
Relevant Artifacts and User
Involvement in Scrum

Master Thesis

Nicklas Holm Jørgensen

Aalborg University
Department of Computer Science

Selma Lagerlöfs Vej 300
DK-9220 Aalborg Ø

Department of Computer Science
Selma Lagerlöfs Vej 300

DK-9220 Aalborg Ø
http://www.cs.aau.dk

Title:
Relevant Artifacts and User Involve-
ment in Scrum

Topic:
Information Systems

Project Period:
Spring Semester 2017

Project Group:
is109f17

Participant(s):
Nicklas Holm Jørgensen

Supervisor(s):
Jan Stage

Copies: 1

Page Numbers: 37

Date of Completion:
June 07, 2017

Abstract:

This report presents empirical stud-
ies performed in collaboration with
Department of Clinical Biochem-
istry at Aalborg University Hospi-
tal and includes two papers pre-
senting the empirical studies. The
first paper investigates which ar-
tifacts have perceived and practi-
cal relevance when developing with
Scrum. We find that there are both
differences and similarities in per-
ceived and practical relevance of ar-
tifacts. Artifacts modeling the sys-
tem was perceived to be less rel-
evant but had practical relevance.
Prototypes, work modeling, and a
vision of the intended system had
both perceived and practical rele-
vance. The second paper inves-
tigates direct user involvement in
Sprints, and what this is relevant for
in relation to Design decisions and
Design process—and to what extent
direct user involvement influences
the development process’ contin-
gencies. We find that direct user in-
volvement was relevant to several
things related to both Design deci-
sions and Design process. Lastly,
we identify complexity and uncer-
tainty as contingencies in the de-
velopment process; and that direct
user involvement influence both.

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.

Preface

This report presents a Master Thesis in Information Technology at Aalborg
University. The Master Thesis is a requirement for the last semester of the
Master Programme (MSc) in IT Design and Application Development.

The report consists of four chapters and two academic papers in CHI format
available in the appendix. The report is organized as follows: Chapter 1 is an
introduction presenting the problem statement and research questions; Chap-
ter 2 summarizes the contributions made by the two academic papers; Chap-
ter 3 describes the research method used in the two papers; Chapter 4 presents
the conclusion, limitations, and future work.

During the entirety of the empirical studies presented in this report, we have
been in close collaboration with the Department of Clinical Biochemistry at
Aalborg University. Without the participation and patience of the staff, there
would be no studies to present. We would, therefore, like to extend our grati-
tude to all participants from this department.

Finally, special thanks to Jan Stage for his guidance, feedback, and continued
support.

iii

Contents

1 Introduction 1
1.1 Research questions . 2
1.2 Case . 2

2 Contributions 4
2.1 Contribution 1 . 4
2.2 Contribution 2 . 5

3 Research method 6
3.1 Case study . 6
3.2 Surveys . 7
3.3 Diaries . 8

4 Conclusion 9
4.1 Research questions . 9
4.2 Limitations . 10
4.3 Future work . 10

Bibliography 12

A Appendix 13

iv

Chapter 1

Introduction

Agile software development (ASD) represents different software development
methods all subscribing to the same values of embracing change, being light-
weight, and promoting flexibility in the development process [4]. Among
the different methods characterized as being agile, Scrum is one of the most
widely used in industry [9].

While Scrum, and ASD in general, promise to deliver useful software, it
is also being criticized from different fronts. Part of this criticism is that agile
methods disregard software engineering practices [10] by denouncing analy-
sis and design typically associated with plan-driven approaches to software
development. Another part of the criticism is that the end-user is neglected
in the development process [1], meaning that agile methods may focus on
developing useful but not explicitly usable software.

In light of this, practitioners are beginning to recognize the need for some
Design Upfront and the importance of user involvement in the development
process. However, Design Upfront and direct user involvement in Scrum is
not without challenges either. Challenges that empirical studies need to in-
vestigate in search of potential solutions and valuable insights.

One such challenge is that empirical studies offer no consensus regarding
which artifacts to include in upfront analysis and design—and typically only
focus on the importance of artifacts pertaining to certain aspects of analysis
and design. Thus, in practice, leaving out other possible aspects of analysis
and design which could prove relevant during the development process.

Another is that there is lacking empirical studies investigating effective
user involvement strategies, providing context-specific suggestions as to when
and how user involvement is relevant during Sprints. Empirical studies point
to problems of direct user involvement in Scrum stemming from limited re-
sources [6], suggesting that a more beneficial user involvement strategy means
involving users only when it is deemed relevant—and in a relevant way.

However, to arrive at the long-term goal of effective user involvement
strategies in Scrum, we must first understand the influence of direct user in-
volvement on contingency factors and investigate extent and outcome of di-
rect user involvement [2].

1

1.1 Research questions

In response to the challenges posed by Design Upfront and direct user in-
volvement in Scrum, we aim at addressing the research gap by presenting
and investigating the following problem statement.

Problem statement: How can we help developers choose relevant upfront
analysis and design artifacts, and understand how direct user involve-
ment influence their Design decisions in Scrum?

To answer our problem statement, we present two research questions aimed
at addressing Design Upfront and direct user involvement in Scrum.

Research question #1: Which upfront analysis and design artifacts have per-
ceived and practical relevance when developing with Scrum?

The first research question address Design Upfront in Scrum by investigating
which analysis and design artifacts have perceived and practical relevance.
Thus, the hope is to arrive at insights on relevant analysis and design artifacts
when developing with Scrum—and provide guidance to the extent of upfront
analysis and design.

Research question #2: What is direct user involvement relevant for in rela-
tion to Design decisions and Design process—and to what extent does
direct user involvement influence the development process’ contingen-
cies?

The second research question address direct user involvement in Scrum. Be-
fore achieving the long-term goal of effective user involvement strategies, we
find that we must first understand how direct user involvement influence de-
velopers’ decision-making and the development process. Thus, we set out
to provide empirical insights on direct user involvement in relation to Design
decisions, Design process, and influence on development process contingency
factors.

1.2 Case

To investigate the problem statement and research questions presented above,
we have been in close collaboration with Department of Clinical Biochemistry
at Aalborg University Hospital. The department is responsible for servicing
the entire hospital, which includes taking several hundred blood samples a
day.

The bioanalysts working at Clinical Biochemistry are the ones taking the
blood samples patients admitted to the hospital, and they carry around multi-
ple different devices including multiple mobile phones, a PDA barcode scan-
ner, and a pager. However, none of these devices have capabilities not found
in a modern smartphone. We, therefore, decided to develop an Android smart-
phone application consolidating all these different devices. This would po-
tentially make the daily work of the bioanalysts much easier and more conve-
nient.

2

The close collaboration with the staff at Clinical Biochemistry provides a
valuable opportunity in relation to the presented problem statement and re-
search questions. Not only does the collaboration provide an opportunity to
develop a useful and beneficial solution for the bioanalysts, but also the op-
portunity of investigating the relevance of analysis and design artifacts seen
from a developer perspective during development. Further, it is a unique
opportunity to investigate what user involvement is relevant for in relation
developers’ Design decisions and Design process.

3

Chapter 2

Contributions

This chapter presents the two papers that represent the main parts to this mas-
ter thesis. Each of the two papers will be presented with a summary and main
findings. A chronological reading of the two papers is recommended; how-
ever, they investigate different aspects of the proposed problem statement so
they can be read individually.

2.1 Contribution 1

Nicklas Holm Jørgensen. The relevance of upfront analysis and design arti-
facts in scrum. Department of Computer Science, Aalborg University. Aalborg,
2017.

The first contribution presents an empirical study investigating the perceived
and practical relevance of analysis and design artifacts when developing with
Scrum. The goal of the study was to investigate the relevance of different
artifacts informing both system-focused and user-focused considerations in
Scum, and further arrive at some practical recommendations to analysis and
design artifacts.

The empirical study consists of two different elements: An empirical sur-
vey conducted with agile practitioners, and an exploratory study conducted
while developing an Android application. The first element presents find-
ings from a survey conducted with 13 agile practitioners from seven differ-
ent companies. The goal of the survey was to investigate the practitioners’
perceived usefulness of selected analysis and design artifacts. The second el-
ement presents findings from a development diary documenting how many
times the selected analysis and design artifacts were used in practice, and for
what purpose.

We find that there are both differences and similarities of the perceived
and practical relevance of selected analysis and design artifacts. Artifacts pri-
marily modeling the system were perceived to be less relevant in the survey,
but had practical relevance during the development of the application. How-
ever, prototypes, work modeling, and a vision of the intended system had
both perceived and practical relevance. In closing, we propose to choose arti-
facts systematically, value simplicity of artifacts and address possible aspects
of analysis and design.

4

2.2 Contribution 2

Nicklas Holm Jørgensen. An exploratory study of direct user involvement
and design decisions in scrum sprints. Department of Computer Science, Aalborg
University. Aalborg, 2017.

The second contribution presents an exploratory study investigating what di-
rect user involvement is relevant for in relation to Design decisions and De-
sign process—and to what extent direct user involvement influence the de-
velopment process’ contingencies. The goal of the study was to better under-
stand how user involvement in Scrum Sprints influence developers’ decision-
making and problem-solving.

The exploratory study presents finding from a diary kept while develop-
ing an Android application for supporting the work practice of bioanalysts at
Department of Clinical Biochemistry at Aalborg University Hospital. During
a development period spanning three months in total, we kept a diary docu-
menting Design decisions, Design process and how direct user involvement
in Sprints influenced the development process.

We find that direct user involvement in Sprints was relevant for several
things concerning Design decisions. Direct user involvement helped in defin-
ing the satisficing behavior of the developer exhibited throughout the devel-
opment process. It also helped in adjusting aspiration levels to align with the
users’ and was very relevant to the transfer of tacit knowledge from user to
developer. Further, direct user involvement was relevant for generation and
validation of requirements during the Design process.

Lastly, we find that uncertainty and complexity were contingency factors
throughout the development process; and that direct user involvement influ-
enced both. Uncertainty was continuously generated during Sprints, and di-
rect user involvement helped reduce uncertainties by evaluation of prototypes
and through social interaction. However, user involvement also introduced
complexity that requires appropriate responses of the developer.

5

Chapter 3

Research method

In this chapter, we will present and discuss the research method and research
techniques used in the empirical studies. We will first present the research
method, and discuss strengths and weaknesses of this method. Then we will
proceed to present the research techniques used concerning the presented re-
search questions, and further, discuss their strengths and weaknesses.

3.1 Case study

The two research questions presented in this summary report were both ad-
dressed using a case study—however, the research techniques and purpose
differed (see Table 3.1 for an overview).

Research question Method Technique Purpose

RQ1 Case study Survey Exploration
Diary Explanation

RQ2 Case study Diary Exploration
Description

Table 3.1: Research method and research techniques used in relation to research questions.

The first research question was addressed with a case study used for ex-
ploration and explanation (as described in [7]). One of the main characteristics
of an exploration case study is that the researcher starts with an “an incomplete
or preliminary understanding of a problem and its context” [7]. In our case, we
began with a preliminary understanding of the problems associated with up-
front analysis and design in ASD. We did not, however, have any predefined
solutions to said problems. The purpose of the case study is the exploration
of possible solutions and their merit. Further, based on our empirical study
we sought to provide an understanding of the perceived and actual relevance
of different analysis and design artifacts when developing with Scrum—in an
attempt to arrive at an explanation for the various uses of these artifacts in an
agile context.

The second research question was addressed with a case study used for ex-
ploration and description. In this case, we started with a preliminary under-
standing of the problems associated with direct user involvement in Scrum—
and explored what direct user involvement is relevant for in relation to Design

6

decisions and Design process. And so, the case study is used to describe how
users influence developers’ decision-making and problem-solving during the
development process, and the lessons learned. Even though the findings in
this study were depended on the specific case and context, the purpose of the
descriptive case study is also to present lessons learned that could provide
insights in other cases [7].

Strengths and weaknesses

As expressed in [11], the primary strengths of case studies are rich descrip-
tions and explanatory evidence. Further, case studies can provide insights
into phenomena otherwise difficult to investigate [7]. However, case studies
also present some challenges. The most common drawbacks being the typi-
cally high cost of performing case studies, the time-consuming nature of case
studies, and the limited generalizability of findings [11]. See an overview of
strengths, weaknesses, and countermeasures in Table 3.2.

Strengths Weaknesses Countermeasures
Rich data High cost Multiple data sources
Valuable insights Time-consuming Direct access
Explanatory evidence Limited generalizability No generalization

Table 3.2: Strengths and weaknesses of used research techniques.

The high cost and time-consuming nature of performing case studies were
not a deciding factor in our case since the empirical studies were confined
by practicalities related to deadlines. Further, we had direct access to partici-
pants from the collaborating hospital; providing access when needed, and to
the extent needed. As a countermeasure to the limited generalizability, we
used in one of the empirical studies multiple research techniques to provide
contrasting views. Further, we targeted specific respondents with different
backgrounds in the survey as to negate sampling bias. Lastly, as a counter-
measure we seek not to generalize from the empirical studies; but rather pro-
vide insights that might prove useful and interesting for other cases.

3.2 Surveys

Strengths Weaknesses Countermeasures
Easy to collect data Biased data Not told to recollect
No interviewer effect No probing Open-ended questions
Convenient Shallow data Targeted population

Sampling bias

Table 3.3: Strengths and weaknesses of using surveys.

Surveys are very common as research techniques and data collection meth-
ods across all fields of research. The main strengths of surveys are that they
are very easy to administer, and consequently very useful for collecting many
responses quickly. Further, surveys are typically very convenient for respon-
dents compared to e.g. interviews—and they do not suffer from interviewer

7

effects influencing responses [3]. Surveys do, however, also have weaknesses.
Firstly, if surveys are used concerning patterns of usage, there is a high risk of
biased data as a consequence of the difficulty of recollect, or because of wrong
estimates [7]. Secondly, surveys typically produce shallow data since the re-
searcher have no possibility of probing the respondents [3]. Lastly, surveys
suffer from sampling bias as a result of surveying the wrong population [7].

In an attempt to mitigate the weaknesses of surveys, we have introduced
different countermeasures in the empirical study. Respondents are not sur-
veyed about patterns of usage but rather asked to give their evaluation of per-
ceived usefulness. Further, respondents were targeted specifically in relation
to the research questions; thus only surveying respondents who were familiar
with agile development represented by Scrum. Finally, as a countermeasure
to shallow data, respondents were provided with the opportunity of expand-
ing on their evaluations in free text. Thus providing qualitative data comple-
menting the quantitative data also collected via the survey. An overview of
strengths, weaknesses, and countermeasures can be seen in Table 3.3.

3.3 Diaries

Strengths Weaknesses Countermeasures
Rich data Time-consuming Defined structure
Reliable Process of attrition Limited time-period
Good for sequencing Failure to recall Clear purpose

Electronic format

Table 3.4: Strengths and weaknesses of using diaries.

Diaries as a research technique and data collection method are commonly
used in sociology and history [7], however, diaries are not uncommon in sys-
tems development either [8]. The main strengths of diaries are that they tend
to provide more reliable data when estimates of both time and frequency are
required [3]. And more, that they are a suitable data collection method when
observational methods or surveys are either insufficient or impractical [7]. In
the case of describing e.g. why certain solutions were preferred over oth-
ers, diaries provide much more insight and rich data than do experimental or
observational data collection methods. However, there are also weaknesses
related to using diaries as data collection. One being that diaries typically are
very time-consuming, and so result in a “process of attrition” [3]. Further,
there is the chance that the diary suffers from biased data if the writer does
not record details promptly—thus forgetting important details or the decision
process.

