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Synopsis:

Deep learning approaches have gained
popularity in a variety of fields, such
as computer vision, speech processing,
and natural language processing, due to
their impressive performance and their
flexibility. Among them, a new frame-
work for deep generative model estima-
tion has been recently proposed: gener-
ative adversarial network. This frame-
work has already shown good perfor-
mance in different image processing and
computer vision tasks, but its adop-
tion for speech-related tasks is still lim-
ited. In this project we explore some
of the possibilities that an adversar-
ial training can offer for speech pro-
cessing. In particular, two applica-
tions have been considered: speech en-
hancement and automatic speech gen-
eration. Regarding speech enhance-
ment, experimental results show that
the adopted approach overall outper-
forms the classical short-time spectral
amplitude minimum mean square error
method, and is comparable to a deep
neural network-based technique. On
the other hand, the results on auto-
matic speech generation indicate that
our models are able to generate plau-
sible spectrograms, even though some
artefacts can be heard in the recon-
structed signals. We provide generated
samples for a subjective evaluation of
the quality.
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SUMMARY

This report investigates the use of generative adversarial networks for speech pro-
cessing. Specifically, the two applications that are taken into account are speech
enhancement and automatic speech generation.

Generative adversarial networks are a recently introduced framework for deep
generative model estimation. The idea is to perform an alternate training of two
models: a generator that tries to capture the real data distribution, and a discrimi-
nator that tries to determine if a given sample is real or from the generative model.
The generator improves because it is trained to fool the discriminator. Even though
this approach has shown good performance in a variety of computer vision tasks, like
image super-resolution, text-to-image synthesis, and image-to-image translation, its
adoption for speech-related tasks is still limited. This motivates the investigation of
the possibilities that an adversarial training can offer for speech processing.

We limit our attention to speech enhancement and automatic speech generation.
In the first case, we make use of a framework previously adopted for image-to-image
translation to perform spectral enhancement. This is the first attempt of using
conditional generative adversarial networks to enhance speech to our knowledge.
The obtained results show that the approach overall outperforms the classical short-
time spectral amplitude minimum mean square error method, and is comparable to
an ideal ratio mask estimation technique that utilises deep neural networks.

Regarding the automatic speech generation, we use three models to generate
speech spectrograms: a traditional generative adversarial network, and two exten-
sions, one that allows to learn disentangled representations in an unsupervised way,
and the other that uses a condition to generate data. The results indicate that our
approach can generate plausible spectrograms, but some artefacts can be heard in
the reconstructed signals, making sometimes hard to recognise the spoken word. We
provide some samples to let the reader subjectively evaluate the quality of them.
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CHAPTER 1
INTRODUCTION

The large amount of information available today requires the design of algorithms
that can deal with it. One way to address this is by using generative models [33]. The
idea behind generative models is to have a compact representation able to capture
the main characteristics of the data (generally high-dimensional) and generate new
samples similar to the original ones. This can be performed adopting deep networks,
consisting of multiple layers that can learn features at different levels of abstraction.

However, modelling high-dimensional distributions is not the only motivation
behind studying generative models. Other reasons are provided by Goodfellow [16].
They are also particularly suitable for those applications where realistic synthetic
samples are required: data augmentation, image editing, style transferring etc.

One of the most promising deep generative models is generative adversarial net-
work (GAN). Here we have two networks that play a game against each other, where
one of them, the generator, tries to generate data as similar as possible to the train-
ing set, while the other, the discriminator, needs to distinguish between the samples
coming from the real distribution and the generated ones.

Although GANs have been extensively used in computer vision to generate im-
ages [63, 65], learn representations |63, 5|, manipulate images [92|, and obtain super-
resolved images [42], their application to speech processing is still limited. This mo-
tivates an investigation of the performance that an adversarial training can achieve
in speech-related tasks. In this project the focus is on speech enhancement and au-
tomatic speech generation, and the research questions we address are the following
ones:

1. How can we apply GANs to spectral speech enhancement and what perfor-
mance can be achieved compared to other methods?

2. How can we generate speech signals with a GAN-based approach and how
good are they?



Chapter 1: Introduction

This report consists of the following parts:

e Chapter 1: this chapter introduces the motivation behind this project and
defines the research questions that this work addresses.

e Chapter 2: this chapter presents the basic concepts of speech processing.

e Chapter 3: this chapter presents the basic theory behind deep learning, with
a particular focus on GANs.

e Chapter 4: this chapter shows how we apply GANs to tackle the speech en-
hancement problem.

e Chapter 5: this chapter shows how we use GANs to generate speech signals.
e Chapter 6: in this chapter the conclusions are drawn.

e Appendices: in this part the reader can find some additional materials.



CHAPTER 2
BASICS OF SPEECH PROCESSING

In order to deal with speech-related applications, some important concepts about
speech processing need to be introduced. This is what we will do in this Chapter,
so that the reader can understand the other sections of the report more easily.

2.1 Speech Production
Speech is a signal produced by humans that allows them to communicate with each

other. The three main parts involved in speech production are the lungs, the larynx,
and the vocal tract [46] (Figure 2.1).

Nasal cavity
Nostril

Vocal tract

Oral cavity Ph
arynx
Larynx -
— Trach
N rachea
’%,(

, , | :
Right main — Left main
bronchus | bronchus

/ \
Right lung \ Lot
/ \ \
[ - é; — Diaphragm

Source: Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/

Figure 2.1. Speech production system.
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Lungs provide the adequate airflow to the other organs by changing the respi-
ratory pattern, with a longer expiratory phase [24|. The larynx consists of several
structures and controls the vocal folds [46]. When the opening between the two
folds, called glottis, is wide, we say that the vocal folds are in the breathing state,
because they do not oppose any relevant resistance to the airflow coming from the
lungs [46]. In order to generate voiced sounds, such as vowel, the vocal folds vibrate
and alternate between a closed and an open phase. The time duration of this cycle
is called pitch period and its reciprocal is the fundamental frequency (Fp) [46]. Fp is
"the lowest harmonic component in voiced sounds” [24], and it is 80 Hz or lower for
males and 300 Hz or above for female and children [8]. The majority of the conso-
nants are generated in the unvoiced state, where the vocal folds do not vibrate, but
they are tense and close to each other [46]. Finally, the vocal tract includes the oral
cavity and the nasal cavity [46] and allows to produce additional sounds through
articulatory organs (tongue, lips, and velum) [24].

As described in [46], it is possible to use a simple linear model for the speech
production system (Figure 2.2). Based on the state of the vocal folds, voiced or
unvoiced, we have a pulse generator (periodic source) or a random noise generator
(aperiodic source) as an excitation signal of the vocal tract represented by a linear
filter. Then, a high-pass filter is applied to the output in order to model the sound
radiation at the lips.

Pulse generator

Voiced/ N\ . Speech
unvoiced Vocal tract > Radiation

switch filter filter

o

Figure 2.2. Speech production model. Inspired by [46].

Random noise
generator

2.2 Time-Frequency Representation of Speech Sig-
nals

One of the most popular method to perform the Fourier analysis of a signal is
the discrete Fourier transform (DFT). The DFT is applied to a finite-length signal
sequence z(n) with 0 <n < N — 1 and is defined as [§|:

X w) = x(n)e‘j%ﬁ“m, 0<w<N-1. (2.1)



Time-Frequency Representation of Speech Signals )

From X it is possible to recover the original signal with the inverse DFT |[8]:

N-1
]_ - 27
w(n) = % > XU w)e ¥ 0<n< N -1, (2.2)

w=0

If x(n) is a real-valued sequence, then the DF'T has the following symmetry property:

XN —w) = (X(w))" (2:3)

where ()* is the complex conjugate. This follows directly from the DFT definition:

N-1
XYN —w) = x(n)e‘j%ﬂw_w)” (2.4)
n=0
N-1
= z(n)e92mmel Fwn (2.5)
n=0
N-1
= :E(n)ej%“m (2.6)
n=0
N-1

(x(n)e_j%w”> ) (2.7)

(2.8)

(]

3
Il
=)

I
<
QL
—
&
S—r
S—r
*

where in Equation 2.6 we used the Euler formula to find that e/ = cos(2mk) —
jsin(2rk) = 1 — j0 = 1 Vk and in Equation 2.7 we used the hypothesis of z(n) as
a real-valued sequence. From the complex-conjugate symmetry property, it follows
that:

XUV —w)| = [X(w)]. (2.9)

Since speech signals are generated by a non-stationary process, which means that
its statistical properties change over time, the previously described DFT is not a
suitable technique for the Fourier analysis: the DFT is defined for the entire signal,
and it would be impossible to capture its variations [8]. However, it is still possible
to apply the DFT to a block of neighbouring samples (a frame generally between 10
and 35 ms), assuming that in this frame the signal is stationary. We can repeat this
procedure for successive overlapping windowed frames. This is the main idea behind
the discrete short-time Fourier transform (STFT) that can be defined as follows:

X(n,w) = Z z(m)w(n — rn)e_j%‘*”"7 0<nuw<N-—1, (2.10)

m=—oo
where w(n—m) is a window function centred at n = m, used to reduce the introduc-

tion of frequency components in the spectrum of the signal, a phenomenon known
as spectral leakage.
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The magnitude of the STFT, | X (n,w)|, is called spectrogram [8] (Figure 2.3)
and "describes the speech signal’s relative energy concentration in frequency as a
function of the time" [46]. A spectrogram is a widely used time-frequency (T-F)
representation of a signal because it clearly shows the main characteristics of it, like
the changes of the frequency peaks, or formants, over time [8|.

Amplitude

Frequency

Time

Figure 2.3. Spectrogram (bottom) of the sentence "Only lawyers love millionaires"
pronounced by a male speaker, along with the waveform (top) of the signal. The
MATLAB implementation used to generate the spectrogram is the one in [91].

Generally, we can distinguish between two kinds of spectrogram, based on the
window length (Figure 2.4). If w(n) has a short duration, then we have a wideband
spectrogram, with high time resolution, but poor frequency localisation. When a
long duration window is used, the spectrogram is called narrowband. In this case,
we have more spectral details, but a poor time resolution [8|.

2.3 Speech Reconstruction

Once that we have the STFT representation of a signal, X (n,w), we can reconstruct
(or synthesise) it using the overlap-and-add method [46] according to:

[e's) N-1

y(n) = Z %ZX(m,w)ejQJ“m, (2.11)

m=—00 w=

where the term in the brackets is an inverse DFT and can be seen as [46]:

Tm(n) = x(n)w(m —n). (2.12)

Now, we can rewrite the Equation 2.11 as [46]:
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R —

Amplitude

Frequency

Frequency

Time

Figure 2.4. Difference between narrowband (centre) and wideband (bottom) spec-
trograms. On top, the waveform of the signal is reported.

y(n) = Z Tm(n) = x(n) Z w(m —n) (2.13)
= cz(n), (2.14)

where in 2.14 we assumed that the summation is equal to a constant c.
Sometimes, we want to apply some modification to X (n,w). Since the values
that a STFT can assume are complex, we can see it in polar form:

X(n,w) = |X(n,w)|e’?"), (2.15)



8 Chapter 2: Basics of Speech Processing

where | X (n,w)] is the spectrogram of the signal (as seen in Section 2.2), and ¢(n,w)
represents its phase. In speech enhancement (see Section 4 for further details), we
modify the spectrogram of the signal, and then we synthesise the new waveform by
using the modified spectrogram and the phase of the noisy signal, which has been
shown to be a good estimate of the clean signal’s phase [4].

In other applications, we only know the spectrogram of the signal and we need a
phase in order to reconstruct it. Assuming zero or random phase generally tends to
yield poor results, so we can think to estimate the signal from the modified STFT
magnitude. Griffin and Lim [18] proposed an iterative approach to accomplish this.
Suppose to have a signal z(n), its STFT, X (n,w), and the modified STFT (MSTFT),
Y (n,w). We can consider the distance measure between the signal and the MSTFT
as the squared error between X (n,w) and Y (n,w) [18]:

D(x(n),Y(nw) = Y % S IX (1, w) — Y () (2.16)

= > D ) =y, (2.17)

where z,,(n) = z(n)w(m — n) and yn,(n) = + 25;01 Y (m,w)ed ¥¢m. Equation 2.17
follows from the Parseval’s theorem. In order to minimise D(z(n),Y (m,w)), we can

set the gradient to zero and find that [18]:

Y imm oo WA (m —m)
In our case, we want to estimate x(n) given |Y (n,w)|. If we denote with z'(n) the

estimated version of z(n) at the iteration 4, the algorithm consists of the following
steps:

z(n) = (2.18)

1. Compute the STFT of z'(n), X*(n,w).

2. Replace | X' (n,w)| with |Y (n,w)|.

3. Calculate z7!(n) from Equation 2.18 using the modified STFT.
4. Go back to step 1.

Griffin and Lim [18] also showed that this algorithm reduces the squared error be-
tween | X (n,w)| and |Y (n,w)|.

2.4 Mel Frequency Cepstral Coefficients

It is possible to represent a speech signal by using acoustic features. The idea is
to keep the important aspects of the signal in a compact representation. One of
the most used representation, especially in speech and speaker recognition [68], is
a set of mel-frequency cepstral coefficients (MFCCs) which are extracted using the
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following steps (Figure 2.5). First, the signal is multiplied by a 20 ms-long Hamming
window every 10 ms [68]. This allows to have short-time segments where we can
assume the signal as stationary. At this point, we compute the magnitude squared
spectrum from the DFT and we apply a mel-spaced bank of triangular filters [68].
The mel-frequency scale is linear below 1000 Hz, and logarithmic above 1000 Hz,
and can be approximated using the formula [83]:

Fmet = 2595 10g), (1 + §6’0> . (2.19)

The reason for using the mel scale is given by the human perception of sound, which
does not follow a linear scale [83]. Then, the logarithm of the filter bank output is
computed and the discrete cosine transform (DCT) is applied in order to transform
the frequency domain in a time-like domain known as quefrency |[3|:

Cn = i 10g(S,n) cos {% (m - %)1 , (2.20)

where S,,, is the output of the previous step. DCT is preferred to the inverse DFT
because it is a good approximator of the Karhunen-Loéve transform (KLT'), which
has an optimal decorrelation property [64].

