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ABSTRACT:

In this paper we evaluate four different aggregation meth-
ods, Borda Count, Markov Chain, Spearman’s Footrule,
and Average, on four different measures, nDCG using
ranks, nDCG using ratings, Kendall Tau Distance, and
Spearman’s Footrule Distance.
For individual recommendation, we use SVD++ from My-
MediaLite, and groups generated from theMovieLens 100K
dataset, of sizes ranging from 4 to 40.
Our findings show that Borda Count has the overall best
performance. Markov Chain, using the Copeland method
as a heuristic, also nearly performs on par with Borda
Count, and that the quality of the recommendations drop
as the size of groups increase per all measures, but that
the decrease becomes almost nothing after group size 20.



Summary

Most commonly in recommendation, it is for a single person. The classic problem for the Recommendation
System is to provide the best item from a variety of options to a single user. It has branched OUT into a
multitude of branches such as collaborative and content-based filtering.

Today, recommender systems concern themselves about where we should eat, what music to listen to, what
movie to watch, or where our next vacation should go to.

However, none of the scenarios above are uniquely activities done alone. Some are traditionally outright
viewed as group activities for most people by default. As such, the concept of a group recommender is an
intuitive extension to the traditional recommender.

This article deals with recommendation for groups of people. The problem is reflected in many other
aspects of life and it is radically different from the challenges of a normal recommender system. Voting shares
similarities with the challenges seen in group recommendation, as the challenge is to recommend the option
that is the least opposed by all parties or satisfies some other criteria for approval in the group.

So instead of a recommendation, the challenge is counting votes. For Group Recommendation, this is usually
defined as aggregation, and many aggregation methods exist and are used for many domains. Borda Count,
which exists both as a voting and aggregation method, is one such example and is used in this master thesis
project.

Borda Count in particular was notable for the project. In the previous semester, the group working on this
project was exploring extensions of Borda Count. The results were promising, but there was a lack of a ground
truth to really give meaning to the results.

For the project, initially, we were chasing the possibility of creating a dataset to establish a ground truth for
our earlier findings. The dataset itself would have been a great contribution as there is not a lot of available
data for the group recommendation field. However, given the amount of data needed for a proper dataset, we
had to look towards paid services to attract the numbers needed. In this case, we turned to Amazon Mechanical
Turk, where it is possible to pay people to answer surveys or other simple tasks. With that in mind we applied
for funding and got a 100 euro to spend for the project with the stipulations that the dataset be freely available
to all AAU students and were reusable for others in the field.

So to evaluate our results, we could not ask amazon turkers to rate our group recommendations, as they
would not be reusable. As such the plan for the surveywas to have the users provide the recommendations on the
assumption that humans are good group recommender systems. We could then compare group recommender
systems in how they recommended as opposed to humans.

As the survey designer for Mechanical Turk was not complex enough to cover our use case, it was decided
to make our own server and webpage to handle the survey and collect the answers. Initially, we started
development on a Java server using JavaServer Pages, but after a while we switched to python with the Django
framework. For webhosting, we found a provider online.

The survey was simple. The survey participant was given information about the preferences for a group,
and was asked to make a ranked list of recommendations for the group.

To avoid overloading the participant with information and make the survey take too long, we spent a lot of
time on making it easier for the participant.

However, 3 days after we launched the survey, we found ourselves suspended from the Mechanical Turk
with no recourse for recouping the money or refuting the suspension.

At this point, around half the alloted time for the project was gone and we had nowhere near enough data
to establish any ground truth, and we turned the project towards testing new aggregation methods in the
group recommendation domain. Additionally, we would use many types of measures to make up for our lack
of a real dataset.

In the end, we implemented many aggregation methods, of which Borda Count, a Markov Chain variant;
MC4, Spearman’s footrule, and Average made it to the paper.

A paper on these methods had made some interesting insights for these measures on group sizes between 2
and 8, so we pivoted to further test the results of the paper. With the extra measures we implemented, we also
confirmed the results for more than just Normalized Discounted Cumulative Gain.
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Abstract
In this paper we evaluate four different aggregation methods, Borda
Count, Markov Chain, Spearman’s Footrule, and Average, on four
different measures, nDCG using ranks, nDCG using ratings, Kendall
Tau Distance, and Spearman’s Footrule Distance.

For individual recommendation, we use SVD++ from MyMedi-
aLite, and groups generated from the MovieLens 100K dataset, of
sizes ranging from 4 to 40.

Our findings show that Borda Count has the overall best perfor-
mance. Markov Chain, using the Copeland method as a heuristic,
also nearly performs on par with Borda Count, and that the quality
of the recommendations drop as the size of groups increase per
all measures, but that the decrease becomes almost nothing after
group size 20.
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1 Introduction
Many of the decisions we make are based on recommendations,
from either people we know or recommender systems tailored to
personal preferences. This can be helpful due to the high amounts
of information we process in our everyday lives[5]. The recommen-
dations, or more specifically in our case, the recommender system,
can cut down the number of options to a manageable level and
thereby augment the decision-making process without forcing a
decision.

The problem with the traditional recommender systems is that
they typically make recommendations tailored to one person but
often these decisions needs to be taken in a social context.

For some scenarios, such as for selecting a movie on a streaming
service, finding a restaurant, or deciding on a vacation destination,
the inclusion of a social context would change the problem from
that of knowing ones own preferences to that of an entire group in
the given context.

