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1 SUMMARY  

This project seeks to find a possible solution for the visual examination of welds, where feature extraction 

methods are examined and tested with two different classifiers. The idea behind the project is to investigate 

if visual inspection based on texture describing features, processed with a machine learning algorithm, can 

detect flaws and defects in a weld merely by inspecting the surface of the object.  

Visual inspection is the primary way of evaluating weld seams, where construction is not critical and 

additional cost is the main risk [1]. Visual inspections entail manual interpretation and evaluation, which are 

time consuming, and the result often depends on the person assigned to the task [1], which makes automation 

interesting. 

The project is based on other research projects regarding the visual inspection of welds and will strive to 

devise a solution that can detect one type of defect that is visible to the human eye.  

A dataset containing images of both good and bad welds is created from weld samples produced specifically 

for this purpose. For preparation of the images, different image processing tools are applied in the making of 

the dataset. The dataset is tested on two different feature extraction methods in the search for features that 

best explain image textures. To test extracted features, two classification models are tested to find the most 

suitable, and their results are discussed. As a result of this, a machine learning algorithm is trained on data 

with known targets, and tests on unknown data (processed images) are performed to analyse and compare 

results. Several settings, both within feature extraction and classification, are trailed and results are 

discussed. 
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4 PREFACE 

The following has been written by Philip Valentin as a Master’s thesis in Global Systems Design in the 

Faculty of Engineering and Science at Aalborg University, Copenhagen (30 ETCS points).  

The subject is chosen based on the author’s interest in welding techniques and the advantages of image 

processing and machine learning. The thesis has been created during a four-month period from February 

2017 to June 2017 and, during this time, hundreds of hours have been spent on literature research, feature 

extraction- and classification methods and, last but not least, writing. The thesis is an interpretive work using 

qualified and comparative analysis through related work, a literature review and an understanding of feature 

extraction methods to understand the processes of automated visual inspection. A dataset containing two 

weld qualities is used in the test of chosen feature extraction methods in order to have the quality of extracted 

features tested by two different classifiers. Images in dataset are created specifically for this thesis, due to no 

knowledge about existing dataset that shares the same issues and to ensure a sufficient quality. Visual 

inspections of welds are performed in all industries and, by automating the first step of the inspection, 

valuable time can be saved.  

The literature review focuses upon published papers working with similar issues regarding visual inspection 

and texture classification, and is of significance to the methods used in my tests. Interviews with experts in 

visual inspection of welds form part of the data collection and the validation of dataset. The methodology, 

data collection and preparation of data are described in order to reveal the considerations behind the choices. 

The test schedule and results are used to provide a qualitative foundation to choose feature extraction- and 

classification methods useful for this purpose. Results and ideas for further work are discussed and used to 

inform the reader about the many methods and combinations useful for this purpose. 

The scope is not to provide a model that includes a fully functional algorithm ready for implementation, but 

rather to provide a foundation for further work in automated visual inspection based on feature extraction. 

Weld defect means, in the thesis, errors in gas supply, which lead to an oxygen-contaminated weld pool. If 

other defects, e.g. positioning of weld toes, height of weld face or similar were considered, a model with a 

broader aspect should have been created. The scope is to test if features extracted from a grey scale image 

can provide enough information to classify a weld in two classes. In this thesis, all data collection and tests 

are performed in a closed environment where almost every aspect was possible to correct and replicate if 

needed. Further work should include testing in real environments and with automation.  
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5 RESUMÉ  

Visuel inspektion af svejsninger bruges til, at sikre at arbejdet er udført tilstrækkeligt. Den visuelle 

inspektion foretages normalt af svejseren, men i tilfælde hvor svejseprocessen er automatiseret, f.eks. ved 

lineær føring, skal inspektionen foretages af en person som har erfaring, hvilket kræver resurser. Denne 

specialeafhandling omhandler den visuelle inspektion ved brug af teksturbeskrivende vektorer, der 

efterfølgende klassificeres i to kategorier. Hovedformålet med afhandlingen er, at besvare om det er muligt, 

at klassificere en MIG svejsning ud fra et standardiseret 2D billede og derved automatisere 

inspektionsprocessen. 

Først blev udgivet litteratur indenfor området undersøgt systematisk for, at skabe et overblik over 

eksisterende forsøg, samt hvilke metoder andre har opnået brugbare resultater med. Grundet en 

specialeperiode fra februar til juni, blev der taget beslutninger der skulle begrænset omfanget af testene. Det 

blev besluttet at antallet af svejsefejl, der skulle kategoriseres blev begrænset til én type – gasfejl. Da det 

ikke var muligt, at finde eksisterende datasæt, der indeholdte både gode svejsninger og svejsninger med 

gasfejl, blev der fremstillet et datasæt i laboratorieværkstedet på Aalborg Universitet København. Kvalitet af 

billederne i datasættet er valideret af forfatteren baseret på erfaring, samt de overordnet krav til svejsningerne 

blev diskuteret med en ekspert i visuel inspektion. Baseret på den gennemgået litteratur blev to metoder til 

beskrivelse af overflade teksturen udvalgt og testet på datasættet. I forbindelse med testene blev billederne i 

datasættet udsat for forskellige procedurer, der baseret på relevant litteratur skulle øge kvaliteten af outputtet, 

som blev brugt til klassificering. Metoderne til kvalificering var ligeledes baseret på tidligere udgivet 

litteratur og metoder, der matchede det ønskede output.  

Resulter af testene viser en betydelig bedre klassificering baseret på output fra den ene metode, mens begge 

metoder til beskrivelse af teksturen i billedet opnår en nøjagtighed på over 90%. Højeste nøjagtighed opnået 

er 96% med et datasæt, hvor billederne har gennemgået færrest muligt processer. Ud fra ovenstående kan det 

konkluderes, at en automatisering af den visuelle inspektion af MIG svejsninger, hvor der udelukkende 

inspiceres for gasfejl er mulig ved brug af 2D billeder taget med et kommercielt digitalkamera. 
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6 READING GUIDE 

The thesis is divided in three parts: main report, test results and appendices. In the main part, methodology, 

theory, tests and results are presented and analysed. References to the appendix are given throughout the 

thesis to support the presented work. The reader is expected to have a basic technical understanding and 

knowledge of image processing and machine learning, but short descriptions of the terms and techniques 

used will be given as introductions at the start of the chapters.  

The IEEE method is used for source citation and the bibliography can be found at the end at the report. 

Tables and figures presented are own work if not otherwise specified and a list of tables and figures are 

provided at the end of the report.  
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7 NOMENCLATURE 

Technical words used in the thesis are described in the following table. 

Word Description 

Weld face Middle of the weld. Area from one side to the other 

on the weld  

Toe of a weld Area where weld meets the material joint  

Butt weld Flat plate joint together with another flat plate 

Fillet weld Plates joint perpendicular to each other (T-

structure) 

Weld pool  Melted area during welding 

Underflushing Weld pool visible on backside of welding 

Brodatz Pseudonym of the creator of an often used dataset 

containing surface textures 

Probe Head which sends out ultrasonic waves or picks up 

waves 

Linear guidance Guidance that can be used for long straight welds  

Spatial domain Manipulation of pixels in the image 

Frequency domain Manipulation of frequencies in the image 

ROC curve Receiver Operating Characteristic Curves describes 

the influence from true positive rate and true 

negative rate.  

Confusion Matrix Visualise the classification ability 

Non-destructive testing (NDT) Tests without damage of test object 

Penetrating spray Spray used in detecting cracks. Two-step spray test 

where a penetrant is the first and a developer spray 

is the second step. 

Sequential Forward Selection (SFS) Selects a subset of features starting from an empty 

set and sequentially add more features 

Speeded Up Robust Features (SURF) Local feature detector and descriptor 

Time Of Flight Diffraction (TOFD) Branch of ultra sound, where the time the sound 

wave takes to travel a distance is measured  

Dpi – dots per inch Used for describing the resolution of an image  

Table 1 Nomenclature 
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8 INTRODUCTION 

These days, several companies offer welding robots for every possible use. Welding robots work rapidly, 

precisely, and can continue without breaks. Previously, robots were used for simple and repetitive welding 

tasks, but today the robots are very refined in their movements and controls. Robots can now perform 

complex welding tasks normally performed by human workers, with a speed up to 3-6 times faster than 

humans [2]. Even though the robot can perform a perfect technique, the robot is not immune to errors from 

the surroundings, and inspection is still required. Visual inspection and evaluation of welds is common in 

commercial welding environments, but the procedure requires time and labour [3]. 

Visual inspection is a form of Non-Destructive Testing (NDT) where radiographic images and ultrasonic 

inspections are commonly used [1]. Ultrasonic Testing (UT) requires manual interaction and interpretation, 

which is time consuming and heavily dependent on the experience of skilled workers [4]. Radiography 

testing requires expensive equipment and personnel who know how to read radiographic images [1]. The size 

of test objects for radiographic images is limited, since it requires full access to the welding [5]. Ultrasonic 

testing is more flexible in use compared to radiographic images and can be used in the field, but it also 

requires a skilled person to interpret the output. Ultrasound uses a gel-based liquid between the probe and the 

surface, which has to be cleaned after testing, which prolongs the time spent on the testing [6].  

This project explores the quality control of welds performed with linear guidance welding – a sub-branch of 

early welding robots. Even though robots perform a standardised job, flaws can occur due to technical issues, 

interference of surroundings or breakdowns. A technical issue may not show up as a direct breakdown, but as 

a problem with the gas supply or oxygen from surroundings, which might only affect the weld in certain 

areas. The detection of defects is a time consuming and a costly affair if performed after the installation of 

larger objects, i.e. scaffolding or similar constructions. Defects are important to investigate due to reduced 

strength in the weld; even small defects may cause great failures and expenses.  
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8.1 BACKGROUND  
A dangerous term when discussing construction quality is weld joints, which is why this area is 

important to research further [7]. In their work from 2002, Wang and Liao [1] state that only a 

limited amount of work has been performed within the field of automatic identification of weld 

defects. Even though Wang and Liao’s work was published several years ago, the area has still not 

been comprehensively explored. Research papers within the area of defect recognition often relate 

to the applications on digitalised images, originating from radiographic images, which makes it 

possible to explore the weld in depth. Radiographic evaluation requires special cameras, high cost 

equipment, and a skilled person who knows how to interpret the images and may be harmful to the 

human body during prolonged exposure. Research concerning defect recognition on 2D images 

from a conventional digital camera was performed by Cook et al. [3] and shows good results when 

detecting shapes and other defects. The work presented by Cook et al. uses manual preparation 

methods, such as a penetrating spray of the inspected area before the further processing of image, 

which reduces the power of the word automatic. I am not aware of any former work that concerns 

the area of defect detection based on grey scales and local patterns in 2D images obtained by an 

ordinary digital camera, which is why I find this work of relevance. Similar work is performed on 

digitalised radiographic images, where accepted results are presented. Combined with other works 

concerning texture classification, based on grey scale features and local binary patterns, the 

foundation of this thesis was created. The idea behind this thesis is to create a foundation for further 

research within the area of visual inspection of weld surfaces using 2D images.  
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8.2 PROBLEM STATEMENT 

The thesis attempts to find a feature extraction method and a classifier that can classify simple 

surface defects in MIG welds, in order that a common quality inspection is carried out and to 

eliminate the use of skilled labour in performing general inspection. Manual inspection is heavily 

reliant on the person performing the investigation, which might differ from person to person [1].  