As countermeasures to the weaknesses of using diaries, we have imple-
mented practical advice for using this data collection method as suggested by
[5]. This includes a defined structure as not to forget important details and to
state the purpose of the diary. Further, the diary was written during a prede-
fined period to mitigate the process of attrition. Lastly, to countermeasure the
time-consuming nature of diaries, all entrances were written directly (without
a draft) and in electronic format.

8

Chapter 4

Conclusion

This chapter presents conclusions to the two research questions, and the prob-
lem statement presented in this summary. We first summarize conclusions of
the research questions, which leads us to the conclusion of the overall problem
statement. We then present limitations of our studies, and, finally, propose fu-
ture work.

4.1 Research questions

Research question #1: Which upfront analysis and design artifacts have per-
ceived and practical relevance when developing with Scrum?

We find that there was both differences and similarities in perceived and prac-
tical relevance of selected analysis and design artifacts.

Regarding differences in perceived and practical relevance, especially ar-
tifacts modeling the system was perceived to be less relevant. However, we
find that these artifacts had high practical relevance. Contrary to this, we find
that prototypes, work modeling, and a vision of the intended system had both
perceived and practical relevance. Further, we find that artifacts were used in
two different ways during development: Directly and tacitly.

Lastly, we propose practical implications. We suggest to choose artifacts
systematically, value simplicity when developing artifacts, and to address
possible aspects of analysis and design.

Research question #2: What is direct user involvement relevant for in rela-
tion to Design decisions and Design process—and to what extent does
direct user involvement influence the development process’ contingen-
cies?

We find that direct user involvement was relevant for several things in relation
to Design decisions and Design process—and that direct user involvement
influenced identified contingencies in the development process.

Specifically, direct user involvement was relevant for defining the satis-
ficing behavior of the developer; was valuable in adjusting aspiration levels,
and was relevant to the transfer of tacit knowledge from user to developer.
Further, we find that direct user involvement was relevant in generating and
validating requirements during the Design process.

9

Lastly, we identify complexity and uncertainty as contingencies during the
development process—and that direct user involvement had an influence on
both. Uncertainty was produced throughout the development process, and
user involvement helped reduce uncertainties. In turn, direct user involve-
ment introduced complexity requiring appropriate responses from the devel-
oper.

Problem statement: How can we help developers choose relevant upfront
analysis and design artifacts, and understand how direct user involve-
ment influence their Design decisions in Scrum?

We investigated perceived and practical relevance of analysis and design arti-
facts in Scrum—and provided empirical insights on differences and similari-
ties. Further, we propose practical implications related to developing analysis
and design artifacts. Thus, our empirical study contributes with insights that
could prove useful for practitioners when developing and deciding on analy-
sis and design artifacts in Scrum.

Second, we provide empirical evidence on direct user involvement and
influence on Design decisions and Design process. Building on literature on
user involvement, we contribute with insights that could prove valuable in
future empirical studies on effective user involvement strategies in Scrum.
Further, we identify contingency factors during development and reveal find-
ings on how these are influenced by direct user involvement during Sprints.
This empirical evidence also contributes to our understanding of direct user
involvement and influence on Design decisions.

4.2 Limitations

We acknowledge the limitations of our work, and especially the nature of case
studies. Both empirical studies reveal findings from a case study, and we
are aware that this has could have an impact on the conclusions presented
in this summary. Had another case been chosen, and had the case study been
conducted under different circumstances, findings could prove different than
what we have presented in our empirical studies. However, we have tried to
negate this by including multiple research techniques—and seek not general-
ize based on our results, but provide valuable insights.

We also acknowledge that our research and findings are conducted and
interpreted by ourselves. Thus, it presents the issue of researcher bias—and
whether findings are interpreted objectively. It is clear that our view of find-
ings could differ from other researchers. However, in an attempt to negate
this, we have used multiple research techniques including both qualitative
and quantitative research techniques. Further, we have aimed at providing
clarity and transparency in our data analysis.

4.3 Future work

Additional empirical studies should be performed to expand on our findings.
Specifically, it could provide valuable insights to investigate the relevance of
different analysis and design artifacts in larger development teams. And even

10

more so, investigate how different development situations affect the relevance
of analysis and design artifacts in Scrum. Thus, arriving at empirical evidence
to further help developers choose which analysis and design artifacts to de-
velop depending on e.g. development situation.

Our findings provide insights on direct user involvement in Scrum Sprints.
However, further empirical studies should build on our empirical evidence.
Studies investigating the influence of direct user involvement in larger teams
could add further insights not revealed in our exploratory study. Also, em-
pirical studies investigating direct user involvement in Sprints over longer
periods of time could provide valuable insights for developers. Specifically,
it could help in understanding how users’ needs change during the develop-
ment process; and how this affects developers’ decision-making.

Lastly, there is lacking empirical studies investigating contingencies dur-
ing the development process—and how these influence effective user involve-
ment strategies. Our findings identify complexity and uncertainty as con-
tingencies and that direct user involvement influence both. Empirical stud-
ies could build on our research by suggesting how these contingency factors
could be used to decide on effective strategies for user involvement in Sprints.

11

Bibliography

[1] Stefan Blomkvist. Towards a model for bridging agile development and
user-centered design. Human-centered software engineering—integrating
usability in the software development lifecycle, pages 219–244, 2005.

[2] Manuel Brhel, Hendrik Meth, Alexander Maedche, and Karl Werder. Ex-
ploring principles of user-centered agile software development: A litera-
ture review. Information and Software Technology, 61:163–181, 2015.

[3] Alan Bryman. Social Research Methods. Oxford University Press, 2008.

[4] Jim Highsmith and Alistair Cockburn. Agile software development: The
business of innovation. Computer, 34(9):120–127, 2001.

[5] Leif Obel Jepsen, Lars Mathiassen, and Peter Axel Nielsen. Back to think-
ing mode: diaries for the management of information systems develop-
ment projects. Behaviour & Information Technology, 8(3):207–217, 1989.

[6] Kati Kuusinen, Tommi Mikkonen, and Santtu Pakarinen. Agile User Ex-
perience Development in a Large Software Organization: Good Exper-
tise but Limited Impact. In Marco Winckler, Peter Forbrig, and Regina
Bernhaupt, editors, Human-Centered Software Engineering, volume 7623.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[7] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research
methods in human-computer interaction. John Wiley & Sons, 2010.

[8] Peter Naur. An experiment on program development. BIT Numerical
Mathematics, 12(3):347–365, 1972.

[9] Tina Øvad and Lars Bo Larsen. The prevalence of ux design in agile
development processes in industry. In Agile Conference (AGILE), 2015,
pages 40–49. IEEE, 2015.

[10] Steven Rakitin. Manifesto elicits cynicism. IEEE Computer, 34(12):4, 2001.

[11] Judy L. Wynekoop and Sue A. Conger. A review of computer aided soft-
ware engineering research methods. Department of Statistics and Com-
puter Information Systems, School of Business and Public Administra-
tion, Bernard M. Baruch College of the City University of New York,
1992.

12

Appendix A

Appendix

(1) Nicklas Holm Jørgensen. The relevance of upfront analysis and design
artifacts in scrum. Department of Computer Science, Aalborg University. Aalborg,
2017.

(2) Nicklas Holm Jørgensen. An exploratory study of direct user involvement
and design decisions in scrum sprints. Department of Computer Science, Aalborg
University. Aalborg, 2017.

13

The Relevance of Upfront Analysis and Design Artifacts in
Scrum

Nicklas Holm Joergensen
Aalborg University

Department of Computer Science
Aalborg, Denmark

nhjo10@student.aau.dk

ABSTRACT
Agile software development denounces the Big Design Up-
front typically associated with plan-driven approaches to soft-
ware development, which has led to criticisms of encouraging
hacker mentality and not delivering usable products to the cus-
tomer. Recognizing the need for some Design Upfront, agile
practitioners point to the relevance of different upfront analy-
sis and design artifacts addressing mainly system-focused or
user-focused considerations. This paper presents an empirical
study of the perceived and practical relevance of upfront anal-
ysis and design artifacts when developing with Scrum. The
study consists of two different elements: An empirical survey
with agile practitioners, and an exploratory study conducted
while developing an Android application. We find that system-
focused artifacts were perceived as less relevant by survey
respondents but had practical relevance. Further, we find that
prototypes, work modeling, and a vision of the intended sys-
tem had both perceived and practical relevance. In closing, we
provide insights into some practical implications.

Author Keywords
User-Centered Design; Scrum; agile development; upfront
analysis and design

INTRODUCTION
Agile approaches to software development represent a depar-
ture from traditional, plan-driven approaches with emphasis on
extensive planning, analysis, and documentation. Agile soft-
ware development (ASD) encapsulates many different meth-
ods all emphasizing the same fundamental values described
in the Agile Manifesto [15]. ASD comes as a reaction to the
notion of optimal and predictable solutions available for ev-
ery problem, and focus instead on incremental delivery and
minimal documentation [12]. Proposing effective ways of
managing changing business—and customer requirements—
agile approaches have in recent years gained momentum in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.

industry [29] with Scrum being one of the most widely used
in industry [38].

Denouncing the Big Design Upfront (BDUF) associated with
plan-driven approaches to software development, ASD is, how-
ever, eliciting skepticism from practitioners favoring plan-
driven approaches. A typical example being Rakitin [28]
commenting that ASD is encouraging hacker mentality and
disregarding predictable software engineering practices. Thus
resulting in a product not reflecting what the customer expects,
and delivered not within the agreed upon timeframe. View-
ing plan-driven and agile approaches as different ends of the
same spectrum, it is suggested that the best result comes from
balancing the two [7]. Modern companies require rapid value
from usable and reliable software, suggesting the limitation of
adhering strictly to only a plan-driven or agile approach.

Recognizing the value of some Design Upfront, agile practi-
tioners point to developing different artifacts as part of upfront
analysis and design. Some practitioners focus on relevant arti-
facts related to system-focused considerations in ASD. This
include creating a metaphor of the intended system [5], or
defining a broad starting point architecture [14]. Further ex-
amples point to the value of using modeling tools, such as
UML, when engaged in upfront analysis and design [1, 3,
36]. Other practitioners focus primarily on integrating User-
Centered Design (UCD) practices in ASD, criticizing agile
approaches for not delivering usable products [11]. In this
regard, upfront analysis and design is typically concerned with
developing user-focused artifacts such as prototypes, scenarios
and personas [9].

Relevant literature does not, however, point to any consensus
regarding which artifacts to include in upfront analysis and
design. Further, empirical studies typically focus only on the
importance or relevance of including either system-focused
or user-focused artifacts in ASD; thereby leaving out other
possible aspects of analysis and design. Addressing criticisms
regarding both system-focused and user-focused challenges in
ASD, upfront analysis and design in ASD need to accommo-
date several aspects of software development.

This paper presents an empirical study of the perceived and
practical relevance of upfront analysis and design artifacts
when developing with Scrum. The study consists of two com-
plementing elements. The first element is an empirical survey

1

conducted with agile practitioners. The practitioners were
asked to evaluate the perceived usefulness of selected analysis
and design artifacts when developing an IT system with Scrum.
The second element is an exploratory study of the practical
use of selected analysis and design artifacts. While develop-
ing an Android application for supporting the daily work of
bioanalysts from the local university hospital, we kept diary
documenting the practical relevance of analysis and design
artifacts.

The rest of this paper is organized as follows: In the following
section, we summarize related work on analysis and design in
ASD. We then present a literature survey aimed at identifying
artifacts to be evaluated in the empirical study. Then we
present the empirical study and relevant findings. Finally, we
provide a discussion and conclusion of this study.

RELATED WORK
In the following, we will present an overview of relevant
literature regarding upfront analysis and design in ASD. We
have identified empirical studies focusing on either one of two
categories: System-focused design upfront, or user-focused
design upfront.

System-focused design upfront
There are few empirical studies regarding system-focused de-
sign upfront in ASD, and practitioners’ perceived relevance.
Falessi et al. [13] did a survey with 72 experienced developers
from IBM in Rome, investigating the relevant use of software
architecture in an agile context. The study report that respon-
dents perceive the most relevant use of software architecture
to be in relation to communication, and as input to subsequent
system design and development activities. The study does not,
however, investigate the perceived or practical relevance of
other system-focused artifacts than software architecture.

Other empirical studies focus on activities and practices with
regards to developing system-focused design upfront in ASD.
Babar [4] did an exploratory study of an agile software com-
pany provisioning financial services; highlighting architecture
related practices and challenges in ASD. The study report
the use of initial analysis and design phases when develop-
ing with Scrum. Participants in the study report the frequent
use of a project wiki describing design decisions and compo-
nent diagrams, in combination with design meetings, when
communicating architectural design. The study does not, how-
ever, report on the perceived or practical relevance of other
system-focused or user-focused artifacts.

Prause and Durdik [27] conducted interviews with 37 software
engineering experts from industry and academia, investigating
architectural design and documentation in ASD. The study re-
port a majority of respondents believing explicit architectural
design to be beneficial. Further, that the majority of respon-
dents engaged in architectural activities in ASD perform some
actual initial analysis and design. The study does not, however,
provide any guidance as to what these activities may be—or
report on how respondents use system-focused artifacts in
practice.

Finally, Yang et al. [37] performed a systematic mapping
study, covering literature on the combination of architecture
and ASD. Among the various architectural activities identified
in industry, an architectural description was most commonly
identified with other activities receiving limited attention. A
supposed reason for this being the significant effort and time
related to other architectural activities, thus reducing the rel-
evance of including this type of initial analysis and design
in agile approaches. Though the study highlights different
activities related to developing an architecture in ASD, it does
not report on the perceived or practical relevance of other
system-focused artifacts.

In summary, previous empirical studies investigate the per-
ceived relevant use of software architecture, and the practical
relevance of some architecture related analysis and design arti-
facts. However, none of the empirical studies focus on the prac-
tical relevance of different system-focused artifacts. There are
reports of the perceived relevance or value in system-focused
considerations, but the empirical studies does not investigate
the practical relevance—and how these artifacts are used dur-
ing development. Neither do empirical studies provide any
guidance as to which system-focused artifacts to develop dur-
ing upfront analysis and design. Lastly, previous empirical
studies do not address user-focused concerns in ASD.

User-focused design upfront
There are, as with system-focused design upfront, few em-
pirical studies on user-focused design upfront in ASD and
practitioners’ perceived value or relevance. Hussain et al. [18]
did a survey on User-Centered Design (UCD) in ASD con-
ducted with 92 developers and usability professionals. The
study identify the most common user-focused practices as lo-fi
prototyping, conceptual designs, and observation studies of
users. The majority of respondents perceive that integrating
UCD activities in ASD has added value to the process and
their teams, and that it has resulted in improvement of usability
and quality of the final product. However, the study does not
provide any guidance as to the practical relevance or use of
user-focused artifacts.

Jia et al. [21] did an empirical study investigating practitioners’
perceived usefulness of usability techniques, and how often
they use them, in Scrum projects. The study was conducted
with 35 IT professionals using both Scrum and various us-
ability techniques in their development process. The study
identify that the most commonly used usability techniques by
respondents include workshops, lo-fi prototyping, and inter-
views. However regarding usefulness, respondents perceived
formal usability evaluations, digital prototypes, and field stud-
ies as the most useful techniques. A limitation to this study is
that it only investigates the perceived usefulness of usability
techniques, and not the practical relevance when developing
with Scrum.

