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Summary

Synthesis is the automatic construction of software controllers from a formal specifica-
tion. In contrast to human written software, which may exhibit undesirable behavior (E.g.
deadlocks), such controllers can be guaranteed to behave according to its specification. In
this thesis we investigate controller synthesis from a non-negative multi-weighted game
theoretic context.

We start by introducing the underlying data structure of a game, which is a Kripke
Strukture (KS) extended with multiple weights on each transition expressed as an n-
dimensional vector of non-negative integers. We also define both syntax and semantics
for a Weighted Computation Tree Logic (WCTL). The logic can express branching of time,
comparison between weights and constants as well as arithmetics expressions. This al-
lows us to specify multiple lower- and upper-bounds for each dimension of the vector.
The model checking problem for WCTL over an n-weighted Kripke structure is examined
and we find that with three dimensional weights, the problem is undecidable. We then
introduce a sub-logic we call Constant Bound WCTL (cb-WCTL), where comparison be-
tween weights of the game has been removed from the logic and subtraction is not allowed
as an arithmetic expression. We prove that the model checking problem for cb-WCTL on
an n-weighted Kripke structure is decidable. Additionally we observe that the remaining
arithmetic operators do not provide further expressiveness to the logic.

We introduce a game as a game graph and an objective. The game graph is presented
as an n-weighted Kripke structure, where the transitions have been partitioned between
two players and the objective is a formula expressed in a logic. In the context of controller
synthesis we show how the first player corresponds to the controller and the second player
corresponds to the environment around the controller. The game is played by the two
players moving along the transitions in accordance to their ownership. The movements
of the players are decided by a strategy. We formally define such a strategy with relation
to the controller and present two types of strategies. In the first type of strategy all
moves previously made are taken into account when choosing the next move, a so called
full-memory strategy. In the second only the current state and the accumulation of the
weights previously passed is considered, a so called finite-memory strategy. We illustrate
that there exist objectives that can be satisfied, when the controller utilizes a full memory
strategy, but cannot when utilizing a finite memory strategy.

In this thesis we focus on algorithmically solving the synthesis problem specified with
reachability objectives. We first illustrate how to solve the synthesis problem, when the
reachability objective only has upper-bounds defined. We do so by providing an algorithm
and prove the correctness and complexity of the algorithm. We then consider games
specified with lower-bounds as well and introduce the notion of zones to symbolically
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2 1 Introduction

represent the possible infinite set of weights of the game. We also introduce operations
on these zones and prove them semantically equivalent to operations on infinite sets of
weights. With these zones we provide an algorithm for solving the synthesis problem,
where the reachability objective has both upper- and lower-bounds. We show correctness
of this algorithm and show that while the problem is NP-hard the algorithm runs in
exponential time.

Lastly we discuss the possibility of trivially extending the algorithm to handle non-
nested cb-WCTL games. Additionally we show that the algorithm presented in this thesis
is not capable of handling nested operators and suggest this as an area of future work.

1 Introduction

Controllers are used in everything from automated homes and self driving cars to man-
ufacturing plants. These controllers often handle safety critical systems where errors can
have severe consequences. One way of decreasing the amount of errors in these critical
components is to use formal verification methods.

Controller synthesis is the automated construction of controllers derived directly from
their specifications. The concept of controller synthesis was first introduced by Church
in 1962 as a question of whether it was possible, algorithmically, to generate a solution
for a specification formulated in a second-order monadic logic [5]. In 1969 Büchi and
Landweber showed that this is possible [2]. Since then, the problem of controller synthesis
has been continually expanded upon.

One way of working with synthesis is from a game theoretic view [18], focusing on
non-cooperative multi-player (usually two player) games. Non-cooperative games are
especially suited for synthesis of controllers, as these type of games do not necessarily
assume an antagonistic opponent, although this is often the case, to ensure victory. The
synthesis of a controller can be viewed as finding and extracting a winning strategy for
one of these games.

In this thesis we work with two player games in a non-negative multi-weighted set-
ting. A game is played on a game graph (also called an arena), which is a directed
multi-weighted graph. A game graph consists of a set of states (vertices) and transitions
(edges) where the transitions are partitioned between the players. Each transition has an
associated weight expressed as a vector. When a game graph is paired with an objective
we call it a game. A play of a game, is a sequence of states and transitions. To gain
familiarity with the formalism, let us go through an example. Consider the game graph
in Figure 1, which models a car insurance sales agent. States are depicted by circles, and
transitions as arrows. The ordinary arrows depict the actions of the controller (sales agent)
and the dashed arrows are the actions of the environment. The double circled state is the
initial state, from which the game begins.

The game graph depicted in Figure 1 models three values. The first value Risk mod-
els the risk assessment of the costumer. The second value Maximal_payout models the
maximal payout a costumer can receive when they make a claim. Lastly, the third value
Premium models the price of the premium offered.

In the graph depicted in Figure 1 there are four states each illustrating a step in the
sales process:

– First the customer is automatically assessed based on age, gender, insurance history
etc. This is not done by the agent, so the action is chosen by the environment. We
represent this by giving the initial state s0 the label Assess. Progression to state s1 is
then along one of the dashed arrows.



3

s0 s1 s2 s3

(0, 5, 8)

(0, 0, 0)

(0, 0, 0)(2, 0, 0)

(6, 0, 0) (0, 5, 20)

(0, 4, 30)

{Assess} {Offer} {Sale} {Sale Complete}

Legend = (Risk ,Maximal Payout ,Premium)

Figure 1: Example of a game graph modeling a car insurance sales agent. The three weight components represent
the risk of the customer making a claim, the maximal payout of a claim and premium the sales agent can offer.

– In state s1 with the label Offer the sales agent has two insurance policies available
and he can offer either to the customer. These plans are represented by the two
ordinary arrows from s1 to s2.

– After the offer is made the sales agent can optionally offer additional coverage along
with a higher premium represented by the self-loop arrow. This can be declined
by the customer represented by the dashed arrow. The decision to not offer further
coverage, is represented by the ordinary arrow from s2 to s3.

– In the last state the sale has been made, represented by the label Sale_Complete.

Consider being the insurance company. You want to make sure that all customers pay a
premium befitting their maximal payout compared, to the risk of the customer making a
claim. Let us say we calculate the total cost of an insurance as (Risk ·Maximal_payout). We
can then specify an instance of the problem as ”Can we offer a premium s.t. we can pay the
costumer on every claim without loosing money?”. You can now instruct your sales agents to
follow a procedure that enforces these boundaries. An example of such a procedure is
illustrated in Algorithm 1.

Algorithm 1 Sales agent strategy procedure

1: if Offer∧ Risk ≤ 2 then goto s2 via the cost (0, 5, 20)
2: else if Offer∧ Risk > 2 then goto s2 via the cost (0, 4, 30)
3: else if Sale∧ Premium ≤ 20 then goto s2
4: else goto s3

Algorithm 1 is called a strategy. Consider an agent using this strategy, where the game
starts with all dimensions of the weight set to 0 in the initial state s0:

s0− (0, 0, 0) The assessment can have two outcomes, either the customer is categorized
as low risk or a high risk.

From this point there are two distinct strategies based on whether the costumer is low
or high risk. Below we present the low risk strategy.

1. s1− (2, 0, 0) When the customer is categorized as low risk, the agent offers the policy
with a maximal payout of 5 and a premium of 20.

2. s2− (2, 5, 20) With the premium at 20, the agent should offer further coverage to the
customer. Mind that the customer may refuse this, thus there can be two outcomes.
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One where the payout and premium is raised but the game stays in s2 and one
where the game progresses to s3.

(a) s2− (2, 10, 28) The customer has accepted further coverage, but the agent should
not offer more, hence the game should progress to s3.

3. s3− (2, 5, 20) or s3− (2, 10, 28) The sale is now closed by either the costumer or the
agent and we observe that the total cost is either 2 × 10 = 20 while the premium is
at 28 or 2 × 5 = 10 while the premuim is 20. Thus this strategy generates a profit for
the insurance company.

Now we see that this strategy always turn a profit when the costumer is low risk.
However, a different strategy is needed for a high risk costumer. This strategy is illustrated
below.

s1− (6, 0, 0) The strategy advises to offer the policy with a maximal payout of 4 and a
premium of 30.

s2− (6, 4, 30) As the costumer is high risk the strategy advises not to offer further cover-
age, and the model should progress to s3.

s3− (6, 4, 30) The sale is now closed and we observe that the total cost is 6 × 4 = 24
while the premium is at 30. Thus this strategy generates a profit for the insurance
company.

Again we get that this ensures a profit, thus we have that no matter what the envi-
ronment does, we can ensure that we satisfy our objective. This is what we call a wining
strategy and it is the calculation and extraction of such strategies, we study in this thesis.

1.1 Contributions

In this thesis we present a game theoretic framework for two-player non-negative multi-
weighted games. This framework is based on a weighted extension of Kripke Struktures
(KSs) [12], the so called n-Weighted Kripke Strukture (n-WKS), and a weighted extension
of Computation Tree Logic (CTL) [6], the Weighted Computation Tree Logic (WCTL).
We provide an undecidability result for the model checking problem of WCTL on a 3-
WKS and define the decidable sub-logic Constant Bound WCTL (cb-WCTL). To express
reachability objectives with both lower and upper-bounds, we define a sub-logic of cb-
WCTL, the Reachability WCTL with Upper- and Lower-bounds (ReachWCTLu

l ).
We show that the synthesis problem for a Reachability WCTL with Upper-bounds

(ReachWCTLu) game is decidable in pseudo-polynomial time. We provide a symbolic al-
gorithm for the synthesis problem for ReachWCTLu

l games and prove semantically sound
operations for a symbolic representation of the state space. We establish that the synthe-
sis problem for ReachWCTLu

l games is NP-hard but decidable in exponential time and
discuss the possibilities and challenges for synthesis of cb-WCTL. Furthermore, we show
that if there is a winning strategy to a ReachWCTLu or ReachWCTLu

l game, then there
exists a winning strategy which only remembers the current state and the accumulated
cost. Lastly, we show that the strategy needed for ReachWCTLu and ReachWCTLu

l games
does not suffice for cb-WCTL games.

1.2 Related Works

In [18] Thomas presented the automata theoretic framework defining a generalized two-
player turn based game along with a strategy for that game. In [11] we extended this
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framework to a non-negative multi-weighted setting, but only showed synthesis for one
weighted games and only for upper-bounds. In this thesis, we use the framework from
[11] in the multi-weighted setting but show synthesis of multi-weighted reachability games
with both lower- and upper-bounds.

Inspired by the weighted logic of Jensen et al. in [8], we present a CTL variant with
multiple weights. While Jensen et al. give a local algorithm for model checking of weighted
CTL with only upper-bounds, we provide an algorithm for synthesis of multi-weighted
reachability games defined with a reachability sub-logic with both lower- and upper-
bounds. Bouyer, Larsen, and Markey [1] presented model checking for weighted timed
automata, and showed that checking for weighted CTL properties with three or more
clocks is undecidable. We arrive at the same result for WCTL with three weights, and
define the decidable sub-logic cb-WCTL.

Kupferman and Vardi found in [14], that the synthesis problem for CTL is EXPTIME
complete. We show that the decidable sub-logic of WCTL is NP-hard and multi-weighted
reachability objectives with upper- and lower-bounds can be solved in exponential time.
Furthermore, Kupferman and Vardi show that synthesis of CTL objectives in games with
partial information is 2EXPTIME complete. In our thesis we only consider games with
complete information.

Mean pay-off games and energy games are suitable for modeling resource constrained
non-terminating systems. In 2015 Jurdziński, Lazić, and Schmitz presented an algo-
rithm for solving fixed-dimensional energy games in pseudo-polynomial time [10]. In
the games we study we can only model consumption or accumulation of some resource,
as all weights are positive. Chatterjee et al. showed that the problem of determining if a
finite memory strategy exists for energy games is co-NP complete and NP-complete if the
strategy is memoryless [4]. We show that games with reachability objectives only require
a finite memory strategy.

In 2005 Cassez et al. presented an on-the-fly approach for solving both untimed and
timed automaton based games with reachability and safety objectives using dependency
graphs by Liu and Smolka in [15]. Timed Automata (TA) based games model continuous
times, while our games model multiple discrete values by using a symbolic abstraction.
Additionally our method is based on n-WKS with reachability with upper- and lower-
bounds objectives.

In [9] Jobstmann and Bloem present the tool Lily for synthesis of LTL specifications.
It uses a translation through universal co-Büchi tree automata and alternating weak tree
automata first presented by Kupferman and Vardi in [13]. Lily does not consider weights,
as opposed to our framework.

1.3 Outline

In Section 2 we introduce the preliminaries including the n-WKS and WCTL. Section 3
cover the model checking results for WCTL and cb-WCTL while Section 4 present the
synthesis problem in a game theoretic context. In Section 5 we present an algorithmic so-
lution for the synthesis problem for reachability objectives and we finish with a discussion
on synthesis of cb-WCTL in Section 6. Lastly, we conclude on our results in Section 7.

2 Preliminaries

We present the basic formalism and notation used throughout the thesis. We define the
n-WKS, a KS with arbitrary many non-negative weights on the transitions. Then we define
the syntax and semantics of WCTL over an n-WKS.
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2.1 n-Weighted Kripke Strukture

We present the n-Weighted Kripke Strukture (n-WKS), and we write N0 = N ∪ {0} and
N∞ = N0 ∪∞.

Definition 2.1 (n-Weighted Kripke Strukture)
An n-WKS is a tuple K = (S, s0,AP , L, T) where:

– S is a set of states,

– s0 ∈ S is the initial state,

– AP is a finite set of atomic propositions,

– L : S→ P(AP) is a labeling function and

– T ⊆ S×Nn
0 × S is a transition relation, with a weight vector of n dimensions.

When (s, c, s′) ∈ T, where s, s′ ∈ S and c ∈ Nn
0 is a vector, then we write s c−→ s′. When

s′ is reachable from s, by j ∈N number of transitions, we write s→j s′ and when s has
no outgoing transitions we write s 6→.

An n-WKS K = (S, s0,AP , L, T) is finite whenever S is a finite set of states and T is a
finite transition relation.

Let w ∈ Nn
0 then we denote the ith component of w by w[i], where 1 ≤ i ≤ n. To set

the ith component of w to a specific value k ∈N0 we write w[i→ k].

Definition 2.2 (Ordering on Vectors)
Let w = (w[1], . . . , w[n]) ∈ Nn

0 and w′ = (w′[1], . . . , w′[n]) ∈ Nn
0 . We write w ≤ w′ iff

w[i] ≤ w′[i] for all 1 ≤ i ≤ n.

We define a run ρ in the n-WKS K to be an infinite or finite sequence of states and
transitions:

ρ = s1
c1−→ s2

c2−→ s3
c3−→ . . .

where si
ci−→ si+1 for all i ≥ 1. Given a position i ∈N along ρ, let ρ(i) = si, and Last(ρ) be

the state at last position along ρ, if ρ is finite. We also define the concatenation operator ◦,
s.t. if (ρ = s1

c1−→ s2
c2−→ . . .

cn−1−−→ sn) then ρ ◦ (sn
cn−→ sn+1) = (s1

c1−→ s2
c2−→ s3 . . . sn

cn−→ sn+1).

We write the set of all runs ρ in the n-WKS K of the form (ρ = s1
c1−→ s2

c2−→ . . . )
as ΠK. Furthermore we write the set of all finite runs ρ in the n-WKS K of the form

(ρ = s1
c1−→ . . .

cn−1−−→ sn) as Π f in
K . Lastly, we define ΠMax

K as the set of all runs ρ s.t. ρ is
infinite or Last(ρ) is in a deadlock s.t. Last(ρ) 6→.