A problem regarding taking the social context into consideration
is that the recommender has to strive for consensus between the
people it recommends to. An already complex problem is made
even harder by having to solve it for multiple users simultaneously
with new rules in play. From here, we will reference to this problem
as making a group recommendation.

When making group recommendations there are two main ap-
proaches, namely profile aggregation and recommendation aggreg-
tion [2]. The idea behind profile aggregation is to aggregate the
users’ preferences into a single group profile and make aggrega-
tions based on that profile. The other approach is to consider each

user individually and aggregate the recommendations for the users
into one aggregation that fits the groups preferences. In this paper
we have chosen to focus on aggregation recommendation.

As we are going to aggregate the users recommendations we
have chosen to only focus on the top-k part of their recommen-
dations and return a list of recommendations of size k as a result.
Furthermore, the top-k lists will be ranked with the highest rated
item at first position on the list.

With ranked top-k lists being partial lists, we have selected four
types of aggregation methods which have shown good results when
used for aggregating partial lists. The methods we used were Borda
Count, Markov Chain, Spearman’s Footrule, and Average[4, 11].

For group recommendations we faced the challenge of evaluat-
ing the result without a dataset to provide a ground truth. However,
from the information retrieval domain, we found measures to eval-
uate the quality of queries that can be used to evaluate the quality
of a ranked list of recommendations and there are many datasets
available for individual recommendations.

One such dataset is the 100k MovieLens dataset used by Bal-
trunas et al for a group recommender setup[1, 8]. They used aggre-
gation methods such as Borda Count and Average and evaluated
their performance using Normalized Discounted Cumulative Gain.
Their tests were done on groups of size 2, 3, 4, and 8 and the findings
they made were that the quality of the recommendation did not
always drop even when the group size grew. Furthermore, their
result showed a significant quality drop from group size 4 to 8. We
adapted some of their approaches, more specifically Borda Count,
Average, and Normalized Discounted Cumulative Gain, and setup
in order to make further tests for larger groups to document if the
decrease continues at the same rate as between group size 4 and 8.

1.1 Research Questions
Among common aggregation methods, given ranked top-k lists
τ1, ...,τu , where u is the number of group members, which method
can provide the most optimal group recommendation per measures
such as satisfaction or distance from individual preferences of the
group?

Baltrunas et al supplies us with some results for the performance
of a group recommender setup. Their results for group sizes 2, 3,
and 4 are very close and perform well, but they show a drop off
in performance for group size 4 to 8. Is it possible to reproduce
similar test results and with larger groups to investigate if the drop
off continues? Furthermore, is it possible to verify the results with
additional measures?



1.2 Structure of the Paper
The structure of the paper is as follows. Section 2 gives a short
overview of the implemented system. Section 3 describes the meth-
ods used of making a group recommendation. In Section 4 we will
present the evaluation including setup and our results. In Section
5 we discuss the results of the evaluation and in Section 6 we will
present our conclusion and future work.

2 System Overview
In this section we give a short overview of the group recommenda-
tion system which is depicted in Figure 1. Each of the stages will
be outlined with a short description.

Figure 1. Stages of the group recommender system

Individual Recommendation We make individual recommen-
dations for every user. The recommendation methods used in this
step is interchangeable and can be selected to fit the data and
purpose of the recommendation. The only condition for the rec-
ommender is that it finds a complete list of recommendations of
the users in a group. In Section 4.1.2 the recommender we use is
further elaborated on.

Groups In this stage we generated a list of groups for testing
purposes. These consist of user id’s and were generated at random
but it is ensured that the same user only appears once in each group.
The specific setup of the groups is described in Section 4.1.3.

Group Recommendation The group recommendation part con-
sists of two stages, namely preprocessing and rank aggregation.

• Preprocessing is needed to find the individual recommenda-
tions belonging to the users in a certain group and format
them for the rank aggregation.

• Rank aggregation combines the individual recommenda-
tions into a list of size k which should represent the groups
preferences.

A more detailed description of the stages in group recommendation
can be found in Section 3.

Evaluation The last stage is evaluation. In this stage several tests
and measurements are performed. The setup and results of this
stage is shown in Section 4.

3 Group Recommendation
This section documents the preprocessing done and outlines the
rank aggregation methods used in order make the recommendation
aggregation into a group recommendation.

3.1 Preprocessing
Prior to making the rank aggregation we do some preprocessing. As
specified in Figure 1 the preprocessing stages get groups and all the
individual recommendations as input. Preprocessing is concerned
with constructing a top-k list for each of the users in a specific
group based on the individual recommendations.

A top-k list is specified as a ranked list of length k consisting of
the highest rated items order in descending order. More specifically
let τ be a top-k list and let τ (i) be the rating of item i , which is an
arbitrary item, then list is ranked if τ (1) > τ (2) > ... > τ (k).

The top-k lists are stored in an array which is used as input for
the aggregation methods.

3.2 Rank Aggregation
In this section we describe the aggregation methods. Common for
all the methods is that they aggregate an array of top-k lists into
one ranked list, ω, of length k containing recommendations of a
group. The order of ω may differ between the methods as they rank
it based on which items they deem most relevant for the group,
with the most relevant item first.

3.2.1 Borda Count
Borda Count(BC) was originally used as a voting system but has
over the years been used in different domains because of its ability
to aggregate ranked lists[1, 11].