Several other empirical studies has been conducted on UCD
and usability in software development; mainly focusing on
perceived value of usability work, and which practices are
most common in industry. Vredenburg et al. [34] did an
empirical survey with 103 UCD practitioners, investigating the
overall impact of UCD activities and common UCD methods

2

in industry. They conclude that UCD methods are generally
perceived by practitioners to have improved the final product,
but that there are no common standards for measuring actual
effectiveness of usability work. The study further identify the
most commonly used UCD methods in practice to be iterative
design, usability evaluation, and task analysis.

Gulliksen et al. [17] performed a survey with 194 UCD prac-
titioners in Sweden, investigating their work practices. The
study reports practitioners’ perceived value of different UCD
methods and techniques used in practice; with lo-fi prototyping
and interviews being among the highest rated, and personas
and questionnaries being among the lowest. The respondents
in this survey come from companies with different software de-
velopment processes, however only a small percentage deem
their process agile.

Lastly, Ji and Yun [20] did a survey with 184 IT development
and 90 UCD practitioners from different industries and com-
panies in Korea, investigating UCD and usability adoption and
activities. They find that both developers and UCD practition-
ers value usability work, however UCD practitioners generally
ascribe more value to usability work. Further, the study iden-
tify the most common usability methods as perceived by both
developers and UCD practitioners with task analysis and the
evaluation of existing systems as being the most common.

Summarizing, empirical studies on user-focused analysis and
design investigate the most common activities and techniques
in practice. Further, they report on practitioners’ perceived
relevance and benefits to user-focused analysis and design.
Few studies, however, investigate the perceived or practical
relevance of user-focused analysis and design artifacts in an
agile context. Neither does empirical studies provide any
consensus as to which artifacts to develop during upfront
analysis and design in ASD. Finally, empirical studies on
user-focused design upfront do not take into consideration the
perceived or practical relevance of system-focused artifacts.

LITERATURE SURVEY
Following related work, we observe that literature on system-
focused and user-focused analysis and design in ASD provide
some proposals for potentially relevant activities and artifacts
in relation to design upfront—but provide no consensus or
systematic selection of artifacts. To identify common artifacts
in industry to be evaluated in this empirical study, we have
searched part of the relevant literature.

A preliminary literature survey on Google Scholar was con-
ducted, with search criteria consisting of combinations of
"agile and UCD integration," "agile user-centered design,"
"upfront analysis and design in agile," "agile modeling," and
"architecture and agile." Results of this search were scanned
for relevance by reading title and abstract. After the prelim-
inary search, several papers concerned with developing up-
front system-focused and user-focused artifacts were selected.
These papers were further supplemented with other papers
identified and referenced in recent literature reviews regarding
UCD in ASD [9, 30].

Based on the literature survey, we identified common upfront
analysis and design artifacts used in practice. However, since

many of the papers identified were anecdotal evidence or ex-
perience reports, artifacts concerning the same purpose are
often referred to using different terms. One example being
work models that are referred to as both task flow [31], user
flow [10], and work flow [6]. Hence, after identifying com-
mon artifacts, we abstracted terms seemingly concerning the
same purpose as to gain an overview of which artifacts are
most typical in industry. The result of the literature survey and
abstraction of common artifacts can be seen in Table 1 on the
following page.

Following our literature survey and abstraction of analysis and
design artifacts, we compared our results to recent literature
reviews on integrating UCD practices in ASD [30, 9]. Our
results are consistent with both reviews, highlighting proto-
types, personas, and scenarios as some of the most common
practices and artifacts. We have not identified any literature
review focusing on system-focused upfront design artifacts
in ASD. However, our results are consistent with a recent
systematic mapping study of architectural practices in ASD
highlighting an architectural description as the most common
architectural activity; e.g. developing an overall system vision
or architectural modeling [37].

Categories of analysis and design artifacts
To cover possible aspects of upfront analysis and design, this
paper introduces analytic categories representing different
parts of a software development process. These categories
are presented in Mathiassen et al. [24], and can according to
the authors be considered a complete method for the analysis
and design of IT systems.

The purpose of these categories is to introduce concepts that
can be used to ensure, that selected artifacts cover possible
aspects of upfront analysis and design. The analytic categories
are defined as follows:

High-level Description An overall vision expressed in natu-
ral language, making it possible for developers, customers,
and users alike to gain an understanding of the intended
system.

Problem Domain Viewing the system’s context from two
complementary perspectives, the problem domain is the part
of the context being administered, monitored, or controlled.

Application Domain Closely related to the problem domain,
the application domain represents the part of the context
that administrates, monitors, or controls.

System Architecture Structuring of main components and
specification of their relationship on an abstract level.

Component Design Specification of the system’s compo-
nents on a lower level; e.g. interface component design
or data model.

Each category is characterized by being concerned with a
different aspect of analysis and design, and each informed by
different analysis and design artifacts. The intention being that
these categories will prove useful after identifying artifacts
used in practice since it allows for explicit characterization of
each artifact. Thus, providing an overview of which artifacts

3

Artifacts Papers Total
Prototypes [36], [32], [35], [31], [33], [10], [6] [22], [8], [16] 10
Vision [32], [31], [6], [33], [14] 5
Personas [32], [26], [31], [6] 4
Scenarios [32], [26], [2], [36] 4
Work models [32], [31], [10], [6] 4
Data models [3], [36], [14], [1] 4
Affinity diagrams [6] 1
Storyboards [6] 1
User Environment Design [6] 1

Table 1. Abstraction of artifacts identified in literature survey (n = 15).

High-level Description Problem Domain Application Domain System Architecture Component Design
System definition Event table Personas Component architecture Prototypes
Affinity diagram Statechart diagram Scenarios Model component

Class diagram Work modelling
Table 2. Selected artifacts related to analytic categories.

inform which categories will help ensure that possible aspects
of analysis and design are addressed.

Finally, common upfront analysis and design artifacts identi-
fied in the literature survey were selected and related to the
analytic categories to ensure that possible aspects of analysis
and design are covered by the selected artifacts. The result can
be seen in Table 2.

Case
Having identified and selected artifacts to be evaluated, we
performed an initial analysis and design phase. This was done
on the basis of the case described in the following.

We have collaborated with Department of Clinical Biochem-
istry at Aalborg University Hospital during the empirical study
presented in this paper. The department is responsible for ser-
vicing the entire hospital; which among other things include
taking several hundred daily blood samples. The staff at the
department collect and analyze requested blood samples, and
consequently informs the requester of available results. The
staff at the department carry around multiple different devices
used in their daily work practice; e.g. different telephones,
PDA scanner, and a pager. However, none of the devices have
capabilities not found in a modern smartphone. Thus we imag-
ined the task ahead was to consolidate the different devices
into one, making the work of the bioanalysts at the department
easier and more convenient.

Using this as our starting point, we conducted multiple obser-
vations and interviews at the hospital that provided data and
material for developing the selected artifacts to be evaluated.
This analysis and design phase lasted three weeks in total and
was performed in December 2016.

EMPIRICAL STUDY
This paper aims at providing empirical evidence as to the per-
ceived and practical relevance of analysis and design artifacts,
and further provide guidance as to the extent of upfront analy-
sis and design in ASD. We do this by conducting an empirical
study consisting of two different elements.

1. The first element is findings from an empirical survey con-
ducted with agile practitioners, investigating their perceived
usefulness of the selected analysis and design artifacts.

2. The second element is findings from an exploratory study
of the practical use of selected analysis and design artifacts.

In the following, we will first present the research method of
the empirical survey conducted with practitioners, and then
we will present the exploratory study. Finally, we present the
findings from the two elements.

Element 1: Perceived relevance
The first element consists of an online survey with both close-
ended multiple choice and open-ended questions. The survey
was made up of 39 questions covering the different artifacts
and demographic questions. As an introduction to the survey,
participants were presented with the context of the different
artifacts; namely the case presented previously. For each
selected artifact presented in this paper, participants were
shown a graphic depiction along with questions regarding that
artifact. Participants were asked to evaluate their familiarity
with each artifact on a 5 point Likert scale; ranging from
not familiar to very familiar. Further, they were asked to
evaluate how useful each artifact would be on a scale of 1-5,
were they to begin developing a new IT system using Scrum.
Finally, participants were asked to explicate their evaluation of
each artifact’s perceived usefulness using free text. However,
this was not mandatory, so not all respondents answered this
question.

The survey was aimed at Danish practitioners working with
Scrum. The reason for this being that Scrum is one of the most
widely used agile methods in practice [23], and so the survey
used Scrum as the representative of agile methods. The survey
was distributed through academic and personal networks, and
13 participants from seven different companies responded in
total. Table 3 on the next page shows the participant profiles.

Participants responded to the survey on two separate occa-
sions. Participants 1-7 responded from December 2016 to
January 2017, and participants 8-13 responded from March

4

Participant Background Scrum role Company
P1 UX designer Team member Large
P2 UX coach Other Large
P3 Developer Team member Medium
P4 UX designer Team member Medium
P5 Test manager Team member Large
P6 Project manager Scrum master Medium
P7 Developer Team member Large
P8 UX designer & developer Other Medium
P9 UX designer Product owner Large
P10 Development manager Product owner Medium
P11 UX designer Product owner Medium
P12 UX designer Product owner Large
P13 Team coach Other Large

Table 3. Overview of participants.

to April 2017. The only difference between the design of the
two surveys was that the latter group of participants had the
opportunity to optionally recommend further artifacts useful
in upfront analysis and design as part of the survey. How-
ever, the first group of respondents was contacted shortly after
their responses and was offered the opportunity to recommend
further artifacts via phone or email.

All survey responses were given in Danish and have been
translated verbatim into English for this paper.

Element 2: Practical relevance
The second element was performed as an exploratory study
investigating the practical use of the selected analysis and
design artifacts. We collaborated with Aalborg University
Hospital while developing an Android smartphone application
prototype to support the daily work practice of bioanalysts at
the hospital. The application was developed using the selected
upfront analysis and design artifacts as a starting point.

The study was further conducted with two volunteering staff
from Department of Clinical Biochemistry at Aalborg Univer-
sity Hospital. The two participants were chosen to represent
the role of Product Owner, thus being responsible for prior-
itization of User Stories on the Product Backlog. The first
participant is working as a biochemist at the hospital, respon-
sible for quality assurance and research; the second is working
as a laboratory professional in close contact with the bioana-
lysts at the hospital.

During the development period spanning three months in total,
we kept a development diary reflecting on the development
process; noting how often the selected upfront analysis and
design artifacts were used, and for what purpose. New en-
trances to the diary were written shortly after finishing each
day of developing the application, so as not to forget details
or relevant information. Further, the diary was written with
a clear purpose in mind, and was written according to a pre-
defined structure as recommended by [19]. Thus, the diary
provides empirical evidence as to which artifacts had practical
relevance for the development of the application.

The diary was originally written in Danish and all passages
shown in this paper has been translated verbatim into English.

ELEMENT 1: FINDINGS
Key results from the survey investigating practitioners’ per-
ceived relevance of selected artifacts covering possible aspects
of analysis and design are presented in the following. The
respondents’ average assessment of perceived usefulness and
familiarity with the different artifacts can be seen in Table 4.

U F
High-level
Description

System definition 3.54 3.62
Affinity diagram 3.85 3.23

Problem
Domain

Class diagram 2.38 3.15
Event table 2.08 2.15
Statechart diagram 2.46 2.85

Application
Domain

Personas 2.85 3.77
Scenarios 3.08 3.08
Work modelling 4.31 3.54

System
Architecture

Component architecture 2.85 2.46

Component
Design

Prototypes 4.46 4.46
Model component 2.46 2.77

Table 4. Average assessment of usefulness (U) and familiarity (F) on a
scale of 1-5.

High-level Description
Respondents perceive the artifacts informing the high-level
description as being useful. Viewing the results from Table
4, the analysis and design artifacts evaluated by practitioners
are both rated well above the median value; giving the system
definition a score of 3.54 and the affinity diagram a score
of 3.85. Further, practitioners are overall familiar with both
artifacts.

There are, however, a few nuances in the open-ended responses.
One of these being that a vision of the intended system can
be expressed in other ways than a prosaic system definition,
and that this might be better than written, natural language. P5
expresses that “It is still just prose and I would like some more
specs” and in the same vein, P4 says that “[...] there are better
ways of describing a solution to a professional than prose”.
However, P4 also concurs that a prosaic system definition
would be easy for customers to understand. P12 expresses
that a system definition specifies the context of the intended

5

solution, but “[...] the prose in written form can be replaced
by dialogue and communication about the solution”.

All respondents except for one perceive affinity diagrams as
being a useful upfront analysis and design artifact. P12 says
there is value in specifying information but that “I would
rather use for example a goal hierarchy”. P1 says “[an]
affinity diagram is a super tool to analyze large amounts of
qualitative data”, and P2-P6 concur saying that it is useful for
organizing and structuring data. Specifically, P2 express that
“affinity diagrams are the result of the observations I’ve done
after field studies or interviews. It provides me with data and
not perceptions”.

Summarizing the respondents’ perceived usefulness of the
artifacts informing the high-level description of the system,
they ascribe value to both the system definition and the affinity
diagram. One recurring theme is the possibility of developing
a vision for the intended system in other ways that prose.

Problem Domain
The respondents are divided regarding their perceived useful-
ness of analysis and design artifacts informing the problem
domain, but the tendency is that practitioners perceive them
as less useful before the first Sprint. Thus rating all analysis
and design artifacts under the median value; giving the class
diagram an average of 2.38 out of 5, the event table an average
rating of 2.08 out of 5, and the statechart diagram an average
rating of 2.46 out of 5.

There could be multiple reasons for this, but one suspected
reason is the difference in the respondents’ job function and
familiarity with the different analysis and design artifacts. P1
gives the different artifacts the lowest possible rating with the
reason that they are unfamiliar. The same tendency can be
seen in the responses from P2, P4, P8 and P9. However, more
technical respondents had a somewhat different view of the
artifacts informing the problem domain. Examples being P3
stating that “precise definitions of object relations are always
a benefit”, and P6 expressing that the different artifacts are
“relevant for technical design”. There were however also
respondents very familiar with the artifacts that still perceived
them as not useful in upfront analysis and design. P12 is saying
about the class diagram that it is “only useful in very concrete
situations”, and P13 stating that a class diagram “should not
and cannot be done before Sprint 1”.

Although respondents perceive the analysis and design arti-
facts as being less useful before the first Sprint, there is a
tendency for this to be because of respondents not being famil-
iar with them. However, there is a slight indication that more
technical profiles perceive the analysis and design artifacts as
useful.

Application Domain
Analysis and design artifacts informing the application domain
are among the highest rated, and respondents agree that these
artifacts are useful before the first Sprint. Respondents are fur-
ther familiar with these artifacts. Particularly work modeling
is perceived as being very useful by respondents; giving this
analysis and design artifact an average rating of 4.31 out of

5. P2 saying that it is “essential for developing a good solu-
tion”, and P10 stating that “here you have the whole process
described and what data to store”.

One analysis and design artifact is, however, dividing respon-
dents. Personas are perceived as being very useful by some,
and not useful at all by others. This can also be seen in Table
4, where personas have an average rating just under the me-
dian value. P2 is expressing that personas are “essential for
understanding who is going to use the solution”. Along the
same lines, P5 says that “personas are interesting as they give
insights into who our users of the system are”. P1, however,
says that “personas in their theoretical form are completely
useless. No one wants to read about a fictitious user”, and P4
stating that “personas are okay, but one should be careful not
to create archetypes where there is a risk of designing for a
very small group”.

In summary, respondents are in general agreement that the
analysis and design artifacts informing the application do-
main are useful before the first Sprint. One artifact diving
respondents are personas, which is also apparent in the av-
erage perceived usefulness—placing personas just under the
median value.