Definition 2.3 (Cost)
Let K = (S, s0,AP , L, T) be an n-WKS and (ρ = s1

c1−→ s2
c2−→ . . . ) be a run in K. The cost

of ρ, at position i ∈N, is then defined as:

Costρ(i) =





0n if i = 1
i−1
∑

j=1
cj otherwise.

If ρ is finite, we denote Cost(ρ) as the cost of the last position along ρ.
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2.2 Weighted Computation Tree Logic

We define Weighted Computation Tree Logic (WCTL) in relation to an n-WKS K =
(S, s0,AP , L, T) s.t.

ϕ :=true | false | a | ψ1 ./ ψ2 | ¬ϕ |
ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2 |
AX ϕ | EX ϕ | AG ϕ | EG ϕ | AF ϕ | EF ϕ |
Eϕ1Uϕ2 | Aϕ1Uϕ2 | reset #i in ϕ

ψ :=c | #i | ψ1 ⊕ ψ2

where a ∈ AP , ./ ∈ {<,≤,=,≥,>}, ⊕ ∈ {+,−, ·}, c ∈N0, and 1 ≤ i ≤ n is a component
index in a vector. Given a WCTL formula ϕ, we define the set of all sub-formulae in ϕ as
Sub(ϕ).

We define the semantics for a minimal set of operators. Let s ∈ S be a state and
w ∈ Nn

0 . We then write K, s �w ϕ when K satisfies the formula ϕ in the state s with the
cost w.

K, s �w true

K, s �w a iff a ∈ L(s)

K, s �w ¬ϕ iff s 2w ϕ

K, s �w ϕ1 ∨ ϕ2 iff s �w ϕ1 or s �w ϕ2

K, s �w Eϕ1Uϕ2 iff there exists (ρ = s1
c1−→ s2

c2−→ s3 . . . ) ∈ ΠMax
K where s = s1 and a position i ≥ 1

such that K, ρ(i) �w+costρ(i) ϕ2 and K, ρ(j) �w+costρ(j) ϕ1 for all j < i

K, s �w Aϕ1Uϕ2 iff for all (ρ = s1
c1−→ s2

c2−→ s3 . . . ) ∈ ΠMax
K where s = s1, there is a position i ≥ 1

such that K, ρ(i) �w+costρ(i) ϕ2 and K, ρ(j) �w+costρ(j) ϕ1 for all j < i

K, s �w EX ϕ iff there is a state s′ such that s c−→ s′, and K, s′ �w+c ϕ

K, s �w reset #i in ϕ iff K, s �w[i→0] ϕ

K, s �w ψ1 ./ ψ2 iff evalw(ψ1) ./ evalw(ψ2)

The evaluation of ψ is:

evalw(c) = c

evalw(#i) = w[i]

evalw(e1 ⊕ e2) = evalw(e1)⊕ evalw(e2)

The remaining operators, from the syntax, can be derived from the minimal set, and
likewise can their semantics. The derived operators are defined as:

AF ϕ ≡ A(true)U(ϕ) EF ϕ ≡ E(true)U(ϕ)

AG ϕ ≡ ¬EF¬ϕ EG ϕ ≡ ¬AF¬ϕ

AX ϕ ≡ ¬EX(¬ϕ) ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2 ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

Given an n-WKS K = (S, s0,AP , L, T) and a WCTL formula ϕ the model checking
problem is the question of whether K, s �w ϕ where s ∈ S and w ∈ Nn

0 . When the n-WKS
K is obvious from context and the vector w is 0n we simply write s � ϕ.
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si sh

(
0, 0, 0

)

{halt}

(a) Halt rule.

si sl

(
1, 0, 0

)

(b) Increment rule for C1.

si sl

(
0, 1, 0

)

(c) Increment rule for C2.

si

s′ sl

s′′ sm

(
0, 1, 1

)
(
0, 0, 0

)

(
0, 0, 0

) (
0, 0, 0

)

{not zero 1}

{is zero 1}

(d) Decrement rule for C1.

si

s′ sl

s′′ sm

(
1, 0, 1

)
(
0, 0, 0

)

(
0, 0, 0

) (
0, 0, 0

)

{not zero 2}

{is zero 2}

(e) Decrement rule for C2.

Figure 2: n-WKS simulation of a 2CM

3 Model checking

In this section we look at decidability of the model checking problem for WCTL. First we
show that the model checking problem for WCTL is undecidable on a finite 3-WKS. We
then present a sub-logic and prove it is decidable.

Theorem 1 (Undecidability of WCTL)
The model checking problem for WCTL is undecidable on a finite 3-WKS.

Proof We use reduction from the halting problem for 2-counter Minsky machines [16].
Let M be a two-counter-machine (2CM) with two non-negative counters C1 and C2 and a
finite set of instructions where each instruction Insi is either

– e: Halt

– Increment i: Cj := Cj + 1; Goto(l)

– Decrement i: If Cj > 0 then (Cj := Cj − 1; Goto(l)) else Goto(m)

where j ∈ (1, 2) and 1 ≤ l, m ≤ e. To simulate the machine, let K be a finite 3-WKS where
whenever K is in state si then M is in Insi. We use the vector of length three to increase
and decrease the value of the counters, by the cost of a run ρ ∈ Π f in

K s.t.

C1 = Costρ(i)[1]−Costρ(i)[3],

C2 = Costρ(i)[2]−Costρ(i)[3],

where 0 ≤ i is the position of si in the run ρ. In the simulation, the instructions are
translated as seen in Figure 2 s.t. halt is simulated in Figure 2a, Increment in Figure 2b
and 2c and Decrement in Figure 2d and Figure 2e.

We then construct the formula,

ϕ = E(A ∧ B)U(halt)

where
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A :=(not_zero_1)⇒ #1 > #3∧ (not_zero_2)⇒ #2 > #3

B :=(is_zero_1)⇒ #1 = #3∧ (is_zero_2)⇒ #2 = #3

We now want to show that M will halt for the empty input (C1 = 0, C2 = 0) iff s0 � ϕ.

⇒ If M halts, then K, s0 �0n ϕ. We know that when running M the n-WKS K can
simulate the exact same instructions, so that if M will halt, then a state sh is reached
in K by a run ρ s.t. Last(ρ) = sh and for all 0 ≤ i s.t. ρ(i) 6= Last(ρ) it holds that
K, ρ(i) � A ∧ B, hence if M halts, then K, s0 �0n ϕ.

⇐ If K, s0 �0n ϕ then M will halt. The formula ϕ ensures that M is simulated faithfully,
as the counters are calculated in ϕ. When encountering the decrement rules, ϕ
enforces that the correct choice is taken, as the next state of the path will never
satisfy both pre-conditions A and B if it is not allowed in M. To simulate the empty
input, the weight vector w = 0n. As M is faithfully simulated, we have that if
K, s0 �0n ϕ then M will halt.

Hence M will halt for the empty input (C1 = 0, C2 = 0) iff s0 � ϕ and therefore we can
conclude that WCTL is undecidable on a finite 3-WKS. �

3.1 Constant Bound WCTL

We observe that the ability to simulate a 2-counter Minsky machine makes the model
checking problem for WCTL undecidable. Specifically we note that the comparison of
vector components and the use of subtraction between vector components makes it pos-
sible to model the counters and the zero check. Based on this observation we define the
Constant Bound WCTL (cb-WCTL) without comparison of vector components and sub-
traction.

Let K = (S, s0,AP , L, T) be an n-WKS. The cb-WCTL syntax is then defined over K as
follows,

ϕ :=true | false | a | ψ ./ c | ¬ϕ | ϕ1 ∨ ϕ2 |
ϕ1 ∧ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2 | reset #i in ϕ |
AX ϕ | EX ϕ | AG ϕ | EG ϕ | AF ϕ |
EF ϕ | Eϕ1Uϕ2 | Aϕ1Uϕ2

ψ :=#i | c | ψ1 ⊕ ψ2

where a ∈ AP , ./ ∈ {<,≤,=,≥,>}, ⊕ ∈ {+, ·}, c ∈ N0, and 1 ≤ i ≤ n is a component
index in a vector.

We define Φ as the set of all cb-WCTL formulae. Notice that ⊕ is now restricted
to addition and multiplication, and that the right hand-side of ./ is now restricted to a
constant. Thus where we had ψ1 ./ ψ2 in WCTL, we now have ψ ./ c in cb-WCTL.

We argue that while we allow addition and multiplication in the logic, it does not add
any expressiveness to the logic. Let K = (S, s0,AP , L, T) be an n-WKS and ϕ a cb-WCTL
formula. We say that a sub-formula ψ ./ c is atomic if and only if ψ = #i or ψ = c,
and non-atomic otherwise. To illustrate the lack of added expressiveness we show that
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any non-atomic proposition can be expressed as an atomic proposition and an additional
weight in the n-WKS.

First we isolate each sub-formula, that is not already atomic s.t. given a formula ϕ,
we replace all non-atomic ψ ./ c ∈ Sub(ϕ) with #(n + 1) ./ c where #(n + 1) is a new
component in the vector and we modify K as follows:

for all s
w=(w1,w2,...,wn)−−−−−−−−−→ s′ in K, s

w′=(w1,w2,...,wn ,evalw(ψ))−−−−−−−−−−−−−−−→ s′ in K′

Creating a cb-WCTL formula ϕ′ and computing the corresponding n-WKS K′ can now
be done using this simple procedure. The resulting model checking problem K′, s0 � ϕ′

will have the same answer as the original problem K, s0 � ϕ. Consider the model checking
problem K, s0 � ϕ where K is the n-WKS shown in Figure 3a and ϕ is the cb-WCTL
formula shown in Figure 3b.

s0 s1

(
2, 3

)

{End}

(a) n-WKS K

AF(End ∧ #1 ≥ 1∧
(#1× (#2 + 3)) ≤ 15)

(b) cb-WCTL formula ϕ

s0 s1

(
2, 3, 12

)

{End}

(c) n-WKS K′

AF(End ∧ #1 ≥ 1∧ #3 ≤ 15))

(d) cb-WCTL formula ϕ’

Figure 3: Transformation of the n-WKS K and cb-WCTL formula ϕ

Creating the corresponding problem K′, s0 � ϕ′ where ϕ’ is a cb-WCTL formula is
done by replacing the sub-formula #1× (#2 + 3) with the component #3 and adding a
third weight which is equal to the evaluated expression. This is illustrated in Figure 3c
and Figure 3d.

3.1.1 Decidability of cb-WCTL

We will now show that cb-WCTL is decidable on a finite n-WKS. We prove decidability
for the model checking problem of cb-WCTL on a finite n-WKS, by reducing it to the
model checking problem for CTL on a finite KS which is decidable [6]. To do so we
utilize the fact that the cost of a run is non-decreasing and bounds are specified by some
positive constant. From this we observe that at some point the cost of a run no longer
affect the satisfiability of a cb-WCTL formula. Therefore we can make a finite unfolding
of an n-WKS and translate the weights into atomic propositions. As shown earlier, we
can, without loss of generality, assume that a formula does not contain any addition or
multiplication operators.

Let K = (S, s0,AP , L, T) be an n-WKS and ϕ be a cb-WCTL formula. Recall that
Sub(ϕ) is the set of all sub-formula in ϕ. We then define the boundary of ϕ as a vector b
where for all dimension 1 ≤ i ≤ n:

b[i] =

{
max{c | (#i ./ c) ∈ Sub(ϕ)} if there exist (#i ./ c) ∈ Sub(ϕ)

−1 otherwise
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Notice, if b[i] = −1, for some i ∈ N0, then there is no bound (upper or lower) on that
dimension of the game in ϕ. We say the boundary b is derived from ϕ. With this we can
define a function used to limit the amount of vectors represented in K, allowing us to
finitely unfold K. We call this function Cut and define it as:

Definition 3.1 (Cut)
Given an n-WKS K = (S, s0,AP , L, T), a cb-WCTL formula ϕ and let b be the bound
derived from ϕ. We then define the function Cut : Nn

0 →Nn
0 s.t. for all 1 ≤ i ≤ n:

Cut(w)[i] =

{
w[i] if w[i] ≤ b[i]
b[i] + 1 otherwise

.

Lemma 2
Given an n-WKS K = (S, s0,AP , L, T), a cb-WCTL formula ϕ and a vector w ∈ Nn

0 , it
holds that K, s �w ϕ iff. K, s �Cut(w) ϕ

Proof We will now prove that K, s �w ϕ iff. K, s �Cut(w) ϕ by structural induction on ϕ.

ϕ = #i ≤ c:

⇒: Assume s �w #i ≤ c. Then by the definition of Cut we have that Cut(w)[i] =
w[i] ≤ c. Thus s �Cut(w) #i ≤ c.

⇐: Assume s �Cut(w) #i ≤ c. Then by the definition of Cut we have that w[i] =
Cut(w)[i] ≤ c. Thus s �w #i ≤ c.

ϕ = #i ≥ c:

⇒: Assume s �w #i ≥ c. Then by the definition of Cut we have that w[i] ≥
Cut(w)[i] ≥ c, since b[i] ≥ c where b is derived from ϕ. Thus s �Cut(w) #i ≥ c.

⇐: Assume s �Cut(w) #i ≥ c. Then by the definition of Cut we have that w[i] ≥
Cut(w)[i] ≥ c. Thus s �w #i ≥ c.

The remaining cases, in both directions, follow trivially from the induction hypothesis,
since no other operators depend on the weights. Thus we can conclude that K, s �w ϕ iff.
K, s �Cut(w) ϕ. �

Next, we define how to finitely unfold K = (S, s0,AP , L, T) into a KS K′ = (S′, (s0
0, 0n),

AP ′, L′, T′) and from there show that the problem can be reduced to classical CTL model
checking. Intuitively we create a state (s, w) ∈ S′ for each state s ∈ S paired with a vector
in the co-domain of Cut, and give them the labels, that were originally assigned to s. In
order to convert the weight evaluation to CTL, we add the labels (#i ./ c) to the new state,
if the weight of the new state satisfies #i ./ c. Additionally, we create intermediate states
to handle the reset operator. These reset states are named with super script notation to
indicate what component index is to be reset, where super script 0 indicates that the state
is not a reset state. For example, let (si, w), where i > 0, be a reset state for (s0, w) ∈ S′.
Now (si, w) acts as an intermediate state between (s0, w) and (s0, w[i → 0]) ∈ S′, such
that (s0, w) → (si, w) → (s0, w[i → 0]). We then assign the atomic proposition reseti to
(si, w) allowing us to model the resetting of the ith coordinate. To differentiate between
reset states and non-reset states, the label not_reset is given to all 0 indexed states. This
unfolding is formally defined in Definition 3.2.
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Definition 3.2 (Finite unfolding of an n-WKS)
Given the model checking problem for K, s0 �0n ϕ where K = (S, s0,AP , L, T) is an
n-WKS and ϕ a cb-WCTL formula, we construct the KS K′ = (S′, (s0

0, 0n),AP ′, L′, T′)
where

– S′ = {(si, Cut(w)) | s ∈ S and w ∈Nn
0 and 0 ≤ i ≤ n}.

– (s0
0, 0n) ∈ S′ is the initial state.

–
AP ′ = AP ∪ {(#i ./ c) | (#i ./ c) ∈ Sub(ϕ)} ∪ {reseti | 1 ≤ i ≤ n}

∪ {not_reset} .

– For any (s0, w) ∈ S′, L′((s0, w)) is defined as:

◦ α ∈ L′((s0, w)) iff. α ∈ L(s) for any α ∈ AP ,
◦ (#i ./ c) ∈ L′((s0, w)) iff. w[i] ./ c for any 1 ≤ i ≤ n where (#i ./ c) ∈ Sub(ϕ),
◦ not_reset ∈ L′((s0, w)), and
◦ for any i ∈N, reseti /∈ L′((s0, w)).

