
1

Summary

State space analysis of distributed systems is often a time and resource consum-
ing task. It involves checking whether a system satisfies a specification, and is
traditionally called model checking. Systems are often modelled using high-level
modelling formalisms, an example being the Petri net formalism that also offers
a graphical modelling notation. Specifications can be expressed using, for exam-
ple, computation tree logic, and often contain safety requirements, that guarantee
the absence of unwanted behaviour in the system.

Explicit analysis methods perform an exhaustive search in the state space,
generated by considering every interleaving action in the analysed system. The
number of states can be of exponential size and is commonly referred to as the
state-space explosion problem. This makes model checking of real-world systems
require an infeasible amount of time and resources.

There exist many tools to perform model checking, which all try to cir-
cumvent the state explosion problem, by using different verification techniques.
TAPAAL is an open-source tool facilitating both a graphical user interface for
system modelling of Petri nets, and a variety of verification engines, each opti-
mised to cope with different verification challenges. One of these techniques is the
structural reduction technique, which removes redundant places and transitions
in Petri nets. Another technique is state equations, which uses linear overap-
proximation to determine the satisfiability of predicates in the initial marking.
An efficient state space representation is used, which improves successor gen-
eration, and reduces the required memory for storing states. Other techniques
for explicitly reducing the size of the state space include partial order reduction
and symmetry reduction techniques, both of which are implemented in the Low
Level Petri net Analyzer (LoLA).

We present our interpretation of the well-known partial order reduction tech-
nique called stubborn sets for Petri net. We name this interpretation stubborn
reduction and define it on the more abstract level of Labelled Transition Systems
(LTS).

We define how stubborn reduction guarantee the preservation of reachability
properties and prove its correctness. We apply this to Petri nets with inhibitor
arcs. This is done by generating a subset of transitions named the interesting
set of transitions, which are the only transitions that can affect the evaluation
of a given a formula. The interesting set of transitions is then transformed into
a stubborn set by a closure algorithm, for which we prove its termination and
correctness.

We present an interpretation of deciding the siphon-trap property for Petri
net, which, instead of characterising the problem of deciding the siphon-trap
property as a Boolean satisfiability problem, is characterised as an integer linear
program. If a Petri net exhibits the siphon-trap property then the Petri net is
deadlock free. Furthermore, we parameterise the procedure with a max depth,
bounding the number of decision variables and constraints.

The size of the interesting set of transitions is based on the size of the formula
in question. If the formula is large, all transitions can potentially be added to

2

the set and subsequently include all transitions in the stubborn set, leaving the
stubborn reduction effectless. For this reason, we introduce the formula simpli-
fication technique, which is an extension of the existing state equations for Petri
net used in TAPAAL. We traverse the structure of a given formula and identify
subformulae that are either trivially satisfied or impossible to satisfy, and re-
place them with easier to verify alternatives. These formulae are identified using
integer linear programming such that the generated integer linear program has
a solution if the formula or subformula is satisfied. We provide an algorithm for
performing the simplification and prove its correctness. Additionally, we further
extend the logic to include CTL operators. Furthermore, formula simplification
can also be used for performing sanity checks on specifications. If the formula
or parts of it can be simplified to trivially true or false, then this may indicate
a faulty or uninteresting specification.

The feasibility of model checking is strongly dependent on the efficiency of
the verification technique. Our experiments show that many real-world systems
generates an unmanageable amount of states, and that certain countermeasures
have to be taken, in order to provide meaningful information. We have also seen,
that many formulae contains trivial subformulae, that can be answered in the
initial state, possibly because they were automatically generated.

We examined the combined performance of every implemented technique in
TAPAAL and compared it with LoLA. On all categories combined, TAPAAL
provided more exclusive answers and used less memory. LoLA performed faster
verification and generally explored fewer states. Specifically, LoLA performed
better on reachability formulae and TAPAAL performed better on CTL formu-
lae.

A Simplified and Stubborn Approach to
CTL Model Checking of Petri Nets

Frederik Bønneland, Jakob Dyhr, and Mads Johannsen

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, DK-9220 Aalborg East, Denmark.

{fbanne12,jdyhr12,mjohan12}@student.aau.dk

Abstract. We present an interpretation of stubborn sets, described us-
ing labelled transitions systems. The approach is applied in the context
of Petri nets with inhibitor arcs. We extend reachability preserving stub-
borns sets to include preservation of fireability, cardinality, and deadlock
properties, and base it on generating an interesting set of transitions for
a given formula. We introduce an interpretation for deciding the siphon-
trap property for Petri nets using integer linear programming. Based on
the theory of state equations, we construct a CTL formula simplification
technique that removes trivially verifiable subformulae. We implement
and benchmark the individual and combined techniques against the state
of the art verification tools in TAPAAL and LoLA. The integer linear
programming interpretation of the siphon-trap property shows potential
in analysis of deadlock freedom, but the implementation performs worse
than the Boolean satisfiability representation implemented in LoLA. Our
experiments show that the combination of structural reduction and stub-
born reduction generally yields considerable performance improvements,
but that the combination conflicts on some models. Formula simplifica-
tion is able to reduce a significant number of formulae to questions that
are trivially answered, and the simplified formulae improve the stubborn
and structural reduction techniques. Issues with simplification of fire-
ability formulae were discovered. On all formula categories combined, we
provide more exclusive answers and consume less memory while LoLA
perform faster verification and generally explore fewer states. All men-
tioned techniques have been implemented in the open-source Petri net
verification tool TAPAAL.

1 Introduction

State space analysis of distributed systems is often a time and resource consum-
ing task. It involves checking whether a system satisfies a specification, and is
traditionally called model checking [4]. Systems are often modelled using high-
level modelling formalisms, an example being the Petri net [19] formalism that
also offers a graphical modelling notation. Specifications can be expressed using,
for example, computation tree logic, and often contain safety requirements, that
guarantee the absence of unwanted behaviour in the system.

2 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Explicit analysis methods perform an exhaustive search in the state space,
generated by considering every interleaving action in the analysed system. The
number of states can be of exponential size and is commonly referred to as the
state-space explosion problem. This makes model checking of real-world systems
require an infeasible amount of time and resources.

There exist many tools to perform model checking, which all try to cir-
cumvent the state explosion problem, by using different verification techniques.
TAPAAL [11,6] is an open-source tool facilitating both a graphical user inter-
face for system modelling of Petri nets, and a variety of verification engines,
each optimised to cope with different verification challenges. One of these tech-
niques is the structural reduction technique, which removes redundant places
and transitions in Petri nets [11]. Another technique is state equations, which
uses linear overapproximation to determine the satisfiability of predicates in the
initial marking. An efficient state space representation is used [13], which im-
proves successor generation, and reduces the required memory for storing states.
Other techniques for explicitly reducing the size of the state space include partial
order reduction [26] and symmetry reduction [21] techniques, both of which are
implemented in the Low Level Petri net Analyzer (LoLA) [28]. Alternatively to
explicit analysis, it is possible to perform symbolic analysis, such as the Interval
Decision Diagrams [22] used in the Marcie verification tool [10].

We present our interpretation of the well-known partial order reduction tech-
nique called stubborn sets [24,20,26] for Petri net. We name this interpretation
stubborn reduction and define it on the more abstract level of Labelled Transition
Systems (LTS).

We define how stubborn reduction guarantee the preservation of reachability
properties and prove its correctness. We apply this to Petri nets with inhibitor
arcs. This is done by generating a subset of transitions named the interesting
set of transitions, which are the only transitions that can affect the evaluation
of a given a formula. The interesting set of transitions is then transformed into
a stubborn set by a closure algorithm, for which we prove its termination and
correctness.

We present an interpretation of deciding the siphon-trap property [9] for
Petri net, which, instead of characterising the problem of deciding the siphon-
trap property as a Boolean satisfiability problem [18], is characterised as an
integer linear program. If a Petri net exhibits the siphon-trap property then the
Petri net is deadlock free. Furthermore, we parameterise the procedure with a
max depth, bounding the number of decision variables and constraints.

The size of the interesting set of transitions is based on the size of the formula
in question. If the formula is large, all transitions can potentially be added to
the set and subsequently include all transitions in the stubborn set, leaving the
stubborn reduction effectless. For this reason, we introduce the formula simpli-
fication technique, which is an extension of the existing state equations for Petri
net used in TAPAAL. We traverse the structure of a given formula and identify
subformulae that are either trivially satisfied or impossible to satisfy, and re-
place them with easier to verify alternatives. These formulae are identified using

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 3

integer linear programming such that the generated integer linear program has
a solution if the formula or subformula is satisfied. We provide an algorithm for
performing the simplification and prove its correctness. Additionally, we further
extend the logic to include CTL operators. Furthermore, formula simplification
can also be used for performing sanity checks on specifications. If the formula
or parts of it can be simplified to trivially true or false, then this may indicate
a faulty or uninteresting specification.

Related work. Parts of this thesis are based on our pre-specialisation project.
Details can be found in the bibliographical remarks in Section 10. The stub-
born reduction techniques is related to the work on stubborn sets [26,20,15].
Several techniques for improving the feasibility of model checking have been im-
plemented in the LoLA tool. This includes stubborn sets [20], symmetry reduc-
tion [21], and the Counter Example Guided Abstraction Refinement (CEGAR)
technique to reachability analysis of Petri nets [27]. Weak semi stubborn reduc-
tion and reachability preserving stubborn reduction rules together with proofs
are drawn from [20,26,15]. We contribute by lifting the mentioned stubborn set
rules to a more abstract interpretation and provide a reachability preserving
stubborn reduction rule. The reachability preserving closure for Petri nets is
based on [15,26], and is extended to include inhibitor arcs. The algorithm for
performing the stubborn set closure applies the method first described in [25],
and we prove its correctness. The integer linear programming interpretation of
the procedure for deciding the siphon-trap property is based on the work in [18].
We use attractor set theory in [20] and contribute with extending it to a larger
reachability logic to provide a formal and syntactically defined set of transitions
that form the base of reachability preserving stubborn sets. In [11] the authors
used the integer linear programming technique state equations for Petri net to
verify cardinality queries, which we extend to a larger CTL logic and base our
formula simplification procedure upon. In [27] the authors also used the state
equations technique and is the base for deciding reachability using CEGAR. We
contribute by demonstrating the performance on a database of models, consist-
ing of both industrial and academic models and queries, from the 2017 Model
Checking Contest (MCC) [2] when combining reduction techniques.

Acknowledgements. We thank Torsten Liebke from Rostock University, who
provided insight into the techniques used by the model checker LoLA. We thank
Peter Gjøl Jensen for his technical assistance with our implementation. We would
also like to show our gratitude to our supervisor Jǐŕı Srba for providing stimu-
lating feedback throughout our Master’s thesis.

In Section 2 we introduce preliminary definitions of LTS, Petri net, CTL and
reachability logic, and integer linear programming. In Section 3 we present stub-
born reduction using LTS and prove the preservation of reachability properties.
In Section 4 we apply stubborn reduction to Petri net with inhibitor arcs, which
includes the theory of interesting set of transitions, proving that the application
is correct, and providing an algorithm for computing the stubborn set closure,
including termination and correctness proofs. In Section 5 we present our integer

4 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

linear programming interpretation for deciding the siphon-trap property. In Sec-
tion 6 we present the formula simplification procedure and prove its correctness.
In Section 7 we give an overview of the TAPAAL toolchain, and highlight some
of the interesting parts of the implementation done. In Section 8 we present our
experimental setup and results on the database of known models from MCC’17.
In Section 9 we conclude our findings.

2 Preliminaries

A Labelled Transition System (LTS) is a tuple (S, A,→) where S is a set of
states, A is a set of actions (or labels), and → ⊆ S × A × S is a transition

relation. Whenever (s, a, s′) ∈ →, we write s
a−→ s′ and say that a is enabled in

s, and we can execute a in s yielding s′. Otherwise we say that a is disabled in
s and write s 6a−→. The set of all enabled actions in a state s is denoted en(s).
A state s is said to be a deadlock if en(s) = ∅. For a possibly infinite sequence
of actions w = a1a2 · · · ∈ A∗ ∪ Aω and states s1, s2, . . . we call w an action
sequence if s1

a1−→ s2
a2−→ · · · . If w is finite then this is written as s1

w−→ sn.
By convention s

ε−→ s always holds, where ε is the empty action sequence. Any
action sequence of length n from s to s′ is written as s −→n s′. If there exists
an action sequence w ∈ A∗ such that s

w−→ s′, we write s −→∗ s′. The set of all
reachable states from a state s is given by the set reach(s) = {s′ | s −→∗ s′}. The
sequence of states induced by an action sequence is called a path and is written
as π = s1s2 · · · . We use Π(s) to denote the set of all paths starting from a state
s, and Π =

⋃
s∈S Π(s) is the set of all paths. The length of a path is given by

the function ` : Π −→ N∪ {∞}. A position i in a path π ∈ Π refers to state si in
the path and is written as πi. If π is infinite then i ∈ N, otherwise 1 ≤ i ≤ `(π).
We use Πmax (s) to denote the set of all maximal paths starting from a state s
which is defined as Πmax (s) = {π ∈ Π(s) | `(π) =∞ or π`(π) is a deadlock}.

2.1 Computation Tree Logic

We describe the syntax and semantics of a Computation Tree Logic (CTL) [5].
Let AP be a set of atomic propositions, a ∈ AP an atomic proposition, and
(S, A,→) an LTS. We evaluate atomic propositions using the function v : S −→
2AP , where v(s) is the set of atomic propositions satisfied in the state s ∈ S.
The CTL syntax and semantics are given as follows:

ϕ ::= true | false | a | deadlock | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | ¬ϕ | ϕ1 =⇒ ϕ2 | ϕ1 ⇐⇒ ϕ2

| AXϕ | EXϕ | AFϕ | EFϕ | AGϕ | EGϕ | A(ϕ1Uϕ2) | E (ϕ1Uϕ2)

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 5

The semantics of formula ϕ is defined for a state s ∈ S as follows:

s |= true

s 6|= false

s |= a iff a ∈ v(s)

s |= deadlock iff en(s) = ∅
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

s |= ¬ϕ iff s 6|= ϕ

s |= ϕ1 =⇒ ϕ2 iff s 6|= ϕ1 or s |= ϕ2

s |= ϕ1 ⇐⇒ ϕ2 iff (s |= ϕ1 iff s |= ϕ2)

s |= AXϕ iff for all s′ ∈ S if s −→ s′ then s′ |= ϕ

s |= EXϕ iff exists s′ ∈ S s.t s −→ s′ and s′ |= ϕ

s |= AGϕ iff for all π ∈ Πmax (s) and for all positions i in π we have πi |= ϕ

s |= EFϕ iff exists π ∈ Πmax (s) s.t. there exists a position i in π s.t. πi |= ϕ

s |= AFϕ iff for all π ∈ Πmax (s) there exists a position i in π s.t. πi |= ϕ

s |= EGϕ iff exists π ∈ Πmax (s) s.t. for all positions i in π we have πi |= ϕ

s |= A(ϕ1Uϕ2) iff for all π ∈ Πmax (s) there exists a position i in π s.t.

πi |= ϕ2 and for all 1 ≤ j < i we have πj |= ϕ1

s |= E (ϕ1Uϕ2) iff exists π ∈ Πmax (s) and there exists a position i in π s.t.

πi |= ϕ2 and for all 1 ≤ j < i we have πj |= ϕ1

We use ΦCTL to denote the set of all CTL formulae.

2.2 Petri Nets

Let N0 = N∪{0} be the set of natural numbers including 0. Let N∞ = N∪{∞}
be the set of natural numbers including infinity.

Definition 1 (Petri net). A Petri net is a tuple N = (P, T,W, I) where P
and T are finite disjoint sets of places and transitions where P ∪ T 6= ∅, W :
(P ×T)∪ (T ×P)→ N0 is a weight function for regular arcs, and I : (P ×T)→
N∞ is a weight function for inhibitor arcs.

A marking M on N is a function M : P −→ N0, where M(p) denotes the
number of tokens in place p. All markings of a Petri net N are denoted M(N).
The initial marking of a Petri net N is denoted as M0 ∈ M(N). For a place
or transition x, we denote the pre-set of x as •x = {y | W ((y, x)) > 0}, and
the post-set of x as x• = {y | W ((x, y)) > 0}. For a transition t, we denote the
inhibitor pre-set of t as ◦t = {p | I((p, t)) < ∞}. For a place p, we denote the
inhibitor post-set of p as p◦ = {t | I((p, t)) < ∞}. For either a set of places or
transitions X we define the pre-set of X as •X =

⋃
x∈X •x, and the post-set of

X as X• =
⋃
x∈X x•.

6 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

t3p4t2p2
2

t1

p1 t4 p3

(a) A Petri net illustrating places, tran-
sitions, tokens, and weights.

2p1p3 p1p2p3
t1

2p1p4

t3

2p2p3
t1

p1p2p4

t3
t1

t4

2p2p4

t3
t1

t4

p3
t2

p4

t3

(b) LTS describing the Petri net in Fig. 1a.

Fig. 1

The semantics of a Petri net can be described using an LTS. Given N =
(P, T,W, I) we define T (N) = (S, A,→) as follows: S = M(N) is the set of all

markings, A = T is the set of labels derived from each transition, and M
t−→M ′

iff for all p ∈ P we have M(p) < I((p, t)), M(p) ≥ W ((p, t)), and M ′(p) =
M(p)−W ((p, t)) +W ((t, p)), thus updating the resulting marking according to
the weight function. If p ∈ •t and M(p) < W ((p, t)) we say that p disables t in
M , and if p ∈ ◦t and M(p) ≥ I((p, t)), we say that p inhibits t in M . In the
context of Petri nets, we refer to actions as transitions, and rather than executing
actions, we fire transitions and call an action sequence for a firing sequence.

For a firing sequence w ∈ T ∗ where T = {t1, t2, . . . , tn}, the Parikh vector
℘(w) of w is the vector [#t1(w) #t2(w) . . . #tn(w)]. The function #t is given
as #t : T ∗ → N0 and defined recursively as follows (where a ∈ T and v ∈ T ∗):

#t(ε) = 0

#t(av) =

{
1 + #t(v) if a = t,

#t(v) else

where #t(w) is the number of occurrences of t in the firing sequence w.