The way BC works as a voting system is by the voters ranking
the k candidates by assigning votes 1 to k , giving k points to their
favorite candidate k − 1 to their second favorite down to 1 point to
their least favorite.

In our case we feed the BC method with an array of top-k lists,
the items in the lists are assigned points by giving item one k points
down to 1 point for item k[3]. Naturally, an item not on a users’
top-k scores zero points from that user. The way the aggregations
are made is by using Equation 1. U is the set of users top-k lists
in a group and τu is a users’ list. I is the set of items given by the
union of all lists in U , so I = τ1 ∪ ... ∪ τu and i is an item in I . The
equation, assuming that τu (i) is the points of item i in a top-k list,
sums of all items i ∈ I the points of that item from each of the users’
top-k lists.

bc(i) =
∑
u ∈U

τu (i) (1)

The k items getting most points is returned as the recommenda-
tion list, ω, which is in descending order.

3.2.2 Markov Chain
Dwork et al propose a Markov Chain for aggregating ranked lists,
called MC4 [4]. MC4 generalizes the heuristics of the Copeland
Method, where a winner is the candidate which wins the most
pairwise contests[15].

MC4 is a process where we note the possibility of transitioning
from one state to another state over time. The MC4 state space, S ,
corresponds to a set of all the items, I , such that S = {1, 2, ..., |I |}.
The transition probabilities between states are represented by a
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transition matrix, P = |I |× |I |, covering the probability,pi j , between
any item pair i ∈ I and j ∈ I .

To calculate the probabilities, let ci be the set of items from I , that
for the majority of the ranked lists we aggregate for, τ1,τ2, ...,τu ,
it holds that τu (i) > τu (j). As such, for the item placed first on
every ranked list, ci = I − i , and for the item placed last for every
list would have ci be the empty set. The probabilities of P is found
according to Equation 2. λ is a variable for teleporting that makes
P irreducible such that it has no absorbing states, and provides a
small increase in accuracy. Via tuning, we found that λ = 0.05 is a
good value. For the case of a missing item from either or both lists,
the item is considered to be on the lowest possible rank.

pi j = (
|ci |

|I |
)(1 − λ) + (

λ

|I |
) (2)

For the probability of state i staying in state i , we have Equation
3.

pii = (
|I | − |ci |

|I |
)(1 − λ) + (

λ

|I |
) (3)

When the transition matrix is calculated, the result can be found
via the stationary distribution for P . A distribution vector is a
vector of size |I |, which holds non-negative values, representing
how the states are distributed. For an initial distribution, x , then
xP t , is the same initial distribution after t steps down the chain.
The stationary distribution is where the state distribution stops
changing regardless of taking more steps.

For practical purposes, we can approximate the stationary distri-
bution for P via application of the power-iteration algorithm. So
the approximate distribution, r , is found in Equation 4 for a number
of steps, t . Via tuning, we found that t = 30 was a good value.

r = xP t (4)

The result of MC4, ω, is then found as the k items with the
biggest shares of r .

3.2.3 Spearman’s Footrule
Dwork et al propose Spearman’s footrule(SF) for aggregating ranked
lists[4]. SF utilizes bipartite graphs from graph theory to construct
a weighted complete bipartite graph (I , P ,W ). Let I be the set of
items equal to the union of the top-k lists τ1, ...,τu , where u is the
number of users in a group. Then we have the set P = {1, ...,k},
which are the available positions in the list to be recommended.
Lastly, the setW is the set of edge weights between items i ∈ I and
positions p ∈ P . The weightsW (i,p) are found by using the scaled
footrule distance equation which can be seen in Equation 5[4].

W (i,p) =
k∑

n=1
|
τn (i)

k
−
p

k
| (5)

As we work with partial lists we will encounter lists with missing
items. For this reason we have added a second case in addition to the
approach described by Dwork et al, which can be seen in Equation
6. In this case we adapt the variable ℓ from Spearman’s footrule
distance. This variable is used on partial lists for measuring distance.
ℓ needs to be larger than k and in our case it is k + 1. The reason for
this is to punish infrequent items by giving them a higher weight.

W (i,p) =
k∑

n=1
|(
ℓ

k
−
p

k
| (6)

After determining the edge weights, the problem can be solved as
a minimum cost maximummatching problem, which is the problem
of finding the highest number of node matches with the lowest
edge cost. To do this, we decided to use the Munkres extension
of the Hungarian method[12]. The result of this method, ω, is a
ranked list of size k containing the recommended items.

3.2.4 Average
We choose Average(Avg) aggregation as it is one of the more com-
monly used andwell performingmethodswithin group recommendation[14].
Baltrunas et al, also used an Average aggregation method as one of
their measures for their setup with ratings[1]. Our implementation
only considers the items in the top-k list. It finds the union of all the
users’ top-k lists, u ∈ U , so I = τ1 ∪ ... ∪ τu . The Avg method then
uses the full lists, σ1, ...,σu , from the individual recommendations
to find the average rating for the items i ∈ I . Equation 7 illustrates
how Avg works.

Avд(i) =
∑
u ∈U

σu (i)

|U |
(7)

4 Evaluation
In this section we show our evaluation of the aggregation methods
described in Section 3.2. The aim of the evaluation was finding an
appropriate aggregation strategy for group recommender systems
according to the 4 measures. Second to that was to confirm earlier
findings on group recommender systems and extend them to other
measures and bigger group sizes.