Automated inspection of welds can save time and resources in the construction industry, where 

welds are required to have a certain strength. Inspections performed manually are time consuming 

and require skilled labour with the same standard implemented. With the help of the automation, the 

skilled workers can use their expertise elsewhere and only spend time on inspection if a critical area 

is detected by the model and requires further investigation. Two feature extraction methods have 

been identified as promising possible solutions to the problem at hand, and will be tested on a 

dataset, containing both weld defects and approved welds, created for this exact purpose. Two 

classification methods are evaluated based on their ability to predict unknown data, based on 

training with extracted features.     
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8.3 LIMITATION AND DELIMITATIONS 

The type of welds has been limited to concern Gas Metal Arc Welding, referred to as MIG in the project. 

MIG welding is used in heavy industries and in combination with welding robots [8]. Welds made with 

different types of techniques have different features that might require other applications, which supports the   

intention of only looking into one weld type. Different weld types requires different approaches in testing, as 

is also the case with flaws and defects. This thesis only concerns defects occurring from faults in the supply 

of gas. A defect related to gas supply is easy to detect during inspection and will be counted as s a valid 

defect in the thesis. During the project, no tests on or with robots were performed and, based on my 

experience, the influence of a welding robot would have no or very little influence on the results. Including a 

welding robot in the testing would require access to a robot with a MIG welding setup, where the detection 

of flaws and defects was possible. It was therefore concluded by the author and supervisors that human 

fabricated weld samples would be sufficient for this type of test. The application-aim of welding robots is 

based on the assumption that a welder personally checks his or her work after completion and therefore the 

need for external inspection does, in theory, not exist with manual welding.  

Due to no dataset being available online which could fulfil the requirements of types of images and type of 

weld, a dataset was created from weld samples. The dataset was created for this specific thesis, which 

resulted in a limited amount of data and types of defects. Weld images are available, but the majority of these 

datasets contain digitalised radiographic images. Limited data results in small variance in the type of defects, 

but the author and supervisors estimated the amount of data to be sufficient for testing. The type of samples 

created for dataset makes it possible to work with classification only and not a specific detection of areas 

with flaws and defects. This idea based on the setup with a camera placed just after linear guided welder 

creating images for testing.  
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8.4 RELATED WORK 

This chapter briefly describes published work related to the topic. This is to provide an overview of already 

researched areas and to show the source of inspiration. Deeper, more explanatory details and critical 

analysis regarding related work and methods are presented in the chapter, Literature Review. 

Several researchers have presented promising works with feature extractors in the spatial domain. Tou et al. 

[9] describe the use of Gabor features as being are at high dimensional space. A high dimensional space will 

affect the classification, so to reduce the feature size, a Principal Component Analysis (PCA) is used. The 

paper uses k-Nearest Neighbour (KNN) as the classifier, which requires considerable computation due to 

comparison with all test samples. Other feature extractors are often used and Hassan, et al. [10] describe the 

use of geometric features as shape descriptors when classifying defects in radiographic images with Artificial 

Neural Network.  

Hassan et al. [10] state that normal image processing tools are not useful on radiographic images and 

therefore they use morphological operations to find Regions of Interest (ROI), contrast enhancement and 

Canny for edge detection.  

Xu et al. [11] test common algorithms used for edge detection such as Roberts, Sobel, Prewitt, Laplacian and 

Canny, during real-time tracking control of welds. These tests show Canny to be the best edge detector for 

their purpose. Canny’s algorithm uses Gaus function to smoothen image and high- and low thresholds to 

detect edges. They find double threshold to be problematic when working with real-time detection. 

Mery and Berti [12] describe the use of texture features when automatically detecting weld defects with the 

use of Grey Level Co-occurrence Matrix and Gabor Filters. The authors extract features and reduce the 

number of features with Sequential Forward Selection (SFS) to evaluate the performance of features and to 

check for correlation before the classifier. 

Common to the majority of the papers is the use of the three steps of segmentation, feature extraction and 

classification. Pathak and Barooah [13] describe texture analysis based on Grey Level Co-Occurrence 

Matrixes (GLCM). Sobel edge detector is applied to images, before feature extraction is performed, to 

highlight corners, circles and other informant shapes. GLCM features are obtained using different angles in 

the evaluation of neighbours. Collected features are tested against each other, where they state that 0̊ and 90̊ 

are comparable and useful for further processing. They conclude the distance between pixels evaluated and 

the angle has great importance on the final result.  

The use of feature extraction and classification has not only shown good results with welds, but also in wood 

detection. Hittawe et al. [14] use both Local Binary Pattern (LBP) and Speeded Up Robust Features (SURF) 

for defect detection in wood. LBP and SURF are tested in both isolation and combination. LBP performs 

best when tested individually, but the best results are found with a combination of both methods.   
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8.5 STATE OF THE ART  
The following attempts to explain how this thesis separates from similar work and research. What makes this 

work state of the art? 

When defining features for classification, geometric shapes are often used because it seems natural for 

humans to interpret based on geometric features when defining shapes. In the following, I question the use of 

geometric features in computerised visual inspection, which leads to the use of methods searching for 

features and patterns not recognisable to the human brain. The use of geometric features will detect features 

and categorise these, but can we argue that the interpretation is different for the human brain? Methods using 

non-geometric features may detect patterns that hold useful information from the image. Feature extraction 

methods in the thesis will therefore only concern such methods. Feature extraction from radiographic images 

is widely used in the classification of weld flaws and defects, but the feature extraction from 2D digital 

images is less common. Work has been published concerning weld detection from 2D images, where the 

geometric features state the appearance of the weld. I am not aware of any published work that uses 2D 

images created from a regular digital camera for the classification of weld surface defects, based on features 

extracted by grey level co-occurrence and local binary patterns.  
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9 METHODOLOGY  

 

9.1 RESEARCH DESIGN 

The following chapter describes the research design and the overall steps. These steps are presented to 

involve the reader in some of the overall design thoughts regarding this thesis. Methods used can be found in 

the chapter, Methods.   

 

Preliminary research  

Preliminary research is used in the exploration of research projects and similar topics published. The 

preliminary research does not only consist of literature regarding visual inspection of welds, but also visual 

inspection and texture analysis in general. Visual inspection embraces both image processing- and machine 

learning theories, where surface textures can be a valuable informant. Methods are gathered from published 

research papers to give an insight into methods used in other papers and the type of work that inspired this 

project, based on their results and considerations behind their work. 

The inspiration behind my research was based on: 

1. Understanding existing literature and an overview of published research papers  

2. Image processing theory 

3. Machine learning theory (what type of machine learning is useful and what is the expected output) 

4. Interviews with welding inspectors (experts) 

5. Type of data (Types of images, dataset, flaw types etc.)   

Based on interviews, research and a review of existing literature, the type of data to be used is determined.  
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Data Preparation  

The overall steps for preparation of data are presented below. Choice of methods is primarily based on 

methods used in published research papers.  

1. Create data (images, replicate defects, defining weld quality etc.) 

2. Preparing data for tests  

3. Image processing for the purpose of machine learning. (What types of tool are useful and what has 

created successful results in related works) 

4. Feature extraction methods (extraction methods useful for this specific type of data are evaluated 

based on related research papers) 

5. Define the type of machine learning (Based on related work, the type of machine learning algorithms 

are chosen) 

6. Based on the collected data, tests are performed to find the optimal pattern recognition processes. 

The image is prepared through image-processing tools and thereby processed by a machine learning 

algorithm 

Tests 

Output from the algorithms are trained on images where known defects are present and labelled by experts.  

Comparison of classification algorithms are compared and evaluated to find the best possible classifier. A 

test scheme is set up to test several different combinations of inputs and classification settings.  

Analysis 

Evaluation and analysis of test results are discussed together with feature extraction methods. Feature 

extraction methods are discussed to evaluate output regarding valuable information from weld face. 

Classification results are compared to similar work, where some of the same methods are used, to evaluate 

the methods.  

It is discussed whether the results obtained in this thesis can contribute to further research.  
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9.2 DATA COLLECTION 

The following chapter describes the methods used for data collection. A discussion regarding the methods 

used is offered at the end of the chapter. 

Semi-structured interviews were used in the collection of information due to the qualitative data they 

provide. This method allows the interview to take another direction in comparison to a regular interview, if 

the interviewees have other relevant information to the topic. The interviewer keeps track of the interview 

and ensures relevant information is collected by the use of an interview guide. Semi-structured interviews are 

useful if the interviewee can only be interviewed once, since this interview type gives the interviewees the 

freedom to express their own thoughts, which provides reliable and comparable data [15]. The interview 

guide can be found in appendix 1 - Interview guide 

9.2.1 Condensed interview  

This chapter highlights the important parts of the interview with Jørgen Melchior – an expert in visual 

inspection of welds - FORCE Technology1 (full interview is available from link2– in Danish). The interview 

started as a general discussion about the different types of visual inspection, where commonly used methods 

were discussed. Jørgen Melchoir presented different types of sample, both approved and non-approved, and 

the weld face appearance was discussed in relation to the dataset used in this thesis. Non-approved welds 

were shown and discussed, and this discussion led to the approval of the samples made for the dataset. The 

type of weld defects present in the dataset are mentioned as being seldom found during welding with linear 

guidance, but not unrealistic. Different defects and flaws present in butt-welds were discussed while going 

through different types of samples. Another topic was the height of the weld and geometric features in 

general, but since this project works with grey scale 2D images it is not possible to read the height and the 

main topic is non-geometric feature extraction. 

The interview took another direction following the discussion of this project’s approach to the subject, one 

concerning stainless steel welds and the finishing of the surface. Stainless steel welds create a tempering 

around the weld and the colour of the tempering can evidence what type of finishing is needed to maintain a 

stainless weld face. If the tempering is not removed, the welded area is not protected against rust. Based on 

the discussion about colour tempering in stainless steel, colour shading around MIG welds was considered 

and found less useful compared to texture analysis. Several years ago FORCE Technology tried to automate 

the inspection of colour shading during welding in stainless steel, but with no luck – this topic has 

encouraged further exploration and a model (later research) that can describe the colour shading. A model for 

continuous colour detection was described as revolutionary by the expert at FORCE Technology. During the 

discussion it was mentioned that Denmark has a thriving food industry, where high demands within stainless 

steel are required and a method that could help maintain a high standard would be very attractive. During the 

                                                           
1 FORCE Technology - https://forcetechnology.com/da 
2 https://drive.google.com/open?id=0BxMRnl6eiB0PeDE2YWs1NXFqb0E  

https://forcetechnology.com/da
https://drive.google.com/open?id=0BxMRnl6eiB0PeDE2YWs1NXFqb0E
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interview and meeting at FORCE Technology, a visit to one of the workshops resulted in a contact with 

Henrik Sørensen, who is a specialist in linear welding, which is a branch of robot welding. Henrik suggested 

linear guidance, due to the use of straight welds.  

