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Titel: En Intelligent Model til Forudsigelse af Energiforbrug for Elbiler ved brug af Big-Data

Elbiler er en storre og storre del af de biler, der kerer rundt pa vejene. Et problem med elbiler
er, at de indeholder en begraenset meengde strom samt at det tager tid at lade dem op. I dette
projekt arbejder vi med en problemstilling, der omhandler at komme med palidelige estimater
pa energiforbrug for en fremtidig tur for elbiler.

Vi anvender et stort dataseet fra et eksisterende data warehouse, der indeholder historiske
observationer, som er map matched til et kort over Danmark. Desuden indeholder dataseettet
informationer omkring vejr og oplysninger om de enkelte veje.

Som tilfgjelse til data warehouset har vi konstrueret en generel metode til at kombinere et kort
med hejdedata. Vi har desuden analyseret i hvilket omfang hejdeforskellen og andre faktorer
pavirker energiforbruget. Udover hejdeinformation har vi tilfejet og analyseret information
omkring rundkersler, zoner, trafiklys og retningsskift pd en tur. Baseret pa vores analyse
har vi fundet frem til hvilke faktorer, der har en pavirkning, og anvendt disse i vores videre
arbejde. Vi anvender ikke den sande tid og hastighed i vores model, fordi disse ikke kendes
for fremtidige ture. I stedet anvender vi hastighedsgraensen og et estimat af tiden pa baggrund
af disse.

Vi har udarbejdet tre forskellige modeller: Lineaer regression (LR), Neural Network (NN)
og et neural network, der er kombineret med historiske observationer (NN-observationer).
Kvaliteten af disse modeller er evalueret i forhold til tre baselines, der bygger pa at
anvende det gennemsnitlige energiforbrug eller at anvende det energiforbrug, der opgives af
bilproducenterne. Desuden har vi vurderet hvilke features, som har sterst betydning ved brug
af LR med en L1 regularization og NN, hvor vi har lavet tests med forskellige kombinationer
af features. Vi har evalueret vores modeller pd et testsaet, hvor de faktiske energiforbrug er
kendt. De to modeller LR og NN er betydeligt bedre end baseline metoderne. Dog bliver
vores estimater mere pdlidelige ved at anvende de historiske observationer i modellen NN-
observations.

Vores eksperimenter viser at bade trafiklys, rundkersler og det implementerede hejdekort
forbedrer kvaliteten af vores energiforbrugsestimater. Desuden viser det sig, at den sande
hastighed og tid forbedrer vores estimater. Sa ved at lave en hastighedsmodel, der er mere
preecis end hastighedsgraensen, kan vi formentligt ege kvaliteten af vores resultater.

Da vi har valgt at komme med estimater pd segmenter og derefter regne det samlede
energiforbrug for ture bagefter, kan vores arbejde udvides, sa det kan bruges i forbindelse
med at foresla de mest energieffektive router.
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Abstract:

This report considers the problem of pre-
dicting a trustworthy energy consump-
tion for a future trip. To this end, we have
access to a data warehouse that contains
historical observations about trips that are
map-matched to a road network. We con-
struct a general method of combining a
road network with elevation data. The
elevation information and other factors
which impact the energy consumption are
analyzed. From the analysis, a feature
set that describes energy consumption is
constructed. This feature set does not in-
clude information which is not available
for future trips, such as the exact speed
and time. We construct three models,
Linear Regression (LR), Neural Network
(NN), and a Neural Network that is com-
bined with historical observations (NN-
observations). We evaluate the quality
of the feature set using the LR and NN.
In order to determine the performance of
these three models, we compare them to
three baselines. The LR and NN mod-
els outperform the baselines by a slight
margin. However, we find that the in-
cluding the historical observations in the
NN-observation model increases the per-
formance significantly.
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Introduction

Climate change is a topic for a vast number of discussions; this has resulted in many advances
in sustainable development. One of these developments are Electric Vehicles (EVs), which
has the potential of zero emission transportation. Every year the number of EVs that are sold
increases, in Fig. 1.1 we show the trend. From this graph, it is evident that EVs are gaining
tracking in the car market. An Electric Vehicle (EV) has both benefits and drawbacks when
compared to a Conventional Vehicle (CV). The drawbacks are a limited range, and the time it
takes to recharge an EV. As a result, people experience “range anxiety”, i.e. a fear of depleting
the battery on a trip. [Franke et al., 2012] finds that a key factor in easing range anxiety is the
trustworthiness of a range estimation system.
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Figure 1.1: The number of EVs sold per year, for different regions of the world [U.S. Department
of Energy, 2016].

The objective of this report is to present a method that can accurately predict an energy
consumption for any route from A to B. To this end; we have access to a data warehouse which
contains information from EVs. We use this dataset to train three different models, that predicts
energy consumptions.

1.1 Problem Description

We want to predict the energy consumption for a route from A to B. One crude way to predict
the energy consumption is using the length of the route combined with energy consumption




which is specified by the car manufacturer.

A more elaborate method of predicting energy consumption is by using historical observations
on a route. An average energy consumption for a route can be found using these observations.
However, this approach requires observations for all roads. There are, however, many factors
that affect energy consumption. In [Krogh et al., 2015] some of these factors are studied, they
find weather conditions, and seasons affect the energy consumption.

Based on our understanding of the subject and the results from [Krogh et al., 2015] we have
established the following hypotheses about the factors that have an impact on the energy
consumption.

1. A higher speed will result in a higher energy consumption.

2. A higher acceleration will result in a higher positive energy consumption, and
deceleration will result in a negative energy consumption.

3. A lower temperature will cause the driver to use the heating system causing a higher
energy consumption.

4. Different drivers have a different pattern, causing different energy consumption.

5. The time of day has an impact on the energy consumption due to various congestion.

6. The slope of a road has an effect on energy consumption.

We will confirm or invalidate, each of these hypotheses to determine whether or not to use
them in our energy consumption model.

1.2 Initiating Problem

The initiating problem for the project is the following;:

Initiating Problem

Based on a real-world dataset collected from EVs containing GPS and CAN bus data,
which provides information about speed, location, and energy consumption, is it possible to
accurately predict an energy consumption for any arbitrary trip from point A to B given
criteria such as weather information and time of day, using machine intelligence techniques

In Chapter 2 related work in the research field is explored. Chapter 3 gives an overview of
the available data. In Chapter 4 we show how additional information is included to the data
warehouse Chapter 5 provides an in-depth data analysis, in which hypothesis about energy
consumptions are confirmed and invalidated. Based on the data analysis we form a problem
statement. We explain the machine learning methods we use in Chapter 6 and show the
construction of features. Chapter 7 describes our experiments, the setup, and compare three
baselines with our methods. In Chapter 8 we conclude our work.



Related Work

Predicting energy consumptions for EVs is a novel area. There has been some research within
the area, a common factor for the majority of articles is the goal to alleviate the sense of
range anxiety. In [Zheng et al., 2016] a hybrid machine learning model is explored. The hybrid
model composes of two elements, Self-Organizing Maps and Regression Trees (SOM-RT). They
construct a feature vector that describes an entire trip, including variables such as duration,
length, and information about the distribution of accelerations, speeds, and other sensory data.
The dataset they use in their works consists of only 421 trips. The 421 trips are split into 5000
sub-trips for training and 500 for testing. Splitting the trips into sub-trips could create uniform
trips which in turns means their training and test sets and synthetic. They assume that sensory
data is available for future trips. This assumption means that the feature vector is inherently
flawed in a real world setting. These sensory data give an indication the driving style for a
given trip. However, the information is not available for the prediction of new trips.

In [Yu et al., 2012] a method for identifying the driving pattern is developed. This method
uses static information, the speed-limit and the elevation for segments. This is useful because
it can be generalized for an entire road network. In this approach, they cluster a trip into both
multiple speed zones and hilly zones. The speed zones they use are based on the speed limits,
and the hilly zones are identified by the change in elevation throughout a trip. These clusters
are synthesized into a pattern that described the speed and elevation changes for a given trip.
Using the driving pattern the energy consumption is predicted using kinetic equations. The
prediction is accurate; however, it is only evaluated on a single trip.

In [De Cauwer et al., 2017] they work with 2 sets of data. The first data set consists of 3 EVs
that are used as taxis, which are driven in Brussels Capital Region. These taxis are constantly
driven by a set of different drivers. The other set of data has been collected from 30 EVs during
a period of 1 year, in Belgium. They link only a subset of this data to the road network, altitude
information. The subset consists of 2 EV taxis and 3 EVs of the 30 from the other data set.
In their work, they consider how to predict an energy consumption for segments. Using a
neural network, they predict two outputs, which describes the speed profile of a segment at a
given time. They use speed profile, and altitude information, and the temperature in a linear
regression model. In the final step, they aggregate the energy consumption for each segment
of a trip into a total energy consumption for the trip. In the paper, they compare the method to
an average consumption for all trips. For the data set with taxis, their method performs best,
while average energy consumption is best for the other set. Lastly, instead of estimating the
speed profile, they give the observed values to their linear regression model. With the observed
speed profile, the linear model outperforms the average energy consumption.







Preliminaries

In this chapter we describe the road network, and the terminology. Additionally, we provide
a description of our data-warehouse including how the trips are stored. We also list and give
concise information of the data source which we have included. How the additional data
sources are included and used is detailed in Chapter 4.

3.1 Road Network

In this section we describe the road network notation, and terminology used in this report.
In our road network we have a set of segments 5. Each s € § is equivalent to an edge from
graph notation. We say that a sequence of segments is a route, the definition route is given in
Definition 3.1.1.

Definition 3.1.1. A route mustalways contain atleast one segment, and s;, s;;1 must be adjacent.
A route is given as sequence of segments:

route; = (1,52, ...,5n)

In our data-warehouse we have a notion of trips, a trip follows a route. Information has been
recorded for several trips and is stored in our data-warehouse. We introduce the notation of
t, (i) pairs, where t specifies a specific trip, and (i) denotes the ith segment of the trip.

3.2 Data-Warehouse

A large Extract Transform Load process foregoes our data-warehouse, in this process Global
Positioning System (GPS) data is map matched to a map from Open Street Map (OSM). In
addition to map matching, data fusion of GPS data and Controller Area Network bus (CAN
bus) data is performed. In Fig. 3.1 we show an overview of the data fusion. The product of
the data fusion of GPS and CAN bus will be referred to as observations. These observations
are then map matched and formed into trips, as shown in Fig. 3.1. These trips are stored as
t(i) pairs which have a reference to a set of observations. From these observations an energy
consumption is calculated which is specified in kWh.

In addition to the observations being map matched and formed into trips and the trips have
also been enriched with information from other sources. In the paragraphs below, we explain
which information has been added to observations, and trips in the data-warehouse.




| GPSdata \
1 { Data Fusion F Observations
| CAN /

bus data

Data Fusion

Open . . 3
Street Map —{ Map Matching F Trips :

Map Matching

Figure 3.1: Important data components, and their relationship.

Weather Data The weather data is recorded hourly from 71 different weather stations across
Denmark. Each t(i) pair is linked to a weather information from the closest weather station.
This data includes information about wind speed and direction, air temperature, weather
classes (e.g. dry, wet, etc.), the data is collected from [Oceanic and Administration, 2017].

Open Street Map OSM is used for the road network in the data-warehouse, the map is from
2014-01-01. Each segment has information about the category (motorway, primary, etc.), speed-
limit (this information is sparse), length, and direction (either forward or both). OSM contains
more information which has not been included in the data-warehouse.

Regions The data-warehouse has information about the regions of Denmark, there are five
regions, 99 municipalities, and 592 zip codes. While this information is in the data warehouse,
it is not directly linked to each t(i) pair.

Electric Vehicle Data The foundation of our dataset is the EV data which will be the basis for
our predictions. All data from this dataset was collected by [Clever, 2017], and the data was
collected in the period from 2012-01 to 2014-06. We omit data from the first three months as
it has calibration issues as shown in [Andersen et al., 2014a]. This calibration issue means we
consider data from the period of 2012-04 to 2014-06.

In the aforementioned time period 247835 trips were recorded consisting of 199399109
observations. The observations were recorded at a 1Hz frequency. An observation contains



several attributes such as location, direction, speed, time-stamp, State of Charge (SoC), watt
usage since last observation, a list of attributes is found in Chapter 4.

The observations are from three types of cars; Citroén C-Zero, Mitsubishi iMiEV, and Peugeot
iOn. The three cars are near identical; therefore, the data from all the cars are combined in the
dataset [Andersen et al., 2014b]. According to [Peugeot, 2017] the cars have an average energy
consumption of 106zv—n’11. This energy consumption is found based on a test based on the New
European Driving Cycle (NEDC).

3.3 Additional Data Source

In addition to the data from the Data Warehouse described in Section 3.2, we have chosen to
include data from the following data sources, because we assume it will improve our prediction
model:

Supplementary OSM Data In addition to the 2014-01-01 version of OSM in the data-
warehouse we include a newer version 2015-01-01. From this version, we include
information about roundabout and traffic signals. We chose the newer 2015-01-01 version
as it is readily available from previous work.

Zone Data [Styrelsen for Dataforsyning og Effektivisering, 2017] provides information about
city zones, rural zones, and vocational zones for Denmark.