4.1 Setup
Throughout these tests we have decided to assign k the size 10.
Figure 2 show the basic setup of the test leading to the evaluation.
The lists of individual recommendations for a group of size u will
be put through an aggregation method before outputting a list
of k ranked items. The input is made through a combination of
the available data, individual recommendations, and the group
generation.

Figure 2. Concept of the test setup. Aggregation methods take in
top-k lists and returns a list of recommendations.

4.1.1 Dataset
We used the MovieLens 100k dataset published by GroupLens in
1998[8]. MovieLens 100K contains 100.000 ratings between 1 to 5
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collected from 943 users across 1682 movies. With room for approx-
imately one and a half million ratings, the 100k rating dataset is
sparse.

4.1.2 Individual Recommendations
For rating prediction, we used the library called MyMediaLite[7].
MyMediaLite is a library for .NET that holds a bundle of recom-
mendation methods for both item recommendation and rating pre-
diction. We will be using the library, because this gives a tested
foundation that is easy to reproduce and the focus of our paper lies
in testing the aggregation methods.

Among the methods provided by MyMediaLite, SVD++ is one
of the best performing on the 100k dataset on their own records
using the parameters in Table 11. For the sake of convenience we
are using the same parameters as they are proven to be efficient.

Latent Factors 50
Regularization 1
Bias Regularization 0.005
Learning Rate 0.01
Bias Learning Rate 0.07
Number of iterations 50
Frequency Regularization True

Table 1. Parameters values for the SVD++ component

4.1.3 Group Generation
For the aggregation we made groups consisting of 4, 8, 12, 16, 20,
and 40 users from the MovieLens 100K dataset. The reason for this
is because we wanted to reproduce and futher the results found by
Baltrunas et al[1], who had group sizes from 2 to 8.

Given that the dataset contains 943 users, we limited our group
size to 40, as to not have any groups containing more than 5% of all
the users. This ensured some amount of diversity in the groups. 40
is also ten times the size of our smallest group, enough to indicate
the trend for the quality of recommendations. The groups were
created of randomly picked users, and the same user can appear in
multiple groups, but never in the same group twice.

4.1.4 Satisfaction Measures
We measure the groups’ satisfaction of a recommended list, ω,
according to Normalized Discounted Cumulative Gain(nDCG). We
used two different variations which are described in this section.
nDCG is used for measuring the quality of ranked lists against
user preferences, which is commonly used within the information
retrieval field for comparing ranked lists of queries[9].

Normalized Discounted Cumulative Gain
For evaluating the quality of the result list, ω, we use nDCG by
comparing it against users’ top-k lists τ .

In Equation 8, a DCG value is calculated for a set of k ranked
items as the sum of the set of items’ relevance scores divided by
the logarithm of its ranking n + 1 where n ≥ 1. The relevance, rel ,
is defined as a set of scores for items in the ω, compared to the
position of the items in a correspondence τ list. More specifically
for all items i ∈ ω, if i ∈ τ then, assuming that τ (i) and ω(i) is the
position of i in the lists, rel(ω(i)) = τ (i). If i < τ , then rel(ω(i)) = 0.
1www.mymedialite.net/examples/datasets.html

DCGk =
k∑

n=1

rel(n)
log2(n + 1)

(8)

nDCGk =
DCGk
IDCGk

(9)

In Equation 9, the DCG value is normalized against the ideal
DCG , IDCG , which is the DCG value based on the ideal recommen-
dations for that user. The IDCG is the set ideal , which in this case,
as we are concerned with the position of the items, is k, ..., 1 for
every top-k list, exchanged with rel in Equation 8.

Rating nDCG
In an effort to more accurately portray the quality of the ranking,
we present the Rating nDCG measure.

The difference is that the relevance score of items are not repre-
sented by their ranking, but directly from the predicted ratings for
that item with the set of rating values, rat . It is defined as the rating
for every i ∈ ω for that item in a users full list of recommendations
σ , such that ω(i) is the position of i in ω and σ (i) is the rating of
item i for a user, and rat(ω(i) = σ (i). Intuitively when the relevance
set is changed to a rating set for DCG it also needs to be changed
for IDCG . The ideal set for Rating nDCG is the ratings of the items
on a top-k list, τ . So if τ (1) is the rating of item one, then the ideal
set is τ (1), ...,τ (k).

This slightly changes the DCG calcuation for Rating nDCG into
Equation 10.

RatingDCGk =
k∑

n=1

rat(n)
log2(n + 1)

(10)

As there is often not much overlap between individual users’
recommendations, it can better reflect the quality of a recommenda-
tion for that user, as a recommendation is not punished as harshly
by not including items on a user’s individual top-k list. It also more
closely reflects the user’s rating of an item’s relevance, as it is not
decided by the ranking. Overall, this leads to much higher nDCG
scores, as even total misses are no longer necessarily seen as such.

Conversely, it can be argued Rating nDCG measure is inferior to
nDCG, as the aggregation methods, aside from Avg, only consider
the ranked elements whenmaking the aggregation, so the increased
score is, from the perspective of the aggregation methods, entirely
random.

4.1.5 Distance Measures
Before going through the distance measures, we want to cover
some general notations that both methods use. τ (i) and ω(i) is the
notation for the position of item i in τ and ω. Z = τ ∩ ω, z = |Z |, S
is the set of items only in τ and not in ω andT is the set of items in
τ not in ω. k is the length of the top-k lists.