Sg’lgﬁgr Windowing |—»|  DFT o MOFIET L sl Log » pct [MFCCs,
Figure 2.5. Steps needed for MFCCs extraction.
Usually, the N MFCCs, ¢y(n), ¢1(n), ..., cy_1(n), obtained as explained before

are concatenated with the logarithm of the signal energy, that for the first K samples
is

K
Ejog =log > a*(n), (2.21)
n=1

and with the first and second order time derivatives of the coefficients, also called
delta, d,,(n), and delta-delta, a,,(n), respectively, in order to take into account the
speech dynamics. The delta coefficients are computed as follows [48]:

Po
. DCm(n+Dp)
A (n) = 2= T (2.22)

p=—po P

where 2 pg+ 1 frames are involved in the computation. The delta-delta features are
obtained in the same way, using d,,(n + p) instead of ¢,,(n + p) in Equation 2.22.
To summarise, when we talk about MFCCs, we generally have a total of 3- (N + 1)
features: N MFCCs, 1 energy feature, N delta MFCC features, N delta-delta MFCC
features, 1 delta energy feature, and 1 delta-delta energy feature.
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CHAPTER 3
DEEP LEARNING

This Chapter will present the fundamental concepts about deep learning. First we
will describe the perceptron, as it is the building block of more complex models.
Then, various methods are explained, until we present deep generative models, with
a specific focus on GANSs.

3.1 Perceptron

The concept of perceptron has been introduced by Rosenblatt in 1957 [72|. This
model is inspired by the biological neuron, which can either fires or not based on
the stimulations from other neurons. Specifically, two neurons are connected with
the synapses, characterised by a weight that controls the connection strength. The
electrochemical signals propagate through the dendrites until they reach the cell
body (or soma), where the axon hillock generates spikes transmitted by the axon to
the other neurons. Figure 3.1 shows the representation of a biological neuron.

Cell body

Axon Telodendria % <
N 7 e
Y C L
//

Nucleus \

\Ji(%

Synaptic terminals

Axon hillock ,
—— A

Golgi apparatus

Mitochondrion ‘\ \ Dendrite
/
/ % Dendritic branches

Source: https://en.wikipedia.org/wiki/Neuron#/media/File:Blausen_0657_MultipolarNeuron.png

Figure 3.1. Representation of a biological neuron.

11
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We can see the perceptron as a mathematical model of a neuron (Figure 3.2)
that outputs a biased linear combination of the input after the application of a

non-linearity:
N
y=f0+> wa)=fb+a"7), (3.1)
i=1

_ T . . _ T
where 7 = [xl To xN] are the input signals, w = [wl Wo wN] are

the learnable weights, b is the bias applied to the linear combination of the input,
and f is a non-linear activation function, generally the sign function:

Sgn@):{l—l if 7 < 0, 52)

otherwise.

w1
N
i) U.JZ :@_p@ i=1 >
/ X
WN [|)

Cell
body Axon

Dendrites

Figure 3.2. Mathematical model of a neuron. Inspired by [1].

To make the notation simpler, we redefine w = [wo wy wN}T and ¥ =

[xo Ty ... xN}T, with wy = b and zp = 1, so that y = f(w’z). Now, we can try
to use the perceptron to solve a binary classification problem. We can consider a
dataset of M samples, D = {(z),dM), ..., (z™) d™))} where 2™ is the generic
input vector that can belong to the set A or to the set B, and

g _ 41 if ™) € A,
|1 ifzmeB

is the desired output of the perceptron for that input. If we indicate with w;(t)

the value that the " weight assumes at the step ¢, the learning algorithm used to
determine w consists of the following steps:

1. Initialise w; randomly.
2. Select a training sample ™ randomly.
3. If the output of the perceptron differs from d™, update the weights:

wi(t+1) = w;(t) + d(m)xgm)(t).

4. Repeat 2 and 3 until all the samples in the training set are correctly classified.
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The main limitation of this procedure is that its convergence is guaranteed only
for linearly separable! data, which means that a perceptron cannot even learn the
boolean XOR function [50| (Figure 3.3).

AND OR XOR

)

Tl

Figure 3.3. Limitations of the perceptron. It is possible to see that the perceptron
can learn the AND and the OR functions (since they are linearly separable), but
not the XOR function.

3.2 Multilayer Perceptron

A way to classify not linearly separable data is by using a model known as mul-
tilayer perceptron (MLP) where the responses of the perceptron units (or nodes)
are combined in multiple layers. In particular, in a MLP we can find at least three
layers of nodes (input, output and one or more hidden layers) which are able to learn
features at different levels of abstraction. The layers are generally called fully con-
nected because each node of a layer is connected with all the nodes of the previous
layer (Figure 3.4).

Input Hidden Output
Layer Layer Layer

Figure 5.4. Multilayer perceptron.

More formally, a MLP consists of N + 1 units z = [z ... xN]T (with g = 1)
as input, an hidden layer with M + 1 units z = [zo ZM}T (with zy = 1),
and an output layer with K units y = [y1 yK}T. We can denote with W =

ITwo sets of points are linearly separable if there exists at least one hyperplane in the Euclidean
space where the points are defined that separates the two sets.
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[wy ... wa] the (N 41) x (M + 1) matrix of the weights between the input and
the hidden layer, and with V' = [171 o @K] the (M +1) x K matrix of the weights
between the hidden and the output layers. Then, for the generic hidden unit z; we
have:

5 = 9w, ), (3.3)

and for the generic output unit yy,:

Yn = f(l}_hTE), (34)

where g and f are two activation functions.

The configuration of a MLP does not allow to use the learning algorithm seen
for the perceptron because it does not provide a way to update the weights of the
layers that are not the output one. The solution is backpropagation [45, 85, 73|, but
before we need to introduce the concept of loss function.

In order to solve a classification or a regression problem with a MLP, we consider
a loss function that associates a cost to the specific output of the network. For
example, in case of regression with a single output, f(z) = x and the loss function
generally used is the squared error:

1

BW,V) = 5 320 =y (35)

m

where r(™) is the desired output for the z(™ input and y™ is the actual output.
For binary classification, f(z) = H%’ known as sigmoid function, and the loss
function is the cross-entropy error function:

EW,V) ==Y [r"logy™ + (1 —r™)log (1 — y™)]. (3.6)
This can be extended to multiclass classification by using a softmax function for f,
fz), = Zf”ezi for [ = 1...L, and again the cross-entropy error function as loss
function.

Given the loss function, the problem now can be seen as an optimisation problem,
where we want to find the parameters W and V' that minimise the error. We can use
backpropagation together with an optimisation method like gradient descent. The
idea is to forward propagate the information through all the layers of the network
until the output, calculate the error and propagate it backwards. In particular,
backpropagation allows to compute the gradient of the loss function with respect
to the weights (the elements of V' and W) using the chain rule?, and then use it
to update the weights via gradient descent. In its simplest form, gradient descent
updates the weights as it follows:

w(t+1) =w(t) — Aw, (3.7)

with Aw = 77?9—5: where 7 is a hyperparameter called learning rate that controls how
much the parameters should change.

2The derivation of the backpropagation algorithm is not reported, but it can be found in [2].
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In order to accelerate the training, some extensions to the classical gradient
descent method have been proposed. For example, it is possible to include a mo-
mentum term that uses the gradient to update the velocity instead of the position
of the point in weight space [73]:

ot +1) = plt) ' .

w(t+1)=w(t) +v(t+1),

where p is the momentum parameter, generally set to 0.9.

Recently, a new method for gradient optimisation, considered the default algo-
rithm to use [1], has been proposed by Kingma and Ba [34]: Adam. As reported in
[1], the update can be seen as:

m(t +1) = fim(t) + (1 — Bi)g(t + 1)

v(t+1) = Bou(t) + (1 — Ba)g*(t + 1)

) m(t+1)
Tt rD+e)

(3.9)

w(t+1) =w(t

where ¢(t) indicate the gradient of the loss function at step ¢ and the recommended
values of the parameters are 8; = 0.9, 35 = 0.999 and ¢ = 1078,

When the training set is large, computing the loss function for all the samples is
impractical, then the gradient is computed over batches, and the approach is called
mini-batch gradient descent. When the mini-batch consists of only one element the
procedure is known as stochastic gradient descent (SDG). In the literature SDG is
used as synonym of mini-batch gradient descent when the batch size is reported.

The issue that arises now with gradient descent is that it is not possible to use
the sign function as activation function, because it is not differentiable at 0. In
practice, other non linear functions are used:

e The sigmoid function, o, was generally used in the past, but it presents two
drawbacks [1] . First, it has two saturation regions (one for large positive input
and one for large negative input), where the gradient is close to zero making
it difficult to update the weights. Then, the outputs of the sigmoid function is
not zero-centred which is undesirable because it may bias the weights’ update.

e The second issue of the sigmoid function can be solved by adopting the hy-
perbolic tangent (or tanh) defined as:

tanh(z) = 20(2z) — 1. (3.10)

e The first issue of the sigmoid function can be partially solved by using the
rectified linear unit (or ReLU) defined as:

f(z) = max(0, x), (3.11)
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where the saturation region still occurs for large negative input. For this reason
a Leaky ReLU (or I-ReLU) activation function can be adopted, where a slope
is used for the negative input, like:

fla) = {x ifx>0 (3.12)

ax otherwise
with « set to a small value.

Figure 3.5 shows some activation functions used in neural networks.

Sign Function Heaviside Step Function
1 1
0 0
1 at
2 0 > 2 0 2

Sigmoid Function Hyperbolic Tangent Function

-2 0 2 -2 0 2

ReLU Function Leaky ReLU Function
1 1
0 0
1 -1F
2 0 2 2 0 2

Figure 3.5. Some activation functions used in neural networks.

3.3 Convolutional Neural Networks

We have seen that MLP allows to learn a mapping between an input vector and an
output vector, but we have not said if it is able to learn any mapping function. In
their work, Hornik et al. [25] showed that a MLP even with one hidden layer having
a finite number of nodes is a universal approximator. In other words, "standard



Convolutional Neural Networks 17

multilayer feedforward networks are capable of approrimating any measurable func-
tion to any desired degree of accuracy, in a very specific and satisfying sense” [25].
However, the function to learn may require a high number of parameters, making
the training of the network hard. We can think to reduce the number of trainable
parameters, by adopting a different architecture known as convolutional neural net-
work (CNN). CNNs are used today in many different tasks, mainly in the computer
vision community, in particular after that Krizhevsky et al. [39] adopted them in
the ILSVRC-2012 competition [74], outperforming the other methods with a high
margin. However, CNNs were shown to be a technique able to reach a high accuracy
in classification tasks as far back as in 1989, when LeCun et al. [41] used a CNN to
classify handwritten digits.

The basic idea behind CNNs is to combine local features in order to obtain
features with a higher level of abstraction. In practice, this is realised by extracting
the same features in the different locations of the input using the weight sharing
concept: a hidden node is not connected to all the input nodes, but only to a
neighbourhood of input nodes and the connection weights do not change when a
different neighbourhood region of the input is considered. This is equivalent to the
application of a convolutional filter with learnable weights to the input (Figure 3.6).
For this reason, such a layer is called convolutional layer.

OO0 00

Figure 3.6. Convolutional layer. On the left, the connections with the same colour
share the weights. On the right, the same concept is represented as a convolution
between the input and a 3 x 1 filter with a stride of 1. It is possible to apply more
filters to the input in order to detect different kinds of feature.

A convolution can also be seen as a matrix operation [9]. Suppose that we want
to convolve a 4 x 4 input matrix, I, with a 3 x 3 filter, W, using a unit stride. If we
flatten the matrix 7 into a 16 x 1 vector 7, the 4 x 1 flatten output of the convolution
can be represented as:

0o=C xi, (3.13)

wo,0 wo,1  wo,2 0 wi,0 w11 wWi,2 0 w2,0 w21 w22 0 0 0
0 0 0 wo,0 WwWo,1  Wo0,2 0 w10 Wil 0 W12 0 w20 w21 W22

wo,0  WwWo,1  wWo,2 0 w10 w11 W12 0 wa,0 w21 w22 0 0 0 0 0
c—| o 0
- 0 0

0 0 0 0 0 wp,0  wWo,1  Wo,2 0 w10 Wil w12 0 w20 w21 w22
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where w;; is the element of the filter in the position (7,7), as in [9]. With this
representation, "the backward pass is easily obtained by transposing C" [9]. In some
situations, we would like to upscale the input (e.g. in the generator of a GAN,
as we will see in Section 3.4.4). In this case, we use C7 to compute the forward
pass, and (CT)T = C for the backward pass, performing the so called transposed
convolution® [9].

Generally, in a CNN we also find a pooling layer, which performs a subsampling
of the previous layer output. The usual way is to extract the maximum value of very
small regions of the previous layer (max-pooling). This has two advantages: first,
it reduces the number of learnable parameters; then, it makes the representation
robust to small local transformations [59].

To summarise, the architecture of a CNN has an alternation between convolu-
tional and pooling layers, usually followed by a fully connected layer to perform
classification (Figure 3.7).