 

9.2.2 Laboratory Tests  

Laboratory testing has been the framework across all the tests. To realise the amount and quality of pictures 

needed for image processing and modelling, small man-made samples had to be created. Moreover, perfect 

samples, both containing non-defect samples and defect samples were needed. The sample issue was 

primarily related to defect samples, which had to contain the right type of defect in the weld. Laboratory 

samples were made in collaboration with blacksmith Charlotte Gilbert Jespersen at Aalborg University. In 

appendix 2 - Welding settings, the settings are presented, in order that a replication can be performed. 

As mentioned in Limitation and Delimitation the samples’ defects only relate to defects due to gas supply.  

To create weld samples that could fulfil the requirements and potentially create the same type of defects in 

all the bad samples, Samples were created in small batches of ten to twelve, all during the same day to ensure 

all settings were the same.  

The camera used for sampling is a normal commercial digital camera with 4608 x 3072 pixels. A 

commercial digital camera was chosen based on its simplicity and to make samples easy to produce and 

replicate. Images were created to only show weld faces in one direction due to the idea of a permanently 

mounted camera that creates samples for inspection and to eliminate the risk of different types of reflections 

from artificial lightning, see appendix 3 – Camera setup. The author and the supervisors agreed on this type 

of setting, since no professional lighting equipment was available.  

9.2.3 Framework  

Matlab from MathWorks is used as the overall framework. There are several different other options which 

can perform at the same level, but Matlab was introduced earlier during the Global Systems Design program 

and therefore it seemed obvious to use. The computer used for testing is an Intel Core5 processor with 12GB 

RAM. The computation power influences the processing time, and different processing time will be present 

if tests need to be replicated.  

Matlab offers different pre-programmed functions, of which several are used in this thesis.   

Functions from Matlab are listed to provide an overview – see appendix 4 - Pre-programmed functions in 

Matlab. No deeper explanation regarding functions has been given.  
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9.3 QUALITY OF RESEARCH 

Here, methods used for data collection are discussed and revised to evaluate if other methods could have 

provided other information.  

A semi-structured interview was chosen based on the opportunity to have the interview take a different 

direction, of which the interviewee may not necessarily initially be aware. As expressed in the condensed 

interview, the interviewee showed interest in the topic and mentioned other areas that could be interesting for 

further investigation.  

A collaboration with an expert within visual inspection might have directed the data for testing in another 

direction, since the interview opened a new area of interest, i.e. colour tempering, when welding in stainless 

steel. However, the primary focus was visual inspection of MIG welds. 

If an expert had been involved earlier in the process or throughout the tests, a broader application could have 

been created. Only one interview was performed, but considerable information was collected and every 

question was answered, which provided the author with all the required information at that time. A 

collaboration with an expert or a company might have resulted in tests aimed for an implementation, but the 

output of tests shows positive results and a strong foundation for further research within the area. The 

interview was used as a validation of the thoughts behind the project and the images used in dataset.  

Literature research within the area was performed in order to evaluate existing papers and the results 

achieved. Papers evaluated did not only cover defects in welds, but texture classification in general, which 

opens up the test and evaluates if alternative feature extraction methods could be useful for weld surfaces.  
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10 LITERATURE REVIEW  

This chapter focuses on the major topic in this work – feature extraction used for texture classification. 

Different works concerning classification of weld defects, but also work only interested in texture 

classification, are presented and analysed in relation to other research, to then to be considered in relation 

to this thesis.  

Machine vision in inspection of welds is not spectacular and considerable research within the wide field has 

been performed in the past. Geometric features are often used for classification, because of their ability to 

visualise defects and their type [10], and when evaluating surface textures, geometric features may come to 

one’s mind as one of the first interpretation options. Hassan et al. [10] tested a multi-layer multiple input 

neuron model fed with geometric features extracted from radiographic images, and achieved a classification 

rate above 85%. Geometric features seem an obvious choice for the human understanding and interpretation 

of images, but what if the human eyes and brain were capable of looking deeper into an image and thereby 

create further understanding based on, for example, grey scales? The following work concerns the surface 

texture of the weld, which led me in the direction of non-geometric features to find patterns describing 

surface texture. Describing textures using non-geometric features is presented in several other research 

papers. In their work, Kumar et al. [16] present an approach where Grey Level Co-Occurrence Matrix 

(GLCM) is used for feature extraction when detecting flaws in welds. They apply the method proposed on 

digitalised radiographic images, which are converted from RGB to grey scale images. Regions of interest, 

noise reduction and contrast enhancement are applied to the image before the GLCM feature extraction 

method returns vectors describing the surface. In 2014, Kumar et al. [16] developed an approach to a 

methodology to classify nine different types of weld flaw, whereas former classification methods were only 

capable of classifying seven flaws at the maximum, and achieved an accuracy between 82,3% and 86,1%. In 

2003, Merry and Berti [12] detected welding defects in radiographic images using texture features. Laplacian 

edge detection is used to enhance the edges and GLCM and Gabor functions are applied on downscaled 2D 

images. The features, 28 (14x2) based on [17] are obtained from GLCM and 64 from Gabor functions. To 

eliminate correlated features SFS is used for evaluation, so only non-correlated features are used in the 

further process. SFS feature selection states that mean of difference entropy and the mean difference variance 

are the best features obtained from GLCM. A recognition rate of 84% was achieved only through the use of 

features extracted by GLCM. In relation to the work performed by Kumar et al. [16] the use of edge 

detection tools, which return a binary image, can be questioned when using GLCM as feature extractor, 

where grey value of neighbouring pixels are evaluated. On the other hand, the return of a binary image might 

become useful if used for the detection of welds and the shape of these, but when dealing with texture 

features it can be questioned if loss of information is too high.  

Merry and Berti [12] combined all features extracted from two methods (GLCM and Gabor Functions), and 

saw that only features extracted by Gabor functions were selected during feature reduction with SFS. This 
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creates doubt as to whether GLCM feature extraction is suitable for further testing. In 2007, Tou et al. [9] 

tested GLCM and Gabor functions separately and in combination, where GLCM achieved a recognition rate 

of 84% and Gabor functions only achieved 80%, which again questions the comparison by Merry and Berti 

[12]. Tou et al. [9] used Brodatz’s3 texture dataset, a dataset containing wood-, stone- and rock types for 

testing and applied commonly used statistical features (Energy, Entropy, Contrast and Homogeneity) 

calculated from GLCM with grey levels between 8 and 256 and the spatial distance between one and five 

pixels. The best result is achieved with 64 grey levels and a spatial distance of two. Gabor functions 

produced over 6000 features and downsampling was executed with the use of PCA. The best result is 

achieved when using six features, since the decision rate is decreased when adding or removing features. 

Extracting 6000 features may seem overwhelming, and when reduced to six features in the end, due to good 

test results, I find it appropriate to continue with GLCM instead of Gabor Functions.  

Tou et al. [9] experienced a decreasing decision rate when applying more than six features to the classifier. A 

decreasing decision rate shows the direct influence of the feature space which, in this case, is large, and has a 

negative influence. Another issue with extracting large numbers of features is the need of further 

decomposing before classification, which requires computation time and extra resources. Depending on the 

type of data used in other research, different preparation methods and GLCM settings are used. Mohanaiah et 

al. [18] state that image size plays a role in the feature output, where the value of extracted features increases 

proportionally as the image size increases. Their tests show 128x128 as the optimal image size for their data, 

where the loss of information is at a minimum. The increasing of valuable features corresponding to 

increasing image size seems obvious, but optimal image size might differ depending on the type of images 

and optimal different image resolutions and should be tested individually.  

Silva et al. [19] concluded in their 2004 work that the quality of features is more important to the result of 

the classifier than the quantity. Quality features are weighted above feature quantities in this work, due to the 

risk of correlation and declining accuracy when using more than six features [9]. Based on the results from 

Tou et al. [9], a limited number of features, four features with GLCM, are extracted for further processing 

during this work. Depending on image size, the optimal neighbourhood offset can be discussed and, based on 

published research papers, an estimation of proper offset can be made. Another setting is the direction to the 

evaluated neighbour (0̊, 45̊, 90̊ & 135̊). Mohanaiah et al. [18] create the Grey Level Co-Occurrence Matrix 

with an offset of one pixel to the neighbour and state that a larger offset can be used if the window is 

sufficiently large. The direction of the evaluated neighbour is unspecified, which I conclude to be because 

they use the predefined direction (neighbour to the east or 0̊). Tou et al. [9] performed experiments with all 

four directions to find the best grey level and spatial distance to the neighbour. They performed seven 

experiments with grey levels between 8 and 256 and the spatial distance (offset) between one and five, to 

conclude the best accuracy was found with 64 grey levels and a distance of two. Tests performed4 on the data 

                                                           
3 See Appendix 5 - Brodatz’s Dataset for example. 
4 https://drive.google.com/open?id=0BxMRnl6eiB0PYnlqeHlFbmpLM0E  

https://drive.google.com/open?id=0BxMRnl6eiB0PYnlqeHlFbmpLM0E
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used for this thesis show identical values when evaluating the neighbour at 0 ̊ and 90̊, which is why the use of 

both directions are not considered.  

Local Binary Pattern (LBP) has, since its foundation by Ojala et al. [20] , received considerable attention and 

has been used in many applications. However, the conventional method proposed in 1996 faces some 

limitations which might influence the quality of features, due to small spatial region, noise sensitivity and 

global textural information [21]. Guo et al. [22] proposed an extension of LBP, named Completed LBP 

(CLBP), where a comparison of the original and simple LBP and the extended CLBP is made based on 

feature extraction from two different datasets. Guo et al. [22] explain how the simple LBP extracts 

reasonable texture features, though it only uses signs and is not looking at magnitude as a descriptor. Even 

though reasonable features can be found by the simple LBP, there are some pitfalls which need to be 

considered, e.g. incorrect matches of local structures. If two different vectors with large difference between 

the values, have the same sign vector, they will appear as similar local structures, but in fact, they are very 

different in structure. The risk of incorrect match questions the use of the simple LBP as the only feature 

extraction method, but due to the type of images in dataset used for this work, the risk of incorrect matches is 

estimated to be limited. The extension of the original LBP operator works with the term uniform patterns. A 

pattern is called uniform when it has less than two 0-1 (or opposite) transitions in the binary circular 

presentation [22]. Ojala, et, al. [23] state that uniform patterns provide the majority (90%) of patterns in a 

3x3 texture pattern. Uniform patterns are influenced the fact that some kind of binary patterns occur more 

often in textures than others and the ability to reduce the size of the feature vector from 256 to 59. The work 

performed by Guo et al. [22] finds that texture classification using sign features achieves better results 

compared to classification using magnitude features. What is worth mentioning is the enhancement of 

classification results if both sign- and magnitude features are combined [22]. Due to an idea of a simple 

feature extraction method, the higher accuracy from the extended version has been estimated to have little 

influence on dataset used in this work. LBP extracts more features than GLCM, which means 10 or 59 

features are extracted due to the change between uniform LBP features or uninorm rotationally invariant 

LBP features.  