System Architecture
Respondents are somewhat divided on whether the artifact
informing system architecture is useful before the first Sprint
or not. This can also be seen by the average rating of the
artifact, giving component architecture a rating of 2.85 out of
5 in total. Further, respondents are not so familiar with this
artifact.

The open-ended question provides some more insights. P5,
despite being only a little familiar with this analysis and design
artifact, say that “I’ve done technical architecture and it is a
good idea before Sprints”. Other respondents are however of
another opinion. P2 is stating that it is “way to technical and
solution specific before the Scrum-team starts”. Finally, some
respondents rate the artifact very low but indicate that it is
an analysis and design artifact that could prove useful under
certain circumstances. P12 expresses that “it is a fine activity
- primarily for the technical profiles. But I don’t know many
teams designing so specific up front”.

Regarding system architecture, respondents are divided re-
garding the perceived usefulness. However, the open-ended
responses indicate that some respondents perceive this anal-
ysis and design artifact as useful before the first Sprint—and
others under certain circumstances. An interesting observation
is that most respondents are not very familiar with the artifact
specifying the component architecture.

Component Design
Nearly all respondents agree that prototypes are very useful be-
fore the first Sprint rating it 4.46 out of 5 on average. Likewise,
all respondents are very familiar with this analysis and design
artifact. They do not, however, perceive the model component
as being useful before the first Sprint; rating it 2.46 out of 5.

P1 says that prototypes are “the best design description there
is”, P4 saying that “prototyping is my favorite deliverable to

6

customers and colleagues”, and P6 expressing that “it provides
a good overview and insights”. However, few respondents
were more critical of using prototypes. P5 is saying that “[...]
they should be done as part of the development Sprints. A
prototype should be done when there is doubt about the design
or when you want to test a design”.

Regarding the model component, respondents agree that it is
not very useful before the first Sprint. One exception being
P3 stating that it is “detailed and manageable”. Others point
to it being an artifact belonging in later Sprints, or as docu-
mentation. An example being P13 who says that the model
component can be used for “documentation of limited areas of
existing applications where it is not obvious from the code”.

Summarizing the analysis and design artifacts informing the
component design, respondents all perceive prototypes as be-
ing very useful before the first Sprint. On the other hand, they
perceive the model component as being not very useful.

ELEMENT 2: FINDINGS
Key results from the diary reflecting the practical relevance of
selected artifacts covering categories of analysis and design
are presented in the following. We used a qualitative, inductive
analysis of the diary to find the total number of times each
artifact was used during development, but also the reported
benefits and drawbacks to using the artifacts. This was done
in an iterative manner using NVivo.

During coding of the diary, we observed common themes
related to the use of the selected upfront analysis and design
artifacts; one of them being tacit use. Several times during the
exploratory study, we have reflected upon decisions founded
on the tacit knowledge of the bioanalysts at the hospital. This
knowledge was generated as a result of developing the artifacts
presented in this paper—thus tacitly relying on the artifacts
without explicitly having them at hand. Therefore, we claim
that the artifacts had practical relevance for developing the
application despite not being consulted in a direct manner. The
direct and tacit use of the different artifacts during each Sprint
can be seen in table 5 on the following page.

High-level Description
Artifacts informing the high-level description of the intended
system was used very sparsely; the system definition being
used only once during development, and the affinity diagram
not being used at all.

This does not, however, testify to the artifacts being irrele-
vant for the actual development of the system. For instance,
the system definition provides a description of the intended
system, which developers and relevant stakeholders can un-
derstand and appreciate. And so the system definition acts
as guidelines for communication between developers and the
Product Owner—even if the system definition is not consulted
explicitly. In this case, the system definition provided the
foundation for the prioritizing of User Stories on the Product
Backlog. Before the first Sprint, two stakeholders from the
Hospital acting as Product Owners were introduced to the
general system definition of the intended system; and from
there they prioritized the User Stories. As noted in the diary,
after the introduction to the intended system “we talked about

which part of the [intended] functionality would be the best to
start with”. Without having defined the intended use and func-
tionality of the system, prioritizing the required functionality
would, in this case, be very difficult.

Regarding the affinity diagram, it is hard to evaluate the prac-
tical relevance. The artifact was not directly or tacitly used as
a foundation for making decisions during development—so
in this sense, one could reach the conclusion that the artifact
had no relevance for developing the system. One important
observation, however, is that the exercise of developing an
affinity diagram has the purpose of organizing and structuring
data. And so informs other categories of analysis and design.
From this point of view, the affinity diagram is very relevant to
the development of other artifacts; however, it is not directly
evident or referenced in the diary.

Problem Domain
Artifacts informing the problem domain was used on several
occasions during development; both directly and tacitly. The
class diagram was used 4 times, the event table was used once,
and the statechart diagram was used 3 times in total.

During the first week of development, the artifacts inform-
ing the problem domain was used to verify the correctness
of relationships between objects in the application. More
specifically, after implementing the functionality of saving
objects in the application to the database, the artifacts were
used as a reference for how the relationships were in practice.
Thus providing guidance and confirmation to the correctness
of the proposed solution. After considering different ways
of implementing the intended solution, the artifacts helped
choose the one perceived as being most correct. As written
in the diary, we observe that “having modeled the problem
domain satisfactorily, it is obvious that the requisition is the
most important object”. The class diagram and the statechart
diagram was used again in Sprint 3. Here the artifacts were
again used as a confirmation of the correctness of the intended
implementation of functionality. On one occasion, we con-
template different ways of modeling how a department at the
hospital is associated with a specific Team of bioanalysts, and
the class diagram and statechart diagram provides informa-
tion resulting in the choosing of one solution over the other.
Before deciding on the best possible solution, we note on the
basis of the class diagram and statechart diagram, that “it is
in other words a necessity to model the Team in the system as
a given department is always associated with one—and only
one—Team”.

Summarizing, the artifacts informing the problem domain
was used on multiple occasions during development. And
further, the use of the artifacts was of practical relevance when
doubting whether one solution would be preferable to the
other.

Application Domain
Two of the artifacts informing the application domain was
frequently used during development. Scenarios describing the
intended system was used 5 times in total, and work modeling
was used 10 times. However, personas were not used—either
directly or tacitly—once.

7

S1 S2 S3 S4
D T D T D T D T Total

High-level
Description

System definition - 1 - - - - - - 1
Affinity diagram - - - - - - - - 0

Problem Domain
Class diagram 1 - - - 1 2 - - 4
Event table 1 - - - - - - - 1
Statechart diagram 1 - - - - 2 - - 3

Application
Domain

Personas - - - - - - - - 0
Scenarios 1 1 1 - 2 - - - 5
Work modelling 1 4 - - - 5 - - 10

System Architecture Component architecture - - - 2 - - - - 2

Component Design Prototypes 2 - - - 2 - - - 4
Model component 61 1 - - 12 - 13 - 9

Table 5. Number of times each artifact was used directly (D) and tacitly (T) during development Sprints.

Scenarios were mainly used as input to the User Stories de-
scribing requirements. And so, scenarios were typically used
directly in relation to the Sprint Planning. For example, we
have noted that “[scenarios] were developed to illustrate how
the intended system would help the bioanalysts—and so they
very much mimic User Stories”, and further that “they were
very useful when I was to validate User Stories”. Work mod-
eling was the artifact used the most during development, how-
ever, an interesting observation is that it was used almost
exclusively in a tacit way. The development of work models
during upfront analysis and design made explicit different re-
quired usages of the intended system. One example being the
need for scanning both the barcodes on the patient’s bracelet
and on the different test tubes. This needs to be done in spe-
cific order, and without needing to consult documentation or
users, the development of work models tacitly provided the
necessary information. As noted in the diary, we comment
that “I’ve implemented functionality that simulates scanning
the patients and the test tubes’ bar-codes. It is very simple, but
provide the opportunity of [...] simulating the blood sampling”.
Another example of the tacit use of work models is different
changes made to the user interface based on tacit knowledge
about the bioanalysts and their needs. Commenting on why
the user interface was simplified during implementation, it is
noted in the diary that “[It] is obvious that the bioanalysts first
orientate themselves towards the location of the patient, then
confirms their name and social security number”, which is re-
sulting in “[...] hiding less important information [in the user
interface]”. Personas were not used during development, and
a suspected reason for this is that there was high-level of user
commitment and interaction during development. As such,
there was no need for referencing the typical user. Further,
since the application was built as a form of custom product
targeting a specific user group with the same required func-
tionality, the need for abstracting information about potential
users seems less important or useful.

In summary, the artifacts informing the application domain
was frequently used during the development process—except
personas that were not used once. Scenarios provided guidance
and confirmation when developing User Stories, and work

modeling was frequently used in a tacit way when developing
required functionality or changing the user interface.

System Architecture
The artifact informing system architecture was used 2 times
during development, and it was in relation to the implementa-
tion of functionality for communicating with a web server.

One of the requirements for the intended application was re-
moving the need for physical requisitions—and instead store
them digitally. Therefore, during upfront analysis and design,
the component architecture artifact was developed to reflect
how the application would communicate with a central server
system and database. Following this thought, the application
was built around the same principle. We have not noted any
direct use of this artifact—however, the very idea of creating
a client-server pattern with the possibility of having multiple
devices communicating with the same central server system
simultaneously is a direct consequence of this Design decision.
And so, when developing this functionality, it is viewed as a
tacit use of the artifact. For example, when it is noted that
“This request contains updated information about the requisi-
tion, and the web server is responsible for parsing and storing
the data”, it is a direct consequence of the artifact developed
during upfront analysis and design. Had the component archi-
tecture been developed differently—e.g. storing data locally
on the device—the functionality would, in turn, have been
implemented differently. It follows, then, that the artifact had
a big influence in developing the system even though it was
only used tacitly; and only used twice.

Component Design
Artifacts informing the component design of the application
was frequently used during development; with prototypes be-
ing used 4 times, and the model component being used a total
number of 9 times.

The prototypes developed during upfront analysis and design
was used during development mainly in relation to the actual
implementation of the user interface. In this regard, the proto-
types were directly translated into the application. An example

1First revision of model component
2Second revision of model component
3Third revision of model component

8

being during Sprint 3, when implementing functionality for
showing the different departments in the hospital. Here it is
noted that “[the] prototypes once again formed the basis for
the user interface”. It is further commented that the “pro-
totypes have been a good starting point for developing the
user interface, since they have been developed with a certain
attention to detail that have been easy to copy in the actual
application”, and that the prototypes “have saved me from
coming up with my own design—and evaluate what data to
represent in the user interface”. The model component was
used throughout the entire development process and had dif-
ferent practical uses. In the first Sprint, the model component
was used most frequently, and here it served the purpose of
validating the implementation of functionality and objects. We
note that “is has been particularly useful in relation to model-
ing the different objects in the application” and that the model
component was used directly when “[implementing] the re-
lations between Patient, Department, and Bed4”. However,
one recurring theme is that the model component was revised
multiple times during development—to reflect the current state
of the application. In this sense, the model component served
both as guidelines for further development of the application,
but also as documentation. In the first Sprint, the author notes
that the initial model component developed during upfront
analysis and design was insufficient, and so chose to revise
the model component as a way of abstracting information and
managing increasing complexity. Further, when implementing
a new object during Sprint 3, a revised model component was
the deciding factor for how the different relations between
objects were implemented. As we have noted, “since the ap-
plication is becoming somewhat complex [...] the only logical
solution for me, was modeling the application by revising the
existing model component”. This also helped in developing
the database design even though no artifacts were developed
to support this activity. It is commented that “I haven’t had
material available that models the database—but in practice,
I’ve been able to use the model component to such a degree,
that it haven’t been necessary”. And further, that the revision
of the model component resulted in an application architecture
that “is forthcoming to the required functionality—even as the
application develops and becomes more complex”.

Summarizing the artifacts informing component design, both
prototypes, and the model component was frequently used
during development. The paper prototypes were translated to
the application and guided the development of the user inter-
face. The model component served as both documentation,
and confirmation of decisions regarding implementation.

DISCUSSION
This section discusses and compares the findings of both per-
ceived and practical relevance of the selected artifacts covering
possible categories of upfront analysis and design.

Differences in perceived and practical relevance
The survey investigating the perceived relevance of selected ar-
tifacts indicate that respondents do not value artifacts modeling

4Objects in application

the problem domain, or the model component that serves as im-
plementation details of the problem domain model. However,
these artifacts—and particularly the model component—was
some of the artifacts used the most during the exploratory
study.

The respondents who perceive the artifacts as being not useful
before the first Sprint, do so for mainly two different reasons.
The first being that they are unfamiliar with the artifacts, and
the second being that they find it too specific too early in the
development process. The latter also reflecting how modeling
maybe is considered part of a plan-driven approach and BDUF.
Yet, the practical use of the artifacts tell a different story. In
that regard, we benefited from the artifacts—and frequently
note how the structuring and abstracting of information helped
built a better application, and helped manage increasing com-
plexity as the application developed. An important observation
is, however, that the model component—which was used most
frequently—was not considered final or unchangeable during
development. On the opposite, the model component evolved
along with the application, always reflecting the current state
of the application. This way the model component not only
served as reference when implementing new functionality, and
the correctness thereof, but also as documentation of previous
design decisions. Further, had multiple developers been work-
ing on the same application, an iterative approach to modeling
the application could prove valuable in communicating Design
decisions and potential pitfalls of the current implementation.

Another more discrete difference lays in the perceived and
practical relevance of the system architecture. Respondents
were divided on the perceived usefulness—some finding it rel-
evant for the technical profiles, and others stating that they find
it too specific before the first Sprint. However, the use of the
system architecture proved to have a strong influence on the
system design. The component architecture modeled the appli-
cation in such a way, that data would be stored and managed on
a central server; allowing the application to communicate via a
client-server pattern. This provided the foundation for the en-
tire application, and all functionality was developed with this
in mind. Had the component architecture been developed dif-
ferently, or had such considerations not been addressed before
development, the development of the application would have
proceeded differently. However, it is also worth noting that
the architectural considerations could have been documented
in other ways than by modeling the component architecture.
For instance, considerations regarding architectural patterns
could have been expressed in natural language, or as part of
the vision for the intended system; as some respondents also
indicate when they express the need for specifications in the
system definition.

Similarities in perceived and practical relevance
The survey respondents perceived work modeling and proto-
types as being the most useful artifacts, and consequently these
artifacts were also among the most frequently used during the
exploratory study. Further, the system definition specifying the
intended solution have both perceived and practical relevance.

The respondents ascribe value to work modeling, generally
indicating that it provides a detailed process view, and helps

9

visualize how the intended solution should be developed. The
same theme can be found in the use of work modeling dur-
ing development of the application, where we attribute many
Design and implementation decisions to the tacit use of work
modeling specifying the bioanalysts work practice. Had this
artifact not been developed, much of the functionality in the
application would likely have been implemented differently.

The prototypes were described by some respondents as the
best design description possible, and the practical use of the
prototypes confirms this view. During development, the ap-
plication’s user interface was based on the prototypes—and
they were used whenever new elements were added to the user
interface. Thus being highly relevant for the intended solution,
and influencing the development of the application.

Lastly, the vision of the intended system expressed as a prosaic
system definition was perceived as being useful by respon-
dents, and the practical use of the system definition helped
stakeholders understand and prioritize requirements on the
Sprint Backlog. Although the system definition was only di-
rectly used once during development, the practical relevance
of the system definition proved to be significant. It shaped the
application, and was a medium for communication between
the developer and the Product Owners.

Importance of tacit use
An interesting observation following the analysis of the devel-
opment diary, is the importance of tacit use of analysis and
design artifacts.