Elevation There exists different elevation models for Denmark, we have included a model into
our data warehouse from [Styrelsen for Dataforsyning og Effektivisering, 2017].

The implementation of the three additional data sources is described in Chapter 4.

3.4 Data Distribution

In this section, we show how the data is distributed in the road network. We show all covered
segments, i.e. segments with at least one observation, in Fig. 3.2 the black lines are motorways,
the green lines are primary roads, and the rest are mixed. In this figure, we see that the majority
of the western section of Denmark is missing.



Figure 3.2: Spatial Data Coverage.

We show more concise information in Table 3.1. Where Total segments is the number of segments
for each category, while Segments w. Trips is the number of segments which at least one trip has
passed. Lastly, we show how many ¢(i)pairs there are for each category. It is noteworthy that
the majority of (i) pairs are recorded on tertiary, secondary, residential categories. This is due
to these categories being shorter in general, i.e. one t(i)pair on a motorway could traverse 1km
while a pair on a tertiary road would be less such as 100m. In Table A.1 the average length, the
standard deviation of length for each category is shown. The average length of motorways is
1080m while tertiary, secondary, and, residential averages 155m, 212m, and, 104m respectively.



OSM Category

Total Segments

Segments w. Trips

(i)

residential 288 081 65652 (23%) 2193847 (16.7%)
service 140834 12055 (9%) 205751 (1.6%)
unclassified 130005 39985 (31%) 1381253 (10.5%)
tertiary 56240 39976 (71%) 4297 580 (32.6%)
track 45400 578 (1%) 4742 (0.03%)
unpaved 38734 2041 (5%) 15622 (0.1%)
secondary 28947 22364 (77%) 3104621 (23.6%)
primary 13039 9702 (74%) 1309 449 (10%)
motorway 2213 2121 (96%) 387162 (2.9%)
living_street 1751 316 (18%) 4668 (0.04%)
motorway_link 1727 1423 (83%) 87179 (0.7%)
trunk 878 732 (83%) 148 879 (1.1%)
road 770 21 (3%) 78 (0.0%)
trunk_link 234 156 (66%) 12055 (0.1%)
primary_link 228 144 (63%) 6786 (0.05%)
secondary_link 169 123 (73%) 4869 (0.05%)
tertiary_link 67 48 (72%) 1532 (0.01%)
ferry 54 0 (0%) 0 (0.0%)
Total 749371 197437 (26%) 13166073

Table 3.1: Distribution of Data on the different Road Network categories.






Database

In this chapter, we will show the information which is available and show our contributions
to the data-warehouse. OSM is described such that we can discuss how new attributes
can be derived, and how the elevation model can be included. For the inclusion of the
elevation model, we consider four approaches, two of which we include. By using information
from OSM we derive new attributes, namely direction change, traffic signal information, and
roundabout information. Throughout this chapter, we show diagrams which show what we
have contributed. The green diagrams are our contributions, while the yellow is the information
present in the data warehouse.

4.1 Open Street Map

In this section we will describe the format of OSM, and which information from OSM is already
included in our data-warehouse, and which information we include.

4.1.1 Vector Representation

All the segments in our data warehouse are stored in a data type called geography, which can
represent different spatial objects such as, Points, Polygons, and Linestrings. These objects have
a vector representation as they are connections between points. A Pointis given as a coordinate;
this is the smallest instance we use. Segments are represented as Linestrings, which consists of
two or more points, 380576 (50.8%) of segments consists of two points.

4.1.2 Data-Warehouse Open Street Map Information

In the data-warehouse a map from OSM has been included, in Fig. 4.1 we show the information
that is available, the attributes are described below:

Category Describes the type of segment can be one of the following ferry, living_street,
motorway, motorway_link, primary, primary_link, residential, road, secondary,
secondary_link, service, tertiary, tertiary_link, track, trunk, trunk_link, unclassified,
unpaved.

Direction Signifies which direction a segment can be traversed, can be either Forward or Both.

Segangle The angle of the segment, given by the start and end point of each segment.

Speedlimit Forward The speed limit going forward on a segment, 0 if the limit is unknown.

Speedlimit Backward The speed limit going backward on a segment, 0 if the limit is unknown.

Segmentgeo The spatial representation of a segment.

Streetname The street name of a segment, the street is not always known.

11



Open Street Map

segmentkey : int

category : char

direction : char

segangle : smallint
speedlimit_forward : smallint
speedlimit_backward : smallint
segmentgeo : geography
streetname : text

Figure 4.1: Data-Warehouse OSM information

4.1.3 Additional Open Street Map Information

As mentioned in Section 3.3 OSM contains more information than has been included in the
data-warehouse. In Fig. 4.2 we show that we include information about roundabouts and
traffic signals. This component has a geography, the geography represent either a roundabout
or traffic signal. We use this component to derive new attributes in Section 4.4

4.2 Elevation Data

In this section, we will contribute to the data-warehouse by showing a general method for
combining a given vector map (e.g. OSM), with a raster map. Moreover, we will discuss
approaches for this implementation. We have access to different elevation models from
[Styrelsen for Dataforsyning og Effektivisering, 2017] the different types of models are also
described in the section.

4.2.1 Data-Set

The elevation information for Denmark is from 2015 it is available in different formats. There
are two different models and Laser Scanning (Lidar) data. The two models are Digital Surface
Model (DSM) and Digital Terrain Model (DTM), these models are derived from Lidar data. In
Fig. 4.3 we show the difference between the two models. Using DSM we will get the elevation
of house roof, while DTM has the elevation at ground level. Our goal is to find the elevation
of any given segment. As such we are not interested in the elevation of obstructions such as
houses and trees. Using this criterion we chose between the DTM and Lidar. The DTM has

Open Street Map Extra

roundabout : bool
traffic_signal : bool

geog : geography

Figure 4.2: Data-Warehouse OSM information
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been derived from the Lidar data by professionals, as such we choose to use the DTM instead
of deriving it from the Lidar data ourselves.

4.2.2 Raster Format

The DTM comes in raster format, specifically GeoTIFF. In Fig. 4.4 we show a raster map of
Denmark the squares are called pixels, the values of the pixels are arbitrary altitudes above
sea-level. Pixels, in the figure, without a value are at sea-level. Given a coordinate in Denmark,
we can find the altitude of that coordinate, by finding which pixel that contains the coordinate.
Each pixel represents an area of 40x40cm, and are mutually exclusive, i.e. there is no overlap.

4.2.3 Slope Inclusion

The purpose of the including elevation data is to enhance the map from OSM by finding a slope
for every segment. In this section, we describe four approaches for including the slope.

Approach 1 For all segments in OSM the start and end points will be enriched with an
elevation. Using the elevation, and the distance between the start and end point a slope is
calculated.

Approach 2 Subdivide all segments into sub-segments s.t. no sub-segment is longer than a
given maximum length. We can then enrich start and end points of each sub-segment with
elevation information to calculate a slope.

Approach 3 Using the size of the pixels in the raster, we can construct interpolated points,
using these points we can subdivide segments. In this approach, we utilize all possible elevation
information for each segment.

Approach4 A combination of Approach2 & 3 such that we have a constraint on sub-segments,
where they must be at least some given length. After subdividing the segment, we can check
the slope on the new segments and smooth away nodes if the difference of slope is within some
threshold. An example is shown in Fig. 4.5.

Figure 4.3: The dashed lines signifies the given elevation from a model. In this example the
black line is the ground, while the green lines are houses.

13
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Figure 4.4: An abstract example of a raster map for Denmark
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Figure 4.5: Figure 4.5a show the elevation of all nodes after subdivision. Figure 4.5b shows the
smoothing of nodes, in this example we remove nodes when they do not impact the slope.

We have depicted these four approaches in Fig. 4.6. The smaller nodes signify subdivided
segments, these nodes also include elevation information. There are compromises between the
different approaches, computation time will naturally increase with the number of nodes, while
an increase of nodes will provide a richer notation of inclination between nodes. In addition
to computation time and accuracy, there is also an issue of matching observations to segments.
We will implement and evaluate approach 1 and approach 2 to see if a larger granularity in the
slope results in better prediction.
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Figure 4.6: Four different approaches for including elevation information in nodes.

4.2.4 Approach 1 Implementation

Approach 1 is the minimal solution for combining raster with OSM, as including less
information cause the calculation of slope to be problematic.

With the raster data included the data-warehouse, we construct an SQL query which allows us
to find the elevation at the start point and end point of each segment. In Listing 4.1, a snippet
of our SQL query is shown, in this snippet we show how the elevation of start points is found.
There are some important aspects of this query. Specifically, it makes use of three functions.
The sub-query in Lines 3-4 uses ST_StartPoint which provides the start point, or coordinate of
a given segment. In other words, the subquery contains the start point for all segments. With
this information, the next step is to find which pixel each start point belongs too, and this is
achieved with ST_Intersects in Line 5. Lastly, ST_Value is used to find the elevation value in
the raster, FALSE signifies that pixels with no data are included. There are ten start points and
end points which have no elevation information. These points belong to segments categorized
as ferry, i.e. it does not present as a problem because we omit ferry segments as there are no
observations on these segments as shown in Table 3.1. The same method is used to find the
elevation of end points, using ST_EndPoint as opposed to ST_StartPoint. The full SQL query is
shown in Listing B.1.

15



Listing 4.1: Approach 1 SQL Snippet

1 SELECT segment.segmentkey, ST_Value(rast, segment.startpoint, FALSE)
2 FROM experiments.elevation ele,

3 (SELECT segmentkey, ST_Startpoint(segmentgeo) as startpoint

4 FROM maps.osm_dk_20140101 LIMIT 800000) segment

5 WHERE ST_Intersects(ele.rast, segment.startpoint);

Having found the start and end height of each segment we are interested in finding the slope of
each segment, the length of each segment is given in our data-warehouse. However segments
can consist of multiple points, i.e. a segment can be curved. 49.2% (368795) of segments are
contains multiple points. Because of this large number we chose to find the distance between
the start point and end point of each segment, s.t. we can calculate the slope from this distance.
We show the equation for slope in Eq. (4.1).

end height — start height
distance

slope = (4.1)

4.2.5 Approach 2 Implementation

We will begin by subdividing all the segments in our road network. Knowing that GPS
locations have some error we chose a sub-segment length of 50m, such that we may be able to
map match observations to a sub-segment. If a segment is 130m it will divided into 3 segments
of length 50m, 50m, and 30m. We construct the sub-segments by implementing a function in the
data-warehouse. The function is called split_linestring, it takes two parameters, the length
which segments will be split into, and the segment which is going be subdivided. The function
is shown in Listing B.3.

We run this function on all our segments, s.t. all segments are subdivided. Once the sub-
segments are created, finding the slope is similar to Approach 1, the different being we find the
elevation of start and end points of the sub-segments and then use Eq. (4.1) to find the slope.

Approach 1 Approach 2
segmentkey : int segmentkey : int
start_height : numeric subsegmentid : int
end_height : numeric start_height : numeric
slope : numeric end_height : numeric

slope : numeric
subsegmentgeo : geography

Figure 4.7: Approach 1 & Approach 2 contribution

4.3 Zone Data

Using information from [Erhvervsstyrelsen, 2017] we can include information about City, Rural,
and Cottage Zones. We include this information into our data warehouse, such that we can
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use any difference of energy consumption in the zones for our model. Our assumption is that
you may drive faster in rural zones compared to city zones.

The data consist of one shapefile which includes 4258 polygons where each polygon represents
a zone. In addition to the zone type, the data include municipality of the each zone. We show
a map of these zones in Fig. 4.8 the zones are reported by the municipalities which are why
there are such differences, especially in the Rural Zones.

Figure 4.8: Green: City Zones, Red: Rural Zones, Orange: Cottage Zones

Since the zones do not fully cover Denmark, we consider how we handle segments that are not
in a zone. The segments that are not in a zone will we annotate as an Unknown zone.

Each of the 749 371 segments from OSM are mapped to the zones. 8798 segments are part of
multiple zones, for these cases we chose the zone where the segment overlaps the most. An
example of a segment in multiple zones is seen in Fig. 4.9. The black line is the segment, and
the red area is Rural Zone, and the green area is City Zone, in this case, the segment is mostly
in the Rural Zone, and is annotated as such.
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Figure 4.9: Segment in Multiple Zones

Zone

segmentkey

zone : text

Figure 4.10: Zone Contribution

4.4 Derived Attributes

We derive 4 new attributes from the OSM information and the Zone Data. These attributes are
Direction Change, Traffic Signal, Roundabout, and Speed-limit

4.4.1 Direction Change

The purpose of this attribute is to find how much a driver turns when he goes onto a new
segment. Segments are annotated with a segangle, however this attribute has a shortcoming as
it is the angle between the start and end point. Instead we find the angle as shown in Fig. 4.11,
here we have two segments Segment 1 and Segment 2. In our example, a driver is moving
from Segment 1 to Segment 2, since segments are directed the driver is traversing Segment
1 backward thus the angle we need is between point 2 and 1 on Segment 1 which is 334°.
The angle we need on Segment 2 is between 1 and 2 which is 222°. This gives us a direction
change of 332° —222° = 112°. The idea behind this feature is to differentiate between right, and
left turns, as well as going straight across an intersection. We store this attribute as a natural
number, opposed to labeling, with the right, left, and straight s.t. we can capture different
possibilities. Intersections are not always limited to only one right, one straight, and one left
i.e. there can be any number of possibilities.
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= 90°

Figure 4.11: Direction of two segments sharing a connection

The order of which the segments are traversed is important, as we need to find the correct
angle as shown in Fig. 4.11. There are four different cases which are considered.