– For any (si, w) ∈ S′ where 1 ≤ i ≤ n, L′((si, w)) is defined as:
◦ L′((si, w)) = {reseti}.

– T′ is defined, for any (si, w) ∈ S′ where 0 ≤ i ≤ n, as:

◦ (s0, w)→ (s′0, Cut(w + c)) ∈ T′ iff. s c−→ s′ ∈ T, and
◦ (s0, w)→ (si, w), (si, w)→ (s0, w[i→ 0]) ∈ T′ for any 1 ≤ i ≤ n.

An example of the unfolding is illustrated in Figure 4 where Figure 4a shows the
original n-WKS K, Figure 4b shows the cb-WCTL formula ϕ and Figure 4c shows the
unfolded KS K′. Notice how the reset states are only given the label reset1. While all other
states are given the labels the state had in the original n-WKS, the not_reset label and the
label of the weight comparison they satisfy.

s0 s1 {Done}
[1]

(a) 1-WKS K = (S, s0,AP , L, T)

ϕ = E
(
true

)
U
(
reset #1 in (Done ∧ #1 ≤ 0)

)

(b) cb-WCTL formula ϕ

s0
0, 0

{not reset, #1 ≤ 0}

s1
0, 0

{reset1}

s0
0, 1

{not reset}

s1
0, 1

{reset1}

s0
1, 0

{Done, not reset, #1 ≤ 0}

s0
1, 1

{Done, not reset}

s1
1, 0

{reset1}

s1
1, 1

{reset1}

(c) KS K′ = (S′, (s0
0, 0),AP ′, L′, T′) unfolded from K.

Figure 4: An 1-WKS K unfolded into a KS K′ using the method in Definition 3.2, where the query ϕ is used to
determine the maximal value that Cut can return.
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Since cb-WCTL contains operators unknown in classical CTL we show how to translate
a cb-WCTL formula into a CTL formula, by converting the weight related operators. We
assume a standard definition of the CTL syntax and semantics. To differentiate between
the evaluation of cb-WCTL formulas and CTL we write K, s �ctl

ϕ where K is a KS, s is a
state of K and ϕ is a CTL formula. We define Ψ as the set of all CTL formulae.

Definition 3.3 (CTL Translation function)
Let ϕ be a cb-WCTL formula. We define a function for translating a cb-WCTL formula
into a CTL formula, called ctl : Φ→ Ψ as:

ctl(ϕ) =





α if ϕ = α ∈ AP
true if ϕ = true

(#i ./ c) if ϕ = #i ./ c

¬ctl(ϕ′) if ϕ = ¬ϕ′

ctl(ϕ1) ∨ ctl(ϕ2) if ϕ = ϕ1 ∨ ϕ2

EX (ctl(ϕ1) ∧ not_reset) if ϕ = EX ϕ1

EX (reseti ∧ EX (ctl(ϕ′))) if ϕ = reset i in ϕ′

E(ctl(ϕ1) ∧ not_reset)U(ctl(ϕ2) ∧ not_reset) if ϕ = Eϕ1Uϕ2

A




ctl(ϕ1)∧
not_reset∧

EX not_reset


U(ctl(ϕ2) ∨ ¬not_reset) if ϕ = Aϕ1Uϕ2

The remaining operators of cb-WCTL are translated according to the operators they are
derived from, specified in Section 2.2.

Notice that the case for Aϕ1Uϕ2 is significantly different in ctl(ϕ) than in ϕ. There are
two reasons for this.

– Because the KS constructed in Definition 3.2 has transitions to the reset states, there
now exist runs that do not correspond to any runs in the n-WKS it was constructed
from. In order to disregard these branches when testing all paths, we make sure that
the until clause is satisfied as they are reached.

– Because the KS constructed in Definition 3.2, will no longer deadlock, where the
original n-WKS would we need to test for liveness. Consider Figure 5, the n-WKS K
in Figure 5a clearly has a deadlock and the KS K′ constructed from K in Figure 5b
is live. In Figure 5d the cb-WCTL formula ϕ is illustrated above the CTL translation
of ϕ. Obviously K, s0 6�0 ϕ in Figure 5c, since there is no label β in K, but as we have
added reset states in K′ where we accept the until condition (β ∨ ¬not_reset), we
must test if the state was live in the original n-WKS. We test for liveness with the
EX(not_reset) condition in ctl(ϕ), otherwise K′, (s0

0, 0) �ctl ctl(ϕ).

Now we simply need to prove that the model checking problem for a cb-WCTL for-
mula ϕ on a n-WKS K is equivalent to the model checking problem of the translated
formula ctl(ϕ) on the unfolded KS K′. To do so we define a few semantic equivalences
necessary in the proof. We begin by presenting a distance based semantic of the Aψ1Uψ2
formula.
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s0

{α}

(a) K = (S, s0,AP , L, T).

s0
0, 0 s1

0, 0

{α, not reset, #1 ≤ 0} {reset1}

(b) KS K′ = (S′, (s0
0, 0n),AP ′, L′, T′).

ϕ = A
(
α ∧ #1 ≤ 0

)
U
(

β
)

(c) cb-WCTL formula.

ctl(ϕ) =A




α ∧ (#1 ≤ 0)∧
not_reset∧

EX not_reset


 U β ∨ ¬not_reset

(d) The CTL formula ctl(ϕ)

Figure 5: An n-WKS where there is a deadlock, but there is none in the unfolded KS.

Definition 3.4 (Distance based AU semantics)
Let K = (S, s0,AP , L, T) be an n-WKS. For any s ∈ S and any w ∈ Nn

0 we define that
K, s �w A ϕ1 U j ϕ2 for some j ∈N0 s.t.

– s �w A ϕ1 U0 ϕ2 iff. s �w ϕ2, and

– s �w A ϕ1 U j ϕ2 iff. s �w ϕ1 and j = max{j | s c−→ s′ ∧ s′ �w+c A ϕ1 U j−1 ϕ2}.

Obviously, we have a similar construction for ctl(Aϕ1Uϕ2).

Based on this definition we derive the following proposition.

Proposition 1
Let K = (S, s0,AP , L, T) be an n-WKS. For any s ∈ S and any w ∈ Nn

0 , then it holds
that s �w A ϕ1 U ϕ2 iff. s �w A ϕ1 U j ϕ2 for some j ∈ N0. Obviously, it also holds
that given any (s, Cut(w)) ∈ S′ and w ∈ Nn

0 then (s, Cut(w)) �
ctl ctl(A ϕ1 U ϕ2) iff.

(s, Cut(w)) �
ctl ctl(A ϕ1 U j ϕ2) for some j ∈N0.

To further decompose the Aψ1Uψ2 formula, we present an unfolding of the formula
based on the distance.
Proposition 2
By semantic equivalence we have that

Aϕ1U j ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ EX(true) ∧ AX (Aϕ1U j−1 ϕ2)).

Proof Let K = (S, s0,AP , L, T) be an n-WKS. Assume for some s ∈ S and some w ∈ Nn
0

that s �w Aϕ1U j ϕ2 then by Proposition 1 s �w ϕ2, or s �w ϕ1 and j = max{j | s c−→
s′ ∧ s′ �w+c A ϕ1 U j−1 ϕ2}. Clearly, either s �w ϕ2, or s �w ϕ1 and there exist s c−→ s′ ∈ T

and for all s c−→ s′ ∈ T it holds that s′ �w+c A ϕ1 U j−1 ϕ2. Hence Aϕ1U j ϕ2 ≡ ϕ2 ∨ (ϕ1 ∧
EX(true) ∧ AX (Aϕ1U j−1 ϕ2)). �

Lemma 3
Given an n-WKS K = (S, s0,AP , L, T) and a cb-WCTL formula ϕ then let K′ = (S′, (s0

0, 0n),AP ′, L′, T′)
be a KS constructed from Definition 3.2. For any s ∈ S and any w ∈ N0 it holds that
K′, (s0, Cut(w)) �

ctl ctl(ϕ) iff. K, s �w ϕ.
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Proof We will now prove that K′, (s0, Cut(w)) �
ctl ctl(ϕ) iff. K, s �w ϕ. The proof is by

structural induction on the formula ϕ.

ϕ = #i ./ c:

⇒: Assume (s0, Cut(w)) �
ctl ctl(#i ./ c), then (#i ./ c) ∈ L′((s0, Cut(w))). By the

construction of K′ we have that (#i ./ c) ∈ L′((s0, Cut(w))) iff. Cut(w)[i] ./ c,
thus K, s �Cut(w) #i ./ c. By Lemma 2 we know that K, s �Cut(w) ϕ iff. K, s �w ϕ.
Hence K, s �w ϕ.

⇐: Assume K, s �w #i ./ c, and by Lemma 2 we know that s �w #i ./ c iff. s �Cut(w)

#i ./ c. Thus by the construction of K′ there must exist (s0, Cut(w)) ∈ S′ where
(#i ./ c) ∈ L((s0, Cut(w))). Hence K′, (s0, Cut(w)) �

ctl ctl(#i ./ c).

ϕ = reset #i in ϕ′:

⇒: Assume (s0, Cut(w)) �
ctl EX(reseti ∧ EX(ctl(ϕ′))). By the construction of K′ we

know that only (si, Cut(w)) �
ctl reseti and that (si, Cut(w)) only has a single out-

going transition (si, Cut(w)) → (s0, Cut(w[i → 0]) ∈ T′. Thus (s0, Cut(w[i →
0]) �ctl

ϕ′ and by the induction hypothesis we have that s �Cut(w[i→0]) ϕ′. Then
by the semantics s �Cut(w) reset #i in ϕ′, hence by Lemma 2 it must hold that
K, s �w ϕ.

⇐: Assume K, s �w ϕ, then s �w[i→0] ϕ′ and by Lemma 2 we know that s �Cut(w[i→0])

ϕ′. By the induction hypothesis we have that (s0, Cut(w[i → 0])) �ctl
ϕ′. By the

construction of K′ there exist (s0, Cut(w)), (si, Cut(w)) ∈ S′ s.t. (s0, Cut(w)) →
(si, Cut(w))→ (s0, Cut(w[i→ 0])) where (si, Cut(w)) �

ctl reseti. Thus (s0, Cut(w)) �
ctl

EX (reseti ∧ EX ctl(ϕ′)), hence (s0, Cut(w)) �
ctl ctl(reset #i in ϕ′).

ϕ = A ϕ1 U ϕ2:

⇒: Assume (s0, Cut(w)) �
ctl A(ctl(ϕ1)∧not_reset∧EX(not_reset)U(ctl(ϕ2)∨¬not_reset).

By Proposition 1 we then have that (s0, Cut(w)) �
ctl ctl(A ϕ1 U j ϕ2) for some

j ∈N0. By induction on j, we prove that if (s0, Cut(w)) �
ctl ctl(A ϕ1 U j ϕ2) then

K, s �w A ϕ1 U ϕ2:

Base: Let j = 0. Then by Definition 3.4 (s0, Cut(w)) �
ctl

ϕ2 ∨ ¬not_reset. By the
construction of K′, not_reset ∈ L′((s0, Cut(w))), hence K′, (s0, Cut(w)) �

ctl
ϕ2

and by the structural induction hypothesis K, s �Cut(w) ϕ2. Thus by the
semantics it holds that K, s �Cut(w) Aϕ1Uϕ2 and by Lemma 2 that K, s �w
Aϕ1Uϕ2.

Induction step: Let j > 0. Assume (s0, Cut(w)) �
ctl ctl(A ϕ1 U j ϕ2). By Proposi-

tion 2 (s0, Cut(w)) �
ctl ctl(ϕ2 ∨ (ϕ1 ∧ EX(true) ∧ AX(Aϕ1U j−1 ϕ2))). Since

j > 0 we have that (s0, Cut(w)) 6�ctl ctl(ϕ2), and hence (s0, Cut(w)) �
ctl

ctl(ϕ1 ∧ EX(true) ∧ AX(Aϕ1U j−1 ϕ2)). By the semantics (s0, Cut(w)) sat-
isfies each clause of the conjunctions, and we analyze each clause individ-
ually:

(s0, Cut(w)) �
ctl ctl(ϕ1): By the structural induction hypothesis K, s �Cut(w)

ϕ1 and by Lemma 2 then K, s �w ϕ1.
(s0, Cut(w)) �

ctl ctl(EX(true)): By the translation of ctl(EX(ϕ′)), we have
that (s0, Cut(w)) �

ctl EX(true∧not_reset), hence there exists (s0, Cut(w))→
(s′0, Cut(w′)) ∈ T′ s.t. not_reset ∈ L′((s′0, Cut(w′))). By construction of

K′ there must exist s c−→ s′ ∈ T where w′ = w+ c hence by the semantics
K, s �w EX(true).
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(s0, Cut(w)) �
ctl ctl(AX(Aϕ1U j−1ϕ2)): This implies that for all (s0, Cut(w))→

(s′0, Cut(w′)) ∈ T′ it holds that (s′0, Cut(w′)) �ctl ctl(Aϕ1U j−1 ϕ2) and

by the induction hypothesis we have for all s c−→ s′ ∈ T that K, s′ �w+c
Aϕ1Uϕ2, and that w′ = w+ c. Hence by the semantics K, s �w AX(Aϕ1Uϕ2).

This means that K, s �w ϕ1 ∧ EX(true)∧ AX(Aϕ1Uϕ2) when j > 0, thus by
Proposition 2 we have that K, s �w Aϕ1Uϕ2 when (s0, Cut(w)) �

ctl ctl(A ϕ1 U j ϕ2)
for some j > 0.

Hence by induction on j, we have that if (s0, Cut(w)) �
ctl ctl(A ϕ1 U j ϕ2) then

K, s �w A ϕ1 U ϕ2. Thus by Proposition 1 if (s0, Cut(w)) �
ctl ctl(A ϕ1 U ϕ2) then

K, s �w A ϕ1 U ϕ2.
⇐: Assume K, s �w A ϕ1 U ϕ2. By Proposition 1 we then have that K, s �w Aϕ1U j ϕ2

for some j ∈ N0. By induction on j we prove that if K, s �w Aϕ1U j ϕ2 then
(s0, Cut(w)) �

ctl ctl(A ϕ1 U ϕ2).

Base: Let j = 0. Then by Definition 3.4 K, s �w ϕ2. By the structural induc-
tion hypothesis it holds that (s0, Cut(w)) �

ctl ctl(ϕ2), hence (s0, Cut(w)) �
ctl

ctl(ϕ2) ∨ ¬not_reset. Then by the semantics (s0, Cut(w)) �
ctl ctl(Aϕ1Uϕ2).

Induction step: Let j > 0. Assume K, s �w Aϕ1U j ϕ2. Then by Proposition
2 K, s �w ϕ2 ∨ (ϕ1 ∧ EX(true) ∧ AX(Aϕ1U j−1 ϕ2)). Since j > 0 then
K, s 6�w ϕ2 thus K, s �w ϕ1 ∧ EX(true) ∧ AX(Aϕ1U j−1 ϕ2). By the seman-
tics s satisfies each clause of the conjunctions, and we analyze each clause
individually:

K, s �w ϕ1: By the structural induction hypothesis this implies that (s0, Cut(w)) �
ctl

ctl(ϕ1).

K, s �w EX(true): This implies that s c−→ s′ ∈ T and by the construction
of K′ there must then exist (s0, Cut(w)) → (s′0, Cut(w + c)) ∈ T′ s.t.
not_reset ∈ L′((s′0, Cut(w+ c))), hence by the semantics (s0, Cut(w)) �

ctl

EX(true∧ not_reset) and thus (s0, Cut(w)) �
ctl ctl(EX(true)).