Kendall Tau Distance
The idea of Kendall tau distance(KTD) is to compare two ranked
lists based on the order in which the items appear[6]. This means
that it makes pairwise comparisons of item indexes {i, j} where
i < j, so that if i is before j in τ then this should also be the case
in ω in order to get a good score. The score is based on a count of
how many times i and j are in reverse order. In Equation 11, KDT
is outlined. P is the set of unordered pairs of distinct items in τ and
ω. If i and j is in the same order in τ and ω then K̄i, j (τ ,ω) = 0 but
if i and j is in reverse order then K̄i, j (τ ,ω) = 1.
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K(τ ,ω) =
∑

{i, j }∈P

K̄i, j (τ ,ω) (11)

In order to adjust KTD for partial lists we used the KHaus algo-
rithm proposed by Fagin et al[6]. This approach has four different
cases.

The first case is when both i and j appear in τ and ω. In this case
the method utilizes Equation 11 but only on the items in the set, Z .

The second case is when i and j both appear in τ or ω but only
i or j appears in the other. The number of cases this apply can be
calculated according to Equation 12. The equation sums the item
positions from the sets S and T in the lists τ and ω and subtracts it
from |τ ∪ ω | + 1 which is multiplied by |S |.

(k − z)(k + z + 1) −
∑
i ∈S

τ (i) −
∑
i ∈T

ω(i) (12)

The third case is when i appears in one list and j in the other.
The result of the third case is calculated by (k − z)2, which is the
length of the lists minus the intersection, to the power of 2.

The fourth case is when both i and j appear in one list but not
the other. In this case Equation 13 is used. p in this case is a penalty
value between 0 and 1. As themethodwe use is an average approach
this value is 0.5. p is multiplied with the binomial coefficient of the
length of different items in the top-k lists.

2p
(
k − z

2

)
(13)

Combining these cases into one method, we get the KHaus algo-
rithm which can be seen in Equation 14.

KHaus (τ , ω) =
1
2
(k − z)(5k − z + 1)+

∑
i, j∈Z

Ki, j (τ , ω)+
∑
i∈S

τ (i) −
∑
i∈S

τ (i) (14)

The result of theKHaus is normalized by dividing it byn(n−n)/2,
which gives an approximation of the average distance between
the lists. It is an approximation because in case four, the method
assumes that there is an equally large chance of the items being in
the correct order. Due to this, the method returns 0.78 if the lists are
completely disjoint. If the lists are reverse of each other it scores 1
and 0 if the lists are equal.

Spearman’s Footrule Distance
Another distance measure we use is the Spearman’s Footrule Dis-
tance(SFD) [6]. SFD finds the exact distance between item i in two
different ranked lists containing i . The way it finds this item dis-
tance is by subtracting the item indexes from each other as can be
seen in Equation 15.

F (τ ,ω) =
k∑
i=1

|τ (i) − ω(i)| (15)

As we work with partial lists we use an alternate version called
FHaus , see Equation 16, proposed by Fagin et al[6]. As the lists
τ and ω can contain different items, the missing index values for
items are replaced by ℓ which is some value larger than k , as it
follows that they would be outside the top-k list. Based on the
article by Fargin et al we set ℓ to be equal to (3 ∗ k − z + 1)/2.

FHaus (τ , ω) = (k − z)(3k − z + 1) +
∑
i∈Z

|τ (i) −ω(i) | −
∑
i∈S

τ (i) −
∑
i∈Z

ω(i) (16)

In order to normalize we divide the result of Equation 16 by n2/2
which is the maximum value of the algorithm. Doing so we get a

value of 0 if τ and ω are in the same order or 1 if the lists are the
reverse of each other or completely disjoint.

4.1.6 T-test
We made paired t-tests for all methods[10]. Each method is com-
pared with each of the other methods for all measures. The t-test
outputs a p-value, which is the probability that the difference be-
tween two sets of results is coincidental. At 0.05 or lower, it is
considered that there is statistically significant difference in the
means of the two sets.

4.2 Results
nDCG
Figure 3 shows the nDCG score for BC, MC4, SF, and Avg. For
nDCG a higher score is better and is within 1 to 0. All methods
see a sharp drop off in the quality of their recommendations as the
group sizes increase. As shown in Table 2, BC drops the most in
the jump from 4 to 8 group members, however it also have the best
results, and outperforms all other methods across all group sizes.
MC4 is the second best and follows the same trend and quickly
plateaus in score. One outlying case SF starts out close to Avg for
a group size of four, but retains a higher score and is closer to BC
and MC4 as the size increases. Avg is the worst performing overall.

Another trend is observable in Table 2. The highest scoring
method is also dropping the most in score, aside from Avg from
group size 4 to 8. This effect is visible on all group sizes for all
methods.
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Figure 3. Results using nDCG

4 to 8 8 to 12 12 to 16 16 to 20 20 to 40
BC 12.66 5.19 2.6 1.28 2.88
MC 11.86 4.86 2.36 1.15 2.55
SF 10.51 4.20 2.00 1.13 2.05
Avg 11.81 3.50 1.92 0.56 1.72

Table 2. Percentage decrease between the groups for nDCG
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The p-values for the t-test for nDCG is shown in Table 3. Our
paired t-tests show that all results for the nDCG measure are statis-
tically different from each other.

Any zeros in the table are considered to be so small that it was
rounded down and is some small non-zero value.

