on top of a DSM. On the left is a satellite image of the same area. 

 

 

2.3 Estimating the geographical potential of rooftop solar energy  
 

This section focusses on research done on the potential of rooftop solar PV, as it will be illustrative of how 

the geographical potential at different scales is conceptualized and derived. The methodology applied 

depends on data availability, data quality, size and context of the study area and practical limitations such 

as: time, storage capacity and hardware capabilities. This section describes several studies in detail to show 

how varied the different methodologies currently are. Studies that are similar to those discussed in detail are 

also mentioned, but some will contain aspects similar to others.  

Two studies that indicate a divergence in the way a geographical potential is calculated are 

the study of Lehmann and Peter (2003) and Suri et al. (2007). The former is a statistically based approach, 

Figure 4 Example output of the rsun model 
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while the latter makes use of a land use database called CORINE (CLC90) and GIS. Lehman and Peter (2003) 

correlate usable area and population density to assess the roof and façade potential for solar use across the 

Europe Union (EU15). They base usable area on a study performed by Gernhard et al. (1992)5 into roof and 

façade areas of residential and non-residential buildings in Northrhine-Westphalia, Germany. They assume 

this data to be valid and extrapolate the results to the rest of the EU15 based on the assumption that “[…] 

building and living structures in western European countries are primary dependent from local population’s 

densities and that they are similar if population density is […]” (p. 1).   

The statistical approach taken is to fit several curves between population density in capita/km2 

on the one hand and roof or facade area in m2/capita on the other, for both non-residential and residential 

buildings from low to high density. From there they estimate based on different densities a range between 

4-9 m2/capita of available roof area and 3-5 m2/capita of available façade area on non-residential buildings. 

On residential buildings, they estimate a range 4.5-7 m2/capita of available roof area and 5-6 m2/capita of 

façade area. Applied to the area of the EU15 they estimate a total available area for solar use of 7,000 km2 

of which 4,600 km2 is on roofs and 2,400 km2 is on facades. In the process, they apply a factor of 0.9 for roof 

areas and 0.66 for facades to mimic losses due to unusable areas and shadowing effects. For Denmark, they 

estimate the total available roof and façade areas to be 65 km2 (12.7 m2/cap.) and 35km2 (6.8 m2/cap.) for 

low and high-density areas respectively. There are a several studies that use the same relationship between 

population density and available area to extrapolate results, for example: Izquierdo, et al. (2008), 

Bergamasco and Asinari (2011a), Wiginton, et al. (2010), Khan and Arsalan (2016). 

On the other hand, Suri et al. (2007)6 use the validated PVGIS database (at 1km2 resolution) to 

estimate the potential of solar electricity generation for the European Union and several adjacent countries 

(EU25 and Bulgaria, Croatia, FYROM, Romania and Turkey). They considered the existing building 

infrastructure in urban residential areas represented by class 11 (urban fabric) of the CORINE Land Cover 

(CLC1990) database which has a 100m2 resolution, and excluded industrial and commercial areas as well as 

transport infrastructure and parks. They aggregate the results to the administrative boundaries of Eurostat 

NUTS level 3 for each country to assess regional differences7.  

Suri et al. (2007) does not define geographical potential as total suitable area, but use the area 

defined by CORINE and compares potential solar electricity production of both horizontally-mounted PV 

modules and at optimal inclination, on these areas across Europe. In addition, they estimate the area 

necessary to meet the national electricity consumption through solar PV (based on IEA, 2004). For the latter 

estimation, they use an average 1kWp system consisting of PV modules with an area of 9.5m2. For Denmark, 

they estimate that 0.91% of the surface of the country would be required, to cover the electricity demand, 

ignoring cross-border electricity trade. A similar study is that of Nguyen and Pearce (2010), Redwiek et al. 

(2013) and Sun et al. (2013). 

A combination of these two approaches is provided by Izquierdo et al. (2008). Izquierdo et al. 

(2008), estimate the technical potential of rooftop PV for the country of Spain. They recognize that size of 

the study area is an important aspect requiring different techniques at different scales. Therefore, they turn 

to the use of homogenous averaged data. For the theoretical potential, their input data is a DEM with a 

resolution of 90m2 and meteorological data from 110 stations spread across the Iberian Peninsula. These are 

                                                           
5 Gernhard, D., Mohr, M., Skiba, M., Unger, H. (1992). Theoretisches und technisches Potential von Solarthermie, 
Photovoltaik, Biomasse und Wind in Nordrhein-Westfalen. Ruhr-Universität, RUB-E-I-35 
6 Huld, Müller and Gamardella (2012) is a follow up publication containing updates to the PVGIS database. 
7 For a comparison of the different administrative levels represented by the NUTS classification (Nomenclature of 
territorial units for statistics), see: http://ec.europa.eu/eurostat/web/nuts/overview 
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used to calculate the global horizontal irradiation in kWh/m2/month across the study area, which is used to 

calculate the technical potential on available rooftop space. 

To derive the geographical potential a stratified statistical sampling approach is applied to 

define a so called ‘representative building typology’ (RTB). The RTB describes average building characteristics 

within each municipality and acts as homogenous averaged data to operationalize the estimate at country 

scale. They mention that the characteristics of an RTB include: typical building height, roof structure or 

building compactness, but differentiate between RTBs based on population and building density as they 

assume that these determine the typologies (similar to Lehmann and Peter (2003). Based on both population 

and building density8, they classify each municipality from low density to high density on these two axes. 

Afterwards they take samples from each group of classified municipalities based on a confidence level, in 

which they select relevant built-up surfaces from vector data based on several classes of CORINE (CLC 2000 

at 200m2 resolution) and measure the total built-up area.  

To define available roof area, they apply a range of coefficients to the measured relevant built-

up area, consisting of a: void fraction coefficient (defined as “[…] voids and recesses in buildings” (p. 933), 

shadowing coefficient and a facility coefficient (mimicking existing roof uses). The shadowing and facility 

coefficient are determined based on human inspection of satellite imagery in the sampling areas, and the 

void fraction coefficient based on the same process as deriving the built-up area. The results are extrapolated 

to other municipalities within the same class, with a degree of variation based on the size of the municipality 

itself. With the inclusion of an a priori error margin they estimate that there is a total built-up area of 2,884 

± 231km2 and available roof area of 571 ± 183km2, which per capita translates to an average of 14.0 ± 4.5 

m2/capita. Comparatively, Lehmann and Peter (2003) estimated a total area of 528 km2 and measured 13.5 

m2/capita of available roof area in Spain.  

 Other examples which also define coefficients in various ways to determine usable roof area 

as the geographical potential are: Scartezzini et al. (2002), Montavon, et al. (2004), Gosh and Vale (2006), 

Pillai and Banerjee (2007), Wiginton, et al. (2010), Ordonez, et al. (2010), Bergamasco and Asinari (2011a,b) 

and Khan and Arsalan (2016). It is important to note that in many cases the theoretical potential does not 

factor into the geographical potential in large scale studies. The former is used to derive the technical 

potential but its spatial variation has no bearing on defining the geographical potential, only the mentioned 

coefficients (in particular the shadowing coefficient) and the sampling and extrapolation strategy. 

The study from Hofierka and Kanuk (2009) in which they estimate PV potential at the scale of 

a part of a city in Slovakia (Bardejov) with a 3D model, is comparatively illustrative for the difference in 

technique that is applied at a smaller scale9. The obvious advantage is the ability to capture local conditions 

which Hofierka and Kanuk (2009) model with the use of a high-resolution DEM and vectorized orthophotos 

which both are at a resolution of 1m2. At this accuracy shadowing effects can be modelled with high accuracy 

within urban areas compared to that of the PVGIS database which models these at a resolution of 90m2, for 

Europe and or visual inspection of applied by Izquierdo, et al. (2008), for Spain. In addition, with the use of a 

vectorized orthophotos building objects are clearly defined in comparison to using CORINE, which represents 

outlines of built-up area not individual buildings (used in Suri, et al., 2007). 

Hofierka and Kanuk (2009) define theoretical potential as the spatial and temporal variation 

of solar irradiation on both roof areas, and in between, in the modelled city and use the same r.sun model as 

                                                           
8 The number of inhabitants and building count are divided by the surface area in km2 of each municipality. 
9 In the studies mentioned that make use of a DEM or DSM are essentially 2.5D models not 3D models. None of such 
studies model gaps underneath elevated terrain which is a characteristic of a full 3D model. 
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Suri et al. (2007). The geographical potential is limited to the building footprints and is divided between urban 

zones they specify as: residential houses, blocks of flats, industrial areas and other facilities.  For each building 

in the study area they add a range of attributes such as: building function, roof type, inclination, orientation 

and height, as well as its footprint area, roof area and roof area available for PV. They measured these 

attributes using a laser distance device. A minimum available roof area for PV of 10m2 is used as a threshold 

to include a building into the potential estimation. In total, they estimate that 34.9% of the total building 

footprint of residential housing is available for PV systems, while this is 75% for blocks of flats, 60.9% of 

industrial areas and 66.67% for the other facilities.  

With the use of three classes from the CORINE (CORINE 2000) to locate urbanized areas across 

Slovakia10, they extrapolate the results to the rest of Slovakia. The extrapolation assumes that the mentioned 

zones are found in all major cities due to “[…] the uniform architectural design of buildings built during the 

socialist era in the second half of the 20th century” (p. 2208). In total, they mention that 8.1% of the urban 

areas in Slovakia can directly be used to produce electricity11.  

 Examples in between the aforementioned scales are the regional studies of Bergamasco and 

Asinari (2011 a-b). These are also indicative of the impact of applying different techniques in a similar context. 

Bergamasco and Asinari estimated the potential of solar PV in the Piedmont Region (2011a) and the city of 

Turin (2011b) in northern Italy. In their first study data on the theoretical potential is based on the PVGIS 

database in form of a raster with year sum values of global irradiation on optimally inclined surfaces 

(kWh/m2) and another with values of optimal inclination angles of equator facing PV modules. They took a 

mean global radiation value from the pixels that fall within each municipality.  

To assess the geographical potential, they use a multitude of vector maps at a scale of 

1:50,000, from which they extract the entities that represent residential and industrial buildings, used to 

measure the total roof area per municipality. Afterwards, the available roof area is derived in similar fashion 

as presented in Izquierdo et al. (2008) through the application of a range of coefficients. They similarly define 

a RBT as they do not know the roof characteristics and no information is available to validate their results. 

Instead of it being based on population and building density, which according to Izquierdo et al. (2008) 

defines the building typology within an administrative unit, they base it on the architectural characteristics 

of an average residential and industrial building directly. In the table below the coefficients are presented for 

residential and industrial buildings. Except for the coefficient ‘shadowing effects of neighboring buildings’ 

which they took from Izquierdo et al. (2008), Bergamasco and Asinari based the others on visual inspection 

of Google Earth imagery. 

 

 

                                                           
10 They used the classes: 111 – Continuous urban fabric, 112 – Discontinuous urban fabric and 121 – Industrial or 
commercial units. (p. 2210) 
11 A simplified approach to small scale technical potential estimations on rooftops is provided by Lee, Hong, Koo, 

Jeong and Kim (2016). They use a hillshade analysis to measure shadowing effects on simplified building polygons. 