If we were to consider practical relevance of the selected
artifacts based solely on their direct use, the overall impression
of relevance of artifacts presented in this paper would be very
different. We have observed how the development of artifacts
resulted in tacit knowledge about e.g. work practice or the
problem domain, and that this influenced decisions during
development. Comparing the direct and tacit use of artifacts,
the tacit use of selected artifacts account for 46% of the total
number of times the artifacts were used during development—
a testament to the importance of the knowledge generated as a
result of developing the artifacts.

We are, however, aware that other circumstances likely would
produce different results with regards to the importance of
tacit use of artifacts. An example being a larger development
team, where all developers would not have the opportunity
of directly interacting with users. In this case, one would
assume that the distribution of direct and tacit use would be
very much different—since most developers would not have
been part of developing upfront analysis and design artifacts.
Thus, artifacts would most likely be used in a direct way most
of the time. However, we claim that the tacit use of artifacts
observed in this paper still attributes to the practical relevance
of developing analysis and design artifacts in Scrum.

Context dependence
We cannot overlook context when developing software. And
in this case, the specific case could have influenced both the
perceived and practical relevance of selected artifacts.

The respondents were introduced to the case in the survey, and
it is possible that the case description have influenced their
responses. According to [25], a development situation is char-
acterized by varying degrees of complexity and uncertainty;
each warranting different countermeasures. A high degree
of complexity requires abstraction and decomposition, while
uncertainty calls for an experimental approach. Thus, if re-
spondents perceived the case as being characterized mainly by
one or the other, their responses could reflect this perception.
The same can be said regarding practical relevance, where
another case characterized by other degrees of complexity and
uncertainty could yield different findings.

Proposed artifacts
Practitioners were given the opportunity to recommend further
analysis and design artifacts not part of this empirical study.
We provided the opportunity to bring further perspectives on
Design Upfront when developing with Scrum; however, only
a few respondents gave their recommendations. In this section,
we will recap on the relevant suggestions from practitioners.

Two suggestions were repeated in the responses. Both P1
and P13 recommend the use of sequence diagrams to model
important or complex communication between components in
the intended system. This is interesting, because even though
respondents refer from artifacts informing implementation
details (such as the model component)—this suggestion points
to further value in specifying system components.

The other suggestion repeated in the responses concerned
modeling of the usage of the system. P1 and P6 both indicate
that an artifact such as storyboards helps in visualizing the
intended system—and how users interact and benefit from the
system. Storyboards would in this study inform the application
domain, and we find that it could be a possible replacement for
artifacts such as personas and scenarios; seeing as storyboards
would provide information about both users and intended use
of the system.

Practical implications
Following findings from the empirical study, and a discussion
thereof, we will in closing highlight some practical implica-
tions.

Choose artifacts systematically
Analysis and design artifacts in Scrum should be developed
with a clear purpose in mind; especially since artifacts, as we
have shown, address specific aspects of analysis and design.
Practitioners should therefore make clear what the purpose of
the given artifacts are, and choose sensibly.

Value simplicity of artifacts
Analysis and design artifacts in Scrum should be developed
with the value of simplicity in mind. As we have demonstrated
in our empirical study, there is practical relevance in using
artifacts in an iterative manner—and accepting that artifacts
may well develop along with the IT system.

Address possible aspects of analysis and design
Practitioners should acknowledge the importance of both
system-focused and user-focused design. Our empirical study

10

show that artifacts covering possible aspects of analysis and
design to a certain degree have both perceived and practical rel-
evance. Therefore, artifacts should address different, possible
aspects of analysis and design.

CONCLUSION
This paper has presented an empirical study investigating the
perceived and practical relevance of analysis and design ar-
tifacts when developing with Scrum. The empirical study
consisted of two different elements. The first element being
an empirical survey of agile practitioners’ perceived relevance
of selected analysis and design artifacts. The second being an
exploratory study investigating the practical relevance of the
same analysis and design artifacts.

Comparing the findings of the two elements in our study, we
find that there are both differences and similarities in the per-
ceived and practical relevance of selected upfront analysis and
design artifacts. Artifacts modeling the system was perceived
to be less relevant in the empirical survey, but highly relevant
during development. On the opposite, prototypes, work mod-
eling, and the system definition proved to have both perceived
and practical relevance. Lastly, we identify two different us-
ages of artifacts during development: Direct and tacit use.
Several times during development, decisions were made based
on tacit knowledge generated as a result of developing upfront
analysis and design artifacts.

In closing, we highlight practical implications based on our
empirical study. Here we propose to choose artifacts systemati-
cally, value simplicity of artifacts, and address possible aspects
of analysis and design.

Limitations
We acknowledge the limitations of our work, and especially
the nature of case studies. The perceived and practical rele-
vance of selected analysis and design artifacts could prove to
be different in other contexts. Further, we recognize that the
survey presented in this paper have a rather limited number
of respondents. We have attempted to negate this by target-
ing a very specific population, and by providing open-ended
questions to provide more insights into the responses.

Future work
Additional studies should be performed to investigate the rel-
evance of other analysis and design artifacts in ASD. And
further, empirical studies should be performed to investigate
the use of artifacts in larger, agile teams.

Lastly, empirical studies investigating the relevance of artifacts
in different development situations could provide valuable
insights to practitioners. Such empirical studies could provide
recommendations as to which artifacts have practical relevance
dependent on whether a development situation is characterized
mainly by a high degree of complexity or uncertainty.

ACKNOWLEDGMENTS
We would like to thank all participants from Clinical Biochem-
istry at Aalborg University Hospital for being very forthcom-
ing, and for their contribution to this empirical study. Further,
we would like to thank Robin Damsgaard Larsen and Mikkel

Mørch Henriksen for their help in conducting part of the litera-
ture survey, and in developing the selected analysis and design
artifacts.

REFERENCES
1. Scott Ambler. 2002. Agile modeling: effective practices

for extreme programming and the unified process. John
Wiley & Sons.

2. Alvaro Aranda Muñoz, Karin Nilsson Helander, Thijmen
de Gooijer, and Maria Ralph. 2016. Integrating Scrum
and UCD: Insights from Two Case Studies. In Integrating
User-Centred Design in Agile Development, Gilbert
Cockton, Marta Lárusdóttir, Peggy Gregory, and Åsa
Cajander (Eds.). Springer International Publishing, Cham,
97–115. http://dx.doi.org/10.1007/978-3-319-32165-3_4

3. Giuliano Armano and Michele Marchesi. 2000. A Rapid
Development Process with UML. SIGAPP Appl. Comput.
Rev. 8, 1 (Sept. 2000), 4–11. DOI:
http://dx.doi.org/10.1145/361651.361653

4. Muhammad Ali Babar. 2009. An exploratory study of
architectural practices and challenges in using agile
software development approaches. In 2009 Joint Working
IEEE/IFIP Conference on Software Architecture
European Conference on Software Architecture
(2009-09). 81–90. DOI:
http://dx.doi.org/10.1109/WICSA.2009.5290794

5. Kent Beck. 2000. Extreme programming explained:
embrace change. Addison-Wesley Professional.

6. Hugh Beyer. 2010. User-Centered Agile Methods.
Synthesis Lectures on Human-Centered Informatics 3, 1
(2010), 1–71. DOI:
http://dx.doi.org/10.2200/S00286ED1V01Y201002HCI010

7. Barry Boehm. 2002. Get ready for agile methods, with
care. Computer 35, 1 (2002), 64–69. DOI:
http://dx.doi.org/10.1109/2.976920

8. Silvia Bordin and Antonella De Angeli. 2016. Focal
Points for a More User-Centred Agile Development. In
Agile Processes, in Software Engineering, and Extreme
Programming, Helen Sharp and Tracy Hall (Eds.).
Number 251 in Lecture Notes in Business Information
Processing. Springer International Publishing.

9. Manuel Brhel, Hendrik Meth, Alexander Maedche, and
Karl Werder. 2015. Exploring principles of user-centered
agile software development: A literature review.
Information and Software Technology 61 (2015),
163–181. DOI:
http://dx.doi.org/10.1016/j.infsof.2015.01.004

10. Michael Budwig, Soojin Jeong, and Kuldeep Kelkar.
2009. When User Experience Met Agile: A Case Study.
In CHI ’09 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’09). ACM, New York, NY,
USA. DOI:http://dx.doi.org/10.1145/1520340.1520434

11. Stephanie Chamberlain, Helen Sharp, and Neil Maiden.
2006. Towards a Framework for Integrating Agile

11

Development and User-Centred Design. In Extreme
Programming and Agile Processes in Software
Engineering, Pekka Abrahamsson, Michele Marchesi,
and Giancarlo Succi (Eds.). Number 4044 in Lecture
Notes in Computer Science. Springer Berlin Heidelberg,
143–153.

12. Tore Dybå and Torgeir Dingsøyr. 2008. Empirical studies
of agile software development: A systematic review.
Information and Software Technology 50, 9 (2008),
833–859.

13. Davide Falessi, Giovanni Cantone, Salvatore Alessandro
Sarcia, Giuseppe Calavaro, Paolo Subiaco, and Cristiana
D’Amore. 2010. Peaceful coexistence: Agile developer
perspectives on software architecture. IEEE software 27,
2 (2010).

14. Martin Fowler. 2001. Is design dead? SOFTWARE
DEVELOPMENT-SAN FRANCISCO 9, 4 (2001), 42–47.

15. Martin Fowler and Jim Highsmith. 2001. The agile
manifesto. Software Development 9, 8 (2001), 28–35.

16. Jeff Gothelf and Josh Seiden. 2013. Lean UX: Applying
lean principles to improve user experience. "O’Reilly
Media, Inc.".

17. Jan Gulliksen, Inger Boivie, Jenny Persson, Anders
Hektor, and Lena Herulf. 2004. Making a difference: a
survey of the usability profession in Sweden. In
Proceedings of the third Nordic conference on
Human-computer interaction. ACM, 207–215.

18. Zahid Hussain, Wolfgang Slany, and Andreas Holzinger.
2009. Current state of agile user-centered design: A
survey. In Symposium of the Austrian HCI and Usability
Engineering Group. Springer, 416–427.

19. Leif Obel Jepsen, Lars Mathiassen, and Peter Axel
Nielsen. 1989. Back to thinking mode: diaries for the
management of information systems development
projects. Behaviour & Information Technology 8, 3
(1989), 207–217. DOI:
http://dx.doi.org/10.1080/01449298908914552

20. Yong Gu Ji and Myung Hwan Yun. 2006. Enhancing the
minority discipline in the IT industry: A survey of
usability and User-Centered design practice.
International Journal of Human-Computer Interaction
20, 2 (2006), 117–134.

21. Yuan Jia, Marta Kristin Larusdottir, and Åsa Cajander.
2012. The Usage of Usability Techniques in Scrum
Projects. In Human-Centered Software Engineering,
Marco Winckler, Peter Forbrig, and Regina Bernhaupt
(Eds.). Number 7623 in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 331–341.

22. Kati Kuusinen. 2014. Beyond the “One Sprint Ahead”
Approach: Organizing User Experience Work in Agile
Software Development. In Workshop at NordiCHI.
https://ucdandagile.wordpress.com/papers/

23. Marta Larusdottir, Jan Gulliksen, and Åsa Cajander.
2016. A license to kill – Improving UCSD in Agile

development. Journal of Systems and Software (2016).
DOI:http://dx.doi.org/10.1016/j.jss.2016.01.024

24. Lars Mathiassen, Andreas Munk-Madsen, Peter Axel
Nielsen, and Jan Stage. 2000. Object-oriented analysis &
design. Citeseer.

25. Lars Mathiassen and Jan Stage. 1992. The Principle of
Limited Reduction. Information Technology and People 6
(1992), 171–185.

26. Maryam Najafi and Len Toyoshiba. 2008. Two Case
Studies of User Experience Design and Agile
Development. In Agile 2008 Conference. 531–536.

27. Christian R. Prause and Zoya Durdik. 2012. Architectural
design and documentation: Waste in agile development?.
In 2012 International Conference on Software and
System Process (ICSSP). 130–134. DOI:
http://dx.doi.org/10.1109/ICSSP.2012.6225956

28. Steven Rakitin. 2001. Manifesto elicits cynicism. IEEE
Computer 34, 12 (2001), 4.

29. Outi Salo and Pekka Abrahamsson. 2008. Agile methods
in European embedded software development
organisations: a survey on the actual use and usefulness
of Extreme Programming and Scrum. IET software 2, 1
(2008), 58–64.

30. Thiago Silva da Silva, Angela Martin, Frank Maurer, and
Milene Silveira. 2011. User-Centered Design and Agile
Methods: A Systematic Review. In Agile Conference
(AGILE), 2011 (2011-08). 77–86. DOI:
http://dx.doi.org/10.1109/AGILE.2011.24

31. Mona Singh. 2008. U-SCRUM: An Agile Methodology
for Promoting Usability. In Agile 2008 Conference.
555–560. DOI:http://dx.doi.org/10.1109/Agile.2008.33

32. Desirée Sy. 2007. Adapting Usability Investigations for
Agile User-centered Design. J. Usability Studies 2, 3
(2007), 112–132.

33. Jim Ungar and Jeff White. 2008. Agile user centered
design: enter the design studio-a case study. In CHI’08
Extended Abstracts on Human Factors in Computing
Systems. ACM, 2167–2178.

34. Karel Vredenburg, Ji-Ye Mao, Paul W Smith, and Tom
Carey. 2002. A survey of user-centered design practice.
In Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 471–478.

35. Heather Williams and Andrew Ferguson. 2007. The UCD
Perspective: Before and After Agile. In Agile Conference
(AGILE), 2007. 285–290. DOI:
http://dx.doi.org/10.1109/AGILE.2007.61

36. Alan Wills. 2001. Catalytic Modeling: UML meets XP..
In pUML. 288–306.

37. Chen Yang, Peng Liang, and Paris Avgeriou. 2016. A
systematic mapping study on the combination of software
architecture and agile development. Journal of Systems
and Software 111 (2016), 157–184. DOI:
http://dx.doi.org/10.1016/j.jss.2015.09.028

12

38. Tina Øvad and Lars Bo Larsen. 2015. The Prevalence of
UX Design in Agile Development Processes in Industry.

In Agile Conference (AGILE), 2015. IEEE, 40–49. DOI:
http://dx.doi.org/10.1109/Agile.2015.13

13

An Exploratory Study of Direct User Involvement and
Design Decisions in Scrum Sprints

Nicklas Holm Joergensen
Aalborg University

Department of Computer Science
Aalborg, Denmark

nhjo10@student.aau.dk

ABSTRACT
Scrum is one of the most widely used agile methods in indus-
try and promises a framework for developing and sustaining
complex software. While Scrum focus on delivering working
software quickly, it does not focus on delivering usable soft-
ware. Thus, practitioners try to find relevant ways of achieving
a high degree of user involvement in Scrum with the long-
term goal of arriving at effective strategies for relevant user
involvement in Sprints. This paper presents an exploratory
investigating what direct user involvement is relevant for in
relation to Design decisions and Design process—and to what
extent direct user involvement the influence development pro-
cess’ contingencies. We find that direct user involvement is
relevant for defining the satisficing behavior of the developer;
adjusting aspiration levels; and in transferring knowledge from
user to developer. Further, we find that direct user involve-
ment was relevant for validating and generating requirements
during the Design process. Lastly, we find that direct user
involvement influenced both uncertainty and complexity as
contingencies during development.

Author Keywords
User-Centered Design; Scrum; agile development; direct user
involvement

INTRODUCTION
Agile software development (ASD) encapsulates different
methods all characterized by being light-weight and flexible
[6], with Scrum being one of the most widely used in industry
[12, 25]. Scrum promises a framework for developing and
sustaining complex software that enables developers to further
employ various processes and techniques [19].