Example 1 (Graphical Notation). Figure 1a illustrates a Petri net. The net con-
sists of three places drawn as circles and four transitions drawn as squares. The
edges are arcs where the arrows corresponds to the regular arcs and the arcs
with a circle are inhibitor arcs. Note that by definition there is a weight for
every place-transition and transition-place pair in the net. The same applies to
inhibitor arcs for all place-transitions pairs. If the weight of a regular arc is 0,
then it effectively have no effect on the net and can safely be ignored. The same
applies to inhibitor arcs with a weight of infinity. All regular and inhibitor arcs
have a weight of 1 unless stated otherwise. The dots inside places denote tokens.
For example, the current marking has 2, 0, 1 and 0 tokens for places p1, p2, p3

and p4, respectively. Fig. 1b illustrates the corresponding LTS of the Petri net in
Fig. 1a. The LTS has 8 states drawn as rectangles. Each state is labelled with the
marking it represents. We write markings by denoting the place name for each
place with at least 1 token. If a place has more than 1 token then it is explicitly
stated as a prefix of the place name. For example, the marking (p1p2p3) means
that p1, p2, and p3 all have 1 token, and p4 has 0 tokens. In marking (2p1p3),

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 7

p1 has 2 tokens, p3 has 1 token, and the remaining places have 0 tokens. Edges
correspond to the transition relation of the LTS.

2.3 Atomic Propositions for Petri Net CTL

The satisfiability of CTL formulae in a Petri net is interpreted on the LTS
generated by the net. We fix the set of atomic propositions AP based on the
informal semantics in the MCC Property Language [2], which includes arithmetic
expressions and fireability of transitions. Let N = (P, T,W, I) be a Petri net. An
atomic proposition a ∈ AP is defined as:

a ::= t | e1 ./ e2

e ::= c | p | e1 ⊕ e2

where t ∈ T , c ∈ N0, ./ ∈ {<,≤,=, 6=, >,≥}, p ∈ P , and ⊕ ∈ {+,−, ∗}. The
semantics of ϕ is defined for a marking M as follows:

M |= t iff t ∈ en(M)

M |= e1 ./ e2 iff evalM (e1) ./ evalM (e2)

The semantics of an arithmetic expression in a marking M is given as follows:

evalM (c) = c,
evalM (p) = M(p),
evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2).

We use ΦReach ⊆ ΦCTL to denote a subset of formulae called reachability
formulae. Reachability formulae can be on the form EFϕ or AGϕ, where ϕ is
defined as follows:

ϕ ::= true | false | a | deadlock | e1 ./ e2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 =⇒ ϕ2 |
ϕ1 ⇐⇒ ϕ2

A reachability formula AGϕ is equivalent to ¬EF¬ϕ. Henceforth, we assume
all AGϕ reachability formulae have been transformed to EF formulae.

For a reachability formula EFϕ we distinguish between a cardinality formula,
fireability formula, or deadlock formula depending on the subexpressions of ϕ. A
cardinality formula excludes the use of t and deadlock and compares the number
of tokens in places using e1 ./ e2. A fireability formula excludes the use of e1 ./ e2

and deadlock and asks if there is a marking where some specific transitions can
be fired using t. A deadlock formula is on the form EF deadlock and only checks
for the existence of deadlocks.

Example 2 (Cardinality Formula). Consider the Petri net in Fig. 1a. We can
verify the cardinality formula (2p1p3) |= EF p2 = 2 ∧ p4 = 1 by exploring the
LTS in Fig. 1b. Doing this, we can conclude that a marking is reachable from
the initial marking such that p2 has 2 tokens and p4 has 1 token, by for example
executing t3t1t1, and thus the formula is satisfied.

8 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Example 3. Consider again the Petri net in Figure 1a We can verify the CTL
formula (2p1p3) 6|= A(p1 > 0 U t4) by exploring the LTS in Fig. 1b. We can fire
the sequence t1t1 which leaves us in a state where p1 > 0 is not satisfied, but
t4 is not enabled in the resulting marking since t3 needs to be fired in order to
enable t4. Therefore the formula is not satisfied since there exists a path where
it does not hold.

In the remainder of this thesis, we use the following equivalence definition of
CTL formulae.

Definition 2. Let N = (P, T,W, I) be a Petri net, M0 an initial marking on N ,
and ϕ1, ϕ2 ∈ ΦCTL CTL formulae. We write ϕ1 ≡ ϕ2 iff for all M ∈ reach(M0),
M |= ϕ1 iff M |= ϕ2.

2.4 Integer Linear Program

For defining an integer linear program, we first need to define a linear equation.
Let X = {x1, x2, . . . , xn} be a set of variables and x a column vector over the
variables X such that:

x =


x1

x2

...
xn

 .
A linear equation is given by c x ./ k, where ./ ∈ {=, <,≤, >,≥}, k ∈ Z is an
integer, and c is a row vector of integers such that:

c =
[
c1 c2 · · · cn

]
where ci ∈ Z for all 1 ≤ i ≤ n.

Definition 3 (Integer Linear Program). An integer linear program LP =
{c1x ./1 k1, c2x ./2 k2, · · · , cmx ./m km} is a set of linear equations. A solution
to LP is a mapping u : X −→ N0 from variables to natural numbers and corre-
sponding column vector uT = [u(x1) u(x2) · · ·u(xn)], such that for all 1 ≤ i ≤ m
we have ciu ./i ki is true. We use EXlin to denote the set of all linear programs
over a set of variables X .

An integer linear program with a solution is said to be either feasible or
infeasible. For completeness sake, linear programming is also called linear opti-
misation. It is a technique for optimising some linear objective function while
being subject to a number of linear constraints. An example of an objective
function is max vx, where v is a row vector of reals, including negative reals.
The optimisation problem is finding a solution c such that vc is maximised. We
do not need the optimisation aspect for our usage of linear programming, so we
omit it and assume the objective function is always max 0x where 0 is a row
vector consisting only of zeros, i.e. every solution is an optimal one.

The feasability of linear programs can be decided in polynomial time [8], for
example by the use of the simplex algorithm. The feasability of integer linear

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 9

p1 t1 p2

2

t2 p3

p4

Fig. 2: A Petri net illustrating the state equations technique.

programs, which is the type of program that we use to model our problem, is
NP-complete [17,8]. There exist efficient solvers for this type of programs, such
as lp solve [3].

For Petri nets, there is a technique for checking if a marking is unreachable
using integer linear programming. This technique is called state equations, an
algebraic description of how markings change by firing transitions [11].

Let N = (P, T,W, I) be a Petri net, M0 ∈ M(N) an initial marking on N ,
M ∈M(N) a marking on N , and X = {xt | t ∈ T} a set of variables. From this
we construct the following linear program over X:

M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt = M(p) for all p ∈ P.

It is well-known that if M ∈ reach(M0) then there exists a solution to the
linear program. If the linear program is infeasible, then we can discern that
M /∈ reach(M0). If a solution does exist then it is inconclusive whether or not
M is reachable from M0.

A solution to the state equations is seen as a candidate firing sequence. The
natural number assigned to the variable xt corresponds to the number of times
the transition t is fired during the sequence. The reason a solution to the state
equation does not decide whether the marking M is reachable is because it does
not maintain the Petri net semantics for any intermediary marking between M0

and M . Transitions that are inhibited or disabled can be fired, and places can
have less than zero tokens as long it has the exact number of required tokens
after all transitions have been fired. If w ∈ T ∗ is a firing sequence such that
M0

w−→ M then ℘(w) is a solution to the linear program, but a solution is not
necessarily a possible firing sequence.

Example 4 (State Equations). Consider the Petri net in Figure 2 with initial
marking M0(p1) = 1 and M0(p2) = M0(p3) = M0(p4) = 0. We want to check
using state equations whether the markings M1 and M2 are reachable from M0

where:

– M1(p1) = 1, M1(p2) = 5, M1(p3) = 0, and M1(p4) = 0.
– M2(p1) = 0, M2(p2) = 0, M2(p3) = 0, and M2(p4) = 1.

10 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

For M1 we have the following equations:

1 + 0xt1 − 1xt2 = 1

0 + 2xt1 + 0xt2 = 5

0 + 0xt1 + 0xt2 = 0

0 + 0xt1 + 1xt2 = 0

The problem here is the second equation. There does not exist an integer we
can assign to xt1 such that the equation is satisfied. We therefore have that
M1 /∈ reach(M0).

For M1 we have the following equations:

1 + 0xt1 − 1xt2 = 0

0 + 2xt1 + 0xt2 = 0

0 + 0xt1 + 0xt2 = 0

0 + 0xt1 + 1xt2 = 1

The assignment xt1 = 0 and xt2 = 1 is a solution to this integer linear program.
However, it is clear from Figure 2 that M2 is not reachable, since transition t2 is
disabled in M0. So the set of markings that have a solution using state equations
is an over approximation of the actual reachable markings from a given initial
marking.

3 Reductions of LTS

State space reduction techniques attempt to reduce the size of the state space at
the cost of adding a justified computational overhead. The techniques often have
great practical influence, causing model checkers to provide verification answers
on model instances where they could not previously provide an answer within
reasonable time and resources.

A reduction can be seen as a filter, that filters sets of actions in each state that
are required to be executed in order to reach a state satisfying some property.
We say that a reduction preserves a set of properties if the properties remain
satisfiable in the reduced state space. A reduction is a function from the set of
states to the power set of actions, such that for each state the function returns
the set of required actions.

Definition 4 (Reduction). Let T = (S, A,→) be an LTS. A reduction of T is
a function St : S → 2A.

A reduction defines a subset of the transition relation of an LTS, and we
annotate the transition relation with a reduction to define the reduced state
space.

Definition 5 (Reduced transition relation). Let T = (S, A,→) be an LTS
and St a reduction of T . A reduced transition relation is a relation −→

St
⊆ →

such that s
a−→
St

s′ iff s
a−→ s′ and a ∈ St(s).

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 11

2p1p3 p1p2p3
t1

2p1p4

t3

2p2p3
t1

p1p2p4

t3
t1

t4

2p2p4

t3
t1

t4

p3
t2

p4

t3

Fig. 3: Example reduced state space for the Petri net in Figure 2.

Let T = (S, A,→) be an LTS, a ∈ S a state, and St a reduction of T . The
set St(s) = A \ St(s), is the set of all actions not in St(s).

For a sequences of actions, the following condition identifies required actions,
that allow us to permute the sequence, such that the permuted sequence begins
with the required action.

W For all s ∈ S, all a ∈ St(s), and all w ∈ St(s)
∗
, if s

wa−−→ s′ then s
aw−−→ s′.

Reductions that satisfy W are called (weak)semistubborn reductions [24],
and for all s ∈ S, we say that St(s) is the stubborn set of s, and that an action
a ∈ St(s) is a stubborn action.

W implies that if a is enabled after a sequence of non-stubborn actions
leading from s to s′, then the stubborn action can be moved to the front of the
sequence, without disabling the non-stubborn transitions. If a is disabled in s,
then it remains disabled after the execution of any sequence of non-stubborn
actions.

Lemma 1. Let T = (S, A,→) be an LTS and St be a reduction on T satisfying

W. For all s ∈ S, all a ∈ St(s), and all w ∈ St(s)
∗
, if a /∈ en(s) and s

w−→ s′

then a /∈ en(s′).

Proof. The proof proceeds by contradiction.

Let s, s′ ∈ S, a ∈ St(s), a /∈ en(s), and w ∈ St(s)
∗

s.t. s
w−→ s′. Assume

that a ∈ en(s′). If a ∈ en(s′) then we must have that a ∈ en(s) by W, which
contradicts that a /∈ en(s). Therefore, a /∈ en(s′). ut

Example 5 (Stubborn Reduction). Consider the Petri net in Figure 1a. We want
to create a stubborn reduction such that its corresponding state space in Fig-
ure 1b is reduced. Consider the set {t1} in the initial state (2p1p3). There is
only one non-stubborn transition sequence from (2p1p3), namely t3, where t1 is
enabled in the resulting marking, so the firing sequence t3t1 is possible. There-
fore {t1} is a stubborn set for the initial state. If we instead consider the set
{t3}, it is not a stubborn set for the initial state. This is because there exist
the non-stubborn firing sequence t1t1t2 followed by t3, but the firing sequence
t3t1t1t2 is not possible. A possible reduced state space satisfying W for Fig-
ure 1a can be seen in Figure 3. In fact, the state space consisting only of the
initial state (2p1p3) is a valid reduction, since the empty set is always a stubborn
set satisfying W.

12 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

3.1 Reachability Preserving Stubborn Reduction

When performing reachability analysis, we are searching for states that satisfy
a given property. In the context of stubborn reduction, we refer to these states
as goal states. The task of investigating whether a goal state is reachable from
an initial state is referred to as a reachability problem.

Let T = (S, A,→) be an LTS, s0 ∈ S an initial state, and G ⊆ S a set of
goal states. For a reduction St to preserve paths to a goal state, the following
condition needs to be satisfied:

R For all s ∈ S if s 6∈ G and s
w−→ s′ where w ∈ St(s)

∗
then s′ 6∈ G.

Rule R states that, when starting in a non-goal state, the execution of non-
stubborn transitions cannot reach any goal state in G. It also ensures that at
least one stubborn action has to be executed in order to reach a goal state.

The following theorem ensures that for any path from an initial state to a
goal state, there exists a path in the reduced transition relation leading to the
same goal state in the same number of steps, or a different goal state in at most
the same number of steps.

Theorem 1 (Reachability preservation). Let (S, A,→) be an LTS, G ⊆ S
a set of goal states, and s0 ∈ S. Let St be a reduction satisfying W and R. If
s0 −→n s where s ∈ G then s0 −→

St

m s′ where s′ ∈ G and m ≤ n. If s0 −→
St

m s

where s ∈ G then s0 −→m s.

Proof. The second part of the theorem is trivial since −→
St
⊆−→.

The proof for the first part of the theorem proceeds by induction on n, for
the induction hypothesis if s0 −→n s where s ∈ G then s0 −→

St

m s′ where s′ ∈ G

and m ≤ n. Let w ∈ A∗ be a transition sequence of length n, such that s0
w−→ s

for s ∈ G.
Base step: If n = 0, then s0 = s and the induction hypothesis holds.
Induction step: If n > 0 and s0 /∈ G, then by R if none of the actions in

w is in St(s0), then R implies that s /∈ G, contradicting our assumption that
s is a goal state. We must therefore have that at least one transition in w is

stubborn, and we can divide w into vau, where v ∈ St(s0)
∗

and a ∈ St(s0).

Rule W implies the existence of s′′ such that s0
a−→ s′′

vu−→ s. If s′′ ∈ G, the
length of the path from s0 to s′′ is less than n and we are done. Otherwise, there
exists a path s′′

vu−→ s of length n− 1 from s′′ to s. By the induction hypothesis,
s′′ −→

St

m′
s′ where m′ ≤ n− 1 which together with s0

a−→
St

s′′ gives s0 −→
St

m′+1 s′

where m′ + 1 ≤ n. ut

4 Reductions of Petri Net

We now show how to do reachability preserving stubborn reduction for Petri
net with inhibitor arcs. Instead of states and actions of LTS, we now refer to

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 13

markings and transitions of Petri nets. It is inefficient to generate stubborn sets
for markings using W and R directly, as the properties must hold for even
infinite transition sequences, and ensuring these properties is no different from
performing exhaustive state space search. So rather than examining the entire
state space, we now analyse the structure of the Petri net and present algorithms
for iteratively constructing the stubborn sets, based on techniques in [15].

We define goal states as goal markings that satisfy a given reachability prop-
erty. Let EF ϕ ∈ ΦReach be a reachability formula and Gϕ = {M ∈ M(N) |
M |= ϕ} be the goal markings for ϕ, where N is a Petri net. The reduction pro-
cedure must identify transitions that are required to fire in order to reach the
goal markings. To identify these transitions, we update the notion of attractor
sets [20] to our reachability logic. We call this set the interesting transitions of
a marking M and formula ϕ, denoted AM (ϕ). All transitions that can alter the
truth value of ϕ from false to true are interesting transitions.

Assume M 6|= ϕ and t ∈ T . Let AM (ϕ) ⊆ T such that if M
t−→ M ′ and

M ′ |= ϕ then t ∈ AM (ϕ). We define AM (ϕ) recursively on the syntactic cat-
egory for reachability formulae. The interesting transitions for all Boolean for-
mulae are shown in Table 1. The interesting transitions of a negation depend
on what follows syntactically from the negation, and thus we describe this in a
separate column. Table 1 does not describe AM (¬¬ϕ) because its set of inter-
esting transitions is equivalent to that of AM (ϕ). We introduce the notation ./
that refers to the complement of of a comparison operator ./. The complement
operators are shown in Table 2.

The interesting transitions of a formula e1 ./ e2 depend on ./ and the marking
of places found in the formula.

Example 6 (Interesting Transitions for Comparisons). Consider ϕ = p > 5
where p ∈ P and M(p) = 4. As there are currently not enough tokens in p,
we must fire transitions that produce tokens into p, i.e. •p ⊆ AM (ϕ). Now con-
sider ϕ = (8−p) > 5. Reducing the token count of p will increase the evaluation
of (8 − p), and thus we need the transitions that consume tokens from p, i.e.
p• ⊆ AM (ϕ).

We define the set of expressions that can be constructed with N as EN , and
two functions incrM : EN −→ 2T and decrM : EN −→ 2T . These functions receive
an expression e and return the set of transitions that, when fired, increase and
decrease the evaluation of e, respectively. We present the interesting transitions
for formulae of the form e1 ./ e2 in Table 3. We recursively define incrM and
decrM on the syntax of expressions in Table 4.

Example 7 (Interesting Set of Transitions). Consider the Petri net in Figure 1a
with initial marking M0 = (2p1p3). We want to create an interesting set of
transitions for the reachability formula EFp2 = 2 ∧ p4 = 1. Both of the places
p2 and p4 have less than the required tokens, so the interesting set of trantitions
are the transitions that increase the evaluation of both expressions. From this
we have that AM0(p2 = 2) = {t1} and AM0(p4 = 1) = {t3}. In Table 1 we
can see that the interesting set of transitions for a conjunction is the interesting

14 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Formula ϕ AM (ϕ) AM (¬ϕ)

true ∅ ∅
false ∅ ∅

t
•p for some p ∈ •t where M(p) < W (p, t) or
p• for some p ∈ ◦t where M(p) ≥ I(p, t)

(•t) • ∪ • (◦t)

deadlock (•t) • ∪ • (◦t) for some t ∈ en(M) ∅
e1 ./ e2 See Table 3 AM (e1 ./ e2)

ϕ1 ∧ ϕ2 AM (ϕi) for some i ∈ {1, 2} where M 6|= ϕi AM (¬ϕ1 ∨ ¬ϕ2)

ϕ1 ∨ ϕ2 AM (ϕ1) ∪AM (ϕ2) AM (¬ϕ1 ∧ ¬ϕ2)

ϕ1 =⇒ ϕ2 AM (¬ϕ1 ∨ ϕ2) AM (ϕ1 ∧ ¬ϕ2)

ϕ1 ⇐⇒ ϕ2 AM (ϕ1 =⇒ ϕ2 ∧ ϕ2 =⇒ ϕ1) AM (ϕ1 ⇐⇒ ¬ϕ2)

Table 1: Interesting transitions of ϕ.

