
Implementation of pitch on an ROV
- Retrofitting a Cougar XT -

Diploma project

Rolf Magnus Roos

Aalborg University Esbjerg
Department of Electronics & Computer Engineering

Niels Bohrs Vej 8
DK-6700 Esbjerg

Copyright© Aalborg University Esbjerg 2017
This report is written in LATEX.

Department of Electronics & Computer
Engineering

Niels Bohrs Vej 8
DK-6700 Esbjerg

http://esbjerg.aau.dk

Title:
Implementation of pitch on an ROV

Theme:
Diploma project

Project Period:
Fall Semester 2016

Project Group:
ED7-6

Participants:
Rolf Magnus Roos

Supervisor(s):
Zhenyu Yang
Lean Ravnkilde Johansen

Copies: 1

Page Numbers: 63

Date of Completion:
January 10, 2017

Abstract:

The goal of the following project is to
implement pitch manoeuvre upon an
ROV system, which is currently incapable
of doing this. The intention is that
the pitch controller is fitted onto the
ROV independent of the ROVs internal
controllers.

To allow the ROV to pitch, a thruster
is needed to generate the force that is
required. Where the main focus of this
project is to create the controller for the
thruster which allows the ROV to be
pitched.

To achieve this, a mathematical descrip-
tion of first the ROV and the thruster
is extracted. The ROV model is based
on a force balance, describing the forces
impacting the pitch angle. It follows
from this that the force required to be
delivered for a given angle must be equal
in magnitude but in opposite direction.

The whole system is combined in the
Simulink toolbox in Matlab where the sys-
tem can be simulated and analysed. From
this a PI-controller is developed which al-
low the pitch angle to be maintained by
the feedback system measuring the angle
of the ROV.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement
with the authors.

http://esbjerg.aau.dk

Contents

Preface 0

1 Introduction 1
1.1 Project Description . 1

2 Problem Analysis 4
2.1 Cougar XT ROV . 4
2.2 Electronics Pod . 5

2.2.1 Control Unit . 5
2.2.2 Driver Board . 6
2.2.3 Pod Assembly . 7

2.3 ROV Dynamic Model . 8
2.3.1 Inertia Tensor . 10
2.3.2 ROV Torque . 13
2.3.3 Drag . 15
2.3.4 System Model . 17

2.4 Thruster Test . 19
2.4.1 Modelling Method . 19
2.4.2 SM-7 Test . 20

2.5 Conclusion . 24

3 Solution 25
3.1 SM-7 Model . 25

3.1.1 Data Preprocessing . 25
3.1.2 Model Identification . 28

3.2 System Simulation . 33
3.2.1 Thruster Block . 34
3.2.2 Disturbance Block . 35
3.2.3 ROV Block . 37
3.2.4 System Evaluation . 38

3.3 Controller Design . 40
3.3.1 P-Controller . 41
3.3.2 PI-Controller . 42

3.4 Conclusion . 43

4 Discussion 45

5 Conclusion 49

6 Perspective 50

References 52

A Calculations 55
A.1 Simplified Cougar model . 55

A.1.1 Volume & density of frame . 55
A.1.2 Foam volume & density . 56
A.1.3 Centre of Mass’ . 57

B DNV Drag Coefficients 59

C Code 60
C.1 Load cell monitor . 60
C.2 Thruster Test Controller . 60

D File Structure 63

Preface

The following project was written as the final project for my Diploma degree in Electronics
and Computer engineering. The project was written in collaboration with SubC Partner,
an offshore services and product supplier based in Esbjerg.

Throughout the project SubC Partner has been an invaluable help, and has been
making all equipment used within the scope of the project available to me and should
have a huge thanks for both this and the technical assistance which has been given to me
as required.

Aalborg University Esbjerg, January 10, 2017

Rolf Magnus Roos
<rroos13@student.aau.dk>

0

Chapter 1

Introduction

Remotely operated underwater vehicles (ROVs) describes a type of submersible vehicle
with a very wide range of applications. It spans from small inspection ROVs, small
vehicles carrying little more than a camera and a light source, crawler type ROVs which
along with the ability to traverse through the water columns implements some type of
locomotion to travel across submerged structures or the ocean floor to large work-class
ROVs which can weight many hundreds of kilos and operate large and complex tools
allowing the ROV to solve a wide range of tasks underwater.

This project will focus upon retrofitting a Saab Seaeye Cougar XT ROV with the goal
of implementing a 7th thruster onto the ROV frame. The objective of the extra thruster
is allow the ROV to be pitched, which the regular Cougar XT is not able to. The extra
thruster will be implemented as a separate system from the ROV control system. This is
done as the ROV platform is proprietary hardware and software as well as to ensure there
will be no warranty issues. It does mean however, that it is unknown how the control
system of the ROV will react when the ROV is being pitched.

In order to implement the new thruster, a stand alone system will be created which
will be attached to the Cougar frame. Control of the thruster will be achieved using a
dedicated thruster controller and communication to the topside will be achieved using
communication interfaces on the ROV.

The project idea is based on an earlier incarnation of the same thruster being used as
a ballast system. The idea being that the thruster will generate a force opposite to the
changing buoyancy as the weight of the ROV shifts. As this system was being worked
upon the idea to extend the system and create a dedicated thruster controller, able to
maintain the pitch angle of the ROV was conceived.

The project is created in collaboration with SubC Partner, an offshore product and
service provider located in the city of Esbjerg. The equipment for the project is all
supplied by the company.

1.1 Project Description

As stated in the preceding section, the goal of the following project is to fit a thruster
onto an ROV, the Cougar XT by Saab Seaeye. This thruster however, have to perform

1

1.1. Project Description 2

a very specific task, allow the ROV to perform pitch manoeuvring. Figure 1.1 show the
referencing convention for pitch, yaw & roll.

Figure 1.1: Pitch, roll & yaw explanation [1]

Retrofitting an ROV with a new thruster, and creating a system that allows the ROV to
maneouver in a way not intended by the manufacturer is a risky procedure, and there are
much that needs to be done. For this reason the task is divided into a number of smaller
tasks that has to be performed.

The first task that needs to be accomplished is to create the electronics that allow the
thruster to be controlled. This circuitry is dependent upon two factors, the first is the
thruster. As the thruster for the project is the SM-7 by Saab Seaeye, the signals to control
it is defined from this. Secondly, as the pitch has to be controlled from the topside, some
communication has to be implemented which facilitates this.

The next task is to create the control scheme for the system. As the idea of the system
is to allow the user to set a wanted angle of the ROV, the system designed must be able to
take this angular input and maintain this for the ROV. For this reason, a feedback system
using an angular feedback line is used. To design this system, a model of the ROV system
has to be created. This model will describe the ROV as it is being pitched, and the model
have two functions. One is that it can be used to calculate the amount of thrust is needed
to maintain a pitch angle, the second is it will assist in designing the controller for the
thruster as it will allow simulation of the system without risking any hardware.

After this, the SM-7 has to be described mathematically as well. This will first of all
be used to simulate the full system so a controller can be created which can maintain the
pitch of the ROV. For the implementation of a controller for the system it can also be used
to evaluate the feedback of the system vs. the expected behaviour from the models.

Finally, the controller will have to be implemented for the Cougar system. This will
require a few tests on mock ups to ensure the system behaves as expected before it is
attached to the ROV.

1.1. Project Description 3

No. Task Accomplished
1 Driver Electronics
2 Communication
3 ROV model
4 Thruster model
5 System simulation
6 Controller design
7 Implementation

Table 1.1: Task list

Table 1.1 show the previously described tasks. This table will be used in Section 4-
Discussion to evaluate the progress of the project at the conclusion of it.

Chapter 2

Problem Analysis

In the following section the requirements of the pitch functionality will be analysed. The
necessities for the project will be identified and the analysis will lead to a list of compo-
nents needed and a list of tasks to fulfil in order to create the thruster controller.

2.1 Cougar XT ROV

The Cougar is a work class ROV, and will be the subject which the pitch controller will be
fitted. The standard configuration of the ROV allows for full 3-D movement within the
water column[2] but with no possibility to change the pitch angle of the vehicle.

The ROV is fitted with six thrusters, two thrusters is positioned vertical to create as-
cend and descent thrust and the last four are vectored horizontally to allow the ROV to
move freely in the plane. The controller of the ROV manages the thrust of all six thruster
to manoeuvrer as commanded.

The Cougar is connected to the topside through an umbilical, this carries power and
communication to the ROV. The system has three separate power levels which are all
provided through this umbilical.

• 440 VAC single phase for general ROV equipment[3]

• 500 VDC Thruster power supply[3]

• 660 VAC three phase separate tooling power supply[3]

Communication with the ROV is achieved through a fibre optic interface and inside
the electronics pod of the system two optical MUX’ is located, and these provide the
following interfaces for communication.

• 8 x RS-232/422/485[3]

• 2 x 10/100 Mbps Ethernet[3]

• 4 x analogue video channels[3]

4

2.2. Electronics Pod 5

In the standard configuration of the Cougar, all video interfaces are used but only four
RS-232 and one Ethernet interface is available at the bulkhead of the ROV. The remaining
are theoretically available but it would be necessary to open the electronics pod of the
ROV to connect the interfaces to output ports.

2.2 Electronics Pod

To implement the pitch controller it is necessary to first of all be able to control the speed
and direction of the thruster. For this project a SM-7 is used. This is the same thruster
that the Cougar uses. The design of the controller is based on information in the manual
for the Cougar system, which has two thruster controller boards, these set both direction
and speed for the individual thrusters. According to the handbook, the direction is set by
a 24 VDC signal, DIR+ and DIR−, where the polarity of the signal decides the direction of
the thruster. The speed is by a 12 V PWM signal[3] referenced to the directional 0 V line.

2.2.1 Control Unit

As the thruster must be controlled from the surface, some communication between the
topside and the control unit must be established. This is dependent upon the interfaces
available from the ROV, as described in Section 2.1-Cougar XT ROV, either Ethernet or
a serial interface is available. However, as the Ethernet interface is a relative high band-
width interface, which is not needed to send fairly short data packages to the controller,
a serial interface is chosen. In addition, this is done as there are more of these available,
compared to the Ethernet interface. Finally, the serial interface is much simpler to imple-
ment as most microcontrollers has some communication facilities which can be used for
serial communication.

The control unit also switches a digital signal, which will control the direction of
rotation for the thruster. The challenge is that the voltage of the digital signal is 24 VDC
which no microcontroller can achieve directly. The same issue is present with the PWM
signal of 12 VDC. Most microcontrollers work between 3 VDC and 5 VDC. Therefore,
to achieve the necessary voltage to control the thruster, a driver circuit must be created
which convert the signals to the correct levels.

Finally, the control unit must be fast enough to maintain a control algorithm, the
speed requirements for this is hard to foresee, as it is dependent on both the the amount
of control elements, as well as the feedback. For example, if an analogue sensor has to
be sampled to generate feedback for the controller, the speed of the ADC will limit how
often a feedback signal can be generated.

There are many different microcontrollers available. Many (if not all) will be able
to fulfil the stated requirements, so the choice of microcontroller is not easy. However,
as a lot of work already lies in modelling the the ROV system and DC thruster, keep-
ing the controller simple is an advantage. With this in mind, one of the most simple
microcontrollers to use is an Arduino. The reason is two fold; First all circuit elements
needed to allow the controller to function as specified has already been taken care of, this
also includes managing the stability of the Vcc input for the controller[4]. Secondly, the
programming language for the Arduino vastly simplifies the utilisation of functions for

2.2. Electronics Pod 6

the controller as the registers comes pre-initialised as functions are used. And if greater
control is desired, the controller can be written to directly in C or even assembly. For this
reason, an Arduino was chosen, and to keep the pod small, an Arduino nano is used,
as it has a much smaller footprint than an Arduino Uno and the same performance is
achieved.