They additionally a minimum amount of available free roof area to place a standard solar PV panel, to determine the 

total geographical potential. 
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Table 1 Coefficients modifying residential and industrial buildings rooftop area (Bergamasco and Asinari, 
2011a) 

Coefficient Residential buildings Industrial buildings 

Double pitched roof 0.5 0.75 
Existing roof uses 0.7 0.9 
Existing solar thermal installations 0.9 1.0 
Shadowing effects of PV arrays on itself 0.45 0.45 
Shadowing effects of neighboring 
buildings 

0.46 1.0 

Roof inclination 20% 30% 
 

 In their follow up study on the city of Turin (2011b), they present an updated methodology 

whereby they exchange the visual inspection of Google Earth imagery to determine the coefficients, with a 

systematical analysis of geo-referenced ortho-imagery retrieved between 2002 and 2004, to evaluate 

shadowing, available roof surface (based on brightness), existing roof uses and azimuthal angle of each 

individual building. The inputs are 124 ortho-images each of roughly 2GB in size from which they extract an 

image of each industrial and residential building using the vector data of their previous study (2011a). This is 

to be analyzed with the use of a high-performance computer cluster.12 They mention that the timeliness of 

the imagery may not accurately reflect reality and thus can introduce errors in the assessment. They quantify 

the accuracy of the applied image analysis technique to be 90%. Their new coefficients, for which they used 

a slightly different naming scheme can be found in the table below.  

 

Table 2 Updated coefficients modifying residential and industrial buildings rooftop area (Bergamasco and 
Asinari, 2011b) 

Coefficient Residential buildings Industrial buildings 

Shadow 16.3% 12.7% 
Suitable (not bright) 38.0% 39.5% 
Suitable (bright) 43.1% 46.0% 
Features (existing roof uses) 0.9% 0.8% 
Mean azimuthal angle  9° 7° 

 

Interesting is the decrease in the coefficient on shadows. By applying a more systematical 

approach Bergamasco and Asinari measured a significant reduction of the impact this coefficient has. It 

illustrates that in a similar context, the results can differ markedly based on using methodology that derive 

homogenous averaged data, or methodology that can assess the full heterogeneity of the study area. This 

difference is also reflected in their potential estimation, which increased by 41% compared to the results of 

their previous study. Similar studies to that of Bergamasco and Asinari (2011b) is Kabir et al. (2010), Latif et 

al. (2012) and Rodriguez et al. (2017). 

 Jakubiec and Reinhart (2013) present another combination of techniques at the scale of the 

city of Cambridge, Massachusetts, USA. They do not explicitly use the hierarchical perspective presented in 

                                                           
12 From their paper: ”It is a Transtec HPC cluster of 72 total virtual cores, 144GB total RAM and 5.5 TB total hard disc 
capacity” (p. 2744). 
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Hoogwijk (2004). But to provide a point of comparison they combine the theoretical, technical and economic 

potential as a direct influence on what is constituted as suitable in terms of geographical potential. Like 

Hofierka and Kanuk (2009) they construct a detailed 3D model of the 17,000 buildings in the study area out 

of LiDAR data at a resolution of 1.25m2 and exclude roof area that has a slope of more than 60 degrees. They 

quantify the accuracy of this model to be below 1m2 RMSE. For the theoretical potential, they also model 

solar irradiation but instead of using r.sun they make use of the Daysim simulation software. They calculate 

annual irradiation values at a resolution of 1.5m2 on roof surfaces with the direction and inclination based 

on the 3D modelled surfaces which they validate against meteorological data.  

The technical potential is derived using an average solar panel rated at 185W/m2 of which they 

validate the results against a sample of two existing solar PV installations in the study area. The economic 

potential is based the ability to break even on the investment after a 10-year period with a 10% discount rate 

per year with fixed local electricity costs for the duration. A combination of the three, and excluding any 

other financial incentives, indicated that at those locations which can generate 1,244.9 kWh/m2/year or more 

are deemed suitable and would be part of the geographical potential. With the inclusion of existing financial 

incentives, such as a multitude of national and state tax rebate programs, locations generating 121 

kWh/m2/year or more would already be deemed suitable. This considerably influences the suitable area 

estimating the geographical potential. The results of their study were built into an online accessible 

database13 which is one of many constructed for other cities across the USA14. Similar studies include: 

McIntyre (2012), Norbert (2012), Li, et al (2016) and Brito, et al (2017). 

 An example when considerations as time, storage, computational power, data availability and 

scale do not form barriers is Project Sunroof developed by Google (2017)15. The methodology applied to 

develop this database also acts as an example of another technique more recently applied, which is machine 

learning. The database focusses on providing a technical potential for each address using an average panel 

rated at 250W with a size of 1.650m by 0.992m. Additionally provided, is a simple savings estimator and links 

to solar panel installation companies that service the locations queried. Furthermore, the results can be 

viewed at different administrative levels such as a city or state. At the time of writing the database consists 

of about 60 million buildings situated in 50 states and Washington DC (Google, 2017).  

Similarly to Jakubiec and Reinhart (2013) and Hofierka and Kanuk (2009), they develop a 3D 

model of each building and its surroundings up to 150 meters at a high resolution (the exact resolution is not 

mentioned, but likely to be below 1m2). Google’s own rough outlines provided in Google Maps represent the 

building footprints, which they further process using a Deep Learning neural net (details are not provided) in 

combination with aerial imagery to identify green objects, such as trees overhanging parts of a roof, and 

surfaces at ground height. The latter two are removed to create a clear outline of the actual roof area and 

existing roof uses. Like to Bergamasco and Asinari (2011b), the timeliness of the aerial imagery can introduce 

a degree of error as well as that the algorithm applied may falsely identify other structures as buildings. 

The theoretical potential consists of a calculation of direct normal irradiance and diffuse 

horizontal irradiance values, validated with meteorological data provided by NREL, and take into account 

shading effects of neighboring objects and features of the roof itself. The validation is, however dependent 

on the weather station data of which spacing may not be optional in relation to the modelled location. With 

                                                           
13 Link to online database: https://www.mapdwell.com/en/solar/cambridge. 
14 See table 1 on page 128 of Jakubiec and Reinhart (2013). Although, these databases are developed with varying 
methodologies. 
15 Google Project Sunroof (2017): https://www.google.com/get/sunroof#p=0. 
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the use of the RANSAC algorithm they identify contiguous segments on each rooftop, as well as their 

orientation and slope. With that information, they use a greedy algorithm that maximizes the total energy 

received and size of the solar panel array on the identified contiguous roof segment(s). At minimum, a roof 

must house a capacity of 2KW and a single roof segment needs to have enough space to place at least four 

panels, for the roof to be included in the database as suitable. Another recent study that makes use of a 

machine learning approach is Assouline et al. (2017). 

 

2.4 Related work in the area of study 
 

In the introduction, several related works in the same area of study are presented, which are now described 

in more detail. First is Ahm and Vedde (2011), they discuss the potential of large scale solar PV plants over 

200kW in Denmark and do not cover implementations on private housing. Instead, they focus on: 

 

• flat roofs of large commercial buildings, 

• large scale infrastructure such as noise barriers and 

• ground mounted PV installations 

 

They estimate the potential of these three options in terms of space by examining land-use. Concerning 

buildings, the authors say that these have a footprint corresponding to 600km2 and constraints, such as 

orientation and shadowing, will reduce the area available to implement PV to a quarter. Of that quarter, they 

project that 50km2 consist of large scale flat roofs on commercial buildings that can be used for large scale 

plants. But they mention that the actual potential in terms of km2 of suitable large-scale roofs in Denmark is 

not known.  

 Møller et al. (2012), present a methodology behind a solar atlas of 2.9 million buildings, 

combined with the national building registry, in Denmark. Inspired by existing solar atlases such as: German 

SunArea16 and Bristol Solar Map17, they argue that such an atlas can help in “… assessing the use of PV at 

larger scales by means of quantitative data on potentials as well as their associated costs.” (Møller et al., 

2012, p. 1). Like Ahm and Vedde (2011), they estimate the total footprint area to be roughly 600km2 and 

mention that if a third was available, in theory the technical potential is in the 20GWs.  

Though, instead of using land-use, they make use of a high-resolution digital elevation model (DEM) at 

1.6m by 1.6m resolution. A digital elevation model is a grid of cells that specify a height value in relation to a 

common base height, which is usually at sea level. With the use of this DEM, they intended to calculate and 

map solar radiation on all roofs, but ran into technical and time related issues where the full set of 

computations could not be conducted for all municipalities in Denmark. Instead, they present the results of 

Aalborg and the greater Copenhagen area in their work. By using a DEM, it allowed them to take such 

variables as location, orientation and inclination of individual roofs, and shadowing caused by neighboring 

objects into account, which land-use cannot.  

                                                           
16 German SunArea: http://www.sun-area.net 
17 Bristol Solar Map: https://www.bristol.gov.uk/housing/solar-panels  
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Since 2015, a solar atlas for rooftop solar PV potential exists for the country of Denmark called 

Sunmapper18, developed by the Danish Technical University (DTU) in collaboration with several municipalities 

and Climate KIC. On their website users can type in an address and the server calculates the solar PV potential 

on a DEM of 40 by 40 centimeters of the roof at that address. Similar to Møller et al. (2012) it considers 

neighboring objects but adds local weather data provided by DMI. However, no option is available to 

calculate the potential of an entire region or municipality. Its aim is to provide incentives to private actors to 

invest in solar PV by giving insight into the potential of their property. 

DMI provides maps at country scale indicating global solar radiation in yearly megajoule per square meter 

total (Mj/m2) but at a low resolution (DMI, 2012) or measurements of several weather stations spread across 

the country. These maps are large with a low resolution, which means that the impact of the spatial structure 

of developed areas and individual roof characteristics are not accounted for. However, this data can be used 

as input data in the solar radiation modelling process to determine real-sky global solar radiation or to 

validate modelled results at a large scale. 

Suri et al. (2005) present a solar radiation database called the Photovoltaic Geographical 

Information System (PVGIS) for Europe that includes maps of Denmark. The database is in the form of 

multiple rasters developed with the use of the r.sun solar radiation model. With the addition of several tools 

accessible online, allow the user to estimate PV electricity production at point locations19, thus providing a 

theoretical, geographical and technical potential. This database covers most of Europe with a size of 5000 km 

by 4500 km (p. 56). Their input data is a digital elevation model (DEM) with a resolution of 1 km2
, along with 

data from 566 meteorological stations on monthly averages of daily sums of global and diffuse irradiation 

during 1981-1990 and linke turbidity values from 611 locations.  

The database consists of a raster with daily sums of global irradiation on a horizontal surface 

in Wh/m2/day, a raster with daily sums of global irradiation for surfaces inclined at 15, 25, 40 and 90 degrees 

in Wh/m2/day and one with monthly and one with yearly average values of the daily sums of global irradiation 

for surfaces at an optimal surface inclination in Wh/m2/day. By using a DEM they are able to model the effects 

of shadowing caused by larger terrain features, however the resolution is coarse at 1km2, thus it loses 

accuracy at larger scales.  

The PVGIS project is still being developed and is currently in its fifth iteration20. Over time they 

have extended the coverage to Africa, Asia and now North, Central and South America. In addition, they 

recalculated solar radiation and PV energy yield estimations with meteorological measurements from 

satellite data from CMSAF, SARAH and data provided by the National Renewable Energy Laboratory (NREL). 

In addition, they increased the temporal resolution to hourly, included the cooling effects of PV panels by 

wind and increased the spatial resolution to 90m2 (Huld, Müller, Gambardella, 2012, Huld, et al 2017). This 

means that it much less coarse, however it would not be able to take account of objects smaller than that 

resolution which means that it is still to coarse for the aim of this thesis. 