Operator ./ ./

< ≥
≤ >

= 6=
6= =

> ≤
≥ <

Table 2: Complement of comparison operator ./.

Formula e1 ./ e2 AM (e1 ./ e2)

e1 < e2 decrM (e1) ∪ incrM (e2)

e1 ≤ e2 decrM (e1) ∪ incrM (e2)

e1 > e2 incrM (e1) ∪ decrM (e2)

e1 ≥ e2 incrM (e1) ∪ decrM (e2)

e1 = e2

if evalM (e1) > evalM (e2) then
decrM (e1) ∪ incrM (e2)
else if evalM (e1) < evalM (e2) then
incrM (e1) ∪ decrM (e2)

e1 6= e2 incrM (e1) ∪ decrM (e1) ∪ incrM (e2) ∪ decrM (e2)

Table 3: Interesting transitions of e1 ./ e2.

Expression e incrM (e) decrM (e)

c ∅ ∅
p •p p•
e1 + e2 incrM (e1) ∪ incrM (e2) decrM (e1) ∪ decrM (e2)

e1 − e2 incrM (e1) ∪ decrM (e2) decrM (e1) ∪ incrM (e2)

e1 ∗ e2
incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

incrM (e1) ∪ decrM (e1) ∪
incrM (e2) ∪ decrM (e2)

Table 4: Increasing and decreasing transitions of e.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 15

set of transitions for one of its children that is not satisfied in M0. So e.g.
AM0

(p2 = 2 ∧ p4 = 1) = {t1} is a valid set of interesting transitions. The other
option is AM0

(p2 = 2 ∧ p4 = 1) = {t3}.

Given a marking and an unsatisfied reachability formula, Lemma 2 ensures
that if a non-interesting transition is fired, we will not reach a marking that sat-
isfies the given formula. Consequently, if we reach a marking where the formula
is satisfied, the fired transition is necessarily an interesting transition.

Lemma 2. Let N = (P, T,W, I) be a Petri net, M ∈ M(N) a marking, and

EFϕ ∈ ΦReach a reachability formula. If M 6|= ϕ and M
t′−→M ′ where t′ /∈ AM (ϕ)

then M ′ 6|= ϕ.

Proof. The proof proceeds by structural induction of ϕ.
Base step:

ϕ = true: The assumption does not hold, so there is nothing to show.
ϕ = false: Clearly M ′ 6|= ϕ holds.
ϕ = t: Since M 6|= ϕ we have t is either disabled, inhibited, or both in M . If
t is disabled, then •p ⊆ AM (ϕ) for some p ∈ •t where M(p) < W (p, t). We
know t′ /∈ AM (ϕ), so t′ cannot be any transition that puts tokens into p.
Because of this, we must have that M(p) ≥ M ′(p) and t is disabled in M ′.
If t is inhibited, then p• ⊆ AM (ϕ) for some p ∈ ◦t where M(p) ≥ I(p, t). We
know t′ /∈ AM (ϕ), so t′ cannot be any transition that subtracts tokens from
p. Because of this, we must have that M(p) ≤ M ′(p) and t is inhibited in
M ′. Therefore, after firing t′ we have that t is still not enabled, so M ′ 6|= ϕ
holds.

ϕ = deadlock: Since M 6|= ϕ we know M is not a deadlock and there exists
t ∈ en(M). We know that (•t)• ⊆ AM (ϕ), so t′ cannot remove tokens from
the pre-set of t, i.e. for all p ∈ •t we have M(p) ≤M ′(p). We also know that
•(◦t) ⊆ AM , so t′ cannot put tokens in the inhibitor pre-set of t, i.e. for all
p ∈ ◦t we have M(p) ≥ M ′(p). Therefore, after firing t′ we have that t is
still enabled, so M ′ 6|= ϕ holds.

ϕ = e1 < e2: Since M 6|= ϕ we know that decrM (e1) ∪ incrM (e2) ⊆ AM (ϕ).
We know t′ /∈ AM (ϕ), so firing t′ cannot decrease the evaluation of e1 or
increase the evaluation of e2, i.e. evalM (e1) ≤ evalM ′(e1) and evalM (e2) ≥
evalM ′(e2). So M ′ 6|= ϕ holds.

ϕ = e1 ≤ e2: Similar to the proof for e1 < e2.
ϕ = e1 6= e2: Since M 6|= ϕ we know that incrM (e1)∪ decrM (e1)∪ incrM (e2)∪

decrM (e2) ⊆ AM (ϕ). We know t′ /∈ AM (ϕ), so firing t′ cannot change the
evalution of e1 or e2 at all, i.e. evalM (e1) = evalM ′(e1) and evalM (e2) =
evalM ′(e2). So M ′ 6|= ϕ holds.

ϕ = e1 = e2: Since M 6|= ϕ we know either M |= e1 > e2 or M |= e1 < e2

are true. In the first case, we have that decrM (e1) ∪ incrM (e2) ⊆ AM (ϕ).
We know t′ /∈ AM (ϕ), so firing t′ cannot decrease the evaluation of e1 or in-
crease the evaluation of e2, i.e. evalM (e1) ≤ evalM ′(e1) and evalM (e2) ≥
evalM ′(e2). In the second case, we have that incrM (e1) ∪ decrM (e2) ⊆

16 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

AM (ϕ). We know t′ /∈ AM (ϕ), so firing t′ cannot increase the evaluation
of e1 or decrease the evaluation of e2, i.e. evalM (e1) ≥ evalM ′(e1) and
evalM (e2) ≤ evalM ′(e2). So M ′ 6|= ϕ holds.

ϕ = e1 > e2: Similar to the proof for e1 < e2.
ϕ = e1 ≥ e2: Similar to the proof for e1 < e2.

We now proceed with the inductive cases, and prove them using structural in-
duction.

Inductive step:

ϕ = ϕ1 ∧ ϕ2: Since M 6|= ϕ we know one of M 6|= ϕ1 or M 6|= ϕ2 are true. Let
i ∈ {1, 2} such that M 6|= ϕi, then we know AM (ϕi) ⊆ AM (ϕ). We know
t′ /∈ AM (ϕ), so firing t′ by the induction hypothesis cannot make ϕi true. So
M ′ 6|= ϕ holds.

ϕ = ϕ1 ∨ ϕ2: Since M 6|= ϕ we know M 6|= ϕ1 and M 6|= ϕ2 are true and
AM (ϕ1) ∪ AM (ϕ2) ⊆ AM (ϕ). We know t′ /∈ AM (ϕ), so firing t′ by the
induction hypothesis cannot make ϕ1 or ϕ2 true. So M ′ 6|= ϕ holds.

ϕ = ¬true: Trivial.
ϕ = ¬false: Trivial.
ϕ = ¬t: Since M 6|= ϕ we know that t ∈ en(M) and (•t)• ⊆ AM (ϕ). We

know t′ /∈ AM (ϕ), so t′ cannot be any transition that removes tokens from
any place in the pre-set of t. Therefore, after firing t′ we have that t is still
enabled, so M ′ 6|= ϕ holds.

ϕ = ¬deadlock: Since M 6|= ϕ we know that M is a deadlock. There can

therefore not exist a t′ such that M
t′−→M ′, and there is nothing to show.

For formulae on the form ¬(e1 ./ e2) the proof is trivial, since the negation
changes the comparison operator into its dual comparison operator, as seen in
Table 2, which we have already proved previously.

ϕ = ¬(ϕ1 ∧ ϕ2): We know ¬(ϕ1 ∧ ϕ2) is equaivalent to ¬ϕ1 ∨ ¬ϕ2, which we
have already proved.

ϕ = ¬(ϕ1 ∨ ϕ2): We know ¬(ϕ1 ∨ ϕ2) is equaivalent to ¬ϕ1 ∧ ¬ϕ2, which we
have already proved.

ϕ = ϕ1 =⇒ ϕ2: We know ϕ1 =⇒ ϕ2 is equivalent to ¬ϕ1 ∨ ϕ2, which we have
already proved previously.

ϕ = ¬(ϕ1 =⇒ ϕ2): We know ¬(ϕ1 =⇒ ϕ2) is equivalent to ϕ1 ∧¬ϕ2, which we
have already proved previously.

ϕ = ϕ1 ⇐⇒ ϕ2: We know ϕ1 ⇐⇒ ϕ2 is equivalent to (ϕ1 =⇒ ϕ2)∧(ϕ2 =⇒ ϕ1),
which we have already proved previously.

ϕ = ¬(ϕ1 ⇐⇒ ϕ2): We know ¬(ϕ1 ⇐⇒ ϕ2) is equivalent to ϕ1 ⇐⇒ ¬ϕ2, which
we have already proved previously. ut

With Lemma 2 we can now prove Lemma 3, which guarantees that by firing
a sequence of non-interesting transitions, we cannot reach a goal marking.

Lemma 3. Let N = (P, T,W, I) be a Petri net, M ∈ M(N) a marking, ϕ a

formula, and w ∈ AM (ϕ)
∗

a sequence of non-interesting transitions. If M /∈ Gϕ
and M

w−→M ′ then M ′ /∈ Gϕ.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 17

Proof. The proof proceeds by induction on the length n of w, for the induction
hypothesis if M /∈ Gϕ and M

w−→M ′ then we have M ′ /∈ Gϕ.
Base step: Let n = 0, then M = M ′ and we are done.

Induction step: Let n > 0. We can divide w into tw′ such that M
t−→M ′′

w′

−→
M ′ and the length of w′ is n − 1. By Lemma 2 we know that firing t cannot
make ϕ true, so we must have that M ′′ /∈ Gϕ. By the induction hypothesis, we
must have that M ′ /∈ Gϕ. ut

Lemma 3 corresponds to R. We can easily verify the R property by including
all interesting transitions in the stubborn set. Ensuring the W property is done
by examining the structure of the Petri net and the marking in question.

Proposition 1 (Reachability preserving closure for Petri nets). Let N =
(P, T,W, I) be a Petri net with inhibitor arcs, EFϕ ∈ ΦReach a reachability
formula, and St a reduction such that for all M ∈M(N):

1 AM (ϕ) ⊆ St(M).
2 For all t ∈ St(M), if t /∈ en(M) then

– exists p that disables t in M and •p ⊆ St(M), or
– exists p that inhibits t in M and p• ⊆ St(M).

3 For all t ∈ St(M), if t ∈ en(M) then
– (•t)• ⊆ St(M), and
– (t•)◦ ⊆ St(M).

then St satisfies W and R.

Proof.
(R): Follows from Lemma 3 by Condition 1.
(W): Let M ∈ M(N) be a marking, t ∈ T a transition such that t ∈ St(M),

and w ∈ St(M)
∗

a transition sequence. We show that if M
wt−→ M ′ then

M
tw−→M ′.

If t /∈ en(M), then there exists p that disables or inhibits t in M . Due to
condition 2, if p disables t in M then all t′ ∈ •p are also in St(M), thus t′

cannot be in w. Because of this we cannot add any tokens to p by firing w
and p still disables t after firing w. If p inhibits t in M then all t′ ∈ p• are
also in St(M), thus t′ cannot be in w. Because of this we cannot remove
any tokens from p by firing w and p still inhibits t after firing w. This
contradicts our assumption that t is enabled after firing w, hence we can
infer that t ∈ en(M). This completes the first part of W where we swap t
to the beginning of the transition sequence leading to M ′, and implies the

existence of M ′′ such that M
t−→M ′′.

The only thing left to show is that we can fire w in M ′′ and complete the
path to M ′, i.e. M ′′

w−→ M ′. If we cannot fire w in M ′′, then there are two
possible cases: There exists t′ ∈ (•t)• that occurs in w and becomes disabled
by firing t, or exists t′ ∈ (t•)◦ that occurs in w and becomes inhibited by
firing t. In the first case, due to condition 3, we have that (•t)• ⊆ St(M),
and t′ cannot be in w since it is in the stubborn set. Therefore, w is enabled

18 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Algorithm 1: Construction of a reachability preserving stubborn set

input : N = (P, T,W, I), M ∈M(N), ϕ
output : St(M) where St satisfies W and R

1 X := ∅; unprocessed := AM (ϕ);
2 while unprocessed 6= ∅ do
3 pick any t ∈ unprocessed ;
4 if t 6∈ en(M) then
5 if Exists p ∈ •t s.t. M(p) < W (p, t) then
6 pick any p ∈ •t s.t. M(p) < W (p, t);
7 unprocessed := unprocessed ∪ (•p \X);

8 else
9 pick any p ∈ ◦t s.t. M(p) ≥ I(p, t);

10 unprocessed := unprocessed ∪ (p • \X);

11 else
12 unprocessed := unprocessed ∪ ((•t) • \X) ∪ ((t•) ◦ \X);

13 unprocessed := unprocessed \ {t};
14 X := X ∪ {t};
15 return X;

in M ′′ and M ′′
w−→M ′. In the second case we have that (t•)◦ ⊆ St(M), and

t′ cannot be in w since it is in the stubborn set. Therefore, w is not inhibited
in M ′′ and M ′′

w−→M ′.
ut

In Algorithm 1 we illustrate pseudocode on how to construct a reachability
preserving stubborn set that satisfies W and R for a given marking M and
reachability formula EFϕ ∈ ΦReach .

Lemma 4. Algorithm 1 terminates.

Proof. If AM (ϕ) = ∅ then we never enter the while-loop and terminate immedi-
ately. If AM (ϕ) 6= ∅ the loop condition holds and we enter the while-loop. Notice
that X ∩ unprocessed = ∅ is always the case in the execution of Algorithm 1.
Clearly, we never remove transitions from X after they have been added. There-
fore, since in line 14 a new transition is added to X at the end of each loop
iteration, the while-loop can iterate at most once for each transition. Since T is
finite by the Petri net definition, the while-loop iterates a finite number of times,
and Algorithm 1 terminates. ut

Lemma 5. When Algorithm 1 terminates, the reduction St computed by the
algorithm satisfies W and R.

Proof. The proof proceeds by showing for any marking M that X fulfils every
condition from Proposition 1.

Condition 1 clearly holds since the set of interesting transitions are added
to the pre-processing set in line 1. Every element in the pre-processing set are
eventuualy added to X, so condition 1 holds.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 19

To show condition 2 and condition 3 we need to prove the following loop
invariant: For all t ∈ T :

- If t /∈ en(M) and t ∈ X then we have •p ⊆ unprocessed ∪X for some p that
disables t in M or p• ⊆ unprocessed ∪X for some p that inhibits t in M .

- If t ∈ en(M) ∩X then (•t)• ⊆ unprocessed ∪X and (t•)◦ ⊆ unprocessed ∪X .

Initialisation: Prior to the while-loop X = ∅ so the loop invariant holds.
Maintenance: Assume the loop invariant holds after the nth iteration of the

while-loop. Let t ∈ unprocessed be the selected transition for iteration n + 1 in
line 3. If t /∈ en(M) there are two cases:

- If p disables t in M then for all t′ ∈ •p either t′ ∈ unprocessed or t′ ∈ X due
to line 6 and line 7.

- If p inhibits t in M then for all t′ ∈ p• either t′ ∈ unprocessed or t′ ∈ X due
to line 9 and line 10.

If t ∈ en(M) then for all t′ ∈ (•t) • ∪ (t•)◦ either t′ ∈ unprocessed or t′ ∈ X due
to line 12. So the loop invariant holds for the next iteration of the while-loop.

Termination: When unprocessed = ∅, for all t ∈ X we have t either ful-
fils the first or second part of the loop invariant, and it clearly holds. Since
unprocessed = ∅, we must have that all the transitions that ensure the loop
invariant is fulfilled must be in X. Because of this, X fulfills condition 2 and
condition 3 of Proposition 1, and X is a stubborn set for M satisfying W and
R. ut

Example 8 (Stubborn Set Generation). Consider the Petri net in Figure 1a with
initial marking M0 = (2p1p3). We want to generate a stubborn set for M0 and the
reachability formula EF p2 = 2 ∧ p4 = 1 satisfying W and R. From Example 7
we know that both {t1} and {t3} are valid interesting sets of transitions for
EF p2 = 2∧p4 = 1 in M0. Let {t1} be the set of transitions added to unprocessed
in line 1 of Algorithm 1. When the while-loop is entered, we select t1 in line 3.
The transition is enabled so the sets (•t1)• and (t•)◦ are added to X. It is clear
that (•t1)• = {t1} and (t1•)◦ = ∅, so nothing is added to unprocessed at all, and
the algorithms terminates when t1 is added to X. So St(M0) = {t1} is a valid
stubborn set for M0. If we instead choose {t3} as the interesting set of transitions,
we have that (•t3)• = {t3} and (t3•)◦ = {t2}, and t2 is added to unprocessed .
In the next iteration we choose t2 in line 3 and add t1 to unprocessed in line 6
since t2 is inhibited in M0 by the place p2, and •p2 = {t1}. In the iteration for
t1 we do not add anything to unprocessed and the algorithms terminates. So
St(M0) = {t1, t2, t3} is also a valid stubborn set for M0, and mirrors the case in
Example 5 when we initially choose transition t3.

As demonstrated in example 8, there exists nondeterminism in both gener-
ating the interesting set of transitions and applying the stubborn set closure.
For the interesting set of transitions, this is whenever we have conjunction and
deadlock formulae. For the stubborn set closure, it is whenever we have to choose
either a disabling or inhibiting place for disabled transitions. We often prefer a

20 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

smaller stubborn set, but this is not guaranteed to be more efficient in terms of
state space reduction, as demonstrated in [26]. If the choice is between two stub-
born sets, neither of which is a subset of the other, then it cannot be discerned
without exploring the state space which one is the best choice, even if one of
them has fewer elements.