2.2.2 Driver Board

As previously described, the 5 VDC direction and speed signals from the control unit
must be converted to the correct 24 VDC directional and 12 VDC PWM speed signal for
the thruster. The direction control signal is relatively simple as it needs to switch on and
off without any significant speed requirements, relays switching a 24 VDC signal with
a control voltage of 5 VDC will be used for this. As the controller has a limited current
output, maximum 40 mA per I/O pin[4], a transistor will be used to switch the relay, this
way the current to drive the coil in the relay is drawn from the power supply and not the
Arduino itself.

Figure 2.1: Driver circuit schematics

Converting the 5 VDC PWM to 12 VDC is not practical using a relay, as it needs a
switching frequency of at least 50 Hz[3], which regular magnetic relays are not able to
do. Instead, a PNP type MOSFET is used to switch a signal from a 12 VDC power line,
as seen in Figure 2.1. This MOSFET will open at a VGS = −10 V meaning the voltage
at the gate of the MOSFET will have to be at least 10 V lower than the voltage at the
source. To ensure the MOSFET can be fully closed, a driver circuit is implemented
to control the gate voltage of the MOSFET in the same manner as is implemented for
the relays. The way it works is that the voltage at the base of the transistor exceeds
the VBE(on) of 0.7 V the gate of the MOSTFET is driven to the 0 V line, meaning that
VGS = 0 Vgate − 12 Vsource = −12 VGS this means the output is 12 V. Changing the voltage

2.2. Electronics Pod 7

at the base of the transistor to 0 V means the voltage at the gate of the MOSFET is driven
to 12 V which leads to VGS = 12 Vgate−12 Vsource = 0 VGS so the output of the MOSFET is 0 V.

The direction output for the thruster is generated by two digital signals from the
Arduino, and as previously mentioned is generated by two relays which output either
0 VDC or 24 VDC. These relays are driven by similar transistors as used to control the
MOSFET for the PWM output, as can be seen in Figure 2.1. Diodes are placed in parallel
with the coils of the relays to ensure that the current generated by the coils when they are
switched can be dissipated in these.

All outputs from the driver board is connected to the 0 V line through Zener diodes
to ensure if any voltage exceeds 33 VDC this is shortened to the 0 V line. The diode are
the same as the ones Saab Seaeye uses for their own controller[3]. These diodes will help
protect the thruster against voltage spikes on the control lines. To protect the control unit,
820 Ω resistors are placed in series with the control signals to ensure that the maximum
current than can be drawn from each pin is limited. This limit can be calculated using
ohm law.

imax =
5 V

820 Ω
= 6.1 mA

The current drawn will be less than this in reality, but this will be the maximum current
if a short circuit occurs, which could happen if a transistor burns out. A pull-up resistor
is placed from the gate of the MOSFET to the 12 V line, this limits the current that will
run across the transistor when it is closed.

The maximum rated current of the transistor is 100 mA, however, it is generally a good
idea to stay well below this level, as the closer to this rating, the more heat is dissipated
within the transistor. In addition the value of the resistor decides how fast the MOSFET is
turned on as well, as it has a small capacitance, this has to be charged before the MOSFET
will open fully. This means if the resistance is too large, the output will rise more slowly.
Sizing this resistor will always be a trade-off between rise-time of the MOSFET and heat
dissipated in the transistor. As the PWM signal has a relatively low frequency of ≈ 50 Hz
a similar resistance as used previously was chosen, and the current through the transistor
can be calculated in the same manner as before, which yields a current of 14.6 mA when
the transistor shorts to ground.

2.2.3 Pod Assembly

For the thruster control, three different voltage levels are required. 24 VDC, 12 VDC
and 5 VDC, from the ROV 24 VDC is readily available on any auxiliary port which the
controller is connected to[3]. To get 12 VDC and 5 VDC for the control circuits, two PSUs
are used.

• Mean Well SD-15B-05 converts 24 VDC to 5 VDC

• Mean Well SD-15B-12 converts 24 VDC to 12 VDC

Both PSU’s implement short circuit and over voltage- and load protection, they also
have an EMI filter which protect against unwanted noise from the switching regulators
inside the supplies[5]. The 12 VDC and 5 VDC line is connected with a 0.5 A fuse, and the

2.3. ROV Dynamic Model 8

24 VDC line is connected with a 1 A fuse to protect against short circuits.

As the Arduino will communicate to the topside through an RS-232 interface, a
converter circuit must be created. This is because the serial interface of the Arduino
is TTL based, which works on a different voltage level than specified by the RS-232
standard, the voltage levels for each interface can be seen in Table 2.1.

Interface Logical 0 Logical 1
ATmega328P[6] 0 V to 0.9 V 4.2 V to 5 V
RS-232 [7] 3 V to 25 V −3 V to −25 V

Table 2.1: Communication voltage levels

To use the RS-232 interface with the Arduino, a driver circuit that transforms the
voltage potential between the ATmega328P level and the RS-232 level is necessary. A
ready made component has been acquired which handles the conversion, it is manufac-
tured by RSS-Systems and is able to convert 3 V or 5 V TTL or CMOS based signals into
RS-232 level signals[8] and is powered by the 5 V line.

The pod is connected to the ROV by two cables, one connects to an auxiliary port,
AUX3, which supplies 24 VDC power and the RS-232 communication interface. The
other connection is the tooling power supply port, which has control signals and 500 VDC
power supply for the thruster motor. The control signals of this remain disconnected.

The thruster is connected to the electronics pod through one cable, and the 500 VDC
is connected directly to the tooling power supply, the signals generated by the Arduino
and driver board replaces the control signals which would normally also come from the
tooling power supply port.

Figure 2.2: Assembled electronics pod

All electronics is combined in a water proof tube which is sealed with a O-ring. The
assembled pod is shown in Figure 2.2, the Arduino, driver circuit and RS-232 to TTL
converter are mounted on top of an aluminium plate, below the plate the two DC-DC
PSUs are mounted.

2.3 ROV Dynamic Model

The goal of creating a dynamic model for the ROV is to correlate the force generated
by thruster into the resultant movement of the ROV. As the objective of the project is to

2.3. ROV Dynamic Model 9

implement pitch functionality, this dynamic model only needs to describe the movement
in this direction.

The approach used to create the model is to identify the relevant forces acting upon
the ROV. By doing this, the model will describe the steady state of the system, and the
thrust needed to maintain any desired pitch angle can be calculated.

Figure 2.3: ROV reference frame

Figure 2.3 shows two reference frames which will be used, the first frame (X, Y & Z) is
the global frame. This frame is used to describe the position and orientation of the ROV,
relative to a fixed point and orientation.

η =
[
η1 η2

]T
=

[
X Y Z φ θ ψ

]T
(2.1)

Equation 2.1 is the combination of the two vectors that describe the position and
heading of the ROV. η1 is the vector pointing to the centre of the ROV i.e. the position of
it, while η2 is the vector that describes the heading of the ROV relative to X, Y and Z.

The second frame in Figure 2.3 (X0, Y0 & Z0) is the local frame. This is located at the
centre of the ROV, described by η1, and is oriented with the X0 axis positioned along η2.
The local frame describes the linear and angular velocities of the ROV system.

v =
[
v1 v2

]T
=

[
X0 Y0 Z0 p q r

]T
(2.2)

As was done for the position and heading, the angular and linear velocities can be
described by two vectors, v1 and v2, this is shown in Equation 2.2. These velocities are
combined in a vector describing all velocities of the system, v.

As the objective is to describe only the pitch of the ROV, neither the position vector η1
nor the linear velocity vector v1 is of interest. It is assumed that the controller in the ROV

2.3. ROV Dynamic Model 10

will handle this. Likewise, for the vectors η2 & v2 only the terms relating to the pitch of
the ROV.

ηROV =
[
0 θ 0

]T
(2.3)

vROV =
[
0 q 0

]T
(2.4)

All terms not relating to the pitch angle or velocity in Equation 2.3 and Equation 2.4
has been set to zero. From this, the vector ηROV describes the pitch angle of the ROV
relative to a fixed reference frame while the vector vROV describes the angular velocity of
the pitch of the ROV.

In the following, the forces acting on the ROV will be described in order to include
them in the model for the system.

2.3.1 Inertia Tensor

The equation used to describe the rotational motion of a body is similar to Newtons
equation of motion, given in Equation 2.5 below[9]. For linear motion, Newtons equation
identifies the fact that a given mass will have a resistance to being accelerated. For
rotational motion, the inertia tensor describes the mass distribution in an object, which
will describe how an object resists acceleration in varying degrees between different
directions.

F = m · a (2.5)

Describing rotational motion requires, as mentioned, the use of the inertia tensor.
The general formula for describing the rotational motion of rigid bodies can be seen in
Equation 2.6. In this equation the inertia tensor (I) is a mathematical description of the
mass distribution in the object. In a similar manner as for linear motion, when a torque is
applied to a rigid body, it will have a varying acceleration in different directions.

This variation arises due to the way the mass is distributed in the body. This is similar
to what Newton tells of linear acceleration, namely that if the mass is increased it will
take a greater force to achieve a given acceleration. Similarly if the mass is increased in
a rigid body, it will take a greater torque to achieve a given acceleration. Additionally, if
the mass is distributed non-uniformly, the acceleration will also occur non-uniformly.

τ = I ·
dω
dt

(2.6)

In Equation 2.6, τ is a three-element vector describing the torque around the x, y
and z axis, dω/dt is the rotational acceleration around the same axes and finally I is the
inertia tensor, which is a 3x3 matrix. Equation 2.6 can be written explicitly, as shown in
Equation 2.7.

τx
τy
τz

 =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 ·

dωx
dt

dωy

dt
dωz
dt

 (2.7)

2.3. ROV Dynamic Model 11

If the object analysed is symmetric around all axes and the mass is distributed evenly,
Equation 2.7 simplifies significantly as the off diagonal terms in the inertia tensor will be
zero [10]. Determining the inertia tensor of the Cougar analytically is a very complex
task, so to save time, some simplifications are made to get an approximation of it, which
will hopefully be sufficiently accurate.

In order to get the approximation, there are two ways that are possible, one way is to
treat the Cougar as a box, with equivalent dimensions and mass as the ROV. With this
simplification, calculating the inertia tensor is simplified as only the diagonal elements
will be non-zero.

Which means Equation 2.7 can be simplified to the following expression.
τx
τy
τz

 =

Ixx 0 0

0 Iyy 0

0 0 Izz

 ·

dωx
dωy
dωz

 (2.8)

Finding the diagonal elements of the inertial tensor can be done using the equations
given below [10], where the x-axis is the length of the ROV, the y-axis is the width of the
ROV and the z-axis is the height of the ROV.

Ixx = M
∫

V
(y2 + z2)dV (2.9)

Iyy = M
∫

V
(x2 + z2)dV (2.10)

Izz = M
∫

V
(x2 + y2)dV (2.11)

The above method will yield a crude result of the inertia tensor, and will not describe
the fact that the mass is unevenly distributed inside the Cougar frame. To get a more
accurate number, without overcomplicating it, a very simple model of the Cougar is
drawn in SolidWorks, which can calculate the inertia tensor of a 3-D model.

The idea of the model is to split the Cougar into two box’, one emulating the buoyancy
foam at the top of the ROV, while the other box emulates the weight of the rest of the
ROV. The length and width of the boxes will be equal to the cougar, and their height will
be calculated as a function of the measured density of each component.

2.3. ROV Dynamic Model 12

Figure 2.4: Cougar system simplification

Figure 2.4 shows the concept of the simplification. On the left is a picture of the
Cougar. The green line marks the bottom of the ROV, below the line is a skid, this is
unrelated to the current project and is not included in any calculations.

On the right hand side of Figure 2.4 is a picture of the simplified Cougar model. The
idea behind the simplification is to calculate the density of the buoyancy foam and the
rest of the ROV. Each are then modelled as a box, the distance from the top of the yellow
block to the bottom of the grey block is equal to the height of the ROV. The calculation
of densities and heights of the blocks are described in Appendix A.1.2-Foam volume &
density.