K, s �w AX(Aϕ1U j−1ϕ2): This means that for all s c−→ s′ ∈ T it holds that
K, s′ �w+c Aϕ1U j−1 ϕ2 and by the induction hypothesis it holds that
for all (s0, Cut(w)) → (s′0, Cut(w + c)) ∈ T′ that (s′0, Cut(w + c)) �ctl

ctl(A ϕ1 U ϕ2). Now, for any (s0, Cut(w)) → (si, Cut(w)) ∈ T′, where
i > 0, it holds trivially that (si, Cut(w)) �

ctl ctl(A ϕ1 U ϕ2), since by
construction of K′, not_reset 6∈ L′((si, Cut(w))). Hence (s0, Cut(w)) �

ctl

ctl(AX(Aϕ1Uϕ2)).

Thus by induction on j it holds that if K, s �w Aϕ1U j ϕ2 then (s0, Cut(w)) �
ctl

ctl(ϕ1)∧ ctl(EX(true))∧ ctl(AX(Aϕ1Uϕ2)). This means that (s0, Cut(w)) �
ctl

ctl(ϕ1 ∧ EX(true) ∧ AX(Aϕ1Uϕ2)) and hence by Proposition 2 we have
that (s0, Cut(w)) �

ctl ctl(Aϕ1Uϕ2), when j > 0.

We can therefore conclude that if K, s �w Aϕ1U j ϕ2 for some j ∈ N0 then
(s0, Cut(w)) �

ctl ctl(A ϕ1 U ϕ2) and by Proposition 1 we have that if K, s �w

Aϕ1Uϕ2 then (s0, Cut(w)) �
ctl ctl(A ϕ1 U ϕ2).

Hence (s0, Cut(w)) �
ctl ctl(A ϕ1 U ϕ2) iff. K, s �w A ϕ1 U ϕ2.

ϕ = Eϕ1Uϕ2:

⇒: Assume (s0, Cut(w)) �
ctl E(ctl(ϕ1)∧ not_reset)U(ctl(ϕ2)∧ not_reset). Then there

exists a run (s0, Cut(w)) →∗ (s0
i , Cut(w′)) in K′ s.t. (s0

i , Cut(w′)) �ctl ctl(ϕ2) ∧
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not_reset where 0 ≤ i. By the structural induction hypothesis K, si �Cut(w′) ϕ2

and by Lemma 2 K, si �w′ ϕ2. If s0 = s0
i , we are done. If s0 6= s0

i then it
also holds for all 0 ≤ j < i that (s0

j , Cut(wj)) �
ctl ctl(ϕ1) ∧ not_reset and by the

structural induction hypothesis K, sj �Cut(wj)
ϕ1. By the construction of K′ there

exists a run ρ = (s
w1−→ s1 →∗ si) in K, where we by the structural induction

hypothesis have that K, sj �Cut(wj)
ϕ1 for all 0 ≤ j < i and that K, si �Cut(wi)

ϕ2,
where wj, wi ∈ Nn

0 . Thus by the semantics K, s �Cut(w) Eϕ1Uϕ2 and by Lemma
2 we have that K, s �w Eϕ1Uϕ2.

⇐: Assume s �w Eϕ1Uϕ2. Then there exists (ρ = s
c0−→ s1

c1−→ s2 . . . ) ∈ ΠMax
K and

a position 0 ≤ i such that K, ρ(i) �w+costρ(i) ϕ2 and K, ρ(j) �w+costρ(j) ϕ1 for
all j < i. Then by the structural induction hypothesis there exists si = ρ(i)
s.t. (s0

i , Cut(w + costρ(i))) �
ctl ctl(ϕ2) and by the construction of K′ we have

that not_reset ∈ L′((s0
i , Cut(w + costρ(i)))), hence (s0

i , Cut(w + costρ(i))) �
ctl

ctl(ϕ2) ∧ not_reset. If s = ρ(i) then (s0, Cut(w)) �
ctl ctl(ϕ2) ∧ not_reset, hence

(s0, Cut(w)) �
ctl ctl(Eϕ1Uϕ2).

If s 6= ρ(i) then by the structural induction hypothesis (s0
j , Cut(w+ costρ(j))) �ctl

ctl(ϕ1) for all j < i, where sj = ρ(j). By the construction of K′ we also
have that for all j < i, not_reset ∈ L′((s0

j , Cut(w + costρ(j)))) and that all

these form a run in K′. Thus for each (s0
j , Cut(w + costρ(j))) along the run

it holds that (s0
j , Cut(w + costρ(j))) �ctl ctl(ϕ1) ∧ not_reset and by the semantics

(s0, Cut(w)) �
ctl ctl(Eϕ1Uϕ2).

ϕ = EX ϕ′:

⇒: Assume (s0, Cut(w)) �
ctl EX(ctl(ϕ′)∧not_reset), then (s0, Cut(w))→ (s′0, Cut(w′)) ∈

T′, where (s′0, Cut(w′)) �ctl
ϕ′ and not_reset ∈ L′((s′0, Cut(w′))). By the con-

struction of K′, T′ is defined such that (s c−→ s′) ∈ T, and for that s′ it holds
that s′ �Cut(w′) ϕ′, where w′ = w + c by the structural induction hypothesis.
From the semantics of cb-WCTL we then have that s �Cut(w) EX ϕ′ and thus by
Lemma 2 it holds that s �w EX ϕ′.

⇐: Assume s �w EX ϕ′. Then by the semantics of cb-WCTL, there exists (s c−→
s′) ∈ T such that s′ �w+c ϕ′. By Lemma 2 we have that s′ �Cut(w+c) ϕ′

and by the construction of K′ there exists (s′0, Cut(w + c)) ∈ S′ such that
not_reset ∈ L′((s′0, Cut(w + c))) and there exists (s0, Cut(w)) → (s′0, Cut(w +
c)) ∈ T′ where (s0, Cut(w)) ∈ S′. By the induction hypothesis we then have
that (s′0, Cut(w + c)) �ctl

ϕ′, thus (s0, Cut(w)) �
ctl EXϕ′ and by construction

(s′0, Cut(w + c)) �ctl not_reset, hence (s0, Cut(w)) �
ctl ctl(EXϕ′).

Since each operator in cb-WCTL derive from these operators, we can conclude that K′, (s0, Cut(w)) �
ctl

ctl(ϕ) iff. K, s �w ϕ. �

Theorem 4 (Decidability of cb-WCTL)
The model checking problem for cb-WCTL is decidable on a finite n-WKS K.

Proof By Lemma 3 we may construct a finite KS K′ from K such that K′, (s, Cut(w)) �
ctl

ctl(ϕ) iff. K, s �w ϕ. Since the model checking problem for CTL is decidable on a finite
KS, the model checking problem on K is also decidable for cb-WCTL. �
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4 Games & Strategies

In this section we present a framework for non-negated multi-weighted games. We begin
by presenting the notion of an n-Weighted Game (n-WG) and a strategy. We then present
two distinct types of strategies and make observations on their expensiveness and limi-
tations. Lastly we present the synthesis problem and show how n-WGs and the model
checking problem of cb-WCTL on a n-WKS relate to controller synthesis.

4.1 Game

An n-WG is a two-player game where one player acts as the controller and the other player
acts as the environment. A game is played on a game graph, where the transitions have
been partitioned between the two players. When we pair a game graph with an objective,
we call it an n-WG.

Definition 4.1 (n-Weighted Game Graph)
An n-Weighted Game Graph is a tuple G = (S, s0,AP , L, Tc, Tu) where Tc and Tu are
disjoint sets and K = (S, s0,AP , L, Tc ∪ Tu) is an n-WKS.

The underlying data structure of the game graph is an n-WKS and we denote the
specific n-WKS for the game graph G = (S, s0,AP , L, Tc, Tu) as KG = (S, s0,AP , L, Tc ∪
Tu). The set of transitions Tc is owned by the controller, and the set Tu is owned by the
environment. We write:

s c−→ s′ if (s, c, s′) ∈ Tc

s
c
99K s′ if (s, c, s′) ∈ Tu

From here on we will refer to transitions of the type→ as controllable transitions and
99K as uncontrollable transitions. We write s→ when there is some controllable outgoing
transitions from s and s 99K when there is some uncontrollable outgoing transition from
s.

Lastly we define a winning condition (objective) as a cb-WCTL formula ϕ over the
n-WKS KG = (S, s0,AP , L, Tc ∪ Tu).

Definition 4.2 (Game)
Given an n-Weighted Game Graph (n-WGG) G and a cb-WCTL formula ϕ as a winning
condition. We define the resulting tuple (G, ϕ) as a game.

The game starts in the initial state s0. It progresses from state to state, through the
choices of a player. A player can only choose to advance the game, by picking an outgoing
transition belonging to her. The target state of that transition then becomes the current
state.

– If all outgoing transitions belong to Tc, then the controller must choose.

– If all outgoing transitions belong to Tu, then the environment must choose.

– If there are both outgoing transitions in Tc and Tu, then the environment may choose
one from Tu or force the controller to choose from Tc.

We give precedence to the environment when there are both controllable and uncon-
trollable outgoing transitions as this enforces the notion of an environment beyond our
control.
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4.2 Strategy

A strategy defines the player’s actions, that is which transition to choose in which state
of the game. As we want to model systems where the controller needs to be ready for
anything the environment does, we limit our concern to that of the controller. This means
that a strategy in the context of this thesis is a collection of predetermined transitions the
controller will choose when playing the game, given any progression of the game. Thus
when a run in the game progresses to a state where there is an outgoing controllable
transition, a strategy will return the chosen transition of the controller.

Recall that Π f in
KG

is the set of all finite runs in KG . We now define a strategy as a function
mapping from finite runs to transitions.

Definition 4.3 (Strategy)
Let G = (S, s0,AP , L, Tc, Tu) be an n-WGG, then the strategy of the controller is a

function σ : Π f in
KG
→ Tc ∪ {nil} mapping a finite run ρ to a transition s.t.

σ(ρ) =

{
Last(ρ)

c−→ s′ ∈ Tc if Last(ρ)→
nil else

and nil is the choice to do nothing.

Given a strategy σ, we can apply that strategy onto the n-WGG G and get a modified
n-WKS, by only keeping the controllable transitions that are in the co-domain of σ.

Definition 4.4 (Strategy restricted n-WKS)
Given a game graph G = (S, s0,AP , L, Tc, Tu) and a strategy σ, we define G�σ =
(S′, s0,AP , L′, Tc�σ∪ T′u) as the n-WKS resulting from restricting the game graph under
the strategy σ.

– S′ = Π f in
KG

– L′(ρ) = L(Last(ρ))

– T′c�σ = {(ρ, c, (ρ ◦ σ(ρ)) | σ(ρ) = (Last(ρ)
c−→ s′) ∈ Tc}

– T′u = {(ρ, c, ρ ◦ (Last(ρ)
c
99K s′)) | (Last(ρ)

c
99K s′) ∈ Tu}.

In future illustrations we only include the part of G�σ reachable from s0. We say that
a strategy is a winning if the n-WKS, resulting from restricting the game graph by the
strategy, satisfy the winning condition.

Definition 4.5 (Winning Strategy)
The strategy σ is a winning strategy over the game (G, ϕ) iff G�σ, s0 �0n ϕ, where G =
(S, s0,AP , L, Tc, Tu) and ϕ is a cb-WCTL formula.

To show the unfolding defined in Definition 4.4 and how this correlates with a winning
strategy we encourage the reader to go through Example 4.1.
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Example 4.1 (Strategy unfolding)
Consider the game (G, ϕ) where G is illustrated in Figure 6 and ϕ = A (a) U ((b∧ #2 ≥
8) ∨ (b ∧ #1 ≤ 2)) is a cb-WCTL formula.

s0

{a}

s1

{a}s3{a, b}

s2

{b}

s4{c} (5, 5)

(1, 3)
(2, 1)

(2, 1)

(1, 2)

(1, 9)

(2, 2)

Figure 6: n-WGG G = (S, s0,AP , L, Tc, Tu).

For this game we can define a winning strategy σ s.t. for all ρ ∈ Π f in
KG

then,

σ(ρ) =





s0
(1,3)−−→ s1 if Last(ρ) = s0

s3
(2,2)−−→ s3 if Last(ρ) = s3

nil if Last(ρ) 6→

Given this strategy we get the strategy restricted n-WKS G�σ defined below in Figure 7.

𝑠0 {𝑎}

𝑠0
(2,1)−−→ 𝑠3

{𝑎, 𝑏} 𝑠0
(1,3)−−→ 𝑠1

{𝑎}

𝑠0
(1,3)−−→ 𝑠1

(1,2)−−→ 𝑠2
{𝑏}𝑠0

(1,3)−−→ 𝑠1
(1,9)−−→ 𝑠2

{𝑏}𝑠0
(2,1)−−→ 𝑠3

(2,2)−−→ 𝑠3
{𝑎, 𝑏}

𝑠0
(2,1)−−→ 𝑠3

(2,2)−−→ 𝑠3
(2,2)−−→ 𝑠3

{𝑎, 𝑏}

⋮

(1, 3)(2, 1)

(1, 2)(1, 9)(2, 2)

(2, 2)

Figure 7: G�σ the resulting n-WKS from restricting G under σ.

Now we verify that G�σ, s0 �0n A (a) U ((b ∧ #2 ≥ 8) ∨ (b ∧ #1 ≤ 2)). In G�σ there
are three different maximal runs from s0. Two of these are finite runs and it should be
obvious to see that they both satisfy ϕ. The last run is infinite, however it should be
clear by the definition of σ and the illustration of G�σ presented in Figure 7, that we

simply repeat the loop s3
(2,2)−−→ s3, thus we have that the run will eventually satisfy ϕ.

In Definition 4.3 we have defined what we refer to as a Full Memory Strategy (FM
strategy) where each move in the game graph is recorded in memory, and future decisions
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are based thereon. We now introduce a second type of strategy, the Single-State Cost
Strategy (SSC strategy), where only the current state is known, along with the cost of the
run.

Definition 4.6 (SSC strategy)
A strategy σ is a Single-State Cost Strategy (SSC strategy) if for all ρ, ρ′ ∈ Π f in

KG
we have

σ(ρ) = σ(ρ′), whenever Last(ρ) = Last(ρ) and cost(ρ) = cost(ρ′).

We find that if there is a winning strategy for a game with a cb-WCTL winning condi-
tion, that strategy cannot always be expressed as an SSC strategy.

Proposition 3
There is a game (G, ϕ), where ϕ is a cb-WCTL, with a winning FM strategy, but no
winning SSC strategy.

Proof Let (G, ϕ) be a game, where G is the 1-WGG illustrated in Figure 8a and ϕ is the
cb-WCTL formula illustrated in Figure 8b. Now, there exists a winning FM strategy σ1 for

s0

s1

s2

s3

s4

s5

(
0
)

(
0
)

(
0
)

(
0
)

(
0
)

(
0
){α}

{γ}

{β}

{β, γ}

{β}

{γ}

(a) 1-WGG G.

ϕ = AG




(α) ∨
AG(β)∨
AG(γ)




(b) Formula ϕ.

Figure 8: Game with a winning FM strategy, but no winning SSC strategy.

(G, ϕ) defined as:

σ1(s0) = nil

σ1(s0
(0)−→ s1) = s1

(0)−→ s3 σ1(s0
(0)−→ s2) = s2

(0)−→ s3

σ1(s0
(0)−→ s1

(0)−→ s3) = s3
(0)−→ s4 σ1(s0

(0)−→ s2
(0)−→ s3) = s3

(0)−→ s5

However, when we try to define a winning SSC strategy we notice, that for any run
ending in s3, a SSC strategy have to make the same choice as the cost of any run will
always be 0. Thus we have that either,

– σ(s0
(0)−→ s1

(0)−→ s3) = σ(s0
(0)−→ s2

(0)−→ s3) = s3
(0)−→ s4. This choice is illustrated in

Figure 9 and result in an n-WKS with leafs that only satisfy β.