 

 

                                                           
18 Sunmapper: https://www.sunmapper.com 
19 This application can be accessed on the following website: http://re.jrc.ec.europa.eu/pvgis.html 
20 http://re.jrc.ec.europa.eu/PVGIS5-beta.html 
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2.5 Concluding the literature review 
 

To reiterate, methodologies for potential estimation of rooftop solar PV are influenced by data availability, 

data quality, size and context of the study area, and practical limitations such as: time, storage capacity and 

hardware. The examination of the literature on solar PV potential estimation has shown that a combination 

of these factors influences the methodologies applied. When detailed building outlines are not available they 

must be constructed for the study area, such as seen in Bergamasco and Asinari (2011a). Or they are 

constructed based on a sample for practical reasons and extrapolated from (e.g. Izquierdo et al., 2008, 

Wiginton et al., 2010). Another approach is to use data that represents built-up area such as land-use (e.g. 

Suri, et al., 2007), which is often the only comparative data available at very large scales that encompass 

multiple countries.  

When it comes to data quality the use of building outlines will be more precise compared to 

land-use when estimating the total built-up area from which available rooftop space is to be estimated. 

However, when detailed ortho-imagery is available that can be analyzed by image classification techniques 

(e.g. Bergamasco and Asinari, 2011b), or there is the possibility to develop a 3D model that can be analyzed 

(e.g. Jakubiec and Reinhart, 2013); rooftops and available space are defined with much higher accuracy. 

The scale currently seems to dictate the choice of methodology. Smaller scale studies resort 

to detailed 3D models of all the relevant objects with moderate to very high accuracy (e.g. Hong, et al., 2016 

and Jankubiec and Reinhart (2013). At larger scales the heterogeneity of the building stock is abstracted to a 

homogenous average (e.g. Izquierdo, et al., 2008, Bergamasco and Asinari, 2011a). The definition of this 

homogenous average that represents the building stock will have the most influence on the eventual 

potential estimation in many studies, that deal with a larger scale and need to consider practical limitations.  

To define a homogenous average, studies try to derive coefficients that are assumed 

representative of roof structure and contextual influences. These are used to modify the measured total 

built-up or building footprint area to arrive at usable or suitable rooftop space for PV applications. But the 

methods to define these coefficients differ markedly. From purely statistical exercises and visual inspection 

of satellite imagery, to advanced image analysis and 3D modelling and more recently the introduction of 

machine learning. They result in strong differences on what is identified that impacts suitable rooftop area 

and how much. 

Such strong differences are likely an indication of the impact context has in which a study is 

performed. A closer examination of local conditions through any methodology, where possible, shows that 

there is a high degree of heterogeneity in the urban morphology and architectural characteristics between 

researched areas. This seems explanatory of the broad range of coefficients that can be found in the 

literature. But this may point at another relevance of scale. Beside its impact on methodology, when are 

practical limitations are to be considered, it is of importance in the process of defining a homogenous, 

representative average of the heterogeneous building stock. If the building stock can be assumed 

heterogeneous, then it is likely that as the scale of the study area increases heterogeneity increases (which 

further increases if time is considered).  

A case in point is the two studies performed by Bergamasco and Asinari (2011a-b). The applied 

coefficients underestimated the potential in the city of Turin by 41%, compared to a detailed examination in 

their follow-up study. Thus, if the size of the study area introduces practical limitations, which requires the 

building stock to be sampled to define a homogenous average as a set of coefficients, then the scale at which 
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this average is defined needs to be considered and tested to minimize estimation errors. The scale at which 

the homogeneous average is defined of the Bergamasco and Asinari’s first study may have been too large 

and thus not representative of local conditions. Perhaps an approach where multiple averages representative 

of parts of the study area would have performed better, as applied in Izquierdo, et al. (2008). 

Currently, the main practice to stratify the heterogeneous building stock is the relationship 

between population density and (available) roof area presented in Lehmann and Peter (2003). The results of 

Lehmann and Peter (2003) and Izquierdo et al. (2008) are not far removed from each other, which seems to 

indicate that it works. However, there is a lack of validation if stratifying based on this relationship, does 

account for the local heterogeneity of rooftop characteristics and urban morphology (e.g. height, slope and 

roof orientation, existing roof uses and contextual influences such as neighboring objects). 

The next section of this chapter presents the methodology applied in this thesis. Like Izquierdo 

et al. (2008) the aim is to construct multiple representative homogeneous averages, due to practical 

limitations and scale of the study. The ability of the stratification to produce representative averages is 

additionally tested to see if extrapolation can be done reliably to provide insight into the suitability of using 

density to both stratify and upscale potential estimations. 
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3. Methodology  
 

 

This section will describe the methodology that is to be applied in this thesis to estimate the geographical 

potential of solar energy, in the context and at the scale of the country of Denmark. It is assumed that the 

building stock is heterogeneous and the aim of the methodology presented here is to take this into account 

with the available data. First, several practical limitations must be mentioned that influenced the methods 

that could be applied within a reasonable time span. These limitations include time, storage capacity and 

hardware capabilities.  

This thesis was conducted over a four and half month period from late January to early June 

in 2017. The hardware used is a Toshiba L500-1ZP laptop, which is a model from 2010 running a 64bit version 

of Windows 10. It has an Intel Core i3-330M processor running at 2.13 GHz and over its lifetime has been 

updated from 4 to 8 GB of RAM, and a solid-state disk with a total capacity of 232.89 GB of which roughly 50 

GB were available. Considering the practical limitations and scale of the study area; to make the solar energy 

potential estimation manageable, the methodology involves at its core a sampling strategy. While data is 

available in the study area to perform a potential estimation similar to Google (2017), it was not possible 

with the available time, hardware, and scripting abilities of the author at the time to perform.  

The chapter is structured as follows. First, the input data is discussed. Second, the sampling 

strategy. Afterwards the software used to model solar radiation and the validation process are described. 

Lastly, the scripting used to automate parts of the process is described. 

 

3.1 Input data 
 

One of the three main data inputs is a 2D building footprint dataset retrieved from the Danish geodata portal 

Kortforsyningen21. It is part of Kort10 which is a nationwide topographic object-oriented dataset in vector 

format at a scale of 1:10,000. It is maintained by the Data Supply and Streamlining Agency (Styrelsen for 

Dataforsyning og Effektivisering) which is part of the Danish Energy, Supply and Climate Ministry (Energi-, 

Forsynings-, og Klimaministeriet). The data is described as suitable for analytical purposes. Besides 2D 

building footprints Kort10 contains variety of data such as: administrative boundaries, infrastructure, nature 

(e.g. locations of water bodies and forests) and height curves.  

The vector data is outlined with the use of photogrammetry applied to orthophotos which 

have a pixel resolution of 40 by 40 centimeters. Its metadata22 mention that the accuracy is around 1m. The 

entire Kort10 dataset is updated every 5 years using the latest orthophoto, though traffic related data is 

updated three times a year. According to its metadata the version used in this thesis stems from May 2016. 

Therefore, any buildings that have been built, destroyed or altered after that time are not accounted for. The 

data is provided in ESRI shapefile format with an ERTS1989 UTM ZONE 32N spatial reference system and the 

                                                           
21 Kortforsyningen: https://www.kortforsyningen.dk.  
22 Kort10 metadata: http://www.geodata-info.dk/Portal/ShowMetadata.aspx?id=49d0eee8-16c7-4e90-b91e-
89fac91a892f 
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dataset with building footprints alone is 2.90GB in size when uncompressed. In total, it contains 4,567,813 

building objects that represent: 

“… a permanent building, including garage, carport, tank/silo, outhouse, glass veranda, shed, 

any fixed covered areas, platform roof, houseboat and similar. But not mobile homes, 

campers, tents and similar.”23 (FOT, 2014, p. 16) (bold in original) 

The dataset contains attribute values with a basic classification of each object being either a: 

building, houseboat, greenhouse, tank/silo, other, not reported or unknown. An attribute on the type of tank, 

which can be: closed, open, unknown, not reported and other. Moreover, an attribute indicating a status 

which can be: project approved, reported closed, reported up, under construction, under closure or in use. 

An additional attribute was added containing the area of each building footprint calculated in m2 with a 

precision of four. A combination of these attributes is used to filter the dataset [ADD QUERY USED TO FILTER 

THE DATA]. In total 66,542 objects have been removed from the dataset with a total footprint area of 

13,764,279m2 or 13.7km2. The total footprint area of all buildings and related objects in Denmark that 

remained part of the study is 696,615,648m2 or 696.6km2. The largest building (and related object) found in 

the dataset is 139,811.86m2 and the smallest is 2m2. The average size is 154.76m2. Map 1 below provides an 

example of several footprints superimposed over satellite imagery. 

                                                           
23 Translated from Danish: ”BYGNING repræsenterer en permanent bygning, herunder garage, carport, tank/silo, 
udestue, glasudbygning, skut, halvtag, overdækket areal, fast markise på bygning, perrontag, husbåd og lignende. Men 
ikke mobilhome, campingvogn, telt eller lignende.” (FOT 5.1 Specification, 2014, p. 16) 

Map 1 Building footprints superimposed over satellite imagery 
(source: Kortforsyningen) 
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The second main data input are boundaries indicating types of urban development and land-

use. They are also provided in the Kort10 dataset and are: city center, low-rise buildings, high-rise buildings, 

commercial/industry, mining sites, technical sites, horticulture, recreation, airports, sport facilities and 

cemeteries24. The specification mentions the existence of boundaries indicating public spaces, but these were 

not found in the Kort10 dataset at the time of writing (FOT, 2014, p. 211). Table 3 presents a description of 

class (FOT, 2014). This data is used to stratify the building footprints of which the justification and process is 

described in the next section. Map 2 shows an example of the different land use types overlaid on satellite 

imagery of a part of the city of Odense, located on the island of Fyn. These development and land-use 

boundaries are more detailed than CORINE and offer a higher differentiation within urbanized areas than 

what CORINE can offer. Therefore, these zones are therefore picked instead.  

 

 

  

 

 

 

 

                                                           
24 Translated from Danish and presented in the same order as mentioned in the text: bykerne, lav bebyggelse, høj 
bebyggelse, erhverv/industri, råstofområde, gartneri, rekreativt område, lufthavn, sport anlæg, kirkegård, plads. 

Map 2 Visualization of the urban-development and land-use classes (source: Kortforsyningen) 



24 
 

Table 3 Urban development and land-use classes 

Urban development  
and land-use classes 

Description 

City center Delineation of an area with coherent development in the center part of 
a city. 

Low-rise urban development Delineation of developed area with buildings up to two floors. Can 
include: freestanding housing, row housing, single family homes, 
apartment blocks, service oriented businesses, schools and institutions.  

High-rise urban development Developed area with buildings of more than two floors. Can include: 
apartment blocks, city blocks, service related businesses, schools and 
institutions. 

Commercial/industry Developed area with business related facilities in the form of: industry, 
crafts, shopping centers and industrial ports. It also covers all buildings, 
technical facilities, storage areas, parking lots and similar that belong to 
a business. 

Technical sites An area with technical functions or facilities. Can include: military areas, 
treatment plants, windmill parks, train stations, parking lots. 

Airports Delineates an airport and all related buildings and facilities in its vicinity. 
Sport facilities Delineates areas with facilities relating to sporting activities 
Recreation Areas used for recreational purposes with public access. Can include: 

parks, camping spaces, zoo’s, botanical gardens and related. 
Cemetery Cemeteries and related facilities. 
Horticulture Facilities, buildings and areas used in the production of flowers, 

vegetables and fruits. 
Mining sites Sites of mineral extraction and related facilities and buildings. 