As can be seen on Figure 2.4, most of the components of the ROV is positioned low
in the frame, while the buoyancy foam is at the top. This is the reason the simplification
should give a better approximation than treating the cougar as a single box. If greater
accuracy is needed, it should be possible to split more components of the cougar up and
positioning equivalent boxes in their relative positions of the frame.

Hopefully, the most simple model is sufficient to create a system model and imple-
ment a controller that is able to maintain a pitch angle. But this is an area where greater
accuracy can be achieved if later experiments shows this is necessary.

Using SolidWorks it is possible to get the inertia tensors directly from the program,
and using this function, the inertia tensors are given by the following.

I =

68.78 0 0

0 111.95 0

0 0 110.95

 [kg ·m2] (2.12)

By applying the inverse of the inertia tensor on both sides of Equation 2.8, the angular
acceleration can be evaluated as shown in Equation 2.13.

dωx
dωy
dωz

 =

τx
τy
τz

0.014539 0 0

0 0.008933 0

0 0 0.009013

 [kg ·m2]−1 (2.13)

2.3. ROV Dynamic Model 13

Equation 2.13 is the result of multiplying the inverse of the inertia tensor on both
sides of the equation. Using this equation, it is possible to calculate the resulting angular
acceleration on the ROV due to given torque.

2.3.2 ROV Torque

Due to the way the Cougar is built, two forces generate a torque when the cougar is
pitched. The buoyancy foam pulls the ROV upwards while the rest of the Cougar pulls
downwards, when the ROV is level, these forces cancels and the ROV has a stable orien-
tation. However, if the ROV is pitched (or rolled for that matter) these two forces, will
generate a torque upon the ROV which will cause it to swing back towards a steady state.
This means, even if the ROV is perfectly weighted to be of equal mass as the water it
displaces, it has a pitch and roll angle to which it will return.

This implies that the ROV system is a stable system, and when undisturbed will
maintain the same pitch and roll angle. Further, if it is subjected to a disturbance it will
also return to this state. This also means when the thruster is implemented to maintain a
pitch angle, it will have to run continuously as it will have to work against this torque.

Figure 2.5: ROV moment of torque

Figure 2.5 illustrates the setup of the ROV, the top block being the buoyancy foam
where C f oam is the centre of mass of the foam block. The bottom block emulates the weight
of the rest of the ROV where C f rame is the centre of mass for this. CROV is the centre of
mass for the whole system.

When the ROV is at balance, as seen left in Figure 2.5, all centre of mass’ is aligned on
a vertical axis, and the buoyancy force FB is equal to the force exerted by the weight of
the rest of the ROV, denoted FW.

When the ROV is at an angle, the forces FB and FW is still of an equal magnitude,
however, they form a torque acting upon the ROV frame. The concept is illustrated on
the right in Figure 2.5. Two torques are generated when the ROV is pitched. The first
torque (τd) is a result of the buoyancy of FB, the second torque (τa) is a result of the weight
FW. The magnitude of the torques depend on the angle of the ROV, as they are a function
of the horizontal distance between the centre of gravity of the ROV and the centre of the
acting force.

2.3. ROV Dynamic Model 14

τ = r · F · sin(φ) (2.14)

Generally, torque is calculate by Equation 2.14 [11]. Where F is the force applied, r is
the distance from the axis of rotation to the point where force is applied and φ is the angle
between the vector from the point of force application to centre of rotation and the vector
of the force itself. In Figure 2.5 the angle φ for the two torque cases is between sides b
and c for the torque generated by FW and between sides e and f for the torque generated
by FB. Based on this, two functions can be formulated which describe the torque as a
function of the pitch angle of the ROV.

τB(θROV) = d · FB · sin(θROV) (2.15)

τW(θROV) = a · FW · sin(θROV) (2.16)

In Equation 2.15 and Equation 2.16 the distance d and a both change as a function to the
angle θROV. Using trigonometric calculus (See figure 2.5) the functions can be rewritten
as below.

τB(θROV) = sin(θROV) · f · FB · sin(θROV) (2.17)

τW(θROV) = sin(θROV) · c · FW · sin(θROV) (2.18)

In Equation 2.17 and Equation 2.18 both f and c are constant (which can be seen in
Figure 2.5). For the model, they are approximated using the simplified Cougar model
described in Appendix A.1. By knowing the location of the centre of mass’ for each block
and the whole Cougar system, f and c is given by the distance between each.

In Section A.1.3-Centre of Mass’ the location of all the mass centres are calculated,
relative to the same point they are given by the following.

Cx
f rame = 0.748 m

Cx
f oam = 0.748 m

Cx
ROV = 0.748 m

Cy
f rame = 0.059 m

Cy
f oam = 0.711 m

Cy
ROV = 0.385 m

From this it is possible to calculate the lengths f and c in Figure 2.5 by the following.

c = Cy
ROV − Cy

f rame ⇒ c = 0.326 m (2.19)

f = Cy
f oam − Cy

ROV ⇒ f = 0.326 m (2.20)

Inserting this into Equations 2.17 & 2.18 the last unknown is the forces acting upon
each. First, calculating the buoyancy of the foam block, requires the use of Archimedes’
principle [12], as shown below.

FB = ρwater · V f oam · g (2.21)

Using the same density of water and volume of foam as found in Appendix A.1.2 and
the gravitational acceleration to be 9.82 m/s2 [13].

2.3. ROV Dynamic Model 15

F f oam
B = 998.2 kg/m3 · 0.2366 m3

· 9.82 m/s2 ⇒ F f oam
B = 2319.23 N (2.22)

In the same manner, the buoyancy of the frame can be calculated using the volume of
the frame that was found in Appendix A.1.1.

F f rame
B = 998.2 kg/m3 · 0.177 m3

· 9.82 m/s2 ⇒ F f rame
B = 1735.01 N (2.23)

Next it is necessary to calculate the gravitational forces acting upon both the foam and
frame. This can be calculated using Newtons second law [9], see Equation 2.5.

Applying the equation, the gravitational force acting on the foam and frame can be
calculated, using the weight of the frame and the foam as found in Appendix A.1.1 and
Appendix A.1.2. For the mass of the frame, the weight of the lead ballast is added. After
this, the resultant forces FB and FW (See figure 2.5) is equal to the difference between the
buoyancy and the gravitational force.

F f rame
g = (237 kg + 78 kg) 9.82 m/s2 = 3093.3 N (2.24)

F f oam
g = 105 kg · 9.82 m/s2 = 1031.1 N (2.25)

Based on this, the forces FB & FW in Equation 2.17 and Equation 2.18 can be calculated
by the difference between the buoyancy and weight.

FB = F f oam
B − F f oam

g ⇒ FB = 1288.13 N (2.26)

FW = F f rame
B − F f rame

g ⇒ FW = −1358.29 N (2.27)

As the ROV is balanced, the forces calculated in Equation 2.26 and Equation 2.27
should be of equal magnitude but in opposite directions. There is a difference however
of ≈ 70 N. This is a relatively small difference, and there can be several reasons for the
deviation. First of all, the ROV will never be perfectly balanced. Additionally, the scale
used to measure the ROV weight only measures to the nearest kg which causes some
deviation of results. Keeping all this in mind, the difference of ≈ 70 N equates to ≈ 7 kg
which seems very reasonable. Inserting the results into the equation for torque, the torque
of the ROV is given by the following.

τB(θROV) = 419.93 N m · sin2(θROV) (2.28)

τW(θROV) = −442.80 N m · sin2(θROV) (2.29)

2.3.3 Drag

Two effects causes drag on the ROV. One is waves and currents, these create a drag force
upon the ROV which pushes the ROV. This effect is ignored because it is assumed it will
mainly affect the ROVs positioning, which the pitch controller will not handle.

The second cause of drag occurs when the ROV accelerates through the water. This
results in a drag force working against the movement. Describing the drag of the ROV, or
any other arbitrary object, is a complex challenge, depending upon the shape, area and
the direction of flow relative to the shape [14].

2.3. ROV Dynamic Model 16

FD = 1/2ρCdsSu2 (2.30)

Equation 2.30 [15] is the general formula for calculating the drag force of an object.
In the expression S is the area of the object, u is the fluid velocity and Cds is the drag
coefficient.

The drag coefficient is a lumped parameter, which combines several parameters into
a single number. Calculating the coefficient for a complex shape, for example an ROV, is
very difficult and is often identified experimentally rather than analytically [14].

To simplify it the calculation, the ROV will be analysed as a plate being pitched around
a centre pivot point, this makes it much easier as the drag coefficient of simple shapes is
well documented. To get get the coefficient of a plate, recommendations by DNV are
used. Using these recommendations, the drag coefficient is dependant upon the ratio
between the length and width of the plate [15]. The table used to find the coefficient for
the plate has been included in Appendix B-DNV Drag Coefficients.

By Equation 2.30, the drag force also depends on the velocity of the fluid. As previously
stated wave and current induced drag will be ignored. This means, the fluid is assumed
to be stationary, and the velocity of the fluid will be equal to the angular velocity of the
ROV as it pitches.

Therefore, the fluid velocity changes relative to the centre of rotation. So to get an
approximation for the drag of the ROV, the rectangular plate emulating the ROV will be
split into two half plates, with the velocity changing as a function of the distance from
the centre of rotation.

Figure 2.6: Drag of the Cougar

Figure 2.6 illustrates the method in which the drag of the Cougar will be analysed.
The plate will have the same total length and width as the Cougar. The drag will be
described as a sum of sections of the plate with the dimensions B ×H. The fluid velocity
will then be calculated from the angular velocity (ω) multiplied with the distance from
the centre of the ROV to the plate section.

This means, that by decreasing the length H of each plate section, the approximation
for the drag should be improved, by getting a more accurate expression of the fluid ve-
locity.

2.3. ROV Dynamic Model 17

By applying the recommendation established by DNV in the document DNV-RP-
H103 [15] to calculate the drag coefficient and drag force (See Appendix B-DNV Drag
Coefficients) the drag coefficient, CDS, is a based on the ratio between the width and
length of the plate. From this, the following relation is true.

lim
H→0

B
H

= ∞⇒ Cds = 1.90 (2.31)

Equation 2.31 will be true as long as H � B. This means Equation 2.30 can be rewritten
to the expression shown in shown in the following expressiong.

FD = 1/2ρCds(B ·H)(ω · d)2 (2.32)

Splitting the plate into a number of smaller sections Equation 2.32 can be formulated
as a sum of the smaller sections as in Equation 2.33 below.

FD = 1/2ρCds(B ·H)
n∑

i=1

(ω · di)2 (2.33)

The equation shown above yields the force resulting from the drag of the ROV as it
pitches. As the model of the system is based on a sum of torques yielding an acceleration,
the drag must be converted to an equivalent torque. Calculating the torque generated by
a force is done by the expression in Equation 2.14. As the drag caused by the pitching of
the ROV is perpendicular to the ROV, the expression can be simplified to Equation 2.34
because the angle φ is 90◦ constantly.

τ = r · F (2.34)

By applying the torque equation to Equation 2.33 the drag of the cougar as a torque
can be calculated as shown below in Equation 2.35.

τD(ω) = 1/2ρCds(B ·H)
n∑

i=1

(
(ω · di)2

· di

)
(2.35)

2.3.4 System Model

The model of the system is based on a balance of forces, namely the torque generated
by the Cougar ROV as it is pitched. This identifies the torque which the thruster needs
to generate in order to maintain a desired pitch angle. With this, the balance can be
described by two equations. The torque generated by the ROV at a certain angle, and the
torque generated by the thruster to achieve a given angle.

τROV(θ0) = τB(θ0) + τW(θ0) (2.36)

Equation 2.36 describes the torque generated by the weight and buoyancy caused
by the ROV itself at a given angle. The thruster needs to generate the torque that this
equation describes in the opposite direction. This is shown in Equation 2.37.