4 8 12 16 20 40
BC/MC 3e−270 3e−234 2e−220 4e−218 1e−213 3e−205

BC/SF 0 2e−296 7e−272 4e−249 1e−237 1e−227

BC/Avg 2e−310 0 0 0 0 0
MC/SF 2e−203 2e−166 3e−142 2e−129 1e−130 2e−133

MC/Avg 5e−228 5e−273 3e−278 5e−289 1e−309 0
SF/Avg 2e−72 2e−138 2e−147 6e−165 9e−166 5e−211

Table 3. P-values for the nDCG t-test

Rating nDCG
In Figure 4 we see the scores of the Rating nDCG measure. All
methods generally have high levels of satisfaction according to the
measure, with none scoring below 95 percent satisfaction.

Avg is ahead of the other methods, but it is also the only method
using the average rating of all the candidate items for its recom-
mendation. The remainder are mostly identical in performance to
each other.

As can be seen in Table 4, BC, MC4, and SF do not decrease in
score from 16 to 20, and SF increases in score. In general, the fall
in nDCG score is extremely low compared to the other measures.
This could indicate, that the individual recommendations are biased
towards some selection of items.

Among the remainder, while MC4 does outperform both BC and
SF, the difference is small.

Table 5 shows the t-test results for Rating nDCG. For BC and
SF, there are two cases, which has been marked in bold, where the
difference is not significant enough to not be considered random. It
can also be seen that the p-values for all but Avg are many orders
of magnitudes smaller than seen for other measures, due to the
similarity in the results.
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Figure 4. Results using Rating nDCG

4 to 8 8 to 12 12 to 16 16 to 20 20 to 40
BC 0.084 0.063 0.42 0 0.032
MC 0.27 0.73 0.42 0 0.042
SF 0.094 0.042 0.042 -0.011 0.011
Avg 0.61 0.22 0.11 0.063 0.11

Table 4. Percentage decrease between the groups for Rating nDCG

4 8 12 16 20 40
BC/MC 5e−64 5e−38 2e−37 3e−58 3e−60 5e−70

BC/SF 0.058 1e−5 1e−5 2e−4 5e−5 0.089
BC/Avg 1e−251 2e−275 5e−299 0 0 0
MC/SF 1e−49 3e−52 2e−55 7e−62 6e−66 8e−68

MC/Avg 9e−221 7e−247 1e−266 3e−296 2e−308 0
SF/Avg 5e−212 1e−262 6e−280 3e−287 4e−305 0

Table 5. P-values for Rating nDCG t-test

Kendall Tau Distance
Looking at Figure 5 we can see the results of the KTD test. As
covered in Section 4.1.5 the distance measures have a score between
0 and 1 where 0 correspond to equal lists, 1 is that the lists are
reverse of each other, and 0.78 is that the lists are disjoint as we
used an average approach.

Looking at the approaches individually Avg clearly scores the
highest. The reason is that Avg disregards the item ranks in the top-
k lists and aggregates them based on the average rating between
the group members instead. SF performs worse than both MC4
and BC, which could be seen as having to do with SF ranking its
candidates using a median like approach, which is closer to how
Avg performs. Lastly, performing best and almost equal we have
BC and MC4. Worth noting is that when the groups are small MC4
performers slightly better than BC, but already at group size 8 BC
out scales MC4.
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Figure 5. Results using KDT
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When looking at the percentage distance increase between group
sizes in Table 6, it can be seen that all the methods follow the same
trend across the group sizes. There is a large difference with an
average increase of 7.28 percent between group sizes 4 and 8, as the
groups grow the increase in the KTD quickly fades and becomes
very low between groups. By the time we reach groups 20 and 40
the average change in distance is only 0.945 percent.

For the t-tests shown in Table 7, all results are shown to be
statistically significant in their differences, except for one case
between BC and MC. The remainder are different enough to be
statistically significant, but the p-values are still considerably higher
than usual between BC and MC for a sample of this size.

4 to 8 8 to 12 12 to 16 16 to 20 20 to 40
BC 8.34 2.58 1.17 0.52 1.19
MC 8.61 2.56 1.15 0.55 1.15
SF 6.50 1.99 0.85 0.35 0.79
Avg 5.67 1.24 0.76 0.14 0.65

Table 6. Percentage increase between the groups for KDT

4 8 12 16 20 40
BC/MC 0.038 0.031 0.02 0.071 9e−5 0.002
BC/SF 2e−201 1e−231 1e−236 7e−226 5e−227 1e−198

BC/Avg 3e−276 4e−296 3e−305 9e−303 0 0
MC/SF 2e−230 8e−239 6e−239 7e−239 2e−226 4e−216

MC/Avg 4e−259 2e−283 7e−298 7e−303 4e−321 0
SF/Avg 1e−93 1e−143 5e−159 2e−177 3e−199 3e−261

Table 7. P-values for KTD t-test

Spearman’s Footrule Distance
In Figure 6 are the results of the SFD tests. As in KTD, the distance
is between 0 and 1, and 0 represents the perfect match.

SF performs the best in this test, which is unsurprising. SF has
a natural advantage over the other methods when using SFD as
SF works to minimize distance per the SFD principle. Avg again
performs the worst when looking at the SFD results. This is for the
same reason as with the KTD measure, Avg does not take the rank
of items into account. For MC4 and BC we get some interesting
results. They still follow each other really close. However in this
test MC4 performs marginally better in the most cases except at
group size 12 and 16 where BC is slightly better.