  

 The datasets with urban development and land-use boundaries is also preprocessed. Many 

polygons part of the same class seemed to overlap or overlap those of other classes. Filtering of these 

datasets was slightly less straightforward. The datasets contain an attribute indicating the time of their 

creation, but that did not make clear which one was still valid today and which was not. Another attribute 

that contained a special ID was used instead25. Those polygons within each dataset that had a value in this 

attribute were included, while those that didn’t were excluded. This seem to have dealt with a lot of the 

within class overlap and part of the between class overlap, but not completely. This overlap is considered 

during the stratification of the buildings, discussed in the following section of ‘Stratification, sampling and 

extrapolation’. 

The third of the main data inputs is a DSM with a resolution of 40 by 40 centimeters, also 

retrieved from Kortforsyningen26. This is the most accurate DSM available for free and with its high resolution, 

it will be able to model any object that is equal or larger to 40 centimeters by 40 centimeters, meaning that 

it will help to distinguish the effects of existing roof uses and the impact they have on global radiation, for 

example. This particular dataset, is a resampled LiDAR based surface model of which the raw point data have 

been collected at an average amount of 4 - 5 points per m2, by aircraft in the period of 2014 and 2015. The 

accuracy of this source data is 0.15 meters horizontally and 0.05 meters vertically. Currently, it can only be 

                                                           
25 This attribute is called ‘FOTFEAT_ID’. 
26 DSM metadata: http://www.geodata-info.dk/Portal/ShowMetadata.aspx?id=d4f542b3-7acb-4307-8589-
f5c1f939ce00 
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retrieved in compressed zipped files representing 10km2 blocks that each contain up to a 100 individual 1km2 

surfaces. The individual surfaces have an uncompressed size of 23.84MB and consist of 2500 columns and 

2500 rows. They come in a GeoTIFF format with the same spatial reference system as the aforementioned 

vector dataset.  Due to the time difference at which the DSM and vector data have been constructed, it is 

likely that there is a discrepancy between the two datasets that will provide some erroneous results across 

the study area. The author has not attempted to quantify this error, but it is expected to be marginal 

considering the scale of the study. 

An additional vector dataset used in this study is a fishnet that specifies the location of the 

downloadable blocks, retrieved from Kortforsyningen’s FTP server27. Map 3 shows this fishnet overlaid on 

the outline of Denmark. This fishnet is used to automate the process of retrieving the DSM blocks. An 

additional 1km2 fishnet has been derived from the 10km2 fishnet to automate the process of building a 

mosaic out of the individual 1km2 surfaces that cover a sampling area. The automation process and sampling 

strategy is described in following sections.  

 

 

 Several inputs are derived from the DSM that includes surfaces with slope, aspect (orientation) 

and horizon height values. These serve as input data for the solar radiation model, which itself outputs a new 

surface with solar irradiation values in Wh/m2 for an average day in a year at the same resolution of the 

                                                           
27 Kortforsyningen’s FTP server: ftp://ftp.kortforsyningen.dk/ 

Map 3 Grid locating downloadable DSM files 
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input DSM. An example of the latter is shown in figure 4 in section ‘Solar radiation modelling’. Pixel-based 

statistics are calculated from the latter surface on a per building basis using the vector dataset of building 

footprints.  

 

3.2 Stratification, sampling and extrapolation 
 

 To reiterate, the methodology here assumes that: Buildings of comparable size and in a like context will on 

average have similar levels of solar irradiation in Wh/m2/day on similar proportions of their rooftop. The 

dataset with building footprints does not provide information relating to roof structure, such as: size, height, 

slope, aspect and existing roof uses. The known variables, besides a count, are the shape of the footprint, 

size in m2 and location. From the three available variables, the building size in m2 and location are used.  The 

former is positively related to the size of the roof. Therefore, it is assumed that footprint area is synonymous 

with rooftop area. The dataset with boundaries indicating urban development and land-use are used to 

stratify the buildings into different classes based on the location variable.  

 These development and land-use classes operationalize the aspect of context mentioned in 

the assumption, because these boundaries aim to characterize developed areas that are similar to one 

another in a consistent manner across the country of Denmark. An additional dependent variable used to 

operationalize context and help stratify the building dataset is building density. However, instead of density 

as a function of either building or population count, it is based on building footprint area in m2. While the 

building count is the most independent variable available, since if there is no building there is no building 

footprint. The actual amount of rooftop area better reflects how densely built an area is compared to its 

count or population. For example, density will differ if there are 100 buildings with each a footprint of 125m2 

in a defined area, or if there are 100 of them that have a smaller footprint. Stratification along this dependent 

variable is expected to be a suitable indicator of different urban structures, as it is derived from a variable 

directly related to the object under study: the building rooftop and its area. 

The last aspect of the assumption: ‘buildings on average have similar amounts of solar 

irradiation on similar proportions of their rooftop’, is operationalized with the use of solar radiation 

modelling. Since the footprint dataset does not contain information on the roof structure, solar irradiation 

acts as a proxy of the heterogeneity of both the urban structure and roof structure that impact the solar 

energy potential of the object under study. It is used as such, because the literature on solar radiation 

modelling has shown that the amount of solar irradiance and irradiation under clear-sky conditions at the 

surface of the Earth (in this case rooftops), is highly depend on factors including: height, aspect, slope and 

neighboring objects that can cast shadows. In the process of modelling solar radiation on a sample area, the 

spatial variation of solar radiation on the individual rooftops will be able to indicate how heterogeneous the 

roof structures within that area. If radiation is uniform than roof structures are homogeneous and vice versa. 

A high variance will mean that an average will have trouble reflecting the heterogeneity among the roof 

structures.   

The latter is tested in the end by comparing predicted global solar irradiation values in 

Wh/m2/day based on the averages found, against modelled global irradiation values in Wh/m2/day. This will 

indicate if the modelled solar energy potentials from a sample can reliably be extrapolated from a to the rest 

of areas part of a stratum.  
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Diagram 1 shows each step of the process part of the methodology. The process starts by 

preprocessing the building dataset and the urban development and land-use datasets and the conversion of 

the building 2D polygons into centroids. The point dataset is then stratified into the urban development and 

land-use classes based on a geometric intersection between the points and the polygon representing a class. 

Depending on the intersection a point is classified as part of one of the following: city center, low-rise 

buildings, high-rise buildings, commercial/industry, mining sites, technical sites, horticulture, recreation, 

airports, sport facilities and cemeteries. If a point falls within the boundaries of more than one class it will be 

classified as ‘multiple’ and an additional attribute will indicate what these classes are. Those points that do 

not fall within one or more classes are classified based on distance of which the procedure is as follows: The 

closest five boundaries are selected to point. The latter is then classified based on the shortest Euclidian 

distance between the actual footprint of the building that the point represents and a class boundary. An 

additional attribute is added to these points indicating how far the building was removed from the class it is 

classified as.  

After the points are classified, a fishnet with a grid size of 2,500m by 2,500m is placed on top 

of them with an extent equal to the boundaries of the country of Denmark. The variable of rooftop size in m2 

is aggregated to this fishnet, along with a count of the amount of points. Both are added as separate 

attributes to each cell.  This reflects a quadrat sampling method, which describes the process of sampling 

and aggregating point-based data inside consistently shaped regions (de Smith et al, 2015). Instead of using 

administrative boundaries to represent quadrats that have a varied sizes and shape, a uniform shape of a 

square is used to reduce the directional variance (Ibid, 2015).  

The points are aggregated to a fishnet for several reasons. First, the solar radiation modelling 

is performed on an area, which is done because it allows the consideration of the surroundings of a rooftop 

and allow for precise modelling of clear-sky global solar radiation on the latter. It will likewise allow for the 

ability to extract results for multiple buildings at a time, on areas of which it is known that buildings are 

Diagram 1 Flow chart of applied methodology 
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present. Second, it would make the modelling manageable for practical reasons. Since if the buildings are 

sampled individually they would be scattered around the country of Denmark. Then multiple 10km2 DSM 

blocks would have to be downloaded and the data handling would run into storage limitations. Third, it makes 

it possible to stratify the classified points, part of the same class, based on building density as a function of 

roof area in m2 per 2.5km2.  

The roof area density is calculated by dividing the total roof area by the area of the cell. 

Afterwards, the cells of the fishnet are stratified along this density based on the univariate variance-

minimization clustering method Natural Breaks/Jenks (Jenks, 1967). This algorithm aims to group data based 

on reducing the within group variance and maximizing the between group variance. It does not create equal 

sized groups and the groups are separated where there are substantial changes in values (de Smith et al, 

2015). This clustering method is picked, because it will group areas together that have a similar roof area 

density and irrespective of their location in Denmark. The spatial location of the cells is not considered since 

it is believed that density reflects local conditions (Lehmann and Peter, 2003, Izquierdo et al, 2008). 

Therefore, when sampled it would mean that they are likely representative of each other.  

There is an argument to base clustering also on location, since objects closer to one another 

are likely more similar to one another, than objects that are further away (Tobler’s Law). On one hand, from 

the perspective of solar irradiation modelling, to take the location into account is good practice. If the study 

area consists of large latitudinal differences, an area in the south will have different insolation compared to 

an area in the north. However, Denmark is not very extensive. Its southernmost point is roughly at a latitude 

of 54.56 on the island of Falster, while its northern most point is roughly at a latitude of 57.75 at the tip of 

Jutland. Irradiation maps of DMI that indicate the average yearly sum of (real-sky) global radiation, do show 

a variation in global irradiation across the country of between 3,650-3,950 MJ/m2 (Wang et al, 2012, p. 9). 

However, the mentioned southernmost and northernmost latitudes both receive around 3,900Mj/m2. 

Therefore, if clear-sky global radiation is then considered (which is modelled here), then it is expected that 

global irradiation will not vary much between these latitudes.  

On the other hand, out of practical reasons it also more manageable to cluster based on a 

univariate measure. Since, if both the location and roof density are considered, it would mean an exponential 

growth in the number of stratums and thus sampled areas that must be modelled. Since, per class, the fishnet 

cells would be grouped based on their proximity and afterwards differentiated by their roof area densities.  

 Currently, the amount of clusters a fishnet of a single class is stratified into based on roof area 

density, is grounded on an optimization method which is the Goodness of Variance Fit statistic (GVF) (Jenks, 

1967). The GVF methods aims to minimize the squared deviations of the class means until the GVF is statistic 

is maximized at a value of 1 (Ibid, 1967). The threshold of this statistic is set at a value of 0.9 and the number 

of clusters created increases until this threshold is met -although a hard cap is set at 5.  Afterwards, per 

cluster two groups of five random cells are selected. Their representativeness of the cluster is tested based 

on a parametric dependent T-Test when the distribution of roof density of the cluster is normal, or a non-

parametric Wilcoxon signed rank test is if this distribution is not normal.  Normality of the distribution of the 

cluster is tested using a normality test. Both them will test if the two dependent groups of five random fishnet 

cells have been taken from the distribution of the cluster by comparing the mean values. If the means of the 

samples significantly differ from the mean of the cluster, then they are not representative and two new 

random samples are picked and tested again. The significance level is set at 0.1.  If they pass the test the first 

of two groups are exported and used as sampling areas for solar radiation modelling. If a cluster is smaller or 

equal to five, the entire cluster of fishnet cells is taken as the sampling areas.  
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For each of the five sample areas, a DSM is constructed from the 1km2 DSM surfaces that 

overlap the sampling area with the addition of a buffer of 600 meters in every direction. The DSM surface is 

larger than the sampling area to make sure that buildings located along the edges of a sample area are 

properly evaluated against their context. Solar radiation itself is only modelled on the sampling area plus 100 

meters in each direction to make sure that the entirety of the roof along the edge of a sample area is 

evaluated.  