1. Forward to Forward.

2. Forward to Backward.
3. Backward to Forward.
4. Backward to Backward.

Our example in Fig. 4.11, where a driver moves from Segment 1 to Segment 2 is case 3 Backward
to Forward. With this knowledge, we can construct a function which calculates the direction
change We make use of the following functions, in our data warehouse:

e ST_Azimuth(geometry pl, geometry p2): returns the north based azimuth in radians
e ST _PointN(geometry linestringl, integer n): returns the nth point of a geometry
e ST_NPoints(geometry gl): returns number of points in the geometry

Using these function, and given two segments and the direction they have been traversed,
i.e. forward or backward we can find the direction change between the segments as shown in
Algorithm 1.

In Listing B.5 we show the our SQL Statement that constructs the feature. An end result is a
number between 0-359, where 0 correlates to forward, 90 to the right, 180 to backward, 270 to
the left.

For this attribute we must also consider that it is sparse, i.e. at the end of a trip we do not travel
to a new segment thus there cannot be a change of direction, this case we say that the direction
change is 0.

4.4.2 Traffic Signal

From OSM we have information about the location of traffic signals. This information is not
included in the data warehouse, but we include it. The task here is to find the locations of
traffic signals and finding which segments they affect. Since the traffic signals are represented
as points, i.e. they are not directly annotated on segments, we must find which traffic signals
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Algorithm 1 (s1, 52)
input:
s1: From Segment, d1: From Direction
s2: To Segment, d2: To Direction
output: Adirection
1: if d1is forward then
2 points « ST_NPoints(s1)
3 from_dir « ST_Azimuth(ST_PointN(s1, points — 1), ST_PointN((ST_PointN(s1, points))
4: else if d1 is backward then
5: from_dir « ST_Azimuth(ST_PointN(s1,2), ST_PointN((ST_PointN(s1, 1))
6
7
8
9

: if d2 is forward then
: to_dir « ST_Azimuth(ST_PointN(s2,1), ST_PointN((ST_PointN(s2,2))
. else if d2 is backward then

points < ST_NPoints(s2)

10: to_dir < ST_Azimuth(ST_PointN(s2, points), ST_PointN((ST_PointN(s2, points — 1))
return fo_dir — from_dir

belong to which segments. Furthermore, we must consider how we annotate this, instead of
simply annotating that a segment has a traffic signal, we can annotate at which end of the
segment the traffic signal is, or possible both ends.

To annotate the segments, we must first find which segments are in connection with a traffic
signal. To do this, we downloaded a 2015-01-01 map from OSM, from this we extracted the
locations of traffic signals. With this information, we find which segments within 1m of a traffic
signal. We chose a distance of 1m as the threshold because the traffic signals are not placed
exactly on top of a segment, but close.

With this list of segments that meets our distance criteria, the next step is to find whether the
traffic signal is near the start, end, or both of for each segment. We find that 150112 trips
(60.57%) traverse one or more segments that is affect by a traffic signal.

4.4.3 Roundabout

There are many roundabouts in Denmark, 110907 trips (44.75%) traverse one or more
roundabouts, we expect that roundabouts can have a large impact on the energy consumption.
Because many trips pass a roundabout, we find it important to find how large an impact they
have on energy consumption. Our approach to including this feature is by denoting segments
with two attributes, one that denotes a roundabout at the start of the segment, i.e. when a trip
leaves a roundabout, and one shows at the end of a segment. This approach will be represented
by a Boolean value, as the distance as a continuous value is not guaranteed to be the distance
to a roundabout that directly affects traffic on the given segment.

Roundabouts are annotated in OSM; however, this information has been omitted in our data
warehouse so we must include it ourselves. We say that a segment is connected to a roundabout
if the start or end point of a given segment is within 1 meters of the segment.
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444 Speed-limit

The speed-limit is sparsely annotated in OSM. There are 749371 segments in OSM and 693500
segment does not include the speed-limit. However OSM provides rules for imputing speed-
limit in Denmark [Map, 2017]. For all segments, without speed-limit, we use the SpeedLimit
function in Algorithm 2. This approach is naive because there are other speed limits in Denmark
than those used in the algorithm. However the majority of segments follow these common
speed-limits.

Algorithm 2 Speed-limit function

function SpeepLimiT(zone, category)
if category = motorway then return 130
else if zone = city then return 50
else return 80

In Fig. 4.12 we show the how the derived attributes in stored in the data-warehouse. Here
id : bigint is a reference to a specific t(i) pair.

Direction Change Speedlimit
id : bigint segmentkey
direction_change : int speedlimit : int
Traffic Signal Roundabout
id : bigint id : bigint
traffic_signal_start : bool roundabout_start : bool
traffic_signal_end : bool roundabout_end : bool

Figure 4.12: Derived Attributes Contribution

4.5 Overview

In this section, we provide an overview of the data warehouse, and the contributions we have
made. We mark our contributions with green, while the existing information is marked with a
yellow color. The overview is seen in Fig. 4.13.
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Open Street Map

segmentkey : int

Municipalities

category : char

direction : char

segmentang : smallint
speedlimit_forward : smallint
speedlimit_backward : smallint
segmentgeo : geography

name : text

municipalitykey : smallint

code : smallint
geog : geography
name : text
region_code
region_name : text

Weather Measures

weatherkey : int

air_temperature : smallint

class : char

datekey : int
dew_point_temperture : smallint
hour : smallint
liquid_perception_lhr: smallint
liquid_perception_3hr: smallint
liquid_perception_6hr: smallint
sea_level_pressure : smallint
snow_depth_cm : smallint
visibility_meter : int
wind_direction : smallint
wind_speed_ms

Trips
id : bigint
trip_id : int

segmentno : int
segmentkey : int
datekey : int
weatherkey : int

Approach 1

segmentkey : int

start_height : numeric
end_height : numeric
slope : numeric

Approach 2

segmentkey : int
subsegmentkey : int

start_height : numeric
end_height : numeric

slope : numeric
subsegmentgeo : geography

\4

direction : char
timekey : smallint
gps_points : smallint
speed : real
meters_driven : real
meters_segment : real
seconds : real
ev_kwh : real
gpsdata_ids : bigint[]

f

Direction Change

id : bigint

direction_change : int

iy

Observations
id : bigint
trip_id : int

datekey : int

timekey : smallint
course : smallint
temperature : smallint
ev_charge : smallint
ev_status : smallint
speed : real
euclidian_speed : real
seclastpos : real
meterlastpost : real
km_counter : real
acceleration : real
ev_voltage : real
ev_watt : real
delta_speed : real

jerk : real

weatherkey : bigint
ev_mode : char(1)
timestamp : timestamp
coordinate : geography

Speedlimit

segmentkey

speedlimit : int

Roundabout

id : bigint

roundabout_start : bool
roundabout_end : bool

Traffic Signal

id : bigint

traffic_signal_start : bool
traffic_signal_end : bool

Zone

segmentkey

zone : text

Figure 4.13: An overview of the attributes in the data-warehouse, and our contributions. Our
contributions are green.
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Data Analysis

In this chapter we are going to test our hypotheses from Section 1.1, this will give us an insight
of the factors which impact the energy consumption. We begin our data analysis by finding
the mean energy consumption for our data, which is y = 165.3?’—”? and the standard deviation
iso = 327%1. The p is roughly 1.5 times higher than the energy consumption specified by
[Peugeot, 2017], which is 106‘,2‘/—}1?.

5.1 Speed

Hypothesis 1 A higher speed will result in a higher energy consumption.

We know from physics that kinetic energy is given as E = 3mv?, where the velocity v has an
exponent. Therefore we expect to see an exponential increase in energy consumption as the
speed increases. In Fig. 5.1 we show the relationship between speed and energy consumption.
Contrary to our hypothesis, the energy consumption does not increase exponentially. The
graph shows that the average energy consumption from 20 %1 and above near stable. The
standard deviation is first stable from around 80 ’;1—”: When the speed is below 60 %' the
standard deviation is high. This high standard deviation in energy consumption is caused by
drivers accelerating until they reach the speed limit.
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Figure 5.1
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5.2 Acceleration

Hypothesis 2 A higher acceleration will result in a higher positive energy consumption, and
deceleration will result in a negative energy consumption.

We know from physics that a higher acceleration requires more energy, Newton’s second law
dictates that F = ma, where F is Newton and m is the mass, and a is the acceleration. Energy
in Joule is then given by | = N'meters. From this, we expect that the relationship between
acceleration and energy is linear.

In Fig. 5.2 we show how the energy relates with acceleration. Each point in the plot is an
observation. It is clear that deceleration provides energy, while acceleration consumes energy.
Deceleration below —1 appears to be a near constant SOOOVS—V. We see amultimodal distribution of
observations, with peaks around —0.8, 0, and 0.8 acceleration, which correlates to decelerating,
stopping, and acceleration.

We argue that the relationship is between energy and acceleration is linear for some range
of acceleration. This relationship could be captured by having a different linear function
for various ranges of acceleration. In Eq. (5.1) we show function f(a) which takes an input
acceleration a, a will fall into one of the three ranges. Depending on the range an appropriate
linear function is used. We determine that our hypothesis for acceleration hold.

fi(a) if-4<a<0
fl@)=1fala) if0<a<1 =Energy 6.1)
faa) ifl<a<4

5.3 Temperature

Hypothesis 3 A lower temperature will cause the driver to use the heating system causing a
higher energy consumption.
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Figure 5.2: This graph shows an average energy consumption for a given acceleration.
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Our hypothesis is that a EV uses more energy when the temperature is low because of heating
system in the car. We test this hypothesis by showing the relationship between weather data
and observations. The result is seen in Fig. 5.3. The figure shows the average energy use for
each temperature.

The graph shows that the temperature has a high impact on the energy consumption. The
consumption is almost twice as high at -10 C° compared to 20 C°. We determine that our
hypothesis hold, despite being unable to determine the direct cause of the energy consumption
increase.

54 Speed & Temperature

We have found that speed and temperature has a significant impact on the energy consumption.
In this section, we consider the energy consumption relationship between both speed and
temperature. We begin by showing the relationship between speed and energy consumption
at the four different seasons of the year, in Fig. 5.4. The graph shows the average energy
consumption for given speed. Energy consumptions below 2042 and above 1005 are
fluctuating and are as a result not shown. In the graph, we see that the different between
the seasons are significant. Fall and Spring are similar while Winter and Summer are different
by a factor of near 2.

In Fig. 5.5, we the average energy consumption for a given speed and temperature. It appears
that speed and temperature has a near independent effect on energy consumption.

5.5 Driving Style

Hypothesis 4 Different drivers have different pattern, causing different energy consumption.

It is known that people drive differently, some drive aggressively accelerating fast, while others
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Figure 5.3: Average Energy consumption for each temperature
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Figure 5.4: Average Energy consumption for each season over speed
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are opposite and some are in between. We want to show the impact of these factors on the
energy consumption. Our approach to answering this question is by looking at routes with
a large set of trips. Given these trips and the observations for them, we will construct a
combination of different attributes can be used to cluster trips. The target of this analysis is to
find if reasonable clusters can be created from our data. If clusters can be created we want to
find if how much they impact energy consumption.

For this analysis, we select two routes with a large number of trips from our data-set. Name,
coordinates, length, a total number of trips and category is shown in Table 5.1.

Our analysis is based on techniques from [Constantinescu et al., 2010], in which the goal is
to group drivers into groups based on how aggressively they drive. Our assumption is that
trips which belong a cluster which is aggressive should have a higher energy consumption
compared to trips that are in a passively driven cluster.

In the paper they use the following parameters, which they derive from their data-set:

e Speed over speed-limit - The percentage (Vi) of time spent above the speed limit where
the vehicle is moving.

e Speed - The average speed (V) and standard deviation (V) for observations where
the vehicle is moving.

o Acceleration - The standard deviation (Asy) for observations where the vehicle is moving.

e Positive acceleration - Average acceleration (A+4g) and standard deviation (A ;) for all
positive accelerations where the vehicle is moving.

e Breaking - Average deceleration (A-4g) and standard deviation (A _y4) for all observations
where the vehicle decreases in speed. The free deceleration, decrease in speed without
breaking is ignored based on a threshold for negative acceleration. Negative acceleration
in this threshold is considered as free deceleration.

e Mechanical work - The sum W for of all positive kinetic energy values required to increase
the vehicle speed.

We have calculated each of the driving parameters as described above. However in our test-
cases, for simplicity we do not use a threshold for free deceleration, assuming all negative
accelerations are stepping on brake.