τSM-7(θset) = (τB(θset) + τW(θset)) · −1 (2.37)

2.3. ROV Dynamic Model 18

When the ROV is stationary, Equation 2.36 describes the torque of the ROV. However,
when the ROV is accelerated, a drag will arise which works against the movement. This
drag torque is a function of the angular velocity of the ROV.

τD(ω) (2.38)

By adding Equation 2.38 and Equation 2.37 to Equation 2.36 the torque for the whole
system is given by the following.

τnet = τROV(θ0) + τSM-7(θset) + τD(ω) (2.39)

By basing the model on a torque balance, it is possible to identify the thrust needed
to maintain a given angle for the ROV. The drag has no effect on the torque required
to maintain a pitching angle, however, it does limit the velocity which the system can
achieve as it will have an increasing effect as the velocity increases.

Finding the angular acceleration caused by a given torque can be done using Equa-
tion 2.6. By inserting the torque of the system, Equation 2.39 into that equation, the
instantaneous acceleration to a given torque can be calculated, as in Equation 2.40.

τnetI−1 =
dω
dt

(2.40)

By integration of Equation 2.40, the angular velocity can be calculated.

ω = I−1
∫

(τnet)dt (2.41)

As the torque from the ROV changes as the ROV rotates, the angle θ0 changes, the
calculation of acceleration and velocity is only accurate for very small time periods. By
knowing the angular velocity, it is possible to calculate the angle by multiplying the
angular velocity with the elapsed time.

θ = ω · ∆t (2.42)

By recalculating the system torque, acceleration, velocity and angle for very small time
periods, it is possible to approximate the system behaviour as it pitches. By including
the previously calculated velocity in Equation 2.41 and the previously calculated angle in
Equation 2.42, the system can be described as below.

ω1 = I−1
∫ ∆t

0

(
τROV(θ0) + τSM-7(θset) + τD(ω)

)
dt + ω0 (2.43)

θ1 = ω1 · ∆t + θ0 (2.44)

These two equation can be inserted into the vectors describing the ROV angle (Equa-
tion 2.3) and ROV angular velocity(Equation 2.4).

ηROV =

0

ω1 · ∆t + θ0

0

 (2.45)

2.4. Thruster Test 19

vROV =

0

I−1
∫ ∆t

0

(
τROV(θ0) + τSM-7(θset) + τD(ω)

)
dt + ω0

0

 (2.46)

2.4 Thruster Test

Creating the model of the system also requires a model which can correlate the output
to the thruster and the resulting thrust generated by the SM-7 thruster. There are two
primary methods which can be used to get a model of the thruster, white box or black box
modelling.

In white box modelling, the whole system is described mathematically, in case of an
electric thruster it would mean describing the DC motor mathematically first, and after
this is achieved, describe the interface from the revolutions of the DC motor to water
moved which generates thrust.

In black box modelling, the thruster is viewed as an unknown system, and through
experiments it is aimed to get a describing function. With the thruster for example, an
experiment can be setup, where the thrust generated is plotted against the PWM signal
input to the thruster. From these data points a function can be sought that approximates
the result of any given duty cycle.

To create a model of the thruster black box modelling is the chosen method, this is done
for two reasons. First of all several important parameters needed to model the thruster
mathematically is unknown and several experiments would be needed in order to get a
model of the thruster. This is further complicated by the fact that the SM-7 is not rated
to operate above water for extended periods of time. Secondly, the hope is that, by using
the black box method, creating an experiment that compares PWM input to thrust output,
a model can be acquired faster to save time.

In the following section the test to acquire the input output data needed to model
the thruster will be described. The setup to perform the test will be described and the
preliminary results will be shown. A simple function to calculate the required PWM to
get a given torque will be done using excel, by correlating the PWM input as a function
of the output thrust. The data aqcuired in the following section will then be used in the
solution to model the thruster using the Matlab toolbox System Identification.

2.4.1 Modelling Method

In order to get an accurate model of the thruster, a series of experiments must be per-
formed. The ultimate goal of these is to get a transfer function which describes the thruster
behaviour. The idea is to identify the relation between the thrust generated by the SM-7
as a function of the PWM duty cycle being input. Figure 2.7 illustrates the concept.

2.4. Thruster Test 20

Figure 2.7: System identification method of SM-7 thruster

By measuring the force generated by the thruster for different PWM values, see Fig-
ure 2.7, the relation between the input and output can be analysed. the thruster is analysed
as a SISO system (Single-Input and Single-Output). By performing a set of experiments,
inputting PWM signals of varying duty cycles and measuring the generated force, it will
be possible use this data to estimate a model of the SM-7 .

Correlating the generated thrust to the input is relatively simple if the steady state
behaviour is the only information needed. For the thruster, the goal is to describe the
transient behaviour which makes the issue slightly more complex. The main issue is
ensuring that the sampling of the force generated by the SM-7 occurs at a sufficiently
high rate. Finding the minimum sampling rate required in order to analyse the transient
response is difficult without knowing the system, as it is dependent upon the speed of the
system.

To monitor the thrust during the test a load cell was used which had a sampling rate
of 10 samples per second. The reason for using the cell was that it came calibrated with
a controller, so the output could be read on analog 4− 20 mA output channel. Secondly it
was hardware which had been used on a previous experiment so there were some older
written code that could be reused.

2.4.2 SM-7 Test

Collecting the data required for system identification as described in Section 2.4.1-
Modelling Method, a test stand is necessary. This will hold the SM-7 while different
PWM duty cycles are output, meanwhile a load cell will monitor the generated thrust.
Figure 2.8 shows the conceptual idea of the test bench.

2.4. Thruster Test 21

Figure 2.8: SM-7 test bench concept

The functionality of the test bench is two-fold, first of all it will be used to collect the
data necessary to create a model of the thruster. Secondly, the setup will also be used
to emulate the ROV when it comes to testing the functionality of the full control system.
This is done to ensure, that if the controller performs poorly, it will not harm the Cougar
ROV.

The setup illustrated in Figure 2.8 consists of a lever of the same length as the ROV.
The lever is mounted to a base plate via a pivot point in a vertical beam. This point acts
as the centre of mass of the ROV, and is the rotational joint which the thruster pitches
around.

For the thruster test, the opposite end of the lever, where the thruster is not mounted,
is tied down with a load cell in between. This means when the thruster generates upwards
thrust, the rope tied to the lever will be extended, and the load cell will give a reading
of the force. By sampling the load cell it is possible to generate datasets that contain the
force generated as a function of time, and these can then be compared for different PWM
duty cycles.

To perform the test, a simple java program is written which implements serial commu-
nication with two Arduinos. The first Arduino is used to sample the load cell, monitoring
the current thrust level, and relays the readings to the test PC. The second Arduino is
the one which is implemented to control the thruster, as described in Section 2.2. The
program allows the user to both set direction and PWM value for the thruster, while the
program logs the readings from the load cell alongside the current output for the thruster
and a time stamp.

2.4. Thruster Test 22

Figure 2.9: Thruster test control program

The program for the test incorporates a simple UI, shown in Figure 2.9. This enables
entering of the COM-ports which the Arduinos are connected to. When the "‘start"’-
button is pressed, the program opens and maintains the two ports. Current, maximum
and minimum readings of the load cell is presented live. This is the raw data, meaning it
is the ADC reading, a number between 0-1023. To control the thruster, a text field allows
the user to enter a number between 0 and 100, equivalent to the wanted PWM value.
Pressing the enter-key sends the set value to the thruster controller. If an unrecognised
character is entered, the value is set to 0 and this is transmitted. Any value outside the
range will be set to the nearest number inside the range. Finally, the button "‘DIR:B"’
in Figure 2.9 sets the direction of the thruster, if pressed it will transmit a command to
switch the direction to forwards, and the button label changes to "‘DIR:F"’.

After the "‘start"’ button is pressed, the program logs all the readings from the load
cell along with the output states to the thruster controller. The log is written in a text file
and the data entries are structured as below.

Time LoadcellRAW LoadcellKG PWM% Direction

Entries are created every time a reading from the load cell is received. The microcon-
troller monitoring the load cell is setup to create approximately 142 samples per second,
the code can be seen in Appendix C.2. This is a theoretical sampling rate based on the
average time for the ATMega328P microcontroller to perform an ADC reading [6], and as
such it is slightly lower in reality. However, as the load cell used has a sampling rate of
10 samples per second, it is more than sufficient.

Figure 2.10: Thruster test stand

2.4. Thruster Test 23

Figure 2.10 shows the test stand with the thruster mounted on the right. On the left,
a chain is visible, this is connected to a load cell and then to a fixed point. The whole
setup is lowered into a tank with water and the thruster is tested at several different PWM
values. To get both directions of the thruster modelled, it is pulled out of the tank, and the
thruster is turned around, and the test is redone with the new direction of the thruster.

PWM Steady Load (F / B)
20 % ≈ 1 kg / ≈ 1 kg
30 % ≈ 5 kg / ≈ 4 kg
40 % ≈ 15 kg / ≈ 9 kg
50 % ≈ 20 kg / ≈ 14 kg
60 % ≈ 27 kg / ≈ 19 kg
70 % ≈ 34 kg / ≈ 30 kg
80 % ≈ 47 kg / ≈ 46 kg
90 % ≈ 57 kg / ≈ 60 kg
100 % ≈ 61 kg / ≈ 61 kg

Table 2.2: Preliminary results from test

Table 2.2 contains the preliminary results from the test. These results are used to create
a simple correlation between torque and PWM value. As the measurement from the test
is the force generated, to get the torque the thruster generates depends upon the distance
from the thruster to the centre of rotation, that is, the ROV’s centre of mass along with
the angle of the force [16]. Due to the simplification of the Cougar model (described in
Section 2.3.1), the centre of mass is the centre of the ROV. Therefore, the distance from the
thruster to the centre of rotation is half the Cougars length (1515 mm [2]) plus the distance
from the thruster bracket to the centre of the thruster (Measured to be ≈ 9 cm).

τ = F · r⇒ τ = F · 0.7665 m (2.47)

Assuming the thruster is mounted vertically on the Cougar frame, the torque can be
calculated as shown in Equation 2.47. By using the steady state force values of the thruster
from Table 2.2 and calculating the resulting torque using Equation 2.47, a correlation of
PWM values as a function of torque is created. Figure 2.11 below shows this, for both
forwards and backwards directions.

2.5. Conclusion 24

y = -0.0002x2 + 0.2777x + 12.077
R² = 0.9689

y = -0.0004x2 + 0.3497x + 13.989
R² = 0.9536

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

PW
M

 (%
)

Torque (Nm)

PWM vs. Torque

Forwards

Backwards

Poly. (Forwards)

Poly. (Backwards)

Figure 2.11: Thruster torque vs. PWM value

The correlation between the output PWM value and the resulting torque, plotted in
Figure 2.11 will be used later to for the control logic to choose PWM values.

2.5 Conclusion

In the preceding chapter, the project was identified, to implement pitch functionality
upon a Cougar ROV which has no facilities allowing pitch, roll or yaw movement. In
Section 2.1 the Cougar ROV was described along with the available interfaces. Here an
RS − 232 interface was identified as the best candidate for communication.

As the thruster used was one from the spares kit of the Cougar, the SM-7 , some
electronics had to be created that allows control of the thruster. In Section 2.2 the required
electronics was identified and created. This led to a pod containing the required elec-
tronics to control the speed and direction of the thruster along with circuits the allow an
Arduino microcontroller to communicate upon an RS − 232 interface.

To implement a controller, a simple model describing the Cougar ROV pitch move-
ment were found in Section 2.3. Here the relevant physical forces acting upon the ROV
was identified and a mathematical expression was derived which describes the pitch
movement of the ROV due to a torque.