After solar irradiation is modelled on a sample area in Wh/m2/day, the values are reclassified 

into seven ranges: 0 – 1000, 1000 – 2000, “…”, 5000 – 6000 and 6000 and above. With the use of raster 

statistics, the number of pixels per range of Wh/m2/day are counted per roof outline. The count per range is 

multiplied by 0.16 to measure its size in m2. The area in m2 of each range, as they are present, are divided by 

the total size of the roof, measured by multiplying the total count of pixels within a roof outline by 0.16. The 

roof size in m2 is based on the count of pixels, since the roof outlines themselves are line-based while the 

pixels are squares that only approximate to this line. By dividing the two the ratio of the rooftop area that 

received a range of solar irradiation is given. The area in m2 of the entire roof based on pixels, the area in m2 

of each portion and the ratios for each portion are added as attributes to the rooftop outlines 

Lastly, all individually evaluated buildings across all five sample areas, are divided into 

quantiles based on their roof area in m2 (derived from the pixel count). Then for each quantile, the ratios are 

averaged. This results in seven averaged ratios per quantile. These averaged ratios are the coefficients used 

to calculate the average solar energy potential of all buildings within the same quantile range, of those fishnet 

cells that are part of the same cluster.  

 

3.3 Validation 
 

To test the performance of the coefficients a test sample is taken from the same cluster, for which the process 

up to the calculation of the ratios per individual rooftop are performed as well. Then, the averaged ratios per 

quantile of the sampled areas are applied to those of the test sample that fall in the same quantile range, to 

predict the area in m2 on a rooftop that receives a range of Wh/m2/day. These predictions are compared to 

the test samples own modelled results, by calculating the Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) between the distributions of each predicted and measured area per range of 

Wh/m2/day. The lower the MAE and RMSE values the better the coefficients perform. This will indicate if the 

applied stratification is able to consider the heterogeneity of roof structures appropriately and gives insight 

into how much the prediction is of for that stratum providing more authority to the results. 

 

3.4 Modelling of clear-sky global solar radiation 
 

The solar radiation model used is an adapted version of rsun implemented in the GRASS GIS platform, called 

r.sun.daily28. It is developed by the NCSU GeoForAll Lab located at the North Caroline State University, Center 

for Geospatial Analytics in Raleigh, NC, USA29, who also developed the GRASS GIS platform (Neteler and 

                                                           
28 r.sun.daily manual: https://grass.osgeo.org/grass72/manuals/addons/r.sun.daily.html 
29 NCSU GeoForAll Lab https://geospatial.ncsu.edu/osgeorel/ 
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Mitasova, 2008). The main difference is an additional parameter that allows the user to parallelize the 

modelling process across multiple processors. The result is that multiple maps can be calculated at the same 

time depending on the number of processors the user has available, which reduces the computational time 

by multiple factors. The rsun model is picked over the Solar Analyst model as it allows for a more flexible use 

of input data and optimization, due to the source code being open. The latter also allows it to be incorporated 

into automated processes such as is presented in this thesis and which is examined in section ‘Scripting and 

reproducibility’. In addition, it would allow for reproducibility of the results by anyone since the Solar Analyst 

model is only available in the commercial GIS platform of ArcGIS.  

 The solar radiation that is modelled is a daily sum of clear-sky global irradiation in Wh/m2/day 

for the center day of each month within a year. The twelve resulting rasters are summed and divided by 

twelve, to give an averaged irradiation value representative of an average day in a year. Irradiation is not 

modelled for every day of the year and then divided by 365, due to storage and time constraints. By using 

the center day of each month, it would roughly approximate to the same result in clear-sky global irradiation 

in Wh/m2/day. Real-sky solar irradiation is not modelled. This will mean that the modelled radiation values 

are overestimated compared to reality, since they are not modified by the impact of clouds. However, clear-

sky global solar radiation will be better suited to distinguish between rooftop space that has a higher solar 

energy potential on average – due to for example, existing roof uses or nearby objects casting shadows or 

due to its inclination and orientation. If real-sky irradiation was modelled this distinction would be more 

difficult to make since at times the diffuse component would dominant that reduces the impact that for 

example slope and orientation have. Although an approximation of real-sky irradiation would be necessary 

to predict the productivity of a roof in terms of an applied solar energy conversion technology. If clear-sky 

irradiation values are used this will over estimate productivity values.  

 The input data used are:  

 

- A DSM of 40x40 centimeters with an extent of 3.7 by 3.7 kilometers  

- A slope and aspect raster of the same size as the DSM 

- A buffered 2D polygon representing the sample area of 2.7 by 2.7 kilometers  

- 24 pre-calculated horizon maps of 3.7 by 3.7 kilometers. 

 

 

 The horizon rasters are calculated with the use of a separate and modified r.horizon script30, 

which like r.sun.daily allows for parallelization of the calculations across multiple processors. 24 of them are 

calculated equal to the number of hours in a day for which solar irradiation is modelled before it is summed 

to a daily sum of clear-sky solar irradiation in Wh/m2/day. The 2D polygon sets the extent of the area on 

which solar irradiation is modelled, which is slightly larger than the sample area itself to make sure that roof 

of buildings on the edges are evaluated properly. Other parameters that are set within the r.sun.daily model 

include a linke turbidity factor, that models the transmissivity of the atmosphere (set at the default value of 

3.0) and a ground albedo factor to model the reflectance of the surface (also kept at a default of 0.2). The 2D 

polygon sets the extent of the area on which solar irradiation is to be modelled. 

 

                                                           
30 Link to source of modified script: http://osgeo-org.1560.x6.nabble.com/Simultaneous-r-horizon-processes-
td4676325.html#a4892854. This script was further adapted to suit the needs of the author. 
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3.5 Scripting and reproducibility 
 

The process described in the section on stratification, sampling and extrapolation, and validation is 

automated with the use of scripting in the 32bit version of the Python 2.7 programming language. Several 

open source python libraries were utilized in the process which are described in Table 4. The dependencies 

of these libraries are not mentioned, as well as those that are already built-in. Solar radiation modelling was 

performed within the GRASS GIS platform which is a 64bit environment to be able to utilize all available 

memory during the modelling process. Most of the packages have been retrieved from a repository of 

unofficial Windows binaries for python extension packages, managed by the Laboratory for Flourescence 

Dynamics at the University of California, Irvine31. They are pre-compiled and make matching versions of 

python with its respective extension packages more accessible. 

 

Table 4 Utilized Python extensions and libraries 

Library Version Description Source 

GDAL 2.1.3 Data handling and basic analysis of 
both raster and vector based data 

http://www.gdal.org/ 

Rtree 0.8.3 Library to build spatial indexes on 
data to improve query speeds 

https://pypi.python.org/pypi/Rtree/ 

Jenks 1.0 Library used to perform Jenks 
variation-minimization clustering 

https://github.com/perrygeo/jenks 

Numpy 1.11.3 Package used for scientific computing 
with Python 

http://www.numpy.org/ 

Rasterstats 0.12.0 Library to perform summary statistics 
on rasters and vector geometry 

https://github.com/perrygeo/python-
rasterstats 

Scikit-learn 0.18.1 Data mining and analysis library http://scikit-learn.org/stable/ 
Scipy 0.19 Python-based ecosystem of open-

source software for mathematics, 
science, and engineering 

https://www.scipy.org/ 

Grass.script 7.2.1 Python library included in GRASS GIS https://grass.osgeo.org/ 
 

 With the use of these Python extensions a multitude of scripts were made to handle the steps 

presented in Diagram 1. In table 5 each script is presented and which libraries they utilized including those 

that are built into Python 2.7. In the ‘Step’ column a number is provided that matches the processing step in 

Diagram 1. These scripts are not directly applicable on another system in their current state. For example, 

they would have to be edited to make sure that the data handling aspects -required file folders and naming 

schemes- work correctly. In addition, it would have to be made sure that a similar version of Python and 

extensions is installed. A great deal of streamlining and efficiency gains can still be made in the scripting of 

this process. However, this could not be achieved within the available time. The developed scripts are 

available for download32. 

                                                           
31 Repository: http://www.lfd.uci.edu/~gohlke/pythonlibs/ 
32 Download link to scripts: https://drive.google.com/file/d/0B_kmPxXGEcYDLVpHR29ISVFLdE0/view?usp=sharing. 
Note: the scripts are very much in a development stage, which means that they lack commenting and proper 
structure.  
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                    Table 5 Python scripts 

Script Step Libraries and modules utilized 

Building preprocessing 1 GDAL 
Class preprocessing 1 1 GDAL 
Class preprocessing 2 1 GDAL 
Building categorization 2 GDAL, Rtree, collections, operator 
Sampling fishnet 3 GDAL, math 
DSM fishnet preprocessing 1 3 GDAL, Rtree, math 
DSM fishnet preprocessing 2 3 GDAL, Rtree, itertools 
Centroid aggregation 3 GDAL, Numpy 
Clustering preprocessing 4 GDAL, Numpy 
Clustering process Jenks 4 GDAL, Numpy, Jenks 
Random sampling 5 GDAL, Numpy, Scipy, random, 

itertools 
Mosaic DSM 6 GDAL, Numpy, zipfile, subprocess, 

glob, ftplib, operator, itertools 
Grass import 1 7 Grass.script, GDAL 
Grass import 2 7 Grass.script, GDAL, zipfile, numpy, 

subprocess, glob, operator, itertools 
Grass horizon 7 Grass.script, multiprocessing, 

datetime 
Grass rsun 8 Grass.script, gdal, multiprocessing, 

datetime 
Extraction preprocessing 9 Manual 
Extraction factors 1 9 GDAL, Numpy, rasterstats, 

subprocess, csv 
Extraction factors 2 10.1, 10.2 GDAL, Numpy, rasterstats, 

subprocess, csv 
Calculate averaged ratios 11.1, 11.2 Manual 
Validation quantiles 12 GDAL, Numpy 
Validation errors 12 Numpy, Scikit-learn 
Extrapolation 13 GDAL, Numpy 
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4. Results 
 

 

4.1 Stratification, aggregation and clustering 
 

Table 6 shows the stratification of the buildings up to the classification into urban-development and land-use 

types. It indicates the class name, the count of buildings, percentage of the total count, average roof area in 

square meters, total roof area in square kilometers and percentage of the latter’s total. To reiterate the 

numbers are based on building footprint area which are assumed synonymous with roof area. The results 

indicate that most buildings are situated within low-rise urban development (92.86%). Followed by 

commercial/industry (2.93%), city center (1.50%) and high-rise urban development (1.46%).  