In [Constantinescu et al., 2010] they conclude there are two extreme clusters based on the
parameters. They use a Hierarchical Cluster Analysis (HCA) with Ward’s method and
Euclidean distance. We attempt to cluster the trips from our two routes, in the same approach.
All parameters are normalized to values between zero and one. The result is shown in Table 5.3
and Table 5.2. In the first cluster from “Odense/Otterup” trips tend to follow the speed-limit,
and drive slower, while trips in the second cluster indicate harder acceleration and heavy

Name From (Lat,Long) To (Lat,Long) Length No. trips Category
Esbjerg/Varde (55.527234, 8.458269)  (55.600499, 8.502106) 8.6km 433 Primary
Odense/Otterup  (55.423181, 10.370683)  (55.504989, 10.394733) 9.6 km 428 Secondary

Table 5.1: Selected trips for clustering
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braking. This results in less energy consumption in the first cluster. In the first cluster from
“Esbjerg/Varde” the speed-limit is mostly respected, and the driven speed is slower, however
there is a higher variation in speed compared to the second cluster.

Overall it appears the most aggressive drivers are in cluster 2 (Odense/Otterup) which
also result in higher energy consumption. Cluster 1 (Esbjerg/Varde) has a higher energy
consumption, despite having the appearance of being the least aggressive cluster based on
softer braking and accelerations. This points towards the relation aggressive and passive
clusters may not impact our energy consumption based on our driving parameters. We assume
that this lack of impact may also be caused by other factors such as weather, traffic lights, etc.

We normalized the energy consumption in relation to the season. As seen in Section 5.3 there
is almost a constant gap between the seasons. The average energy consumption is therefore
calculated for each season. The average energy consumption for each season is used to calculate
a factor to convert the energy consumption to the winter season. These factors are:

e Fall: 1.28
e Spring: 1.31
e Summer: 1.51

These factors are used to calculate a normalized energy consumption. For the (Esbjerg/Varde)
route this not make a difference, but for the (Odense/Otterup) route there is a swap in the
largest energy consumption. The most aggressive drivers are in cluster 2 (Odense/Otterup)
and cluster 2 (Esbjerg/Varde), opposed to our hypothesis the energy consumption are lower
for these. We conclude that the variation of speed is the best indicator for clustering. However
the effect is near insignificant. Thus our conclusion is clustering on these parameters is not
reasonable.

Parameter Both Cluster 1 Cluster 2

Size 428 336 92

Energy 1.55 kWh (0.41) 1.55 kWh (0.39) 1.56 kWh (0.46)
Energy normalized 1.97 kWh (0.50) 1.98 kWh (0.50) 1.94 kWh (0.50)
Viimit 32.05 % (20.07) 24.53 % (14.16) 59.51 % (13.47)
Vavg 79.20 km/h (7.32) 79.03 km/h (7.47) 79.79 km/h (6.77)
Vsd 17.76 (5.24) 17.79 (5.44) 17.67 (4.48)

Asg 0.74 (0.54) 0.75 (0.59) 0.68 (0.29)

Atavg 0.68 m/s* (0.84) 0.69 m/s* (0.95) 0.64 m/s* (0.14)
Al 0.55 (0.29) 0.55 (0.32) 0.54 (0.16)

A_gvg -0.73 m/s? (0.24) -0.73 m/s? (0.26) -0.70 m/s? (0.16)
A_g 0.79 (0.78) 0.82 (0.84) 0.70 (0.54)

W 17938.60 ] (8124.08) 18093.94 ] (8594.23) 17371.28] (6113.59)

Table 5.2: Odense/Otterup clustering of trips
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Parameter Both Cluster 1 Cluster 2

Size 433 338 95

Energy 1.22 kWh (0.25) 1.23 kWh (0.24) 1.17 kWh 0.26)
Energy normalized 1.56 kWh (0.35) 1.58 kWh (0.36) 1.49 kWh (0.33)
Viimit 28.34 % (19.37) 28.16 % (19.55) 29.01 % (18.78)
Vavg 76.87 km/h (9.56) 76.56 km/h (10.34)  77.96 km/h (5.91)
Vsa 14.98 (5.16) 15.19 (5.52) 14.26 (3.52)

Asd 0.78 (0.51) 0.55 (0.20) 1.60 (0.10)

Atavg 0.59 m/s? (0.12) 0.58 m/s? (0.12) 0.62 m/s? (0.10)
Assd 0.45 (0.15) 0.45 (0.15) 0.48 (0.15)

A_avg -0.70 m/s* (0.25) -0.60 m/s* (0.12) -1.07 m/s? (0.27)
A_sq 1.01 (1.05) 0.51 (0.30) 2.78 (0.76)

4% 15536.28 J (5808.78) 14551.81] (5387.96) 19038.92 ] (5925.28)

Table 5.3: Esbjerg/Varde clustering of trips

5.6 Time

Hypothesis 5 The time of day, has an impact on the energy consumption due to various
congestion.

It is known that during peak hours there are more cars on the road network. Moreover, when
there are many cars on the roads, this affect the speed and acceleration. We will, therefore,
investigate how the energy consumption change during the day based on this assumption
about change in congestion. The result is seen in Fig. 5.6. The graph shows that the energy
consumption varies between 40 (?’—TS) during the day. As seen in Section 5.3 the temperature has
a significant impact on the energy consumption, and therefore the temperature is also included
in the graph.

5.7 Slope

Hypothesis 6 The slope of a road has an affect on energy consumption.

We believe that there is a correlation between the increase in energy consumption and the
increase in slope. In order to test this hypothesis we use our implementation of Approach 1.
In Fig. 5.7 we see a linear correlation. We say that the hypothesis passes, despite the standard
deviation being large.

5.8 Derived Attributes Analysis

In Chapter 4 we derived new attributes that contain information about, direction change, traffic
signals, and roundabouts. In this section we analyze them, such that we can determine their
impact.
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5.8.1 Direction Change

Using this feature, we can find how much impact direction changes has. In Table 5.4 we show
how different angles impact the average energy consumption, which we have labeled straight,
right, left, and back. The table shows the average cost. Compared to the average energy
consumption for all directions, the direction seems to have a large impact on the average
energy consumption. Especially we see that right turns are cheap compared to the average
energy consumption. Based on this we assume it is a useful feature.

5.8.2 Traffic Signals

Trips that are affected by one or more traffic signals has an average energy consumption of
166.74%, opposed to 185.42?/—11’11 for trips that are not affected by traffic signals. This difference is
a significant, in Table 5.5 we show additional information about energy consumption segments

with traffic signals.

5.8.3 Roundabouts

In Table 5.6 we show how the different scenarios affect the energy consumption. Itis interesting
to see how much a roundabout affects the energy consumption, especially driving into and out
of a roundabout effects the energy consumption greatly. As driving into a roundabout reduces
the energy consumption, this is because the driver should decelerate when approaching a
roundabout.

We also find that trips that are affected by one or more roundabouts on average uses 166.50%
opposed 179.31 z‘/—"i’ for trips that are not affected by roundabouts. We conclude that roundabouts
are a good feature for energy consumption as it has a large impact as shown in Table 5.6.

Direction (Range) Average Standard Variance t(i) pairs
(Zv—nil) Dﬁ:iation (zv—n?)
(%)
Right (80° —100°) 156.48 457.84 209.62 307522
Straight (350° — 10°) 161.26 464.03 215.32 3222907
Left (260° —280°) 164.61 561.09 314.82 190707
Back (170° —190°) 387.65 1051.84 1106.36 85397

Table 5.4: Direction Impact

Traffic Signal ~ Average Standard Variance t(i) pairs
(Zv—nf) Deviation (‘,:V—nf)
(12)
Start & End  354.16 455.50 207.48 231488
Start 297.25 284.95 81.19 599451
End 34.71 665.24 442.54 598650

Table 5.5: Traffic Signal Impact
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Roundabout Location Average Standard Variance t(i) pairs

(KV—J;) Deviation (Xv—n’f)
(T2
Start & End 219.27 247.26 61.14 533202
Start 327.40 237.36 56.34 231075
End 29.38 349.77 122.34 230712

Table 5.6: Roundabout Impact

5.9 Problem Statement

Based on our initiating problem in Section 1.2 we have investigated some hypotheses about
our problem, furthermore we have extended our data foundation in Chapter 4 to make a better
prediction of energy consumption. The results from this work are the basis for the updating of
our problem to the following problem statement.

Based on the data analysis we have found attributes that have an influence on the energy
consumption. Is it possible to accurately predict an energy consumption based on these
attributes for any arbitrary trip from point A to B, using machine intelligence techniques.

Furthermore, we have chosen to make some delimitation based on the initial analysis. We will
implement and test the elevation approaches 1 and 2 such that we can determine whether the
more detailed approach adds value to the predictions. The driving style will not be used for
predictions because the current finding does not contribute to a significant difference in energy
consumption.
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Method

The observations in our data are richly structured, i.e. the observations are associated with
segments. This association of the data is taken into consideration for the development of our
models. The objective is to predict an accurate energy consumption, for a new route based on
features and the available historical observations.

The set of observations that are associated with a segment varies in size. Some segments have
many observations, while others have few, or none. This association can be utilized, under the
assumption that associated observations depict the energy consumption more accurately.

Since there are segments without associated observations, we consider how to predict the
energy consumption on these. The energy consumption is given as a numerical value, this
value is know for all #(i) pairs. To predict a numerical value, we consider models from the
machine learning class “Regression”.

In Section 6.1 the notation which is used for the models are presented. Section 6.2 describes our
Linear Regression Model, while Section 6.3 describes our Neural Network approach. These
models are chosen on the premise that we are interested to see if features are independent. If
the features are not independent the Neural Network will perform better. We devise a strategy
to use the association between observations and segments in Section 6.4. The construction of
features is described in Section 6.5

6.1 Model Notation

In this section, we introduce the notation used to describe our models. We have a set of trips
T = {t1,...,t4}, and a set of segments 5. Each trip t € T is a list of segments, t = (s1,...,5x),
where each s € 5. A trip is represented as a list because the sequence of the segments, signifies
the order of which they are traversed.

Forat € T we have a finite number of #(i) pairs where i is i-th segment in the list f i.e. a trip ona
specific segment. For each of these t(i) pairs, there are a set of features. There are static features
which are bound to the segment, such as category, and speed-limit. While other features are
dynamic and depend on the specific (i) pair, such as time, and weather. All features are for a
t(i) pair is given by the set F(t,7). The features are described in Section 6.5. In addition to the
features, the t(i) pairs are also labeled with an energy consumption.

To retrieve all t(i) pairs for a given segment we have function f; : s — #(i) such that
fs(s) = {t(i) | t € T A's € t} which returns a set of ¢(i) pairs that belongs to a given segment. This
set may be () as not all segments are traversed.
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6.2 Linear Regression Model

Linear regression is one of the most commonly used models. In this section, we describe a
multivariate linear regression model, and how the coefficients can be learned.

For our linear model we introduce a feature vector x; for each of our f(i) pairs. The feature
vectors contain the values given by G(t, 7).

T
X = [time temperature ... category speedlimit] (6.1)

For each feature vector x;, we know the corresponding energy consumption e;. The vector of
all energy consumptions are represented as e. The function for linear multivariate regression is
then given by f(x;) = wo + }.; wx;;. In this function the coefficients we will learn are wy, . .., wy,.
wo stands out, and this is the intercept. To generalize the function, it is common to introduce
an attribute x;p for all examples which are always equal 1[Russell et al., 1995] this allows us to
define our function as the dot product of w and x;

f(xj) = Z WiXj; = W * Xj (6.2)

Given a vector of weights, we are interested the minimizing the loss. The loss is a measure
of how much our prediction f(xj) deviates from the actual result ¢;. A commonly used loss
function is Mean Squared Error (MSE).

1 2
MSE = — Zf(ej —w-x)) (6.3)
=

We show the dot product w-xj, to emphasize that the weights remain the same for each example
xj when we evaluate the loss. ¢; is the observed energy consumption for the features xj. Our
objective is to find the weights w* that minimizes the loss function.

, 1y 2
w :arg‘f’nmﬁjzl‘(ej—w-xi) (6.4)

There are two common approaches for finding w*, namely normal equation and Gradient
Descent (GD). Both approaches uses a gradient vector for the linear function. This vector is
composed of partial derivatives, as shown in Eq. (6.5).

T
BMSEI‘ . BMSE) 65)

VwMSE = ( .y
ZUO wn

These derivatives describes our the slope of our loss function. Suppose we have a simple
function f(x) = x2, the derivative for this function is %xz = 2x. This means for x = 2 the slope

is 2 -2 = 4. We are interested in finding VwMSE = 0, i.e. the a minimum of the loss function.

The normal equation approach to finding VwMSE = 0 is analytical. In the normal equation the
weights w are isolated. Where the solution is given as w = (XTX)"1XTe. Where X is a matrix of
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all x;. The normal equation approach is analytical, however this approach does not scale with
many features and a large data set [Nielsen, 2015].

Instead we use the GD approach, where w* is approximated. In GD the gradient is used to
search for convergence by finding the optimal weights. There are some different methods rely
on GD to find the optimal weights. We will explain GD, and a modified version called Stochastic
Gradient Descent (SGD). In GD the weights are updated using the following equation:

w — w-aVy ) (ej = f(x)))? (6.6)
j

In this equation Vy, }} ]»(e i— flx j))2 = VwMSE, we change the notation such that the summation
of all data is shown explicitly. The result is GD uses all data in each iteration to find the
weights. The learning rate is given by a, which determines the degree of the descent. A smaller
learning rate will increase the number of iterations that is required to find a minimum. While
a larger number can result in missing a minimum. As a result the choice of « is important for
convergence.