5 The Siphon-Trap Property

Stubborn reduction is used while performing explicit state space analysis, and
is therefore subject to the the state space explosion. Because of this, techniques
that analyze the structural properties of Petri net are promising, as the number
of places and transitions is finite and substantially smaller than the size of the
state space

It is possible to check for deadlock freedom in Petri nets by examining struc-
tural entities within a Petri net called siphons and traps. For this we only consider
1-weighted Petri nets without inhibitor arcs. A Petri net N = (P, T,W, I) is 1-
weighted if W : (P × T)∪ (T × P) −→ {0, 1}, i.e. every regular arc have a weight
of 0 or 1. N have no inhibitor arcs if for all p ∈ P and t ∈ T we have I(p, t) =∞,
i.e. the inhibitor arcs have no effect on the enabledness of the transitions.

Definition 6 (Siphon). Let N = (P, T,W, I) be a 1-weighted Petri net with
no inhibitor arcs and M0 an initial marking on N . A siphon D of N , is a non-
empty set of places D ⊆ P , where •D ⊆ D•. We say that D is marked if there
exists a place p ∈ D with M0(p) > 0.

Definition 7 (Trap). Let N = (P, T,W, I) be a 1-weighted Petri net with no
inhibitor arcs and M0 an initial marking on N . A trap Q of N , is a non-empty
set of places Q ⊆ P , where Q• ⊆ •Q. We say that Q is marked if there exists a
place p ∈ Q with M0(p) > 0.

Intuitively, a siphon cannot go from being unmarked to marked, and a trap
cannot go from being marked to unmarked.

The property in question is called the siphon-trap property and forms a rela-
tion between the siphons and traps in a Petri net, and ensures deadlock freedom
if it is satisfied. The siphon-trap property for a Petri net requires that every
siphon contains a marked trap and is defined as follows:

Definition 8 (Siphon-Trap Property). Let N = (P, T,W, I) be a 1-weighted
Petri net with no inhibitor arcs and M0 an initial marking on N . We say that
N has the siphon-trap property if for every siphon D ⊆ P there exists a trap
Q ⊆ D s.t. Q is marked.

Now we present the Commoner-Hack property that correlates the siphon-trap
property with deadlock freedom [9].

Proposition 2 (Commoner-Hack). Let N be a 1-weighted Petri net with no
inhibitor arcs and M0 an initial marking on N . If N has the siphon-trap property
then no deadlock is reachable from M0.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 21

Example 9 (Siphon Trap Counterexamples). Consider the Petri net in Figure 4a.
The set {p} is the only siphon in the Petri net and it is also its corresponding

p t

(a) A Petri net illustrating why in-
hibitor arcs does not work in the
siphon-trap property.

p t2

(b) A Petri net illustrating why arc
weights does not work in the siphon-
trap property.

marked trap, so by Commoner-Hack the Petri net does not have a deadlock.
However, clearly the transition t is not enabled since it is being inhibited by p,
and therefore the net is not deadlock free. This contradicts the Commoner-Hack
property. Now consider the Petri net in Figure 4b. It is a not a 1-weighted Petri
net since the weight of the arc from p to t have a weight of 2. The set {p} is the
only siphon in the Petri net and it is also its corresponding marked trap, so by
Commoner-Hack the Petri net does not have a deadlock. However, after firing t
we are left with one token in p and results in p disabling t, creating a deadlock
and contradicting the Commoner-Hack property.

5.1 Siphon-Trap Property Using Integer Linear Programming

Let N = (P, T,W, I) be a 1-weighted Petri net with no inhibitor arcs and M0

an initial marking on N . We know that N has the siphon-trap property if for
every siphon D ⊆ P there exists a trap Q ⊆ D s.t. Q is marked. Let D be a
siphon of N . The unique maximal trap of D is the union of all traps within D,
written Qmax where traps are closed under union. Clearly, there exists a marked
trap within D if and only if the maximal trap Qmax of D is marked. There
can potentially be exponentially many traps within a siphon, so for proving the
siphon-trap property we want to focus on finding a specific representative trap
instead, which is the maximal trap. From this we can convert the problem into
an appropriate form:

for all siphons D ⊆ P exists a trap Q ⊆ D s.t. Q is marked ⇐⇒
¬(exists a siphon D ⊆ P s.t. for all traps Q ⊆ D s.t. Q is not marked) ⇐⇒

¬(exists a siphon D s.t. the maximal trap Qmax of D is not marked)

We want to prove that there exists a siphon whose maximal trap is not
marked in order to disprove the siphon-trap property. If we cannot prove this,
then the Petri net must have the siphon-trap property. Otherwise, if it is not pos-
sible then it cannot be decided whether or not the Petri net has the siphon-trap
property or not. In [18] the authors characterise this as a Boolean satisfiability
problem (SAT). The procedure starts by selecting a siphon and then iteratively

22 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

removing places from the siphon until we have either the unique maximal trap
within the siphon or the empty set. This iteration is bounded since the number
of places in a Petri net is finite.

We characterise this problem as an integer linear program, such that the
generated program has a solution if and only if there exists a siphon which
does not contain a marked trap. Thus, we search for a solution that disproofs
the siphon-trap property. We parameterise the procedure with a depth, for how
many iterations of place removal, before we give up on finding the maximal
trap. This puts bound both the number of decision variables and constraints
generated in the procedure. The reason for this bound is to optimise resources
used for deciding the siphon-trap property, as the time needed to generate the
integer linear program and solving it is exponential.

Let N = (P, T,W, I) be a 1-weighted Petri net with no inhibitor arcs, M0 an
initial marking on N , and d ∈ N0 a natural number indicating the depth of the
procedure. We have a sequence of sets X0, X1, . . . , Xd such that:

P ⊇ X0 ⊇ X1 ⊇ . . . ⊇ Xd

The set X0 represents the initially selected siphon and each subsequent set rep-
resents a candidate maximal trap for the siphon, moving towards either the
maximal trap or the empty set. For each place p we have d+1 decision variables
such that for all 0 ≤ i ≤ d we have pi ∈ {0, 1}, and pi = 1 if and only if p ∈ Xi.

Additionally, we introduce d+1 decision variables for each transition t, writ-
ten as postdt , such that for all 0 ≤ i ≤ d we have post it ∈ {0, 1}, and post it = 1
if and only if there exists a place p ∈ t• such that pi = 1. Equation 1 ensures
if post it = 1 then there exists a place p ∈ t• such that pi = 1, and Equation 2
ensures if there exists a place p ∈ t• such that pi = 1 then post it = 1.

−post it +
∑
p∈t•

pi ≥ 0 ∀i ∈ {0, . . . , d},∀t ∈ T (1)

pi − post it ≤ 0 ∀i ∈ {0, . . . , d},∀t ∈ T, ∀p ∈ t• (2)

We need to specify integer linear equations such that there exists a solution
if the following conditions are true:

a •X0 ⊆ X0•, X0 is a siphon of N .
b X0 6= ∅, the initial siphon is not empty.
c For all 0 ≤ i ≤ d we have Xi+1 ⊆ Xi, we never add places as we iterate.
d For all t ∈ T we have p ∈ •t and p ∈ Xi+1 if and only if there exists p′ ∈ t•

s.t. p′ ∈ Xi.
e For all p ∈ Xd we have M0(p) = 0, or Xd is not a trap.

The reason we need the second part of condition e is because after d iterations
we are not guaranteed to converge on the maximal trap. In order to guarantee
convergence, we need the depth to be equal to the number of places, i.e. d = |P |.
Consider the case where Xd is marked but not a trap and conditions a through
d are true. It is then possible that for all places p ∈ Xd that is marked we have

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 23

p /∈ Qmax, which disproves the siphon-trap property. However if we did not have
the second part of condition e, this would not be a solution, and if all other
siphons contain a marked trap, we incorrectly conclude that the Petri net is
deadlock free.

Equation 3 ensures condition a.

−p0 +
∑
q∈•t

q0 ≥ 0 ∀t ∈ T, ∀p ∈ t• (3)

If p is in the initial siphon, i.e. p0 = 1, and it is given a token when t is fired, then
we must have at least one place q0 = 1 in the siphon where a token is removed
when t is fired, otherwise the equation is not satisfied.

Equation 4 ensures condition b.∑
p∈P

p0 ≥ 1 (4)

At least one place must be assigned a value of 1 to ensure the initial siphon X0

is non-empty, otherwise the equation is not satisfied.
Equation 5 ensures condition c.

−pi+1 + pi ≥ 0 ∀i ∈ {0, . . . , d},∀p ∈ P (5)

If pi+1 = 1 then we must also have that pi = 1, otherwise the equation is not
satisfied. No places can be added in later iterations.

Equation 6 ensures the left-to-right implication of condition d.

−pi+1 + post it ≥ 0 ∀i ∈ {0, . . . , d},∀p ∈ P,∀t ∈ p• (6)

Equation 7 ensures the right-to-left implication of condition d.

−pi+1 + pi +
∑
t∈p•

post it ≤ |p•| ∀i ∈ {0, . . . , d},∀p ∈ P (7)

We iteratively remove places from the identified siphon until we are either left
with the empty set or the maximal trap, iterating d times. A place p ∈ Xi is
removed from the siphon in the ith step by assigning its decision variable pi+1

to 0 in step i+ 1, where pi = 1. If place p is not part of the siphon in step i, i.e.
p /∈ Xi and pi = 0, then it stays outside of the siphon in step i+ 1 and pi+1 = 0,
as we do not add any places. A place p is removed in the ith step if and only if
there exists a transition t ∈ p• s.t. t• * Xi.

Once the removal procedure reaches depth d, we are left with one of three
cases: Either Xd is the maximal trap, not a trap at all, or the empty set. In
either case, we need to check if the set is unmarked. If it is unmarked then X0 is
a siphon with no marked trap, and therefore disproves the siphon-trap property.
Let z ∈ N0 be a decision variable. Equation 8 ensures the first part of condition e.
Equation 9 ensures the second part of condition e.

24 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

p1

t1

p2

t2

Fig. 5: A Petri net having the siphon-trap property.

pd+1 − z ≤ 0 ∀p ∈ P where M0(p) > 0 (8)∑
p∈P

pd+1 + z =
∑
p∈P

pd (9)

Now consider the case again where Xd is marked but not the maximal trap.
We have that Xd ⊂ Xd−1, which forces z to be greater than zero due to equa-
tion 9. We know pd ∈ {0, 1}, and because z is not zero we know pd − z ≤ 0,
and equation 8 is satisfied. So the result is that it is inconclusive whether or
not the Petri net have the siphon-trap property, since the chosen depth could
not converge on the maximal trap. In the case where Xd is not marked, z can
be assigned any value to satisfy equation 8 which makes it trivial to satisfy
equation 9.

By the construction and reasoning from the integer linear program specifica-
tion above, we conclude with the following theorem.

Theorem 2. If the integer linear program specified in equations 1 through 9 is
infeasible then N has no deadlock.

Example 10 (Siphon-Trap Analysis). Consider the Petri net in Figure 5. We
construct an integer linear program and check whether the net has the siphon-
trap property. We assign the depth d = 1 and generate constraints according
to equation 1-9. The following constraints form the integer linear program. We
annotate lines with [n], indicating that equation n generates the constraints on

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 25

t1 p
2

2

t2
3

2

Fig. 6: Example Petri net and initial marking for formula simplification.

that line.

−post0t1 + p0
2 ≥ 0 −post0t2 + p0

1 ≥ 0 [1]

p0
2 − post0t1 ≤ 0 p0

1 − post0t2 ≤ 0 [2]

−p0
2 + p0

1 ≥ 0 −p0
1 + p0

2 ≥ 0 [3]

p0
1 + p0

2 ≥ 1 [4]

−p1
1 + p0

1 ≥ 0 −p1
2 + p0

2 ≥ 0 [5]

−p1
1 + post0t1 ≥ 0 −p1

2 + post0t2 ≥ 0 [6]

−p1
1 + p0

1 + post0t1 ≤ 1 −p1
2 + p0

2 + post0t2 ≤ 1 [7]

p1
1 − z ≤ 0 p1

2 − z ≤ 0 [8]

p1
1 + p1

2 + z = p0
1 + p0

2 [9]

The program consists of 9 decision variables, and there are 16 constraints in
total. lp solve reports that the system of equations is infeasible, meaning that
every siphon contains a marked trap, hence the Petri net is deadlock free.

6 Formula Simplification

Previously we have shown how we construct interesting sets of transitions and
stubborn sets to verify reachability formulae. Problems can occur with that
approach if the formula in question is very large and involves most of the places
and transitions in the Petri net. This is because, during verification, we will
spend time to recursively traverse the formula at each marking to construct
the interesting set of transitions, which after performing the closure ends up
including most of the transitions anyway.

For this reason, we need another layer of preprocessing on formulae to reduce
the time needed to construct interesting set of transitions. We call this layer
formula simplification. The general idea of this procedure is that by examining
the satisfiability of subformulae, we can replace them with equivalent alternatives
that are easier to verify.

To perform formula simplification, we need a way to identify contradictions
and impossibilities in the formula. For this, we can use an adaptation of state
equations for Petri nets to cardinality formulae, as shown in [11].

Example 11 (State-Equation for Cardinality). Consider the Petri net in Figure 6
with initial marking M0 where M0(p) = 4, and the reachability formula EF p ≥

26 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

5, i.e. does there exist a reachable marking where the number of tokens in p is
five or more. We can model this as an integer linear program, and show that
such a marking is unreachable. Let X = {xt1 , xt2} be variables. The proposition
p ≥ 5 can be formulated as a linear equation as follows:

M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt ≥ 5 ⇐⇒ 4 + 0xt1 − 1xt2 ≥ 5

The weight of xt1 is 0 since, when t1 is fired, the number of tokens in p remains
unchanged. Likewise, the weight of xt2 is −1 because, it removes one token from
p after firing. After subtracting 4 from both sides of the inequality, we have
the integer linear program with one equation {0xt1 − 1xt2 ≥ 1}. Clearly, there
does not exist a non-negative assignment to the variables, such that the linear
equation is true. The left hand side can never evaluate to a positive number.
There are therefore no reachable marking where the number of tokens in p is
more or greater than five, so the formula is not satisfied in the initial marking.
We have that EF p ≥ 5 ≡ false in M0, and we have simplified the formula to an
equivalent but trivial formula.

In [11], the authors construct a set of integer linear programs. They recur-
sively construct this set by traversing the formulae, and after the traversal, they
check if there exists an integer linear program in the set that has a solution. If
all the integer linear programs do not have a solution, then they can conclude
that the formula is not satisfied. We further extend on this in a number of ways.

In [11], comparisons can only have the form p ./ k, where p is a place and k
is a constant. We extend this to allow for the arithmetic expressions as defined
in Section 2.3, such as comparing places with each other, addition, subtraction,
and multiplication.

The authors in [11] evaluate the set of integer linear programs, only after the
formula traversal has terminated. Instead, we evaluate the set of integer linear
programs on-the-fly while traversing the formulae, and replace any subformulae
with simplified alternatives.

Example 12 (Formula Simplification). As an example, consider the formula
EF (p1 > 5) ∨ (p2 > 2 ∧ p2 < 2). Assume there exists a reachable marking
from the initial marking where p1 > 5 is satisfied, so the formula is satisfied.
However, the subformula p2 > 2 ∧ p2 < 2 is impossible and equivalent to false.
With our approach, we are able to identify this impossibility and simplify the
formula such that EF (p1 > 5) ∨ (p2 > 2 ∧ p2 < 2) ≡ EF p1 > 5. Furthermore,
we can also handle positive conclusions. Assume that p1 > 5 is always satisfied,
i.e. for all reachable markings there are always more than five tokens in p1.
We negate the subformula, ¬(p > 5) ≡ p ≤ 5, and create an integer linear
program for the negated form. If the program is infeasible then it must mean
that the formula is always satisfied and equivalent to true. So we can conclude
that EF (p1 > 5) ≡ EF true ≡ true.

We extend the technique to also include CTL. Since state equations are
tightly knit with reachability, we cannot use the technique directly to decide

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 27

CTL formulae. However, we can simplify subformlae to a point where the answer
to the CTL formula is trivial, or becomes a reachability formula.

Example 13 (CTL Formula Simplification). As an example, consider the CTL
formula EF AX ϕ. Using formula simplification, assume we have determined
that ϕ ≡ false. The only case where the formula is satisfied is when, in the
given marking, there are no enabled transitions available, i.e. EF AX ϕ ≡
EF deadlock . So we are able to simplify a CTL formula into a reachability for-
mula.

6.1 Simplification Procedure

We define a function, that given a formula, produces a simplified formula and
a set of integer linear programs. We say that such a function is a simplification
function.

Definition 9 (Simplification). Let N = (P, T,W, I) be a Petri net, M0 an
initial marking on N , and X = {xt | t ∈ T} a set of variables. A simplification

for marking M0 is a function simplify : ΦCTL −→ ΦCTL × 2E
X
lin .

Let LPS ∈ 2E
X
lin be a set of integer linear programs over a set of variables X.

We say that LPS has a solution, if there exists LP ∈ LPS such that LP has
a solution. We write simplify(ϕ) = (ϕ′,LPS), when the formula ϕ has been
simplified to ϕ′. Our goal is to define simplify s.t. it holds that ϕ ≡ ϕ′ and for
any marking M ∈ reach(M0) if M |= ϕ then the set of linear programs LPS has
a solution.

Let N = (P, T,W, I) be a Petri net. For simplicity, we assume that formulae
have been rewritten as seen in Table 5. With these rewriting rules we push
negations down to either the atomic propositions on the form e1 ./ e2, deadlock ,
or binary CTL operators Q(ϕ1Uϕ2) where Q ∈ {A,E}. In the first case, we
replace ./ with its dual as seen in Table 2. The second and third case we leave
the negations, and, as we will see, are ignored during simplification.

We define a simplification simplify on the syntax of CTL formulae for which
there are a couple of trivial cases as seen in Table 6.

It is possible to rewrite deadlock formulae such that we use conjunction,
disjunction, and arithmetic comparisons. We start by rewriting deadlock to
¬t1∧¬t2∧· · ·∧¬tm where T = {t1, t2, · · · , tm}, and then rewriting the transition
atomic propositions as seen in Table 5 and pushing down negations. We choose
not to do this rewriting since the interesting set of transitions for deadlock formu-
lae are already small, as seen in Table 1. It is also a very extensive construction
which is costly not only during the rewriting but also during the simplification
procedure.

The algorithms from Algorithm 2 to Algorithm 10 give the remaining cases
of simplify .