In general the tendencies are very similar to those of KTD and
the approaches follow the same curve with all most the same dis-
tance jumps between the group sizes. This can be noted in Table 8.
The best performing methods do fall faster, but it is relative to its
performance.

Table 9 shows the t-tests for SFD. BC and MC have two cases
where the results are not distinct enough to be statistically different.
BC and MC for group size 12 show the highest likelihood of of all
comparisons to be indistinguishable.
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Figure 6. Results using SFD

4 to 8 8 to 12 12 to 16 16 to 20 20 to 40
BC 6.16 2.25 1.03 0.44 1.12
MC 7.65 2.34 1.04 0.46 1.03
SF 7.79 2.75 1.30 0.55 1.42
Avg 5.38 1.12 0.71 0.12 0.59

Table 8. Percentage increase between the groups for SFD

4 8 12 16 20 40
BC/MC 5e−86 0.027 0.875 0.222 0.0145 0.001
BC/SF 4e−265 3e−288 7e−295 2e−274 3e−277 2e−275

BC/Avg 7e−176 2e−254 5e−249 4e−253 5e−269 5e−297

MC/SF 7e−42 2e−243 1e−250 6e−258 2e−246 1e−242

MC/Avg 2e−217 2e−250 2e−248 2e−249 1e−265 1e−305

SF/Avg 2e−288 0 0 0 0 0
Table 9. P-values for SFD t-test

5 Discussion
Across all the measurements, MC4 is almost identical in perfor-
mance to that of BC. As the underlying heuristic of theMC4 method
is the Copeland Method, it raises the possibility that other exten-
sions of Markov Chain can achieve even greater results.

However, for MC4, other factors such as complexity and speed
limits the utility of it compared to BC, as BC is both simple to
implement and can be implemented in linear time whereas MC4
is slower. However, optimizations for MC4 and its variants exists
which run in quadratic time which is a significant running time
improvement[4].

We saw a trend of the nDCG score being a good indicator for how
well the samemethods performed for the distance measure. Though
SF performed well in SFD, but it fell behind on other measures, with
the same to be said for Avg and its performance for Rating nDCG.
As such it is possible that nDCG is not a better measure than SFD or
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KTD for measuring the best group recommender, and might simply
favor BC and MC4.

Of all the measures, Avg has the worst results overall aside
from Rating nDCG. The results from Rating nDCG in isolation sees
Avg perform the best. So if Rating nDCG is a better measurement
because it does not consider the rankings, and instead looks directly
at the ratings given by the users, then Avg is providing the better
recommendations.

However, results from Rating nDCG for Avg and the other meth-
ods are so close that there is little practical value for one method
to the other. Should it be the case that Rating nDCG is the best
measure, we have a theory about rearranging the users top-k list
and order them according to average. We will expand on this in
future work in Section 6.1.

Baltrunas et al found that the more alike a group is, the more
effective the group recommender[1]. Likewise for our setup, it is
likely that the results can vary depending on the recommender
used in the individual recommendations stage. It follows that biases
introduced by the individual recommendation can result in an either
more or less alike-thinking group for the same dataset.

6 Conclusion and Future Work
In this paper we have evaluated several aggregation methods for
group recommendations. Our findings are simple to reproduce, and
give a good indication of the performance of the various methods
tested. The best performing aggregation method was BC per our
measures and setup. The multiple measures we use also reinforce
these results aside from Rating nDCG.

We worked with Markov Chains, specifically MC4, which to
the best of our knowledge have not been tested for the group
recommendation domain, and it performed almost on par with BC.

We got results similar to that of Baltrunas et al for their setup,
and found that the rate of decrease in quality does not continue at
the same rate beyond a group size of 8, and that the rate of change
decreases sharply and is small at group sizes 16 and above. We
confirmed the same trend for all the measures tested.

6.1 Future Work
Measurements on Real Data
To address the issue of nDCG as a satisfaction measure for group
recommendations there is a need for real data. When training and
evaluating our recommender system, we had to make do with indi-
vidual ratings and make assumptions about what makes for good
measures. With data on how people make recommendations, we
could make some more informed conclusions on the used measures
for group recommendations. There are several ways one could go
in acquiring data. The first is to test group recommender methods
on people, and have them give feedback on the results of the recom-
mendation. This provides an indication of how themethod performs
for the group by aggregating the individual scores. Another way is
to have people make recommendations based on information given
about a group and test how close various methods come to these.
The latter assumes that humans make good group recommenda-
tion systems and are consistent about fairness or gravitate towards
better aggregation methods, but it is also easier to generate large
amounts of data on.

BC and MC4 Extensions
BC and MC4 exist in many variants, and repeating our experiments

with other extensions can reveal more about the measures and
the extensions. Candidates could be other extensions presented by
Dwork et al[4] for Markov Chain, or others for Borda Count.

Context and Influence
Research on the effect of including influence and contextual infor-
mation to improve recommendations for groups has been done by
Quintarelli et al[13]. The idea is that certain persons have more
influence in specific contexts. Quintarelli et al gives the example of
a family consisting of young kids and their parents how watches
television together. Depending on the time of day, the influence
change between the parents and kids, as the kids maybe have a
higher influence in the afternoon when there are many kid friendly
programs available, but in the evening the parents have the most
influence in order to censor for inappropriate programs for minors.