The second approach is SGD differs from GD by updating the weights for each example x; from
our training examples.

w — w—aVyl(ej — f(xj))? (6.7)

The steps that are taken in a SGD process are shown in Algorithm 3. First, the training examples
are shuffled, such that the order of the examples are changed. Then each example x; from the
shuffled training examples is iterated, and the weights are updated.

Algorithm 3 Stochastic Gradient Descent

Input: Training Examples

Shuffle Training Examples

for x; in Training Examples do
w — w—aVy(e; — f(x)))?

Output: w

An optimization for SGD is called momentum which keeps information from previous
iterations [Ruder, 2016]. The momentum is added by constructing a new vector v with the
same dimensions as w. The purpose of momentum finding a minimum in fewer iterations, by
using knowledge from previous iterations.

v =yv+aVyle - f(xj))2

W & W — Vi

(6.8)

Here y determines the significance of the momentum. It is called the momentum term and the
value is commonly set to 0.9 [Ruder, 2016]. The value is in the range y € (0,1].

The difference in the two approaches GD and SGD makes them suitable for difference purposes.
Our choice is SGD because our training examples are of a relatively large size.
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6.2.1 Feature Selection

For multivariate linear models, there is a concern of over-fitting where features that are
irrelevant can by chance appear to be useful. Some approaches can reduce over-fitting and as
a result enhance the generalization of the model.

One common strategy is a greedy approach in which different combinations of features are
evaluated on a validation set. The best combinations of features are used on the test set.

Another popular method is Lasso Regularization, in which a regularization term is added to
the loss function, shown in Eq. (6.9)

1 , A
EZ;(ej_W‘Xj) + Ezlllwilq (6.9)
= i=

Where A is the regularization coefficient, which controls the impact of the loss function and the
regularization term. The lasso is given by g, the lasso is commonly set to 1 or 2. Because we
our objective is feature selection, we chose lasso g = 1. Which drives the weights to 0, resulting
in a generalized model [Bishop, 2006]. Once the model has been constructed we can review
the weights. Using the weights we can determine the impact of our features, if the weight has
been set to zero the feature does not have an impact.

For our Linear Model, we use SGD with momentum, and we use Lasso Regularization.

6.3 Neural Network

Neural Networks are different from a linear regression because they have the capability to learn
dependencies between input variables. There are different variations of Neural Networks. One
common variation is feed-forward neural networks. The objective of a feed-forward network
is to approximate a function y = f*(x; 0). In this setting, the values of the parameters 0 are
learned. The function maps the input x to a scalar output y. The x contains all the feature
values, and the y is the known energy consumption. The vector with our feature values is
referred to as the Input Layer, and the output is known as the Output Layer. In Fig. 6.1 we show
an exemplary Neural Network with a Hidden Layer between in the Input and Output layers.
We have one output unit, as our Neural Network will predict one scalar value. There can be
any number of hidden layers in a network. The theory in the section is based on [Goodfellow
et al., 2016; Nielsen, 2015].

Feed-forward networks are given this name as they are directed graphs with no cycles. Which
means all information is fed forward from the input x to the output f, which is the predicted
energy consumption in our case. Typically a feed-forward neural network consists of several
functions composed together. For example the three functions ), f? and f® are combined
into a chain, each function is a layer. The number of functions there are in the chain is known
as the depth of the network. The chain is seen in Eq. (6.10) where the f(x) is the output and
fW is the first layer (input layer), f® is the second and so on. The final layer f® is the output
layer. Each layer between the input and output layer are called hidden layers.

fx) = fOUO(FD(x)) (6.10)
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Input Hidden Output
layer layer layer

Figure 6.1: Exemplary Neural Network with 4 inputs nodes, 1 hidden layer and 1 output node

In each layer, there are a number of units (neurons). The number of units is also called the
width. Each unit receives the inputs from the units in the preceding layer. The output of a
unit is calculated based on an activation function, the inputs, some learned weights, and a bias.
This is seen in Eq. (6.11) where the input to the activation function is z, w’ are the weights, x
are the inputs and b is the bias. The output a from the unit is calculated using an activation
function a = g(z) where g is some activation function.

z=w/x+b (6.11)

This output from g(z) is used as the input to the next layer. The transmission between layers is
shown in Fig. 6.1 where each units in each layer points to the each unit in the next layer. In our
model, the target is to predict a scalar value §J based on the input x; this means in our model
we have a single unit in the output layer. Our target is that the result from the output unit is
the mean energy consumption of the Gaussian distribution based on the inputs x.

Different activation functions are used in neural networks. Activation functions are used for
the hidden layers and the output layer. For the output layer we use a linear activation function
which combines the units from the previously hidden layer into one output. The output of a
linear unit is given in Eq. (6.12) where a is the input from the layer before.

7=wla+b (6.12)

For the hidden layers, we use rectifier activation function which is widely used, because
learning a model with Rectified Linear Unit (ReLU) is fast [Goodfellow et al., 2016]. The ReLU
is seen in Eq. (6.13) and plotted in Fig. 6.2. ReLU is zero for all z values below zero. A
potential problem for ReLU is when the activation is zero; then the unit can not be learned
using gradient-based methods. This problem can be solved using values above zero for the
bias when the Neural Network is initialized.

g(z) = max{0, z} (6.13)

When the network is trained the objective is to match a function f(x) to the f*(x; 0). Each sample
in the training data includes the x and a know value y. For each sample, the function f*(x; 0)
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Figure 6.2: ReLU

must result in a value as close as possible to y. Based on the input and output the learning
algorithm is responsible for deciding how to use each layer to produce the expected output.

Neural networks are learned iteratively using a gradient-based optimizer where the target is
to minimize the result from a loss function, this means an important aspect for learning the
parameters w and b is to chose an appropriate loss function.

In our data, there is a large variation in the energy consumption for ¢, (i) pairs that belong to
the same segment. Because of this, we have chosen to use Mean Absolute Error (MAE) as the
loss function. With this loss function, outliers in the data will have less influence on the final
model. MAE is defined in Eq. (6.14), where 1 is the number of samples.

1 v .
MAE = ~ ; ly - 9 (6.14)

Before learning the model, the weights in the neural network are initialized assigned to random
values. The loss function is optimized using SGD which is described in Section 6.2. Because
there are multiple layers in a Neural Network and difference functions, the computation of the
gradient is different. To compute gradient, we use a back-propagation algorithm. For each
sample in training set, the predicted value { is calculated using the feed-forward procedure
based on the current weights and bias. After the feed-forward process, the back-propagation
is used for each sample to compute the gradient.

For referring to concrete weights, activation outputs and bias’ in a neural network, we add a
new notation.

. wé.k is the weight from the kt/ unit in the (j — 1)th layer to jth unit in the jth layer.
° b; is the bias in the jth unit in the 1th layer.
o aé. is the activation in the jth unit in the 1th layer.

In Fig. 6.3, we show a diagram where the notation is used. The a;. is the activation outputs from
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Figure 6.3: Neural Network with notation

the (I — 1) layer. a; is given with the sum over all the units k in the (I — 1) layer. The formal
definition is given in Eq. (6.15).

a = g(z w k”k Ly bl (6.15)

Eq. (6.15) can be written as vector in Eq. (6.16)
a = g(wa +b) (6.16)

The idea of back-propagation is an expression to computing the partial derivative 2 g5 L and aL
for the loss function L for any weight and bias in a neural network. The expression says how
fast the loss changes in relation to change of weights and biases.

To use back-propagation we make two assumptions about the loss function. The first
assumptions are that the function can be written as an average over individual training set
examples i.

This is the case for MAE. The total loss is L = % ).; Li and the loss for a single training example
is L; = |y — a'| where a is the vector of activation outputs for Ith layer. This is requried to
construct partial derivatives gL and aL’ . Then we can compute the total derivatives gL and aL

by averaging over training examples

The second assumption is that we can find the loss as an output of the neural network, and this
is also the case for MAE where the definition for a single training set example can be written
as: L=y — all.

azu;k
which influence the overall loss. To compute the loss in the output layer 6" the following in
Eq. (6.17).

To calculate the 25 and g—i{ we have to compute the loss 6;. The 6; is a little change to the z
i

d
(9Ll g(z ) (6.17)

]

5L.
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This can be written as a matrix for 6" as in Eq. (6.18), using the Hadamard product of @ -y
and ¢’ (zh).

ot =@ -yogE (6.18)

This expression will result in a small error if the loss does not depend much on the specific unit

j- The first part % is compounded using the loss function. % = (u]L. — y;)- For the errors in the
following layers, jche definition is seen in Eq. (6.19). J
ot = (@*he" o g (2" (6.19)
8

Using these two definitions for errors, the error & can be computed for all layers in the network.
The rate of change for the bias is equal to the error. This rate of change is formally given in
Eq. (6.20).

JL
L = —
0/ =~ (6.20)
]
In the same way the rate of change in the weight is given by in Eq. (6.21). The computation of
(5;. and aé{‘l is already explained.

— 415! (6.21)

Overall the back-propagation algorithm works as follows:

Initialize: Set the starting weights and bias.
Input: Input the features x to the input layer.
Feed-forward: For each layer calculate z! = w'a!~! + b' and a' = ¢(z!).
Output error: Calculate the errors for the output layer ol =@ -y) o).
Back-propagate the error: For each layer from the output to the input calculated the error
using oF = ((@"*)'6! 1) @ ¢’ (Zh).

JL

e Output: The gradients is calculated using -7+ = ai‘lcS? and % = 6]L..
i j

Hyperparameter optimization is described in Section 7.2.

6.3.1 Regularization

Similar to most other models, Neural Network will fit too well to the training set especially
when the amount of data is large, this is called over-fitting and will potentially cause the model
to predict poorly on new samples. Over-fitting can be solved using different approaches for
making the model more general. We have chosen two different approaches in order to avoid
over-fitting.

The first approach is Early Stopping, and instead of trying to find the lowest loss on the training
set, the learning is stopped when the loss on the validation not are improved in some amount
of time. In other words, the model is continuously tested on the validation set the model is
stopped when there no improvements[Goodfellow et al., 2016].
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The second approach is dropouts. Dropouts will with a defined probability randomly disable
some units in the neural network when the network is trained. The disabled units will change
for each new sample. This will result in various models with different amount of units are
trained. When the model is used on the test data, the output of each unit will be adjusted about
the probability. This method results in a model which are more robust to new data, and the
model will have lower tendency of overfitting [Srivastava et al., 2014; Goodfellow et al., 2016].

6.4 Combination of Model and Observations

In addition to the linear model and the neural network, we construct a method to include the
observations into our prediction §.

As mentioned we have a variable number of observations linked to a segment, which can be
combined with a model. In other words, for the route that we are going to predict, we may have
some historical observations on some of the segments. We intend to include these observations
in our prediction. In Eq. (6.22) we show an equation that uses the observations. Where 7 is the
combined result, 1 is the number of observations, x is the average energy consumption from
the observations, k is a learned weight, and m is the result from a model.

n  _
-X + -m
n+k n+k

7= (6.22)
We have already a method to learn weights, namely SGD. We are going to apply to apply this
method for approximating the optimal k value. We use the loss function MSE in our SGD
to approximate k. The learned k will describe how much we will trust the prediction from a
model m and the average energy consumption for a segment x, depending on the number of
observations.

— 1 ~\2
MSE = — Zt“(yf - ) (6.23)

Where the y; is the actual energy consumption and #; is our prediction, from Eq. (6.22).

6.5 Feature Construction

In this section, we construct features from the variables that we have analyzed in Chapter 5.
We describe how each feature is constructed. The feature construction is necessary to make a
model for prediction energy consumption.

We construct each feature such that they belong to a (i) pair. All the features for a t(i) pair will
be represented as a vector.

The features are divided into two groups, static features, and dynamic features. Features
that are from the segment of a t(i) pair are called static because they will remain the same,
independent of the trip. The dynamic features change according to the (i) pair. An example
would be two different £(i) pairs on driving in the same segment would have the same static
speed-limit while the actual speed is dynamic. In Table 6.1, and Table 6.2 the static and dynamic
features are listed, respectively.
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Label Type

Label Type Time of Day Discrete
Day of Week Discrete

Category  Discrete

. Day of Year Discrete
Slope  Continuous .
) Speed Continuous

Zone Discrete .
. . Roundabout Discrete

Region Discrete o .
. Traffic Signal Discrete

Length  Continuous . .
Air Temperature Discrete

Table 6.1: Static Features Direction Change Discrete

Table 6.2: Dynamic Features

6.5.1 Feature Scaling

We are working with features that contain outliers, for example, we know that the slope of a
segment is a small number, but there are some segments with a large slope. For this reason, we
standardize the slope, speed, and length. In Eq. (6.24) how standardization is performed. The
average value for a feature is given by u, while o is the variance. Thus for a new value x the
scaled value is given by x’.

Y= (6.24)

6.5.2 Static Features

Static Features an independent of the trip because they a related to a specific segment.

Length

The length is the total length of a segment from OSM. The unit of the length is in meters. The
features length is represented as a floating point in the feature vector as a one dimension vector.
Zone

As mentioned in Section 4.3 we have mapped all segments to City, Rural, Cottage, or Unknown
zones. This information is represented as a binary vector of length four.