The preparation of images for feature extraction is performed in different ways, depending on type of data 

and what the authors find to be a proper preparation. Gudla et al. [24] propose a method where a modified 

neighbourhood in LBP, with non-symmetrical neighbours are considered in images normalised to a 

resolution of 200 x 200 and further divided into non-overlapping blocks of 25 x 25. When considering non-

symmetrical neighbours the need for interpolation (to place the pixel in the centre of the neighbourhood) is 

eliminated. In traditional LBP, the number of neighbours increases with increase of radius, which results in a 

unique description of the neighbourhood, but the increased radius eliminates the information from pixels 

very close to the reference pixel [24]. Results from LBP with a modified neighbourhood compared with 

results from the traditional LBP with symmetrical neighbours show slightly better accuracy from the 

modified neighbourhood on their data concerning gender recognition based on textures in faces. This method 
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of non-symmetrical neighbours provides the opportunity to look at both the local and global neighbourhood 

without loss of information. It can be discussed if LBP with modified neighbourhood would create 

significantly better results compared to the simple uniform LBP method based exclusively on one image 

dataset containing faces. It is assumed that global information from images containing welds, where weld 

face is placed in the vertical centreline of images, is less important compared to local information.  

To evaluate extracted features, a classifier is used and the accuracy is the measured value. This project does 

not concern only one specific classifier, but two well-known classifiers, Support Vector Machine (SVM) and 

K-Nearest Neighbour (KNN), with promising results will be tested with extracted features. Support Vector 

Machine (SVM) presented by Cortes, et.al [25] is a well-known classifier and often used for texture 

classification. SVM uses a limited amount of sampling data in the training model and obtain a more or less 

fixed hyperplane for classification [26]. Meng et al. [26] state the use of a relatively fixed hyperplane could 

have a serious influence if working with dynamic failures. I can confirm that it makes little sense to use 

similar hyperplanes to different types of failures, as their features will probably appear different. In this case, 

images in the dataset will be of a common quality and only one type of defect has to be classified, which 

leads to the simple SVM as a useful classifier. Murosaki et al. [27] used SVM to detect grey areas, as a result 

of overheating during welding, in fuel pumps with features, such as energy, contrast, entropy and 

homogeneity and achieved good results.  

Ahmed et al. [28] tested the performance of textural features obtained from the Brodatz dataset with KNN 

and achieved good results. KNN calculates the distance from each training sample to the test sample and 

chooses the closest one [29]. The size of k (pixels to the nearest neighbour) varies and no exact value can be 

pointed out as the best. K-value may differ from the type of dataset, where a small k-value may be sensitive 

to noise, where a large k-value may include too many points from other classes [29].  

Further explanation of the settings used during testing is described in Test Settings.  

  



24 
 

11 TECHNICAL INTRODUCTION  

The following will introduce the term of welding robots, along with different welding techniques and weld 

types. This introduction is to give insight into why some methods are chosen above others. After a general 

technical introduction, methods for testing of welds are briefly introduced. 

11.1.1 Welding Robots  

Welding robots can be defined as positioning controlled devices that can perform a continuous movement 

[30]. Welding robots are one of the most common worldwide applications, and even smaller production 

facilities have started to take advantage of robots. The robot is controlled by the programming and is not 

capable of making judgement or corrections itself, which means there is a demand for inspection of the weld 

[30]. In the manufacturing of straight welds, linear seam welding machines are part of the early welding 

robots, but are still used where the fabrication dimension requires long weld seams. Linear seam welding 

machines can be referred to as fixed automation, where the equipment and the configurations are fixed. 

Programming of linear seam welding machines is individual for each material, thickness and design, which 

decreases processing time, but also decreases production flexibility and product variety. Robots and welding 

machines can be adapted to perform all available welding techniques, which makes them useful in many 

applications.   

11.1.2 Welding Techniques 

Several types of welding are used in the industry and the following introduces the three most common. Gas 

Metal Arc Welding (GMAW) also described as MIG (Metal Inert Gas) or MAG (Metal Active Gas), which 

uses a continuous fed wire electrode, which, besides being the electrode, also adds joint material to the weld 

pool. During welding, the electrode and weld pool are protected from the surrounding air by a shielding inert 

gas (or active gas if MAG) to avoid oxygen mixing in the weld pool. GMAW is a common process that is 

widely used for industrial welding applications. Gas Tungsten Arc Gas Welding (GTAW) or TIG (Tungsten 

Inert Gas) is a type of welding that requires more expertise compared to GMAW, because the electrode and 

joint material are separated and controlled individually. GTAW is known for producing high-quality work 

with a superior finish. Shielded Metal Arc Welding (SMAW) also known as Arc Welding, is the most basic 

of welding types. Arc welding is used in construction, manufacturing and repairs and is suited for heavier 

material thickness. Electrode, joint material and shield from surrounding air are provided all in one. A solid 

powder forms the covering shield and protects the weld pool during burning. [8], [31] 
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11.1.3 Weld types 

Weld types can be divided in two overall groups: Groove weld and fillet-type weld. Groove weld fills in the 

groove between the pieces joined together, while fillet weld fills in the area on the outside of the pieces 

joined together [32] [33]. Groove weld is also known as Butt Joints, while Fillet welds encompasses Corner 

Joint, Edge Joint, Lap Joint and Tee Joint. Common to all weld types is the structure, which should have a 

uniform shape without defects [7]. 

A butt weld is where two pieces are joined together in the same plane. A corner joint is where two pieces 

form either an L-shape or an A-shape to make a corner. An edge joint is where the pieces are placed up 

against each other and the edges welded together. A lap joint is where two pieces are placed on top of each 

other with an overlap where the weld is placed. A tee joint is, as the name suggests, a weld where two pieces 

form a T-shape and the weld can be placed on both sides of the tee [33]. A butt weld is widely used in simple 

designs and fabrication of pipe systems [32]. Finally, fillet welds are estimated to be the most used type of 

welding in fabrication. The use of fillet welding does not require any preparation of the edges, which makes 

this type of weld cheaper and quicker [32]. Despite many different weld joints being used in manufacturing, 

tests are only applied on images showing butt joints on sheet metal with a thickness of two millimetres. 

11.2 NON-DESTRUCTIVE TESTING 

The following introduces some of the methods used for Non-Destructive Testing (NDT). NDT is used in 

manufacturing control and embraces several different techniques, including Visual Inspection, Radiographic 

Testing and Ultrasonic Testing [34]. NDT techniques are used to detect defects and flaws which have 

occurred during manufacturing or caused by stressful environments, without penetration of the surface [34].  

11.2.1 Visual Inspection of Welds 

Visual inspection encompasses different specifications provided by International Organization for 

Standardization (ISO), of the overall procedure of the inspection. The weld must be inspected to check that 

slag has been removed to avoid imperfections [35]. Butt welds and fillet welds are examined to ensure joints 

merge smoothly with the main components without underflushing, convexity or concavity. Placement of the 

seam, weld profile and surface patterns are examined for irregularities according to the manufacturer’s 

specifications [35]. Imperfections such as cracks and porosity are examined with the use of optical aids to 

ease the inspection [35]. To ensure that the respective work is carried out using the same criteria, 

International Organization for Standardization (ISO) has set up standards which companies can choose to 

follow and thereby achieve the ISO standard. ISO 5817 is a standard concerning quality levels for 

imperfections in fusion-welded joints in steel, nickel, titanium and alloys. Quality levels are divided into 

three categories: B, C & D (B represents the highest level) [36]. ISO 6520 defines types of flaws and defects 

found in fillet- and butt welds. Some types of flaw are visible at weld face while others are hidden under the 

surface and require test equipment that is able to examine in depth, i.e. radiographic images or ultrasound. 

Some of the flaws and defects stated in the standard are cracks, gas pores, porosity, craters, lack of fusions, 
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penetrations, grooves, misalignments and burn through [37]. ISO 6520 concerns, among others, cracks, holes 

and porosity. The different types of flaw and defect can, in some instances, e.g. in quality level D, be 

accepted if not exceeding predefined limits, but in general flaws should be avoided.  

 

11.2.2 Radiographic Testing 

NDT with radiographic images requires access to both sides of the weld or the object inspected because the 

film must be placed at the right angle to catch the radiation. The films must overlap to ensure the complete 

area is covered [5]. Two types of radiographic sensitivities are used in the examination: Class A – Basic 

Techniques and Class B – Improved Techniques. Class A is normally used and Class B is used if Class A is 

found to be insufficient. Different techniques of how to place the film are used based on the type of weld 

examined to ensure the same procedure is used [5]. If the film is placed incorrectly, the defects will not occur 

correctly and might be overlooked.  

 

11.2.3 Ultrasonic Testing 

Ultrasonic is a NDT method that uses an ultrasonic beam, which is reflected from the opposite side and 

captured by a transducer. The structure of the wave is inspected by a qualified person who can interpret 

defects from the shape of the waves [6]. Time of Flight Diffraction (TOFD) is a branch of ultrasonic testing 

used in metallurgy. Two probes are placed on opposite sides of the weld, of which one is the transmitter and 

the other is the receiver [38]. Waves are sent through the weld and if, for example, a crack is present, the 

time the wave is traveling is longer and by measuring the time, size and state of defect can be monitored 

[38].  
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12 METHODS 

The following chapter describes the theoretical part of the methods. Common to the papers used in this work, 

three overall steps are performed - segmentation, feature extraction and classification. These steps are 

described in the following to give insight in their role and why they are used. Appendix 4 - Pre-programmed 

functions in Matlab gives a list of tools and functions found in Matlab, which have been used during tests.  

12.1 IMAGE PREPARATION 

When working with automated classification, several challenges are faced, for instance high-clutter 

background, noise and variations from scaling, rotation or similar [39]. To reduce computation time and 

enhance the work of the feature extraction method, images in the dataset are cropped to remove excess areas 

with no relevant information. Edge detection is also widely used in data preparation for feature extraction 

and several different ones are available, e.g. Canny and Sobel. Edges in images are represented by intensity 

in contrast and these changes in contrasts are used by Canny and Sobel to detect edges, which are two 

frequently used methods. Common to both edge detectors is the use of convolution kernels and the return of 

an output of either background or edge, where the edge will be white and the background black [40]. Sobel 

performs a spatial gradient measure and emphasises high frequency areas, which correspond to edges. Canny 

smooths an image with a Gaussian filter and then applies the same technique as Sobel, but with the 

difference that Canny is not limited to a 3x3 mask, but has adjustable masks [40]. Often seen in image 

preparation of datasets is normalisation, for instance, image dimensions, which is used in Brodatz’s texture 

dataset [20], [23], [41], [42]. Normalisation ensures that the data input shares a common standard (grey scale, 

dimensions etc.), which is used in the settings for feature extraction.  

12.2 FEATURE EXTRACTION   

Features are data and derived values that are informative regarding a shape in an image. 

Feature extraction is a common term for methods used for construction of features from a dataset. It is 

desirable to reduce the number of features in a dataset, to lower the resources used for computation and to 

minimise the risk of overfitting and redundancy of features. Wang and Liao [1] suggest the best texture 

descriptors to be small numbers of features with high discriminating power. 

Geometric features are used to describe image features, but normally simple geometric features can only 

describe shapes with large differences, in some cases filters are used to eliminate, for example, false hits 

[43]. Frequency and grey scale are, among others, also used in texture description. Describing texture and 

extracting features are performed in different domains, Spatial and Frequency, depending on the method 

used. Spatial domain concerns techniques based on the manipulation of pixels in the image and Frequency 

Domain concerns the frequencies in the image. There are several different feature extraction methods 
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described in Related Work that are useful for texture classification, but the following will only concern 

GLCM and LBPs, which both work in the spatial domain of the image.  