– σ(s0
(0)−→ s1

(0)−→ s3) = σ(s0
(0)−→ s2

(0)−→ s3) = s3
(0)−→ s5. This choice results in a similar

n-WKS where the leafs only satisfy γ.

Obviously neither strategy is a winning strategy. Thus there exist no winning SSC
strategy for (G, ϕ). �

We have now introduced the notion of a game and a winning strategy and we are
ready to define the synthesis problem. The synthesis problem can be informally defined
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𝑠0

{𝛼}

𝑠0
(0)−→ 𝑠1

{𝛽}

𝑠0
(0)−→ 𝑠1

(0)−→ 𝑠3

{𝛽, 𝛾}

𝑠0
(0)−→ 𝑠1

(0)−→ 𝑠3
(0)−→ 𝑠4

{𝛽}

𝑠0
(0)−→ 𝑠2

{𝛾}

𝑠0
(0)−→ 𝑠2

(0)−→ 𝑠3

{𝛽, 𝛾}

𝑠0
(0)−→ 𝑠2

(0)−→ 𝑠3
(0)−→ 𝑠4

{𝛽}

(0)

(0)

(0) (0)

(0) (0)

Figure 9: G�σ where σ is a loosing SSC strategy for the game (G, ϕ).

as: Determining if there exists a winning strategy for the controller in an n-WG. We formally
define it as:

Definition 4.7 (Synthesis Problem)
Given a game (G, ϕ) where G = (S, s0,AP , L, Tc, Tu) is an n-WGG and ϕ is a cb-WCTL
formula. The synthesis problem is to decide if there is a strategy σ s.t. G�σ, s0 �0n ϕ.

In the following section we look at the synthesis problem for a game defined with a
sub-logics of cb-WCTL describing reachability objectives.

5 Synthesis for Reachability Games

In this Section we introduce the notion of a reachability objective, define the corresponding
synthesis problem and provide an algorithmic solution for this problem. The reachabil-
ity objective is expressed using a sub-logic of cb-WCTL called Reachability WCTL with
Upper- and Lower-bounds (ReachWCTLu

l ). Let K = (S, s0,AP , L, T) be an n-WKS. We
then define the ReachWCTLu

l syntax, over K, as follows.

ϕ := AFψ

ψ := a | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | #i ./ c

where a ∈ AP , ./ ∈ {≤,≥}, c ∈ N0 , and 1 ≤ i ≤ n is a component index in a vector. A
ReachWCTLu

l formula AFψ is a ReachWCTLu formula if all (#i ./ c) ∈ Sub(AFψ), are of
the form #i ≤ c.

We define a ReachWCTLu
l game as a game (G, ϕ) where G is n-WGG and ϕ is a ReachWCTLu

l
formula. We define the corresponding synthesis problem as:

Definition 5.1 (Synthesis Problem for ReachWCTLu
l Games)

Given a ReachWCTLu
l game (G, ϕ) where G = (S, s0,AP , L, Tc, Tu), the synthesis problem

for ReachWCTLu
l games is to decide if there is a strategy σ s.t. G�σ, s0 �0n ϕ.

Similarly, we refer to the synthesis problem for a ReachWCTLu game as the synthesis
problem for ReachWCTLu games.
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5.1 Solving the Synthesis Problem for ReachWCTLu Games

We begin by solving the synthesis problem for ReachWCTLu games. This will introduce
the method for a simpler problem and provide an understanding of the underlying intu-
ition behind the algorithm. The idea behind the method is to first identify all states in the
game graph where the objective is trivially satisfied; we refer to these states as final states.
Then by backwards traversal of the graph we identify all the states which can reach a final
state within the cost constraints (without breaching the upper-bound).

We cover the algorithm using the example below throughout Section 5.1 and Section
5.2.

Example 5.1 (Self Driving Car)
Consider a self driving car that needs to find a route from the current location to its
destination within its fuel limits and an anti congestion system which may alter the
route of the car to avoid traffic congestion. An instance of this problem is shown in the
game graph in Figure 10.

s0{start} s1 s2 {destination}

Legend = (time, fuel)

(1, 3)

(2, 1)

(4, 5)

(2, 0)

(0, 3)

(1, 1)

Figure 10: The game graph G modeling a self driving car and an anti congestion system. The first component
on each weight, is the discrete units of time spent, and the second is the units of fuel consumed.

Let us assume the car must reach the destination before 3 units of time has past
using only 3 units of fuel. We can now formally state the cars objective as the following
ReachWCTLu formula:

ϕ = AF(#1 ≤ 3∧ #2 ≤ 3∧ destination)

In this game we identify s2 as a final state, since s2 |= destination. Reaching s2 with
any accumulated cost below or equal to the cost constraints will therefore result in the
controller winning the game. We see that ϕ has two cost constraints, #1 ≤ 3, and #2 ≤ 3
respectively. We now pair s2 with all vectors for which the state is satisfies the objective.
This would result in the following set:

{(s2, (i, j)) | 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3}
Now we move backwards in the game graph to check if we can add more states,

while still keeping the cost within the bound. Because the cost of the transition from s1
to s2 is either (1, 1) or (2, 0), we know that reaching s1 with any accumulated cost below
or equal to (3− 1, 3− 1) or (3− 2, 3− 0) means winning the game. We can now pair s1
with all vectors which fulfill this condition s.t.

{(s1, (i, j)) | 0 ≤ i ≤ 3− 1 and 0 ≤ j ≤ 3− 1}
∪

{(s1, (i, j)) | 0 ≤ i ≤ 3− 2 and 0 ≤ j ≤ 3}
We repeat the same process for s0. First we notice, that we can get to s2 directly from

s0, however the cost of the transition is too high. This means that our strategy has to go
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to s1 from s0. Unlike for s1, we can not know for certain which transition we reach s1
with. Therefore we instead compute the accumulated costs, from which we can win the
game, if either transition is taken. The pairs resulting from this are:

{(s0, (i, j)) | 0 ≤ i ≤ 1− 1 and 0 ≤ j ≤ 3− 3}
∩

{(s0, (i, j)) | 0 ≤ i ≤ 2− 2 and 0 ≤ j ≤ 2− 1}
Thus we have that the only pair of state and cost, from which we can win from s0, is

(s0, (0, 0)).

To keep track of the accumulated cost, as we move backwards in the game graph, we
pair a state with a vector w ∈Nn

0 . A pair consisting of a state and a vector is defined as a
configuration.

Definition 5.2 (Configuration)
Let G = (S, s0,AP , L, Tc, Tu) be a n-WGG. A configuration of G is a pair (s, w) where
s ∈ S and w ∈Nn

0 . We denote the set of all configurations as C.

When we have a configuration (s, w) ∈ C s.t. s can reach a final state with a cost of w,
we say that it is a winning configuration. Formally,

Definition 5.3 (Winning configuration)
Let (G, ϕ) be an ReachWCTLu game. A configuration (s, w) is winning if there exist a
strategy σ s.t. G�σ, s �w ϕ.

Let (G, ϕ) be a ReachWCTLu game where G = (S, s0,AP , L, Tc, Tu) is an n-WGG and
ϕ = AFψ. We can without loss of generality assume that all components have a bound. If
they do not, we simply disregard that component in the computation. First we compute
the set F0, which is the set of final configurations.

F0 = {(s, w) ∈ C | s |=w ψ}

Notice, that there are finitely many configurations below the upper bound. The set Fi
is then defined inductively for all i ∈N.

Fi = Fi−1 ∪




(s, w)

whenever s
c
99K s′ then (s′, w + c) ∈ Fi−1 and

if s→ then s c−→ s′ s.t. (s′, w + c) ∈ Fi−1 and
there exists (s, c, s′) ∈ Tc ∪ Tu





Eventually the sets of winning configurations stabilize s.t. F0 ⊆ F1 ⊆ . . . Fi = Fi+1 and
we denote this last set Ff inal .

Lemma 5
For any finite ReachWCTLu game (G, ϕ) there is an i ∈N0 s.t. Fi = Fi+1.

Proof For any game (G, ϕ), where G = (S, s0,AP , L, Tc, Tu) is a finite n-WGG, we have
that S is also finite. Also observe that the set of possible vectors W each state can be
paired with is finite, as each component is either below some bound c ∈ N0 or simply
disregarded. As both S and W are final sets then so is Ff inal , and thus after repeated
application of Fi, eventually Fi = Fi+1. �
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For the set of winning configurations Ff inal , we have that if (s0, 0n) ∈ Ff inal then there
exists a winning strategy for (G, ϕ). We define this strategy one configuration at a time.
We define the helping function Rank : C →N0 which for some configuration (s, w) returns
the index of the earliest iteration of Fi where (s, w) ∈ Fi.

Rank(s, w) = min({i | (s, w) ∈ Fi})
We then map each configuration (s, w) to a controllable transition (s, c, s′) ∈ Tc or nil if
s 6→. Formally we define the set of possible transitions,

Possible(s, w) = {s c−→ s′ ∈ Tc | (s′, w′) ∈ Fi s.t. w ≤ w′ − c and i < Rank(s, w)}

Now we define that for all runs ρ, ρ′ ∈ Π f in
KG

s.t. Last(ρ) = Last(ρ′) and Cost(ρ) =

Cost(ρ′) then,

σ(ρ) = σ(ρ′) =





t ∈ Possible(Last(ρ), Cost(ρ)) if Possible(Last(ρ), Cost(ρ)) 6= ∅
(Last(ρ), c, s′) ∈ Tc else if Last(ρ)→
nil else

.

Notice the second case will only apply when the configuration is unreachable under
the strategy, and is only included to ensure that the strategy is well defined.

Example 5.2 (Self Driving Car)
Consider again Figure 10 from example 5.1. We ascertain that ψ = (#1 ≤ 3 ∧ #2 ≤
3 ∧ destination), thus F0 = {(s2, (i, j)) | 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3}. We then compute Fi
for any i ∈N until Fi = Fi+1.

F1 = F0 ∪ {(s1, (i, j)) | 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2}
∪ {(s1, (i, j)) | 0 ≤ i ≤ 1 and 0 ≤ j ≤ 3}

F2 = F1 ∪ {(s0, (i, 0)) | 0 ≤ i ≤ 1}
F3 = F2 ∪ ∅

Thus we have that F2 = F3 = Ff inal and from Ff inal we can then extract the SSC strategy
σ:

σ(s0) = s0
(2,1)−−→ s1 σ(s0

(1,3)−−→ s1) = s1
(2,0)−−→ s2 σ(s0

(2,1)−−→ s1) = s1
(1,1)−−→ s2

Figure 11 shows the 2-WKS resulting from restricting the game graph G under the
strategy σ.

s0

s0
(1,3)−−−→ s1 s0

(1,3)−−−→ s1
(2,0)−−−→ s2

{destination}

s0
(2,1)−−−→ s1 s0

(2,1)−−−→ s1
(1,1)−−−→ s2

{destination}
(2, 1)

(1, 3)

(1, 1)

(2, 0)

Figure 11: The strategy restricted 2-WKS G�σ
Based on the illustration in Figure 11 it should be trivial to confirm that G�σ, s0 �0n AFψ
as all possible maximal paths reach a state with the label destination within the cost
(3, 3).
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Lemma 6
If a configuration (s, w) ∈ Fi, for some i ∈N0, then (s, w) is winning.

Proof Proof by induction on i. Let (G, ϕ) be a ReachWCTLu game, where G = (S, s0,AP , L, Tc, Tu)
is an n-WGG and ϕ = AFψ.

Basis: Follows trivially from the definition of F0.

Induction step: Assume all configurations in Fi are winning, for some arbitrary i. We will
now show that any configuration in Fi+1 is also winning. Let (s, w) ∈ Fi+1 be such a
configuration. There are two cases:

1. Either (s, w) ∈ Fi and by the induction hypothesis we get that (s, w) is a winning
configuration.

2. Or (s, w) ∈ Fi+1\Fi and let σ be a strategy constructed from Possible.

– if σ(s) = nil then by construction of σ we have that there are no outgoing
controllable transitions. By definition of Fi we have that there is some s 99K

and that whenever s
c
99K s′ there is some (s′, w′) ∈ Fi s.t. w ≤ w′ − c and

by induction hypothesis (s′, w′) is a winning configuration. Thus σ is a
winning strategy and hence (s, w) is a winning configuration.

– if σ(s) = s c−→ s′ then by construction of σ we have that (s′, w′) ∈ Fi s.t.
w ≤ w′ − c and by induction hypothesis we have that (s′, w′) is a winning

configuration. By definition of Fi we have that whenever s
c
99K s′ there is

some (s′, w′) ∈ Fi s.t. w ≤ w′ − c and by induction hypothesis (s′, w′) is a
winning configuration. Thus σ is a winning strategy and hence (s, w) is a
winning configuration.

Thus any configuration belonging to some Fi is a winning configuration. �

To prove that any winning configuration (s, w) ∈ Fi we define a depth function over
an n-WKS. Given the n-WKS K, we recall that by the semantics of a ReachWCTLu formula

ϕ = AFψ then if K, s �w ϕ we have that for all (ρ = s1
c1−→ s2

c2−→ . . .
cn−1−−→ sn) ∈ ΠMax

K ,
where s = s1 then there is some position i ≥ 1 s.t. ρ(i) �Costi(ρ)

ψ.

Definition 5.4 (Depth function)
Let K = (S, s0,AP , L, T) be an n-WKS and ϕ = AFψ be a ReachWCTLu formula. We
define a depth function D : S×Nn

0 →N∞ where

D(K,ψ)(s, w) = max{n | (ρ = s −→n s′) and s′ �Cost(ρ)+w ψ}

and max(∅) = ∞.

Finally, recall that given the n-WKS G�σ = (S′, s0,AP , L′, Tc�σ ∪ T′u) then we have that
a state in S′ is a finite run ρ ∈ Π f in

KG
.

Lemma 7
If a configuration (s, w) is winning then (s, w) ∈ Fi for some i ∈N0.

Proof Let (G, ϕ) be a ReachWCTLu game where ϕ = AFψ. Let (s, w) be a winning
configuration, then there is a strategy σ s.t. G�σ, s �w ϕ, and then D(G�σ,ϕ)(s, w) = i ∈N0.

We prove that if (s, w) is winning then (s, w) ∈ Fi for some i ∈ N0 by showing that if
there is a strategy σ where G�σ, s �w ϕ s.t. D(G�σ,ϕ)(s, w) = i then (s, w) ∈ Fi. Proof by
induction on i
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Basis: If i = 0 then by the definition of D, we know that G�σ, s �w ψ and by the definition
of F0, (s, w) must belong to F0.

Induction step: Assume for all winning configurations (s′, w′) where there is a strategy
σ′ s.t. G�σ′, s′ �w′ ϕ and D(G�σ′ ,ϕ)(s′, w′) ≤ i− 1 then (s′, w′) ∈ Fi−1.