While Scrum is a framework that focuses on delivering work-
ing software quickly, it does not focus on explicitly delivering
usable software—neglecting the difference between the cus-
tomer and the user [1]. As IT systems become more and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.

more complex, developing user-friendly systems can help in
achieving economic success in a competitive market [15] and
result in increased customer satisfaction [8]. Thus leading
practitioners to experiment with effective and relevant ways
of achieving a high degree of user involvement in Scrum to
develop better software.

One strategy for establishing user focus in Scrum is to orga-
nize development in two different tracks, where one track is
concerned with technical implementation and development,
and the other is concerned with user involvement; the so-
called ’One Sprint Ahead’ [22]. However, this is not without
challenges and drawbacks. The separation of design and im-
plementation increase costs of iterating over findings from
user testing, and it prolongs the duration of Sprints which in
turn makes it more cumbersome to react to changes during
development [10].

A potential solution to the aforementioned challenges is to
promote direct user involvement in Scrum Sprints. We are,
however, still faced with challenges related to the evaluation of
relevant user involvement activities; and deciding on what to
focus on when interacting with users of the intended system. In
some cases, it may be preferable to evaluate the user interface,
while in other cases, it may be more beneficial to inquire about
the daily work practice. Empirical studies suggest that some
problems related to user involvement in Scrum stem from
bypassing user-focused activities because of limited time and
resources [11]. Hence, a possibly more beneficial strategy is
to involve users only when it is deemed relevant, and only in a
relevant manner.

A challenge and long-term goal for practitioners is therefore
to arrive at effective strategies for deciding when and how to
involve users in Sprints. As suggested by [3], empirical in-
sights could provide practical advice on context-specific user
involvement strategies. However, there is lacking empirical
studies investigating the extent and outcome of direct user in-
volvement in agile methods [3]. To contribute to this research
gap, we find that we must first investigate and understand the
influence of direct user involvement in Sprints on developers’
Design decisions—and what this direct user involvement is
relevant for during development. Further, we must investigate
how direct user involvement influence possible contingencies

1

in the development process to eventually arrive at recommen-
dations for relevant user involvement in Sprints.

This paper presents an exploratory study investigating what
direct user involvement is relevant for in relation to Design
decisions and Design process—and to what extent direct user
involvement influence the development process’ contingen-
cies. While developing an Android application for supporting
the daily work of bioanalysts of the local university hospital,
we kept a development diary documenting the development
process, Design decisions, and how direct user involvement in
Scrum Sprints influenced the development of the application.

The rest of this paper is organized as follows: The next sec-
tion provides an overview of the theoretical foundation for
this study and related work. Then we introduce the research
method used in this exploratory study. The following section
then presents findings from the study. Finally, we provide a
discussion and conclusion.

RELATED WORK
In the following, we will first present our theoretical under-
standing of human problem solving and decision making. We
will then present an overview of related work on developers’
Design decisions and Design process.

Bounded rationality
Traditional theories of human problem solving and decision
making has been concerned with global rationality and the
idea of the economic man—however, Simon [20] opposes this
ideal. This rational actor was assumed to have a vast knowl-
edge of his environment, and being capable of calculating
the optimal course of action among many different possibili-
ties. Simon objects to this saying that the actor is constrained
both temporally and cognitively. Instead, Simon proposes the
theory of bounded rationality and states that:

[T]he task is to replace the global rationality of economic
man with a kind of rational behavior that is compatible
with the access to information and the computational
capacities that are actually possessed by organisms, in-
cluding man, in the kinds of environment in which such
organisms exist [20].

In doing so, Simon argues that actors are constrained by psy-
chological limits which result in the actor simplifying informa-
tion; and therefore relying on approximations. We are nowhere
capable of performing the computations needed for choosing
among a vast variety of actions and outcomes as suggested by
the economic ideal. Thus, the problem-solving activity and
the decision making process is about the actor approximating
a solution that is good enough.

This is not to suggest that the actor is irrational in his behavior.
It is to suggest that the actor while attempting to behave ratio-
nally, is still constrained by his environment and his cognitive
capabilities. Simon introduces the concept of satisficing which
encapsulates this behavior. When faced with several courses
of action, the actor does not try to calculate the outcome of ev-
ery possible course of action in search of the optimal decision.
Instead, the actor chooses the first course of action meeting
his aspiration levels [21].

The other possible approach that an actor can choose, when
facing complexity and uncertainty in his problem solving or
decision making, is optimization. However, this approach is
characterized by being an approximation of optimization [21].
Thus, the actor tries to simplify the world until he reaches
a situation that is manageable—and can choose the optimal
decision based on this radically simplified real-world situa-
tion. There is a fine line between satisficing and approximate
optimization; however, Simon contends that the practical im-
plications of choosing one approach over the other can be very
significant [21].

In one situation, the actor may start out with an approximate
optimization of the problem-solving space—working with
highly simplified models. When a plan has been schematized
based on this simplified space, the actor may then introduce
details to guide his satisficing design strategy. In another, the
actor may employ an overall satisficing design strategy; filling
in the details utilizing an approximate optimization approach
[21].

User involvement and Design decisions
There are to the best of our knowledge no empirical studies
investigating direct user involvement and what it is relevant
for in relation to developers’ Design decisions and Design
process. However, other empirical studies have investigated
developers’ decision making and reasoning in the Design and
development process.

Kant [9] performed a study with computer science students,
investigating their process of designing an algorithm for com-
putational geometry. They find that the participants typically
develop a rapid core idea which they then refine as they go
along. A drawback to this study, however, is that the problem
students solved were complex because of a requirement for
cleverness—and not because of an abundance of information
to structure and process. This meaning that there may be
differences concerning more abstract software Design.

Zannier et al. [24] did a multi-case study of 25 software
designers, asking about Design decisions they made. The study
presents findings from interviews with the software designers,
and provide some insights into developers’ decision making.
One is that software design often is related to the structuring of
problems and that the structure of the problem influences the
decision-making approach. Another that software designers
often use satisficing behavior when evaluating a design. The
study does not, however, offer any insights into the role of user
involvement and software designers’ decision making.

Lastly, Tang et al. [23] did an empirical study with both
software professionals and students, investigating how much
reasoning and exploration they performed before making archi-
tectural design decisions. It was conducted as a scenario-based
questionnaire with 72 participants; however, only 11 of the
participants filled out a questionnaire afterward about their
reasoning process and providing further insights. The study
concludes that a majority of both professionals and students
exhibited satisficing behavior in their decision making and that
this could impact the quality of Design decisions.

2

Summarizing, there are empirical studies investigating de-
velopers’ decision making and their reasoning about Design
decisions. Further, empirical studies point to developers ex-
hibiting satisficing behavior when faced with Design decisions.
There are, however, no empirical studies on direct user involve-
ment and how this influences developers’ decision making. If
we are to reach a long-term goal of developing effective user
involvement strategies, we first have to understand in what
ways direct user involvement in Sprints are relevant for Design
decisions and Design process.

METHOD
This paper aims at providing empirical evidence on what direct
user involvement is relevant for in relation to Design decisions
and Design process. We do this by conducting a qualitative
case study of an exploratory nature. While developing an An-
droid application for supporting the daily work of bioanalysts
at the local university hospital, we kept a development diary
documenting the development process and the influence of
direct user involvement. In the following, we will first present
the case forming the basis of this exploratory study and the
participants. Then we present our data collection, and finally,
we describe our process of data analysis.

Case
During this exploratory study, we have collaborated with De-
partment of Clinical Biochemistry at Aalborg University Hos-
pital. The department is responsible for taking and analyzing
blood samples from patients admitted to the hospital, and
further handling samples from local medical practitioners de-
livered to the hospital. Amounting to more than a thousand
daily blood samples on average.

The staff at the department carry around multiple different de-
vices to support their work practice; e.g. multiple telephones, a
PDA scanner, and a pager (see Figure 1). This means carrying
around several kilograms of digital equipment, even though
none of the devices have capabilities not found in a regular
smartphone. Further, the department experienced a lot of diffi-
culties in their work practice that the devices did not support.
One example is the difficulty in locating the other bioanalysts
when offering assistance. Bioanalysts at the hospital are as-
signed different Teams before shifts, which dictates which
departments to service at the hospital—and this means that
not all Teams have the same number of blood samples to take
each day. And so, typically, bioanalysts at the hospital offer
to help each other in finishing bloodwork of patients if they
are finished early with their immediate tasks. In this case, one
would have to manually call co-workers not knowing where
they are at the hospital, or if they are even in need of assistance
with their immediate tasks; which was experienced as being
very time-consuming and frustrating.

Therefore, we decided in collaboration with the staff at the
department, to develop an Android prototype that would con-
solidate the different devices into one, single device. And
even more so, develop a possible solution to the problem of
locating and assisting co-workers. Thus making the daily work
of the bioanalysts at Clinical Biochemistry easier and more
convenient.

Figure 1. An example of devices typically carried by a single bioanalyst
during a normal shift.

Participants
The study was conducted with six volunteering staff from
Clinical Biochemistry at Aalborg University Hospital. The
participants had different responsibilities and positions at the
hospital and were chosen to represent different roles in the de-
velopment process. A summary of participants and designated
roles during development can be seen in Table 1.

The first two participants were chosen to represent the Product
Owners, and thus being responsible for prioritizing Tasks on
the Backlog. Product Owner 1 is working as a biochemist at
the hospital, responsible for quality assurance and research;
Product Owner 2 is working as a laboratory professional in
close contact with the bioanalysts at the hospital.

Four more staff at the hospital further participated in the de-
velopment process; we call them User 1-4. User 1 was chosen
to be the one directly involved in Sprints, as he is working
as a bioanalyst at the hospital, and is further responsible for
educating new bioanalysts at the hospital. Thus, it was decided
that this participant would be a very suited representative of
the intended users; having an excellent understanding of not
only work practice but also the challenges and requirements
of the bioanalysts.

Lastly, User 2-4 volunteered to try the prototype immediately
after the last Sprint. This was both to showcase and validate
the final prototype. User 2-4 all work as bioanalysts at the
hospital, and all have several years of experience as health
professionals.

No. Designation Position
1 Product Owner 1 Biochemist and researcher
2 Product Owner 2 Laboratory professional
3 User 1 Bioanalyst and educator
4 User 2 Bioanalyst
5 User 3 Bioanalyst
6 User 4 Bioanalyst

Table 1. Overview of participants.

Data collection
The empirical data was collected via a diary kept during the
development of the application spanning a period of three
months in total. The use of diaries in other fields of research

3

is very common [4]—and it has seen some use in the field of
software development also [16].

There are several benefits to using diaries, and especially con-
cerning an exploratory study. The primal benefits being the
collection of very rich data [13], and that diaries tend to pro-
vide more reliable data in cases where estimates of frequency
or temporal recollection are important [4]. However, there
are also drawbacks to diaries; specifically the time-consuming
nature of diaries resulting in “a process of attrition”, and the
failure to accurately recollect events if not recorded shortly
after [4].

As countermeasures to the drawbacks of using diaries, we have
followed the practical advice suggested in [7]. This resulting
in defining a clear structure and purpose. Further, diary entries
were written immediately after each day of development in an
electronic format to strengthen the validity of recollection.

Data analysis
As with most qualitative studies, the starting point of analysis
was coding and categorizing data. Coding involved multiple
steps presented in the following. After initial coding, we
derived themes based on reviewing the coded data presented
in the findings section.

The first step in our data analysis was to thoroughly read
through the data, familiarizing ourselves with sections and
parts of the diary relevant to the research focus. After doing
this, we performed what is referred to as descriptive coding
[18]. The benefit to descriptive coding is that it creates an in-
dex of the data, making it easier to develop an overview of the
content. These initial codes were developed in iterations, and
finally reviewed and combined to create categories based on
similar events and actions. Some were deduced directly from
the research focus (e.g. Design decisions)—while others were
established inductively through analysis (e.g. Uncertainty).

After developing the overall categories, we performed analytic
rather than descriptive coding. This time focusing more on
processes and properties related to the established categories
than describing the events. After analytic coding of the data,
codes were organized, reviewed, and combined to develop
themes related to the categories developed from the descriptive
coding of the data.

The diary was originally written in Danish, and coded using
NVivo software. All example passages shown in this paper
have been translated verbatim into English.

DIRECT USER INVOLVEMENT EPISODES
This section provides an overview of the different episodes
of direct user involvement during Sprints to contextualize our
findings. Table 2 on the following page shows a summary of
all episodes.

Episode 1
The first episode took place right before the first Sprint and in-
volved the two Product Owners from the hospital. The meeting
had two purposes; (1) introducing and discussing the intended
application and (2) prioritization of the developed User Stories
on the Product Backlog. After discussing the perceived needs

and requirements of bioanalysts at the hospital, the two Prod-
uct Owners prioritized User Stories—specifying what would
be the best functionality to develop and evaluate first.

Episode 2
The second episode took place at the hospital with User 1
immediately after the first Sprint, and the meeting took ap-
proximately one hour. Before the meeting, we had prepared
questions regarding uncertainties discovered during the first
weeks of development; pertaining mostly to work practice and
the user interface. During this meeting, User 1 also tested the
first functionality and provided inputs to both the user inter-
face and lacking functionality. These inputs and perceived
improvements were added to the Backlog to be implemented
in Sprint 2.

Episode 3
The third episode took place at the hospital with User 1 follow-
ing the second Sprint, and the meeting took approximately one
hour. The meeting had two main purposes; (1) validating the
proposed changes to the user interface implemented since the
last evaluation, and (2) to clarify the work practice of dividing
psychical blood sample requisitions between bioanalysts. Dur-
ing the meeting, we first performed an informal evaluation of
the prototype with User 1—and afterward, the task of dividing
physical requisitions was clarified via a conversation with User
1; documented by written notes of our understanding of the
work practice.

Episode 4
The fourth episode concluded the fourth and final Sprint. It
took place at the hospital with User 1 immediately after the
fourth Sprint and took approximately one hour. The meet-
ing was performed as an informal evaluation showcasing the
newest functionality and recent changes to the user interface.
The focus was mostly on functionality since this was aimed at
directly supporting the work practice of the bioanalysts; and
more specifically, solving the problem of how to effectively
assists colleagues.

Episode 5
The fifth and final episode took place at the hospital with
User 2-4 following the fourth Sprint. The purpose was to
showcase the prototype and give the bioanalysts a sense of how
a possible solution could look. Further, the bioanalysts were
encouraged to test the prototype’s functionality, and give their
reflections on how well it would support their work practice.
This feedback was audio recorded for further perspectives on
the usefulness of the developed prototype.

FINDINGS
In the following, we will present the major themes related
to the Design decisions, Design process, and development
process contingencies derived from the coded data. First, we
present findings on what direct user involvement in Sprints
was relevant for in relation to Design decisions. We then de-
scribe how direct user involvement contributed to generation
and validation of requirements as part of the iterative Design

4

No. Participants When Purpose
1 Product Owners Before Sprint 1 Introduction to the intended application, and prioritization of User Stories on the

Product Backlog.
2 User 1 After Sprint 1 Showcase first iteration and clarify uncertainties generated in the first Sprint.
3 User 1 After Sprint 2 Informal evaluation of prototype and changes implemented since Episode 2. Clarify

work practice.
4 User 1 After Sprint 4 Conclude development Sprints and informal evaluation of prototype.
5 User 2-4 After Sprint 4 Showcase prototype and functionality to further users at the hospital.