Finally, the a mathematical description of the thruster behaviour is needed for the sys-
tem simulation and control setup, and in Section 2.4, it was decided to use a methodology
called black box modelling. From this, a series of experiments were performed in order
to correlate the force generation of the thruster due to different inputs. In the following
chapter, the thruster data will be used to identify a model of the thruster. Finally, a model
for the ROV and thruster system will be created and simulated and a controller will be
designed.

Chapter 3

Solution

In the following chapter, the pitch control for the ROV will be analysed and implemented.
Initially, the data acquired in the thruster test in Section 2.4 will be used to find a transfer
function for the SM-7 thruster. With this and the dynamic model of the ROV found in
Section 2.3, the system can be simulated and analysed. Finally, a controller is created that
will aim to increase the system response time while avoiding oscillations and potential
steady state offsets of the angle.

3.1 SM-7 Model

As previously described, black box modelling methods will be used to model the SM-7
thruster. In the following section the data acquired in Section 2.4, will be used to identify
a system model of the SM-7 .

To achieve this, the System Identification toolbox in Matlab is used. This implements
several algorithms that can assist in modelling of systems based on input and output data.

Before starting the system identification process, the data from the test is analysed
and several steps are taken to preprocess the data. This is done in order to ensure the
model is as accurate as possible with the data acquired.

3.1.1 Data Preprocessing

Figure 3.1 below show the data from the experiment with the thruster pushing forward.
The output, thrust, has been converted to the equivalent torque it would create while
mounted on the ROV frame. In this data set, the data from all the experiments is com-
bined into a single set.

25

3.1. SM-7 Model 26

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Sample No 104

-3000

-2000

-1000

0

1000

T
or

qu
e

(N
m

)

Output

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Sample No 104

0

20

40

60

80

100

P
W

M
 (

%
)

Input

Figure 3.1: Input/output data from thruster test

Looking at Figure 3.1 it is clear that there are a few data points that lie far from the
mean values (below −2000 Nm). As this is way outside the range of what the thruster
can generate, and in the wrong direction considering the test setup, these points must be
either noise or communication errors. For this reason, these outliers are removed before
starting system identification. Figure 3.2 shows the result of removing the outliers, the
input/output relation of the thruster is more clear.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Sample No 104

0

20

40

60

80

100

P
W

M
 (

%
)

Input

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Sample No 104

0

200

400

600

T
or

qu
e

(N
m

)

Output

Figure 3.2: Input/output data from thruster test with outliers removed

Looking at the output data in Figure 3.2, it is clear that there is a significant amount of
noise in the data. To improve the system identification, this data can be filtered, so that
high frequent noise is removed. This has the downside of slightly skewing the data, and
there is the risk if the data is filtered too severely, the transient behaviour of the thruster
will be lost.

Two methods that can be applied to remove the noise is; create a low pass filter or
implemented a moving average filter. The moving average is the most simple, while the
low pass is a bit more complex but can have a better attenuation of unwanted frequencies.

When implementing a low pass filter (or any filter for that matter), analysing the data

3.1. SM-7 Model 27

for the frequencies that are present in the signal is necessary, as this will help establish the
pass and stop bands. To analyse the signal, a spectrum analysis is performed on the output
data. This is based on the Fast Fourier Transform (FFT), using this, the frequency content of
the output data [17] can be plotted. When performing frequency analysis of signals, there
are two factors to be wary of. The first factor is the sampling frequency, as it is not possible
to identify signals of a frequency higher than 1/2 sampling rate, which is referred to as
the Nyquist Frequency [18]. From this arise the second issue, which is aliasing. Aliasing
is the tendency of signals with frequencies above the Nyquist Frequency to appear as a
lower frequent signal when being sampled [19]. Avoiding these issues is challenging.
One generally ensures sampling frequencies of a sufficiently high rate compared to the
signals being worked with. However, as described in Section 2.4, the load cell used to
generate the output data has a sampling rate of 10 samples per second, which means
while getting the transient behaviour of the thruster is difficult, it is also likely that high
frequent noise will appear as lower frequencies.

0 10 20 30 40 50 60 70 80
Frequency (Hz)

-100

-50

0

50

100

P
ow

er
/F

re
qu

en
cy

 (
dB

/H
z)

Thruster forward

0 10 20 30 40 50 60 70 80
Frequency (Hz)

-50

0

50

100

P
ow

er
/F

re
qu

en
cy

 (
dB

/H
z)

Thruster backward

Figure 3.3: Frequency density of output data

Figure 3.3 shows the spectrum analysis of the output data of the thruster in both
directions. This shows a clear dominance of frequencies below ≈ 5 Hz. For both output
data sets it also looks as if there are two frequency bands which also has some power,
≈ 33 Hz to 38 Hz and ≈ 57 Hz to 63 Hz. With this in mind, the data can be passed through
a low pass filter, which attenuates frequencies above the stop band of the filter.

Using the Filter Design toolbox in Matlab, a low pass filter can be created relatively
easy. As the previously described frequency bands is most likely noise, a low pass filter
is created with the following design parameters.

• Fpass = 5 Hz and Fstop = 25 Hz

• Fs = 150 Hz and Astop = 60

• Design method: FIR equiripple

The above settings result in a filter of 14th order. It has a linear group delay of 7
samples on the output of the filter. One advantage of the FIR filter is that it has a common
group delay, meaning that all frequencies get delayed an equal amount of samples.

3.1. SM-7 Model 28

Alternatively to using the low pass filter, the data can be passed through a moving
average filter. The function of this is similar to the low pass filter in that it will attentuate
high frequent signals while affecting low frequent ones less. It works by computing the
average of the the current sample summed with a number of previous samples. This
means that a 10 samples moving average, will compute the average of the current sample
and the 9 previous samples and pass the result as the output, Equation 3.1 below shows
the expression for the filter [20].

y(i) =
1
N

N−1∑
j=0

x[i + j] (3.1)

By increasing the factor N in the moving average filter, more samples are used to
calculate the average and the amplitude decreases. By increasing the samples in the the
filter however, the step response also get affected more severely. Finding the exact num-
ber of samples to use for the moving average filter is largely a trial-and-error process. For
the data set, a 50 step moving average filter does a good job of reducing the noise while
maintaining the transient response of the data.

To evaluate which filter to use on the data, it is passed through both the low pass filter
and the moving average filter. Figure 3.4 below show the raw data, the data through the
low pass and the data through the moving average.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Sample No 104

-100

0

100

200

300

400

500

600

T
or

qu
e

(N
m

)

Output data filtering

RAW
Low pass
Moving Average

Figure 3.4: Filtered output data

Comparing the two data sets in Figure 3.4, it is clear that the moving average (the
yellow curve) has removed significantly more of the noise than the low pass filter (the
black curve). Furthermore, the moving average filter also seems to follow the trend of
the original data (the blue curve) better than the low pass filter does. For this reason
the data is passed through the moving average filter before being applied in the system
identification toolbox in Matlab.

3.1.2 Model Identification

To used the system identification toolbox in Matlab, two data sets are required, the input
and the output data. Additionally, it is necessary to know the sample time. The theoret-

3.1. SM-7 Model 29

ical sample time of the data is ≈ 1 s
142 samples = 0.007 s/samples. This is based on the time the

manufacturer of the microcontroller claims an ADC reading takes added with 2 ms delays
per reading included in the microcontroller code (See Appendix C.1).

To get a more accurate sample time, it was calculated from the thruster test by adding
the time for all the tests, and dividing it in the total samples. By doing this, the average
sample time is found to be 0.0084 s/samples, which yields ≈ 119 samples per second.

With the sample time, the data sets for the forwards and backwards directions im-
ported in the system identification tool box. Figure 3.5 show the time plot of both data sets
and illustrate the input and output relation between the PWM signal and the resulting
torque.

0 50 100 150 200 250 300 350 400

Time (s)

0

200

400

600

y1
 (

T
or

qu
e

N
m

)

Input and output signals

0 50 100 150 200 250 300 350 400

Time (s)

0

20

40

60

80

100

u1
 (

P
W

M
 %

)

Backwards
Forwards

Figure 3.5: System identification Input/Output data

The next step is to estimate a transfer function for the two directions. This is involves
guessing and the number of zeroes and poles of the function, knowing the type of system
will help in approximating the order of the function. By changing this, the order of the
equation is changed, and while including a higher order might increase accuracy, it is not
given that it will. It is also imperative to remember that increasing the order will increase
the computational requirement of the model. This is significant if the model is used
at run time to predict system behaviour. In the following steps, only the forward direc-
tion will be covered. At the end however, a function for the backwards will also be shown.

First the system identification toolbox is used to find the best fitting transfer function
for the pole and zero combinations shown in Table 3.1.

3.1. SM-7 Model 30

Poles / Zeroes Estimation Fit (%)
2 / 1 71.93 %
3 / 2 71.96 %
4 / 3 72.90 %
5 / 4 72.64 %
4 / 1 71.97 %
4 / 2 72.8 %
4 / 4 72.92 %

Table 3.1: Tranfer function combination

Looking at the result of these initial functions, the result is far from satisfactory. The
estimation fit should be above 80 %, preferably even in the nineties. However, this is the
estimation for the full data set, across the full input range.

0 50 100 150 200 250 300 350 400
Time (s)

-100

0

100

200

300

400

500

T
or

qu
e

(N
m

)

Measured and simulated model output

4P4Z
4P3Z
Est. data

Figure 3.6: Model identification for full input range

Figure 3.6 is the curve for the two best fitting functions, plotted against the output
data. Looking at this, it is observed that the functions has trouble following in the upper
and lower end of the range. This makes sense, as the thruster generates very little thrust
at 20 % PWM, and the difference in thrust generated at 90 % and 100 % is close to zero.
Appart from this, the thrust to PWM is also not linear, which also makes it difficult to
achieve a good fit.

One way to solve this is, to extract the data of the thruster functioning between 30 %
and 80 % input. In this range, it seems as if the thruster to PWM ratio is closer to being
linear. By doing this, the fit is improved to ≈ 77.5 %. Narrowing the range further to
between 40 % and 80 % yields a fit of ≈ 83.3 % while a range of between 30 % and 70 %
gives a fit of ≈ 86.5 %.

The trade off when narrowing the range is that while the function get more accurate
when working within the range, as the input to the function moves outside the range,
the error increases substantially. One way to avoid the issue is, to ensure the input to
the function stays inside the range that has been used, meaning some of the potential
of the thruster is lost. Alternatively, it can be accepted that the function is inaccurate

3.1. SM-7 Model 31

when working outside the specified range, with the goal that the controller will be able
to handle the potential deviations.

0 50 100 150 200 250 300 350 400
Time (s)

-100

0

100

200

300

400

500

T
or

qu
e

(N
m

)

Measured and simulated model output

2P1Z
Est. data

Figure 3.7: Output of model estimations based on 30 % to 70 % range

Figure 3.7 show the output of a transfer functions with 2 poles and 1 zeros fitted to the
30 % to 70 % PWM input range. Comparing Figure 3.7 to Figure 3.6 the difference can be
seen. While the function is a vast improvement on predicting the output inside the 30 %
to 70 % input range, when the input is outside this range, the prediction becomes much
worse than it was previously.

The transfer function plotted in Figure 3.7 has a fit to estimation data of 86.47 % which
is a significant improvement to the 72.92 % found on the full range. The transfer function
for the thrust is given in Equation 3.2 below.

−4.261 s + 33.3
s2 + 5.117 s + 10.21

(3.2)

The same procedure was done for the backwards direction. However, the behaviour
of the thruster in the reverse direction seems to be slightly more erratic. This made getting
an accurate model (above 60 %) difficult.

3.1. SM-7 Model 32

Figure 3.8: Output of modelling attemps for reverse direction

Figure 3.8 show a combination of the best models achieved. Except for one, all have
a fit to estimation data in the early 60 % range. These estimates are the result of both the
full range, limited range and even with an increase in filtering of the thrust data.