Input Convolutional Pooling Fully Output
Layer Layer Layer Connected Layer
Layer
Feature Extraction Classification

Figure 3.7. Representation of a CNN for a RGB image as input. In this case only
one convolutional layer and one pooling layer are shown, but generally we have
multiple layers to extract higher order features. Inspired by [22].

One of the issues that deep CNNs have is that the network tends to follow the
noise, especially when the training set is small, a problem known as overfitting.
This can be prevented in several ways, for example by stopping the training when
the performance on the validation set falls or by using a regularisation term which
penalises large weights. Another effective way to address the issue is dropout [79].
The basic idea is to randomly drop the nodes of the network with a probability p
(usually p = 0.5) during training. Intuitively, this technique allows to generalise
better because the nodes of the network need to learn a representation which is less
dependent from the other nodes.

Another problem that arises with CNNs is the internal covariate shift. Basically,
when the information flows through a deep network, the weights adjust the data so
that its distribution in each layer can change during training. This issue is solved
by normalising the layer inputs, a method known as batch normalisation [27].

3A transposed convolution is also called deconvolution or fractionally strided convolution.
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3.4 Deep Generative Models

The neural network models we have seen so far are discriminative models, because
their goal is to model the posterior probability, p(y|z), of the label y given the input
x, or to learn directly a mapping between the input space and the labels [56]. On the
other hand, generative models try to learn p(x|y) [55], which can be used together
with the class priors p(y) to calculate p(y|z) via the Bayes rule [55]:

p(z|y)p(y)
plx)

Even though deep discriminative models are the ones that have obtained more
successes in a variety of tasks, deep generative models have the advantage of capture
the underlying structure of the data. In particular, they can provide (explicitly
or not) an estimator, p,,.qel, Of the data distribution pg., and, as a consequence,
generate samples from p,,oge [16].

Since the focus of this project is on generative adversarial networks (GANs),
we are going to present them in details. Before, we quickly introduce the con-
cept of maximum likelihood (ML) estimation, and the fully visible belief networks
(FVBNSs) and the variational autoencoders (VAEs) because they are the other two
most popular deep generative models, and it is relevant to show why GANs are a
valid alternative to them.

plyle) = (3.14)

3.4.1 Maximum Likelihood Estimation

As in [16], we consider the version of the models that use the maximum likelihood
(ML) principle in order to simplify the discussion.

In our case, we can consider a training set as a sample of M independent and
identical distributed observations, ™, from the distribution pgee. In ML, we
assume that puesa(Z) = Pmoder(Z]00), where y is an unknown vector of parameters.
If we define the likelihood as:

10)z9, ..., zM) = pzW, ... zM9), (3.15)

then, the ML method consists of estimating §, by finding the # that maximises the
likelihood:

0* = argmax 1(A|zV), ... M), (3.16)
0
which can be rewritten as:

M
0* = arg max H pmodel(f(m)lé), (3.17)
0 m=1
for independent and identically distributed observations. For convenience, the log-
likelihood is generally used:

M
£z, ..., zM) =logi(flz", ..., 2M) = " 10g pmode ("™|6). (3.18)
m=1
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We can interpret the ML estimation as the minimisation of the Kullback-Leibler
(KL) divergence between pyara and pmoder, Dk r(Pdata|lPmoder). The KL divergence
is defined as Dy (p(z)|q(z)) = [°o p(z) log 22 dz. Since we do not have access

a(z)
directly to pgara, we define an empirical data éistribution Diate that approximates
Pdata |16]. From the definition we can write:

* 7 7|0 = * - *a a T
Dt el P #10) = [ () o LoD g (3.19)
—00 pmodel(l'W)
= / pZata ('f) log prlata (j:) dI
[ Vi) 08 (1) (3.20)
- - H[p;ata(i')] + H[p;klata<f)>pmodel(£’é)]> (321)

where H[p},,,(Z)] is the entropy of pj,, and does not depend on 6, so it can be
ignored. H[p}.;.(Z), Pmoder(Z|0)] represents the cross-entropy of pl.;. and pmeder, and
can be seen as Ep;m[— 10g Prmodet]- Now, from Equation 3.18, we can write:

M
_ 1 _
0" = arg max i Z logpmodel(:i(m)W) (3.22)
0 m=1
1 < _
= arg min i Z — logpmodel(f(m)\e), (3.23)
0 m=1

where 1 2%21 — 108 Prmoder (Z™|6) converges to Ep:  [~10g Pimodet], according to the
strong law of large numbers. Thus, as reported in [16], "minimising the KL diver-
gence between pjj,., and Pmoder 15 exactly equivalent to mazimising the log-likelihood
of the training set”.

3.4.2 Fully Visible Belief Networks

FVBNs [13] are models that define poqe(7, #) explicitly, making the maximisation
of the likelihood easy to perform. The main issue is related to the design of a model
that is computationally tractable, and in the specific case of FVBNs this is obtained
by using the chain rule of probability as shown in [16]:

pmodel(j) = Hpmodel(xi|x1a s 7xi—1)- (324)
=1

FVBNs are the basis of some state-of-the-art generative models like WaveNet
[84], a deep neural network that generates raw audio waveform. The drawback of
this approach is that the generation is really slow, because each sample x; needs to
be generated separately using a deep neural network [16]. GANs;, on the other hand,
do not have this limitation, and the generation of samples can be parallelised.
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3.4.3 Variational Autoencoders

VAEs [35, 69] belong to another class of generative models that provide a compu-
tationally intractable density function, but the likelihood is maximised using deter-
ministic approximations [16]. In variational methods a lower bound to the likelihood
is maximised [16]:

L(iw_) S logpmodel(a_j’é)- (325)

The main problem related with VAEs is that the gap between L and the true
likelihood can be such that the model learns a distribution different from pgasq [16].
Even though the likelihood obtained with VAEs is high, they tend to produce lower
quality samples [16]. For example, if we consider the generation of image samples,
they are blurry due to the minimisation of the mean square error as the reconstruc-
tion loss.

3.4.4 Generative Adversarial Networks

GANSs [17] differ from the two previously mentioned generative models because they
do not provide a probability distribution explicitly, but they directly sample from
Pmodel []-6]

The GAN framework consists of two players that play a game against each other,
where a generator (G) tries to capture the data distribution and draw samples from
it, and a discriminator (D) tries to distinguish the samples presented to it between
real (coming from pyu,) and fake (coming from p,eae;). Both players improve in this
game because the training process for G consists of fooling D (Figure 3.8).

D tries to make D(G(z)) close to 0
G tries to make D(G(z)) close to 1

f f

D D

f f

sample x from data distribution G(z2)

D tries to make D(x) close to 1

noise z

Figure 3.8. GAN framework. Inspired by [16].

G and D are two functions both differentiable with respect to their inputs and
their parameters, and generally they are neural networks [16]. The architectures
mostly used today [16] are based on deep convolutional GAN (DCGAN) [63], whose
generator is shown in Figure 3.9. DCGAN allows to address some instability issues
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that occur in the training phase of GANs applied to high resolution images. The
key ideas behind the approach are three: the application of batch normalisation to
most of the networks’ layers, the absence of pooling layers as done in [78|, and the
adoption of the Adam optimiser for training.

256
256
1024
z G
4 8 " @
4 32 64

8

w

512

16
deconv 1 32

Project and
reshape

deconv 2
deconv 3 64

deconv 4

Figure 3.9. DCGAN generator. All the deconvolutional layers use 5 x 5 filters with
a stride of 2. Inspired by [63].

Using a notation similar to the one in [16], the inputs of D and G are an ob-
served variable z and a latent noise variable Z, respectively, and their parameters
are denoted as 0P) and (%) respectively. In the training procedure, a simulta-
neous gradient descent is adopted to minimise the loss function of the discrim-
inator, J(D)(é(D),é(G)), by updating 8P, and the loss function of the generator
J@(0P) 9 by updating §@). The loss function of D is [16]:

JOEPF9) =~ Fry,, o D7) — 5 Belog(1 - D(G(2),  (3.26)

while for G we can use [16]:

JG) (g(D)7 g(G)) — _J(D)(é(D)7 g(G))7 (3.27)

in order to have a zero-sum game, also called min-max because its "solution involves
minimisation in an outer loop and mazimisation in an inner loop" [16]:

0% = arg min maxV (6P, '), (3.28)
g o
where V (0P) 9(@)) = —JP) () (&), In practice, J&(OP), 9(D) as seen in Equa-
tion 3.27 is not used, because log(1 — D(G(Zz))) tends to saturate in the first stages
of training. This occurs because G is poor and it is easy for D to distinguish be-
tween real and fake samples [17]. An alternative loss function for G, heuristically
motivated, is [16]:

JO@GD) ey — —% E. log D(G/(2)). (3.29)
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It is also possible to choose a J(@) that minimises the KL divergence between pf,,.
and Prmoder (and equivalently performs a maximum likelihood learning as seen in
Section 3.4.1), such as [16]:

JO@P) 5Oy —% E. exp (0~ (D(G(2))). (3.30)

One of the advantage of this adversarial training procedure is that the generated
samples have generally a better quality if compared to the models that adopt a mean
square error-based loss function (Figure 3.10).

Mean Square Error Adversarial

@ ()

Figure 3.10. Advantages of the adversarial loss over the mean square error. In the
training process of models based on mean square error, we have an input, ¢, which
is associated with a desired output, oy. If the 0;, j = 1,...,4, are all valid outputs
for ¢ and during training the model maps 7 to o3, then we have a certain error,
represented by the red arrow. This induces 7 to be mapped to the mean of the valid
outputs. This is the reason why images produced with this method are blurry. On
the other hand, in GANs, when G generates o3 from 7, the discriminator accepts it
as a valid output, since input and output are not paired. Inspired by [15].

However, the main drawback is that solving the game between G and D means
finding a Nash equilibrium, which is harder than optimising an objective function
[16]. For this reason, several techniques are used to have stable models [6]. For
example, sometimes D shows a really high confidence in classifying the samples
between real and fake, making the generator gradient large [16]. A possible solution
to this problem is to reduce the confidence of D to choose the correct class by one-
sided label smoothing [75], which consists of replacing the target of real data from
1 to 1 — «a (generally « = 0.1). Another way to improve GANs is by using labels
when available. Many different approaches are possible. For example, Springenberg
[77] proposes a multi-class output for D, that should produce uncertain predictions
when generated samples are presented to it, and high confidence about the class
when real data is the input. Odena [57] uses a discriminator that can predict N + 1
classes, the N classes of the training set and an extra one for the fake samples.
Mirza and Osindero [51] propose a conditional model of GAN (cGAN) where both
G and D are conditioned to generate samples of specific classes (Figure 3.11).
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y y

NN > G(zly) NN +—» D(xly)

Figure 3.11. Conditional GAN. NN indicates that the architectures of both G and
D are neural networks. Inspired by [51].

c¢GANs are useful because they allow to control what we would like to gener-
ate. Nevertheless, most of the data is unlabelled, making supervised techniques not
suitable for the task. On the other hand, if we use the original GAN framework,
no restriction are imposed on how G should use the noise z. This means that each
dimension of Z is not responsible for a semantically meaningful aspect of the data.
In order to learn a disentagled representation of the data in an unsupervised way,
Chen et al. [5] propose a GAN extension, InfoGAN, that maximises the mutual
information between a subset of the latent variables and the observations. In the
original GAN, the minimax objective is:

min max V (6P, §9)), (3.31)
9(G) g(D)
where:
V(EP,09) = By, llog D(@)] + Exllog(1 - DEE))]. (3.32)

In InfoGAN, the input of GG is divided into two parts: z, which represents the noise,
and ¢, the latent code that has a correspondence with the semantic aspects of the
data. If we train this model using the original GAN, G can ignore ¢, so the mutual
information between ¢ and G(Z,¢) is used as a regularisation term. The mutual
information between two random variables X and Y is [5]:

I(X;Y)=H(X)— HY|X)=H(Y) - HY|X), (3.33)

so it is the reduction of uncertainty in X given Y. In our case, maximising /(¢; G(z, ¢))
allows not to let G ignore ¢ when it generates a sample. Then, the minimax objective
becomes [5]:

min max V;(9?), %)), (3.34)
0(G) (D)

with:
V(0P 0D = v (0P 99 — \I(¢;,G(%,¢)). (3.35)
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Maximising the mutual information is not easy, since it requires the posterior prob-
ability p(¢|z), but it is possible to define a distribution Q(¢|z) that approximates
p(c|z) and allows to obtain a lower bound L;(G, Q) of I(¢; G(Z,¢)), as shown in [5].
Thus, the minimax game for InfoGAN has the following objective [5]:

“min max Vi, ogan (67,09, 619)), (3.36)
9(G) (@) (D)
where:
Vinjocan (0P, 0 Q) = v (6P 99y — \L;(G, Q). (3.37)

The adoption of GANs for computer vision and image processing tasks is exten-
sive 28, 63, 5, 42, 90|, but their use in speech-related tasks is very limited. To our
knowledge, the only relevant work is [52], where a deep visual analogy network [66]
is used as a generator to perform voice conversion. The results are promising, even
though no objective measures are used to evaluate the quality or the intelligibility
of the generated samples. Another related work is the one by Mogren [53] that pro-
poses a generative adversarial model to train a recurrent neural network for classical
music generation.
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CHAPTER 4

GENERATIVE ADVERSARIAL
NETWORKS FOR SPEECH
ENHANCEMENT

Speech enhancement is crucial in several applications, including automatic speaker
verification (ASV), speech recognition, and hearing assistive devices. The general
objective of speech enhancement is to reduce the noise from a degraded signal in
order to improve its quality and intelligibility, when the receiver is a human user,
or the robustness of the system to noise, when the receiver is an automatic speech
system. Among the approaches that can be adopted to achieve this goal, we can
mention statistical methods, such as short-time spectral amplitude minimum mean
square error (STSA-MMSE) [46], and deep learning techniques, like deep neural
networks (DNNs) [36, 87], deep autoencoders [47], and CNNs [61].