Common for our representation of binary vectors is that 1 signifies membership, while 0
means absence of membership. As mentioned the binary vector for zone has four elements, in
Eq. (6.25) we show which element corresponds to to which zone.

[Cityel Rural, Cottage,s Llnknowne4] (6.25)

For example, to represent that a (i) is in rural zone the vector is [0, 1,0, 0]. This representation
makes sense because there is no definition of closeness between two zones.

Slope

In Section 4.2.3 we showed how the slope found for the segments. We found that the slope has a
linear relationship with the energy consumption. Now we consider how the slope information
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should be included. In our project, we have chosen to only test Approach 1 and Approach 2.
How we construct the feature for each of them is described separately below.

Slope - Approach 1 In Approach 1 we found the slope for each segment. Each slope is a
numeric value. Because there is one numeric value per segment and the correlation with the
energy consumption is linear the feature is represented as a numeric value.

Slope - Approach 2 In approach 2 we divided segments into the sub-segments and found a
slope for each sub-segment. The number of sub-segments for each segment is not always the
same. As such we consider a how the information can be used. If we were to construct a feature
for each slope, we would have a disparity, and this will not work. Instead, we consider how
we can represent the information in a fixed number of features. Here we consider aggregating
information into an average slope and the standard deviation. We know the sign of the slope
is important, as such we also include the average and standard deviation for negative slopes
and positive slopes.

From these considerations, we construct the following features for slope.

Average for all slopes

Standard Deviation for all slopes

Average for all positive slopes

Standard Deviation for all positive slopes
Average for all negative slopes

Standard Deviation for all negative slopes

ARSI

The attributes are chosen because they can express both the uphill and downhill slopes for the
sub-segments.

Each of these features is represented as a numeric value. If there is only one slope for a given
segment the standard deviations are set to 0. If a slope is negative the positive average is set to
0, and the other way around.

Region

As mentioned in Section 3.2, we have access to information about which region each segment
is in. There are five regions in Denmark, however 452 segments are not covered by a region.
For this we construct a binary feature vector.

[Nordjyllandel Midtjyllande., Syddanmark,s Sjeelland., Hovedstaden,s Llnknowngé] (6.26)

If a segment is not in a region they are represented as Unknown. For example if a segment in
not in a region it will be represented as [0, 0,0, 0,0, 1].

Category

From OSM we know that category of each segment. There is a total of 17 different categories.
We represent this knowledge as a binary feature.

[Motorwaye1 MotorwayLinksey Trunke ... Unpavedew] (6.27)
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The full list of categories is Motorway, Motorway Links, Trunk, Trunk Links, Primary, Primary
Links, Secondary, Secondary Links, Tertiary, Tertiary Links, Unclassified, Residential, Living
Street, Service, Road, Track, Unpaved.

6.5.3 Dynamic Features

The dynamic features are the features which change according to a given trip. For example,
time is dependent on when a trip started and how fast the driver is going on the trip. In this
subsection, we describe how we handle the dynamic features.

Time of Day

The time feature is special for our project, and it specifies when during the day the trip is taking
place. For each t(i) for a given trip t, we have a time key that specifies when the segment was
reached. Because we are emulating a real world setting, we only use the starting time of a trip.
Using the starting time we estimate the time that a #(7) will reach a segment. In Table 6.3 we
show an example of the actual times for a trip and the time we estimate.

The time estimate is calculated by taking the current time and adding the time it takes the
traverse the segment at the speed-limit for the segment, and we show this in Eq. (6.28).

t(i).timeestimate = t(i—1).timeestimate + t(i—1).length - t(i—1).speedlimit (6.28)

With the exception of the first (i) pair where the time estimate is set to the actual start time of
the trip. For the purpose of the calculations the seconds are included, the seconds are not saved
for the estimate instead the time is rounded to the nearest minute. We round to the nearest
minute, s.t. the estimated time is similar to the actual time.

In the current state, our time feature is a discrete feature with 24 - 60 = 1440 possible values, i.e.
a value for each minute of the day.

Actual  Estimated Actual  Estimated Segment

Pair . . Speed Speed Length
Time Time kfrz [hr ki/hr mg
K1) 14:56 14:56 22 50 30
tH2) 14:56 14:56 23 50 484
H3)  14:58 14:56 30 50 142
t(4) 14:58 14:56 43 50 235
t(5) 14:58 14:56 64 80 2908
H6) 1501 14:58 68 80 733
K7)  15:02 14:59 50 80 397
t(8) 15:02 14:59 59 80 293
£(9) 15:02 14:59 62 80 47
t(10) 15:02 14:59 63 80 201
t(11) 15:03 15:00 26 50 686

Table 6.3: An example from our data, showing the actual time for a trip and the time that has
been estimated.
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We represent time with two features, and these features are shown in Eq. (6.29). Using these
two features to represent time, we ensure that each minute receives a unique value. This
method is circular, and this means that it captures the gap between 23:59 and 00:00 [Bishop,
2006].

timecos(minute) = cos(2 - v - minute/1440) (6.29a)

times;, (minute) = sin(2 - 7t - minute/1440) (6.29b)

In Table 6.4 we show how the combination of time.,s and times;,, remains unique throughout
the minutes of a day, and how the the gap between 23:59 and 00:00 is captured.

Day of Week & Day of Year

We use the same approach for representing the day of the week, and day of the year as in the
time of day. Equation (6.29) is modified such that for the day of the week the value is divided
with seven instead of 1440, and for the day of the year, it is divided with 365.

Speed

For future trips we construct the speed feature as the speed limit for a segment. While we train
our model with the historical data, were we have access to the actual speed for a given £(i) pair.

HH:MM of Day  timecos timesy,

00:00 1 0
00:01 0.99999  0.00436
00:02 0.99996  0.00872
06:00 0 1
06:01 -0.00436  0.99999
06:02 -0.00872  0.99996
12:00 -1 0
12:01 -0.99999 -0.00436
12:02 -0.99996 -0.00872
18:00 0 -1
18:01 0.00436  -0.99999
18:02 0.00872  -0.99996
23:59 0.99999 -0.00436
00:00 1 0

Table 6.4: Values of time.,s and times;,
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Roundabout

For a t(i) pair we know whether there is a roundabout at the beginning of the segment, or at the
end, or none. We can represent this information in a binary vector with two elements. Different
from the previous binary vectors, this vector can contain any combination of zeros and ones.

roundabout = [Beginning End] (6.30)

For example, a segment with roundabouts at the beginning and start would be represented as
[1,1] while a segment without any roundabouts would be [0, 0].

Traffic Signal

The traffic signal feature is modeled in the same way as the roundabout feature. For a (i)
pair we if there is a traffic signal at the beginning and end of the segment. This information is
represented by a binary vector with two elements. This vector can contain any combination of
zeros and ones.

trafficsignal = [Beginning End] (6.31)

Direction Change

The direction change as a discrete value between 0 and 359. Where 0 represents going straight,
90 is right, 180. In our data analysis we found that several directions are only observed few
times. This means we should consider over-fitting, especially in our linear model. As a result
we have decided to group the direction changes into 4 distinct groups, namely Forward, Right,
Backward, and Left. We show this in Fig. 6.4, where forward is between [330°-30°] , right
between (30°—150°), backward between [150° — 210°], and left between (210°-330°).

Forward - 0°
330° B 30°

Left - 270° ¢ - - - Right - 90°

210° L 150°
Backward - 180°

Figure 6.4: Different direction changes

This means we can store this information in a binary vector with 4 elements.
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Experiments

In this chapter, we consider the dataset used for experiments. How the hyperparameters for
the models is adjusted. The baselines that will be used for comparison to our models, and the
results from our experiments.

7.1 Data Set

We require three data sets, namely a training, validation, and test set. We include a validation
set such that we can adjust hyper-parameters of our models.

A common approach is to put trips into training, validation and test sets randomly. This
method means we would pay no attention to the fact that we want to emulate future trips. As
the training, validation and test sets would possibly contain trips from all periods of time. A
better approach to do this with respect to the problem statement would be to split the dataset by
date and time. Then our training set can be considered as historical data, while the validation
and test set as future data. This approach would emulate a real world setting closely. Our
choice is the second approach because it emulates a real world setting.

Our data-set includes 247 832 trips which consist of 159913 546 observations. We do not use
the individual observations directly but instead an aggregated value for each (i) pair. The data
set includes 13 166 073 t(i) pairs over 197 437 segments.

The dataset is split up into a training set, validation set, and test set as follows:

Training Set Samples used to learn a model. (198 266 trips 80%)
Validation Set Samples used to adjustment the model. (12488 trips 5%)
Test Set Samples used to evaluate the model. (37 078 trips 15%)

This split ratio is commonly used, the training set is larger such that the model becomes more
robust.

Emulating the real world setting as close as possible will give a larger trustworthiness of
the predictions. As mentioned earlier in Section 3.4 only a subset of the road network has
observations. Therefore consider that our validation and test set should include segments
without observations. As shown in the Section 5.3 the energy consumption varies in different
seasons, due to the temperature. Therefore our sets must be representative of the seasons, and
this has we ensured by splitting on the following ranges.

Training Set From 01-04-2012 to 01-06-2013
Validation Set From 01-06-2013 to 26-05-2014
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Test Set From 01-06-2013 to 26-05-2014

While the validation and test cover the same period, they do not contain the same trips. In
other words, we first split our data into training and test sets. Then from the test set, we
randomly take 12 488 trips and use these for our validation set. In this approach our validation
set is representative of our problem, allowing us to perform our hyper-parameters adjustment
using the validation set. From the above-described split, we validate that our validation set
includes 6724 segments which are not a part of the training set while the test set contains 11 939
segments which are not.

7.2 Hyper-parameter optimization

The hyperparameters for the neural network used in our experiments is found using a random
search approach because it is an efficient way for hyperparameter optimization [Bergstra and
Bengio, 2012]. The random search is done on only a subset of the training set (1000000 samples)
and the full validation set.

In the random search the following hyper-parameter are adjusted:

Number of hidden layers
Number of units in each layer
Learning rate

Momentum

Based on the result of the random search our neural network has the following values:

Number of hidden layers: 1
Number of units in each layer: 125
Learning rate: 0.01

Momentum: 0.83

Initial bias: 0.2

Initial wights: random

Dropout: 0.5

Initial bias, initial weights, and dropout are selected based on our knowledge and the selected
activation function.

For the linear regression, we have manual try to adjust the hyper-parameter and evaluate them
on the validation set. It is led to the following parameters:

e A for L1 Regularization: 0.003
e Learning Late: 0.001
e Momentum: 0.90

7.3 Baselines for Comparison

In this section, we construct three baselines. The purpose for these baselines is to determine
how well our models perform.
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We consider the following three baselines.

Average 166.29 based on the training set we find the average energy consumption for all
segments.

Peugeot 106% The energy consumption specified by [Peugeot, 2017].

Category The average energy consumption for all categories based on the training, the values
are shown in Table 7.1.

7.4 Evaluation Measures

In this section we consider different evaluation measures. The predictions are performed for
each (i) pair, the evaluation is performed on the aggregated energy consumption for all #(i) paris
in a trip ¢. In our data there are trips of many different lengths, which results in vastly different
energy consumptions. Because of the high variation, the focus will be on scale-independent
metrics. We chose to use two measures namely Mean Absolute Percentage Error (MAPE) and
Symmetric Mean Absolute Percentage Error (SMAPE), shown in Eq. (7.1) and Eq. (7.2). Where
n is the total number of samples in the test set, 4; is the actual value and p; is the predicted value
for each sample. MAPE is sensitive to outliers, i.e. if a the actual energy consumption is near
zero [Hyndman and Koehler, 2006], and our prediction is a larger number the error becomes
large, as shown in Eq. (7.3). For this reason sMAPE is included, as outliers can not be penalized

Average
Energy

Category Consumption
()
Road 278.17
Tertiary Link 276.83
Living Street 269.74
Service 223.60
Residential 197.75
Unclassified 170.27
Unpaved 173.88
Trunk 167.34
Motorway 164.45
Primary 161.31
Tertiary 157.69
Track 154.33
Secondary 152.86
Motorway Links 130.85
Primary Links 96.73
Trunk Link 82.99
Secondary Links 63.22

Table 7.1: Average energy consumption for category sorted by energy consumption.
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more than 200%.

n

100% a; — pi ‘

MAPE = Z (7.1)
n = a;
100% x~  Ipi — ail

SMAPE = 7.2
o Ll T2 72

100%]| -0.09 — 2 ]
009 ' = 2322.2% (7.3)

Using this combination of measures, we are able to identify outliers with MAPE, while
sMAPE provides a general indication. It is noteworthy that sMAPE, despite the name, is
not symmetrical. It is not symmetrical because it does not treat over- and underestimations the
same, underestimations are penalized by a slighter higher percentage.

7.5 Results

The results are shown and interpreted in this section. First a brief evaluating of the baselines
are shown. Then we evaluate the quality of our features. Lastly, we evaluate the performance
of the methods, to find in which areas the performance is best, and which it is lacking.