It is clear that the functions has difficulty following the low thrust generated in the
lower range, overestimating the thrust. Likewise, in the high thrust range they have an
equal difficult time following the actual behaviour. It follows the same tendency as was
also observed for the forward direction (See Figure 3.7). For the backwards direction it is
even worse. Unfortunately, the time table prevents solving this issue currently, it is noted
that the model for the backwards direction of the thruster has to be reformulated as a fit
of 63.19 % was the best one achieved, shown in Equation 3.3.

−5.449 s + 43.29
s2 + 4.758 s + 11.52

(3.3)

As there could not be found a better fit for the backwards direction, for the system
simulation and controller design, the model found for the forward direction will be used
to describe both the forward and backwards direction. It is done for two reasons: firstly
the thrust to PWM ratio of both directions is quite near to each other (See Table 2.2 in
Section 2.4.2) and lastly the fit is so poor it will have to be re-evaluated.

At this point, there is little more than can be done. Improving the fit can be done a
number of ways. One possibility is using a load cell with a higher sampling rate, as it
would be possible to get at better description of the transient response of the thruster,
while allowing for improved filtering of the data without harming the transients. Build-
ing upon this, an anti-aliasing filter could be created for the load cell sampler. This is
essentially a low pass filter, which attenuates frequency above the stop band. By imple-
menting the filter in hardware, and placing it between the ADC of the sampler and the
load cell high frequency noise is removed [21]. This has the advantage of functioning
in continuous time (on analog signals) when implementing it in the hardware, without
being subject to issues arising from the Nyquist frequency.

An alternate solution to the poor estimate is to seek a non-linear model, as there are
proven non-linearities in the thruster behaviour, clearly seen in the low PWM and high
PWM ranges (e.g. Figure 3.5). The system identification toolbox has facilities for this,

3.2. System Simulation 33

and a quick test was done to get a Hammerstein-Wiener model for the backwards data.
Without any adjustment, a fit to estimation data for the full set of 95.62 % was achieved.

However, as the time is limited and it is an area in which lies outside the scope of the
current project, this function will not be used for the remainder of the report, but it is an
area that could be investigates as it seems to be a promising method to improve the fit
without doing more experiments.

3.2 System Simulation

With the transfer function of the SM-7 and the model describing the ROV pitch, the
next phase is to combine the blocks and simulate the system. To do this, Simulink, an
extension to Matlab, is used. This allows the modelling and simulation of the system
using a combination of predefined blocks and the functions which has been found to
describe the thruster and the ROV.

There is several different approaches than can be used to build the system, but the
one chosen here is to split the problem into three over-all blocks; one block describes
the thruster behaviour, another describes the ROV torque and finally the dynamics of the
ROV, meaning the actual displacement (or pitch) is calculated in the third block. Figure 3.9
below show the a sketch of the concept.

ROV
Disturbance

SM-7
thruster

ROV
Pitch

τ
+

+
SM-7

τROV

τnet

θin

θout

ω
out

Figure 3.9: System model design

The SM-7 block in Figure 3.9 is based on the transfer function for the thruster found
in Section 3.1. This block takes two inputs: the current set point (in radians) and the
actual angle (also in radians). Using these two pieces of information, the required torque
will be calculated. By using the function to calculate the PWM for a given torque, found
in Section 2.4.2, the input to the transfer function can be found.

Describing the torque that the ROV generates as the pitch angle is changed, is mod-
elled as a disturbance (see Figure 3.9). This block describes the current torque that the ROV
causes which works towards orienting the ROV back to 0◦, identified in Section 2.3.1. Ad-
ditionally, the torque generated by the drag of the ROV, depending on the angular velocity,

3.2. System Simulation 34

is also included in this block. The description for this was found in Section 2.3.3.

The final part of the system is the ROV block. This is block takes the combined torque
of the thruster and the disturbance (τnet) and uses the system model (see Section 2.3.4) to
calculate first the angular velocity (ω) and based on this the angular displacement of the
ROC (θout). By building these blocks in Simulink it is possible to evaluate the behaviour
of the system.

An important factor to remember when building the system is the reference direction.
This determines the sign (±) of the angles, velocities and torques of the the system, in
relation to which direction they prescribe.

Front

τ+τ-

0 <= θ <= ½ π½ π< θ <= π

π< θ <= 1.5π 1.5π< θ < 2π

-τROV-τROV

+τROV +τROV

Figure 3.10: System reference point

Figure 3.10 above show a sketch of the ROV placed in a coordinate system. The an-
gles for each quadrant is included and the torque, τROV, indicates the sign of the torque
generated by the ROV when the ROV has an angle within the interval of the quadrant. In
a similar manner, the arrows indicate the direction which the ROV will pitch if a torque
is applied with a matching sign. For example, this means if a pitch angle of π

7 ≈ 26◦ is
wanted, a positive torque has to be applied. As can be seen in Figure 3.10, the torque of
the ROV will be of negative direction, meaning it is working against the forced pitch.

3.2.1 Thruster Block

The thruster block describes the logic that will lay the foundation for building the con-
troller for the SM-7 thruster. This is based on two inputs, as seen in Figure 3.9. The
set point, θin and the feedback from the system, θout, based on these two the block cal-
culates the PWM value that is needed to generate the thrust to ensure the pitch angle
reaches the correct level. By using the transfer functions for the thruster that was found
previously, the block emulates the behaviour of the actual thruster, meaning when a con-

3.2. System Simulation 35

troller is developed it is possible to tune the controller before fitting it to the actual system.

Figure 3.11: Thruster system block

Figure 3.11 show the Simulink model for the thruster. The first step for the thruster
block is to convert the angle input (θin) to a torque. This calculation is based on the
formula for the torque of the ROV found in Section 2.3.2. So from this the block first
calculates the torque that the ROV generates at the set angle, and from this follows the
required torque to maintain that angle.

After this the required PWM value to maintain the torque is calculated, this is based
on the fit of the PWM vs. Torque curve found in Section 2.4.2. After this step the PWM
value is passed through a Dead Zone block. This causes any value between 0 and 20 % to
be floored to 0 %. The reason is that the SM-7 does not run below this duty cycle. After
this step, the value is passed through a Saturation block, which causes values outside the
0 to 100 % range to be rounded to the nearest value.

Then, the value is input to the transfer function of the thruster, which will generate an
output torque in relation to the model found for the thruster. This torque value is output
from the block and then follows the logic in Figure 3.9.

The two branches in Figure 3.11 after the TorqueToPWM function, handles the direction
of the thruster. The bottom branch creates the same Dead Zone and Saturation parameters
as described above, but for negative PWM values. The Abs block transforms the value to
a positive one and parses it to the transfer function.

3.2.2 Disturbance Block

The disturbance system block calculates the torque generated by the ROV as a results of
being pitched. This is built around the function describing the ROVs tendency to return
to a neutral pitch angle (See Section 2.3.2). In addition to this, the drag of the ROV as a
function of the velocity adds another torque force. This was described in Section 2.3.3.

3.2. System Simulation 36

Figure 3.12: Disturbance system block

The disturbance system block, shown in Figure 3.12, reads the current angle (θout)
and angular velocity (ω) of the ROV and uses this to calculate the torque caused by the
ROV during pitching. The torque generated by the mass distribution of the ROV frame,
pitching the ROV towards 0◦. In the model, the formula used to calculated the torque of
the ROV is used.

τpitch = 419.93 N m · sin2(θROV) + 442.80 N m · sin2(θROV) (3.4)

Equation 3.4 is used to evaluate the torque at any angle. As sin2 cannot yield a negative
number, this equation will always yield a positive torque, so to ensure that the direction
of the torque satisfies the actual situation, a switch block is implemented in the system in
Figure 3.12. This ensure that depending on the result of the Interval Test block, the output
of the torque function is either passed through a positive or negative gain.

The Interval Test block check the current angle of the ROV compared to the sign the
torque must posses, given the direction established in Figure 3.10. This means, for an
angle, θout between 0 and π the torque is negative, resulting in a clockwise acceleration.
Likewise, for an angle above π and below 2π the torque is positive, resulting in an anti-
clockwise acceleration. Depending on which interval the angle is within, the Switch block
is either set or reset.

Additionally, the drag is calculated based on the current angular velocity of the ROV.
This drag is converted to the equivalent torque it generates, as detailed in Section 2.3.3.
The velocity is first passed through a gain of 1

sampletime . This is done as the angular velocity
is calculated as rad/sampletime while the drag equation requires rad/s. After this the drag is
passed through a Gain block of ±1. Which gain is applied depends on the direction of the
angular velocity, which is controlled by the Switch block.

The result of the drag calculation is added to the result of the torque force of the ROV
and the combined torque is output as τROV.

3.2. System Simulation 37

3.2.3 ROV Block

The ROV system block is the plant of the system. It takes the torque (τnet) of the system as
the input and from this calculates the angular velocity (ω) and the angular displacement
(θ) of the ROV.

Figure 3.13: ROV system block

The ROV block in Figure 3.13 is the Simulink circuit of how the ROV pitch block in
figure 3.9 is created. The method is based on the equations identified in Section 2.3.4 to
describe the pitch of the ROV. The calculation is divided into a two step process, first being
calculating the angular velocity. From this calculation of angular velocity, the angular
displacement can be calculated, this is assuming a constant velocity across the sample
time.

vROV =

0

I−1
∫ ∆t

0

(
τROV(θnet)

)
dt + ω0

0

 (3.5)

Calculating the angular velocity for the ROV block in Figure 3.13 uses Equation 3.5.
First the torque is multiplied with the inverse inertia tensor through the Product block.
The result of this is integrated in the 1

s block. As Simulink integrals work by accumulating
the values from previous integration steps, the old velocity (ω0) does not need to be added
to the result explicitly. The angular velocity is then saved to a memory block using a Write
block, which allows it to be used for calculating the drag (See Section 3.2.2).

ηROV =

0

ω1 · ∆t + θ0

0

 (3.6)

3.2. System Simulation 38

The second step is calculating the angular displacement (θout) this is based on Equa-
tion 3.6. In Figure 3.13 the output from the integrator block (being angular velocity) is
passed through a gain block. This gain equates to multiplying the velocity with the ∆t in
Equation 3.6. As the velocity is calculated as rad

sample time , this gain is 1. The former velocity
is added to this result, which is then saved in another Write block.

3.2.4 System Evaluation

With the system shown in Figure 3.9 defined in the Simulink environment, a test of the
system were performed to see how it behaves across the input range before creating a
controller for the system. A question to consider is what requirements there are of a con-
troller. It is conceivable that the straight forward open loop control proportional scheme
is sufficient for the problem.

To investigate the system, a simple test in Simulink is performed. This is this is done
by inputting different angle set points and analysing the output angle. By recording the
time it takes to reach a steady state and potential steady state offset, the requirements for
the controller can be established.