This Chapter will give a detailed description of the work that we have done in
order to use cGAN for speech enhancement. This has lead to the submission of a
paper [49] to the Interspeech 2017 conference that can be found in the Appendix B.

4.1 Problem Formulation

The speech enhancement task can be formulated formally by the following model
[37]:

y(n) = z(n) + d(n), (4.1)

where z(n) and d(n) are the speech and the uncorrelated noise signals, and y(n)
is the observed noisy signal. The objective of speech enhancement is to provide an
estimate, z(n), for xz(n), given y(n).

Equation 4.1 can also be written using the T-F representations of the signals:

Y(n,w) = X(n,w) + D(n,w). (4.2)

27
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In this case, we can estimate X (n,w) and then reconstruct the signal as seen in
Section 2.3 (Figure 4.1).

y(n) Y(n, wl Spectral X(n’ w
z(n) STFT " | enhancement

\ Ad

Synthesis ——» Z(n)

Figure 4.1. Steps needed to perform spectral enhancement. Inspired by [7].

4.2 System Overview

Our system is based on the work of Isola et al. [28], that proposed a cGAN framework
(Pix2Pix) for image-to-image translation tasks. Our goal is to use Pix2Pix to learn
a mapping between a noisy spectrogram and a clean one. An overview of the system
is shown in Figure 4.2, where we distinguish between a training phase and a test
phase.

ETraining 1
| i
! |
1
1 Clean speech —| Spectrogram —» Normalisation 1
H extraction !
' |
H Pix2Pix !
| Framework '
' |
' |
i Noisy speech — Spectrogram | Normalisation |
| extraction '
i :
' |
! |
o |
et et et
Test
; Spectrogram N i cati > Pix2Pix . ; Enhanced
ormalisation > —» Rescalin
Noisy speech —| “C i action | | Generator 9 [~ Synthesis |—» speech

extraction

: :
1

1
i :

1
i :
! )
) 3 !
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! |
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: 1
! i

1
: |

Figure 4.2. Block diagram of the Pix2Pix-based speech enhancement system.

During training, we have two signals available: z(n) and y(n). From both of them
we compute the spectrogram (|X (n,w)| and |Y'(n,w)|) using a 512-point STFT with
a hamming window size of 32 ms and a hop size of 16 ms. For speech signals having
a sample rate of 16 kHz, the resolution of the spectrogram is 16 kHz/512 = 31.25 Hz
per frequency bin. Due to the symmetry property of the DFT (Equation 2.3), we
can consider only the first 257 elements of each frame of the spectrogram. Then, we
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normalise the spectrogram in order to have values within the range [—1, 1]. Specif-
ically, for the value v of each element of the original (clean or noisy) spectrogram,
we apply the following linear mapping to find the normalised value u:

v—a

b—a

u=2

1, (4.3)

where a and b are the minimum and the maximum values of the noisy spectrogram
respectively. Furthermore, since we decided to have G and D with an input size
of 256 x 256 x k (where k = 1 for G, and k£ = 2 for D) to make the design of
the architecture simple, we concatenate all the spectrograms and then perform a
split every 256 frames. We also remove the highest frequency bin, which has a small
impact on the T-F representation of the signal, being just the highest 31.25 Hz band
of it. At this point, we can use the preprocessed signals in Pix2Pix.

We have seen before (Section 3.4.4) how a cGAN works. Pix2Pix differs from the
original formulation because it does not use the noise variable z. The reason is that
G learns to ignore it. In order to produce some stochasticity in the output, the noise
is introduced in the form of dropout. Unfortunately this approach failed to achieve
the expected outcome [28|. However, our interest is in learning a mapping from the
spectrogram of a noisy speech to an enhanced counterpart, so this is a minor issue.

In Pix2Pix the adversarial loss is combined with the L1 distance between the
output of G and the ground truth. The use of different losses in GANs have been
reported also in other works, where generally the L2 distance [62] or a perceptual
loss [42, 90| is adopted. The choice of the L1 distance in Pix2Pix is motivated by
the less blurred output if compared to the L2 distance [28].

Also, Isola et al. [28] used a U-Net [71] for G, where the skip connections be-
tween the encoder and the decoder avoid the bottleneck for the information flow
represented by the innermost layer of the network. On the other hand, D is a
PatchGAN [28] with the objective of classifying all the patches of the input image
as real or fake. In this way D can capture the high-frequency of the data, leaving
to the L1 loss the task of modelling the low frequency structure.

Our implementation of the framework is based on [44], where the main differences
with [28] are two:

e The use of 5 x 5 filters for the convolutions and the translated convolutions.

e The adoption of a fully-connected layer that is fed into a single sigmoid output
for the last layer of D.

GANSs are trained according to the parameters reported in [28]. In particular, we
use SDG with the Adam optimiser (see Section 3.2) for 10 epochs and a batch size
of 1. We initialise the weights from a normal distribution with zero mean and a
standard deviation of 0.02. The scaling factor used to add the L1 loss to the GAN
loss is 100. Also, as in [44], we update G twice per each iteration in order to reduce
the convergence speed of D. Figure 4.3 illustrates how we train G and D in our
work, and Table 4.1 shows their configuration.
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D —» Real pair?

Noisy Enhanced RS i
spectrogram spectrogram Noisy/enhanced
spectrograms pair

D +——» Real pair?

Noisy/clean
spectrograms pair

Figure 4.3. Training of the Pix2Pix framework for speech enhancement. G generates
the enhanced spectrogram from a noisy one, while D tries to classify its input
as a real pair (noisy and clean spectrograms) or a fake pair (noisy and enhanced
spectrograms).

Generator
Layer Dimension
Input - (256, 256, 1)
E1l conv (128, 128, 64)
E2 l-ReLU/conv/BN (64, 64, 128)
_0;3 E3 I-ReLU/conv/BN (32, 32, 256) Discriminator
S|E4  1-ReLU/conv/BN (16, 16, 512) Layer Dimension
5| E5 1-ReLU/conv/BN (8, 8, 512)
E6  1-ReLU/conv/BN (4, 4, 512) Input - (256, 256, 2)
E7  LReLU/conv/BN (2, 2, 512) H1  conv (128, 128, 64)
ES8 l—ReLU/’conv/BN (1 1, 512) H2 I—RCLU/COIIV/BN (647 647 128)
H3 l-ReLU/conv/BN (32, 32, 256)
D1 ReLU/deconV/dropout/SC (2, 2, 1024) H4 l—ReLU/conv/BN (327 32, 512)
D2 ReLU /deconv/dropout/SC | (4, 4, 1024) H5 l—ReLU/FC/éigmoid (1) )
D3 ReLU /deconv/dropout/SC | (8, 8, 1024) -
—E D4 ReLU/deconv/BN/SC (16, 16, 1024)
3| D5 ReLU/deconv/BN/SC (32, 32, 512)
A | D6 ReLU/deconv/BN/SC (64, 64, 256)
D7 ReLU/deconv/BN/SC (128, 128, 128)
D8 ReLU/deconv/tanh (256, 256, 1)

Table 4.1. Network configurations for the generator and the discriminator. BN
denotes batch normalisation, SC a skip connection, and FC a fully connected layer.

At test time, we extract the spectrogram and the phase of the noisy signal,
perform the normalisation (Equation 4.3), and use the trained G to enhance the
spectrogram. As for training, we use 256 x 256 spectrograms, but this time we
zero-pad the spectrogram of each test sample, and not concatenate different ones.
Then we rescale the spectrogram with the following equation:

+a, (4.4)
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where 4 and 4’ are the values of the normalised and the rescaled spectrogram re-
spectively. Using the estimated spectrogram (with a row of zeros for the previously
removed high frequency bins) and the noisy phase, we can reconstruct z(n).

4.3 Experiments

In this section we are going to describe how we perform the experiments in order to
evaluate the performance of the system.

4.3.1 Evaluation Metrics

In the assessment of speech signals, two different aspects are generally considered:
quality and intelligibility. Speech quality indicates how good a speech signal is
perceived by a human user, while speech intelligibility refers to how comprehensible
the speech is for a listener [38]. One way to measure these aspects is by performing
subjective tests based on a panel of listeners, such as the Mean Opinion Score
(MOS) [29]. In this method the listeners have to rate the quality of the speech
using a five-point scale: excellent (5), good (4), fair (3), poor (2), and bad (1).
The average value of all the scores given by the listeners for each speech is the
MOS value [38]. Unfortunately, this methods are costly, and since the quality rating
is highly subjective, a good estimate of the quality requires many listeners. As a
consequence, objective measures have been proposed, and among them perceptual
evaluation of speech quality (PESQ) [70] (which also has a wide-band extension [30])
and short-time objective intelligibility (STOI) [80] are the most used estimators.

PESQ is a measure that takes into account the human auditory perception to
evaluate the quality of speech. This is done by using a perceptual model to convert
the clean and the enhanced (after time alignment) speech signals. Then, the differ-
ence between the representations of the signals is used by a cognitive model [38] to
produce a score between -0.5 and 4.5. For the wide-band extension, the following
output mapping function is applied [30]:

4.999 — 0.999
1 4 ¢—136692+3.8224

y = 0.999 + (4.5)

On the other hand, STOI is a measure highly correlated with speech intelligibility
[80] and can assume values in the range [—1, 1], where —1 is associated with the
lowest intelligibility. To obtain this score the clean and the enhanced signals are
required, and the process consists of the following steps. First, a T-F representation
of each signal is computed, using 15 one-third octave bands. Then, the temporal
envelops of short-time segments (384 ms) are normalised and clipped. After that, a
linear correlation coefficient between clean /noisy pair of segments is calculated, and
the final score is obtained by averaging over all frames and bands.

We use the implementation from [46] for PESQ and the one from [80] for STOI.
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We also evaluate the performance in terms of equal error rate (EER) of an ASV
system. In particular, we use the Gaussian mixture model - universal background
model (GMM-UBM) framework, which consists of three main stages. First, a general
model, UBM, is built by training a GMM with a large set of speech data using the
expectation-maximisation algorithm. The mixture density is [67]:

p(z]0) = Z wip;(Z), (4.6)

where z is a D-dimensional feature vector (generally MFCCs), p;(Z) is the i-th
Gaussian component, w; is the i-th mixture weight that should satisfy the condition
Zf\il w; = 1, and 0 is the set of parameters of the model (the mean vectors, the
covariance matrices, and the mixture weights for each distribution). In our case
D =57 and M = 512.

After the computation of the UBM, we need to train a model for each speaker
and for each passphrase. Generally, we do not have access to a large set of data for
a specific speaker, so we cannot use the same approach as the one used to build the
UBM. Therefore, we derive the speaker model from the UBM using a maximum a
posteriori (MAP) adaptation, which can be seen as a regularised form of the ML
estimation (Section 3.4.1). In MAP we also include prior knowledge, p(f), obtaining
the following formulation:

; pE,...,z"19) p(0)

0 — arggnax p(0)zY, ..., 7)) = arg;nax PO (4.7)
Since p(z®, ..., (M) is independent of 0, we have:
0" = arg max p(EW, ... z19) p(d). (4.8)
9
Finally, the log-likelihood ratio for a test utterance z* is computed as [67]:
Az*) = log p(z*|0) — log p(T*|Ou ), (4.9)

where 0y and Oy are the parameters of the hypothesised speaker model and the
UBM respectively.

4.3.2 Baseline Methods

In our experiments, we use two approaches as baselines: Short-Time Spectral Ampli-
tude Minimum Mean Square Error (STSA-MMSE), and an ideal ratio mask (IRM)
based deep neural network speech enhancement (DNN-SE) algorithm.

STSA-MMSE is a classical speech enhancement method that estimates the STSA
in a MMSE sense. The MMSE estimator is a Bayesian estimator that can be seen
as the conditional expectation of the parameters § given the observations Z:

G — Blo7] = /ép(9‘|z)d9. (4.10)
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In our context, this leads to the application of a gain function, F', to Y (n,w) [10]:

A

X(n,w) = F(&(n,w),y(n,w)) Y(n,w) (4.11)
where [19]
E(n,w) = % (4.12)

is the a priori signal to noise ratio (SNR) with P,, and P,, being the power spectrum
of the clean and noise signals respectively, and [19]

v(n,w) = % (4.13)

is the a posteriori SNR. Assuming that the spectral components are modelled with
a Gaussian distribution [10], the gain function is [10]:

PE(n,w), () ) =LA o (_M)

2v(n,w) 2

[( 1+ o(n,w) )y (@) +o(n,w), (M)} ,

where Iy and I; are the modified Bessel functions of zero and first order and

% v(n,w). (4.15)

(4.14)

v(n,w) =
In order to estimate the a priori SNR, we use the decision directed approach [10]:

: X (n—1,0)P

&(n,w) :ozpnn(n_ 1) + (1 - a)Ply(n,w) —1], (4.16)

where « is a smoothing factor (in our case v = 0.98) and

ifxz>0
Pa]=4{" "= (4.17)
0 otherwise.

The approach described above assumes that the distributions of the DFT coefficients
of both speech and noise signals are Gaussians, but in our experiments we assume
that the magnitude of the clean speech DFT has a generalised-Gamma distribution
[21] as in [11], with parameters v = 2 and v = 0.15. The noise power spectral
density (PSD) has been estimated using the work of Hendriks et al. [20], where a
noise PSD estimate based on the first 1000 samples of each utterance, assumed as
a speech-free region, is used for the noise tracker initialisation.