 

12.2.1 Grey Level Co-occurrence Matrix 

Grey Level Co-occurrence Matrix (GLCM) is a statistical method for analysing the spatial distribution of 

grey level values in images and was introduced by Haralick et al. [17]. Spatial distribution of grey level 

values is a texture-defining quality feature and is useful for feature extraction [13]. This method evaluates the 

representation of the frequency occurrence between two grey levels within a given area [44]. GLCM uses 

second-order texture calculations when considering relationship between neighbouring pixels in an image 

and creates a square matrix [13]. The matrix reveals how often a specific relationship between neighbouring 

pixels occurs. The relationship between neighbours can be obtained from different angles (0̊, 45̊, 90̊ & 135̊). 

However, normally 0 ̊, neighbour to the east, is the direction used [13]. Working with statistical texture 

analysis, features describing the image are computed from statistical calculation obtained from specified 

positions relative to each other [18]. Fourteen different statistic tasks can be applied to the matrix, though 

Contrast, correlation, energy and homogeneity are the four most commonly used [45]. These four statistical 

features have a high discrimination accuracy, reduced computation time and results show high efficiency 

when used for real-time pattern recognition [18]. Grey scale images normally have 256 grey levels and by 

the use of all levels, the image will be clearer, but the computation time will also be increased. When 

decreasing the grey level, some features decrease and some may increase, and grey level can be estimated 

based on the statistical features used. Contrast – Measures the intensity contrast between a pixel and the 

specified neighbour, where zero (0) is the contrast value for a constant image. Correlation – returns a value 

that describes the correlation between a pixel to a specified neighbour. The range is between -1 and 1, 

describing either perfectly positive- or negative correlation. Energy – returns the sum of squared elements in 

the Grey Level Co-Occurrence Matrix and describes the textural uniformity in the image, where a value of 1 

is for a constant image. Homogeneity – describes the closeness of the elements distribution in the GLCM to 

the diagonal. The highest value is when most of the occurrences are concentrated near the diagonal [46], 

[47].  

  



29 
 

The following presents mathematical formulas [41] used for GLCM and the four statistical methods. 

Grey Level Co-Occurrence probabilities for generating features first introduced by Haralick et al, [17] 

provides second order methods. The probability measure can be defined as the following, where δ is the 

distance to the neighbouring pixel and ϴ is the angle. 

Pr(𝑥) = {𝐶𝑖𝑗  | (𝛿, 𝜃)} 

Cij is the probability between two grey level and is defined as following. Pij represents the number of 

occurrences given a certain distance and angle. G is the quantized number of grey levels. The denominator 

represents the total number of grey pairs (i,j) in the window. 

𝐶𝑖𝑗 =
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗
𝐺
𝑖,𝑗=1

 

 

Statistic formulas used for the Grey Level Co-Occurrence probabilities are shown below, but are done 

automatically by applying MATLAB function greycoprops on GLCM output. 

The contrast intensity between the centre pixel and the neighbour. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ 𝐶𝑖𝑗(𝑖 − 𝑗)2 

 

Correlation is a measure of how correlated the centre pixel and its neighbour is over the full image. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑
(𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)𝐶𝑖𝑗

𝜎𝑥𝜎𝑦
 

 

Energy explains the sum of elements in the GLCM. 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝐶𝑖𝑗
2 

 

Homogeneity describes the closeness of the elements distribution in the GLCM to the diagonal. 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
𝐶𝑖𝑗

1 + (𝑖 − 𝑗)2
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12.2.2 Local Binary Pattern 

Local features refer to the pattern found in an image, which can be edges, patches in the image or similar. 

What the feature represents is not necessarily relevant, what is relevant is if the features describe something 

that distinguishes itself from the surroundings [48]. When working with local features, image segmentation 

is not required, which makes it widely used for classification. Local features are robust regarding rotation, 

clutter or other changes in viewing conditions [48]. To obtain a good local feature, the surrounding 

neighbourhood of the feature centre should be sufficiently varied to allow for a proper comparison of 

features. Ojala et al. [20] present the first Local Binary Pattern (LBP) as a method for texture classification, 

where the overall idea behind was a descriptor that uses two complementary measures, such as grey scale 

contrast and local patterns. LBP is a general definition of a texture in a local neighbourhood and provides a 

binary code that describes texture pattern by using the value of the centre pixel as threshold. The local binary 

code explaining the neighbourhood is produced by multiplying the threshold with a given weight to the 

corresponding pixel and thereafter summing up. LBP texture description was originally obtained from a 3x3 

window by using the grey value in the neighbouring pixel as a threshold. In [23] Ojala et al. presented LBP 

as a method that was able to work with neighbourhoods of different size and invariant to rotation of inputs. 

LBP defines the texture of a local neighbourhood in a monochrome image. Circular symmetrical neighbours 

form a circle around the centre pixel to create a local neighbourhood. If the value of the neighbour is not 

placed in the middle of the pixel, interpolation is used for estimation. The grey value of the neighbouring 

pixel is used as a threshold to the grey value in the centre pixel, multiplication of the threshold with the given 

value for the pixel (grey value), and summing up the result.  

LBP where neighbours in a symmetrical circle are evaluated is described by the following formula [22], 

where gc represents the grey level in the central pixel and gp is the grey value of the evaluated neighbour.  

𝐿𝐵𝑃𝑃,𝑅 =  ∑ 𝑠(𝑔𝑐 − 𝑔𝑐)2𝑝, 𝑠(𝑥) =

𝑃−1

𝑝=0

{
1, 𝑥 ≥ 0
0, 𝑥 < 0

 

P is the number of neighbours in the symmetrical circle, where R is the radius to the neighbour and s is the 

threshold.  

A histogram with identified LBP patterns for each pixel is created to represent the texture image.  
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Ojala et al.[23] introduced the use of uniform patterns in 2002, based on results showing the majority of the 

patterns in a 3x3 block was uniform, which in some cases it was over 90%.  

A pattern is considered uniform when it has less than two bitwise transitions and is described by the flowing 

[22]:  

𝑈(𝐿𝐵𝑃𝑃,𝑅) = |𝑠(𝑔𝑃−1 − 𝑔𝑐) − 𝑠(𝑔0 − 𝑔𝑐)| + ∑ |𝑠(𝑔𝑝 − 𝑔𝑐) − 𝑠(𝑔𝑝−1 − 𝑔𝑐)|
𝑃−1

𝑝=1
 

Uniform LBP creates a separate bin for each uniform pattern and the rest is assigned to a single bin. This 

means the number of different bins for uniform LBP is P(P-1)+3, which returns 59 bins when choosing 8 

surrounding neighbours [49].  

Rotation invariance is achieved by the following formula [22], which collects the matches of similar uniform 

patterns from different orientations in one bin and the others in separate bins, which returns 10 bins, when 

looking at 8 neighbours [49]. 

𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖𝑢2 =  {

∑ 𝑠(𝑔𝑝 − 𝑔𝑐)𝑖𝑓 𝑈(𝐿𝐵𝑃𝑃,𝑅) ≤ 2
𝑃−1

𝑝=0

𝑃 + 1                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

For further mathematical explanations, please refer to Computer Vision Using Local Binary Patterns 

(Chapter 2.3 and 6.2.1) [49] and A Completed Modeling of Local Binary Pattern Operator for Texture 

Classification [22]. 

 

12.2.3 Feature Reduction 

A large dataset can be difficult to overview and might be computationally heavy when processed, which is 

why a dataset as small as possible is desired [49]. Several methods can be used in the reduction of features 

such as Filter method, where a score is assigned to every feature and the highest score is retained. This 

method assumes all features to be independent, which might result in the removal of valuable features. 

Wrapper method is a combination of features compared to other combinations, the accuracy from the 

comparison provides a basis for the choice of features. Embedded method is a method that finds features 

which contribute the most to model accuracy [49]. Another method for reduction is PCA, which creates new 

feature combinations instead of filtering. The new principal components are linear combinations of the 

original features [50].  
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12.3 MACHINE LEARNING 

The following will briefly introduce Machine Learning to provide a basic understanding of the term. Two 

types of machine learning tools are presented as some of them are used in this thesis. The types of classifier 

represent two categories– Eager Learners and Lazy Learners.  

Machine learning is a part of Artificial Intelligence and explores the construction of algorithms that can learn 

from data [51]. Machine Learning provides a computer with the opportunity to lean without programming, 

by training on known data [52]. Within machine learning two sub groups encompassing supervised- and 

unsupervised learning are used. Supervised learning operates under supervision due to known target values. 

During training, the outcome is provided – in this case “good weld” or “bad weld”. A sub-branch in 

Supervised Learning is Classification, where the outcome of the classification is referred to as class and, to 

test the success, the classifier is tested on data with known class, but not known to the classifier. The success 

is normally measured on the error rate [52]. The output of the final algorithm is a decision boundary 

separating classes. Unsupervised Learning concerns, as the name suggests, unsupervised learning, where 

target values are unknown. During Supervised Learning, the machine is introduced to the different classes, 

where unsupervised learning will learn from data provided and from that describe the structure of unlabelled 

data. An evaluation of the accuracy is not possible and to test the algorithm, a manual evaluation based on 

historic data where output is known can be performed [52]. This requires the ability of manual interpretation 

of the historic data.  
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12.3.1 Classification methods 

Classification is a process to find a model that can describe and distinguish between classes in a pool of data. 

The idea behind is to be able to predict or classify unknown data, based on the information from data used 

for training [53]. Patterns in data needs to be presented to the classifier, thus must the data be explored and 

informative features extracted. The first step in a classifier is training, where the classifier is build based on 

predetermined classes. Patterns describing each class are learned and used in the prediction of new data. 

Classification accuracy is determined by testing how well the model classifies unknown data. Two well-

known classifiers, Support Vector Machine and k-Nearest Neighbour, which have presented good 

classification results [27], [26], [7], [54] are tested. Support Vector Machine (SVM) is categorised as an 

eager learner, where the method based on a given training set construct a generalization model, which is 

used when testing unknown data [53]. The SVM transforms data into a higher dimension, where separation 

of data is achieved by a hyperplane. The hyperplane can both be linear or non-linear depending on method 

used and the distance from the nearest data point on both sides of the hyperplane describes the best suitable 

for the data [53]. SVM is known to be resilient to overfitting because the boundary only depends on a few 

points. A few points describing the boundary means it will not result in overfitting of data, since it only 

depends on few support vectors [55].  

K-Nearest Neighbour (KNN) is categorised as a lazy learner, which is the opposite of the eager learner. 

KNN searches the pattern space to look for the neighbour closest to the unknown data presented to the 

classifier. An eager learner constructs a model for classification with input from training data and apply 

algorithm on test data. A lazy learner does not build a model explicitly and the making of a lazy learner 

model is cheap, but when it comes to the classification part that is where it becomes more time consuming. A 

lazy learner like KNN will have to calculate every distance between the unknown test object and the labelled 

objects in the training data, which can be computational heavy when working with large dataset [56]. KNN 

implements rote learning, where classification is based on a search for exact matches or close to exact match. 