28 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

ϕ Rewritten ϕ

t p1 ≥W (p1, t) ∧ · · · ∧ pn ≥W (pn, t) ∧
p1 < I(p1, t) ∧ · · · ∧ pn < I(pn, t) where n = |P |

e1 6= e2 e1 > e2 ∨ e1 < e2
e1 = e2 e1 ≤ e2 ∧ e1 ≥ e2
¬(ϕ1 ∧ ϕ2) ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ∧ ¬ϕ2

ϕ1 =⇒ ϕ2 ¬ϕ1 ∨ ϕ2

ϕ1 ⇐⇒ ϕ2 (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2)

¬AXϕ EX¬ϕ
¬EXϕ AX¬ϕ
¬AFϕ EG¬ϕ
¬EFϕ AG¬ϕ
¬AGϕ EF¬ϕ
¬EGϕ AF¬ϕ

Table 5: Rewriting rules for ϕ.

ϕ simplify(M0, ϕ)

true (true, {{0 ≤ 1}})
false (false, ∅)
deadlock (deadlock , {{0 ≤ 1}})
Table 6: Trivial cases of simplify .

The function merge : 2E
X
lin × 2E

X
lin → 2E

X
lin combines two LPS and is defined as

merge (LPS 1,LPS 2)= {LP1 ∪ LP2 | LP1 ∈ LPS 1 and LP2 ∈ LPS 2}.
Algorithm 2: Simplify ϕ1 ∧ ϕ2

1 Function simplify(ϕ1 ∧ ϕ2)
2 (ϕ′1,LPS 1)← simplify(ϕ1)
3 if ϕ′1 = false then
4 return (false, ∅)
5 (ϕ′2,LPS 2)← simplify(ϕ2)
6 if ϕ′2 = false then
7 return (false, ∅)
8 else if ϕ′2 = true then
9 return (ϕ′1,LPS 1)

10 else if ϕ′1 = true then
11 return (ϕ′2,LPS 2)
12 LPS ← merge(LPS 1,LPS 2)
13 if {LP ∪BASE | LP ∈ LPS} has no solution then
14 return (false, ∅)
15 else
16 return (ϕ′1 ∧ ϕ′2,LPS)

BASE is an integer linear program of a Petri net N = (P, T,W, I) and initial marking
M0 on N , that consists of the following set of linear equations:

M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt ≥ 0 for all p ∈ P.

Which ensures that no solution to the linear program, can leave a place with a
negative amount of tokens.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 29

Algorithm 3: Simplify ϕ1 ∨ ϕ2

1 Function simplify(ϕ1 ∨ ϕ2)
2 (ϕ′

1,LPS1)← simplify(ϕ1)
3 if ϕ′

1 = true then
4 return (true, {{0 ≤ 1}})
5 (ϕ′

2,LPS2)← simplify(ϕ2)
6 if ϕ′

2 = true then
7 return (true, {{0 ≤ 1}})
8 else if ϕ′

1 = false then
9 return (ϕ′

2,LPS2)
10 else if ϕ′

2 = false then
11 return (ϕ′

1,LPS1)
12 else
13 return (ϕ′

1 ∨ ϕ′
2,LPS1 ∪ LPS2)

Algorithm 4: Simplify ¬ϕ
1 Function simplify(¬ϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (false, ∅)
5 else if ϕ′

2 = false then
6 return (true, {{0 ≤ 1}})
7 else
8 return (¬ϕ′, {{0 ≤ 1}})

Merging sets of linear programs ensures that the resulting set of linear pro-
grams is feasible, if there exists a union of linear programs, that is feasible. By
taking the union, we preserve linear programs with solutions for both sides. If
the union of a pair of integer linear programs have no solution, where both had
a solution before the union, we can conclude that the sets of reachable markings
that satisfy the sides are disjoint.

For the comparison operator e1 ./ e2 we introduce the function const which
takes as input an expression e and returns one side of a linear equation.

const(c) = c

const(p) = M0(p) +
∑
t∈T

(W (t, p)−W (p, t))xt

const(e1 + e2) = const(e1) + const(e2)

const(e1 − e2) = const(e1)− const(e2)

const(e1 · e2) = const(e1) · const(e2)

30 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Algorithm 5: Simplify e1 ./ e2

1 Function simplify(e1 ./ e2)
2 if e1 is not linear or e2 is not linear then
3 return (e1 ./ e2, {{0 ≤ 1}})
4 LPS1 ← {{const(e1) ./ const(e2)}}
5 LPS2 ← {{const(e1) ./ const(e2)}}
6 if {LP ∪BASE | LP ∈ LPS1} have no solution then
7 return (false, ∅)
8 else if {LP ∪BASE | LP ∈ LPS2} have no solution then
9 return (true, {{0 ≤ 1}})

10 else
11 return (e1 ./ e2,LPS1)

Algorithm 6: Simplify AXϕ

1 Function simplify(AXϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (true, {{0 ≤ 1}})
5 else if ϕ′ = false then
6 return (deadlock , {{0 ≤ 1}})
7 else
8 return (AXϕ′, {{0 ≤ 1}})

There is a special case we have to handle. If in either of the expressions e1 or
e2 we have that two places are multiplied together either directly or indirectly.
A direct example is p1 ·p2, and an indirect example is p1 · (5+p2). If we multiply
places like this, the output of const is no longer linear which is a prerequisite
for the simplication procedure. To handle this, if either side of the comparison
in non-linear, we return the formula unchanged and {{0 ≤ 1}} as the integer
linear problem where any variable assignment is a solution. Lastly, we have to
prove that the simplification procedure does what is expected of it. In the vari-
ous cases, we replace subformulae with smaller and easier to verify alternatives
whenever the generated set of integer linear programs is infeasible. Correctness
of this procedure is to ensure that satisfiability is preserved, which is the fo-
cus of Lemma 6. If a simplification satisfies Lemma 6 we call it a satisfiability
preserving simplification.

Lemma 6 (Formula Simplification Correctness). Let N = (P, T,W, I) be
a Petri net, M0 an initial marking on N , and ϕ ∈ ΦCTL a CTL formula. If
simplify(ϕ) = (ϕ′,LPS) then for all M ∈M(N) such that M0

w−→M we have:

1. M |= ϕ iff M |= ϕ′, and
2. if M |= ϕ then there exists LP ∈ LPS such that ℘(w) is a solution to LP.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 31

Algorithm 7: Simplify EXϕ

1 Function simplify(EXϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (¬deadlock , {{0 ≤ 1}})
5 else if ϕ′ = false then
6 return (false, ∅)
7 else
8 return (EXϕ′, {{0 ≤ 1}})

Algorithm 8: Simplify QFϕ where Q ∈ {A,E}
1 Function simplify(QFϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (true, {{0 ≤ 1}})
5 else if ϕ′ = false then
6 return (false, ∅)
7 else
8 return (QFϕ′, {{0 ≤ 1}})

Proof. The proof proceeds by structural induction on ϕ. Let N = (P, T,W, I)
be a Petri net, M0 an initial marking on N , and ϕ ∈ ΦCTL a CTL formula. For
simplify(ϕ) = (ϕ′,LPS) we show for all M ∈ M(N) such that M0

w−→ M that
condition 1 and condition 2 holds.

Base Cases:

ϕ = true: Since simplify(true) = (true, {{0 ≤ 1}}) the formula remains un-
changed and condition 1 trivially holds. Condition 2 holds because for {0 ≤
1} any variable assignment is a solution.

ϕ = false: Since simplify(false) = (false, ∅) the formula remains unchanged and
condition 1 trivially holds. Condition 2 holds since the premise M |= ϕ never
holds.

ϕ = deadlock : Since simplify(deadlock) = (deadlock , {{0 ≤ 1}}) the formula
remains unchanged and condition 1 for formula remains unchanged and triv-
ially holds. Condition 2 holds because for {0 ≤ 1} any variable assignment
is a solution.

ϕ = e1 ./ e2: If either const(e1) or const(e2) is not linear, then simplify(e1 ./
e2) = (e1 ./ e2, {{0 ≤ 1}}). Condition 1 holds since the formula is un-
changed. Condition 2 holds because for {0 ≤ 1} any variable assignment is
a solution. Else we have LPS 1 = {{const(e1) ./ const(e2)}} and LPS 2 =
{{const(e1) ./ const(e2)}}. There are 3 cases:
1. simplify(ϕ) = (false, ∅): If LPS 1 have no solution then for all M ′ ∈

reach(M0) we have that M ′ 6|= e1 ./ e2, and we know M ∈ reach(M0).

32 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Algorithm 9: Simplify QGϕ where Q ∈ {A,E}
1 Function simplify(QGϕ)
2 (ϕ′,LPS)← simplify(ϕ)
3 if ϕ′ = true then
4 return (true, {{0 ≤ 1}})
5 else if ϕ′ = false then
6 return (false, ∅)
7 else
8 return (QGϕ′, {{0 ≤ 1}})

Algorithm 10: Simplify Q(ϕ1Uϕ2) where Q ∈ {A,E}
1 Function simplify(Q(ϕ1Uϕ2))
2 (ϕ′

2,LPS2)← simplify(ϕ2)
3 if ϕ′

2 = true then
4 return (true, {{0 ≤ 1}})
5 else if ϕ′

2 = false then
6 return (false, ∅)
7 (ϕ′

1,LPS1)← simplify(ϕ1)
8 if ϕ′

1 = true then
9 return (QFϕ′

2, {{0 ≤ 1}})
10 else if ϕ′

1 = false then
11 return (ϕ′

2,LPS2)
12 else
13 return (Q(ϕ′

1Uϕ′
2), {{0 ≤ 1}})

We therefore have that M 6|= e1 ./ e2 and e1 ./ e2 ≡ false in M , so
condition 1 holds. Condition 2 is trivial since the premise M |= ϕ never
holds.

2. simplify(ϕ) = (true, {0 ≤ 1}): If LPS 2 have no solution then for all
M ′ ∈ reach(M) we have that M ′ 6|= e1 ./ e2, which is equivalent to
M ′ |= e1 ./ e2. Since M ∈ reach(M0) we have that M |= e1 ./ e2 and
e1 ./ e2 ≡ true in M , so condition 1 holds. Condition 2 holds because
for {0 ≤ 1} any variable assignment is a solution.

3. (e1 ./ e2,LPS 1): The formula is unchanged so condition 1 holds. As-
suming M |= e1 ./ e2, then since M ∈ reach(M0) we know that ℘(w)
is a solution to the integer linear program const(e1) ./ const(e2), and
condition 2 holds.

Inductive Cases:

ϕ = ϕ1 ∨ ϕ2: Let simplify(ϕ1) = (ϕ′1,LPS 1), simplify(ϕ2) = (ϕ′2,LPS 2), and

M0
w−→M . By structural induction, ϕ1 ≡ ϕ′1 and ϕ2 ≡ ϕ′2.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 33

If ϕ′1 = true or ϕ′2 = true, then ϕ1 ∨ ϕ2 ≡ true, simplify(ϕ1 ∨ ϕ2) =
(true, {{0 ≤ 1}}), and condition 1 holds. Condition 2 holds because for
{0 ≤ 1} any variable assignment is a solution.
If ϕ′1 = false, then ϕ1 ∨ ϕ2 ≡ ϕ′2, simplify(ϕ1 ∨ ϕ2) = (ϕ′2,LPS 2), and
condition 1 holds. If M |= ϕ then we have that M |= ϕ2 and by the induc-
tion hypothesis there exists LP ∈ LPS 2 s.t. ℘(w) is a solution to LP , and
condition 2 holds.
If ϕ′2 = false, then ϕ1 ∨ ϕ2 ≡ ϕ′1, simplify(ϕ1 ∨ ϕ2) = (ϕ′1,LPS 1), and
condition 1 holds. If M |= ϕ then we have that M |= ϕ1 and by the induc-
tion hypothesis there exists LP ∈ LPS 1 s.t. ℘(w) is a solution to LP , and
condition 2 holds.
If ϕ′1 and ϕ′2 are not true or false, then ϕ1 ∨ ϕ2 ≡ ϕ′1 ∨ ϕ′2, simplify(ϕ1 ∨
ϕ2) = (ϕ′1 ∨ϕ′2,LPS 1 ∪LPS 2), and condition 1 holds. If M |= ϕ then either
M |= ϕ1 or M |= ϕ2. If M |= ϕ1 then by the induction hypothesis there
exists LP ∈ LPS 1 s.t. ℘(w) is a solution to LP , and condition 2 holds since
LP ∈ LPS 1 ∪ LPS 2. If M |= ϕ2 then by the induction hypothesis there
exists LP ∈ LPS 2 s.t. ℘(w) is a solution to LP , and condition 2 holds since
LP ∈ LPS 1 ∪ LPS 2.

ϕ = ϕ1 ∧ ϕ2: Let simplify(ϕ1) = (ϕ′1,LPS 1), simplify(ϕ2) = (ϕ′2,LPS 2), and

M0
w−→M . By structural induction, ϕ1 ≡ ϕ′1, ϕ2 ≡ ϕ′2, and ϕ1∧ϕ2 ≡ ϕ′1∧ϕ′2.

If ϕ′1 = false or ϕ′2 = false, then ϕ1∧ϕ2 ≡ false, simplify(ϕ1∧ϕ2) = (false, ∅),
and condition 1 holds. Condition 2 holds since the premise M |= ϕ never
holds.
If ϕ′1 = true, then ϕ1 ∧ ϕ2 ≡ ϕ′2, simplify(ϕ1 ∧ ϕ2) = (ϕ′2,LPS 2), and
condition 1 holds. If M |= ϕ then we have that M |= ϕ2 and by the induc-
tion hypothesis there exists LP ∈ LPS 2 s.t. ℘(w) is a solution to LP , and
condition 2 holds.
If ϕ′2 = true, then ϕ1 ∧ ϕ2 ≡ ϕ′1, simplify(ϕ1 ∧ ϕ2) = (ϕ′1,LPS 1), and
condition 1 holds. If M |= ϕ then we have that M |= ϕ1 and by the induc-
tion hypothesis there exists LP ∈ LPS 1 s.t. ℘(w) is a solution to LP , and
condition 2 holds.
If ϕ′1 and ϕ′2 are not true or false, then ϕ1 ∧ ϕ2 ≡ ϕ′1 ∧ ϕ′2, simplify(ϕ1 ∧
ϕ2) = (ϕ′1 ∧ ϕ′2,merge(LPS 1,LPS 2)), and condition 1 holds. If M |= ϕ
then M |= ϕ1 and M |= ϕ2 and by the induction hypothesis there exists
LP1 ∈ LPS 1 and LP2 ∈ LPS 2 s.t. ℘(w) is a solution to LP1 and LP2. We
know LP1 ∪ LP2 ∈ merge(LPS 1,LPS 2) by the definition of merge. If ℘(w)
is not a solution to LP1 ∪ LP2 then it contradicts that M satisfies both ϕ1

and ϕ2, so ℘(w) has to be a solution to LP1 ∪ LP2 and condition 2 holds.
ϕ = ¬ϕ1: Let simplify(ϕ1) = (ϕ2,LPS). By structural induction we have that
ϕ1 ≡ ϕ2.
If ϕ2 = false then we have that ¬ϕ1 ≡ true, simplify(ϕ1) = (true, {{0 ≤
1}}), and condition 1 holds. Condition 2 holds because for {0 ≤ 1} any
variable assignment is a solution.
If ϕ2 = true then we have that ¬ϕ1 ≡ false, simplify(ϕ1) = (false, ∅), and
condition 1 holds. Condition 2 holds since the premise M |= ϕ never holds.

34 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Else simplify(¬ϕ1) = (¬ϕ2, {{0 ≤ 1}}) and condition 1 holds because the
formula remains unchanged. Condition 2 holds because for {0 ≤ 1} any
variable assignment is a solution.

ϕ = AXϕ1: Let simplify(ϕ)1 = (ϕ2,LPS). By structural induction we have
that ϕ1 ≡ ϕ2.
If ϕ2 = true then we have that AXϕ1 ≡ true and simplify(ϕ) = (true, {{0 ≤
1}}). This is because for all M ′ ∈ M(N) if M −→ M ′ we have M ′ |= true
is trivially true. Therefore condition 1 holds. Condition 2 holds because for
{0 ≤ 1} any variable assignment is a solution.
If ϕ2 = false then we have that AXϕ1 ≡ deadlock and simplify(ϕ) =
(deadlock , {{0 ≤ 1}}). This is because the only case where M |= AX false is
when en(M) = ∅, i.e. M is a deadlock. Therefore condition 1 holds. Condi-
tion 2 holds because for {0 ≤ 1} any variable assignment is a solution.
Else simplify(AXϕ1) = (AXϕ2, {{0 ≤ 1}}) and condition 1 holds because
the formula remains unchanged. Condition 2 holds because for {0 ≤ 1} any
variable assignment is a solution.

ϕ = EXϕ1: Let simplify(ϕ1) = (ϕ2,LPS). By structural induction we have
that ϕ1 ≡ ϕ2.
If ϕ2 = true then we have that AXϕ1 ≡ ¬deadlock and simplify(ϕ) =
(¬deadlock , {{0 ≤ 1}}). This is because the only case where M |= EX true
is when en(M) 6= ∅, i.e. M is not a deadlock. Therefore condition 1 holds.
Condition 2 holds because for {0 ≤ 1} any variable assignment is a solution.
If ϕ2 = false then we have that EXϕ1 ≡ false and simplify(ϕ) = (false, ∅).
This is because if there exists M ′ ∈ M(N) s.t. M −→ M ′ then M |= false
is trivially false. Therefore condition 1 holds. Condition 2 holds since the
premise M |= ϕ never holds.
Else simplify(EXϕ1) = (EXϕ2, {{0 ≤ 1}}) and condition 1 holds because
the formula remains unchanged. Condition 2 holds because for {0 ≤ 1} any
variable assignment is a solution.

ϕ = EFϕ1: Let simplify(ϕ1) = (ϕ2,LPS). By structural induction we have
that ϕ1 ≡ ϕ2.
If ϕ2 = true then we have that EFϕ1 ≡ true and simplify(ϕ) = (true, {{0 ≤
1}}), since EF true is trivially true. Therefore condition 1 holds. Condition 2
holds because for {0 ≤ 1} any variable assignment is a solution.
If ϕ2 = false then we have that EFϕ1 ≡ false and simplify(ϕ) = (false, ∅),
since EF false is trivially false. Therefore condition 1 holds. Condition 2 holds
since the premise M |= ϕ never holds.
Else simplify(EFϕ1) = (EFϕ2, {{0 ≤ 1}}) and condition 1 holds because
the formula remains unchanged. Condition 2 holds because for {0 ≤ 1} any
variable assignment is a solution.