The IRM-based DNN-SE (from now on simply DNN-SE) we use is based on [36].
The IRM estimation is performed with a DNN with three 1024-unit hidden layers
and a 64-unit output. The input vector is a combination of 31 MFCCs, 15 amplitude
modulation spectrogram, 13 relative spectral transform - perceptual linear prediction
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and 64 gammatone filter bank energies, with their delta and delta-delta for a context
of 2 past and 2 future frames. In total, we have a 3 - (31 + 15+ 13 +64) - 5 =
1845-dimensional feature vector. The target IRM is computed as in [33]

X (n,w)? "

o) = (e s D) e
where, in this case, the T-F representation of the signals is based on a gammatone
filter bank with 64 filters linearly spaced on a Mel frequency scale. The DNN is
trained for 30 epochs with SDG, using the mean square error as loss function and
a batch size of 1024. We can enhance a degraded signal with the DNN-SE by
applying the estimated IRM to the T-F representation of the noisy signal and then
reconstructing the time domain signal.

4.3.3 Datasets

The two speech corpora we use are TIMIT [14] and RSR2015 [40]. Specifically, we
take 4380 utterances of male speakers from TIMIT to train the UBM. Regarding
RSR2015, we consider three sets. The first one, consisting of Text ID from 2 to 30
of sessions 1, 4, and 7 for the male speakers from m051 to m100, is used to train
our system and DNN-SE. For the second one, we select Text ID 1 of sessions 1, 4,
and 7 for the male speakers from m002 to m050 to train the speaker models. For
the last one, with the purpose of evaluating the systems, we choose the same text
ID and speakers used for training the models, but sessions 2, 3, 5, 6, 8, and 9. Table
4.2 summarises the allocation of RSR2015 data.

Set ‘ Purpose ‘ Text 1D ‘ Session ID ‘ Speaker 1D
1 | Pix2Pix / DNN-SE training 2-30 1,4, 7 m051-m100
2 Speaker models training 1 1,4, 7 m002-m050
3 Evaluation 1 2,3,5,6,8,9 | m002-m050

Table 4.2. Allocation of RSR2015 speech data used for our experiments.

RSR2015 represents a compromise. It has been chosen because we are interested in
evaluating the performance of an ASV system, and it is widely used for this purpose.

In order to simulate real-life noisy conditions, five noise types have been added
to the clean signals at different signal to noise ratio (SNR):

e Airplane, collected by Fondazione Ugo Bordoni (FUB) and available on request
from the OCTAVE project [12].

e Babble, obtained by adding 6 random speech samples from the Librispeech
corpus [60].

e Cantine, recorded by Thomsen et al. [82].
e Market, collected by FUB as for the airplane noise.
e White Gaussian noise, generated in MATLAB.
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4.3.4 Setup

Six Pix2Pix-based speech enhancement front-ends have been investigated: five noise
specific front-ends (NS-Pix2Pix), each trained on one kind of noise, and one noise
general front-end (NG-Pix2Pix), trained on all the five types of noise. Also for
the DNN-SE front-ends, we train five noise-specific front-ends (NS-DNN) and one
noise general front-end (NG-DNN). The degraded speech used for training has been
generated by adding noise to clean speech at 10 and 20 dB SNR. Using a high SNR
is motivated by the fact that G can capture the structure of the noisy input easier
and generate a clean spectrogram. However, exploring the possible improvements
that a use of lower SNR could allow to achieve can be done as a future work. To
test the systems, the noise has been added at five SNR: 0, 5, 10, 15, and 20 dB. In
the future, a test with lower SNR is useful especially for intelligibility evaluation.
The performance of the ASV system on enhanced clean data is reported to show
the front-ends’ behaviour on noise-free conditions.

Three tests have been conducted using the following front-ends: no enhancement,

STSA-MMSE, NS-DNN, NS-Pix2Pix, NG-DNN, and NG-Pix2Pix.

e Test 1. PESQ and STOI are computed to evaluate the speech quality and the
intelligibility.

e Test 2. The EER of the ASV system when enhanced clean speech is used for
training is computed.

e Test 3. Multi-condition training is performed and the EER scores calcu-
lated. For no enhancement, STSA-MMSE, NS-DNN, and NS-Pix2Pix, en-
hanced clean speech and one kind of enhanced noisy speech are used to build
the speaker models, whereas all noise types are used to train the ASV system
when we evaluate NG-DNN and NG-Pix2Pix.

4.4 Results and Discussion

Table 4.3 shows the results of the first test. We can see that the average PESQ
scores of NS-Pix2Pix and NG-Pix2Pix are better than the other front-ends. Espe-
cially between 5 and 15 dB SNR, our system produces the best outcome, regardless
of the noise type. NG-Pix2Pix outperforms NS-Pix2Pix at 0 dB with one exception
(market noise), and its performance is close to the ones of DNN-SE. At 20 dB, the
results for babble and cantine noises indicate that all the speech enhancement meth-
ods introduce some distortion, since the PESQ score is higher when no enhancement
is performed. For airplane noise, the best technique is STSA-MMSE, but for market
and white noises our front-ends obtain again better results.

Regarding STOI, our system results are closer to STSA-MMSE than to DNN-SE
front-ends, which are superior overall. However, in some cases (market and cantine
noises at low SNR) STOI scores obtained with Pix2Pix are the same or really close
to the DNN-SE ones. At 20 dB, we have a behaviour similar to the one observed
with PESQ, where the results are better when no enhancement is adopted.
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\ \ PESQ | STOI

‘ SNR ‘ 0 5 10 15 20 ‘ mean H 0 5 10 15 20 ‘ mean
(a) 1.34 1.63 2.02 247 3.00 | 2.09 0.64 0.74 0.82 0.88 0.93| 0.80

o (b) 1.54 1.79 217 272 3.26 | 2.30 0.66 0.74 0.81 087 0.91 | 0.80
E (c) 1.65 194 230 273 3.16 | 2.36 || 0.69 0.76 0.83 0.88 0.92 | 0.82
% (d) | 1.57 2.02 2.51 291 3.18 | 2.44 0.66 0.75 0.81 085 0.89 | 0.79
< (e) 1.65 194 229 270 3.14 | 2.35 || 0.69 0.76 0.82 0.87 091 | 0.81
(f) | 1.67 2.07 2.51 288 3.13 | 245 || 067 0.74 0.79 0.83 0.86 | 0.78

(a) | 1.20 142 1.79 240 3.13| 199 | 044 056 0.67 0.77 0.85 | 0.66

o (b) | 1.14 1.31 1.61 207 265 | 1.76 || 0.43 0.56 0.66 0.74 0.81 | 0.64
% (c) 1.25 151 1.87 231 278 1.95 0.50 0.63 0.72 0.79 0.86 | 0.70
!:65 (d) | 1.20 1.48 198 252 293 | 2.02 046 059 0.71 078 0.83 | 0.67
(e) 124 1.52 188 231 2.78 | 1.95 049 0.62 0.72 0.79 0.85 | 0.70

(f) 1.20 1.49 2.00 2.53 293 | 2.03 || 0.46 0.60 0.71 0.77 0.82 | 0.67

(a) 1.35 1.65 2.07 257 3.30| 2.19 054 0.66 0.75 0.83 0.90| 0.74

° (b) 1.38 1.68 2.12 267 3.23 | 2.22 0.55 0.66 0.74 082 087 | 0.73
-é (¢) 1.46 1.75 215 263 3.12 | 2.22 0.59 0.69 0.76 0.83 0.89 | 0.75
g (d) | 145 1.84 238 2.82 313 | 2.32 0.58 0.68 0.75 0.80 0.85 | 0.73
© (e) 1.47 177 218 264 3.11 | 2.24 || 0.60 0.69 0.77 0.83 0.89 | 0.76
(f) 1.49 1.91 2.43 2.81 3.08 | 2.34 0.59 0.69 0.75 080 0.84 | 0.73

(a) 1.26 1.51 189 238 3.04 | 2.02 0.51 0.62 0.73 081 0.88 | 0.71

- (b) 1.24 145 176 222 279 | 1.89 0.51 062 0.71 079 0.85 | 0.70
% (c) 1.35 1.63 200 246 294 | 2.08 ||0.56 0.67 0.75 0.82 0.88 | 0.73
g (d) [1.36 1.71 221 2.72 3.09| 2.22 || 0.55 0.66 0.74 080 0.85 | 0.72
(e) 1.36 163 2.00 245 293 | 2.07 ||0.56 0.67 0.75 0.82 0.88 | 0.73

(f) 1.35 1.72 2.24 268 3.02 | 220 || 0.56 0.67 0.74 0.79 083 | 0.72

(a) 1.15 131 160 201 257 | 1.73 050 0.61 0.72 081 0.89 | 0.71

(b) 1.35 1.58 1.88 225 2.71 1.95 053 0.63 0.73 081 087 | 0.72

é (c) 1.38 166 2.00 239 288 | 2.06 || 0.58 0.67 0.75 0.82 0.88 | 0.74
= | (d) | 123 154 211 274 3.14| 215 | 053 064 073 080 086 | 0.71
() | 1.35 1.63 196 229 265 | 1.98 || 0.57 066 074 081 0.88 | 0.73

(f) 1.32 1.69 2.22 268 3.01 | 2.19 0.55 0.65 0.73 0.78 0.83 | 0.71

Table 4.3. Performance in terms of PESQ and STOI. The 5 front-ends used are: No
enhancement (a), STSA-MMSE (b), NS-DNN (c), NS-Pix2Pix (d), NG-DNN (e),
NG-Pix2Pix (f).

Table 4.4 reports the results of the second and third tests. For the clean speaker
models, we can see that sometimes the DNN-SE front-ends show better results than
the other techniques (e.g. at low SNR for babble noise). However, on average the
Pix2Pix front-ends outperform the baseline methods, with two exceptions: in pres-
ence of babble noise the EER for NG-DNN is 8.73%, slightly lower than NS-Pix2Pix;
when signals are degraded with white noise, DNN-SE front-ends outperform the
noise-specific Pix2Pix-based enhancement method.

If we focus on the performance on multi-condition training, we see a general
improvement of the deep learning-based front ends in comparison with the clean
speaker model case. The DNN-SE front-ends are overall better than the other
approaches. Our front-ends show better results than STSA-MMSE, even though a
higher EER is reported when NS-Pix2Pix is used to reduce white noise. However,
especially at high SNR (15 and 20 dB), NS-Pix2Pix is the best approach in all noise
conditions with the exception of white noise.
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‘ ‘ Test 2 H Test 3

‘ SNR ‘ 0 5 10 15 20 clean ‘ mean H 0 5 10 15 20 clean | mean
(a) | 21.09 1599 13.61 11.66 9.18 6.99 | 13.08 || 32.28 26.87 21.10 16.38 9.86 5.83 | 18.72

o (b) 17.69 1258 817 6.53 6.27 5.80 9.51 25.51 1548 816 6.12 544 544 | 11.03
E@ (¢) | 16.99 1055 748 699 6.15 6.12 | 9.05 14.78 826 544 553 476 4.76 | 7.26
E (d) | 1719 884 544 505 4.63 3.74 | 7.48 16.67 7.14 510 4.03 3.78 4.42 | 6.86
< (e) | 1599 899 6.12 6.12 558 567 | 808 | 11.38 6.12 4.78 4.72 423 4.00 | 5.87
(f 15.31 7.89 558 4.77 476 544 | 7.29 | 1327 643 578 544 527 478 | 6.83

(a) 19.05 14.63 11.69 11.04 9.18 6.99 | 12.10 21.77 1537 11.93 9.52 816 6.12 | 12.15

© (b) | 29.04 2040 1259 7.82 6.29 5.80 | 13.66 | 33.50 23.13 16.23 12.63 8.84 7.12 | 16.91
% (¢) | 17.01 1054 782 646 6.12 578 | 8.96 16.26  9.52 6.99 6.08 5.78 5.17 | 8.30
Eé (d) | 1883 11.22 7.62 5.70 510 4.08 | 8.76 20.75 10.88 6.12 4.76 4.08 4.36 | 8.49
(e) |16.67 10.39 7.50 6.34 578 567 | 873 | 16.00 9.18 5.44 4.76 4.08 4.00 | 7.19

(f 21.05 13.64 850 597 4.76 544 | 9.90 21.72 1244 6.46 534 522 478 | 9.33

(a) 20.72 19.20 14.74 11.81 850 6.99 | 13.66 24.11 17.22 1293 10.88 9.18 7.48 | 13.63

o | (b) | 19.09 1237 816 6.80 6.12 580 | 9.72 19.05 1259 821 6.91 6.12 6.32 | 9.87
é (¢c) | 1871 8.58 6.12 549 531 510 | 8.22 1293 591 4.42 425 427 3.78 | 5.93
% (d) [17.33 9.18 5.44 5.10 5.10 4.16 | 7.72 1429 6.87 4.76 4.00 4.08 4.76 6.46
© (e) | 19.94 918 6.12 578 544 567 | 8.69 || 11.61 5.78 510 4.57 4.08 4.00 | 5.86
(f) | 1757 884 573 531 4.76 544 | 7.94 14.10 748 544 544 527 4.78 | 7.08

(a) | 29.40 20.07 15.00 11.96 893 6.99 | 15.39 || 36.05 26.06 1837 13.32 9.18 544 | 18.07

- (b) | 25,51 17.35 11.90 828 7.35 5.80 | 12.70 | 29.25 21.07 13.95 10.98 7.82 6.67 | 14.97
S| (¢) | 2143 9.86 6.88 646 578 592 | 9.39 19.33 8.16 6.24 541 453 4.29 | 7.99
é (d) 17.91 1033 7.14 5.92 517 3.61 | 8.35 18.49 9.18 582 4.42 3.74 4.76 7.74
- (e) | 21.77 1059 748 6.22 576 567 | 9.58 | 18.37 8.16 5.78 4.44 442 4.00 | 7.53
(f) | 19.58 11.22 748 6.12 5.07 544 | 9.15 19.30 937 6.37 544 510 4.78 | 839

(a) | 45.90 43.20 34.61 26.28 16.91 6.99 | 28.98 || 35.88 24.40 18.37 1581 14.97 5.85 | 19.21

(b) | 3095 21.17 13.95 1020 850 5.80 | 15.10 || 30.95 20.07 748 6.46 6.46 4.76 | 12.70

% (¢) | 3946 20.75 986 7.82 6.12 6.02 | 15.01 || 27.21 9.52 6.12 5.02 4.65 5.78 | 9.72
E (d) | 4048 2823 1245 786 6.46 6.46 | 16.99 || 39.37 23.81 10.20 6.46 5.95 6.44 | 15.37
(e) | 40.14 21.77 10.88 816 6.80 5.67 | 1557 | 26.19 11.22 7.14 510 4.08 4.00 | 9.62

(f) 130.61 17.33 9.40 7.14 5.78 5.44 |12.62| 3041 1429 884 6.60 578 4.78 | 11.78

Table 4.4. ASV performance in terms of EER on clean speaker model (Test 1)
and on multi-condition speaker model (Test 2). The 5 front-ends used are: No
enhancement (a), STSA-MMSE (b), NS-DNN (c), NS-Pix2Pix (d), NG-DNN (e),
NG-Pix2Pix (f).