Table 2. Episodes of direct user involvement during Sprints

process. Finally, we present our findings on direct user in-
volvement concerning complexity and uncertainty during the
development of the application.

Design decisions
Developing and designing software involves a lot of problem-
solving and decision-making, and the coded data provide some
insights on how direct user involvement influenced Design de-
cisions during development, and, consequently, in what ways
this was relevant. In this section, we present findings related to
satisficing behavior, aspiration levels, and knowledge transfer.

Defining satisficing behavior
The idea of satisficing among developers have been shown in
different empirical studies, and we find that satisficing behav-
ior exhibited from both developer and user played a significant
role in development also. In the following passage, for ex-
ample, it can be seen that when comparing different possible
solutions for the relationship between tables in the database,
one is chosen because of it being the solution seemingly meet-
ing the needs and requirements of the developer.

I [the developer] have chosen to keep this relation [be-
tween tables] since it still seems to be the best solution. I
cannot, as of writing, see how else it would make sense
to create the relation between a User1 and a Requisition2.

Few attempts had been made to structure the application differ-
ently leading up to the decision—however when discovering
what was seemingly the right choice; the search strategy was
terminated. Another example of satisficing behavior can be
seen in the following passage. Here, a decision was made to
implement a certain Object Relational Mapping library after
comparing few solutions.

After reading different comparisons [of libraries], docu-
mentation [...] I ended up with GreenDAO3, as it seems
to fulfill my needs—and has good backing.

In this case, also, the decision to choose one library over the
other was made when finding the first solution best meeting
needs and expectations; not by comparing and investigating ev-
ery possible course of action. In the example passages above,
the satisficing behavior of the developer was not specifically
influenced by direct user involvement—but was more a re-
sult of the technical implications of developing the required
functionality.

1Table representing object in application
2Table representing object in application
3Object Relational Mapping library for Android

However, direct user involvement did have an influence on
the satisficing behavior of the developer; and especially with
regards to the user interface. Take, for example, the following
passage showing reflections about possible changes to the user
interface after evaluating the first iteration with the User 1
during Episode 2.

[...] much of the information on the physical requisition
is required according to the hospitals’ rules—however, in
practice they are rarely used. The idea of hiding informa-
tion as much as possible in the user interface, therefore,
seems [to the user] like a really good solution.

In this case, considerations of a particular user interface design
are derived from the direct interaction with User 1. Here, it is
not necessarily the developer’s satisficing behavior that guides
the search of potential solutions; but rather the user’s. An
implication of this is also, that while the developer is work-
ing under certain cognitive constraints—parts of the decision
making can be handed over to the user where relevant. Thus
reducing the information to be processed and structured.

An interesting observation, however, is that not all Design
decisions were made as a result of satisficing behavior from
only the developer—or only the user. In some cases, the satis-
ficing decision of the developer was fine-tuned to satisfy the
user following evaluation. As an example, take the following
extract from the diary commenting on the decision of adding
labels to the user interface instead of plain text.

On a physical requisition it is written in text what color
test tube to do the test in [...], but we agreed that it is prob-
ably more intuitive, that this is specified with a colored
label or colored icon.

Before evaluating with User 1 during Episode 2, the decision
of specifying the type of test tube in written text—as it is
done at the hospital at the time of writing—had been made;
seeing this as the appropriate and meaningful solution. How-
ever, user involvement directly influenced the final Design
decision, seeing as the proposed solution was satisficing for
the developer; but not the user. In this sense, the developer’s
satisficing behavior is somewhat being constrained and the
search strategy guided by the user—whereby direct user in-
volvement ultimately becomes relevant in terms of defining
the satisficing behavior of the developer.

Adjusting aspiration levels
Direct user involvement during Sprints had a strong influence
on aspiration levels. Simon [21] mentions aspiration levels as
the stop rule signifying that a satisfactory alternative has been

5

found and that the search strategy can be terminated. In other
words, our aspiration levels act as criteria for whether or not
an acceptable solution has been discovered.

On most occasions, a specific user interface was developed to
meet the aspiration levels of the developer; and when evalu-
ated by the user, the aspiration levels were either proven to be
congruent with user’s or not. Either resulting in acceptance of
the proposed solution or a need for further improvement. The
following passage, for example, reflects how the initial aspira-
tion level for the user interface was adjusted after evaluating
with User 1 in Episode 3.

Besides that, he [User 1] has inputs for minor corrections
to the user interface; for example formatting the dates,
adding icons to finished requisitions, and removing social
security numbers from the list overview [of requisitions
in the application].

In this case, User 1 expresses a need for further improvement
since the user interface does not provide the necessary informa-
tion to support the work practice of bioanalysts at the hospital.
If we view the overall design strategy chosen by the developer
to be of a satisficing kind, direct user involvement in this ex-
ample help fills in the specific details. Thus, we can better rely
on abstracting information and working in simplified spaces,
since the details approximating the real-world is introduced
by direct user involvement.

Another point of observation to be made in this regard is that
we find the direct user involvement in part to be guided by the
principle of “I’ll Know It When I See It” [2]. The following
passage shows an example of this displayed after evaluating
with User 1 in Episode 3.

Even though he [User 1] was thrilled about the color
label, it hit him today that it isn’t important to see what
the blood is tested for. It is, rather, very important to
know how big the test tube should be.

Here, User 1 realizes that the initial revision to the user inter-
face proposed in Episode 1 still was not the seemingly best
solution. And we find this especially interesting since the user
interface had already been revised during Episode 1 to become,
at that moment in time, a satisficing solution for the user. What
we gather from this, is that developers can ultimately only hope
to design a satisfactory system by responding to input from the
users. However, this is somewhat complicated by the users not
knowing what they want until they see something similar to
their needs—or realize that the current system is lacking a par-
ticular feature not previously apparent. Further, that because
the users’ aspiration levels for the intended system may very
well change during development, so too must the developers’
aspiration levels of the intended system change in response.

Thus, direct user involvement becomes relevant for adjusting
the aspiration levels of developers, which is a necessity if we
are to arrive at Design decisions ultimately resulting in a useful
and usable product as experienced by the user.

Knowledge transfer
Tacit knowledge that is hard to put into words resides in all of
us. And, of course, this poses a challenge when developing

and designing software—since it implies that users may not
be able to articulate what they want or need. So to exploit
or benefit from this tacit knowledge, one must find a way to
externalize it; e.g. via social interaction [17].

We find that knowledge transfer was very relevant during de-
velopment and that the flow of tacit knowledge from user
to developer strongly influenced Design decisions. In the
following passage, for example, we see that the decision to im-
plement a specific database design comes as a direct result of
tacit knowledge about work practice being transferred during
social interaction with User 1.

After further consideration it is an obviously more correct
way to model it because, in practice, it is not like you [the
bioanalyst] are no longer responsible for the department
associated with your [assigned] Team just because you
offer assistance [to other bioanalysts].

In this case, the direct user involvement in Sprints had a sig-
nificant impact on Design decisions; and was a deciding fac-
tor when choosing between different architectural courses of
action. Another example of knowledge transfer influencing
Design decisions can be seen in the following extract that
describes the reasoning behind developing the logic for auto-
matically assigning blood sample requisitions to bioanalysts
working on a given day.

First of all, the bioanalysts on a given Team do not neces-
sarily come into work at the same time; not even though
they are all scheduled to take blood samples during the
morning round. And sometimes they do not come in at all
(e.g. if they are sick). In other words, it is not sustainable
to assign requisitions to the bioanalysts in advance.

Had the transfer of knowledge from user to the developer
not been possible, the outcome would most likely not only
be different—but also wrong to the point where the solution
would not support the daily work practice of the bioanalysts.
However, not all examples of knowledge transfer had a posi-
tive influence on Design decisions. In the following passage,
we see how problems arose because certain social constructs
contributed to cognitive challenges of the developer.

The bioanalysts are aware that they are part of a Team—
not least because it dictates which departments to service.
But in practice, they do not consistently distinguish be-
tween being on a [specific] Team or at a [specific] de-
partment [...] when they speak colloquially of providing
assistance, they refer to assisting a specific department—
and not a specific Team.

This seemingly minor misconception proved to have great in-
fluence on Design decisions. Acting on the knowledge derived
and generated through direct user involvement, the architec-
tural modeling of the problem domain was done in a certain
way—and when it was realized that this was in fact not the
correct solution, larger parts of the application had to be refac-
tored.

However, as an objection to the fault in this thinking, one can
raise the point that without direct user involvement in each
Sprint, the error may not have been found until much later—

6

which would have increased the costs of correcting it. And
while this may be true, we find that it is a good example of
a challenge related to direct user involvement and influence
on Design decisions. This seems especially so in this case
because the intended system in some way or other needed to
reflect not only psychical objects (such as a department) but
also social constructs (such as being part of a Team).

Design process
One of the core values of agile methods is the idea of develop-
ing rapid value through iterative software development. And
in this sense, the agile development process facilitated through
methods like Scrum is intended to be an iterative Design pro-
cess, where requirements are generated, validated, and refined
continuously [5].

Direct user involvement played an important role in validating
and generating requirements throughout the Design process.
Even though Product Owner 1 and Product Owner 2 was
responsible for prioritizing User Stories on the Backlog during
Episode 1, it was decided—and welcomed—that the intended
users of the application should be an equal part in defining
requirements; seeing as the application should, in the end, be
beneficial to them and their work practice.

Not surprising, a lot of the requirements generated through
direct user involvement in the Design process revolved around
the user interface, since this is tangible and visible when eval-
uating a prototype. In the following, we see how specific
requirements regarding available information is discovered.

It is of particular importance that the user interface offers
the possibility of seeing notes from the requester of the
blood sample; e.g. special needs regarding measurements
of fluids or the like. Further, it is important that a requisi-
tion has the date and time for when it has been ordered
and completed [by the bioanalysts].

These requirements were not initially though off during
Episode 1 and when developing User Stories—and were
brought to attention after evaluating the prototype with User 1
in Episode 2.

However, not all requirements only had an impact on the
user interface during the Design process. Other requirements
generated through direct user involvement had an influence
on the technical implementation. In the following extract, we
see that interactions with User 1 provided further insights into
technical requirements not discussed or thought off during
Episode 1.

There should not be any direct association between a bio-
analyst and department without a Team [...] a bioanalyst
is always assigned a Team on rounds. I some cases, a
Team can consist of only one bioanalyst, but that does not
change the logic of assigning requisitions [to bioanalysts].
In a case such as that, any given Team is still responsible
for the same departments [as usual].

After meeting with User 1 in Episode 3 to clarify the work
practice of the bioanalysts, specific requirements regarding the
functionality of assigning blood sample requisitions were dis-

covered and specified. Another example of generated require-
ments that had a direct impact on the technical implementation
can be seen in the following passage.

It turns out that the departments have to be finished in
a certain order; and that this order is defined by doctors
at the hospital. In other words, the application has to
assign requisitions after what status, if you like, a given
department has. In the sense that some departments are
more important than others.

When evaluating the functionality of assigning blood sample
requisitions during Episode 4, User 1 explains how certain
departments at the hospital have to be finished first—because
they have the most critical patients. And so, this, in turn,
specifies very certain requirements regarding the technical
implementation. If these requirements are not met, not only
would the application not support the current work practice of
bioanalysts at the hospital; it would also go against hospital
regulation, and prove to be potentially dangerous for patients.

As evidenced, direct user involvement during Sprints had a sig-
nificant impact on requirements; not only pertaining to the user
interface but also in discovering and specifying requirements
for the technical implementation. Also, the users evaluating
the prototype during Episode 5 all express, that they perceive
the direct user involvement to have had a clear impact on ar-
riving at a solution supporting their work practice. Take, for
example, User 3 who says the following when asked whether
a good solution could be developed without interacting with
end-users.

I do not think so [...] It is easy to think that something is
smart—but it has to be used. So I think that... We are the
ones who need to use it.

Along the same lines, User 4 expresses that there is often a
mismatch between the requirements of the customer—in this
case, the directors or managers at the hospital—and the user.
When asked the same question, User 4 replied the following.

You have to talk with the users [of the application]. They
[the directors] do not always know what we do. They are
not the ones on the floor.

In summary, we find that direct user involvement during
Sprints was very relevant for the generation of requirements
during the Design process; and consequently for arriving at
a solution that was perceived to be useful and supporting of
the work practice at the hospital. Had we received all in-
formation from Product Owner 1 and Product Owner 2, it is
likely that the perceived usefulness of the application would be
lower—since the Design process and final product was highly
influenced by the direct user involvement during Sprints.

Contingencies
During analysis, it became an apparent theme that contingen-
cies in the development process could be related to complexity
and uncertainty as presented in [14]. Here, a given develop-
ment situation is characterized by having varying degrees of
complexity and uncertainty—and developers must choose the
appropriate approach dependent on what characterizes their

7

situation. Complexity, in this case, represents the amount and
diversity of relevant information available; and uncertainty
represents availability and reliability of relevant information.

In the following, we will present findings on complexity and
uncertainty as contingencies during the development process—
and how direct user involvement in Sprints influenced these
contingency factors.

User involvement reducing uncertainty
One way of generating information, and thereby reducing un-
certainty, during a development process is to use prototypes
[14]. This was very much the case in this study, since most of
the information generated as a consequence of direct user in-
volvement, was by way of evaluating prototypes. We find that
a recurring theme during development was the generation of
uncertainty during Sprints; uncertainties that could be reduced
by evaluating with users. In the following passage, we see
reflections in the diary commenting on uncertainties generated
during Sprint 1.

[...] the development of the user interface has moved
from being complex because of [not knowing] how to
build the user interface in Android, to being characterized
by uncertainties concerning whether or not what I [the
developer] has built, and if it is correct.

During the first Sprint, the development of the user interface
generated uncertainty—lack of relevant information—about
whether the solution would fit the users or not. We can see
another example of Sprints generating uncertainty related to
the user interface in the following extract.

And I [the developer] am therefore not sure whether I
have shown the most important information or not—or
whether the user interface is at all intuitive.

In this case, further implementation of a different user inter-
face during Sprint 3 generated uncertainty with regards to the
appreciation of users. However, Sprints also generated uncer-
tainty not related to the user interface. In the next passage,
there is expressed concerns regarding how bioanalysts move
around the hospital during shifts.

There could be multiple reasons for a Team to always be
at the same floor, and I [the developer] can, by the nature
of things, only find this out by asking at the hospital.

This passage from Sprint 3 is an example of uncertainty gen-
erated during Sprints that have nothing to do with the user
interface but are directly related to work practice and imple-
mentation of required functionality. A final example showing
uncertainty produced during Sprints is the following extract
questioning whether the functionality of the application sup-
ports the bioanalysts’ work practice or not.

It is particularly important that I [the developer] receive
confirmation as to whether my implementation [...] is
correct since this functionality is very sought after [by
the bioanalysts].

In this example from Sprint 4, there is not much uncertainty
regarding the structuring of the user interface—however, there
are doubts as to the functionality; and how this supports the

bioanalysts. Consequently, when evaluating with User 1, un-
certainties generated in Sprints were reduced and clarified
after evaluation. In the following passage, we see how uncer-
tainty from Sprint 1 was reduced after meeting with User 1 in
Episode 2.

The meeting with him [User 1] was therefore ideal in
relation to the uncertainty of the user interface. Moreover
getting confirmation as to whether the structuring of the
user interface was a good idea, and what information is
essential for the work practice of a bioanalyst.

And the same goes for uncertainties related to work prac-
tice. Take the following passage, showing how User 1 helped
clarify in what order bioanalysts move between the different
departments at the hospital.