It learns the patterns from the training data and classifies test data based on the search for matches [57].  
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12.4 PRESENTATION OF DATASET 

Here, the datasets are presented and the preparation is explained. Grey scaling, edge detection and resizing 

specific to feature extraction methods and tests are applied directly in Matlab code and are not incorporated 

in the original datasets.  

The data consist of 100 images (50 good welds and 50 bad welds) created for this specific purpose. Dataset 

contains two classes and images are divided in two folders – one containing good welds and one containing 

bad welds. Both folders contain 50 images and are processed identically. Images used for tests are cropped to 

show as little of the surroundings as possible. 

Both folders with full-size images and folders containing cropped images are available from the following 

link5 where they are properly distributed in respective folders. Full size image is 4608 x 3072 pixels and 

shows 300 dpi. Images are then cropped and downscaled to approximately 400 X 1000 and 96 dpi. 

Figure 1 and Figure 2 show images with a good weld in a cropped version and in the original version and 

Figure 3 and Figure 4 show images with a bad weld in the cropped- and original version. 

 

 

 

                   

 

 

             Figure 2 Full-size original image of a good weld 

 

 

                        

 

 

                         

               Figure 4 Full-size original image of a bad weld 

  

                                                           
5 https://drive.google.com/open?id=0BxMRnl6eiB0PcXJwYi1RdDduazg   

Figure 1 Cropped image of a 

good weld 

Figure 3 Cropped image of 

a bad weld 

https://drive.google.com/open?id=0BxMRnl6eiB0PcXJwYi1RdDduazg
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Datasets are fed to the feature extraction methods from their respective folder, i.e. features from bad welds 

have been extracted and saved to a file name specific for test. Images with good welds are then processed 

identically and saved to the same specific file name without overwriting. When importing extracted features 

to workspace in Matlab, images are labelled individually, based on the knowledge that the first 50 rows are 

features explaining bad welds and the last 50 are features extracted from good welds. The imported dataset 

containing features is stored as a table and the last column describes the label.  

 

 

Figure 5 Table showing features with respective labels. 
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12.5 DATA UNDERSTANDING 

This chapter explains how to interpret on the output from feature extraction methods, classifiers and sums up 

why the following methods are used.  

An understanding of data inputs and outputs is crucial for obtaining good results. Input data to feature 

extraction methods need to be evaluated and investigated by persons with appropriate knowledge of the field 

and can distinguish between valuable information and information that might influence the output 

negatively. Already by the 1930s it was noticed that overoptimistic results were found when training and 

testing on the same data, which was the start of Cross-validation [58]. K-fold cross-validation is used for 

validation of output. K-fold divides dataset into k-folds, where one fold is kept for testing, while the others 

are used in training the classifier. Training of the classifier will continue equal to the number of folds, which 

means every fold is used as a test fold. Another cross-validation is Leave-One-Out, where all data is used in 

training and only one data point is used for testing. It is often mentioned in published papers that a k-value 

between 5 and 10 produces good validation for comparing models, but the larger a k-value, the more 

computational heavy it becomes [58] [59]. With a larger k-value, there follows a decreased bias and the 

variance becomes greater. There is no direct answer to what k-value is the best and different values may be 

tested [59]. The accuracy achieved is compared and the top five results are evaluated further by comparing 

the ROC curve for each model.  

Table 2 show a Confusion matrix, which can be used in the evaluation of a classifier’s quality. The matrix 

helps visualise the predictive ability of the classifier [53]. To evaluate the classifier, the confusion matrix 

returns a matrix showing True Positive, True Negative, False Positive and False Negative.  

 

CONFUSION 

MATRIX 

Negative 

prediction  

Positive 

prediction 

Negative 

condition 

True Negative 

 

False Negative 

Positive 

condition 

False Positive True Positive 

Table 2 Confusion Matrix example 
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True Positive – is the correct classification of a positive value and False Positive is a value classified as 

negative, but in reality, it is positive. True Negative is the correct classification of a negative value. False 

Negative is a value that is classified as negative, but is positive [60]. To explain the outcome of the classifier, 

accuracy works as the measure. Accuracy is shown to be more effective if the class distribution is relatively 

balanced [53]. 

Accuracy is a description of the closeness of a quantity measurement in comparison with the actual quantity.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Accuracy returns a percentage value that depicts how accurately the classifier performs, and a high accuracy 

is positive, but if the repeatability is poor, the accuracy might change when repeated. Precision describes the 

ability to repeat the accuracy and captures the effect of many negative examples in the algorithm [60]. A 

high precision refers to a low false positive rate.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall can be described as the true positive rate of relevant results returned. A high recall value relates to a 

low false negative rate.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

A model with high recall value and low precision will return many results, but due to low precision, many 

predictions are incorrect compared to labels in training.  
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A ROC curve shows the influence of true positive rate on false positive rate and is useful in the comparison 

of two classifiers [53]. The x-axis shows false positive rate and the y-axis shows the true positive rate and 

visualises all possible thresholds between 0 and 1. A strong classifier will show a curve that is as close to the 

upper-left corner as possible, while the poor classifier shows a curve closer to the diagonal. Values below the 

diagonal, i.e. closer to lower-right corner, are classified as random guessing. Figure 6 below shows the 

diagonal line that represents the difference between a classifier and random guessing. 

 

 

Figure 6 ROC curve example 

 

It can be useful to test the robustness of the algorithm to determine the ability to make correct predictions on 

different types of data by adding noise to the data [52]. Depending on data type, different noise can be 

applied to the data, e.g. changing feature values and names. If the classification algorithm, even though being 

fed with noisy data, is able to classify with an accepted accuracy, it may be referred to as robust.  
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12.6 DATA PREPARATION 

The following attempts to explain the preparation of data and the importance of this. Image processing tools 

are presented, where a part of data preparation is image labelling, which is explained in context to the 

classifier. 

12.6.1 Image Processing  

GLCM and LBPs both work with binary images, which means all images are converted to grey scale before 

applied feature extraction procedures. The original images in dataset are of a high resolution and the majority 

of each image do not show weld face. Image cropping is primarily performed to show weld face. This 

procedure reduces noise from the surroundings and removes areas which have no interest for further texture 

analysis. Images in the dataset are cropped to the minimum size based on weld face orientation, which 

varies, and therefore dimensions are individual for every image. The normalisation of images is normally 

performed in order to reduce the size and to ensure every image is within the same standard, and every image 

is converted from RGB to grey scale before feature extraction. Normalisation regarding dimensions is not 

performed, but downscaling from 300 dpi to 96 dpi is performed when cropping to weld face (throughout the 

thesis referred to as full size image).  

Since both GLCM and LBPs use grey scales from the image as comparison or threshold, the use of either 

Canny- or Sobel edge detection is mentioned in Literature Review to negatively affect these values, but will 

be tested for comparison. Region of Interest (ROI) can be applied to every image, when working with 

detection, but classification is the main topic and ROI is chosen not to be used on this dataset due to the tight 

cropping that shows little of the area around the weld. Images in dataset are batched in good and bad welds 

and features from both batches are extracted to the same file. All feature vectors in the file are labelled as 

either good or bad so they can be used for classification training.   
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12.7 FEATURE EXTRACTION 

The following describes the feature extraction methods and explain the foundation for choosing feature 

extraction settings. 

Grey Level Co-Occurrence Matrix (GLCM) and LBP have certain similarities and work within the same 

domain – the spatial domain. GLCM looks at a specified neighbour in one or several directions to form a 

pattern describing how frequently a specific combination of grey values appears in the image. These values 

are transferred into a matrix where statistics are applied, which form the feature vector describing the image 

texture [44]. GLCM offers many different settings where some of them are 14 different statistic calculations, 

which influence the output and quality of the feature vector. Several of the statistics suggested by Haralick et 

al. [17] produce highly correlated features, which is not desirable [44]. Studies shows that energy and 

contrast are significant texture statistics, while others indicate the best texture discrimination is found by the 

combination of energy, contrast and correlation [44]. To test the statistic calculation on the images used in 

the dataset in this thesis a small-scale test, visually comparing the statistic output6, is used. Four images 

containing bad welds and four images presenting good welds were randomly chosen for the test. The image 

was cropped to a common dimension where the weld face forms approximately one third of the full image. 

Four different directions for approaching neighbouring pixels were tested individually in order to highlight 

large visual patterns or redundancy within the outputs. Based on the statistical calculations, the output shows 

identical values obtained at 0 ̊ and 90̊ when applying GLCM on full-size images. When horizontally splitting 

the image in eight, output changes slightly and redundancy is no longer present. When examining 

neighbouring pixels in two directions at the same time, the output shows a one by eight feature vector for 

each of the statistics, instead of a one by four vector. The test is simple, but shows that, if applying GLCM 

on a full-size image it is unnecessary to calculate both 0 ̊ and 90̊, even though Pathak and Barooah [13] state 

the opposite with their dataset. 

Jobanputra and Clausi [44] describe poor co-occurrence probabilities if window size is too small, which 

leads to inconsistency of the individual feature. On the other hand, if the window size is too large multiple 

classes are more likely to overlap, but since this classification only works with two classes it has been 

estimated to have little influence.  

 

  

                                                           
6 See appendix 6: GLCM test https://drive.google.com/open?id=0BxMRnl6eiB0PYnlqeHlFbmpLM0E  

https://drive.google.com/open?id=0BxMRnl6eiB0PYnlqeHlFbmpLM0E
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Originally, LBP was introduced to look at patterns occurring in a 3x3 block where the eight neighbouring 

pixels were used as a threshold. An LBP code is created by multiplying threshold and the weighted value for 

each of the neighbours [20]. LBP was introduced with an extension that deals with rotated inputs, which 

eliminates the need for input similarity regarding angle [23]. Instead of looking at a 3x3 block with eight 

neighbours, LBP is now able to work within a larger area and the numbers of neighbours are changeable, 

depending on the radius of a circle. The radius defines the number of pixels to the examined neighbour. 

Images in the dataset used in the following tests have attempted to follow a standard, where all images are 

captured from the same angle and welds facing the same direction. It is believed that the homogeneity in the 

dataset makes it possible to omit the function that makes it invariant to rotation. Originally, LBP returns 256 

features, but Ojala et al.[23] suggest implementing the use of uniform patterns, due to uniform patterns 

provide the majority of surface textures. Both LBP feature extraction methods tested use uniform patterns, 

based on better results with reduced number of features [9].   

Uniform rotation invariance, output forms a 1x10 feature vector instead of a 1x59 feature vector. The preset 

value of the radius is 1 and the neighbours are 8. The number of features are defined by the size of the 

histograms created, where each histogram describes a feature and the size of the histogram is defined by the 

number of bins. The number of bins change between 10 and 59 depending on the use of rotation invariance.  
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12.7.1.1 Test Settings 

The overall test settings are explained in the following. The settings are based on inspiration gained from 

similar studies presented in Literature Review.  

Images in the dataset are individually cropped to show the full weld face and limited surroundings and 

therefore images have individual sizes. Resolution is reduced from 300 dpi to 96 dpi. 