This idea of context and influence could help give more appro-
priate recommendations which could be a great way to improve on
recommendations.

Reordering of Ranked Lists
A pre-ranked aggregation method we did not test in our report
was the reordering of the ranked lists. The idea is to rearrange
the rankings by the average rating from the other users before
performing the aggregation step to better account for the opinions
of other users. It is our hypothesis that it would lead to better group
satisfaction overall in the case that Rating nDCG is a good measure.
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Figure 7. The list of available items and the box holding the rec-
ommendations of the survey participant

Appendix A Survey
In order to make a dataset in a short time frame, we looked into
crowdsourcing, where it was possible to pay people to answer
surveys or do tasks that computers cannot. In particular we were
looking at Clickworker and Mechanical Turk, which allowed ex-
ternal surveys. Since no sites had an inbuilt survey creation tool
that could handle our requirements, we decided to make our own
survey website.

Using this method, we could potentially reach thousands of
people without limiting us to the survey tools made available on
the standard websites.

For web hosting, we went to DigitalOcean, which offered a
Ubuntu server setup with Django. We added Gunicorn as the WSG
interface and nginx as the http server. Behind it all, we had a MySql
database keeping track of the survey questions and results along
with timestamps.

The survey itself asks participants to personally give a recom-
mendation to a group of users. The participant knows each user’s
own top 10 preference, and must decide on their own what aggre-
gation strategy they wish to follow. An important aspect of the
survey was making it as easy to complete as possible. As we had to
pay each participant, each such improvement could be translated
to a saving, which in turn translated to a larger and more useful
dataset. So to make it more intuitive and not overload each user
with information, we made it so that hovering the mouse over a
movie title will make the movie’s position light up on all the other
users’ rankings, shown in Figure 8, and gave the user a tooltip
about other movie positions. Additionally, we made the ranking
system into a drag-and-drop, such that the participant could drag
and easily rearrange their recommendations. This can be seen in
Figure 7.

After making a recommendation, the user could proceed to the
next step, and upon completing all steps they would reach a screen
providing them with a code. With each step, the group size is in-
creased by one, going from 4 to 8 users. The code is important, as
the participant must present this as evidence to the crowdsourcing
site as proof of their participation. For our survey, we decided to
generate a unique code for each participant mixing the assigned
groups and a timestamp, so that we could deduce which user re-
sponded when and with what. This precaution was necessary so
that it was possible to filter out participants rushing through the
survey with no care for their answers.

Also, since we wanted to have a balanced dataset, we separated
our groups into 40 sets of groups of size 4 to 8, and made it so that

Figure 8. Two lists of movie preferences for a user

every user would get a randomly picked set. The database would
keep track of how many responses each set had, such that we could
prioritize the sets with fewer responses and get a balanced dataset.
It would also mean that anyone taking the test twice would be
unlikely to see the same survey.

Before running the survey on Mechanical Turk, we ran it past
some other willing participants for evaluation and decided to halve
the number of groups each participants would give recommen-
dations to from 10 to 5, due to feedback about the length of the
survey.

For the crowdsourcing website, we ended up going with Ama-
zon’s Mechanical Turk, as it is the more well-known and cheaper
service. When ready, we injected a good amount of money on the
account, as one had to prepay for any work requested and started
up a limited run to test out the services and find a suitable price
range. We managed to get a few responses. On Mechanical Turk,
the participant would see our survey, click in and be provided a
link to our survey. Upon completion of the survey, our participant
would get the code and input it on the Mechanical Turk website.
Initial results were interesting with big differences between how
much time participants spent on the survey. We noted a few obvi-
ous cheaters who blazed through a survey in seconds thanks to the
timestamps, however as a requester and with the timestamps in
our database, we would be able to sort them out, and we could also
reject their work on the Mechanical Turk site.

Though, on the third day of this limited run we ran into prob-
lems with Amazon Mechanical Turk. We were unable to access our
account, and had to contact their support team. Soon enough the
support team responded that our account had been suspended, and
that we would be informed about the reason for the suspension in
2-3 days along with fate of our account. In two days time, Mechan-
ical Turk support wrote us that our account had been suspended
indefinitely and our current survey stopped because of a violation
of the participation agreement. Unaware of any possible violations
we could have made, we made further inquires, but never got a
clear answer. Additionally, our funds on the account were also con-
fiscated. So in the end, we ended up only getting responses totaling
a few dollars worth of data.
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Appendix B Borda Count Extensions
In this section we will comment on some extensions for BC called
Borda Weighted Count(BWC), Borda Transferable Count(BTC),
and Borda Escalating Count(BEC) which were made during last
semesters work and show promising results at that time[3].

Unfortunately an unwanted feature was present in during the
original nDCG test in the earlier work and after seeing the results of
the preliminary tests for this paper we decide to drop the extensions
for now.

Looking at the results in the Figures 9, 10, 11, and 12 it is clear
to see that BC on most cases performs best or equal to the other
approaches thoughworth noting is that BWCperforms almost equal
to BC in most cases and even slightly better in a few cases. These
results shows that there still could be made possible improvements
on BC.

For a further explanation of the BC extensions we reference to
our technical report[3].
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Figure 9. Results using nDCG on BC extensions
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Figure 10. Results using Rating nDCG on BC extensions
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Figure 11. Results using KTD on BC extensions
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Figure 12. Results using SFD on BC extensions
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