In Figure 4.4 we report the spectrogram of a noisy utterance (white noise at 0
dB SNR) and visually compare it with the clean and enhanced versions. We can see
that the cGAN approach allows to preserve the structure of the original signal better
than NG-DNN and STSA-MMSE, even though the noise is not very well reduced
especially at high frequencies. However, the method guarantees better performance
than STSA-MMSE, which produces a very snowy spectrogram. More examples are
shown in Appendix A.

Overall, we can consider our approach superior to STSA-MMSE, and compara-
ble to DNN-SE. However it has some drawbacks. First of all, it accepts only 256
frames as input and produces 256 frames as output, which makes the technique not
really suitable for real-time speech enhancement. Some experiments have been con-
ducted trying to reduce the context, but we experienced a performance drop. This
is something that should be investigated in the future. Another disadvantage is the
complexity of the method. Our methods and DNN-SE have both a complexity way
larger than STSA-MMSE. The total number of learnable parameters of our system
are around 90M, against the 4M parameters of DNN-SE. However, only the genera-
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Figure 4.4. Spectrograms of noisy, clean, and enhanced signals. From left to right:
noisy spectrogram (White noise at 0 dB SNR); clean spectrogram; NG-Pix2Pix
enhanced spectrogram; NG-DNN enhanced spectrogram; STSA-MMSE enhanced
spectrogram. The MATLAB implementation used to generate the spectrograms is
the one in [86].

tor is involved in the enhancement of a speech signal, so we actually use a network
with 85M parameters, which needs to run once every 256 frames, while for DNN-SE
the network is required to run for each frame.



CHAPTER 5

GENERATIVE ADVERSARIAL
NETWORKS FOR AUTOMATIC
SPEECH GENERATION

Automatic speech generation (or speech synthesis) aims at producing signals that
sound like human speech. Two main approaches are [84]: non-parametric concatena-
tive speech synthesis [54, 26| and statistical parametric speech synthesis [88, 89, 84].
With the first technique, utterances are produced by concatenating samples of
recorded speech stored in a database. On the other hand, the statistical parametric
approach makes use of a generative model. Both methods have their strengths and
weaknesses: concatenative synthesis generally produces speech that sounds more
natural, but in contrast to the parametric approach it does not allow to control the
speech characteristics.

In this Chapter we will describe our attempts to generate speech using GANs.
Considering that to our knowledge no GAN-based systems have been proposed for
speech synthesis yet, this is an open area of research.

5.1 Problem Formulation

The problem of speech synthesis is generally tackled by designing systems that map
a text to a speech signal. For this reason this approach is known as text-to-speech
(TTS), and its pipeline consists of a text analysis part, that converts a word sequence
into a phoneme sequence with its context, and a speech synthesis part, that generates
the speech waveform [84].

In our case, we make some simplifications and generate spectrograms of spoken
digits using different GAN-based models. From this point of view, our approach
is related to image synthesis [17, 63, 5, 51, 58|, but it can be extended to a TTS
system using a method similar to [65].
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5.2 System Overview

As seen for speech enhancement (Section 4.2), in our system we can distinguish
between a training and a test phase (Figure 5.1).

Noise

1 1
1 1
1 1
1 1
! |
! |
i (and condition) GAN model !
1
! |
| A |
1 H 1
1 H 1
1 1
1 . 1
. Speech —| Spectrogram Normalisation f-------------- ' 1
| extraction 1
: :
! |
1 1
| |
'________________________________________________________________________'I
| Test !
! !
1
H 1
: NOISQ . —| Generator »| Rescaling —» Synthesis —» Generated !
! (and condition) speech !
! |
1 1
1 1

Figure 5.1. Block diagram of our GAN-based speech generation system.

During training, we use a noisy signal and a condition (based on the kind of model
adopted) as input of the generator in order to get samples similar to the spectrograms
of the signals from the database. We also tried to generate spectrogram-phase pairs,
but we did not succeed in making the system converge. The spectrograms of the
signals have been computed using a 255-point STF'T with a hamming window size of
32 ms and a hop size of 8 ms. Also this time we consider the first 128 elements of each
frame of the spectrogram due to symmetry. We zero-pad the spectrograms having
fewer that 128 frames to make the architecture of the networks easy to implement.
Then, the spectrograms are normalised in order to have values between —1 and 1.

The GAN-based models that we use are three. The first one is a classical GAN,
whose G and D architectures are inspired by [58] and shown in Table 5.1. The
implementation is based on [31]. The second model is an InfoGAN (Section 3.4.4),
using GG and D similar to the previous case, with the only difference on the size of
the noise vector, which is 76, since we also provide a latent code to the generator.
The latent variables can be categorical (one-hot vectors) or continuous (that can
assume a value between —1 and 1). The distribution @) is parametrised with a
neural network that shares all the convolutional layers with D and adds a fully
connected layer on top with as many units as the dimension of the latent code. Our
implementation is based on [32]. The third model is a conditional GAN that differs
from the one proposed in [51], because we do not use the conditional information
as input of D. Suppose that we want to generate one of N possible classes, then D
is trained to distinguish between the real and fake samples for each specific class,
which means that its output is a 2/N-dimensional vector (Figure 5.2). This approach
has been suggested by Odena [57], but to our knowledge no one has applied it yet,
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even though it is similar to the AC-GAN model [58]. Again, the architectures of G
and D are the ones in Table 5.1, with GG that takes a 120-dimensional noise vector,
and D that outputs 2N units, followed by a softmax layer.

Discriminator
Generator Layer Dimension
Layer Dimension Input - 128, 128, 1)
Input - 110) D1 conv/1-ReLU /dropout 64, 64, 16)

(

( (

G1 FC/BN/ReLU (8, 8, 768) D2 conv/BN/1-ReLU /dropout | (64, 64, 32)
G2 deconv/BN/ReLU | (16, 16, 384 D3 conv/BN/1-ReLU/dropout | (32, 32, 64)
G3 deconv/BN/ReLU | (32, 32, 256 D4 conv/BN/1-ReLU /dropout | (32, 32, 128)
G4 deconv/BN/ReLU | (64, 64, 192 D5 conv/BN/1-ReLU /dropout | (16, 16, 256)
G5 deconv/tanh (128,128, 1 D6 conv/BN/1-ReLU /dropout | (16, 16, 512)
D7 FC/sigmoid (1)

—_—

Table 5.1. Network configurations for the generator and the discriminator. BN
denotes batch normalisation, and FC a fully connected layer. The kernel size for the
generator is 5 x 5, while for the discriminator is 3 x 3.

/ Xreal real c=1
C real c=2

z

Xfake

Figure 5.2. Architecture of the proposed GAN. C' represents the condition and z
the noise.

GANSs are trained using SDG with the Adam optimiser and a batch size of 100.
Training is stopped based on a visual inspection of the samples generated by G: for
the classical GAN and our conditional GAN, we trained the model for 100 epochs,
while for InfoGAN we stopped at the 30th epoch. For all the models, we adopted
one-sided label smoothing (Section 3.4.4).

At test time, we generate the samples with G and rescale the spectrograms.

Then we reconstruct the speech waveform using the work by Slaney [76] based on
[18] (Section 2.3).

5.3 Experiments

In this section we will present how we perform the experiments.
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5.3.1 Dataset

For our experiments we use the Aurora-2 dataset [23|, based on the TIDigits database
[43], which contains speech segments of a variety of speakers (males and females)
pronouncing digit sequences. The signals are downsampled at 8 kHz and added to
some noise signals. We only use 8440 clean speech segments from the training set.
From them, we extract the spoken digits and get 25277 samples to train our system
in the way we explained in Section 5.2. Figure 5.3 shows 100 spectrograms of spoken
digits pronounced by a woman.

Figure 5.3. Spectrograms of spoken digits pronounced by a woman from the Aurora-
2 dataset.

5.3.2 Setup

We conduct three different tests, one for each GAN model adopted. In the first one,
we simply generate spectrograms with a classical GAN approach, in order to see
how good the framework performs. As we said in Section 3.4.4, this technique does
not provide a disentangled representation of the data, so it is not really useful in
our case because we can generate data, but we have no control on them. Then, we
try to use InfoGAN with one categorical latent code to capture the different spoken
digits and two continuos codes for other changes, like the pitch and the timbre of
the voice. Finally, a test using a conditional GAN is performed to see if we can have
some improvements in the quality by constraining the sample generation with class
labels.
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As reported in [81], the evaluation of a generative model is still an open problem:
the assessment of the performance depends on the specific application. Odena et al.
[58] proposed metrics for the evaluation of image synthesis models, but for speech
synthesis subjective tests are preferred, like in [84] where paired comparison tests
and MOS tests have been conducted. Mainly due to time constraints we could not
perform a listening study with human listeners, but this is interesting as a future
work. However some audio samples of the generated speech are provided, in order
to give to the reader the possibility to judge the results.

5.4 Results and Discussion

Figure 5.4 shows the spectrograms drawn from the generator of our GAN. If we
compare them with the spectrograms of the dataset (Figure 5.3), we can see that the
background is not really clean. This leads to some sort of noise that can be listened
after the signal reconstruction. However, most of the times it is still possible to
distinguish the digit pronounced and the speaker voice, indicating that G' captures
the important information of the data.

Figure 5.4. Spectrograms of spoken digits generated by our GAN.

In the second test we make use of InfoGAN. As reported before (Section 5.3.2),
our idea was to capture the digit variations with a categorical latent code, and the
voice variations with two continuos latent variables. After having listened to the
generated samples, we did not find this correspondence. The categorical code is
responsible to voice variations, while the role of the two continuos variable (¢y and
¢1) is not very clear: their variation leads to the generation of a different digit or to
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the way that the digit is pronounced. Looking at the spectrograms, we can notice
that increasing ¢q (Figure 5.5) adds more high frequency spectral components, while
¢ (Figure 5.6) seems to influence especially the duration of the signal. Regarding
the quality of the generated speech, we experience lower performance, which can be
related to the smaller number of training iterations used. When we tried to increase
it, we saw that the generator was not producing plausible spectrograms anymore.
The reason for this issue is not clear, and it is something we can think to investigate
in the future.

Figure 5.5. Effect of the continuos variable ¢y variations on the generation of spoken
digits with InfoGAN. Each row has the categorical code fixed, while ¢, varies between
—1 and 1.

The last test is conducted using our conditional GAN. We can see in Figure
5.7 that this method is effective, and we can actually generate the different digits.
However, we do not experience a great improvement in the quality of the speech
if compared to the classical GAN: we can still hear some background noise and
sometimes it is hard to distinguish the kind of digit generated due to the presence
of artefacts.

Overall the speech samples reconstructed from the spectrograms generated with
our models tend to be noisy, and although it is possible in general to distinguish
voice and digit type, sometimes artefacts produce an unnatural sound that makes
it difficult to discriminate the digits.
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Figure 5.6. Effect of the continuos variable ¢; variations on the generation of spoken
digits with InfoGAN. Each row has the categorical code fixed, while ¢; varies between
—1 and 1.

Figure 5.7. Spectrograms of spoken digits generated by our conditional GAN. Each
row has the conditional information fixed.
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CHAPTER 6
CONCLUSION

In this project we investigated the use of generative adversarial networks for speech
processing. Specifically, we addressed two research questions:

1. How can we apply GANs to spectral speech enhancement and what perfor-
mance can be achieved compared to other methods?

2. How can we generate speech signals with a GAN-based approach and how
good are they?

In the first case, we showed that a possible way to enhance speech with GANSs is
by adopting a framework originally designed for image-to-image translation tasks.
This allows to perform a mapping from noisy spectrograms to clean ones. The results
indicate that this approach is superior to the classical STSA-MMSE SE technique
and comparable to a DNN-based SE method. However, the need of a large context to
enhance a speech signal makes it not suitable for real-time applications. A direction
to work in the future can be the reduction of the required context, also to have a
more compact network to use.

Regarding the second question, we tried to generate speech by using three dif-
ferent GAN-based models trained to have a generator that output spectrograms of
spoken digits. We see that our models can capture some important information of
the data (voice characteristics and kind of digits), but strong artefacts in the recon-
structed signals can be heard, and they make it hard sometimes to understand the
content of the speech. Even though we decided to generate speech spectrograms,
we could also think to directly generate the waveform with a GAN-based model, as
done for example by Mogren [53] with the purpose of generating classical music, and
this can be a possible approach to explore in the future.