 

Table 6 Building classification results 

Class Count Percentage of 
total count 

Average 
roof area 
in m2 

Total roof 
area in km2 

Percentage of 
total roof 
area  

City center 67,899 1.5084 199.83 13.57 1.9479 
Low-rise buildings 4,180,052 92.8638 131.23 548.50 78.7374 
High-rise buildings 65,890 1.4638 320.05 21.09 3.0275 
Commercial/industry 131,934 2.9310 733.96 96.83 13.8999 
Mining sites 813 0.0181 161.53 0.13 0.0187 
Technical sites 17,886 0.3974 280.89 5.02 0.7206 
Horticulture 4,295 0.0954 1045.83 4.49 0.6445 
Recreation 2,285 0.0508 56.62 0.13 0.0187 
Airports 1,583 0.0352 629.36 1.00 0.1436 
Sport facilities 14,540 0.3230 287.42 4.18 0.6000 
Cemeteries 4,853 0.1078 149.76 0.73 0.1048 
Multiple 9,241 0.2053 102.52 0.95 0.1364 
Total 4,501.271 100 154.76 696,62 100 

 

 Some of the other classes have a significant count (technical sites and sport facilities) but do 

not contribute much to the total in terms of roof area in Denmark (less than one percent). Besides the low-

rise development, the commercial/industry class sets itself apart. It contains roughly double the amount of 

buildings compared to city center and high-rise development, but has five to seven times the amount of roof 

area and 13.89% of the total roof area. Low-rise urban development is most common in Denmark and has 

78.73% of the total roof area. On average, buildings in the horticulture class have the largest roof space 

followed by commercial/industry, airports and high-rise urban development. 

 Chart 1 contains four histograms with the distribution of total roof area in m2 aggregated to a 

fishnet of 2.5km2 cells of the four largest classes. The data is grouped in fifty bins, the units are m2 and only 

those cells with a building count above zero are included. The count indicates that not all classes are present 

in the 8,179 fishnet cells covering the entire study area. City center is only present in 168 cells, whereas high-

rise is present in 505 and commercial/industry in 2,817 cells. Low-rise is present almost everywhere with 
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7,769 cells having one or more building in them. The distribution of all four largest groups is heavily skewed 

with the tail to the right, thus in each class several cells contain considerably more roof area compared to 

the majority. Additional descriptive statistics are included with each histogram with information on for 

example: the minimum and maximum total roof area, and the average total roof area. 

 

 

Map 4 contains four maps showing the spatial distribution of total roof area aggregated to the 

fishnet cells of the same classes. The data is visualized using quintiles based on the data of each class 

separately. Again, only those cells of the fishnet that contain at least one building are visualized and we see 

that not all classes are present everywhere in the study area, except for low-rise development. This class is 

spread across the country in varying degrees with the largest concentrations found in the main cities and 

their suburbs. High-rise is mostly found in larger cities coinciding with the spatial distribution of the city 

center class in the top left. Commercial/industry is similarly to low-rise development quite spread out, but is 

most concentrated near the cities. The island of Bornholm, indicated in the top right of each map, shows 

similar variations per class as the rest of the country.   

Chart 1 Histograms of the distribution of total roof area of the four largest classes of buildings in 
Denmark 
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Map 4 Spatial distribution of total roof area across Denmark 
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Chart 2 show four graphs with boxplots of the results of the univariate clustering process using 

the Natural Breaks Jenks algorithm. The data of the four largest classes are displayed and the x-axis specifies 

the cluster from low to high, which reflects low to high density in terms of total roof area m2 on the y-axis. 

With the use of this algorithm, groups of different densities have clearly been delineated. Particularly, if the 

interquartile ranges between the clusters are compared, specified by the light blue boxes. However, the 

highest cluster in each class has a relatively higher variance compared to the others. City center and high-rise 

especially, of which the interquartile range ranges from roughly 600,000m2 to 1,150,000m2 for the former, 

and roughly 360,000m2 to 850,000m2 for the latter. Although, the count of cells contained in these clusters 

is comparatively much smaller, indicating that they are a few outliers with relatively high density that have 

been clustered together. Moreover, not all classes displayed here have the same number of clusters. Both 

city center and commercial/industry met the Goodness of Variance Fit (GVF) threshold with 0.906 and 0.917 

respectively, with just four groups. Low-rise reached the threshold with five clusters (GVF: 0.931) but high-

rise was exported as five clusters with a GVF of 0.899. It met the maximum of five clusters without reaching 

the thresholds (though only by a little). In sum, the algorithm performs well in stratifying the classified 

buildings further into several clusters with a reduced variance of total roof area in m2. 

 

Chart 2 Boxplots of clustering results per class for the largest classes 



37 
 

Map 5 (on the following page) indicates the spatial distribution of the clusters across Denmark 

and as expected, the higher density clusters of each class are near or in the larger cities of the study area. 

City center can obviously only be found in the larger cities, with the highest densities found in the cities of 

Arhus (East Jutland), Aalborg (North Jutland) and Copenhagen (North-East Zeeland). The highest density 

cluster 3 and 4 of the high-rise class are mainly found in Copenhagen, while the same high-density clusters 

of the low-rise class are more spread out with concentrations in other cities as well. Commercial/industry 

follows a similar trend to the low-rise category with low-density cells being more numerous and spread across 

the country compared to the higher density clusters with less numerous cells. 

  



38 
 

 

Map 5 Spatial distribution of the clusters per class for the largest classes 
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4.2 Sampling results 

 

This section describes the sampling results. In the automated sampling process ten samples are taken from 

each cluster at random and tested for their representativeness against the cluster they are taken from. Their 

representativeness was tested with the use of either a dependent T-Test or Wilcoxon signed-rank test, with 

the significance level of p = 0.1. If the tested sample’s p value is higher a new sample is picked and tested. If 

their p value is below 0.1 the first of the two groups of randomly picked samples are exported and used as 

sampling areas to model solar radiation on. 

 Map 6 shows the location of the samples taken from each cluster compared to the rest of the 

same cluster for the low-rise urban development class. It gives an impression of how the random sampling 

functions. As expected, due to the samples being randomly picked, they may not be evenly spread from the 

perspective of spatial sampling. The argument for not taking this into account is presented in the 

methodology chapter. Moreover, each cluster is represented by the same number of samples, regardless of 

how numerous the cluster is. These samples passed the dependent T-Test or Wilcoxon signed-rank test. 

Although, from a statistical point of view the number of samples may not provide results with enough 

confidence. However, out of practical reasons the number of sampling areas had to stay low, which is 

elaborated in the methodology chapter.  

  

Map 6 Example of random samples taken per density cluster of the Low-rise class 
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  Due to a lack of time only the samples that come from Cluster 0 of the low-rise urban 

development class presented in Map 6 have had their clear-sky solar radiation modelled. Therefore, these 

sampling areas are examined in more detail here, before moving on to the solar radiation modelling results. 

First, is a table on the sample areas themselves. Table 7 shows the ID of the cells, their density, count of 

buildings contained within the cell and total, average, minimum and maximum roof area in m2. They are the 

same cells as depicted in Map 6 and are comparatively of low density, though they represent 3,488 cells that 

are part of the same cluster. Interestingly, while there is a positive relationship between count and total roof 

area, here we can see that the total roof area does not linearly increase with count. Therefore, this is an 

indication that total roof area better reflects density compared to count, as mentioned in the methodology.   

 

Table 7 Descriptive statistics of sampled areas 

Sample ID Density Count Total roof area Avg. roof area Min. roof area Max. roof area 

6051 0.0067 225 42,178 187 2 2,327 
8152 0.0056 232 35,092 151 6 1,250 
8279 0.0049 249 30,697 123 2 1,488 
23801 0.0004 31 2,545 82 11 313 
24359 0.0035 101 22,085 219 17 1,262 

 

  

Chart 3 Distribution of roof area size in m2 per sample and their location 



41 
 

 Chart 3 presents locations of each sample area and Normal QQ plots of the distribution of roof 

area in m2 of the buildings present in each sample area. The distributions are presented in logarithmic scale 

to make the distributions more interpretable and we can see that they are have a lognormal distribution with 

a slight variation in steepness. The highest and lower values tend to deviate slightly from it.  

 

4.3 Results of solar radiation modelling 
 

In Map 7 at the bottom of this page, the modelled clear-sky global irradiation results on the sampling area 

with ID ‘8152’ is depicted. On the top row is the raw output visualized on a continuous scale. Lower values 

have a darker red color, while higher values move towards a bright yellow. In the top left image, the modelled 

area is shown in its entirety. In the middle, it is zoomed in to the boxed area and the footprints of the buildings 

are included delineating roof area. The image in the top right zooms in even closer on a small group of 

buildings, found in the middle image. Below the top row are two orthophoto’s taken in spring of 2016 of the 

same areas to give an indication of how they look in reality.  

With the use of the 40 by 40 centimeters DEM it is possible to model a detailed spatial variation 

of the clear-sky global irradiation across rooftops and areas in between. The effects of rooftop orientation, 

slope and shadowing caused by existing roof uses, as well as neighboring objects are clearly visible. Thus, it 

is possible to distinguish rooftop area that consistently receives more radiation. In the top-right image, we 

can see these effects most clearly. The irradiation values indirectly distinguish different roof portions, their 

orientations and slopes, and existing roof uses based on the effects these factors have on clear-sky global 

irradiation. For example, the roof of the upper most building is shadowed partially by the adjacent tree-line. 

Map 7 Solar radiation modelling results for Sample area with ID 8154 
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The large rectangular building in the middle has a substantial portion of its roof facing south-east with an 

unobstructed view of the sky, as it has the highest values of irradiation depicted by the bright yellow. 

 The raw global irradiation values in Wh/m2/day have been reclassified into seven ranges (< 

1000, 1000 – 2000, “…”, 5000 – 6000, 6000<). In the process of reclassifying the raw values, the spatial 

variation becomes slightly generalized, as shown in the bottom image of Map 8 below. But the most detail is 

preserved allowing for the distinction of different portions of the roof. 

 

 

Within each of the building footprints, pixels with a value that fall in the specified ranges, are 

counted and multiplied by 0.16. This gives the portion’s area in m2 and depending on the number of ranges 

that are present on a rooftop, there are up to seven portions per roof. Per building, these portions are divided 

by the total roof area represented by pixels to get the portions ratio. In chart 4 and 5, the distributions of 

each ratio per sample area are presented in boxplots to show the spread. 

Irrespective of building size in m2, it can be seen that for the interquartile ranges of each ratio 

across the sampling areas, that there is a general increase in the proportion of roof covered by a range, as 

the range increase up to 4000-5000 Wh/m2/day and 5000-6000 Wh/m2/day. The ratios decrease for the 

range of 6000 Wh/m2/day and above. However, at the same time, the variability also increases as can be 

Map 8 Reclassification of modelled solar radiation values 
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seen by the increasing length of the boxes and the whiskers. The exception is the range between 5000-6000, 

where the right most boxplot has a much larger variance compared to the other sampling areas. Moreover, 

in almost all cases there are roofs where a range is not present at all, shown by the bottom whiskers 

stretching to a value of 0. 

 

 

 

 

 

 

 

 

 

Chart 4 Boxplots of ratios per sample area per range of Wh/m2/day (part 1) 
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There are outliers present across the ranges, represented by the circles and stars.  Outliers are 

not surprising, it reflects the fact that some roofs are in a worse context or have a less favorable roof structure 

compared to others and vice versa. For example, the outliers in the boxplots for the range 0-1000 have most 

of their roof likely covered in shadow, caused by neighboring objects such as trees or adjacent larger objects. 

This has a consequence that most radiation comes from diffuse radiation reducing the irradiation 

considerably. Outliers in the range 5000-6000 Wh/m2/day, could indicate a flat roof or slanted roof with a 

south facing orientation, unaffected by shadow. Thus, most roof area for these cases receive a high amount 

of direct radiation increasing the irradiation significantly. 