To test if the normalisation of dimensions would have an influence, a set of input images was resized to 64- 

and 128 pixels in width, to test if the normalisation of image size would create visible changes. A function in 

Matlab calculated the height compared to the width in respect to the aspect ratio in the original image. 

Grey Level Co-Occurrence Matrix settings:  

Different settings are tested to find the most appropriate for the classifier. Several different combinations are 

possible for testing, but due to good test results presented by Tou et al. [9], the maximum spatial distance is 

set to 2 pixels. Grey level is set to 8 because of computation time and based on results achieved by 

Renzeltiand and Zortea [61]. 

Table 3 shows three settings for feature extraction with GLCM. Offset value in the first column (e.g. 1) 

specifies the number of pixels to the neighbour.  

 

Offset  Statistics Grey 

Levels 

Output 

-1 0 (Neighbour to 

east) 

 

Contrast 8 4 features 

Correlation 

Energy 

Homogeneity  

-2 0 (Neighbour to 

east) 

Contrast 8 4 features 

Correlation 

Energy 

Homogeneity 

-2 0 (Neighbour to 

east) 

-2 2 (Northeast 

neighbour) 

Contrast 8 8 features 

Correlation 

Energy 

Homogeneity 

Table 3 GLCM settings 
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Local Binary Pattern setting: 

As stated in the Literature Review, it is questionable if rotation invariance has large influence on 

classification results due to the way images in dataset are produced, but rotation invariant settings are tested 

against the original LBP to test the statement. Both methods are concerning uniform patterns. Table 4 and 

Table 5 show the settings for Uniform LBP and Uniform LBP rotation invariant respectively.  

 

Neighbours in symmetrical 

circle 

Radius (pixels) Rotation Invariant Output 

8 1 no 59 features 

Table 4 LBP settings 1 

 

Neighbours in symmetrical 

circle 

Radius Rotation Invariant Output 

8 1 yes 10 features 

Table 5 LBP settings 2.  

 

Feature reduction is performed with PCA on all datasets is tested due to aforementioned research papers, 

where positive results was achieved by feature reduction.  

Functions for feature extraction can be found in appendix 7 – Feature extraction MATLAB 
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13 CLASSIFICATION RESULTS 

Table 6 and Table 7 below highlights interesting results from classifiers. Classification training and testing 

are carried out by an application available in Matlab from the Statistics and Machine Learning Toolbox 

11.0, called Classification Learner. This application imports data directly from the workspace in Matlab, 

where training data, test data and features are defined.  

K-fold cross-validation is the error estimator, which in this case is set to k=5.    

Rows highlighted in green show the three overall best performing features. 

LINEAR SVM ACCURACY 

(%) 

PRECISION 

(%) 

RECALL (%) 

GLCM [-1 0] 88 88 88 

GLCM [-2 0] 93 92 93,8 

GLCM [-2 0; -2 2] 91 90 91,8 

GLCM [-2 0] 64 92 94 92,1 

GLCM [-2 0] 128 94 94 94 

LBP 10 features 88 84 91,3 

LBP 59 features 96 98 94,2 

LBP 59 features 64 87 90 84,9 

LBP 59 features 128 92 92 92 

Table 6 SVM results 

 

KNN (1 neighbour) ACCURACY 

(%) 

PRECISION 

(%) 

RECALL (%) 

GLCM [-1 0] 86 92 82,1 

GLCM [-2 0] 86 90 83,6 

GLCM [-2 0; -2 2] 85 88 83 

GLCM [-2 0] 64 87 84 89,3 

GLCM [-2 0] 128 89 90 88,2 

LBP 10 features 68 66 68,7 

LBP 59 features 90 92 88,4 

LBP 59 features 64 83 90 78,9 

LBP 59 features 128 85 84 85,7 

Table 7 KNN results 

See document Test Results for complete test results and confusion matrices. 



45 
 

13.1 EVALUATION AND ANALYSIS 

This chapter evaluates results of tests with Linear SVM and KNN. The interpretation of results are presented 

and accuracy, recall and precision are evaluated with the purpose of finding the best combination of features 

and classifier. A ROC curve explaining the best performer is used to support the choice of classifier.  

 

Overall, SVM shows remarkably greater accuracy compared to k-Nearest Neighbour as classifier. The 

sections below present the results achieved by different combinations of features and classifiers. 

Grey Level Co-Occurrence as feature extractor and Support Vector Machine classification. 

Table 8 show the highest accuracy at 94% is achieved using features extracted with GLCM when evaluating 

the neighbour two pixels to the east [-2 0] on images resized to 128 pixels in width and a calculated height, 

which retained the original aspect ratio in the image. The second best is 93% obtained with the same settings, 

but on full size image (96 dpi). Even though the two accuracies are very close, recall and precision value 

show a slightly better performance achieved by features extracted from dataset with further reduced 

dimensions. Dataset with normal sized images returns a precision and recall at, respectively, 92% and 93,8%, 

where dataset with resized images shows a precision- and recall percentage at 94%. 

 

Table 8 SVM results highlights 1 

The difference when evaluating a neighbour one or two pixels away from the reference is close, but better 

accuracy is achieved when examining the neighbour two pixels away, which might be explained by the 

texture and the size of image. In general, features extracted with GLCM show good results, where four out of 

five tests show accuracy above 90% and a precision- and recall percentage is also close to 90% or above. 

Grey Level Co-Occurrence as feature extractor and k-Nearest Neighbour classification. 

When comparing KNN and SVM based on features from GLCM, SVM performs significantly better. 

Accuracy achieved by KNN is above 85%, but none of them is above 90%. Precision- and recall percentage 

is close to the accuracy.  
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Local Binary Patterns as feature extractor and Support Vector Machine Classification.  

Accuracy achieved with LBP features shows two types of results – two where the accuracy is below 90% 

and two where the accuracy is 92% and 96%. Table 9 below shows the two highest scoring extraction 

settings from LBP. 

  

Table 9 SVM results highlights 2 

Both results with a high accuracy are obtained with features that do not consider rotation invariance, from 

which I can conclude rotation invariance has a negative influence on the accuracy as some informative 

features are omitted. From the results, it can be seen that the accuracy is directly influenced by the size of 

image as the accuracy decreases as the image becomes smaller. Common to features achieving high accuracy 

is that they come from feature extraction where rotation invariance is not present. 

An accuracy of 88% is achieved when using 10 features (rotation invariance), but the accuracy is improved 

to 96% by omitting invariant rotation (59 features) and classified by SVM showed in Table 10.  

 

Table 10 SVM results highlights 3 
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The confusion matrix in Figure 7 below shows the classifier was able to classify 49 out of 50 good welds 

correctly, while 47 out of 50 bad welds were classified correctly. Since the classifier performed worse in 

classifying bad welds, it can be that images with bad welds contain large areas of non-defect weld face, 

which are identical to a good weld face.  

Values from the confusion matrix are used to calculate precision and recall. Precision is calculated to 98% 

and recall to 94,2%, which concludes that the classifier is able to repeat the classification with good results. 

The ROC curve in Figure 8 below shows a large area under the curve, which indicates a strong classifier. 

Location of classifier represented by the red dot in the upper right corner. 

 

  

 

 

 

  

Figure 8 SVM classification 96%, ROC-curve Figure 7 SVM classification 96%, Confusion Matrix 
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Local Binary Patterns as feature extractor and k-Nearest Neighbour Classification. 

As presented with features from GLCM and classification with KNN, results from LBP features and KNN 

classification show a decreased accuracy compared to SVM. The highest accuracy is achieved with full size 

image and 59 features, which returns an accuracy of 90%, where the lowest accuracy is achieved by 10 

features with a result of 68%.  

SVM outperforms KNN overall on this dataset with all types of features. Better performance with SVM 

might be explained by the way the two classifiers work, where KNN stores training input for then to 

calculate test input that appears closest to value in training data and SVM creates a hyperplane.  

Feature reduction with PCA. 

Other published research papers have achieved successful results when reducing the number of features 

before classification [9] and to test if feature reduction could change the output, PCA was applied on all 

extracted features. Results from feature reduction by PCA, shown in Table 11 and Table 12, did not show 

any improvement on the accuracy; on the contrary, it achieved inferior accuracy in all tests.  

LINEAR SVM ACCURACY 

(%) 

PCA reduced 

(%) 

GLCM [-1 0] 88 53 

GLCM [-2 0] 93 85 

GLCM [-2 0; -2 2] 91 90 

GLCM [-2 0] 64 92 78 

GLCM [-2 0] 128 94 86 

LBP 10 features 88 61 

LBP 59 features 96 84 

LBP 59 features 64 87 88 

LBP 59 features 128 92 91 

Table 11 SVM Results 
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KNN (1 neighbour) ACCURACY 

(%) 

PCA reduced 

(%) 

GLCM [-1 0] 86 55 

GLCM [-2 0] 86 79 

GLCM [-2 0; -2 2] 85 79 

GLCM [-2 0] 64 87 73 

GLCM [-2 0] 128 89 77 

LBP 10 features 68 52 

LBP 59 features 90 84 

LBP 59 features 64 83 70 

LBP 59 features 128 85 73 

Table 12 KNN Results 

 

Table 13 below shows the best performing features and classifiers with an accuracy of 96% achieved only 

84% accuracy after feature reduction with PCA, which is a remarkably reduction.  

 

Table 13 SVM results highlights 4 

Both classification by SVM and KNN show less accuracy after PCA, compared to no reduction in features. 

Some of the results are very close to the original accuracy, but common to all is the reduced accuracy. The 

reduced accuracy achieved by feature reduction may be explained by the fact that valuable information might 

be lost if features are removed or, in this case, combined with other features when trying to explain data with 

a simpler feature vector. 

  



50 
 

13.2 FURTHER TESTS AND EVALUATION 
To support the choice of omitting edge detectors before feature extraction, tests with edge detectors were 

carried out. The test was performed on exactly the same dataset, processed identically. The tests involved the 

use of the CANNY edge detector and SOBEL edge detector, which were applied individually. Edge detectors 

were only tested on the feature extraction methods that performed well during original test. 

Results from GLCM feature extraction showed a less accurate model with the use of Canny or Sobel edge 

detectors. LBP feature extraction on images applied with edge detection performed better than GLCM and 

edge detection, but the accuracy was still remarkably lower than tests without edge detectors.  

 

Figures 14 and 15 below show tests where edge detection is applied before feature extraction.  