In conclusion, the focus of this thesis was on designing GAN-based systems
for speech enhancement and automatic speech generation. Since GANs have been
proposed only recently, they are still an open field of research. Although they have
been mainly used in computer vision, the results that we obtained make us confident
about their larger adoption to other fields, like speech processing, in the future.
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APPENDIX A

SPECTROGRAMS OF NOISY.
ENHANCED, AND CLEAN SIGNALS

Enhanced

0 dB SNR

5 dB SNR

10 dB SNR

15 dB SNR

20 dB SNR

Figure A.1. Comparison between noisy (airplane), enhanced (NG-Pix2Pix), and
clean signals in terms of spectrogram.
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15 dB SNR 10 dB SNR 5 dB SNR 0 dB SNR

20 dB SNR

Figure A.2. Comparison between noisy (babble), enhanced (NG-Pix2Pix), and clean
signals in terms of spectrogram.
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15 dB SNR 10 dB SNR 5 dB SNR 0 dB SNR

20 dB SNR

Figure A.3. Comparison between noisy (cantine), enhanced (NG-Pix2Pix), and
clean signals in terms of spectrogram.
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Enhanced
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Figure A.J/. Comparison between noisy (market), enhanced (NG-Pix2Pix), and
clean signals in terms of spectrogram.
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Noisy Enhanced Clean

5 dB SNR 0 dB SNR
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Figure A.5. Comparison between noisy (white), enhanced (NG-Pix2Pix), and clean
signals in terms of spectrogram.
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Abstract

Improving speech system performance in noisy environments
remains a challenging task, and speech enhancement (SE) is
one of the effective techniques to solve the problem. Moti-
vated by the promising results of generative adversarial net-
works (GANs) in a variety of image processing tasks, we ex-
plore the potential of conditional GANs (cGANs) for SE, and
in particular, we make use of the image processing framework
proposed by Isola et al. [1] to learn a mapping from the spec-
trogram of noisy speech to an enhanced counterpart. The SE
c¢GAN consists of two networks, trained in an adversarial man-
ner: a generator that tries to enhance the input noisy spectro-
gram, and a discriminator that tries to distinguish between en-
hanced spectrograms provided by the generator and clean ones
from the database using the noisy spectrogram as a condition.
We evaluate the performance of the cGAN method in terms
of perceptual evaluation of speech quality (PESQ), short-time
objective intelligibility (STOI), and equal error rate (EER) of
speaker verification (an example application). Experimental re-
sults show that the cGAN method overall outperforms the clas-
sical short-time spectral amplitude minimum mean square error
(STSA-MMSE) SE algorithm, and is comparable to a deep neu-
ral network-based SE approach (DNN-SE).

Index Terms: generative adversarial networks, speech en-
hancement, speaker verification

1. Introduction

Dealing with degraded speech signals is a challenging yet im-
portant task in many applications, e.g. automatic speaker veri-
fication (ASV) [2], speech recognition [3], mobile communica-
tions and hearing assistive devices [4, 5, 6]. When the receiver
is a human user, the objective of SE is to improve quality and
intelligibility of noisy speech signals. When it is an automatic
speech system, the goal is to improve the noise-robustness of
the system, e.g. to reduce the EERs of an ASV system under
adverse conditions. In the past, this problem has been tackled
with statistical methods like Wiener filter and STSA-MMSE
[7]. Lately, deep learning methods have been used, such as
DNN:s [6, 8], deep autoencoders (DAEs) [5], and convolutional
neural networks (CNNs) [9]. However, to our knowledge, no
one has tried to use GANSs for SE yet.

GAN:Ss are a framework recently introduced by Goodfellow
et al. [10], which consists of a generative model, or generator
(G), and a discriminative model, or discriminator (D), that play
a min-max game between each other. In particular, G tries to
fool D which is trained to distinguish the output of G from the
real data. The architectures used in most of the works today
[11] are based on deep convolutional GAN (DCGAN) [12] that
successfully tackles training instability issues when GANs are
applied to high resolution images. Three key ideas are used to
accomplish this goal. First, batch normalization [13] is applied

to most of the layers. Then, the networks are designed to have
no pooling layers as done in [14]. Finally, the training is per-
formed adopting the Adam optimizer [15].

So far GANs have been successfully applied to a variety
of computer vision and image processing tasks [1, 12, 16, 17].
However, their adoption for speech-related tasks is rare with
one exception in [18], in which the authors of the report applied
a deep visual analogy network [19] as a generator of a GAN
for voice conversion, and the results are presented as exam-
ple audio files without speech quality or intelligibility or other
measures. In a related field, for music, the GAN concept was
applied to train a recurrent neural network for classical music
generation [20].

Very recently, a general-purpose cGAN framework called
Pix2Pix was proposed for image-to-image translation [1]. Mo-
tivated by its successful deployment on several tasks, we adapt
the framework in this work, aiming to explore the potential of
c¢GANs for SE, as part of the overall goal of investigating the
feasibility and performance of GANs for speech processing.
Specifically, we use Pix2Pix to learn a mapping between noisy
and clean speech spectrograms as well as to learn a loss function
for training the mapping.

2. Pix2Pix framework for speech
enhancement

In GANS, G represents a mapping function from a random noise
vector z to an output sample G(z), ideally indistinguishable
from the real data x [10]. In cGANs, both G and D are con-
ditioned on some extra information y [1], and they are trained
following a min-max game with the objective:

L(D7 G) = EX,Y" Pdata(X,Y) [log(D(X7 Y))]+
Eon po(z),y~ pdam(y)[IOg(l — D(G(z,y),y))]

Pix2Pix differs from other cGAN works, like [21], because
it does not use z. Isola et al. [1] report that adding a Gaussian
noise as an input to G, as done in [22], was not effective. Hence,
they introduce noise in the form of dropout, but this technique
failed to produce stochastic output. However, we are more in-
terested in an accurate mapping between a noisy spectrogram
and a clean one than a cGAN able to capture the full entropy
of the distribution it models, so this represents a minor issue.
Figure 1 shows how the data and the condition are used during
training in the particular case of this paper.

In addition to the adversarial loss L(D, Q) that is learned
from the data, Pix2Pix utilizes also L1 distance between the
output of G and the ground truth. The choice of combining
different losses, like L2 distance [23] or perceptual losses for
a specific task [16, 17], has been shown to be beneficial. In
Pix2Pix, L1 distance is preferred to L2 because it encourages
less blurring [1] and it tends to generalize better if compared to
perceptual losses.

ey
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Figure 1: Generator (G) and discriminator (D) in the Pix2Pix
[framework for speech enhancement. G generates an enhanced
spectrogram from a noisy input by fooling D, which tries to clas-
sify a spectrogram as clean or enhanced, conditioned on the
respective noisy spectrogram.

Furthermore, G and D, adapted from [12], are a U-Net [24]
and a PatchGAN, respectively. Since in image-to-image trans-
lation tasks, the input and the output of G share the same struc-
ture, G is an encoder-decoder where each feature map of the de-
coder layers is concatenated with its mirrored counterpart from
the encoder to avoid that the innermost layer represents a bot-
tleneck for the information flow. Besides, D is built to model
the high frequencies of the data, as the low frequency structure
is captured by the L1 loss. This is achieved by considering lo-
cal image patches. In particular, D is applied convolutionally
across the image to classify each patch as real or fake. Then,
the obtained scores are averaged together to get a single output.
This architecture has the advantage of being smaller and can be
applied on images of different sizes [1]. When the patch size
of D has the same size of the input image, D is equivalent to a
classical GAN discriminator.

Our Pix2Pix implementation is based on [25], with G that
gets a 256 x 256 1-channel image, while D a 256 x 256 2-
channel image. The main differences with the original frame-
work are the adoption of 5 x 5 filters in the convolutional layers,
and the last layer of D which is flattened and fed into a single
sigmoid output as in [12].

2.1. Preprocessing and training

For speech signals with a sample rate of 16 kHz, we computed
a time-frequency (T-F) representation using a 512-point short
time Fourier transform (STFT) with a hamming window size
of 32 ms and a hop size of 16 ms. In this way, the frequency
resolution is 16 kHz / 512 = 31.25 Hz per frequency bin. We
considered only the 257-point STFT magnitude vectors which
cover the positive frequencies due to symmetry. Our generator
G accepts 256 x 256 x 1 input, so for training we concatenated
all the speech signals and then split the spectrogram every 256
frames, while for testing we zero-padded the spectrogram of
each test sample in order to have the number of frames equal
to a multiple of 256 and then performed the split accordingly.
We also removed the last row of the spectrogram, which is a
choice that has a negligible impact since it represents only the
highest 31.25 Hz band of the signal, but this allows us to have a
power-of-2 input size which makes the design of G and D easier.
Before the data are fed to our system, they are also normalized
to be in the range [—1, 1].

We trained the GANs using stochastic gradient descent
(SGD) and adopting the Adam optimizer, for 10 epochs with
a batch size of 1 according to [1], updating G twice per each
iteration to avoid a fast convergence of D [25]. The networks’

weights have been initialized from a normal distribution with
zero mean and a standard deviation of 0.02 [1]. The L1 loss has
been added to the GAN loss using a scaling factor of 100 [1].

To enhance a speech signal with Pix2Pix, we first compute
the T-F representation of it, and then we forward propagate the
spectrogram magnitude through G. Finally, we reconstruct the
signal with the inverse STFT using the phase of the noisy input.

3. Experiments
3.1. Evaluation metrics

The performance of our system is evaluated in terms of PESQ
[26] (in particular the wide-band extension [27]), STOI [28],
and EER of ASV. PESQ and STOI have been chosen as they
are the most used estimators of speech quality and speech intel-
ligibility, respectively. The implementations used in this paper
are from [7] for PESQ and from [28] for STOI.

Regarding the ASV evaluation, we use the classical Gaus-
sian Mixture Model - Universal Background Model (GMM-
UBM) framework [29], which is suitable for short utterances
as in this work. We first built a general model, UBM, which
is a GMM trained with an expectation-maximization algorithm
using a large amount of speech data not belonging to the target
speakers. Then, a target speaker model for each specific pass-
phrase and each speaker was derived by maximum a posteriori
adaptation of the UBM. The approach of adapting UBM is used
in order to have a well-trained model for a speaker even when
there is no much data available. At this point, for a test utter-
ance we calculate the log likelihood ratio between the claimant
speaker model and the UBM. The features extracted from the
speech data are 57-dimensional mel-frequency cepstral coeffi-
cients (MFCCs), and the GMM mixture number is 512.

3.2. Baseline methods

We compare the results of our approach with other two meth-
ods we consider as baselines: STSA-MMSE and an Ideal Ratio
Mask (IRM) based DNN-SE algorithms.

STSA-MMSE is a statistical-based SE technique, where
the a priori signal to noise ratio (SNR) is estimated with the
Decision-Directed approach [30] and the noise Power Spectral
Density (PSD) is estimated with the noise PSD tracker in [31].
The noise PSD estimate is initialized with the first 1000 samples
of each utterance, assumed to be a speech-free region.

For the DNN-SE algorithm, we use the same procedure and
parameters of [6]. The IRM is estimated by using a DNN with
three hidden layers of 1024 units each, and an output layer
with 64 units. The input of the DNN is a 1845-dimensional
feature vector, which is a robust representation of a frame that
combines MFCCs, amplitude modulation spectrogram, relative
spectral transform - perceptual linear prediction (RASTA-PLP),
and gammatone filter bank energies, with their delta and double
delta for a context of 2 past and 2 future frames. The training
label is represented by the IRM, which is computed as in [32]
from the T-F representation based on a gammatone filter bank
with 64 filters linearly spaced on a Mel frequency scale and
with a bandwidth equal to one equivalent rectangular bandwidth
[33]. The system is trained for 30 epochs with SGD, using the
mean square error as error function and a batch size of 1024.
In order to enhance a test signal, the DNN provides an estima-
tion of the IRM which is applied to the T-F representation of the
noisy signal. Finally, the time domain signal is synthesized.



3.3. Datasets

We use two corpora, TIMIT [34] and RSR2015 [35], as follows:

e Set 1 (TIMIT) - 4380 utterances of male speakers are
used for UBM training.

¢ Set 2 (RSR2015) - Text ID from 2 to 30 of sessions 1,
4, and 7 for 50 male speakers (from m051 to m100) are
selected to train Pix2Pix and DNN-SE.

¢ Set 3 (RSR2015) - Text ID 1 of sessions 1, 4, and 7 for
49 male speakers (from m002 to m050) are used to train
the speaker models.

¢ Set 4 (RSR2015) - Sessions 2, 3, 5, 6, 8, and 9 of the
same text ID and speakers used for training the models,
are selected for evaluation.

The choice of RSR2015 as the main database for training
and testing can be seen as a compromise, because we were in-
terested in the evaluation of an ASV system, which provides
another objective measure of the performance, and RSR2015 is
widely used for this task.

We used 5 different noise types to simulate real-life con-
ditions: Babble, obtained by adding 6 random speech samples
from the Librispeech corpus [36]; white Gaussian noise gen-
erated in MATLAB; Cantine, recorded by the authors; Market
and Airplane, collected by Fondazione Ugo Bordoni (FUB) and
available on request from the OCTAVE project [37]. Noise data,
which were added to the utterances in Set 2, 3, and 4 at different
SNR values, used for training and testing are different.