Input angle Output angle Deviation Steady state time
18 ◦/ π10

c −3.5 ◦/− 0.0615 c 21.5 ◦ ≈ 2.6 s
20 ◦/π9

c 4 ◦/0.0703 c 16 ◦ ≈ 2.8 s
22.5 ◦/π8

c 11.3 ◦/0.1979 c 11.2 ◦ ≈ 3.0 s
25.7 ◦/π7

c 14.4 ◦/0.2518 c 11.3 ◦ ≈ 3.0 s
30 ◦/π6

c 19.5 ◦/0.3405 c 10.5 ◦ ≈ 3.0 s
36 ◦/π5

c 25.7 ◦/0.4486 c 10.3 ◦ ≈ 3.0 s
45 ◦/π4

c 34.0 ◦/0.5927 c 11.0 ◦ ≈ 3.0 s
60 ◦/π3

c 37.7 ◦/0.6583 c 22.3 ◦ ≈ 3.0 s
90 ◦/π2

c 37.7 ◦/0.6583 c 52.3 ◦ ≈ 3.0 s
−18 ◦/ − π

10
c −5.9 ◦/− 0.1022 c 12.1 ◦ ≈ 2.5 s

−20 ◦/ − π
9

c −9.6 ◦/− 0.1670 c 10.4 ◦ ≈ 3.0 s
−22.5 ◦/ − π

8
c −13.1 ◦/− 0.2284 c 9.4 ◦ ≈ 3.0 s

−25.7 ◦/ − π
7

c −16.9 ◦/− 0.2955 c 8.8 ◦ ≈ 3.0 s
−30 ◦/ − π

6
c −21.5 ◦/− 0.3751 c 8.5 ◦ ≈ 3.0 s

−36 ◦/ − π
5

c −27.3 ◦/− 0.4770 c 8.7 ◦ ≈ 3.0 s
−45 ◦/ − π

4
c −35.3 ◦/− 0.6169 c 9.7 ◦ ≈ 3.0 s

−60 ◦/ − π
3

c −37.9 ◦/− 0.6622 c 22.1 ◦ ≈ 3.0 s
−90 ◦/ − π

2
c −37.9 ◦/− 0.6622 c 52.1 ◦ ≈ 3.0 s

Table 3.2: Test cases system without controller

Table 3.2 show the result of inputting different angular set points in the system model.
As would be expected with using the same function for the thruster directions, the switch
in direction has little impact. The small deviation that is present is due to the fact the
model describes a small negative thrust generation at low PWM values.

By looking at the data in Table 3.2, it seems that the time delay to reach a steady state
level is fairly consistent of ≈ 3.0 seconds. It is also worth noting that there is a steady state

3.2. System Simulation 39

offset consistently throughout, but it is smallest for angles between ±11 ◦ → 45 ◦.

Figure 3.14: Output of system at π
4 input

Figure 3.14 show the output of the system with an input of π
4 = 45 ◦. The output is

calculated across a 10 s time period. The tendency of the system in Figure 3.14 was seen
across the full input range in Table 3.2. There is a tendency of a small overshoot, which is
expected as the generated thrust will accelerate the ROV, and the torque working against
the thruster will have to counteract the velocity that the acceleration has caused before
the ROV settles into a steady state.

With this knowledge of the system, the following factors can be used to evaluate the
effectiveness of the controller that has to be added to the system.

• Steady state offset

• Overshoot

• Settling time

The current overshoot of the system is relatively small, and adding a controller has
a great chance of increasing this, as the controller will work towards accelerating the
ROV faster towards the settle point. Steady state offset of the system is one factor a
controller will be able to fix, implementing an I-controller will accumulate the error
between the input and output, meaning it will increase or decrease the thrust until the
error is zero [22].

3.3. Controller Design 40

3.3 Controller Design

In the following, the controller for the thruster will be added to the Simulink model,
specifically, the controller is added to the thruster block (described in Section 3.2.1). The
controller will be based on the PID control scheme, so before developing the controller,
the type of controller that can solve the problem is evaluated.

Controller Response Rise time Overshoot Settling time Steady state error
Kp Decrease Increase Small change Decrease
Ki Decrease Increase Increase Eliminate
Kd Small change Decrease Decrease No change

Table 3.3: PID-gains output effect [23]

Evaluating which controller to apply can be done by comparing the effects of the three
gains: Proportional, integral & derivative (Shown in Table 3.3) with the requirements of
the controller. One important note of the derivative gain is that it works by amplifying
the rate of change of the input error, a very powerful control method. It is however, very
likely that if it is implemented in a system with noise on the feedback line, the controller
will amplify the noise return, and the result is a very erratic and unstable system.

For that reason the d-gain will not be included in any of the controllers designed,
as the potential for an unstable system is not an acceptable trade off for the benefits of
including the gain.

With this in mind, two controllers will be created and compared. First a simple P-
controller will be created. As per Table 3.3, this should decrease the steady state error and
the rise time, at the expense of a increase in overshoot.

Secondly, a combined PI-controller will be created, and this should eliminate the
steady state error. The challenge will be to limit the overshoot, as it has the potential of
increasing the settling time of the system.

Before building a controller, the feedback system and control variable has to be de-
cided. While the feedback variable is the angle of the ROV, which is subtracted from the
set point, yielding an error term describing the angle offset from the set point. There are
several ways the error term can be used to create a control signal.

One method would be to recalculate the error term to a torque difference, which would
be added output of the block that calcualte the torque requirements at the set point (See
Section 3.2.1 for more details).

Alternatively, the torque calculated from the error term could be converted to a PWM
value, and this PWM value would be added to the one calculated from the setpoint,
increasing the PWM for the motor in relation to the error term.

A final method tried is to convert the error term to an angle in degrees, and adding
this to the PWM output. This essentially multiplying the error with a gain of 180

π before
passing it through the controller and adding it to the PWM.

The three approaches described was all tested during the controller setup. Calculating
a PWM value from the error term has the disadvantage, that the torque to PWM function
is not linear, so a torque calculated does not scale across the full PWM range. This meant
the controller had a difficult time maintaining the error term at zero.

3.3. Controller Design 41

Using the angle directly to control the thruster works very well. Converting it to
degrees essentially ensures that even small angles gets corrected by the controller.

Figure 3.15: Thruster with PID-Controller

Figure 3.15 show how the PID-controller scheme is included for the thruster block
(Based on the same block shown in Figure 3.11). By changing the value of the Gain-blocks
(kP, kI & kD) the controller can be tuned. For the following the gain kD will remain at
zero.

To get a controller for the system, first a P-controller will be developed, and the gain
that seems to give the best rise time without getting too much overshoot. The kP value
found for the P-controller will then be used in the PI-controller where different values for
the kI will be tried, which will lead to a PI-controller that can maintain the pitch angle of
the ROV.

3.3.1 P-Controller

As described, the tuning method for the controller is to first find the kP gain that has
to most promising effect on the control of the ROV. To do this the kP gain-block (See
Figure 3.15) is tested with different values and the output angle is saved.

The controller is tuned with an input of π5 . Using this input has two reasons; First the
angle is sufficiently large that the controller will use the maximum PWM value. Secondly,
the angle is still inside the range that the thruster can maintain (See Table 3.2).

For the proportional gain, the gain is incremented in steps of 2 within the interval
2→ 20 and the output data is plotted next to each other to make it easier to compare the
effect of the increasing gain.

3.3. Controller Design 42

0 2000 4000 6000 8000 10000 12000
Time (ms)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ng

le
 (

ra
d)

P-Controller Gain Comparison
kp = 2
kp = 4
kp = 6
kp = 8
kp = 10
kp = 12
kp = 14
kp = 16
kp = 18
kp = 20

Figure 3.16: Output of system with a P-controller at π
5 input

Figure 3.16 show the output curve of the P-controller. As expected of the kP gain, a
significant increase in the overshoot is observed as the gain value increases. This also
leads to a oscillating behaviour of the output, as the controller will have a tendency to
over compensate.

Evaluating the steady state offset of the controller can be done by comparing the
output values to the set point of pi

5 ≈ 0.63. The controller performs as expected here as
well, as the steady state error is reduced for an increased kP, but none of them manage to
eliminate the offset.

Finally, the rise time is also expected to be reduced for an increasing kP gain. Looking
at Figure 3.16, the decrease in rise time can be identified by the tendency of the outputs;
for an increasing kP gain yields a steeper angle before changing direction, this is also what
leads to the increased overshoot.

Comparing the different gains in Figure 3.16, the optimum gain seems to be in the
vicinity of kP = 2. While the value has a relatively large steady state offset, it seems the
one with the fastest settling time. By adding an integrator to this P-controller, the steady
state offset should be fixed.

3.3.2 PI-Controller

Finding the value for kI gain follow the same method as described for the kP gain, but
this will be incremented in steps of 0.5 in the interval 0.5→ 4. The reason for this smaller
step size is that the integral is an accumulator, meaning it can easily cause significant
overshoot as it will accumulate a large error that has to be compensated.

The test follow the same input as before, π5 and the value found of the kP gain is used.
The output curves is once again plotted next to each other to compare the behaviour.

3.4. Conclusion 43

0 2000 4000 6000 8000 10000 12000
Time (ms)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ng

le
 (

ra
d)

PI-Controller Gain Comparison

kP = 2
kI = 0.5
kP = 2
kI = 1.0
kP = 2
kI = 1.5
kP = 2
kI = 2.0
kP = 2
kI = 2.5
kP = 2
kI = 3.0
kP = 2
kI = 3.5
kP = 2
kI = 4.0

Figure 3.17: Output of system with a PI-controller at π
5 input

Figure 3.17 show the output from the different kI gain values. By comparing the
output curve to the one for the pure P-controller, the effect of the kI gain is clear. First of
all, it is clear that every output has either reached the set point or are very near it with a
tendency of approaching the point.

The output of the PI-controller also have a clear tendency of overshooting the set
point, and any kI gain above 1.5 seems to make the output remain above the set point for
an extended period of time. However, below a gain of 1.5 the output has a tendency to
oscillate around the set point. Therefore, choosing the gain for the kI is a trade off between
a fast settling time, with oscillating behaviour, or a longer settling time, but with a more
steady approach towards the set point.

The kI gain has helped reduce the settling time of the system and eliminated the steady
state offset. This makes it invaluable together with the kP gain. Looking at the output
curves. The choice of gain is based on reduced oscillation of the output, with an accepted
trade off of the settling time, for this the best gain value for the integral term is in the
vicinity of 2.5. This seems to be the value that gives the fastest settling time and the most
stable system behaviour.

3.4 Conclusion

With the PI-controller created in Section 3.3.2, the final objective is to compare the result
of the system with a controller as opposed to no controller. This is done by subjecting the
Simulink model with the PI-controller to the same input range as was done in the system
evaluation in Section 3.2.4 Table 3.2.

3.4. Conclusion 44

Input angle Output angle Deviation Steady state time
18 ◦/ π10

c 18.0 ◦/0.3140 c 0.0 ◦ ≈ 4.5 s
20 ◦/π9

c 20 ◦/0.3490 c 0.0 ◦ ≈ 3.6 s
22.5 ◦/π8

c 22.9 ◦/0.3993 c 0.4 ◦ ≈ 3.9 s
25.7 ◦/π7

c 25.7 ◦/0.4490 c 0.0 ◦ ≈ 4.0 s
30 ◦/π6

c 30.0 ◦/0.5240 c 0.0 ◦ ≈ 4.0 s
36 ◦/π5

c 36.3 ◦/0.6340 c 0.3 ◦ ≈ 9.2 s
45 ◦/π4

c 37.7 ◦/0.6583 c 7.3 ◦ ≈ 2.8 s
60 ◦/π3

c 37.7 ◦/0.6583 c 22.3 ◦ ≈ 2.8 s
90 ◦/π2

c 37.7 ◦/0.6583 c 52.3 ◦ ≈ 2.8 s
−18 ◦/ − π

10
c −18 ◦/− 0.3141 c 0.0 ◦ ≈ 3.6 s

−20 ◦/ − π
9

c −20 ◦/− 00.3491 c 0.0 ◦ ≈ 3.7 s
−22.5 ◦/ − π

8
c −22.5 ◦/− 0.393 c 0.0 ◦ ≈ 4.1 s

−25.7 ◦/ − π
7

c −25.8 ◦/− 0.4495 c 0.1 ◦ ≈ 4.6 s
−30 ◦/ − π

6
c −30.1 ◦/− 0.5250 c 0.1 ◦ ≈ 5.5 s

−36 ◦/ − π
5

c −36.4 ◦/− 0.6350 c 0.4 ◦ ≈ 8.5 s
−45 ◦/ − π

4
c −37.9 ◦/− 0.6622 c 7.1 ◦ ≈ 2.5 s

−60 ◦/ − π
3

c −37.9 ◦/− 0.6622 c 22.1 ◦ ≈ 2.5 s
−90 ◦/ − π

2
c −37.9 ◦/− 0.6622 c 52.1 ◦ ≈ 2.5 s

Table 3.4: Test of system controller

Table 3.4 show the result of testing the controller through the same input range as the
original system evaluation test. From this table it is clear that the objective of eliminating
the steady state error is achieve, as long as the angle is within the maximum achievable
with the thruster (≈ 37.7 ◦).