 The sampling areas represent low-density low-urban development, but we can conclude by 

examining the spread of the boxplots that the roof structures themselves are highly heterogeneous. Chart 6 

(page 46), presents the distribution of factors through boxplots again, but now they are quantized based on 

roof size in m2. Here a different trend can be discerned. Up to the range of 2000-3000, the boxplots of 

quantile 2 and 3, representing roofs above 86m2, have a smaller proportion of their area in these lower 

ranges, compared to quantile 0 and 1 representing roofs up to 86m2. For the range of 3000-4000 Wh/m2/day 

the boxplots are roughly equal, but from the 4000-5000 to the 5000-6000 Wh/m2/day range the 3rd and 4th 

quantile generally have higher ratios in these ranges compared to 1st and 2nd quantile. 

Chart 5 Boxplots of ratios per sample area per range of Wh/m2/day (part 2) 
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 Graph 1 plots the averaged ratio per range of Wh/m2/day for each quantile and visualizes the 

trend more clearly. The lower quantiles have proportionally more area in the lower ranges of Wh/m2/day 

compared to the higher quantiles (see the red, orange and green lines).  While higher quantiles have 

proportionally more area in higher ranges of Wh/m2/day compared to the lower quantiles (observe the dark 

blue and purple lines). This graph presents the homogenized averages for cluster 0 of the low-rise urban 

development class.  In the section on validation these are tested by applying them to two test areas. 

 

Graph 1 Averaged ratios per Wh/m2/day range plotted against quantiles 
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 [Change quantile count, they don’t match]  

Chart 6 Distribution of ratios across quantiles sample areas 
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4.4 Validation of the ratios 
 

In this section, the averaged ratios of the sampled areas, or training dataset, are tested. They are applied to 

two randomly picked test areas from the same cluster and class, cluster 0 of the low-rise urban development, 

and the results are compared against modelled results. Table 8 present some descriptive statistics on these 

test areas that includes the count of buildings and total, average, maximum, minimum and roof area. In chart 

7 the distribution of roof area in m2 of the sampled areas is compared with those of the test areas separately. 

In the latter graph, the locations of the test areas are likewise depicted. The normal QQ plots indicate that 

the distributions of roof area in m2 of the test areas are similarly lognormal, although the highest and lowest 

values show slightly different deviations to the expected lognormal distribution, compared to the combined 

sampled areas.  

 

Table 8 Descriptive statistics of tested samples 

Sample ID Density Count Total roof area Avg. roof area Min. roof area Max. roof area 

3165 0.00492 147 30,748 209 10 1,658 
4587 0.00459 209 28,696 137 9 1,161 

 

 

Chart 7 Distribution of roof area size in m2 per test sample and their location 
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The test areas have gone through the same solar radiation modelling process and calculation 

of the size in m2 of each portion of roof, receiving a range of Wh/m2/day. The predicted roof portions are 

compared against the measured roof portions per range of Wh/m2/day. The predicted portions are based 

on an application of the averages presented in Graph 1 (page 44) and Table 9 below. Before they are applied, 

the buildings present in the test areas are grouped according to the same quantile ranges applied to the 

training dataset. 

 

Table 9 Average ratios per quantile across the different Wh/m2/day ranges 

Quantile Count 
Avg ratio 
range 1 

Avg ratio 
range 2 

Avg ratio 
range 3 

Avg ratio 
range 4 

Avg ratio 
range 5 

Avg ratio 
range 6 

Avg ratio 
range 7 

1 218 0.0814 0.1124 0.2120 0.2947 0.2509 0.0476 0.0010 
2 216 0.0537 0.0683 0.1830 0.3221 0.3096 0.0613 0.0019 
3 218 0.0371 0.0577 0.1840 0.3063 0.3106 0.1025 0.0017 
4 217 0.0251 0.0373 0.1340 0.3056 0.3856 0.1043 0.0021 

 

For both test areas, table 10 contains, per range, the root-mean-square error (RMSE) and mean 

absolute error (MAE) between the measured and predicted portions in m2 for each test area. As expected, 

the errors increase from the lower to the higher quantiles, but the errors are also larger when the middle 

ranges are concerned - from 2000-3000 Wh/m2/day up to 5000-6000 Wh/m2/day. This increase in the 

prediction error is explained by the boxplots. The latter show an increased variance for these ranges, which 

an average ratio cannot very well account for as can be seen here.  

 

Table 10 RMSE and MAE values for both test areas 

Test area ID: 4587 
Quantile Test Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 
1 RMSE 3.398 3.765 3.491 4.101 4.571 0.958 0.043 
Count: 40 MAE 1.769 2.283 2.450 3.201 3.665 0.760 0.029 
2 RMSE 4.201 6.312 8.671 11.728 11.963 6.189 2.154 
Count: 64 MAE 2.121 3.906 6.823 9.029 10.458 3.795 0.403 
3 RMSE 3.219 7.226 19.482 25.423 26.679 19.875 1.234 
Count: 58 MAE 2.423 5.929 16.564 21.408 22.296 15.612 0.506 
4 RMSE 12.864 27.622 82.694 62.179 126.064 60.686 11.019 
Count: 58 MAE 6.991 15.639 53.411 44.825 78.494 40.155 3.019 

 

Test area ID: 3165 
Quantile Test Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 
1 RMSE 1.643 2.454 3.418 5.145 3.869 1.180 0.063 
Count: 24 MAE 1.110 1.651 2.231 3.987 3.320 0.964 0.034 
2 RMSE 5.971 4.422 8.989 12.434 13.448 6.927 0.134 
Count: 33 MAE 3.881 3.429 6.840 10.877 11.743 4.804 0.120 
3 RMSE 6.518 8.435 22.109 26.557 27.168 19.343 8.333 
Count: 56 MAE 3.049 5.608 17.605 22.390 23.493 14.822 2.094 
4 RMSE 15.663 20.295 83.560 93.982 186.473 99.439 2.507 
Count: 60 MAE 8.199 14.280 58.905 65.954 113.128 66.986 1.103 
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Below are a set of cumulative charts (chart 8), comparing the cumulative measured and 

predicted rooftop areas in m2 across each ratio per quantile for both test areas. It puts the error margins into 

perspective, and the predicted trend is not significantly different from that what is measured, with a few 

exceptions. In test area 3165 the proportion of the lower ranges tends to be underestimated in quantile 1 

and 2. In the chart for quantile 1, ratio 4 (3000-4000Wh/m2/day) this underestimation is the largest but 

amounts to a cumulative difference of roughly 75 meters. In quantile 4 the proportion of 4000-

5000Wh/m2/day (ratio 5) is overestimated resulting in a difference of roughly 2,2000m2, which is the largest 

error in absolute terms.  

 

 

 

 

 

Chart 8 Predicted and measured cumulative roof portion’s area in m2 for test area 3165 
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Below are the charts for test area 4587 (chart 9). Similar to test area 3165, the cumulative 

differences are not very large. The lower ranges tend to be underestimated in quantile 1 and 2, resulting in 

a lower cumulative area until the 5th ratio. In quantile 3 and 4 we see that the 5th ratio is likewise here 

overestimated. 

 

 

Table 11 and table 12, contain the measured and predicted total and average roof area in m2 

across the different ratios for each test area, in absolute terms. In both tables those cells where the prediction 

overestimated the area, are highlighted in light red and where it underestimated the area, are highlighted in 

green. In absolute terms Q3 and Q4 show the largest differences and the predictor is of by several hundred 

up to more than a thousand square meters, starting from Ratio 3 to Ratio 6.   

 

 

 

Chart 9 Predicted and measured cumulative roof portion’s area in m2 for test area 4587 



51 
 

Table 11 Absolute differences between measured and predicted values per Wh/m2Day range (test area 
4587) 

 Test ID: 4587 Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 

Q 1 Total measured 102.72 106.72 150.24 215.52 188 24 0.48 
 Avg. measured 2.57 2.67 3.76 5.39 4.7 0.6 0.01 
 Total predicted 64.08 88.50 167.02 232.11 197.65 37.50 0.81 
 Avg. predicted 1.6 2.21 4.18 5.80 4.94 0.94 0.02 

Q 2 Total measured 233.60 318.56 726.24 1,166,90 847,36 224,96 20.00 
 Avg. measured 3.65 4.98 11.35 18.23 13.24 3.52 0.31 
 Total predicted 190.07 241.64 647.34 1,139.33 1,095.35 216.95 6.92 
 Avg. predicted 2.97 3.78 10.11 17.80 17.11 3.39 0.11 

Q 3 Total measured 329.60 422.56 1,663.36 2,618.56 1,965.92 996 23.04 
 Avg. measured 5.68 7.29 28.68 45.15 33.90 17.17 0.40 
 Total predicted 297.83 462.43 1,475.88 2,456.03 2,490.84 822.05 13.98 
 Avg. predicted 5.13 7.97 25.45 42.35 42.95 14.17 0.24 

Q 4 Total measured 797.44 1,036.32 5,321.44 7,141.92 7,256 3,361.28 154.72 
 Avg. measured 13.75 17.87 91.75 123.14 125.10 57.95 2.67 
 Total predicted 628.76 935.20 3,508.55 7,660.82 9,666.93 2,615.91 52.92 
 Avg. predicted 10.84 16.12 60.49 132.08 166.67 45.10 0.91 

 

For the second test area, the overestimated and underestimated ratios are quite similar, 

reflecting the cumulative graphs from before. The higher quantiles are here most affected as well. In 

particular Q4, where Ratio 3 and 6 are underestimated by 1,300m2 and roughly 2,200m2 respectively, and 

Ratio 4 and 5 are overestimated by roughly 1,500m2 and 1,650m2 respectively.  

 

Table 12 Absolute differences between measured and predicted values per Wh/m2Day range (test area 
3165) 

 Test ID: 3165  Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 Ratio 6 Ratio 7 

Q1 Total measured  56.48 62.08 122.88 199.36 71.36 18.08 0.32 
 Avg. measured  2.35 2.59 5.12 8.31 2.97 0.75 0.01 
 Total predicted  43.16 59.61 112.50 156.35 133.13 25.26 0.55 
 Avg. predicted  1.80 2.48 4.69 6.51 5.55 1.05 0.02 

Q2 Total measured  164.64 148.00 426.08 512.80 474.88 164 1.44 
 Avg. measured  4.99 4.48 12.91 15.54 14.39 4.97 0.044 
 Total predicted  101.65 129.22 346.19 609.29 585.77 116.02 3.70 
 Avg. predicted  3.08 3.92 10.49 18.46 17.75 3.52 0.11 

Q3 Total measured  344.64 394.72 1,714.72 2,406.08 1,717.92 933.28 112.00 
 Avg. measured  6.15 7.05 30.62 42.97 30.68 16.67 2.00 
 Total predicted  283.13 439.62 1,403.06 2,334.84 2,367.94 781.49 13.29 
 Avg. predicted  5.06 7.85 25.05 41.70 42.28 13.96 0.24 

Q4 Total measured  750.40 617.12 5,039.84 6,633.76 8,605.92 4,957.12 51.04 
 Avg. measured  12.51 10.29 84 110.56 143.43 82.62 0.85 
 Total predicted  668.54 994.37 3,730.53 8,145.51 10,278.54 2,781.42 56.27 
 Avg. predicted  11.14 16.57 62.18 135.76 171.31 46.36 0.94 
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To conclude this chapter. The stratification process has reduced the within class 

heterogeneity, in terms of roof area density, into relatively homogeneous groups of potential sampling areas. 