7.5.1 Baseline

As mentioned in Section 7.3 we will compare our results with three different baselines. The
baselines are evaluated on the test set, and the results are shown in Table 7.2. The values
in parentheses are SMAPE and the other values are MAPE. For all trips, we that MAPE
and sMAPE are different for “Mean” and “Category” while they remain nearly the same
for 'Peugeot’. Because the values are different for Mean and Category, we can determine that
are some outliers which increase the percentage error. While the higher sMAPE for Peugeot
is expected as the energy consumption is very low which causes underestimations. This
tendency of underestimation is present for all trip lengths for Peugeot. The Category has the
best performance of the three baselines.

7.5.2 Features Evaluation

We have constructed some features, in this section, we examine the quality of these features.
We have already shown in Chapter 5 that there are many factors which impact the energy

Name All Trips Trips over 2km  Trips over 10 km

Peugeot  55.02% (55.20%) 43.26% (50.59%) 34.37% (43.10%)
Mean 53.23% (32.46%) 34.45% (27.21%) 20.07% (19.13%)
Category 55.22% (31.80%) 34.77% (26.89%) 19.30% (18.90%)

Table 7.2: Baselines Performance
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consumption. We show how the features impact the models. For the feature evaluation, we
use our models.

We begin by using Linear Regression with L1 regularization. The L1 regularization tends to
produce sparse coefficients, which means it sets coefficients to zero. The coefficients of features
which are set to zero have no impact. With this knowledge, we can determine which features
contribute to the prediction. We find that the following features contribute to the prediction.

Category

Zone

Region

Direction Change
Roundabouts
Slope

Day of year
Traffic signal
Speed-limit
Temperature

The features which have a zero weight are the following:

e Historical average energy

e Number of historical observations
e Time

e Day of week

We anticipated that the Linear Regression would not improve using a historical average energy
consumption as this feature is sparse. It is sparse as we do not have observations for all
segments. Thus segments without observations have no average energy consumption. The
same case is true for the number of historical observations.

Time of day and day of the week have no impact on the Linear Regression. In Fig. 7.1, we
show the average energy consumption during the week and the day. From the figure, we see
that the average energy consumption during the week is almost stable. In contrast, the energy
consumption over time of day has a large fluctuation. However, fluctuation remains around
the same energy consumption. Because the energy consumptions are stable, it is sensible that
they do not impact the result.

We have tested different combination of features with the same hyper-parameters in our Neural
network. Despite the hyper-parameters remaining the same, we assume the results are valid
indicators of which features provide an impact. In Table 7.3 the combination of features is
shown, the features which are not shown in the table are always included. The values in
parentheses are sSMAPE and the other values are MAPE. The first model in the table is NN1,
which will be our reference model. It is used as the reference because it contains all features,
except actual time and speed, and slope 2. We are then able to see the effect of using the actual
time and speed, and a richer notation of slope by using these features in other models.

In NN2, our direction change feature is omitted. Contrary to our analysis, the direction change
feature does not improve the performance of the model. Upon reviewing the direction change

51



Energy(Wh/km)

180 260

175 240
170 2 20 Il
N =4 :
165 —— %? 200 L{s Ml g |
160 = LML
% 180 | o
155 @ ‘
5 160 ) L I .
150 140
Jege &"ﬁ %@Q SRS I
O ¥ 030 120
» S @@b ‘QQ OJ@ 00 02 04 06 08 10 12 14 16 18 20 22
Day of Week Time of Day
(a) Day of Week vs. energy consumption (b) Time vs. energy consumption
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Table 7.3: Combination of Features for Evaluation
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feature, we find that the direction of the last £(i) pair in each trip is set to 0. Because it is set to
0, the feature is set to be a forward direction. Instead, it should have been a separate direction
change, such that it could have been labeled as "End’.

The roundabout feature provides an increase in performance, by removing it in NN3 the overall
MAPE increases by ~1.3%.

MAPE for Traffic signal in NN4 is slightly increased. Our presumption was that traffic signal
information would improve the prediction. In Fig. 7.2 we show the variance is significantly
higher when there a traffic signal at the end of a segment. In addition to the variance, the
distribution is multimodal. The distribution is multimodal on segments with traffic signals
at the end because there are three distinct possibilities at a traffic signal; A driver makes a
green light he does not stop; A driver stops completely for a red light causing a regenerative
deceleration; A driver slows down while waiting for a green light without stopping. This
multimodal distribution makes it difficult predict segments with traffic signals at the end.

Against our expectations, the temperature does not increase the performance seen in NN6. We
suspect this is caused by a high variance in energy consumption for temperatures. This is seen
in Fig. 5.3. The high variance makes it difficult to makes a good prediction. Another factor
may be that the Neural Network makes better use of the day of year feature, and can catch the
change in temperature and weather.

As expected the slope improves the performance, as NN5 without slope information has an
increase in error. In addition the more detailed slope 2 in NN7 improves the MAPE significantly.

Segments with Traffic Signals at End
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Figure 7.2: Distribution of energy with and without traffic signals
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In NN8 and NN9 MAPE is improved. This improvement means the actual speed and time is
better than our predicted values. For the total value, it seems that NN8§ is better than NN9. This
result is probably caused by high variance in energy consumption especially when the speed
is low as seen in Section 5.1. For longer trips, NN9 performs the best.

We consider NN7 to be our best Neural Network as NN8 and NN9 uses features we consider
to be unavailable.

7.5.3 Performance Evaluation

In this section will we examine the performance of our three models performs. It is the
following models; Linear Regression (LR) using all our features and L1 regularization; The
neural network with the best MAPE NN7; A combination of the NN7 and our observations
called NN-Observations. We have used the validation set to learn the value k as described in
Section 6.4. The resulting k value is 24.4742. With this k value the observations and the model
prediction are weighted as seen in Fig. 7.3. When we have 35 observations for a segment, the
observations and prediction are weighted equally.

Observation Wefght —
Mo i

0.6 - .

Weight

04 - .

0 I I I I
0 50 100 150 200 250

Number of Observations

Figure 7.3: Weights in Linear combination

The overall results for each of the model is shown in Table 7.4. The values in parentheses
are SMAPE, the other values are MAPE. The LR model has a high MAPE when compared to
NN7 (NN), however the sMAPE is lower. From the results we see that NN performs worse
on shorter trips. NN-Observations is our Neural Network combined with observations. This
combination outperforms the two other models.

In Fig. 7.4 we show how the models predict for all trips. In the figures, the predicted energy
consumption is compared to the actual energy consumption. We see that Mean & Category
predictions are distributed around the diagonal evenly. This behavior is expected as they
represent the total average energy consumption and the average for categories, respectively.
We see that Peugeot underestimates the energy consumption on the majority of trips.
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Name All Trips Trips over 2km  Trips over 10 km

LR - Linear Regression 51.26% (29.74%)  33.02 % (24.98%) 20.73% (18.78%)
NN?7 - Nerual Network 44.71% (32.59%)  30.01 % (26.46%) 17.98% (18.21%)
NN-observations - Linear combination 19.61% (14.08%) 12.08% (10.34%) 5.74% (5.90%)

Table 7.4: Overall experiments results.
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Figure 7.4: Comparison of Models. Actual energy consumption is compared to the predicted
consumption.

For our models LR & NN, we see that they overestimate trips which have a significant energy
consumption. Lastly, we see that our combination of observations and our Neural Network,
NN-Observations estimates well. We now evaluate the performance of length, month, and
hour of the day. Using these parameters for performance evaluation will provide a general
overview of where the models are strong and weak.

Figure 7.5 shows the performance for predictions over length. There is a larger error for
shorter trips for both our measures. This error is caused by short trips having high variation
in acceleration, whereas for longer trips the acceleration tends to be stable. In other words, for
a short trip, a driver must accelerate his vehicle which in turn consumes energy. We also see
that NN predicts better for longer trips, compared to LR.
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Figure 7.5: sSMAPE&MAPE at given trip lengths

There are some interesting peaks Fig. 7.6 for MAPE. The peaks in March and July do not
occur in SMAPE, and this indicates there are outliers. In Table 7.5, the outliers are shown.
Upon further inspection, the outliers are caused by actual energy consumption that is near
zero causing a high percentage error. The energy consumption for these three trips is very low
when looking at the length of the trips. Unsurprisingly the curve for Peugeot forms a parabola,
as the predictions are more accurate in the warmer months because the energy consumption is
lower in these months. The performance of our models appears stable for each month.

In Fig. 7.7 we show the performance during the hours of the day. Again the outliers are present,
and these are the outliers from Table 7.5. For these graphs, we have included the number of
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Figure 7.6: sSMAPE&MAPE per month
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Trip  Length (m) Month Actual (Wh) Predicted (Wh) MAPE

270257 725 March -0.098 127.913 130322%
227433 1388 June 0.338 202.322 59772%
231683 280 June 0.149 45.278 31937%

Table 7.5: Outliers in data, the predicted value is from the linear model.

trips. We see that when there are many trips, the performance is stable.

Since we are predicting energy consumption for segments, we also evaluate the segment
prediction. For the evaluation of predictions on segments, we use NN-observations. We
perform this evaluation to find areas the model has strengths and where it can be improved. In
Fig. 7.8, and Fig. 7.9 we show two areas of Denmark. The sMAPE values are found per segment,
only segments in the test set are shown in the two figures. An interactive map is available at
http://energi.elefsennet.dk. Details about the map can be seen in Appendix C. In Fig. 7.8
we see the prediction are best on arterial roads. The predictions on smaller roads are worse
than arterial roads. In the Fig. 7.9, there are many small roads where the prediction is poor;
however, we see that on the arterial roads our predictions are good. From these two maps see
that the smaller roads are difficult. In Table 7.6 we show the error for segments in each region.
Our predictions are better in the regions with more data in our training set, as expected. As
expected we predict best on the arterial roads because of uniform driving, while the smaller
roads can be improved.
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Figure 7.7: MAPE during the hours of the day
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MAPE Trips in Trips in Region
Testset  Training

set
66.9% 3497 478186 Region Nordjylland
81.3% 506 4309 Unknown

95.0% 279192 5239721  Region Syddanmark
119.4% 328288 1897996  Region Sjeelland
131.0% 1277595 1361873  Region Hovedstaden
227.4% 12979 401390 Region Midtjylland

Table 7.6: MAPE for each Region

MAPE Trips in Trips in Category
Testset  Training
set

23.6% 104022 207358  Motorway
48.6% 187082 930566  Primary
49.3% 30361 92875 Trunk
70.1% 386824 2281705  Secondary

85.5% 545 5385 Primary link
95.9% 658305 3011324  Tertiary
96.2% 22869 4773 Tertiary link
122.0% 3155 6515 Trunk link

176.3% 162450 1033585  Unclassified
265.3% 308965 1594813  Residential

413.4% 930 3138 Secondary link
435.1% 33109 148242  Service

473.0% 322 4000 Living street
610.6% 2453 11124 Unpaved
1518.1% 371 900 Tertiary link
2169.0% 264 4168 Track
87407.7% 30 45 Road

Table 7.7: MAPE for each Category
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Conclusion

In our work, we have proposed three methods that predict energy consumption for EVs given
a route. The prediction of energy consumption for a route is performed on the individual
segments that a route consists of. Because the prediction is performed on segments, our
methods can also be used for energy-efficient routing. To the best of our knowledge, our work
presents the first the methods which do not assume that the exact time a route arrives at a
segment is given. In addition, the methods do not assume to know the exact driven speed.
These are important distinctions as this information is not available for future trips.

We enrich the data-set of EV trips, with additional attributes. These attributes are added to
achieve a higher performance for predictions. We implemented two general approaches of
pairing elevation data with a road network. These approaches apply to any area with a road
network and elevation data. We find that the slope of a segment has a linear correlation with the
energy consumption. In addition to we have added information about direction change, traffic
signals, and roundabouts. All of the attributes and information is constructed as features which
are used in the methods. For our experiments we use the historical weather information, this
information is not available in a real world setting. In a real world setting a weather forecast
should be used for temperature. In addition we have not considered wind as a factor, despite
it having an impact on energy consumption as shown by [Krogh et al., 2015].

The quality of the features which are constructed from the information we have contributed
is determined using our LR and NN. We review the coefficients from our LR. The coefficients
show that the information about traffic signals, roundabout, slope, and direction change has
an impact. Using our NN, we tried different combinations of the features to determine the
performance impact from the features. We find that including slope information improves
the overall performance by ~1.3%, while traffic signals improve it by ~0.3%, and roundabouts
~1.6%. We have shown that using the actual time and speeds improves the performance by
~3%. As a result developing a speed model would provide better performance. We have
shown that the higher granularity in slope, increases performance, as a result it is reasonable
to consider approaches that include more information about elevation.

The combination of observations and models in NN-Observations improved the performance
significantly. It is sensible to include observations into the predictions, as observations for a
specific segment incorporates latent information. The method is still able to predict an energy
consumption for segments without any observations.

We chose to predict the energy consumption on segments as opposed to routes because this
enables the possibility of suggesting energy efficient routes. Additionally, the association
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between observations and routes would not longer capture the latent information that is specific
for segments.

To extend our work, we consider adding confidence intervals for our predictions. Providing
a confidence interval could, arguably, further reduce range anxiety. There has been some
research in confidence intervals for Neural Networks. However, these confidence intervals
are predictions [Zhang and Luh, 2005]. Instead of predicting a confidence interval, it could be
found using a Bayesian approach.