I [the developer] asked if there was any structure as to
how a Team moves between departments [...] And there
was. I’ve mapped with him [User 1] which departments
to finish in what order, and this is essential for how to
assign requisitions [in the application].

During Episode 3, the order of departments to service first
during a normal shift was clarified, which, in turn, is very
important if the application was to support the work practice
of bioanalysts. Seeing uncertainty as a contingency factor
during the development process, we find that much of the
uncertainty generated in Sprints could be reduced by user
evaluation and direct user involvement. Not only about the
user interface, but also work practice and functionality.

User involvement adding complexity
Complexity during the development process can be reduced
through specification, abstraction and decomposition [14]. In
this study, complexity was typically introduced by user in-
volvement because the information generated by evaluating
with User 1 needed to be structured and abstracted. This was
especially so when information about work practice was gen-
erated through evaluation. In the following passage, we see
how clarification of work practice during Episode 3 introduces
complexity to the application.

The application needs to be forthcoming with regards to
the wish of assisting another department. Which means,
in practice, that the bioanalyst wishing to assist needs
to be associated with a different Team at that moment
they wish to help with another department’s unfinished
requisitions.

In this instance, it becomes clear that the social construct
of a Team at the hospital is somewhat fluid—and that the
application needs to accommodate bioanalysts being part of
multiple Teams at different points in time. Another example
of complexity being introduced by direct user involvement can
be seen in the following extract.

[...] they [the bioanalysts] need to be assigned an equal
number of requisitions for each department, starting with
the most critical departments first. Where I [the devel-
oper] initially thought of the requisitions [to be assigned
in the application] as being part of an overall pool [of
requisitions]—in reality, it is more correct to think of

8

them [the requisitions] as being a cake to be split evenly
between bioanalysts.

Here, we see that Episode 4 provides clarification as to how
to assign requisitions correctly—but it also introduces com-
plexity to the development process, because it turned out to be
more complicated than first assumed.

During the development process, we find that developing arti-
facts was especially relevant in terms of reducing the complex-
ity arising throughout the development process. One example
is the following passage, explaining how modeling the rela-
tionships between entities helped structure the information
generated by meeting with User 1 in Episode 3.

Under all circumstances it is a prerequisite [...] that
a Team is represented in both the application and the
database. And seeing as though the application is already
becoming complex [...] it was to me [the developer] the
most logical step to model the application by [...] class
diagram.

To manage the information generated by direct user
involvement—and rising complexity in the application—
modeling of the application proved useful. This can also
be related to the intrinsic relation between complexity and
uncertainty presented in [14]. In this sense, the countermea-
sure to complexity introduced by direct user involvement and
prototyping is specification and modeling of the problem do-
main. Viewing complexity as another contingency factor, we
find that complexity was added by direct user involvement
throughout the development process.

However, an important observation is that the complexity
added by user involvement did not necessarily have a neg-
ative impact on development or final product. On the contrary,
the previous passages show how direct user involvement by
adding complexity helped develop a more correct and useful
solution. It is, though, evident that direct user involvement to
a certain extent adds complexity to the development process;
and that developers need to handle this effectively.

DISCUSSION
In the following section, we discuss our findings on Design de-
cisions, Design process, and contingencies in the development
process.

Design decisions
The findings reveal some interesting insights as to what direct
user involvement is relevant for in relation to Design deci-
sions. We find that direct user involvement during Sprints was
relevant not only to decisions about the user interface—but
also Design decisions regarding the technical implementation.
This might be especially so in our study because the applica-
tion was built as a custom product to specifically support the
work practice of bioanalysts at the hospital. If the application
was not meant to support the specific requirements of a well-
defined user-group, it is possible that direct user involvement
during Sprints would be more relevant to Design decisions
about the user interface than functionality.

Further, it is clear that there is a big overlap between the
satisficing behavior and aspiration levels of the developer.
This was to be expected since Simon [21] presents them as
both being integral to an actor’s decision-making. However,
what is also worth noting, is that the knowledge transfer from
user to developer also influences the satisficing behavior and
aspiration levels. The more knowledge about the user’s needs,
work practice, and behavior—the more our aspiration levels
should eventually be aligned with the user’s.

It is also evident from our findings that user feedback to a
certain extent could be characterized by the principle of “I’ll
Know It When I See It”, and that the aspiration levels of
users may evolve. In this sense, direct user involvement is
very relevant for developers if they are to reach a solution
appreciated by users because direct user involvement helps to
adjust the aspiration levels of those making Design decisions.
If we only ever develop to our aspiration levels—without
making sure that these are aligned with our users—we can not
hope to always arrive at useful and usable products.

What we have not investigated or demonstrated in this study,
is whether the aspiration levels of users continue to rise and
evolve. It could be especially interesting to see if, and how,
aspiration levels of users evolve over longer periods of time—
and how the direct involvement of multiple users influence the
satisficing behavior and aspiration levels of the developers.

Design process
Direct user involvement in Sprints was particularly relevant
in the Design process, where it was required to understand
and support the work practice of bioanalysts. We gather that
this might be especially so in this case, because the intended
application very much needed to support social constructs at
the hospital; which in many ways reside as tacit knowledge
in the bioanalysts. Therefore, social interaction with users
helped generate requirements to both the user interface and
functionality.

It is also apparent from our findings that the users evaluating
the prototype after the final Sprint perceived it to be useful
and supporting of their work practice. And that they saw
the role of direct user involvement in the Design process as
being a key part to this. This is relevant to the Design process
for several reasons. The most obvious one being that final
product is usable, and found useful by users; which should
be the end-goal of the Design process. But also, direct user
involvement in Sprints means that users feel their needs are
being met and that they are being heard throughout the Design
process. We find, that this is a very important benefit to direct
user involvement in Sprints if we are to meet the criticism of
agile methods neglecting the difference between the customer
and the user.

Contingencies
What we gather from our findings of contingencies during
the development process is primarily three observations. The
first observation is that is evident, that uncertainty is gener-
ated throughout the development process as the application
progresses. This also showcases the importance of direct user
involvement, since uncertainty was reduced or eliminated by

9

way of direct user involvement and evaluation of prototypes.
Had direct user involvement not been possible, much of the
uncertainty generated in Sprints would be unresolved. An
argument against this would be that other stakeholders could
in practice be conferred with—an example being other man-
agers or directors from the hospital. While this is true, it could
also be made the case that, as expressed by User 4, the cus-
tomers do not necessarily know specific work practices of the
intended users.

The second observation is that the presence of uncertainty
during the development process is closely related to satisficing
behavior and aspiration levels. It becomes clear, that when
faced with different uncertainties, pertaining to various as-
pects, during the development process—one can only devise a
solution best meeting the aspiration levels set by one-self. If
we are in a position where we do not know what the user want,
we can only hope to develop a solution that we find satisficing;
and as exemplified in this study, the aspiration levels of the
developer is not always the same as the user’s. In this regard,
it becomes essential—in developing a useful solution for the
user—that uncertainties generated in Sprints are reduced. And
one, in our case, effective way of doing this, was by having
direct user involvement in Sprints.

Lastly, the third observation is that, although we find direct
user involvement introduced complexity throughout the de-
velopment process, there are some limitations inherent to this
study that might otherwise provide some more insights. The
most important one is that we only involved User 1 throughout
the development process. This means that there is only one
user that introduces different requirements, ideas, and input. If
there were multiple users directly involved in each Sprint, the
amount of information to structure and understand would most
certainly by bigger. Therefore, the complexity introduced by
direct user involvement would, in that case, likely be even
greater. This would also pose a challenge in evaluating what
input to value and prioritize more than others. In our study, we
only needed to appreciate the needs of a single user—but in the
case of multiple users directly involved in each Sprint, it would
require more attention towards abstraction and specification
of expressed requirements, needs, and opinions.

CONCLUSION
This paper presented an exploratory study investigating what
direct user involvement is relevant for in relation to Design
decisions and Design process—and to what extent direct user
involvement influence the development process’ contingencies.
The exploratory study presents findings from a diary kept
while developing an Android application for support the work
practice of bioanalysts at the local university hospital.

We find that direct user involvement was relevant for several
things related to Design decisions. Evaluation with users
helped define the satisficing behavior of the developer; proved
relevant in adjusting aspiration levels of the developer; and
was valuable in transferring tacit knowledge from user to
developer. Regarding the Design process, we find that direct
user involvement has been particularly relevant for generation
and validation of requirements for the application.

Lastly, we find that direct user involvement influenced both
complexity and uncertainty as contingencies during the devel-
opment process. Uncertainty was generated during Sprints
throughout the development process, and user involvement
helped reduce uncertainties by evaluating prototypes and so-
cial interaction. In turn, direct user involvement added com-
plexity to the development process that developers must handle
appropriately.

Limitations
We acknowledge the limitations inherent to this exploratory
study. Since this is a case study investigating the development
of a custom product, findings and circumstances would likely
be different in other organizations and development processes.

The development process, although mimicking Scrum, was
performed with only one developer and one user. Had the
development team been larger—and had more users been in-
volved in Sprints—the findings of the study could be different.
However, the study involved different stakeholders consuming
different roles as in a regular Scrum process, and multiple users
evaluated the prototype after development was concluded. Fur-
ther, the development process was limited to only three months,
which could have an impact on data collection and findings.
We have tried to negate this by choosing diaries as the data
collection method since this provides rich and contextual data.

Future work
Additional studies should be performed to understand how
direct user involvement influence Design decisions and Design
process in larger teams—and over longer periods of time. This
could also provide an opportunity of investigating how the
direct involvement of several users in Sprints influence Design
decisions and Design process.

Lastly, there is lacking empirical studies investigating how
contingencies in the development process can be used for ef-
fective user involvement strategies. We have shown that direct
user involvement influence both complexity and uncertainty,
and additional studies could build on this empirical evidence;
suggesting how these could be used to decide on relevant user
involvement in Sprints.

ACKNOWLEDGMENTS
We would like to thank all participants from Clinical Biochem-
istry at Aalborg University Hospital for their contribution to
this exploratory study, and their role in the development pro-
cess. Specifically, we would like to thank Lars Domino, Tina
Beith, and Claus Gyrup Nielsen for playing a big role during
this study.

REFERENCES
1. Stefan Blomkvist. 2005. Towards a Model for Bridging

Agile Development and User-Centered Design. In
Human-Centered Software Engineering — Integrating
Usability in the Software Development Lifecycle, Ahmed
Seffah, Jan Gulliksen, and Michel C. Desmarais (Eds.).
Number 8 in Human-Computer Interaction Series.
Springer Netherlands, 219–244.

2. Barry Boehm. 2000. Requirements that handle IKIWISI,
COTS, and rapid change. Computer 33, 7 (2000), 99–102.

10

3. Manuel Brhel, Hendrik Meth, Alexander Maedche, and
Karl Werder. 2015. Exploring principles of user-centered
agile software development: A literature review.
Information and Software Technology 61 (2015),
163–181. DOI:
http://dx.doi.org/10.1016/j.infsof.2015.01.004

4. Alan Bryman. 2008. Social Research Methods. Oxford
University Press.

5. Alistair Cockburn and Jim Highsmith. 2001. Agile
software development, the people factor. Computer 34, 11
(2001). DOI:http://dx.doi.org/10.1109/2.963450

6. Jim Highsmith and Alistair Cockburn. 2001. Agile
software development: the business of innovation.
Computer 34, 9 (Sept. 2001), 120–127. DOI:
http://dx.doi.org/10.1109/2.947100

7. Leif Obel Jepsen, Lars Mathiassen, and Peter Axel
Nielsen. 1989. Back to thinking mode: diaries for the
management of information systems development
projects. Behaviour & Information Technology 8, 3
(1989), 207–217. DOI:
http://dx.doi.org/10.1080/01449298908914552

8. Timo Jokela. 2004. When good things happen to bad
products: where are the benefits of usability in the
consumer appliance market? Interactions 11, 6 (2004),
28–35.

9. Elaine Kant. 1985. Understanding and automating
algorithm design. IEEE Transactions on Software
Engineering 11 (1985), 1361–1374.

10. Kati Kuusinen. 2016. BoB: A Framework for Organizing
Within-Iteration UX Work in Agile Development. In
Integrating User-Centred Design in Agile Development,
Gilbert Cockton, Marta Lárusdóttir, Peggy Gregory, and
Åsa Cajander (Eds.). Springer International Publishing,
Cham, 205–224.
http://link.springer.com/10.1007/978-3-319-32165-3_9

DOI: 10.1007/978-3-319-32165-3_9.

11. Kati Kuusinen, Tommi Mikkonen, and Santtu Pakarinen.
2012. Agile User Experience Development in a Large
Software Organization: Good Expertise but Limited
Impact. In Human-Centered Software Engineering,
Marco Winckler, Peter Forbrig, and Regina Bernhaupt
(Eds.). Vol. 7623. Springer Berlin Heidelberg, Berlin,
Heidelberg.

12. Marta Larusdottir, Jan Gulliksen, and Åsa Cajander.
2016. A license to kill – Improving UCSD in Agile
development. Journal of Systems and Software (2016).
DOI:http://dx.doi.org/10.1016/j.jss.2016.01.024

13. Jonathan Lazar, Jinjuan Heidi Feng, and Harry
Hochheiser. 2010. Research methods in human-computer
interaction. John Wiley & Sons.

14. Lars Mathiassen and Jan Stage. 1992. The Principle of
Limited Reduction. Information Technology and People 6
(1992), 171–185.

15. Deborah J. Mayhew and Marilyn M. Tremaine. 2005. A
basic framework. Cost-justifying usability: An update for
the internet age (2005), 41–101.

16. Peter Naur. 1972. An experiment on program
development. BIT Numerical Mathematics 12, 3 (Sept.
1972), 347–365. DOI:
http://dx.doi.org/10.1007/BF01932307

17. Ikujiro Nonaka and Hirotaka Takeuchi. 1995. The
knowledge-creating company: How Japanese companies
create the dynamics of innovation. Oxford university
press.

18. Johnny Saldaña. 2015. The coding manual for qualitative
researchers. Sage.

19. Ken Schwaber and Jeff Sutherland. 2011. The scrum
guide. Scrum Alliance 21 (2011).

20. Herbert A. Simon. 1955. A Behavioral Model of Rational
Choice. The Quarterly Journal of Economics 69, 1
(1955), 99–118.

21. Herbert A Simon. 1972. Theories of bounded rationality.
Decision and organization 1, 1 (1972), 161–176.

22. Desirée Sy. 2007. Adapting Usability Investigations for
Agile User-centered Design. J. Usability Studies 2, 3
(2007), 112–132.

23. Antony Tang and Hans van Vliet. 2015. Software
Designers Satisfice. In Software Architecture, Danny
Weyns, Raffaela Mirandola, and Ivica Crnkovic (Eds.).
Vol. 9278. Springer International Publishing, Cham,
105–120. DOI:
http://dx.doi.org/10.1007/978-3-319-23727-5_9

24. Carmen Zannier, Mike Chiasson, and Frank Maurer.
2007. A model of design decision making based on
empirical results of interviews with software designers.
Information and Software Technology 49, 6 (June 2007),
637–653. DOI:
http://dx.doi.org/10.1016/j.infsof.2007.02.010

25. Tina Øvad and Lars Bo Larsen. 2015. The Prevalence of
UX Design in Agile Development Processes in Industry.
In Agile Conference (AGILE), 2015. IEEE, 40–49. DOI:
http://dx.doi.org/10.1109/Agile.2015.13

11

	Introduction
	Research questions
	Case

	Contributions
	Contribution 1
	Contribution 2

	Research method
	Case study
	Surveys
	Diaries

	Conclusion
	Research questions
	Limitations
	Future work

	Bibliography
	Appendix