A closer examination of the buildings contained in the random sample taken from cluster 0 of the low-rise 

urban development class, has shown that in terms of roof area in m2, they all have a lognormal distribution. 

This means that besides density, it can be expected that the sampling areas themselves have a similar 

diversity of buildings in terms of roof area. However, the clear-sky global solar radiation modelling results, 

indicate that this stratification cannot completely account for the heterogeneity of the roof structures and 

immediate surroundings, and the effect they have on the rooftop solar energy potential. This was first shown 

by the spread of the ratios presented in the boxplots in chart 4 and 5 (page 43 and 44). These indicated that 

there is a high variance which, when quantized based on roof area remains.  

When the ratios per rooftop part of the sampled areas are averaged across quantiles (Graph 

1, page 45), a trend emerges in which larger buildings have a higher potential in terms of solar energy 

compared to smaller buildings. In the validation section this trend is tested, but the application of the 

averaged ratios in the two test areas result some significant RMSE and MAE values, particularly in those 

ranges that have a high variance in their contributions to the total roof area (3000-4000, 4000-5000 and 

5000-6000 Wh/m2/day). When comparing the differences in absolute terms, the cumulative charts highlight 

where the main differences are, but overall the predicted curve does not deviate to much from what is 

measured. Examining the differences between the ratio’s themselves the differences become more 

pronounced, especially for the 3000-4000 and 4000-5000Wh/m2/day range, where the predicted 

contribution to the total area can be off up to 2.2km2.  
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5. DISCUSSION 
 

 

5.1 Data suitability 
 

The main data inputs used are a DSM, 2D building footprints that represent the roof outlines, urban 

development and land-use polygons. The high-resolution DSM is suitable in modelling roof structures and 

neighboring objects. As input in the solar radiation modelling, it can provide detailed results of the impact of 

both the roof structure and neighboring objects on modelled clear-sky global solar irradiation. While objects 

smaller than 40 by 40 centimeters cannot be evaluated, their impact is likely limited on the solar energy 

potential of a roof. The DSM is a source of error due to the way it is recorded and processed: not all values 

are recorded perpendicular to the ground, meaning that some height values represent vertical surfaces. This 

is unavoidable but will introduce a small error as some pixels will have been reclassified and added to roof 

portions which are facades. The high-resolution DSM has an impact on the processing time and storage. It 

had as a result that the methodology could only be run for a small part of the total potential estimation – a 

single cluster of one class. The DSM could be resampled to a lower-resolution, which would not only reduce 

the processing time and required storage space, but would also reduce the accuracy of the model.  

 The dataset with building footprints, is the closest approximated data available on roof area 

in Denmark. However, since they represent building footprints, they are not in all cases synonymous with 

rooftops, thus introducing a slight error that has not been quantified in this thesis. Another method would 

be to determine roof area through image classification algorithms, but this approach was outside of the scope 

of this thesis to include. Besides approximating roof areas, the timeliness that the dataset is constructed 

compared to the DSM, means that there are possible discrepancies between the two. It may have been the 

case that some of the outliers found by calculating the ratios across the modelled sample areas were 

discrepancies between the DSM and the footprints but this was not assessed. 

 The urban development and land-use polygons offer a more accurate and diversified 

classification of the stock of buildings in Denmark, compared to CORINE. A more accurate classification could 

be achieved if it was possible to link each building to a specific type of owner or use. This information exists 

in a national Bygnings-og Boligregistret (BBR)33. This data consists of geolocated point data that contain 

extensive information on most buildings of Denmark. Only parts of the footprint dataset is linked to the BBR, 

not all available polygons. Perhaps in the future they will become more closely coupled, which will allow for 

an extremely accurate classification34. 

 

5.2 On the performance of the sampling strategy 
 

A sample based approach was necessary due to practical limitations in terms of time, storage capacity and 

processing power. The aim of the sampling strategy was to operationalize the assumption applied in this 

                                                           
33 Bygnings-og Boligregistret(BBR) webpage: http://bbr.dk/ 
34 The building use types in the BBR are even more extensive than the classes used here, see for example: 
http://bbr.dk/byg-anvendelse/0/30. 
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thesis, which was introduced in the introduction: “Buildings of a comparable size and in a like context, will 

on average receive similar amounts of solar radiation in Wh/m2/day on similar proportions of rooftop area.” 

It is based on the assumption applied by Lehmann and Peters (2003) and Izquierdo (2008) who rely on the 

relationship between population and/or building density and (available) rooftop area.  

 The way in which this assumption is put into practice reduced the heterogeneity of the building 

stock. First by stratifying them into classes, then by quadrat sampling and further stratification based on roof 

area density before they were sampled. A closer inspection of the random samples show that the strategy 

can return representative samples of the cluster they were taken from. Both in terms of roof area density, 

through the application of the dependent and/or Wilcoxon signed rank test, and the distribution of roof area 

in each sample area, based on the shared lognormal distribution between the samples.   

 The quadrat sampling with the use of a 2.5km by 2.5km gridded surface, while not directly 

compared to the impact of other sizes, is able to adequately sample the point data and make the solar 

radiation modelling a more manageable process at the same time, considering data handling and processing 

time. However, in low-density areas the modelling process currently spends too much time modelling 

irrelevant space to far away from roof areas that likely have no impact on them. But it allows for a uniform 

way of sampling the point data and from there to create clear stratifications based on density. If the grid cells 

are to large this spatial variation may become too generalized and at the same time increase the processing 

time and storage required. 

 The solar radiation modelling results, show that while in terms of roof area the samples are 

relatively representative of each other, in terms of roof structure this is less the case. To reiterate, no 

information is provided with the building footprints that characterize it’s roof to consider in the sampling 

process. The high variance in the different ratios (see the boxplots in chart 4 and 5, page 43 and 44), show 

that with the applied sampling strategy there is still a degree of heterogeneity with respect to roof structure, 

even when local conditions are similar and buildings are of a comparative size (Chart 6, page 46). This is not 

surprising as it was assumed that the building stock is heterogenous, but indicates that the assumption 

applied by Lehmann and Peters (2003) and Izquierdo (2008) must be implemented with caution. The inclusion 

of an error estimation by Izquierdo (2008) is one way of providing insight into the degree of over or under 

estimation that can result from the application of this assumption. Here a validation method is included to 

likewise provide an insight into the quality of the solar energy potential estimation. 

 The high variance is a direct result of the effect that different orientations, slopes and height 

of a roof and neighboring objects can have on a roof’s solar energy potential. However, on average a trend 

can be discerned in the sampled area, which is also quite instinctive: smaller buildings receive on 

proportionally larger areas of their roof lower ranges of clear-sky global solar irradiation, compared to larger 

buildings. While larger buildings receive on proportionally larger areas of their roof higher ranges of clear-

sky global solar irradiation, compared to smaller buildings. This trend was visualized in graph 1 on page 45. 

 Regarding validation, the impact of this unaccounted-for heterogeneity became clearer. As 

the variance increases, the averaged ratios per quantile are not able to fully account for the heterogeneity 

of the different roof structures and end up underestimating and overestimating the size of the roof portions 

and consequently the solar energy potential of a rooftop. The prediction errors also increase when larger 

buildings are concerned as shown by the RMSE and MAE values in table 10 (page 48). However, these are 

only the results of a single cluster from a single class and it will have to be tested on other stratums for the 

results to be conclusive.  
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 If these early results are seen in aggregated terms, depicted by the cumulative charts shown 

on page x, the predicted values do not deviate too much from the measured values. The aim of the thesis 

was not to provide a dataset that would allow for a per building assessment of its own solar energy potential 

(like the Sunmapper project), but rather to do so at aggregated levels for renewable energy planning 

purposes. From this perspective, these results look promising and with the included validation puts the 

estimation into perspective as to what it may overestimate and underestimate at these aggregated levels. 

 In the end, data that includes information on relevant variables such roof area, slope, 

orientation, height and neighboring objects are crucial to provide a proper estimation of the solar energy 

potential of rooftops. Without such data available or without an attempt at approximating these variables 

and their impact, will result into an estimation that is less accurate and provide less insight for policy makers 

and other third-parties interested in it. In particular, in study areas where it can be assumed that the building 

stock is heterogeneous. However, data availability is dependent on the context a study is conducted in. 

Therefore, in such cases where data is limited approximated data must be used (like CORINE) or an averaged 

coefficient from multiple other studies will have to be applied. While in other contexts such as the one 

presented here, well approximated roof areas are already available for a large-scale potential estimation.  

  

5.3 Reproducibility and consistency through scripting 
 

Diagram 1 (page 27) describes the entire process that is used to estimate the solar energy potential based 

on the applied assumption and validate it. Almost all major steps have been scripted with the use of Python 

2.7 and several additional libraries mentioned in table 5 (page 32). By automating the process, it is easier to 

apply the methodology consistently, adapt it where necessary and keep track of the adaptations and their 

effects. There is a learning curve, but with the use of Python and several extensions it is possible to script 

data preprocessing, data handling, processing and modelling steps which provide considerable gains in 

efficiency, over manually performing each step. For example, by parallelizing the horizon calculations and 

solar radiation modelling, processing times were reduced by a factor of 3 and more gains are likely to be had 

in data handling.  
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6. CONCLUSION 
 

 

The aim of this thesis was to develop a rooftop solar energy potential estimation for the country of Denmark 

– particularly a dataset containing individual buildings attribute data on rooftop area in m2, estimated to 

receive a range of solar irradiation in watt hours per square meter per day (Wh/m2/day). Due to practical 

limitations, particularly time, this aim was not completely achieved and focus shifted to providing a validation 

of early results instead. This proved fruitful in gaining a better understanding of the applied methodology 

and how it performs.  

 Conclusions with regards to the state of GIS based potential estimation for solar conversion 

technologies can be found in the section ‘Concluding the literature review’ (section: xxx page x). To reiterate, 

the methodologies vary widely based on data availability, data quality, size and context of the study area, 

and practical limitations such as: time, storage capacity and hardware. What can be highlighted is that many 

studies lack the inclusion of a validation of the estimation results. This is often due to a lack of available data 

to do so. In such cases it is recommended to provide an estimation of the potential error and a method to do 

so is provided in this thesis. Arguably, without ground truth data it will put any estimation into question, but 

if such data is not available, the second-best option is to approximate this error. This will help users better 

understand the potential estimations, sources of error and the impact that they have on the results.  

 This thesis used freely available data which were limited in the information they provide on 

the object under study: the building rooftops and their solar energy potential. With the known variables of 

location and building footprint size, which was used as an approximation of the size of the rooftop, it was 

possible to make an estimation of the solar energy potential and estimate the prediction errors. In the 

process, it became clear that these variables are not able to fully account for the heterogeneity of the existing 

roof structures found in the study area. Such variables as: slope, orientation and height of a roof are besides 

its location and size crucial in estimating a solar energy potential. If such variables can be considered in a 

sampling approach, this will improve both the representativeness of sampled areas and the accuracy of the 

potential estimation.  

 Data limitations are unavoidable realities in all potential estimations also in the field of 

renewable energy. However, if it is possible to provide an understanding of the impact of these limitations 

the results can still be valuable for energy planning and policy making. Besides data, there are limitations 

based on time and available resources and an estimation is always a consideration between the depth and 

detail of the applied method and the accuracy of the results. The more depth and detailed the methodology 

the higher the accuracy of the result but the more time it will take to perform with an added increase in use 

of resources. If a balance must be struck, then it can be concluded that sampling is still a sound methodology 

in estimating the geographical potential of rooftop solar conversion technologies on a large scale.  
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