There are many options for predicting energy consumptions for routes. Instead of predicting the
energy consumption for segments, the prediction could be done for an entire route. However
constructing a feature vector that properly includes information about segments is difficult as
the number of segments that is traversed is variable for each trip.
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Data Information

Category Average Length Standard Deviation Variance
motorway 1080 1416 2005704
motorway_link 350 229 52467
trunk 462 753 566393
trunk_link 298 217 47298
primary 211 277 76571
primary_link 158 145 20989
secondary 212 280 78207
secondary_link 95 121 14556
tertiary 155 207 42839
tertiary_link 106 159 25312
unclassified 251 312 97238
residential 104 117 13805
living_street 78 67 4549
service 84 107 11517
road 287 259 67321
track 308 375 140853
unpaved 233 327 106855
All 176 292 84996

Table A.1: Length information about different categories.







Elevation Implementation

! In this section we explain the data structure of raster and how elevation map is included into
the data warehouse.

B.1 Raster Data Structure

We work with a geotiff raster data format, in our set each pixel is embedded with a georeference
s.t. thelocation is known. In addition of the location, the altitude of each pixel is also embedded.

The data we have access is divided into squares that covers 1km? of Denmark each. We use
the command line tool raster2pgsql[PostGIS, 2017] to load these files into our data warehouse.
There are many different flags which can be chosen for this tool it is important that the table
has been created with the correct attributes, which can be done with the -p (prepare) flag. We
run the tool with the following flags.

raster2pgsql -s 25832 -a -e -Y -t 250x250 *.tif experiments.elevation

-s 25832: The SRID of our elevation data.

-a: Append mode, since we have many different files, we run the command several times.
: Execute each individual, s.t. we see the results in the database immediately.

-Y: Copy mode, instead of table insert.

-t: Tile size, we have chosen a size 250x250 pixels.

e o6 o o o
|
o

When choosing the tile size, we consider the trade off between the number of rows that
is required for a given size and the time required to look up in the tiles. We know that
each pixel represents a 40crmx40cm square on a map. This means a 250x250 tile will cover a
10000cmx10000cm area. With this information, and with the knowledge that Denmark covers
42 925.46km? we can estimate the number of rows we will have, which is an approximate
4292 546 rows. After importing all the data into our date warehouse we have 4 959 800 rows of
tiles.

2

Now we must construct an index on our data. For this purpose we use a gist index, on the
convex hull of each tile. Figure B.1 shows an illustration of a convex hull on an exemplary tile.
We construct an index on the convex hull s.t. only relevant information is indexed.

1FiXme Note: Se noter fra mode 3/4 thomas og kristian
2FiXme Note: Show tile map somewhere
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Figure B.1: This is an example of the Convex Hull for a tile. The dashed red line signifies the
data in the Convex Hull, all pixels without information is not indexed.

B.2 Approach 1 Implementation

Approach 1 is a relatively simple implementation after the elevation map is loaded into the
data warehouse. The goal is to include the elevation for each node in our road graph. Before
we show how this is done it is important to mention that this is done edge wise. This means we
will assign a height at the start and end of each edge, this will of course present of redundant
data. We will ignore the redundant data as it lowers the number of joins we will later have to
do.

We will construct a materialized view in our data warehouse which will hold this information.
In Listing B.1, in this SQL Statement we make use of indexes on our raster data, specifically the
function ST_Intersects makes use our gist index. If we omit the LIMIT 800000, the statement
will not make use of our indexes.
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Listing B.1: Approach 1 SQL Statement

CREATE MATERIALIZED VIEW experiments.approachl AS
SELECT starth.segmentkey, starth.startheight, endh.endheight
FROM
/** Find start height**/
(SELECT road.segmentkey,
ST_Value(rast, road.start, FALSE) as startheight
FROM
experiments.elevation2 ele,
(SELECT segmentkey,
ST_Startpoint (ST_Transform(segmentgeo::geometry, 25832)) as start
FROM maps.osm_dk_20140101
LIMIT 800000) road
WHERE ST_Intersects(ele.rast, road.start)
) starth,
/** Find end height**/
(SELECT road.segmentkey,
ST_Value(rast, road.endheight, FALSE) as endheight
FROM
experiments.elevation2 ele,
(SELECT segmentkey,
ST_Endpoint (ST_Transform(segmentgeo::geometry, 25832)) as endheight
FROM maps.osm_dk_20140101
LIMIT 800000) road
WHERE ST_Intersects(ele.rast, road.endheight)) endh
WHERE endh.segmentkey=starth.segmentkey;

Once this materialized view has been created, the process of calculating a slope is straight
forward, since we have 2 points.

Y2—1

X2 — X1

slope = (B.1)

In our case the height is our y axis and the x is the distance between the start and end point.
We can reformulate the slope equation to our case. We say that x, — x; is simply the length of
the road, given in the data warehouse.

For convenience we construct a view that calculates a slope from our experiments.approachl
table, which is show in Listing B.2
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Listing B.2: Approach 1 Slope SQL Statement

CREATE VIEW experiments.approachl-slope AS
SELECT map.segmentkey,

CASE WHEN meters != ® THEN
(endheight-startheight)/meters
ELSE NULL

END as slope

FROM experiments.approachl appl,
maps.osm_dk_20140101 map

WHERE appl.segmentkey=map.segmentkey;

Since the trips are map matched at the same segments, no map matching is required to this
approach.

B.3 Approach 2 Implementation

Unlike Approach 1, Approach 2 requires map matching as we are going to alter the map
provided by OSM. We will begin by subdividing all the edges in our road graph s.t. no edge
has a length longer than 50m, e.g. if an edge is 130m it will divided into 3 edges of length 50m,
50m, and 30m. We do this by constructing a function in our database. We call the function
split_linestring, it takes two parameters namely split_length which specifies the maximum
length of subdivided edges, while geo is the edge that going to be subdivided. We make use of
ST_LineSubstring where we can specify which part of an edge we want returned. It's done by
given the start and end fraction. Where a fraction is a number between 0 and 1, 0 is the start
of the edge and 1 is the end. E.g. given a 100m edge we can split it by using ST_LineSubstring
twice. First using start 0.0 and end 0.5, and second start 0.5 and end 1.0. Since we are working
with floats the edges wont be precisely 50m but the representation is close enough for our
usage.
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Listing B.3: Approach 2 Splitter

1 CREATE OR REPLACE FUNCTION split_linestring(split_length DECIMAL, geo
geometry) RETURNS setof subsegmentkey_geometry AS $$

2 DECLARE

3 i integer := 1;

4 meters DECIMAL := st_length(geo::geography)::DECIMAL;
5 x subsegmentkey_geometry;

6 BEGIN

7 IF meters != 0.0 THEN

8 WHILE ((split_length/meters)*(i)) <= 1.0 OR ((split_length/meters)*(i-1)
) <= 1.0 LOOP

9 IF ((split_length/meters)*(i)) <= 1.0 THEN

10 X.subsegmentkey := ij;

11 x.geom := ST_LineSubstring(geo::geometry, (split_length/meters)*(i
-1), (split_length/meters)*i);

12 RETURN NEXT x::subsegmentkey_geometry;

13 i =1+ 1;

14 ELSE

15 X.subsegmentkey := i;

16 x.geom := ST_LineSubstring(geo::geometry, (split_length/meters)*(i
-1, 1.0);

17 RETURN NEXT x::subsegmentkey_geometry;

18 i =1 + 1;

19 END IF;

20 END LOOP;

21 END IF;

22 RETURN;

23 END;

24 $$ LANGUAGE ’plpgsql’;

We run this function on all our edges, s.t. all edges are subdivided, we save this information.
The next step is to add an elevation to the start and end of all new sud divided edges. This is
done much like in Listing B.1, the main difference being that the LIMIT 800000 is increased to
2000000 s.t. indexes are used.

As mentioned we must also map match observations to these new sub divided edges. We have
constructed our sub-edges s.t. they have the original edge id along with an id that makes them
individual. Assuch we can find all observations that belong to the original edge, which reduces
the number of observations that must be considered for each sub-edge. For this purpose we
write a function called subsegment_mapmatch which takes a single segment id (edge id), shown
in Listing B.4.
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Listing B.4: Approach 2 Map matching

1 CREATE FUNCTION subsegment_mapmatch(segment_key integer) returns void

2 language plpgsql

3 as $%

4 DECLARE

5 r RECORD;

6 i INT = 0;

7 a BIGINTI[];

8 BEGIN

9 FOR r IN SELECT array_agg(id) as sarray, subsegmentkey FROM(

10 SELECT DISTINCT ON(id) st_distance(sq.coordinate, sq.subgeo) as mindist
, 1id, sq.subsegmentkey, sq.segmentkey

11 FROM (

12 SELECT coordinate, subgeo, app2.segmentkey, subsegmentkey, id

13 FROM (

14 SELECT ¢gps.coordinate, segmentkey, gps.id

15 FROM (

16 SELECT unnest(gpsdata_ids) as id, segmentkey

17 FROM experiments.point_match

18 WHERE segmentkey=segment_key

19 AND cardinality(gpsdata_ids)>0) id,

20 experiments. factgpsdata gps

21 WHERE id.id=gps.id) coor,

22 experiments.approach2 app?2

23 WHERE coor.segmentkey=segment_key

24 AND app2.segmentkey=segment_key

25 AND st_dwithin(coor.coordinate,app2.subgeo, 50)) sq

26 ORDER BY id, mindist)ssq

27 GROUP BY subsegmentkey LOOP

28 UPDATE experiments.approach2 SET gpsdata_ids = r.sarray

29 WHERE segmentkey=segment_key

30 AND subsegmentkey=r.subsegmentkey;

31 i=1+ 1;

32 END LOOP;

33 END;

34 $%;
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B.4 Derived Features SQL

Listing B.5: Direction Change Feature SQL

1 WITH current_next AS (

2 SELECT current.id,

3 current .segmentkey as currentkey, next.segmentkey as nextkey,
4 current.direction as current_dir, next.direction as next_dir
5 FROM experiments.viterbi current, experiments.viterbi next

6 WHERE current.trip_id=next.trip_id

7 AND next.trip_segmentno=current.trip_segmentno+1),

8 map_current_next AS(

9

SELECT id,
10 mapcurrent.segmentgeo::geometry as currentgeo,
11 mapnext.segmentgeo::geometry as nextgeo,
12 current_next.current_dir, current_next.next_dir

13 FROM current_next, maps.osm_dk_20140101 mapcurrent,
14 maps.osm_dk_20140101 mapnext

15 WHERE mapcurrent.segmentkey=current_next.currentkey
16 AND mapnext.segmentkey=current_next.nextkey)

17 SELECT id,

18 CASE WHEN current_dir = ’FORWARD’ THEN

19 degrees(st_azimuth(

20 st_pointn(currentgeo,ST_NPoints(currentgeo)-1),
21 st_pointn(currentgeo, ST_NPoints(currentgeo))))
22 WHEN current_dir = ’'BACKWARD’ THEN

23 degrees(st_azimuth(st_pointn(currentgeo,2),st_pointn(currentgeo,1)))
24 END as currentdeg,

25 CASE WHEN next_dir = ’'FORWARD’ THEN

26 degrees(st_azimuth(st_pointn(nextgeo,1l),st_pointn(nextgeo,2)))

27 WHEN next_dir = ’BACKWARD’ THEN
28 degrees(st_azimuth(st_pointn(nextgeo,ST_NPoints(nextgeo)),
29 st_pointn(nextgeo,ST_NPoints(nextgeo)-1)))

30 END as nextdeg
31 INTO experiments.trip_degree
32 FROM map_current_next;
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B.5 Zone SQL

Listing B.6: Zone mapping for segments

1 create function segment_to_gid(segment integer) returns void

2 LANGUAGE plpgsql

3 AS $%

4 DECLARE

5 arow record;

6 BEGIN

7 FOR arow IN

8 SELECT segmentkey, gid, ST_LENGTH(ST_Intersection(zone.geop, map.
segmentgeo)) as len

9 FROM experiments.zone zone, maps.osm_dk_20140101 map

10 WHERE st_intersects(zone.geop, map.segmentgeo)

11 AND st_isvalid(zone.geom)

12 AND segmentkey=segment

13 ORDER BY len DESC

14 LIMIT 1

15 LOOP

16 INSERT INTO experiments.zonemedgist VALUES (arow.segmentkey, arow.gid);
17 RAISE NOTICE ’Segmentkey % Most in gid %’, arow.segmentkey, arow.gid;
18 END LOOP;

19 END;

20 $%;
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Interactive Map

Our result from the experiment NN-observations is visualized on a map at http://energi.
elefsennet.dk. The map shows the results from the NN-observations on our test set, that
means only segments from the test set are colored. We have divided the segments into 4 colors

based on the sSMAPE for each segment. Description of the colors can be seen on the map. As

seen in Fig. C.1 the map provides detailed information about the individual segments in a pop-

up. This pop-up appears by clicking on a segment. The Training and Test attributes tells how

many samples are in each set. The Actual and Prediction is an average energy consumption

for the segment.
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Figure C.1: Pop-up for a Segment
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