3.4. Setup

Inspired by [2], we investigate two different kinds of Pix2Pix-
based SE front-ends: 5 noise specific front-ends (NS-Pix2Pix),
each of them trained on only one type of noise, and 1 noise
general front-end (NG-Pix2Pix), trained on all types of noise.
The same has been done for the DNN-SE front-ends, obtaining
5 noise specific front-ends (NS-DNN) and 1 noise general front-
end (NG-DNN). For training, we add noise to clean speech at
two different SNRs, 10 and 20 dB. With higher SNR it should
be easier to train a G able to capture the underlying structure
of the noisy input and generate a clean spectrogram, but a test
with lower SNRs for training is worth to explore in the future.
For testing, results for 5 different SNR conditions are reported:
0, 5, 10, 15, and 20 dB, as is commonly done for ASV, but an
interesting future work is to test on lower SNRs, particularly
for intelligibility evaluation. In addition, to find the behavior of
the front-ends on noise free conditions, ASV performance on
enhanced clean speech data is also reported.

In all the tests, the performance of the following front-
ends are presented: No enhancement (when no SE algorithm
is used on noisy data), STSA-MMSE, NS-DNN, NS-Pix2Pix,
NG-DNN, and NG-Pix2Pix. In total, three different tests have
been conducted:

e Test 1 - In the first test, we compute PESQ and STOI for
the different front-ends to estimate speech quality and
intelligibility.

¢ Test 2 - In the second test, the ASV system is trained with
enhanced clean speech (except for the No enhancement
front-end where clean speech is used) and tested on the
5 types of noise.

e Test 3 - The last test is performed to evaluate the ef-
fects of a multi-condition training on ASV. For No en-
hancement, STSA-MMSE, NS-DNN, and NS-Pix2Pix

the speaker models are built from enhanced clean speech
and one kind of enhanced noisy speech, while for NG-
DNN and NG-Pix2Pix all kinds of noise are used.

4. Results and Discussion

The results of Test 1 are shown in Table 1. It is observed that
the average PESQ scores of NS-Pix2Pix and NG-Pix2Pix are
always better than the other front-ends. The best performance
improvement is achieved between 5 and 15 dB SNR regardless
of the noise type. At 20 dB, our approach outperforms the oth-
ers on Market and White noises, but for Airplane noise STSA-
MMSE is the best one, while for Babble and Cantine noises
the absence of enhancement is superior indicating that all the
SE techniques introduce an amount of distortion surpassing the
benefit of noise reduction. At 0 dB, NG-Pix2Pix generally out-
performs the noise specific version with an exception (Market
noise) and its scores are close to DNN-SE ones.

In terms of STOI, Pix2Pix front-ends perform similarly to
STSA-MMSE. However, DNN-SE front-ends are superior in al-
most all the conditions, even though Pix2Pix front-ends achieve
the same or very close results in some situations, e.g. low SNRs
for Cantine and Market noises. At 20 dB, we observe the same
behavior as the PESQ scores, where the evaluation of not en-
hanced signals gives a better outcome.

Table 1: PESQ and STOI performance for the 5 front-ends: No
enhancement (a), STSA-MMSE (b), NS-DNN (c), NS-Pix2Pix
(d), NG-DNN (e), NG-Pix2Pix (f).

| | PESQ I STOI

| SNR |0 5 10 15 20 | mean | 0O 5 10 15 20 | mean
(@ | 134 163 202 247 3.00 | 209 | 0.64 074 082 088 093 | 080

o | () | 154 179 217 272 326 | 230 | 066 074 081 087 091 | 080
E| (© | 165 194 230 273 316 | 236 | 0.69 076 083 088 092 | 0.82
E | (@ | 157 202 251 291 3.8 | 244 | 066 075 081 085 089 | 0.79
< (e | 165 194 229 270 314 | 235 | 0.69 076 082 087 091 | 081
() | 167 207 251 2838 33| 245 | 067 074 079 083 086 | 078

(@ | 120 142 179 240 313 | 199 | 044 056 067 077 085 | 066

L | ® | 114 131 161 207 265 | 176 | 043 056 066 074 081 | 0.64
S| (© | 125 151 187 231 278 | 195 | 0.50 0.63 072 079 086 | 0.70
S| @ | 120 148 198 252 293|202 || 046 059 071 078 083 | 067
(e | 124 152 188 231 278 | 195 | 049 062 072 079 085 | 070

() | 120 149 200 253 293 | 203 | 046 060 071 077 082 | 0.67

(@ | 135 165 207 257 330| 219 || 054 066 075 083 090 | 074

o | () | 138 168 212 267 323 | 222 | 055 066 074 082 087 | 073
£ (© | 146 175 215 263 312|222 | 059 069 076 083 089 | 0.75
S| ) | 145 184 238 282 313 | 232 || 058 068 075 080 085| 073
Ol @ | 147 177 218 264 311|224 || 060 0.69 077 083 089 | 0.76
(H | 149 191 243 281 308 | 234 | 059 0.69 075 080 084 | 073

(@ | 126 151 189 238 304|202 | 051 062 073 081 088 | 0.71

| b | 124 145 176 222 279 | 1.89 || 051 062 071 079 085 | 070
S| (© | 135 163 200 246 294|208 | 0.56 0.67 075 082 088 | 0.73
S| @ | 136 171 221 272 3.09 | 222 | 055 066 074 080 085 | 072
(© | 136 163 200 245 293 | 207 | 056 0.67 075 082 088 | 073

(h | 135 172 224 268 302|220 | 0.56 0.67 074 079 083 | 0.72

(@ | 115 131 160 201 257 | 173 | 0.50 061 072 081 089 | 0.71

(b) | 135 158 1.88 225 271 | 195 | 053 063 073 081 087 | 072

£ (© | 138 166 200 239 288 | 206 | 0.58 0.67 075 082 088 | 0.74
S| @ | 123 154 201 274 314 | 215 || 053 064 073 080 086 | 0.71
( | 135 163 196 229 265| 198 | 057 066 074 081 088 | 073

H | 132 169 222 268 301|219 | 055 065 073 078 083 | 071

The ASV performances (Tests 2 and 3) are reported in Ta-
bles 2 and 3, where the results of the baseline systems are from
[38]. For the clean speaker models, Pix2Pix front-ends gener-
ally outperform the baseline methods. One exception is seen
for Babble noise, where the NG-DNN front-end gives an EER
of 8.73%, marginally better than NS-Pix2Pix (8.76%). At low
SNR, DNN-SE front-ends sometimes show better results than
Pix2Pix, but overall our approach can be considered superior.

On the other hand, the performances of DNN-SE front-ends
on multi-condition training are generally better, which presents
a substantial improvement if compared with the clean speaker
model situation. Our approach is generally better than STSA-
MMSE, although the NS-Pix2Pix front-end shows lower per-



Figure 2: From left to right: noisy spectrogram (White noise at 0 dB SNR); clean spectrogram; spectrogram of the signal enhanced
with NG-Pix2Pix; spectrogram of the signal enhanced with NG-DNN; spectrogram of the signal enhanced with STSA-MMSE.

Table 2: ASV performance in terms of EER on clean speaker
model

‘ SNR ‘ 0 5 10 15 20 clean ‘ mean
No enhancement | 21.09 1599 13.61 11.66 9.18 6.99 | 13.08

© STSA-MMSE | 17.69 1258 8.17  6.53 6.27 580 | 951
g NS-DNN | 1699 10.55 7.48 6.99 6.15 6.12 9.05
E NS-Pix2Pix | 17.19 884 544 505 4.63 3.74 | 748
< NG-DNN | 1599 899 6.2 6.2 558 567 | 808
NG-Pix2Pix | 15.31 7.89 5.58 4.77 4.76 5.44 7.29
No enhancement | 19.05 14.63 11.69 11.04 9.18 6.99 | 12.10
° STSA-MMSE | 29.04 2040 1259 7.82 6.29 5.80 | 13.66
= NS-DNN | 17.01 10.54 7.82 646 6.12 578 | 8.96
c% NS-Pix2Pix | 18.83 1122 7.62 570 510 4.08 | 876
NG-DNN | 16.67 1039 750 634 578 5.67 | 873
NG-Pix2Pix | 21.05 13.64 8.0 5.97 4.76 5.44 9.90
No enhancement | 20.72 19.20 1474 11.81 8.50 6.99 | 13.66

° STSA-MMSE | 19.09 12.37 8.16 6.80 6.12 5.80 9.72
g NS-DNN | 1871 858 6.12 549 531 510 | 822
g NS-Pix2Pix | 17.33 9.18 544 510 510 416 | 7.72
© NG-DNN | 1994 9.18 6.12 5.78 5.44 5.67 8.69
NG-Pix2Pix | 17.57 8.84 5.73 5.31 4.76 5.44 7.94
No enhancement | 29.40 20.07 15.00 11.96 893 6.99 | 15.39
= STSA-MMSE | 2551 17.35 1190 828 735  5.80 | 12.70
&: NS-DNN | 2143 986 688 646 578 592 | 9.39
‘E“ NS-Pix2Pix | 1791 1033 7.14 5.92 5.17 3.61 8.35
NG-DNN | 21.77 10.59 748 6.22 5.76 5.67 9.58
NG-Pix2Pix | 19.58 1122 748 6.12 507 544 | 9.15
No enhancement | 4590 4320 34.61 2628 1691 6.99 | 28.98
STSA-MMSE | 3095 21.17 1395 1020 850 580 | 15.10

£ NS-DNN | 39.46 2075 986 782 6.2 6.02 | 1501
§ NS-Pix2Pix | 40.48 28.23 1245 7.86 6.46 6.46 | 16.99
NG-DNN | 40.14 21.77 1088 8.16 6.80 5.67 15.57
NG-Pix2Pix | 30.61 17.33 940 7.4 578 544 | 12.62

formance when it deals with white noise.

In general, Pix2Pix can be considered competitive with
DNN-SE (better PESQ and EER on the clean speaker models,
but worse STOI and EER for multi-condition training) and over-
all superior to STSA-MMSE.

Figure 2 shows the spectrograms of a noisy utterance
(White noise at 0 dB SNR), together with its clean and enhanced
versions with NG-Pix2Pix, NG-DNN, and STSA-MMSE. It is
observed that the spectrogram enhanced by the cGAN approach
preserves the structure of the original signal better than the other
SE techniques, while at the same time more noises remain es-
pecially at high frequency regions, as compared with NG-DNN.
The spectrogram enhanced by STSA-MMSE is snowy all over
the places.

5. Conclusion

In this paper we investigated the use of conditional genera-
tive adversarial networks (cGANs) for speech enhancement.
We adapted the Pix2Pix framework, intended to solve generic
image-to-image translation problems, and evaluated the perfor-
mance of this approach in terms of estimated speech percep-
tual quality and speech intelligibility, together with equal er-
ror rate of a Gaussian Mixture Model - Universal Background

Table 3: ASV performance in terms of EER on multi-condition
speaker model

‘ SNR ‘ 0 5 10 15 20 clean ‘ mean

No enhancement | 32.28 26.87 21.10 1638 9.86 5.83 | 18.72

o STSA-MMSE | 2551 1548 8.16 6.12 5.44 5.44 11.03
g NS-DNN | 14.78 8.26 5.44 5.53 4.76 4.76 7.26
E NS-Pix2Pix | 16.67 7.14 510 4.03 378 442 | 6.86
< NG-DNN | 11.38 612 478 472 423  4.00 | 5.87
NG-Pix2Pix | 13.27 643 578 544 527 478 | 683

No enhancement | 21.77 1537 1193 952 816 6.12 | 12.15

° STSA-MMSE | 3350 23.13 1623 1263 8.84 7.12 | 1691
= NS-DNN | 1626 9.52 699  6.08 578  5.17 | 830
c% NS-Pix2Pix | 20.75 1088 6.12 476 4.08 436 | 849
NG-DNN | 16.00 9.18 544 476 4.08 4.00 | 7.19
NG-Pix2Pix | 21.72 1244 6.46 5.34 522 4.78 9.33

No enhancement | 24.11 17.22 1293 1088 9.18 748 | 13.63

° STSA-MMSE | 19.05 12.59 8.21 6.91 6.12 6.32 9.87
g NS-DNN | 1293 591 442 425 427 378 | 593
E NS-Pix2Pix | 1429 6.87 476 4.00 4.08 476 | 6.46
o NG-DNN | 11.61 5.78 5.10 4.57 4.08 4.00 5.86
NG-Pix2Pix | 14.10 748 5.44 5.44 5.27 4.78 7.08

No enhancement | 36.05 26.06 1837 1332 9.18 544 | 18.07

= STSA-MMSE | 29.25 21.07 1395 1098 7.82 6.67 | 1497
&: NS-DNN | 1933 816 624 541 453 429 | 799
‘E“ NS-Pix2Pix | 18.49 9.18 5.82 4.42 3.74 4.76 7.74
NG-DNN | 1837 8.16 5.78 4.44 4.42 4.00 7.53
NG-Pix2Pix | 1930 937 637 544 510 478 | 839

No enhancement | 35.88 24.40 1837 1581 1497 5.85 | 19.21
STSA-MMSE | 3095 20.07 748 646 646 476 | 12.70

£ NS-DNN | 2721 952 612 502 465 578 | 9.72
§ NS-Pix2Pix | 39.37 23.81 1020 6.46 5.95 6.44 | 15.37
NG-DNN | 2619 1122 7.14 510 4.08 4.00 | 9.62
NG-Pix2Pix | 3041 1429 884 6.60 578 478 | 11.78

Model based speaker verification system. The results we ob-
tained allow us to conclude that cGANs are a promising tech-
nique for speech denoising, being globally superior to the clas-
sical STSA-MMSE algorithm, and comparable to a DNN-SE
algorithm.

Future work includes a more extensive evaluation of the
framework in more critical SNR situations, and modifications
aiming at making it specific for the task. For example, a model
with G generating a small size output window from a fixed num-
ber of successive frames can be built as it is often done in deep
neural networks for speech processing, and a specific perceptual
loss to be added to the cGAN loss can be designed.
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