ϕ = AFϕ1: The same as the EFϕ1 case.
ϕ = EGϕ1: Let simplify(ϕ1) = (ϕ2,LPS). By structural induction we have

that ϕ1 ≡ ϕ2.
If ϕ2 = true then we have that EGϕ1 ≡ true and simplify(ϕ) = (true, {{0 ≤
1}}), since EF true is trivially true. Therefore condition 1 holds. Condition 2
holds because for {0 ≤ 1} any variable assignment is a solution.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 35

If ϕ2 = false then we have that EGϕ1 ≡ false and simplify(ϕ) = (false, ∅),
since EGfalse is trivially false. Therefore condition 1 holds. Condition 2 holds
since the premise M |= ϕ never holds.
Else simplify(EGϕ1) = (EGϕ2, {{0 ≤ 1}}) and condition 1 holds because
the formula remains unchanged. Condition 2 holds because for {0 ≤ 1} any
variable assignment is a solution.

ϕ = AGϕ1: The same as the EGϕ1 case.
ϕ = E (ϕ1Uϕ2): Let simplify(ϕ1) = (ϕ′1,LPS 1) and simplify(ϕ2) = (ϕ′2,LPS 2).

By structural induction we have that ϕ1 ≡ ϕ′1 and ϕ2 ≡ ϕ′2.
If ϕ′2 = true then we have that E (ϕ1Uϕ2) ≡ true and simplify(ϕ) =
(true, {{0 ≤ 1}}). This is because for all M ′ ∈ reach(M) we have M ′ |= true
is trivially true. Therefore condition 1 holds. Condition 2 holds because for
{0 ≤ 1} any variable assignment is a solution.
If ϕ′2 = false then we have that E (ϕ1Uϕ2) ≡ false and simplify(ϕ) =
(false, ∅). This is because for all M ′ ∈ reach(M) we have M ′ |= false is triv-
ially false. Therefore condition 1 holds. Condition 2 holds since the premise
M |= ϕ never holds.
If ϕ′1 = true then we have that E (ϕ1Uϕ2) ≡ EFϕ′2 and simplify(ϕ) =
(EFϕ′2, {{0 ≤ 1}). Therefore condition 1 holds. Condition 2 holds because
for {0 ≤ 1} any variable assignment is a solution.
If ϕ′1 = false then we have that E (ϕ1Uϕ2) ≡ ϕ′2 and simplify(ϕ) = (ϕ′2,LPS 2).
This is because if M 6|= ϕ′2 then we need to find an M ′ ∈ reach(M) where
M ′ |= ϕ′2 and every intermediary marking from M to M ′ satisfies false,
which is never the case. So the only case where the formula is satisfied is
when M |= ϕ′2. Therefore condition 1 holds. If M |= ϕ then we have that
M |= ϕ2 and by the induction hypothesis there exists LP ∈ LPS 2 s.t. ℘(w)
is a solution to LP , and condition 2 holds.
Else simplify(ϕ) = (E (ϕ′1Uϕ′2), {{0 ≤ 1}}) and condition 1 holds because
the formula remains unchanged. Condition 2 holds because for {0 ≤ 1} any
variable assignment is a solution.

ϕ = A(ϕ1Uϕ2): The same as the E (ϕ1Uϕ2) case.
ut

7 Implementation

The techniques described in the previous sections, formula simplification, siphon-
trap analysis, and stubborn reduction, have all been integrated into the TAPAAL
toolchain. The techniques are implemented in C++, and we utilise lp solve [3],
an integer linear program solver, in both formula simplification and siphon-trap
analysis. We utilise RapidXML [14] to effectively parse the XML input files. The
implementation and experiment data is available at launchpad in the branch
https://code.launchpad.net/~verifypn-stub/verifypn/masters-thesis.

https://code.launchpad.net/~verifypn-stub/verifypn/masters-thesis

36 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

PNML model and XML queries

XML parser

Formula simplification

CTL verification

Query is CTL

Structural reduction

Query is reachability

Siphon-trap analysis

Query is EF deadlock

Stubborn reduction +
reachability verification

Feasible

Not satisfied

Infeasible

Satisfied or not satisfied

Query is trivial

Fig. 7: The TAPAAL toolchain and data flow.

7.1 Toolchain

TAPAAL takes as input a Petri net and a query, performs an analysis, and then
determines the satisfiability of the query. The toolchain consists of the following
components:

– XML Parser
– Formula simplification
– Structural reduction
– Siphon-trap analysis
– Stubborn reduction verification
– CTL verification

The different components attempts to reduce or modify the structure of the
input, which possibly results in an early termination. If the analysis does not
terminate, then the modified input is passed to the subsequent component. The
components are connected as illustrated in Figure 7.

Both the Petri net and query are initially parsed and stored internally. We
have extended the XML parser to handle CTL queries. We transform fireability
queries to cardinality queries in the parser.

A description of the data structure used for storing the state space is found
in [13]. Experiments show that the representation reduces the required memory

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 37

for storing the net, and improves the successor generation when performing state
space analysis. We build our stubborn reduction on top of this representation.

Queries are represented using a tree-like class structure, where Boolean ex-
pression inherits from the Condition class. Some of the implemented member
functions are shown in the class definition in listing 1.1.

1 class Condit ion {
2 public :
3 /∗∗ Query S imp l i f i ca t i on ∗/
4 virtual Retval s i m p l i f y (S imp l i f i c a t i onCont ex t& context) const = 0;
5 /∗∗ Check i f query i s a r e a cha b i l i t y query ∗/
6 virtual bool i s R e a c h a b i l i t y (uint32 t depth = 0) const = 0 ;
7 /∗∗ Evaluate condi t ion ∗/
8 virtual bool eva luate (const EvaluationContext& context) const = 0;
9 /∗∗ Find in t e r e s t i n g t r an s i t i on s in stubborn reduct ion ∗/

10 virtual void f i n d I n t e r e s t i n g (
11 ReducingSuccessorGenerator& generator ,
12 bool negated) const = 0 ;

Listing 1.1: Condition class member functions.

Information is passed between objects using different context classes, and
the Retval class is used as the return type for the simplification methods, which
contains a set of linear programs and a formula.

After the net and query have been parsed, we attempt to simplify the query.
Section 6 describes this procedure, which results in either a conclusive answer, or
a possibly simplified query. If the simplified query is a reachability query, we can
perform structural reduction. The simplification process can take a long time
to finish, especially due to the processing of conjunction operators. Therefore,
we have added a controllable timeout, that terminates the simplification, but
without destroying the already simplified part of the query. Listing 1.2 shows
the simplification function for conjunction operators.

When simplifyAnd is called, then both children of the conjunction operator
have already been simplified, and the result stored in r1 and r2. In line 4-10 we
evaluate whether either of the children is a true or false formula, and simplify the
formula accordingly. We proceed if the formula was not simplified. In line 12 we
check whether the process has exceeded the timeout limit, and clears the linear
programs before returning from the function. If the timeout was not exceeded,
then we merge the two linear programs, and check whether one of the resulting
linear programs is infeasible.

We utilise the preprocess functionality presolve of lp solve. Presolve at-
tempts to reduce the the given integer linear program, for instance by eliminating
linearly dependent constraints, or deleting unused variables and constraints.

The simplification logic is wrapped in a try block, where we catch out-of-
memory exceptions. If the simplification runs out of memory, usually due to
the merge function in line 13, then simplifyAnd returns the smallest of r1 and
r2. This ensures that at least one of the linear programs is preserved, thereby
increasing the possibility of having contradicting constraints, that makes one of
the linear programs infeasible.

38 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

1 Retval s impl i fyAnd (S imp l i f i c a t i onContex t& context ,
2 Retval&& r1 , Retval&& r2) {
3 try{
4 i f (r1 . formula−>i s T r i v i a l l y F a l s e () | | r2 . formula−>i s T r i v i a l l y F a l s e ()) {
5 return Retval (BooleanCondit ion : : FALSE) ;
6 } else i f (r1 . formula−>i s T r i v i a l l y T r u e ()) {
7 return std : : move(r2) ;
8 } else i f (r2 . formula−>i s T r i v i a l l y T r u e ()) {
9 return std : : move(r1) ;

10 }
11
12 i f (! context . t imeout ()) {
13 r1 . l p s . merge (r2 . l p s) ;
14 i f (! context . t imeout () && ! r1 . l p s . s a t i s f i a b l e (context)) {
15 return Retval (BooleanCondit ion : : FALSE) ;
16 }
17 } else {
18 r1 . l p s . c l e a r () ;
19 r2 . l p s . c l e a r () ;
20 }
21 return Retval (std : : make shared<AndCondition>(r1 . formula , r2 . formula) ,
22 std : : move(r1 . l p s)) ;
23 } catch (std : : bad al loc& e) {
24 // We are out of memory
25 return Retval (std : : make shared<AndCondition>(r1 . formula , r2 . formula) ,
26 std : : move ((r1 . l p s . s i z e () < r2 . l p s . s i z e () ? r1 . l p s : r2 . l p s))) ;
27 }}

Listing 1.2: Simplification function for conjunction operators.

1 void LessThanCondition : : f i n d I n t e r e s t i n g (
2 ReducingSuccessorGenerator& generator , bool negated) const {
3 i f (! negated) { // l e s s than
4 i f (expr1−>getEval () < expr2−>getEval ()) { return ; }
5 expr1−>decr (generator) ;
6 expr2−>i n c r (generator) ;
7 } else { // greater than or equal
8 i f (expr1−>getEval () >= expr2−>getEval ()) { return ; }
9 expr1−>i n c r (generator) ;

10 expr2−>decr (generator) ;
11 }
12 }

Listing 1.3: Function for finding interesting transitions for less-than operators.

We measure the size of the query by counting the number of Boolean and
arithmetic expressions, to be able to output statistics on how effective the re-
duction is. If the satisfiability of the query cannot be answered trivially, then the
query and net are passed to the structural reduction component. The structural
reduction rules are described in [11].

At this point we detect the type of the query, and there are three scenarios
on how the verification proceeds. If the query is simplified to EF deadlock then
we perform siphon-trap analysis. If no solution was found, then we continue with
regular verification using state space exploration. If the query is a CTL query,
then it is passed to the CTL verification engine, and if the query is simplified to
a reachability query, then we verify the query using stubborn reduction.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 39

1 S i z e o f net be f o r e s t r u c t u r a l r educt ion : 26 p laces , 18 t r a n s i t i o n s
2 S i z e o f net a f t e r s t r u c t u r a l r educt ion : 5 p laces , 4 t r a n s i t i o n s
3 S t ru c tu ra l r educt ion f i n i s h e d a f t e r 0 .000279 seconds
4
5 Net reduct ion i s enabled .
6 Removed t r a n s i t i o n s : 14
7 Removed p l a c e s : 21
8 App l i ca t i ons o f r u l e A: 10
9 App l i ca t i ons o f r u l e B: 4

10 App l i ca t i ons o f r u l e C: 7
11 App l i ca t i ons o f r u l e D: 0
12 App l i ca t i ons o f r u l e E: 0
13
14 Query i s NOT s a t i s f i e d .
15
16 STATS:
17 d i s cove r ed s t a t e s : 5
18 explored s t a t e s : 5
19 expanded s t a t e s : 5
20 max tokens : 4

Listing 1.4: Reachability statistics example output.

In Table 3 we show how the set of interesting transitions are found with
respect to the comparison operators in the CTL logic. The implementation of
the less than operator is shown in listing 1.3.

In line 3 we detect whether we have discovered a negation operator earlier
in the query. If no negation was found, then we treat the object as a ’less than’
operator, otherwise we treat it as its complement operator ’greater than or equal’.
The first check in each case, in line 4 and 8, is to evaluate whether the formula
rooted from the current object is satisfied. This is because we only consider those
transitions that can alter the truth value of the formula from false to true, as
explained in Section 4. We then call the functions decr and incr that find the
interesting transitions based on the discovered places in the query.

When the reachability or CTL verification has terminated, we output statis-
tics and provide an answer to the satisfiability of the query. An example output
from a verification of the model HouseConstruction-PT-002 is shown in listing
1.4.

Example 14. Consider the Petri net in Figure 6, and the CTL formula E (p ≥
5 U EF p = 2). Before simplifying the ’until’ operator, we first evaluate simplify(p ≥
5). By extension of Example 11, the sub formulae p ≥ 5 is trivially false. Now
we have E (false U EF p = 2). We cannot simplify EF p = 2 any further than
what it is in this particular case, as simplify(EF p = 2) = (EF p = 2,LPS 2),
where LPS 2 = {{0xt1 − 1xt2 = −2}} which clearly has a solution in xt2 = 2.
Algorithm 10 states that in this scenario where the first child of an ’until’ is
false, we return (EF p = 2,LPS 2). We have now simplified a CTL formula to a
reachability formula, and this allows us utilise the efficient data structures and
algorithms of the reachability verification engine of TAPAAL, such as stubborn
reduction.

40 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

8 Experiments

We evaluate the performance of our implementation and compare it to state
of the art model checker LoLA. The implemented techniques are siphon-trap
analysis, stubborn reduction, and formula simplification, and we measure the
verification performance on the Petri net model database from MCC’17.

8.1 Tools and Configurations

All experiments are performed using the TAPAAL untimed engine1 [11] with our
implementation additions, and LoLA2 [28]. We explore various configurations of
both tools. Table 7 shows an overview of the tool configurations used throughout
the experiments.

8.1.1 TAPAAL configurations

For formula simplification, TAPAAL uses the techniques described in Section 6,
and is applied to all query categories. The structural reduction technique used
in TAPAAL, applies a set of rules to remove places and transitions while pre-
serving certain properties in the reduced net, including cardinality properties
[11]. For siphon-trap analysis, TAPAAL translates the siphon-trap property into
an integer linear program, as the formula described in Section 5, and utilises
lp solve [3] to solve it. The stubborn reduction technique applies the closure
method presented in Algorithm 1, and is applied to reachability analysis only.
An older version of TAPAAL [6] is used to perform state equations, that does
linear-algebraic over-approximation [11].

8.1.2 LoLA configurations

The chosen configurations of LoLA are based on an email correspondence with
Torsten Liebke of the LoLA team. To do stubborn reduction, LoLA uses Tar-
jan’s algorithm [23] that identifies strongly connected components. Stubborn
reduction is applied to reachability analysis only. For state equations, LoLA
uses counterexample guided abstraction refinement (CEGAR) [27] which can
be performed in parallel with state space exploration. The siphon-trap analysis
technique in LoLA is done by translating the siphon-trap property into a Boolean
satisfiability problem, and utilising MiniSAT [7] to solve it. The siphon-trap anal-
ysis can be performed in parallel with state space exploration. If possible, LoLA
performs several query transformations [1], similar to our formula simplification.
LoLA always performs formula simplification, and hence all LoLA configurations
of Table 7 are implicitly using formula simplification.

1 verifypn 2.1.0: https://code.launchpad.net/~verifypn-maintainers/verifypn/

new-trunk
2 LoLA development: http://svn.gna.org/svn/service-tech/trunk/lola2/, check

out March 16.

https://code.launchpad.net/~verifypn-maintainers/verifypn/new-trunk
https://code.launchpad.net/~verifypn-maintainers/verifypn/new-trunk
http://svn.gna.org/svn/service-tech/trunk/lola2/

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 41

Abbreviation Tool configuration

Base TAPAAL using only exhaustive search

SE TAPAAL 2.0 using state equations without state space exploration

Stub TAPAAL using stubborn reduction

Struct TAPAAL using structural reduction

StubStruct TAPAAL using stubborn and structural reduction

Simp TAPAAL using formula simplification

SimpOnly TAPAAL using formula simplification without state space exploration

SimpStub TAPAAL using formula simplification and stubborn reduction

SimpStruct TAPAAL using formula simplification and structural reduction

Siphon TAPAAL using siphon-trap analysis without state space exploration

StructSiphon
TAPAAL using structural reduction and siphon-trap analysis
without state space exploration

Best
TAPAAL using stubborn reduction, structural reduction,
formula simplification, and siphon-trap analysis

LSiphon LoLA using siphon-trap analysis without state space exploration

LoLA
LoLA using stubborn reduction, running state equations in parallel,
and running siphon-trap analysis in parallel

Table 7: Configurations of TAPAAL and LoLA as used in the experiments.

8.2 Model database and experiment metrics

All experiments are performed using the known Petri net models, from the
MCC’17 model database. The model database consists of 313 non-colored Petri
net model instances from both academic and industrial cases. The models do
not contain any inhibitor arcs. Each model is associated with 16 queries from
different categories of logic. We perform experiments on the initial 5 queries
from the following categories: ReachabilityCardinality, ReachabilityFireability,
CTLCardinality, CTLFireability, and the single query of ReachabilityDeadlock.

We do pairwise comparison of configurations. For each query, a configuration
is given a point relative to another configuration, whenever it:

exclusive: Answers the query exclusively.
time: Answers the query at least 10% faster, disregarding queries that are solved

in less than 10 seconds by both configurations.
states: Answers the query by exploring fewer states, disregarding queries that

are exclusively answered.
memory: Answers the query by using less peak memory, disregarding queries

that are exclusively answered.

We measure the difficulty of queries by the time used to verify them, by
a given configuration. When presenting the most difficult instances, we refrain
from showing more than one kind of a model in a given category to ensure the
presented results are diverse.

42 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

search strategy

category (abbreviation) queries timeout TAPAAL LoLA

Reachability cardinality (RC)

1565 15 minutes
Heuristic

DFS
Reachability fireability (RF)
CTL cardinality (CC)

DFSCTL fireability (CF)
Reachability deadlock (DL) 313 1 hour

Table 8: Overview of experiment setup, including category abbreviations, total number
of queries per category, timeout per query, and search strategy used for each category
for configurations of TAPAAL and LoLA.

8.3 Setup

All experiments were performed on a cluster of 9 compute nodes, each having
1 TB of memory, four AMD Opteron 6376 CPU’s, and running Ubuntu 14.04.
We run 8 processes per compute node simultaneously, which can cause slight
variance in computation time of ∼ 5%.

Table 8 shows the query category details and verification setup. From each
of the cardinality and fireability categories, we run experiments on 1565 queries
for 15 minutes per query. From the reachability deadlock category, we run ex-
periments on 313 queries for 1 hour per query. All configurations have 100GB
available memory per query. We use this setup in each experiment, unless oth-
erwise is explicitly stated.

8.4 Combining stubborn reduction and structural reduction

We perform experiments on queries from the reachability categories (RC, RF,
DL) to examine the performance of stubborn reduction. We are interested in
comparing and combining the technique with structural reduction. We expect
that combining the reduction techniques will yield the best state space reduction
in general. We compare four tool configurations: Base as reference for plain ex-
haustive state space search, Stub that applies stubborn reduction, Struct with
structural reduction, and StubStruct that combines stubborn and structural
reduction.