As (s, w) is winning there exists some strategy σ s.t. G�σ, s �w ϕ. Now, let G�σ =

(S′, s0,AP , L′, Tc�σ ∪ T′u) and T = Tc�σ ∪ Tu. Clearly, if s c−→ (s c−→ s′) ∈ T then

G�σ, (s c−→ s′) �w+c ϕ, and for (s′, w + c) there is a strategy σ′ defined, for any

(ρ = s1
c1−→ s2

c2−→ . . . sn) ∈ Π f in
KG

, s.t:

σ′(ρ) =

{
σ((s c−→ s1) ◦ ρ) if s1 = s′ and s c−→ (s c−→ s′) ∈ T

σ(ρ) otherwise

Clearly, G�σ, (s c−→ s′) �w+c ϕ iff. G�σ′, s′ �w+c ϕ. By the definition of σ′ we have that

D(G,σ)((s
c−→ s′), w+ c) = D(G,σ′)(s′, w+ c) ≤ i− 1. Then by the induction hypothesis

we have that (s′, w + c) ∈ Fi−1 and then by the definition Fi we know that (s, w) ∈ Fi.

Thus if a configuration (s, w) is winning then there is a strategy σ where G�σ, s �w ϕ s.t.
D(G�σ,ϕ)(s, w) = i then (s, w) ∈ Fi. �

Theorem 8 (Complexity of the synthesis problem for ReachWCTLu games)
There is an algorithm that given a ReachWCTLu game computes a winning SSC strategy
in exponential time.

Proof Let (G, ϕ) be a ReachWCTLu
l game where G = (S, s0,AP , L, Tc, Tu) in an n-WGG

and ϕ = AFψ. Then by Lemmas 6 and 7 we get that Fi computes a winning strategy, and
by the strategy construction we get an SSC strategy, thus such an algorithm exist. Let |T| =
|Tu|+ |Tc| and let b be the boundary vector derived from ϕ, then k = ∏n

i=1 max(b[i], 1).
Remember that for any 1 ≤ i ≤ n then −1 ≤ b[i], thus the max function ensure that k ∈N.
We will now argue for the complexity of computing Ff inal and extracting the strategy.

Computing b can be done in linear time in the size of the formula. It should be obvious
that for any (s, w) ∈ F0 then 0n ≤ w ≤ b, hence there can be at most |S| ∗ k configurations.
From this, it trivially follows that we have at most |S| ∗ k iterations over F. Assuming each
iteration of F takes O(|T| ∗ |S| ∗ k) time and assuming we can extract the strategy in the
time it takes to compute an iteration. We then have a time complexity of O(|T| ∗ |S|2 ∗ k2).
As k is the product of the values of the dimensions of b, we have that the algorithm run in
pseudo-polynomial time in the size of k. �

5.2 Solving the Sythesis Problem for ReachWCTLu
l Games

We now present an algorithm for solving the synthesis problem for ReachWCTLu
l games.

The algorithm is an extension of the method presented in Section 5.1 for exploring the
state space of an n-weighted game. First, notice that the addition of lower-bounds in the
logic, adds the possibility of an infinite set of vectors that satisfy the cost constraints of a
formula. This will in turn nullify the termination criteria for the algorithm described in
Section 5.1.

Example 5.3 (Self Driving Car)
Let us consider the 2−WGG G from Figure 10 in Example 5.1, but now let the game be
(G, ϕ) where ϕ = AF(#1 ≤ 3 ∧ #2 ≥ 5 ∧ destination), so that the game has both upper-
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and lower-bounds. Now computing F0 returns an infinite set of configurations, because
we add all vectors where the 2nd component is above 5.

F0 = {(s2, (i, j)) | 0 ≤ i ≤ 3 and 5 ≤ j},

Computing Fi will also return infinite sets, since we now add all vectors where the value
of the 2nd component becomes gradually smaller.

F1 = F0 ∪ {(s1, (i, j)) | 0 ≤ i ≤ 2 and 4 ≤ j}
∪ {(s1, (i, j)) | 0 ≤ i ≤ 1 and 5 ≤ j}

F2 = F1 ∪ {(s1, (i, j)) | 0 ≤ i ≤ 2 and 1 ≤ j}
∪ {(s1, (i, j)) | 0 ≤ i ≤ 1 and 2 ≤ j}
∪ {(s0, (0, j)) | 1 ≤ j}

F3 = F2 ∪ {(s1, (i, j)) | 0 ≤ i ≤ 2 and 0 ≤ j}
∪ {(s1, (i, j)) | 0 ≤ i ≤ 1 and 0 ≤ j}
∪ {(s0, (0, j)) | 0 ≤ j}

F4 = F3 ∪ ∅

We have that F3 = F4 = Ff inal . Note, that while upper-bound games may be won by
the presence of a configuration associated with the initial state, lower-bound games can
only be won, if there is a winning strategy from the initial state, which does not require
the game to start with some cost above 0n. For example, if we consider the Ff inal we have
just computed, there is a winning strategy because the configuration (s0, (0, 0)) ∈ Ff inal .

These infinite sets of vectors can be represented by an interval defined with some
lower- and upper-bound based on the cost constraints. As an example, notice that it is
possible to define the infinite set F0 from example 5.3 in the following manner: F0 =
{(s2, w) | w ∈ [(0, 5); (3, ∞)]} where (0, 5) ∈ Nn

0 is a vector defining the lower-bound
constraints and (3, ∞) ∈Nn

∞ is a vector defining the upper-bound constraints. We observe
that such an interval can be finitely represented by the two vectors defining the end points
of the interval, in this example the vectors (0, 5) and (3, ∞). We call a tuple of these end
points a zone, formally:

Definition 5.5 (Zone)
We define the tuple of vectors (l; u) ∈Nn

0 ×Nn
∞ as a zone and define the semantics of a

zone as J(l; u)K = {w | l ≤ w ≤ u}. We denote the set of all zones as Z .

Based on this representation of vector sets, we define the notion of a symbolic configu-
ration consisting of a state and a zone, instead of a state and a single vector.

Definition 5.6 (Symbolic configuration)
Let G = (S, s0,AP , L, Tc, Tu) be a n-WGG. A symbolic configuration of G is a pair (s, z)
where s ∈ S and z ∈ Z . We denote the set of all symbolic configurations as ζ.

Semantically we define the meaning of symbolic configuration as follows:

J(s, z)K = {(s, w) | w ∈ JzK}
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Notice that there exists symbolic configurations (s, z) where for all (s, w) ∈ J(s, z)K it
holds that (s, w) is a winning configuration. We denote these as winning symbolic configu-
rations.

Lastly, given a set of symbolic configurations C ⊆ ζ we have that:

JCK = {(s, w) | (s, z) ∈ C, w ∈ JzK}.

5.2.1 Zones

Now that we have a finite way of representing infinite sets of vectors, we define the op-
erations necessary to adapt the algorithm for ReachWCTLu games into an algorithm for
ReachWCTLu

l games. We define these as syntactical operations on the zones and show
that they are semantically equivalent to operations on sets of vectors.

First we define the notion of a zone being included in another zone.

Definition 5.7 (Symbolic Inclusion of zones)
Let (l; u), (l

′
; u′) ∈ Z be zones. We define the symbolic inclusion of two zones as the

operator v s.t:

(l; u) v (l
′
; u′) whenever l

′ ≤ l ≤ u ≤ u′.

For a zone z to be included in another zone z′ it must hold for all vectors w ∈ JzK that
w ∈ Jz′K.

Lemma 9
Let z, z′ ∈ Z be zones, then we have that z v z′ iff. JzK ⊆ Jz′K.

Proof Given z = (l; u) then J(l; u)K = {w | l ≤ w ≤ u} and given z′ = (l
′
; u′) then

J(l
′
; u′)K = {w | l

′ ≤ w ≤ u′}.

⇒ Assume z v z′ then l′ ≤ l ≤ u ≤ u′. For all w where l ≤ w ≤ u then as l
′ ≤ l ≤ u ≤

u′ we have that l
′ ≤ w ≤ u′. Hence if z v z′ then JzK ⊆ Jz′K.

⇐ Assume JzK ⊆ Jz′K then for all l ≤ w ≤ u then l′ ≤ w ≤ u′. Thus l′ ≤ l ≤ u ≤ u′.
Hence if JzK ⊆ Jz′K then z v z′. �

Next we define subtraction of a vector from a zone.

Definition 5.8 (Subtracting vector from zone)
Let (l; u) ∈ Z be a zone. We define the subtraction operator ÷ for subtracting a vector
c ∈Nn

0 from a zone component-wise s.t. for each 1 ≤ i ≤ n

((l; u)÷ c)[i] =

{
(l[i]− c[i]; u[i]− c[i]) if 0 ≤ l[i]− c[i]
(0; u[i]− c[i]) otherwise

.

If for any 1 ≤ i ≤ n, it holds that (u[i]− c[i]) < 0 then (l; u)÷ c = ⊥

We want to ensure that when we subtract a constant c from a zone z then the new
zone z÷ c represents the set of vectors w ∈ Nn

0 where w + c ∈ JzK. Given z = (l; u) then
if subtracting the constant c pushes the upper-bound u below zero we return ⊥ instead
with the semantics defined as J⊥K = ∅.
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Lemma 10
Let z ∈ Z be a zone and c ∈Nn

0 be a vector, then Jz÷ cK = {w ∈Nn
0 | w + c ∈ JzK}.

Proof Let z = (l; u) where l ≤ u, J(l; u)K = {w | l ≤ w ≤ u} and c ∈ Nn
0 . To prove

Jz÷ cK = {w ∈ Nn
0 | w + c ∈ JzK} we show for any w ∈ Nn

0 that w ∈ Jz÷ cK iff. w ∈ {w ∈
Nn

0 | w + c ∈ JzK}.

⇒ For any w ∈ J(l; u)÷ cK we want to show that w ∈ {w ∈ Nn
0 | w + c ∈ J(l; u)K}. Let

(l
′
; u′) = (l; u)÷ c. Then we have two cases:

◦ If (l
′
; u′) = ⊥ then J(l

′
; u′)K = ∅. It then follows trivially that all w ∈ J(l

′
; u′)K is

also w ∈ {w ∈Nn
0 | w + c ∈ J(l; u)K}.

◦ If (l
′
; u′) 6= ⊥ then J(l

′
; u′)K 6= ∅. Then we have that l

′
+ c ∈ {w ∈ Nn

0 | w + c ∈
J(l; u)K} and u′ + c ∈ {w ∈ Nn

0 | w + c ∈ J(l; u)K}. Hence for all w ∈ J(l
′
; u′)K is

also w ∈ {w ∈Nn
0 | w + c ∈ J(l; u)K}.

⇐ For any w ∈ {w ∈ Nn
0 | w + c ∈ J(l; u)K} we want to show that w ∈ J(l; u)÷ cK. Let

(l
′
; u′) = (l; u)÷ c. Then we have two cases:

◦ If there exist an 1 ≤ i ≤ n s.t. u[i]− c[i] < 0, then for all w′ ∈ Nn
0 it holds that

w′ + c 6≤ u, and thus {w ∈ Nn
0 | w + c ∈ J(l; u)K} = ∅. We then also have that

(l′; u′) = ⊥. Hence, any w ∈ {w ∈Nn
0 | w + c ∈ J(l; u)K} is also w ∈ J(l

′
; u′)K

◦ If for all 1 ≤ i ≤ n it holds that u[i]− c[i] ≥ 0. Then for any w ∈ {w ∈ Nn
0 |

w + c ∈ J(l; u)K} we then have that w ≤ u− c = u′, and that w ≥ l
′ ≥ l − c, as

either l − c = l
′

or l − c /∈ Nn
0 . Hence, for any w ∈ {w ∈ Nn

0 | w + c ∈ J(l; u)K}
is also w ∈ J(l; u)÷ cK.

Hence w ∈ J(l; u)÷ cK iff w ∈ {w | w + c ∈ J(l; u)K} �

Next we define the symbolic intersection of two zones.

Definition 5.9 (Symbolic Zone Intersection)
Let (l; u), (l

′
; u′) ∈ Z be zones. We define the symbolic intersection of the two zones as

the operator u for intersecting component-wise s.t. for each 1 ≤ i ≤ n

((l; u) u (l
′
; u′))[i] = (max(l[i], l

′
[i]); min(u[i], u′[i]))

If for any 1 ≤ i ≤ n, it holds that max(l[i], l
′
[i]) > min(u[i], u′[i]) then (l; u)u (l′; u′) = ⊥.

We want the symbolic intersection operation to return a zone that semantically repre-
sents the set of vectors which are semantically in both zones.

Lemma 11
Let z, z′ ∈ Z be zones, then Jz u z′K = JzK∩ Jz′K.

Proof Given z = (l; u) then J(l; u)K = {w | l ≤ w ≤ u} and given z′ = (l
′
; u′) then

J(l
′
; u′)K = {w | l

′ ≤ w ≤ u′}. Now, there are two directions:

⇒: We will now prove that Jz u z′K ⊆ JzK∩ Jz′K. There are two cases:

◦ If there is some 1 ≤ i ≤ n s.t. max(l[i], l
′
[i]) > min(u[i], u′[i]) then Jz u z′K = ∅,

and obviously ∅ ⊆ JzK∩ Jz′K.
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◦ For any w ∈ Jz u z′K and any 1 ≤ i ≤ n we have that max(l[i], l
′
[i]) ≤ w[i] ≤

min(u[i], u′[i]). Then it must hold that l
′ ≤ w ≤ u′ and l ≤ w ≤ u, and then we

have that w ∈ JzK∩ Jz′K. Hence Jz u z′K ⊆ JzK∩ Jz′K.

⇐: We will now prove that JzK ∩ Jz′K ⊆ Jz u z′K. For any w ∈ JzK ∩ Jz′K it holds that
l
′ ≤ w ≤ u′ and l ≤ w ≤ u. Then for any 1 ≤ i ≤ n it must hold that max(l[i], l

′
[i]) ≤

w[i] ≤ min(u[i], u′[i]) and as such w ∈ Jz u z′K. Hence JzK∩ Jz′K ⊆ Jz u z′K.

Hence, as Jz u z′K ⊆ JzK∩ Jz′K and JzK∩ Jz′K ⊆ Jz u z′K then Jz u z′K = JzK∩ Jz′K. �

The last operation we define is a trivial extension of symbolic intersection to sets of
zones.

Definition 5.10 (Symbolic Intersection of Sets of Zones)
Let Z, Z′ ⊆ Z be sets of zones. We define the symbolic intersection of Z and Z′ s.t.

Z u Z′ = {z u z′ | z ∈ Z and z′ ∈ Z′ and z u z′ 6= ⊥}

whenever Z 6= ∅ and Z′ 6= ∅.

This will return the set of vectors which represented in both sets by some zone.

Lemma 12
Let Z, Z′ ⊆ Z be sets of zones, then JZuZ′K = {w | w ∈ Jzu z′K where z ∈ Z and z′ ∈ Z′}.

Proof This follows trivially from definition 5.10 and Lemma 11. �

5.2.2 Calculating F0 with Zones

We now present the method for calculating the initial set of winning symbolic configura-
tions F0 s.t. JF0K = F0. Recall that F0 for ReachWCTLu games is defined as the set of all
final configurations. Intuitively this definition still holds, but now we need to find the set
of symbolic configurations which represents the set of all final configurations.

Through a traversal of the objective, we find all upper- and lower-bounds specified.
We then combine these into zones depending on the logical operands of the objective
and a given state. The algorithm for constructing these zones is given in Algorithm 2.
The idea is to start with the largest possible zone, (0n; ∞n), and then shrink it, whenever
we reach a cost constraint. If the constraints are conjunctive, the zone is shrunk, and if
they are disjunctive, two separate zones are returned, each bounded by their respective
constraints.

The zones created by Algorithm 2, have two properties that make them a suitable finite
representation for the infinite vector sets. First and foremost, the algorithm returns a finite
set and secondly it precisely represents the set of trivially winning symbolic configurations
of the input state.

Lemma 13
Let (G, ϕ) be a ReachWCTLu

l game, where G = (S, s0,AP , L, Tc, Tu) and ϕ = AFψ. Given
a state s ∈ S and a zone (l; u) ∈ Z then GetBasis(ψ, (l; u), s) will return a finite set of
zones.