LINEAR SVM CANNY 

(%) 

SOBEL 

(%) 

PRECISION 

Canny/Sobel 

(%) 

RECALL 

Canny/Sobel 

(%) 

ORIGINAL 

ACCURACY 

(%) 

GLCM [-1 0] - - - - 88 

GLCM [-2 0] 88  84  88/82 88/85,4 93 

GLCM [-2 0; -2 2] - - - - 91 

GLCM [-2 0] 64 - - - - 92 

GLCM [-2 0] 128 - - - - 94 

LBP 10 features 59  81  52/74 60,5/86 88 

LBP 59 features 90  91 88/92 91,6/90,2 96 

LBP 59 features 64 - - - - 87 

LBP 59 features 128 - - - - 92 

LBP 59 features, 

PCA recused 

44 86 68/82 42/89,1 82  

Table 14 Canny/Sobel tests SVM classification 
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KNN 

(1 neighbour) 

CANNY 

(%) 

SOBEL 

(%) 

PRECISION  

Canny/Sobel 

(%) 

RECALL 

Canny/Sob

el (%) 

ORIGINAL 

ACCURAC

Y (%) 

GLCM [-1 0] - - - - 86 

GLCM [-2 0] 80 69 84/70 77,8/68,6 86 

GLCM [-2 0; -2 2] - - - - 85 

GLCM [-2 0] 64 - - - - 87 

GLCM [-2 0] 128 - - - - 89 

LBP 10 features 56 79 52/75 56,5/80 68 

LBP 59 features 65 84  56/84 68,3/84 90 

LBP 59 features 64 - - - - 83 

LBP 59 features 128 - - - - 85 

LBP 59 features, 

PCA reduces 

50 88  54/90 50/86,5 84  

Table 15 Canny/Sobel tests KNN classification 
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13.3 ROBUSTNESS 
A test in robustness of the best performing algorithm is now given. The first test is performed with new 

unlabelled data, which have not been part of any training. Another test is carried out with same image, but 

noise is added by the removal of feature values and a third test with images where area around weld face is 

not removed. 

The function for prediction is tested with new data, which have not been used in any training or tests. The 

new data contain six images, where three show a good weld and the other three show a bad weld. The three 

first values are bad welds and the last three are good welds. This is common to all the tests. 

New data can be found in appendix 8 – new data (images for robustness test). 

Table 16 below shows the robustness test with new data, new data containing noise and new data where no 

cropping is done. Cells marked in red show the wrong classifications, which can be compared to the target  

in the last column to the right. Results from MATLAB is found in appendix 9 – Robustness Test. 

Classification with new data containing images undergone exactly the same preparation as the original 

dataset show five out of six images classified correctly, where one of the good welds (image 5) is classified 

as bad. This misclassification might be explained by the fact that the weld face on image is uneven in some 

areas and features may be very alike. The column showing new data with noise, where some feature values 

are missing, show a classification where 50% is classified as correct, which is a remarkable decrease in 

accuracy compared to new data with no noise. The last column with image where the area around the weld 

face is retained show an accuracy where two out of six classifications were wrong, while the remainder were 

correct.  

Data Classification 

New data 

Classification 

New data with 

noise 

Classification 

New data no 

cropping 

Target 

Image 1 b b g ‘b’ 

Image 2 b b g ‘b’ 

Image 3 b  g b ‘b’ 

Image 4 g b g ‘g’ 

Image 5 b  g  g ‘g’ 

Image 6 g b  g ‘g’ 

Table 16 Robustness test 
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Robustness tests show a strong classifier on new unknown data, which have undergone the same treatment as 

training data. A remarkably decreasing accuracy occurs when feature values are missing. A slightly better 

accuracy is achieved when classifying new data, with images without a tight crop around the weld face. This 

shows the function created by SVM is strong on new unknown data with same standard as the training data, 

but with missing values a poor accuracy is obtained.   
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14 DISCUSSION  

Between the two different types of classifiers used, SVM achieved the best results. The better accuracy 

achieved by SVM might be explained by the categorisation of eager learners and lazy learners, where SVM 

is an eager learner. The eager learner creates a model to explain test objects based on training data, while the 

lazy learner stores the input from the training data, to then try to find a match between training and test data. 

Several of the feature inputs have values close to each other due to the similarity in images, which might be 

the answer to the lower accuracy with KNN classification.   

To reduce the risk of overfitting, k-fold cross-validation is used. Cross-validation splits data into folds, so 

some of the data is used for training and some is used for testing. The k value is individual for each type of 

dataset, but cross-validation with five folds are used due to positive results in [58], [59] but other fold values 

should be tested if further research is performed. Perhaps a number above five, but below ten would 

contribute to better accuracy – although this is only an assumption.  

The choice of SVM and KNN as classifiers was based on results from published papers within the area, but 

also because they are two different types of classifiers. Further testing could be performed with another 

classifier than KNN, since the classifier had the poorest performance. A robustness test with SVM showed a 

strong classifier with new data, but data with missing values showed a poor accuracy of only 50%. 

Decreasing accuracy with missing values during the robustness test might also explain the poor accuracy 

when applying edge detection before feature extraction. When examining extracted features, several columns 

show missing feature values and, related to the robustness test, the poor accuracy can be explained.  

The level of the accuracy can always be discussed, and whether the accuracy scores highly enough. The level 

of accuracy and the conclusion if it is high enough depends on the intended use, but also the expenses of 

preparation. If expenses increase remarkably when trying to achieve 2% better accuracy it might be 

discussed if the lower accuracy would be sufficient. Another aspect regarding the accuracy is intended use of 

the welded object and the level of repair costs [1]. 

Images in the dataset were individually cropped to show weld face, but since images do not fulfil the same 

standard regarding orientation, it was difficult to eliminate areas around the weld face. This issue might have 

created unnecessary noise, which could have been avoided.  

Due to the limited amount of time, samples in the dataset were created with defects simplified and more 

distinguishable compared to real-life occurring faults. Defects are errors in gas supply, which means oxygen 

is mixed in the weld pool with a porous weld face as a result. Oxygen mixed in the weld pool will show the 

same output as the samples, but maybe less distinctively. This simplicity might have an influence on the 

classification based on the features, but then again, the gas flaw only covers a small area on the weld face 

and the rest of the image shows an approved weld face, which supports the simplified dataset.  

It can be discussed if ROI would have contributed to a better performance and classification. For detection of 

areas with poor weld in the image, ROI would definitely have been beneficial, but since the thesis concerns 
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classification, it was chosen not to be implemented. Images in dataset are cropped to show an absolute 

minimum of the surroundings, which can, in some way, be presented as the ROI, because the full image is of 

interest for the model.  

It can always be contemplated if more tests are required to obtain a valid result, but due to the limited 

working period, the test area had to be limited. Several different combinations of feature extraction methods 

and classifiers can be combined in the search for an increase in percentage accuracy. Within the tested 

methods, several different settings can be applied, which opens up the area even more. Test settings were 

chosen based on successful test results in published papers, which was used as validation of settings applied. 

If further testing is performed, other test settings should be evaluated in order to find the most suitable, even 

though an accuracy of 96% was achieved. 

Images in the dataset were of a difference size and normalisation of dimensions were evaluated. The length 

of the weld samples was approximately ten centimetres and the defects are situated randomly within this 

length, and a normalisation of the length would, in some cases, result in cropping in the defected area and 

therefore normalisation of the width only was performed. If new dataset is created a better standardization of 

samples should be applied.  

Offset value used for both GLCM and LBP is based on test results presented in published papers (presented 

in the Literature Review) and best accuracy was achieved by LBP evaluating the first neighbour, while 

GLCM achieves better results when looking at the second neighbour. It was not tested if LBP feature 

extraction would perform better if evaluating second or third neighbour, but this should be performed if 

tested further.  

Robustness is a way of testing how the classifier handles, for example, noisy data, and how it affects the 

result. Since images in dataset do not follow an identical standard, i.e. they have individual dimensions, it 

can be discussed if this can tell something about the robustness, but best accuracy in this case is achieved 

with downscaled images (tight crop around weld face). During the robustness test, new data that were not 

used during any training were tested in the classifier, where the results showed a strong classifier on new 

unknown data, but a decreasing accuracy when feature values were missing, which explains the importance 

of all features extracted. This might also explain the lower accuracy when applying feature reduction before 

classification.  

Since images in the dataset aim to follow the same standards, such as the orientation of weld face, it is 

discussed if rotation invariance during LBP features extraction is necessary. Good results were obtained 

when extracting features with rotation invariant LBP on Brodatz’s dataset, where some images in dataset 

were tilted [9]. Since some of the images in the dataset tend to tilt, it would have seemed obvious that good 

results should be present with rotation invariance, but results show the opposite. Perhaps this is because all 

images show the same type of structure, while Brodatz’s contain several different surface textures.  

Many different validation methods are available and the use of cross-validation, with 5-fold validation, is 

based on experience from other research papers, but due to a relatively small dataset (50 good and 50 bad) 
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leave one out validation might also have contributed to high accuracy. This is not tested since high accuracy 

was achieved with 5-fold validation, but should be tested in further work.  

When evaluating results from datasets with full-size images and datasets where normalisation of width was 

performed, the performance was very close and normalisation of dimensions can be discussed. This should 

only be concerned when dealing with images with little variance in dimensions and where ROI is 

approximately the same size.  

As mentioned, tests with Canny and Sobel edge detectors showed poor classification results, but another 

option to implement the use of edge detection could be a transition of grey scale images and images showing 

only weld edges. This combination might create strong features because it combines information from the 

surface, but also from the highlighted edges of the weld. An unbroken line of white pixels represents the 

edge, but if a grouping of white pixels occurs between edge lines, it may explain a defect on the surface. 

Another way to use edge detectors could be to count white pixels in the image. 

There are many different approaches to this subject and the type of classification, which means there are also 

many methods that can be used. Feature extraction methods and classifiers were chosen based on results in 

evaluated research papers and it is conjecture whether another method might have achieved better results. 

The model presented acts only as the prototype to test if this type of feature extraction can create valuable 

information about the weld face. The idea behind it was that something similar could be installed as a 

permanent setup on a linear welding rack, where images are obtained automatically. Combining image 

processing and evaluation is performed and if a defect occurs, the image is saved and sent to manual 

evaluation where decision regarding next step is taken.  
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15 CONCLUSION 

As stated in Problem Statement this thesis attempts to find a model to classify simple surface defects in MIG 

welds. This is pursued in order to reduce the use of skilled labour as part of the general visual inspection. 

The two promising features extraction methods are tested and evaluated based on the accuracy achieved by 

two classification methods. 

A method for visual inspection of MIG weld with gas flaws is presented based on feature extraction and 

classification algorithms. Feature extraction methods (Grey Level Co-Occurrence & Local Binary Patterns) 

are evaluated based their ability to describe surface textures, which are used for classification purposes. Two 

classification methods (Support Vector Machine & k-Nearest Neighbour) are compared to find the best 

suitable classifier for the data.  

Best classification results are obtained with a SVM, full-size images (96 dpi) and features extracted by 

uniform LBP. Images are only cropped to show weld face and dimensions are individual for every image. 

Tests with normalised images, feature reduction and edge detection methods are performed, but the best 

results were found with images downscaled from 300 dpi to 96 dpi.  

The highest accuracy of 96% is achieved with a combination of LBP features and SVM classification.  

This work presents a prototype, which only concerns features extraction methods and classifiers, which 

means a fully automated model is not presented. 

 

 

16 FURTHER WORK 

This chapter presents ideas and thoughts behind further work within the area. 

The next stage of this work should be to extend it to look at several types of flaws and defects. Detection and 

evaluation of, for instance, undercuts, weld roots or alignment could be areas for further investigation. It is 

believed that the created dataset is useful for this type of work as the welds show other minor flaws. 

A test environment where a linear guided welding is performed and with a permanent camera setup could be 

part of next step in the search for a fully automated detection model. 

The idea of examining weld surfaces based on texture features creates a foundation for further research 

regarding colour shadings and tempering around weld face. Could similar methods be used in colour 

detection as an aid in the selection of tempering treatment?   
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