Table 9 shows the number of queries solved by each configuration. We see
that stubborn reduction generally provides more answers, and the combination
of stubborn reduction and structural reduction provides the most answers in all
three categories.

Pairwise score comparison between the four configurations is shown in Ta-
ble 10. Stubborn reduction compared to no reduction in Table 10a shows a
significant improvement across all score metrics. We expect the points in favor
of Base is due to models not being very reducible by stubborn reduction, caus-
ing Stub to give unnecessary overhead. The search strategy can be changed by
the stubborn reduction, which can also cause the tool to search in a different
and longer state space path. Stubborn reduction also performs overall better

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 43

than structural reduction in Table 10d, however, there is a considerable number
queries where structural reduction answers exclusively or simply more efficient
in terms of time, states and memory. When comparing Table 10a, 10b and 10c,
we see the the combined efficiency of stubborn and structural reduction. There
is a significant increase in the number of exclusive answers when combining the
reductions. We notice that, when adding stubborn reduction to structural re-
duction, there appears a few new exclusive answers to Base and a considerable
number of faster answers. This suggests that the reduction techniques conflict on
a number of instances and the stubborn reduction loses efficiency after structural
reduction is applied and we are left with the computational overhead. Table 10f
displays the contribution of adding stubborn reduction to TAPAAL. Structural
reduction is the current best state space exploration technique in the tool, and
the addition of stubborn reduction increases performance significantly.

In Table 11 we highlight the most difficult instances and how the four con-
figurations perform on them. On instance M1 we see an example of both struc-
tural reduction and stubborn reduction performing better than plain state space
search, and in combination they perform even better in time, memory and states
explored. On multiple instances, the stubborn reduction do not affect the num-
ber of explored states at all. On instance M9 the stubborn reduction worsens
performance.

To examine the extension of inhibitor arcs to stubborn reduction, we re-
construct a model from the MMC’17 databse, SwimmingPool, with included
inhibitor arcs, illustrated in Figure 8. We scale the model by number of tokens
in the initial marking and weights on all inhibitor arcs to measure the scalabil-
ity of our stubborn reduction implementation. We perform deadlock analysis on
the model instances and measure the time and explored states in Table 12. The
model does not contain deadlocks, so the configurations must explore all states
needed to verify the absence of deadlocks. For Base this means exploring the
complete state space, and for Stub it means exploring a possibly reduced state
space. We see in Table 12 that the stubborn reduction significantly reduces the
state space and scales overall better.

number of queries solved

cat. queries Base Stub Struct StubStruct

RC 1565 817 961 879 996

RF 1565 1082 1184 1125 1212

DL 313 211 238 221 239

total 3443 2110 2383 2225 2447

Table 9: Number of queries solved by each configuration.

44 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Base vs Stub

cat. exclusive time states memory

RC 13 157 80 208 22 401 9 144

RF 9 111 71 176 22 584 10 184

DL 9 152 79 204 28 482 10 157

total 31 420 230 588 72 1467 29 485

(a)

Base vs Struct

cat. exclusive time states memory

RC 2 64 31 97 17 257 4 75

RF 2 45 40 89 16 306 4 95

DL 0 10 5 19 17 79 0 23

total 4 119 76 205 50 642 8 193

(b)

Base vs StubStruct

cat. exclusive time states memory

RC 11 190 90 245 22 477 9 155

RF 9 139 87 213 21 667 8 196

DL 2 30 10 47 23 154 4 45

total 22 359 187 505 66 1298 21 396

(c)

Stub vs Struct

cat. exclusive time states memory

RC 115 33 183 104 337 186 124 32

RF 87 28 169 94 512 186 154 37

DL 20 3 37 9 131 47 32 7

total 222 64 389 207 980 419 310 76

(d)

Stub vs StubStruct

cat. exclusive time states memory

RC 2 37 37 84 14 320 5 74

RF 6 34 50 69 23 326 6 61

DL 0 1 5 10 15 88 0 12

total 8 72 92 163 52 734 11 147

(e)

Struct vs StubStruct

cat. exclusive time states memory

RC 22 139 88 192 20 429 9 141

RF 12 99 73 156 22 589 8 158

DL 2 20 9 35 14 132 4 33

total 36 258 170 383 56 1150 21 332

(f)

Table 10: Pairwise score comparisons. In categories RC and RF there are 1565 queries,
and DL contains 313 queries.

Base Stub Struct StubStruct

model time mem states time mem states time mem states time mem states

M1 > 900 1.99 197 609 19689 887 1612 59408 56 183 6145

M2 853 4609 124235 235 1743 35337 825 4608 124235 233 1743 35337

M3 769 1424 280 724 1426 280 746 1426 280 770 1426 280

M4 > 900 2 863 7182 2242 35 200 10.7 35 200 0.04

M5 756 551 3.24 759 551 3.24 800 552 3.43 829 551 3.43

M6 695 150 36.6 690 151 36.6 702 149 36.6 700 149 36.6

M7 > 3600 1.88 0 3.31 1.01 3493 14429 551952 0 3.2 0.3

M8 3318 3683 131128 0 3.71 15.3 3373 3680 131128 0 3.71 15.3

M9 784 186 5145 2066 910 25386 347 194 5145 1101 928 25402
Table 11: The most difficult instances for at least one of Stub, Struct, and StubStruct,
where all three configurations provide answer. Time is in seconds, memory is in MB, states
is in number of thousands. Models (name, category, query index): M1: PermAdmissibility-
PT-05, RC, 4. M2: CloudDeployment-PT-2b, RC, 4. M3: HouseConstruction-PT-200, RC,
3. M4: GlobalResAllocation-PT-05, RF, 2. M5: DatabaseWithMutex-PT-40, RF, 2. M6:
IBMB2S565S3960-PT-none, RF, 5. M7: Diffusion2D-PT-D05N010, DL, 1. M8: CloudDeployment-
PT-5a, DL, 1. M9: GPPP-PT-C0001N0000000100, DL, 1.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 45

entered

getk waitbag

getb undress

relk

inbath

getk2

dress rbag dressed

rkey

out

10

bags

enter

cabins

7

5

5

Fig. 8: Model ’SwimmingPool’ with inhibitor arcs. Place ’out’ has 10 tokens in the
initial marking.

Base Stub

size time states time states

1 0.08 3366 0.04 740

2 0.29 87297 0.07 7985

3 2.45 707196 0.11 35144

4 13.33 3320086 0.31 103337

5 52.56 11333790 0.71 241397

6 157.97 31381878 1.44 485870

7 413.54 74924382 2.5 881015

8 936.53 160174279 4.22 1478804

9 2120.09 314349742 7.88 2338922

10 > 3600 11.73 3528767

Table 12: Performing deadlock analysis on SwimmingPool model from Figure 8. The
size is a multiplier of the token count in initial marking and the weight on all inhibitor
arcs. Time is measured in seconds.

46 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

8.5 Siphon-trap Analysis

We perform experiments on deadlock queries (category DL) to examine the
performance of siphon-trap analysis. We are interested in comparing our im-
plementation to the siphon-trap analysis of LoLA, and study the contribution
of siphon-trap analysis to the currently best configuration of TAPAAL. We ex-
pect that siphon-trap analysis will detect some deadlock freedom in models that
are not feasible to verify with our current state space exploration techniques.
We also expect faster verification when performing structural reduction prior to
siphon-trap analysis. We compare tools configurations Siphon and LSiphon
that both perform siphon-trap analysis (using integer linear program and SAT
formulae respectively) without state space exploration. We also compare Stub-
Struct with Best that performs siphon-trap analysis before switching to state
space search using structural reduction, stubborn reduction (it also performs
formula simplification, but it has no effect on deadlock formulae).

Table 13 shows how the siphon depth affects the computation time of siphon-
trap analysis. As discussed in Section 5, the larger the depth, the more infeasible
formulae will be identified, and the more conclusive deadlock freedom answers
the tool provides at the cost of more computation. For each timeout we display
two metrics: (top) the number of infeasible formulae and (bottom) the number of
feasible formulae. In all configurations, a formula is decided feasible if a solution
is found, infeasible if no solution is found and the Petri net is deadlock free. In all
timeouts we see the largest increase in conclusive answers from the depth of 4 to
8. From 8 to |P | there is almost no increase in conclusive answers. The timeout
has not much impact in most configurations, implying that the generated integer
linear programs are either very easy or very difficult to solve, with very little in
between. This could also suggest that the implementation scales poorly with the
size of the Petri net. We highlight the cell that shows what we believe to be a
good configuration of depth and timeout for siphon-trap analysis, as it provides
24 conclusive exclusive answers in 5 seconds using a depth of 8. This is the
setting that will be used in the remaining experiments. We include a column for
configuration Siphon to show the difference of doing only siphon-trap analysis
to performing structural reduction before siphon-trap analysis (StructSiphon).
We see it has a positive effect on the number of conclusive answers, but only on
instances with a timeout of 10 or less. Table 13 also provides perspective on the
performance of our implemented siphon-trap formula compared to LoLA. The
siphon-trap implementation of LoLA also only works on 1-weighted Petri net.
We see that out of these models, the LoLA solves satisfiablity of considerably
more SAT formulae than StructSiphon does of LP formulae. The SAT encoding
build by LoLA may be more efficient than the generated integer linear program,
or the MiniSAT solver is simply faster than lp solve for this kind of problem.

We compare Best to StubStruct in Table 14 using our scoring metrics.
The siphon-trap analysis provides just 2 new answers to the collective set of
techniques developed. It is possible that there are more instances that will be
exclusively answered by the siphon-trap analysis if more timeout was given,
however, this will imply more overhead on all the instances where the siphon-

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 47

trap property cannot be decided within reasonable time. There are 5 instances
where siphon-trap analysis provides a faster answer.

TO
configuration / depth

StructSiphon Siphon LSiphon
4 8 12 16 |P | |P | |P |

1
13 20 20 20 20 13 33

120 78 69 62 35 33 64

3
16 20 20 20 20 16 33

126 89 76 72 44 36 75

5
16 24 20 20 21 16 33

129 94 81 79 46 38 79

10
16 24 20 21 21 16 35

132 98 89 84 51 42 80

30
17 25 26 25 25 25 36

138 112 103 95 56 47 89

60
17 25 27 27 28 28 37

144 115 106 104 59 47 95

Table 13: Siphon-trap analysis on the 224 1-weighted models, showing performance
when combining a range of timeout (TO, measured in seconds) and siphon depth
settings. The timeouts for StructSiphon and Siphon are measured on siphon-trap
analysis alone. The LSiphon configuration cannot be compared directly, as we do not
have access to the concrete timing information of the siphon-trap analysis and thus the
timeout is measured in total execution time. For each timeout we show two rows: the
number of infeasible formulae and the number of feasible formulae.

Best vs StubStruct

cat. exclusive time states memory

DL 2 0 12 7 20 1 9 115

Table 14: Pairwise score comparison on deadlock queries, showing the performance
difference of adding siphon-trap analysis to the stubborn and structural reduction
techniques. There are 313 total queries, 224 of which are 1-weighted.

48 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

8.6 Formula simplification

We perform experiments on all cardinality and fireability categories (CC, RC,
CF, RF) to examine the performance of formula simplification. We are in-
terested in comparing the implementation to the state equations technique of
TAPAAL 2.0. We expect that formula simplification will provide more conclu-
sive answers than the state equations of TAPAAL 2.0. We also expect that
stubborn and structural reduction will benefit in performance when simplifying
the formula prior to the reductions.

Table 15 gives an overview of the number of solved queries by all the config-
urations that we will refer to in this section.

Table 16 show statistics of formula simplification performance. We see a con-
siderable number of trivially solved queries in the cardinality categories. Further-
more, we see an average reduction effectiveness of ∼50% queries, which means
we half the number of nodes in the queries on average. In fireability we do not
see a significant reduction performance.

Table 17 show a pairwise score comparison of SimpOnly and SE. We see
that in cardinality, the simplification algorithm covers all the answers of the
previous state equations technique. However, in fireability, the state equations
are much superior, which indicates that there is still room for improvement in the
simplification technique. Many of the missing trivial formulae have later shown
to be because of disjunction. If two subformulae are trivial in disjunction, we do
not discover it.

Table 18 show pairwise score comparisons of Base, Simp, Stub, Struct,
SimpStub, SimpStruct, StubStruct, and Best. We see in all comparisons
that formula simplification generally provides more exclusive answers, uses less
time, explores less states, and consumes more memory. When comparing Stub-
Struct with Best in Table 18b the benefit of adding formula simplification to
the previously best performing configuration becomes apparent. The simplifica-
tion procedure consumes notably more memory.

We are interested in how stubborn and structural reduction is affected by
the formula simplification. To reason about this, we have excluded answers that
are simplified to trivial such that we are left with formulae that are non-trivial
and possibly reduced in size. We show these comparisons with these formulae in
Tables 18e and 18f, where we compare stubborn and structural reduction to their
simplified counterpart. On reachability, stubborn and structural reduction both
improve in exclusive answers when simplifying the queries prior to state space
exploration. However, on fireability, the performance actually worsens. This may
be due to the same issues presented earlier when simplifying fireability formulae.

In Table 19 we highlight how the configurations perform on the most difficult
instances. We have chosen the 5 hardest instances from RC and RF where all
configuration provides an answer.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 49

Number of queries answered

cat. queries Base SE Simp Stub Struct SimpStub SimpStruct StubStruct Best

RC 1565 817 908 1310 961 879 1376 1334 996 1396

RF 1565 1082 983 1129 1184 1125 1224 1170 1212 1251

subtotal 3130 1899 1891 2439 2145 2004 2600 2504 2208 2647

CC 1565 964 1211

CF 1565 934 952

total 6260 3797 1891 4602 2145 2004 2600 2504 2208 2647

Table 15: Number of queries solved by each configuration. We only count the queries
where the each configuration can utilise all its techniques, e.g. we do not apply stubborn
reduction to CTL formulae.

med. query size avg. query size

category trivial med. red. % avg. red. % before after before after

CC 438 25 41.5 15 6 899 477

CF 66 0 9.7 30 25 468 385

RC 675 50 50.6 16 4 750 308

RF 166 0 16.8 36 24 242 109
Table 16: Performance of formula simplification. Trivial counts the number of queries simplified to
either true or false. Med. red. % and avg. red. % counts the median (and average) simplification
percentage in formula size of all queries. Query size counts the number of nodes in the query tree
before and after applying simplification.

SE vs SimpOnly

cat. exclusive time memory trivial

RC 0 484 96 148 0 126 191 675

RF 100 15 325 186 43 50 251 166

total 100 499 421 334 43 176 442 841
Table 17: Pairwise score comparison of SimpOnly and SE. In each category RC and RF there
are 1565 queries. Trivial measures the number of queries were simplified to trivial by using formula
simplification (left) and state equations (right).

50 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

Base vs Simp

cat. exclusive time states memory

CC 2 250 81 278 1 290 144 199

CF 11 31 253 50 0 54 260 44

RC 5 497 63 535 21 224 267 125

RF 48 99 323 135 96 173 518 55

total 66 877 720 998 118 741 1189 423

(a)

StubStruct vs Best

cat. exclusive time states memory

RC 4 404 83 453 27 346 339 152

RF 35 74 330 101 92 175 615 45

total 39 478 413 554 119 521 954 197

(b)

Stub vs SimpStub

cat. exclusive time states memory

RC 3 418 71 468 25 319 335 119

RF 40 80 320 104 87 165 606 37

total 43 498 391 572 112 484 941 156

(c)

Struct vs SimpStruct

cat. exclusive time states memory

RC 5 460 74 517 25 277 288 143

RF 46 91 333 120 99 181 539 48

total 51 551 407 637 124 458 827 191

(d)

Stub vs SimpStub, excluding trivials

cat. exclusive time states memory

RC 3 15 65 29 25 54 335 12

RF 40 11 317 30 87 76 603 9

total 43 26 382 59 112 130 938 21

(e) These scores consider only queries that were not simplified
to trivial by SimpStub.

Struct vs SimpStruct, excluding trivials

cat. exclusive time states memory

RC 5 14 73 28 25 55 288 17

RF 46 14 330 38 99 100 536 19

total 51 28 403 66 124 155 824 36

(f) These scores consider only queries that were not simplified
to trivial by SimpStruct.