Proof Proof by structural induction on ψ.

– Let ψ be some a ∈ AP . Then only one zone is returned, thus the set of zones is
finite.
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Algorithm 2 Algorithm computing a set of zones Z where s �w ψ for any w ∈ JZK.

Input: A formula ψ, a zone (l; u) and a state s.
Output: A subset of Z

1: function GetBasis(ψ, (l; u), s) . Assume G = (S, s0,AP , L, Tc, Tu).
2: if ψ is some a ∈ AP then
3: if s � a then
4: return {(l; u)}
5: else return ∅
6: if ψ = #i ≤ c then
7: u[i]← min(u[i], c)
8: if l[i] > u[i] then return ∅
9: return {(l; u)}

10: if ψ = #i ≥ c then
11: l[i]← max(l[i], c)
12: if l[i] > u[i] then return ∅
13: return {(l; u)}
14: if ψ = ψ1 ∧ ψ2 then
15: return GetBasis(ψ1, (l; u), s) uGetBasis(ψ2, (l; u), s)
16: if ψ = ψ1 ∨ ψ2 then
17: return GetBasis(ψ1, (l; u), s) ∪GetBasis(ψ2, (l; u), s)

– Let ψ = #i ≤ c, then one zone is returned, thus the set of zones is finite.

– Let ψ = #i ≥ c, then one zone is returned, thus the set of zones is finite.

– Let ψ = ψ1 ∧ ψ2. Assume GetBasis(ψ1, (l; u), s) and GetBasis(ψ2, (l; u), s) both re-
turn a finite set of zones. The intersection of two finite sets is also a finite set, thus
the set of zones is finite.

– Let ψ = ψ1 ∨ ψ2. Assume GetBasis(ψ1, (l; u), s) and GetBasis(ψ2, (l; u), s) both re-
turn a finite set of zones. The union of two finite sets is also a finite set, thus the set
of zones is finite. �

Lemma 14
Let (G, ϕ) be a reachability game where G = (S, s0,AP , L, Tc, Tu) and ϕ = AFψ. For any
s ∈ S and any (l; u) ∈ GetBasis(ψ, (0n; ∞n), s) it holds that for all l ≤ w ≤ u that s �w ψ.

Proof Assume there exist (l; u) ∈ GetBasis(ψ, (0n; ∞n), s), where s ∈ S. Proof by struc-
tural induction on ψ.

ψ = a ∈ AP : Then GetBasis(ψ, (0n; ∞n), s) = {(0n; ∞n)} and by the semantics it holds
that s �w a for any 0n ≤ w ≤ ∞n.

ψ = #i ≥ c: Then GetBasis(ψ, (0n; ∞n), s) = {(0n[i → c]; ∞n)} and by the semantics it
holds that s �w #i ≥ c for any 0n[i→ c] ≤ w ≤ ∞n.

ψ = #i ≤ c: Then GetBasis(ψ, (0n; ∞n), s) = {(0n; ∞n[i → c])} and by the semantics it
holds that s �w #i ≤ c for any 0n ≤ w ≤ ∞n[i→ c].

ψ = ψ1 ∨ψ2: By the induction hypothesis it holds that s �w ψ1 for any w s.t. l1 ≤ w ≤ u1
where (l1; u1) ∈ GetBasis(ψ1, (0n; ∞n), s). It also holds that s �w ψ2 for any w s.t.
l2 ≤ w ≤ u2 where (l2; u2) ∈ GetBasis(ψ2, (0n; ∞n), s). As GetBasis(ψ, (0n; ∞n), s) =
GetBasis(ψ1, (0n; ∞n), s) ∪GetBasis(ψ2, (0n; ∞n), s) it follows that s �w ψ for any w
s.t. l ≤ w ≤ u where (l; u) ∈ GetBasis(ψ, (0n; ∞n), s).
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ψ = ψ1 ∧ψ2: By the induction hypothesis it holds that s �w ψ1 for any w s.t. l1 ≤ w ≤ u1
where (l1; u1) ∈ GetBasis(ψ1, (0n; ∞n), s). It also holds that s �w ψ2 for any w s.t.
l2 ≤ w ≤ u2 where (l2; u2) ∈ GetBasis(ψ2, (0n; ∞n), s). As GetBasis(ψ, (0n; ∞n), s) =
GetBasis(ψ1, (0n; ∞n), s) uGetBasis(ψ2, (0n; ∞n), s) it then follows from Lemma 12
that s �w ψ for any w s.t. l ≤ w ≤ u where (l; u) ∈ GetBasis(ψ, (0n; ∞n), s).

Hence for any s ∈ S and any (l; u) ∈ GetBasis(ψ, (0n; ∞n), s) it holds that for all l ≤ w ≤ u
that s �w ψ, where ϕ = AFψ is a ReachWCTLu

l formula. �

Lemma 15
Let (G, ϕ) be a reachability game where G = (S, s0,AP , L, Tc, Tu) and ϕ = AFψ. For any
s ∈ S and any w ∈Nn

∞ it holds that if s �w ψ then there exists (l; u) ∈ GetBasis(ψ, (0n; ∞n), s)
where l ≤ w ≤ u.

Proof Assume s �w ψ for some w ∈Nn
∞. Proof by structural induction on ψ.

ψ = a ∈ AP : Since s �w a for any w ∈Nn
∞ and GetBasis(ψ, (0n; ∞n), s) = {(0n; ∞n)}, it

follows trivially that there exists (l; u) ∈ GetBasis(ψ, (0n; ∞n), s) where l ≤ w ≤ u.

ψ = #i ≥ c: We have that s �w ψ for any w ∈Nn
0 where w[i] ≥ c. As GetBasis(ψ, (0n; ∞n), s) =

{(0n[i → c]; ∞n)}, there exists (l; u) ∈ {(0n[i → c]; ∞n)} s.t. l ≤ w ≤ u for any
w ∈Nn

∞ where w[i] ≥ c.

ψ = #i ≤ c: We have that s �w ψ for any w ∈Nn
0 where w[i] ≤ c. As GetBasis(ψ, (0n; ∞n), s) =

{(0n; ∞n[i → c])}, there exists (l; u) ∈ {(0n; ∞n[i → c])} s.t. l ≤ w ≤ u for any
w ∈Nn

∞ where w[i] ≤ c.

ψ = ψ1 ∨ψ2: We have that s �w ψ iff. s �w ψ1 or s �w ψ2. By the induction hypothe-
sis, it holds that if s �w ψ1 then there exists (l1; u1) ∈ GetBasis(ψ1, (0n; ∞n), s) s.t.
s �w ψ1 for any l1 ≤ w ≤ u1. It also holds that if s �w ψ2 then there exists (l2; u2) ∈
GetBasis(ψ2, (0n; ∞n), s) s.t. s �w ψ2 for any l2 ≤ w ≤ u2. Thus exist (l; u) ∈
GetBasis(ψ, (0n; ∞n), s) = GetBasis(ψ1, (0n; ∞n), s)∪GetBasis(ψ2, (0n; ∞n), s) where
s �w ψ for any l ≤ w ≤ u.

ψ = ψ1 ∧ψ2: We have that s �w ψ iff. s �w ψ1 and s �w ψ2. By the induction hypoth-
esis, there exists (l1; u1) ∈ GetBasis(ψ1, (0n; ∞n), s) where l1 ≤ w ≤ u1 and (l2; u2) ∈
GetBasis(ψ2, (0n; ∞n), s) where l2 ≤ w ≤ u2. Thus exist (l; u) ∈ GetBasis(ψ, (0n; ∞n), s) =
GetBasis(ψ1, (0n; ∞n), s)uGetBasis(ψ2, (0n; ∞n), s) where l1 ≤ l ≤ w ≤ u ≤ u1 and
l2 ≤ l ≤ w ≤ u ≤ u2 s.t. s �w ψ for any l ≤ w ≤ u.

Hence there exists (l; u) ∈ GetBasis(ψ, (0n; ∞n), s) s.t. s �w ψ for any l ≤ w ≤ u. �

With the properties proven, we can now define F0 for a ReachWCTLu
l game (G, AFψ), as

the set of winning symbolic configurations:

F0 = {(s, z) | s ∈ S and z ∈ GetBasis(ψ, (0n; ∞n), s)}

By Lemma 2 F0 is finite, by Lemma 14 and Lemma 15 we have that JF0K = F0.

5.2.3 Calculating Fi with Zones

With F0 defined as a finite set of winning symbolic configurations, we are ready to create
Fi. Recall that for ReachWCTLu games Fi computes the set of winning configurations
which can reach a configuration in Fi−1 in a single step. We will now generalize this
notion for symbolic configurations.

First we notice that we can make a naive reimplementation of Fi based on the zone op-
erations defined in Section 5.2.1. However this would be inefficient as we would generate
a lot of redundant information. This approach is illustrated in Example 5.4.
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Example 5.4 (Naive modification of Fi)
Recall that F0 is now defined as a set of winning symbolic configurations based on
Algorithm 2. With subtraction for symbolic configurations defined in Definition 5.8
and symbolic inclusion defined in Definition 5.7, we can make a naive definition of Fi
looking like this:

Fi = Fi−1 ∪




(s, z÷ c)

whenever s
c
99K s′ then (s′, z′) ∈ Fi−1, where z v z′ and

if s→ then s c−→ s′ s.t. (s′, z′) ∈ Fi−1, where z v z′ and
there exists (s, c, s′) ∈ Tc ∪ Tu and z÷ c 6= ⊥





While symbolic configurations can be used to represent infinitely many configura-
tions in a concise manner, the above definition can, potentially, produce an unnecessary
amount symbolic configurations.

Consider the ReachWCTLu
l game in Figure 12. Notice that we omit the vector nota-

tion as G is a 1-WGG.

s0s0

s1

s2

1

4

{α}

{β}

(a) G = (S, s0,AP , L, Tc, Tu)

ϕ = AF



({α} ∧ #1 ≥ 1)

∨
({β} ∧ #1 ≥ 3)




(b) ReachWCTLu
l formula ϕ

Figure 12: ReachWCTLu
l game

By the definition of F0 we have that,

F0 = {(s1, (1; ∞)), (s2, (3; ∞))}.

Now, repeated application of Fi is shown below:

F1 =F0 ∪ {(s0, z÷ 1) | z v (1; ∞)} ∪ {(s0, z÷ 4) | z v (3; ∞)}
F2 =F1 = F f inal

F1 is an infinite set, as there are infinitely many zones z ∈ Z s.t. z v (1; ∞) or
z v (3; ∞). To avoid this we can construct an artificial upper-bound, such that the
computation of Fi will return a finite set. However, this approach would still result in
a large amount of irrelevant symbolic configurations being added.

Thus instead of using this naive implementation we present the function Next : P(ζ)→
P(ζ). Next takes a set of symbolic configurations F ⊆ ζ as input, and returns the set of
symbolic configurations, which can reach a symbolic configuration in F in a single tran-
sition. As with Fi the idea is that if F is a set of winning symbolic configurations, then
Next(F ) is also a set of winning symbolic configurations. The pseudo-code for Next is
presented in Algorithm 3.

Lemma 16
Let G = (S, s0,AP , L, Tc, Tu) be an n-WGG, then given a finite set of symbolic configura-
tions F ⊆ ζ as input, Next(F ) is a finite set of symbolic configurations.
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Algorithm 3 Algorithms for computing Fi

Input: A finite set of symbolic configurations F .
Output: A finite set of symbolic configurations C.

1: function Next(G,F ) . Assume G = (S, s0,AP , L, Tc, Tu).
2: C ← ∅
3: for all s ∈ S do
4: Zu ← UZones(s, Tu,F )
5: Zc ← {(0n; ∞n)}
6: if ∃(s, c, s′) ∈ Tc then
7: Zc ← {z÷ c | (s, c, s′) ∈ Tc and (s′, z) ∈ F}
8: if ∃(s, c, s′) ∈ Tc ∪ Tu then C ← C ∪ {(s, z) | z ∈ Zu u Zc}
9: return C
1: function UZones(s, Tu,F )
2: zones← {(0n; ∞n)}
3: for all (s, c, s′) ∈ Tu do
4: zones← zones u {z÷ c | (s′, z) ∈ F}
5: return zones

Proof The set Next(F ) is either the intersection of Zc and Zu, the union, or the empty set.
The set Zc is finite, since F and Tc are finite sets and the size of Zc is determined by the
number zones in F and controllable transitions. The set Zu is finite, since F and Tu are
finite sets and the size of Zu is determined by the number zones in F and uncontrollable
transitions. Hence, since Zc and Zu are finite, so is Next(F ). �

Let G = (S, s0,AP , L, Tc, Tu) be an n-WGG then we have that F ⊆ C and we define the
function Add(F) s.t.

Add(F) =




(s, w)

whenever s
c
99K s′ then (s′, w + c) ∈ F and

if s→ then s c−→ s′ s.t. (s′, w + c) ∈ F and
there exists (s, c, s′) ∈ Tc ∪ Tu.





We argue about the correctness of Algorithm 3 by showing that the semantics of
Next(F ) corresponds to the set Add(JFK).

Lemma 17
Let G = (S, s0,AP , L, Tc, Tu) be an n-WGG. Given F ⊆ ζ, Algorithm 3 constructs the set
Next(F ) s.t.

JNext(F )K = Add(JFK)

Proof Let G = (S, s0,AP , L, Tc, Tu) and s ∈ S. We prove that (s, w) ∈ JNext(F )K iff.
(s, w) ∈ Add(JFK).

⇒ Assume (s, w) ∈ JNext(F )K, then we want to show that (s, w) ∈ Add(JFK). Thus we
need to prove that:

Whenever s
c
99K s′ then (s′, w + c) ∈ JFK: There are two cases:

– @(s, c, s′) ∈ Tu. Then by line 2 in UZones, Zu = {(0n; ∞n)} and as there are
no uncontrollable transitions from s we simply return this set. This zone
will not restrict the zones produced by controllable transitions in line 7 in
Next.
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– ∃(s, c, s′) ∈ Tu. Thus if w ∈ JZuK then for all (s, c, s′) ∈ Tu then (s′, w + c) ∈
JFK. By line 2 in UZones we set zones = {(0n; ∞n)}. In line 3 and line 4 we
go through every transition (s, c, s′) ∈ Tu and intersect zones with the zones
z′ ÷ c where (s′, z′) ∈ F . Notice that if (s′, w + c) ∈ JFK then w ∈ Jz′ ÷ cK.
Also notice that if there is some uncontrollable transition (s, c, s′) ∈ Tu s.t.
for all (s′, z′) ∈ F then z′ ÷ c = ⊥ we have that zones = ∅. Lastly, if there
are no w ∈ JzonesK ∩ Jz′ ÷ cK we have that zones = ⊥. Hence, if w ∈ JZuK
then for all (s, c, s′) ∈ Tu then (s′, w + c) ∈ JFK.

If s→ then s c−→ s′ s.t. (s′, w + c) ∈ JFK: There are two cases:

– @(s, c, s′) ∈ Tc. Then by line 5 of Next, Zc = {(0n; ∞n)}. This zone will not
restrict the zones produced by uncontrollable transitions in line 7 in Next.

– ∃(s, c, s′) ∈ Tc. Thus if w ∈ JZcK then there is some (s, c, s′) ∈ Tc s.t. (s′, w +
c) ∈ JFK. By line 6 in Next we go through all controllable transitions
(s, c, s′) ∈ Tc and find the disjunction of all zones z′ ÷ c where (s′, z′) ∈ F .
Again we notice that if (s′, w + c) ∈ JFK then w ∈ Jz′ ÷ cK.