Table 18: Pairwise score comparisons. In each category CC, CF, RC and RF there
are 1565 queries.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 51

S
tu

b
S
tr

u
c
t

S
im

p
S
im

p
S
tu

b
S
im

p
S
tr

u
c
t

S
tu

b
S
tr

u
c
t

B
e
st

m
o
d
e
l

ti
m

e
m

e
m

st
a
te

s
ti

m
e

m
e
m

st
a
te

s
ti

m
e

m
e
m

st
a
te

s
ti

m
e

m
e
m

st
a
te

s
ti

m
e

m
e
m

st
a
te

s
ti

m
e

m
e
m

st
a
te

s
ti

m
e

m
e
m

st
a
te

s

M
1

1
9
7

6
0
9

1
9
6
8
9

8
8
7

1
6
1
2

5
9
4
0
8

0
3
.3

8
0
.0

0
0

3
.3

8
0
.0

0
0

3
.3

8
0
.0

0
5
6

1
8
3

6
1
4
5

0
3
.3

8
0
.0

0

M
2

2
3
5

1
7
4
3

3
5
3
3
7

8
2
5

4
6
0
8

1
2
4
2
3
5

8
5
3

4
6
0
8

1
2
4
2
3
5

2
3
5

1
7
4
5

3
5
3
3
7

8
5
4

4
6
0
8

1
2
4
2
3
5

2
3
3

1
7
4
3

3
5
3
3
7

2
3
2

1
7
4
3

3
5
3
3
7

M
3

0
4
.1

4
3
2
.8

0
3
.1

9
0
.5

8
7
7
2

6
6
0
9

2
1
2
8
2
5

0
4
.9

3
3
2
.8

0
3
.9

9
0
.5

8
0

3
.6

3
1
0
.4

0
4
.2

4
1
0
.4

M
4

7
2
4

1
4
2
6

2
8
0

7
4
6

1
4
2
6

2
8
0

2
5
4

2
0
0
1

6
0
.0

2
5
1

2
0
0
1

6
0

2
8
6

2
0
0
1

6
0
.0

7
7
0

1
4
2
6

2
8
0

2
8
9

2
0
0
1

6
0

M
5

5
1
4
.7

2
5
7

0
5
.5

3
5
7
.8

7
5
8

1
4
0
7

4
3
5
6
4

5
1
5
.3

2
5
7

0
5
.8

6
5
3
.8

0
4
.5

0
8
.2

1
0

5
.0

9
8
.2

1

M
6

6
9
0

1
5
1

3
7

7
0
2

1
4
9

3
6
.6

8
9
4

1
5
0

3
6
.6

8
8
5

1
4
9

3
6
.6

8
8
1

1
4
9

3
6
.6

7
0
0

1
4
9

3
6
.6

8
9
4

1
4
8

3
6
.6

M
7

6
0
4

4
1
4

4
0

6
5
5

4
1
4

4
0
.0

8
2
6

4
1
4

4
0
.0

8
3
2

4
1
4

4
0
.0

8
5
9

4
1
4

4
0
.0

6
5
5

4
1
5

4
0
.0

8
6
6

4
1
5

4
0
.0

M
8

7
5
9

5
5
1

3
.2

4
8
0
0

5
5
2

3
.4

3
5

5
5
2

0
.0

0
5

5
5
2

0
.0

0
5

5
5
2

0
.0

0
8
2
9

5
5
1

3
.4

3
5

5
5
1

0

M
9

0
1
7
.6

0
.2

4
0

1
6
.7

0
.2

4
7
2
8

9
0
4
2

0
.2

4
7
1
3

9
0
4
2

0
.2

4
7
6
2

9
0
4
2

0
.2

4
0

1
7
.5

0
.2

4
7
0
3

9
0
4
2

0
.2

4

M
1
0

5
8
7

7
3
3

2
7
7
5
0

2
7
1

7
4
4

2
7
9
5
1

3
2
7

7
7
3

2
7
9
5
1

6
4
9

7
5
6

2
7
7
5
0

3
2
4

7
7
2

2
7
9
5
1

5
9
2

7
3
4

2
7
7
5
0

6
8
1

7
5
6

2
7
7
5
0

T
a
b
le

1
9
:

T
h
e

m
o
st

d
iffi

cu
lt

in
st

a
n
ce

s
fo

r
a
t

le
a
st

o
n
e

o
f

th
e

in
cl

u
d
ed

co
n
fi
g
u
ra

ti
o
n
s,

w
h
er

e
a
ll

co
n
fi
g
u
ra

ti
o
n
s

p
ro

v
id

e
a
n
sw

er
.

T
im

e
is

in
se

co
n
d
s,

m
em

o
ry

is
in

M
B

,
st

a
te

s
is

in
n
u
m

b
er

o
f

th
o
u
sa

n
d
s.

M
o
d
el

s
(n

a
m

e,
ca

te
g
o
ry

,
q
u
er

y
in

d
ex

):
M

1
R

es
A

ll
o
ca

ti
o
n
-P

T
-

R
0
0
3
C

0
1
5
,
R

C
,
1

M
2

P
er

m
A

d
m

is
si

b
il
it

y
-P

T
-0

5
,
R

C
,
4

M
3

H
o
u
se

C
o
n
st

ru
ct

io
n
-P

T
-2

0
0
,
R

C
,
3

M
4

P
h
il
o
so

p
h
er

s-
P

T
-0

1
0
0
0
0
,
R

C
,
1

M
5

C
lo

u
d
D

ep
lo

y
m

en
t-

P
T

-2
b
,
R

C
,
4

M
6

D
a
ta

b
a
se

W
it

h
M

u
te

x
-P

T
-4

0
,
R

F
,
2

M
7

P
h
il
o
so

p
h
er

s-
P

T
-0

1
0
0
0
0
,
R

F
,
4

M
8

G
lo

b
a
lR

es
A

ll
o
ca

ti
o
n
-

P
T

-0
5
,
R

F
,

2
M

9
B

ri
d
g
eA

n
d
V

eh
ic

le
s-

P
T

-V
8
0
P

5
0
N

1
0
,
R

F
,

3
M

1
0

D
N

A
w

a
lk

er
-P

T
-0

8
ri

n
g
L

L
,
R

F
,

2

52 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

8.7 Best vs. Best

We perform experiments on all queries from all categories. There are 5008 queries
from each category CC, CF, RC, and RF, and 313 queries from category DL
to compare the overall performance of TAPAAL and LoLA. We are interested
in comparing the scoring metrics between the both tools using all described
techniques, i.e. configurations Best and LoLA.

Table 20 show the number of queries solved by both configurations. We see
that LoLA solves 264 more queries on all queries from the reachability category,
whereas Best solves 1156 more queries from the CTL category. In total, Best
892 more queries.

Pairwise score comparison between the two configurations is shown in Ta-
ble 21. The largest difference in exclusive answers is in category CC, where Best
exclusively solves more than a fifth of all queries. In every other categories, LoLA
perform faster on more queries, specifically close to one third of all queries on
category RF. We see that the number of states explored differ widely on both
configurations, however, LoLA generally explores fewer states on all categories.

In Table 22 we highlight how the two configurations perform on the most
difficult instances. We have chosen the two hardest instances from each category
where both configurations provides an answer. Instance M3 is a case that show
that the formula simplification of LoLA does not simplify the same formulae to
trivial as Best does. The reverse scenario is also present in the raw data. On
M7 we see a case where a full state space is required to verify the query, and
that Best and LoLA have explored the exact same number of states. In this
case, Best is much more memory consuming than LoLA, but verifies the query
in less than half the time.

queries solved

cat. queries Best LoLA

DL 313 241 255

RC 5008 4476 4507

RF 5008 4011 4230

CC 5008 3976 3097

CF 5008 3181 2904

total 20345 15885 14993

Table 20: Number of solved queries. In each category RC, RF, CC and CF there are
5008 queries. In category DL there are 313 queries.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 53

Best vs LoLA

cat. queries exclusive time states memory

DL 313 3 17 18 28 82 155 106 111

RC 5008 281 312 557 691 2175 2986 3105 772

RF 5008 250 469 336 1484 829 2778 2353 1133

CC 5008 1202 323 1421 633 1047 1934 1051 1522

CF 5008 698 421 852 1170 385 1900 443 1879

total 20345 2434 1542 3184 4006 4518 9753 7058 5417

Table 21: Pairwise score comparisons. In each category RC, RF, CC and CF there
are 5008 queries. In category DL there are 313 queries.

Best LoLA

model time mem states time mem states

M1 1093 927 25402 133 200 1718

M2 26 63 403 1037 4303 2105

M3 0 2.99 0 882 13279 168208

M4 9 518 0 874 1568 0

M5 897 95538 3.21 0 6.11 4.34

M6 880 148 36.6 446 3103 0.01

M7 344 10826 32961 894 8826 32961

M8 0 6.61 0.26 886 7797 72061

M9 880 8284 22020 665 39.2 21925

M10 876 9072 5569 230 2315 5303

Table 22: The most difficult instances for at least one of the included con-
figurations, where both configurations provide answer. Time is in seconds,
memory is in MB, states is in number of thousands. Models (name, cate-
gory, query index): M1: CloudDeployment-PT-5a, DL, 1. M2: PolyORBLF-PT-
S04J06T10, DL, 1. M3: GPPP-PT-C1000N0000000010, RC, 14. M4: TokenRing-
PT-040, RC, 14. M5: SafeBus-PT-03, RF, 9. M6: DatabaseWithMutex-PT-40,
RF, 2. M7: BridgeAndVehicles-PT-V50P50N20, CC, 16. M8: DNAwalker-PT-
13ringRLLarge, CC, 12. M9: SimpleLoadBal-PT-20, CF, 3. M10: BridgeAndVehicles-
PT-V80P50N10, CF, 15.

54 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

9 Conclusion

The feasibility of model checking is strongly dependent on the efficiency of the
verification technique. Our experiments show that many real-world systems gen-
erates an unmanageable amount of states, and that certain countermeasures have
to be taken, in order to provide meaningful information. We have also seen, that
many formulae contains trivial subformulae, that can be answered in the initial
state, possibly because they were automatically generated.

Our work in this Master’s thesis and in our pre-specialisation project, has
indeed confirmed that there exists many effective methods and approaches to
model checking. The techniques used in this thesis have improved verification
performance of the state of the art model checker TAPAAL. Some techniques are
specifically good in verifying certain properties and models, and some techniques
even improve when used in combination.

We have extended our stubborn reduction implementation, to handle Petri
nets with inhibitor arcs, and we have restructured and improved the code that
generates the set of interesting transitions. Experiments show that our stubborn
reduction implementation is competitive on the set of models from MCC’17. The
inhibitor extension to stubborn reduction was showcased on a scaled set of model
instances, and demonstrate great performance. The stubborn and structural re-
duction techniques generally both benefit from being applied in combination,
but experiments show that the techniques conflict on some models, which can
lead to computational overhead.

We presented an interpretation for deciding the siphon-trap property, ex-
pressed as an integer linear program. Experiments showed that structural re-
duction prior to siphon-trap analysis improved the number of decided instances
of the siphon trap property, as the number of places and transitions is reduced.
Lastly, we saw that the satisfiability formula that LoLA uses for siphon-trap
analysis, performed better than our integer linear program implementation.

State equations have previously shown to be effective when used in combina-
tion with explicit analysis methods. We extended the theory to handle not only
reachability formulae, but also CTL formulae. In our experiments, we saw great
improvement on cardinality formulae. However, there were a significant number
of fireability formulae that were not able to be simplified to trivial formulae,
even though they were actually trivial. We believe the simplification procedure
can be improved in this aspect. The formula simplification greatly improved the
overall performance of TAPAAL, both by providing trivial answers and reduc-
ing formulae such that the stubborn reduction improves by generating smaller
interesting sets.

We examined the combined performance of every implemented technique in
TAPAAL and compared it with LoLA. On all categories combined, TAPAAL
provided more exclusive answers and used less memory. LoLA performed faster
verification and generally explored fewer states. Specifically, LoLA performed
better on reachability formulae and TAPAAL performed better on CTL formu-
lae.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 55

9.1 Future Work

There are several extensions to the Petri net formalism that we can consider
as future work. We already covered the extension including inhibitor arcs, but
another possibility is coloured Petri net. In a coloured Petri net, each token is
equipped with a ’colour’, which is of a certain type specified by the given place
[12] the token is in. Coloured Petri nets can achieve a more compact representa-
tion when compared to basic Petri nets, and are more analogous to programming
languages as token colours correspond to data types [12].

How stubborn reduction can be applied to the unique structure of workflow
nets is also a possibility. It would be interesting to investigate if the structural
properties of workflow nets can be exploited to verify soundness faster using
stubborn reduction.

We applied the formula simplication procedure to CTL formulae, but the
stubborn reduction procedure only works on reachability formulae, or CTL for-
mulae that have been simplified to reahcability formulae. The next logical step
is to investigate how stubborn reduction can be applied to CTL formulae.

As was demonstrated, there exists nondeterminism in both the generation of
interesting sets of transitions and the stubborn closure algorithm, which implies
that there, for a given state, can exist several valid stubborn sets. It is interesting
to investigate how to determine which choice is the best, whenever we are given
a choice in the procedures.

The experiments showed that the integer linear programming interpretation
for deciding the siphon-trap property did not live up to out expectations. It
generally performed worse than the SAT implementation presented by LoLA.
Further work needs to be done to optimise both the system of equations and its
implementation, e.g. by reducing the number of constraints and decision vari-
ables. Furthermore, investigating how the siphon-trap property can be extended
to include Petri net formalism extensions such as inhibitor and weighted arcs
would be the next logical steps, as especially the 1-weighted requirement is lim-
iting.

The formula simplification procedure did not provide the expected improve-
ment on fireability queries, and in fact performed worse when compared to the
state equations of TAPAAL 2.0. All fireability formulae generally have the same
form because they are converted to cardinality formulae, so it might be the
stucture of the converted formula that is unsuited for the current formula sim-
plification procedure.

An improvement to the formula simplification is to examine if two non-trivial
subformulae are trivial in disjunction. This can be done by negating the dis-
junction formula and then prove the impossibility of its linear programs. If the
negated disjunction is impossible, then the original disjunction must be trivially
satisfied. The experiments indicate that there is room for improvement when
considering the memory consumption.

56 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

10 Bibliographical Remarks

We reuse and extend some of the work in our pre-specialisation thesis [16]. The
CTL logic in Section 2.1 is based on the already defined reachability marking
properties in [16], and we now describe the definition in the context of LTS. We
reuse the definition, semantics, graphical notation and example of Petri net, and
extend them with inhibitor arcs. Section 3 is based on Section 3 from [16], and
includes minor modifications and new examples. Section 4 is based on Section
4 from [16] and extends definitions and proofs to consider inhibitor arcs when
generating the set of interesting transitions, and in the reachability preserving
closure, as shown in Table 1, and Proposition 1. The proofs are reused and
updated accordingly.

A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets 57

References

1. LoLA Formula preprocessing. Section 3.3.3.3. https://www2.informatik.

hu-berlin.de/top/lola/loladoku. Accessed: 17/2-2017.
2. Model Checking Contest (MCC) 2016. mcc.lip6.fr. Accessed: 6/12-2016.
3. Michel Berkelaar, Kjell Eikland, Peter Notebaert, et al. lpsolve: Open source

(mixed-integer) linear programming system. Eindhoven U. of Technology, 2004.
4. Edmund M Clarke, E Allen Emerson, and Joseph Sifakis. Model checking: algo-

rithmic verification and debugging. Communications of the ACM, 52(11):74–84,
2009.

5. Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems (TOPLAS), 8(2):244–263,
1986.

6. Alexandre David, Lasse Jacobsen, Morten Jacobsen, Kenneth Yrke Jørgensen,
Mikael H Møller, and Jǐŕı Srba. Tapaal 2.0: integrated development environment
for timed-arc petri nets. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 492–497. Springer, 2012.

7. Niklas Een and Niklas Sörensson. Minisat: A sat solver with conflict-clause mini-
mization. Sat, 5:8th, 2005.

8. J. Esparza and S. Melzer. Verification of safety properties using integer program-
ming: Beyond the state equation. Form. Meth. in Syst. Design, 16:159–189, 2000.

9. Michel Henri Théodore Hack. Analysis of production schemata by petri nets.
Technical report, DTIC Document, 1972.

10. Monika Heiner, Christian Rohr, and Martin Schwarick. Marcie–model checking and
reachability analysis done efficiently. In International Conference on Applications
and Theory of Petri Nets and Concurrency, pages 389–399. Springer, 2013.

11. Jonas F. Jensen, Thomas Nielsen, Lars K. Oestergaard, and Jirı Srba. TAPAAL
and Reachability Analysis of P/T Nets. In Transactions on Petri Nets and Other
Models of Concurrency XI, pages 307–318. Springer, 2016.

12. Kurt Jensen. Coloured Petri nets: basic concepts, analysis methods and practical
use, volume 1. Springer Science & Business Media, 2013.

13. Peter Gjøl Jensen, Kim Guldstrand Larsen, Jǐŕı Srba, Mathias Grund Sørensen, and
Jakob Haar Taankvist. Memory Efficient Data Structures for Explicit Verification
of Timed Systems. NASA Formal Methods: 6th International Symposium, NFM
2014, Houston, TX, USA, April 29 – May 1, 2014. Proceedings, pages 307–312,
Springer International Publishing, 2014.

14. Marcin Kalicinski. Rapidxml, 2009.
15. Lars Michael Kristensen, Karsten Schmidt, and Antti Valmari. Question-guided

stubborn set methods for state properties. Formal Methods in System Design,
29(3):215–251, 2006.

16. Jakob Dyhr Mads Johannsen and Frederik Meyer Bønneland. Reachability analy-
sis: A stubborn approach. 2016.

17. George L Nemhauser and Laurence A Wolsey. Integer programming and com-
binatorial optimization. Wiley, Chichester. GL Nemhauser, MWP Savelsbergh,
GS Sigismondi (1992). Constraint Classification for Mixed Integer Programming
Formulations. COAL Bulletin, 20:8–12, 1988.

18. Olivia Oanea, Harro Wimmel, and Karsten Wolf. New algorithms for deciding the
siphon-trap property. In International Conference on Applications and Theory of
Petri Nets, pages 267–286. Springer, 2010.

https://www2.informatik.hu-berlin.de/top/lola/loladoku
https://www2.informatik.hu-berlin.de/top/lola/loladoku
mcc.lip6.fr

58 A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets

19. Carl Adam Petri. Kommunikation mit automaten. 1962.
20. Karsten Schmidt. Stubborn sets for standard properties. In International Confer-

ence on Application and Theory of Petri nets, pages 46–65. Springer, 1999.
21. Karsten Schmidt. Integrating low level symmetries into reachability analysis. In In-

ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 315–330. Springer, 2000.

22. Karsten Strehl and Lothar Thiele. Symbolic model checking using interval diagram
techniques. Computer Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology Zürich (ETH), 1998.

23. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.

24. Antti Valmari. Stubborn sets for reduced state space generation. In International
Conference on Application and Theory of Petri Nets, pages 491–515. Springer,
1989.

25. Antti Valmari. The state explosion problem. In Lectures on Petri nets I: Basic
models, pages 429–528. Springer, 1998.

26. Antti Valmari and Henri Hansen. Stubborn set intuition explained. In Proceedings
of the International Workshop on Petri Nets and Software Engineering, PNSE,
pages 213–232, 2016.

27. Harro Wimmel and Karsten Wolf. Applying CEGAR to the Petri net state equa-
tion. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 224–238. Springer, 2011.

28. Karsten Wolf. Running LoLA 2.0 in a Model Checking Competition. In Transac-
tions on Petri Nets and Other Models of Concurrency XI, pages 274–285. Springer,
2016.

	A Simplified and Stubborn Approach to CTL Model Checking of Petri Nets
	Introduction
	Preliminaries
	Computation Tree Logic
	Petri Nets
	Atomic Propositions for Petri Net CTL
	Integer Linear Program

	Reductions of LTS
	Reachability Preserving Stubborn Reduction

	Reductions of Petri Net
	The Siphon-Trap Property
	Siphon-Trap Property Using Integer Linear Programming

	Formula Simplification
	Simplification Procedure

	Implementation
	Toolchain

	Experiments
	Tools and Configurations
	TAPAAL configurations
	LoLA configurations

	Model database and experiment metrics
	Setup
	Combining stubborn reduction and structural reduction
	Siphon-trap Analysis
	Formula simplification
	Best vs. Best

	Conclusion
	Future Work

	Bibliographical Remarks