There exists (s, c, s′) ∈ Tc ∪ Tu: If (s, w) ∈ Next(F ) then there exist some (s, z) ∈
Next(F ) where w ∈ JzK. Then by line 7 in Next(F ) there is some transition
(s, c, s′) ∈ Tc ∪ Tu and z ∈ Zu u Zc.

Thus whenever (s, w) ∈ JNext(F )K then (s, w) ∈ Add(JFK).

⇐ Assume (s, w) ∈ Add(JFK), then we want to show that (s, w) ∈ JNext(F )K. By Defini-
tion of Add(JFK) we have that the following holds:

Whenever s
c
99K s′ then (s′, w + c) ∈ JFK: Whenever s

c
99K s′ then (s′, w + c) ∈

JFK. Then we have that for all (s, c, s′) ∈ Tu there is some (s′, z′) ∈ F s.t.
w + c ∈ Jz′K. By line 4 in UZones we have that zones is the set remaining after
intersecting all zones z′ ÷ c. In line 4 in Next we define Zu as zones. Thus we
can ensure that there is a zone z′′ ∈ Zu s.t. w ∈ Jz′′K.

If s→ then s c−→ s′ s.t. (s′, w + c) ∈ JFK: Then we have that if there is some tran-
sition (s, c, s′) ∈ Tc then we have that there exists (s′, z′) ∈ F s.t. (s′, w + c) ∈
JFK. By line 6 in Next we have that Zc is constructed by disjunction of all
possible zones z′ ÷ c. Thus, there is some zone z′′ ∈ Zc s.t. w ∈ Jz′′K

There exists (s, c, s′) ∈ Tc ∪ Tu: Then by line 7 in Next we add all symbolic confi-
gurations (s, z) where z ∈ Zc u Zu. As we know that there is a zone zu ∈ Zu s.t.
w ∈ JzuK and that there is a zone zc ∈ Zc s.t. w ∈ JzcK then by Definition 5.10
then there is a zone z ∈ Zc u Zu s.t. w ∈ JzK.

Hence there is some (s, z) ∈ Next(F ) s.t. w ∈ JzK. Thus, whenever (s, w) ∈
Add(JFK) then (s, w) ∈ JNext(F )K.

Hence, (s, w) ∈ JNext(F )K iff. (s, z) ∈ Next(F ) s.t. w ∈ JzK. �

With the set of winning symbolic configurations reachable in a single step defined in
Algorithm 3 we present Algorithm 4 which computes F f inal . The algorithm takes a
ReachWCTLu

l game as input and returns the set of winning symbolic configurations.
First Algorithm 4 calls Algorithm 2 to create F0. From there it repeatedly calls Algo-

rithm 3 until the set of winning configurations stabilize.
We can now complete Example 5.3, with the finite zone representation.



5.2 Solving the Sythesis Problem for ReachWCTLu
l Games 37

Algorithm 4 Algorithm computing F f inal

Input: n-WGG G = (S, s0,AP , L, Tc, Tu) and ReachWCTLu
l formula ϕ = AFψ

Output: A set of winning configurations C where JCK = F f inal
1: function ReachAlgorithm(G, ϕ)
2: i← 0
3: Fi ← {(s, z) | z ∈ GetBasis(ψ, (0n; ∞n), s) and s ∈ S}
4: while Fi 6= Fi−1 do
5: i← i + 1
6: Fi ← Fi−1 ∪ Next(Fi−1)

7: return Fi

Example 5.5 (Self Driving Car)
Consider our earlier example with the game (G, ϕ), where G is illustrated in Figure 10
and ϕ = AF(#1 ≤ 3 ∧ #2 ≥ 5 ∧ destination), we now have a finite amount of configura-
tions in F0, since GetBasis returns a finite set of zones for each state s ∈ S thus,

F0 = {(s2, ((0, 5); (3, ∞)))}.

We compute each iteration using the function Next and call the set of symbolic confi-
gurations Fi, where i is the number of iterations.

F1 = F0 ∪ {(s1, ((0, 4); (2, ∞)))} ∪ {(s1, ((0, 5); (1, ∞)))}
F2 = F1 ∪ {(s1, ((0, 1); (2, ∞)))} ∪ {(s1, ((0, 2); (1, ∞)))}

∪ {(s0, ((0, 1); (0, ∞)))}
F3 = F2 ∪ {(s1, ((0, 0); (2, ∞)))} ∪ {(s1, ((0, 0); (1, ∞)))}

∪ {(s0, ((0, 0); (0, ∞)))}
F4 = F3 ∪ ∅

Lemma 18
Given a finite ReachWCTLu

l n-WG as input, Algorithm 4 terminates.

Proof We prove that the number of symbolic configurations, which can be created by
repeated calls to Next is finite. By Lemma 16 we have that Next(Fi) is a finite set. Now,
observe that for any symbolic configuration (s, (l; u)) ∈ Next(Fi) then we have that either
u[i] ∈ N0 or u[i] = ∞. By definition of ÷ we have that any component defined with ∞
will never change. As any symbolic configuration created by Next will be the result of a
subtraction and intersection, the set of symbolic configurations will eventually stabilize.
Thus Algorithm 4 terminates. �

Theorem 19 (Decidability of Synthesis for ReachWCTLu
l Games)

The synthesis problem for ReachWCTLu
l games is decidable.

Proof We prove this by showing that Algorithm 4 returns the set representing all win-
ning configurations and from that we can extract a winning strategy. By Lemma 14 we
have that the winning symbolic configurations created in Algorithm 4 Line 3 represents
all winning configurations which trivially satisfies the objective. By Lemma 17 we can
use Lemma 6 and 7, and from those we get that Algorithm 4 returns a set of symbolic
configurations representing the set of all winning configurations. By Lemma 18 we get
that Algorithm 4 terminates. Extracting the strategy is simply a manner of slightly modi-
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fying the strategy extraction method used in Section 5.1. Thus we have that the synthesis
problem for ReachWCTLu

l games is decidable. �

Lemma 20
The synthesis problem for ReachWCTLu

l games is NP-hard.

Proof We reduce the NP-complete SUBSET-SUM problem [17] into the reachability syn-
thesis problem. The SUBSET-SUM problem states that given a set of integers X = {x1, . . . , xn} ⊆
N and an integer t ∈N is there a subset (or multiset) I = {i1, . . . , in} ⊆ X s.t.

n

∑
j=1

ij = t ?

Given an instance of the SUBSET-SUM problem, we construct a reachability game (G, ϕ)
where G = (S, s0,AP , L, Tc, Tu) is the 1-WGG illustrated in Figure 13a s.t. Tu = ∅ and for
every x ∈ X there is a edge s x−→ s ∈ Tc. The formula ϕ is shown in Figure 13b.

s0s0

x1

x2xn

. . .

(a) n-WGG G

ϕ = AF(#1 = t)

(b) ReachWCTLu
l formula ϕ

Figure 13: The game (G, ϕ) where G is an n-WGG and ϕ is an ReachWCTLu
l formula.

Now, consider the reachability synthesis problem for the game (G, ϕ) of whether there
is a winning SSC strategy σ s.t. G�σ, s0 �0n ϕ. It is clear that there is solution to the reach-
ability synthesis problem if and only if there is a solution to the SUBSET-SUM problem.�

Theorem 21
The synthesis problem for ReachWCTLu

l games belongs to EXPTIME.

Proof By Theorem 19 we have that Algorithm 4 solves the synthesis problem for ReachWCTLu
l

games. We now prove that Algorithm 4 runs in exponential time. Obviously, GetBasis

has polynomial time complexity in the size of the input.
Let (G, ϕ) be a ReachWCTLu

l game where G = (S, s0,AP , L, Tc, Tu) is an n-WGG, T =
Tc ∪ Tu and ϕ = AFψ. Let k = max({c | c ./ #i ∈ Sub(ϕ)}) be the largest constant com-
pared against any component in the formula ϕ. Notice that |GetBases(ψ, (0n; ∞n), s0)| ≤
|ψ|, and therefore |F0| ≤ |S| · |ψ|, hence computing F0 can be done in polynomial
time. Now, computing Next(Fi), for any i ∈ N0, takes O(|S| × |T| × |Fi|) time and
|Next(Fi)| ≤ |S| × |T| × |Fi|. The size of Fi is determined by |S| and the number of vec-
tors smaller than kn, thus we have that |Fi| ≤ |T| · |S| · k2n. This also gives us a maximum
number of calls to Next. We can now conclude that Algorithm 4 runs in O(|T|2 · |S|2 · k4n)
which is exponential in the number of dimension in the game graph. �

6 Synthesis for Constant Bound WCTL Games

In this section we discuss the synthesis problem for cb-WCTL games and provide an
argument for why a simple extension of the method presented in Section 5 is not possible.



39

Given Algorithm 3 it is trivial to use Algorithm 4 to solve the synthesis problem for
a game defined with non-nested cb-WCTL formula. However, when we allow both con-
junction and nesting we can get the game shown in Figure 14.

s0

s1 {α} s2 {β}

c1 c2

(a) G = (S, s0,AP , L, Tc, Tu)

ϕ = AF(α) ∧ AF(β)

(b) cb-WCTL formula ϕ

Figure 14: cb-WCTL game where the synthesis method from Section 5.2 produces an invalid strategy.

Intuitively, a solution would simply be to find all winning symbolic configurations for
the ReachWCTLu

l games (G, AF(α)) and (G, AF(β)) and check if the intersection of these
sets yielded any symbolic configurations of the form (s0, (0n; u)). But on closer inspection
of the example, we see that the output of Algorithm 4 would be the following for each
game:

REACHALGORITHM((G, AF(α))) = {(s0, (0n; ∞n)), (s1, (0n; ∞n))}.
REACHALGORITHM((G, AF(β))) = {(s0, (0n; ∞n)), (s2, (0n; ∞n))}.

Thus given a simple intersection of the sets we would get the following:

{(s0, (0n; ∞n)), (s1, (0n; ∞n))} u {(s0, (0n; ∞n)), (s2, (0n; ∞n))} = {(s0, (0n; ∞n))}.

This would suggest that there exist a winning strategy for the game. But obviously there
cannot be a strategy σ s.t. G�σ, s0 �0n ϕ as one of the controllable transitions would not be
present in G�σ, and both are required to satisfy AF(α)∧ AF(β). Based on this we conclude
that another approach is needed to solve the synthesis problem for cb-WCTL games.

7 Conclusions

We considered the formalism n-WKS, which is a Kripke structure extended with multiple
non-negative weights. We proved that the model checking problem of WCTL on a finite
3-WKS is undecidable. However, we found that removing the possibility of subtracting
two dimensions from each other and removing boolean comparison between two dimen-
sions was sufficient to make a decidable sub-logic. We called this sub-logic cb-WCTL
and proved that the model checking problem of cb-WCTL on a finite n-WKS is decidable.
Adding negative weights in the game formalism would be an interesting subject for future
work. Because of the increased expressiveness of the model, a new, more restrictive, sub-
logic is needed, as the n-WKS can now simulate the counters, and cb-WCTL can simulate
the zero check, thus cb-WCTL on an n-WKS with negative weights is undecidable.

We presented a framework for multi weighted two player games based on the n-WKS
formalism and the cb-WCTL. This framework was developed during our pre-specialization
project, where we investigated multiple types of strategies. In this thesis we investigated
synthesis of a sub-logic of cb-WCTL for specifying weighted reachability objectives, called
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ReachWCTLu
l . ReachWCTLu

l expresses reachability objectives with the possibility of both
upper- and lower-bounds on all components.

The synthesis method is first presented for ReachWCTLu games which are solvable in
pseudo-polynomial time. Additionally we show that if there is a winning strategy there is
a winning finite memory strategy (SSC strategy); which only remembers the current state
and the cost of a run. For ReachWCTLu

l games we utilizes a symbolic representation of
the vector state space, in order to represent infinite sets of vectors. As with ReachWCTLu

games we have that if there is a winning strategy for a ReachWCTLu
l game, then there

is winning SSC strategy. Furthermore, we provide a lower bound on the complexity of
synthesis of ReachWCTLu

l games which is NP-Hard and also provide an upper-bound in
the form of an algorithm which runs in exponential time. Lastly, we have also shown
that synthesis of cb-WCTL games cannot be achieved by using the method presented in
this thesis in a component wise manner based on the nested construction of the game
objective. In particular, the combination of nesting temporal operators and conjunctions
requires a different approach.

There are several areas worth considering as future work, both practical and theoret-
ical. In relation to possible application of these synthesis algorithms, it still remains to
develop a prototype and provide a translation from a winning strategy to an actual imple-
mentation of a controller. Furthermore, on-the-fly algorithms have shown, in the context
of model checking, to significantly improve performance although the theoretical com-
plexity is not improved. We believe that this could be achieved using dependency graphs,
where there has been recent advances with on-the-fly fixed-point algorithms [7].

The subject of probability is also relevant for two reasons. First, it allows the modelling
of non-cooperative players in the environment, in contrast to the antagonistic opponent.
Second, there might be application areas where no winning strategy exist, but there is
a high probability of success. E.g. Recall the self driving car, it may not be possible to
have a winning strategy due to the immense number of cars on the roads, but based on
road data one might be able to predict with high certainty that the strategy succeed. With
probabilistic models we could concoct strategies in an environment, where victory cannot
be ensured, but is probable, to some degree.

8 Bibliographical Remarks

This thesis is partly based on our pre-specialization project from fall 2016 [11]. Section 2
is a concise version of Chapter 2 and Section 3.1 from [11] with minor corrections. The
undecidability result presented in Theorem 1 in Section 3 is inspired by the undecidability
proof from Theorem 1 in Chapter 3 of [11]. However, it proves a stronger result as it shows
undecidability on a 3-WKS instead of a 4-WKS. Section 4 is a concise version of Sections
3.2 and 3.3 from [11] with minor corrections, with the exception of Proposition 3 which is
a new result.

References

[1] Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. “Model Checking
One-Clock Priced Timed Automata.” In: Logical Methods in Computer Science 4.2
(July 28, 2009).

[2] J. Richard Büchi and Lawrence H. Landweber. “Definability in the Monadic Second-
Order Theory of Successor”. In: vol. 34. 2. Association for Symbolic Logic, 1969,
pp. 166–170.



References 41

[3] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G Larsen, and Didier
Lime. “Efficient on-the-fly algorithms for the analysis of timed games”. In: Inter-
national Conference on Concurrency Theory. Springer. 2005, pp. 66–80.

[4] Krishnendu Chatterjee, Laurent Doyen, Thomas A Henzinger, and Jean-François
Raskin. “Generalized mean-payoff and energy games”. In: arXiv preprint arXiv:1007.1669
(2010).

[5] Alonzo Church. “Logic, arithmetic and automata”. In: Proceedings of the international
congress of mathematicians. 1962, pp. 23–35.

[6] Edmund M. Clarke and E. Allen Emerson. “Design and synthesis of synchronization
skeletons using branching time temporal logic”. In: Logics of Programs: Workshop,
Yorktown Heights, New York, May 1981. Springer Berlin Heidelberg, 1982, pp. 52–71.

[7] A.E. Dalsgaard, S. Enevoldsen, P. Fogh, L.S. Jensen, T.S. Jepsen, I. Kaufmann, K.G.
Larsen, S.M. Nielsen, M.Chr. Olesen, S. Pastva, and J. Srba. “Extended Dependency
Graphs and Efficient Distributed Fixed-Point Computation”. In: Proceedings of the
38th International Conference on Application and Theory of Petri Nets and Concurrency
(Petri Nets’17). LNCS. To appear. Springer-Verlag, 2017, pp. 1–20.

[8] Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jiří Srba, and Lars Kaerlund
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