One important note is that this was all done with the same transfer function for the
thruster in both directions, as a description for the backwards direction of the thruster
was not achieved. This means while the current control works for the ROV and thruster
setup currently, it will be necessary to find a solution for the backwards direction, to get
a better description of this.

Apart from this, the model of the system works and it was possible to identify a
PI-controller that is able to maintain the pitch angle of the ROV. With an improved fit for
the backwards direction of the thruster, it should be possible to use the controller for the
SM-7 thruster.

Building upon this, the controller could be improved, and one direction that could be
considered is Adaptive control schemes. If done correctly, this control scheme can assist
in reducing the impact of poorly modelled phenomenon, as it would allow the controller
to adjust the gains based on the feedback, for example scaling the gain blocks based on
the change rate of the feedback.

Chapter 4

Discussion

The following section will aim to to overview of the status of the project at the time of
its finalisation. The success and failures will be highlighted and a few comments for the
the reason will be shared and a brief description of what needs to be done for a full scale
system implementation will be made.

Before getting too deep into this, a quick overview of the status of the project is a good
idea. The task list from Section 1.1-Project Description is presented below in Table 4.1.

No. Task Accomplished
1 Driver Electronics 4

2 Communication 4

3 ROV model 4

4 Thruster model ≈

5 System simulation 4

6 Controller design 4

7 Implementation 7

Table 4.1: Project progress

Looking at table 4.1, it is clear that the majority of the tasks has been completed.
However, two tasks remain incomplete. The incomplete tasks is the thruster model and
the implementation of the control system.

While it was succeeded in finding a model of the thruster, this was done in Section 3.1,
it was only achieved for a single direction of the thruster. However, for the backwards
direction the fit of the transfer functions found using the System Identification toolbox
was simple too poor to be acceptable. The reason why the fit was so poor is fairly hard to
know. It was observed that the formulas generally has a difficulty following the thrusters
behaviour in the extremes of the input range.

This was not bigger surprise as the system works best for Linear Time Invariant sys-
tems (LTI). And as was found, the thrusters behaviour was non linear in the extreme
input range. A fact that is abundantly clear when looking at its thrust to PWM ratio (see
Table 2.2 in Section 2.4.2), as the thrust output has little change in the 80 %→ 100 % PWM
input range, and the below 20 % PWM the thruster generates no thrust.

This cannot be the only reason for the poor fit of the backwards direction compared to

45

46

the forward direction, as the output/input relation is quiete similar. And for the forward
direction a fit to estimation data of 86.47 % was achieved by approximating the model in
the range of 30 → 70 % range. By creating the fit inside this range, the risk is that the
model will be worse when working outside the range, compared to a poorer fit across
the whole range. The hope is however, that the thruster will generally perform inside the
range where it is tuned to.

Working below the 30 % is unlikely, as the thruster creates relatively little thrust there.
The issue is then, that the model might overestimate the thrust generated below thirty,
and the effect is a controller that thinks it creates a larger thrust than is actually being
generated. Looking at Figure 3.7 in Section 3.1.2, it can be seen that this is what will
happen at values below 30 %. This is where a controller based on a feedback should
hopefully catch the error and increase the output to the thruster.

The situation becomes worse in the other end of the spectrum, as can be seen in the
same figure, the controller will have a tendency to underestimate the thrust generated at
PWM values above 70 %. This is a situation with potentially worse consequences, as the
system could be destabilised as the controller will have a tendency to overshoot the set
points worse that it is tuned to. The issue can be overcome by limiting the output of the
controller, which will also mean that significant capabilities of the thruster is lost.

Alternatively to this, as a new model has to be sought for the backwards direction,
the same could be done for the forward direction. It was found that a non-linear model
seemed to be much better at describing the behaviour of the thruster.

0 50 100 150 200 250 300 350 400

Time (s)

-100

0

100

200

300

400

500

T
or

qu
e

(N
m

)

Forwards Non-linear Approximation

0 50 100 150 200 250 300 350 400

Time (s)

-100

0

100

200

300

400

500

T
or

qu
e

(N
m

)

Backwards Non-linear Approximation

Figure 4.1: Non-Linear model output vs. measured

Figure 4.1 show the output curve of two non-linear models, these were approximated
based on the full range data set of the forwards and backwards direction. Looking at the
curve, it is clear the model has a much better abillity to follow the behaviour of the thrust
in the low and high input ranges. Both models we approximated as Hammerstein-Wiener
Models, with all settings at the Matlab default. The reason for not using the non-linear
modelling is that improvement of the non-linear model was observed too late, and it is
an area outside the scope, it would require quiete an addition to the report to apply the
correct methodologies and not simply blind modelling, which is very much what was done
for the output of Figure 4.1.

47

With the lack of a model of the thruster for both directions, it follows that implemen-
tation of the controller was not achieved on the full system, as this would be hazardous
at best. However, a controller was developed, which was tested with the same model for
both directions, based on the assumption that the input/output relation of the thruster
was similar for both directions. This lead to the development of a PI-controller for the
system, which was able to maintain the pitch angle of the system. Theoretically.

While a simply PI-controller controller was tested and seems to be quiete sufficient to
maintain the pitch angle (See Table 3.4 in Section 3.4), there are still room for improvement.
The controller has a a tendency to overshoot slightly and approach the set point from a
too high value, this is something that could be sought to be improved. It might not be
achievable with a PI-controller, so different control schemes could be investigated to build
upon the PI-controller.

One path that could be investigates is to create and adaptive control algorithm. If this
was done right, it could be used to make the control system more robust towards changes
in operating conditions. This can for example be achieved by looking at the feedback
change rate, and alter the controller gains depending upon the expected change rate vs.
the actual one.

The dynamic model of the Cougar system which was required to test and tune the
controller was implemented successful. It was possible to created a mathematical de-
scription of the Cougar as it pitches. And combined with the model of the thruster the
whole pitching manoeuvre was simulated using the Simulink toolbox in Matlab. Recall-
ing that this model was simplified in some regards (See Section 2.3.1 & Section 2.3.3) it is
worth noting that how close the behaviour observed through the model lies to reality is
unknown.

For example, wave and current induced loads were ignored as they are generally
moving in direction that does not directly change the pitch angle. This is an assumption
that will not always be true, and one that can be particular dangerous for high currents
while the ROV is pitching.

The drag was also simplified drastically to being treated as a sum of small rectan-
gles, how close or how far from the reality this really is, is difficult to know, probably it
is quite far, as there is a lot more to the ROV than a simple rectangle. With this being
said it yielded a dampening effect which ensures velocity is lost when no torque is applied.

One area that was never touched upon, was how the control from the topside will be
tied together with the Arduino in the electrical pod in the ROV. The most simple way
would be to use the same method as for the thruster test, where PC program uses a serial
RS-232 interface to communicate with the Arduino. This could be build on the same
program used for the thruster test; instead of setting a PWM value and direction, a simple
angle would be input.

This would require the least amount of work as most of the requirements for this is
already implemented. It does add the need for a computer to run the program, and space
can be limited offshore, so another way to do is considered.

This entails building a small control unit, where a microcontroller will allow a user
to set and angular value, could be via two buttons, incrementing and decrementing the

48

angle along with 2 7-segment displays to present the chosen value. The advantage of
this is the control console for the thruster could be kept near the same control panel used
for the ROV. This gived the benefit that the ROV pilot can operate both the ROV and the
thruster, as it were one system.

With this being said, it can be said that implementing a pitch controller on the Cougar
is possible, and while some questions still remain, what has been found in the project
can lay the foundation for implementation of the system utilising the SM-7 thruster for
the task. As it was possible to describe the ROV’s pitch angle mathematically, and the
thruster model was identified using black box modelling methods (or half of it was). This
was combined into a simulation that should behave similar to what the Cougar would in
the real world, and from this a PI-controller was found.

Chapter 5

Conclusion

Comparing the Table 1.1 in Section 1.1-Project Description containing the list of tasks with
Table 4.1 in Section 4-Discussion a overview of what was achieved is quickly achieved.
The first thing is, that an implementation of the system was not achieved. With this being
said, alot was done and a road map to get a full implementation if possible to get at this
point.

The first issue that needed to be solved was to establish the control of the thruster
and the communication to the top side. In Section 2.2 the electronics to achieved this
was described. By using the technical documents of the Cougar XT system, a circuit was
created which is able to create the same control signals as Saab Seaeye uses to control the
SM-7 thruster. A microcontrolelr was chosen, which control the thruster and facilitate
communication to the topside.

To develop the controller and analyse the system, a mathematical model of the ROV
pitch manoeuvre was developed in Section 2.3. By identifying the forces acting upon the
ROV as it changed the pitching angle and describing these an expression for the torque
needed for any given angle was determined. By the use of the inertia tensor of the ROV
system, the angular acceleration of the ROV system was described using the instanta-
neous torque. And from the knowledge of the angular acceleration, the displacement of
the ROV was described. Finally, a drag force due to the angular velocity of the ROV was
also included. The term were simplified significantly but gives a rough estimate of the
actual drag which add a small dampening effect to the system.

To get a model of the thruster, a series of experiments were performed to identify
the input/output relation, described in Section 2.4. This data was used in Section 3.1
to approximate a model using the Matlab toolbox System Identification. This effort was
successful for the forward direction, while the backward direction yielded a very poor fit.
However, by using the model of the forward direction for both directions, a model of the
full ROV system was created in Section 3.2.

This model was used to build a PI-controller in Section 3.3. It was found the a PI-
controller was able to control the system and maintain a steady state offset of ≈ 0 ◦ while
working within the range of angle that the thruster allows.

49

Chapter 6

Perspective

In the following section, the potential for the thruster system will be discussed and the
path of what needs to be done before the first incarnation of the pitch functionality can
be tested will also be covered.

For the continued development of the pitch controller for the Cougar system, the first
step that needs to be taken is to find the model of the thruster for the backwards direction.
As it was not possible to get a very good description of the behaviour in this direction.
As previously mentioned, there are two paths that can be tried, the first is to work with
the data that has already been captured. Using this data a non-linear model of the thruste
behaviour can be sought.

The advantage of doing this is, that there is no need to perform additional experi-
ments in order to identify the thruster behaviour. This means an approximate function is
achieved with less relative effort. Seeking a non-linear model was also found to improve
the fit for the forward significantly, so this path has the promises a much better estimation
of the thruster behaviour.

The other possibility is to investigate the experimentation method, described in Sec-
tion 2.4, and try and improve upon this. By improving the experiment, it is possible that
better data could be used for the model estimation. By improving the experiment, it is
meant to reduce the variables that can affect the result.

At the conclusion of the project there is a few areas that was found that could be
improved. It was noticed that the data from the experiment did have significant noise,
see Figure 3.2 in Section 3.1.1 as an example. One possible way to reduce this is to build
an Anti-aliasing filter for the ADC which samples the load cell. The advantage of the
hardware filter is that it function on the analogue signals, meaning it is not subject to the
same limitations that occur when working with filters in discreet time.

Another area that could be improved, is to find a load cell that can create measure-
ments faster than 10 samples per second. While this will not help with the noise, it can
improve the evaluation of the transient behaviour of the thruster. It would also make
it easier to actually see the transient behaviour, has the step response of the thruster is
seems relatively fast.

With this, the next step is deploying the control system to the actual ROV, and here
the electronics established in Section 2.2 are what would be used to control the thruster
below the surface, but one area that has not yet been discussed is how the controller will

50

51

be handled by the topside. There are two possibilities, the first is to used a similar method
as used for the thruster test a simple java program (used in Section 2.4). This has the
advantage that no new hardware needs to be created and laptop or computer connected
to the top side fibre optical MUX’s would be able to control the thruster direction through
a RS-232 interface.

The other possibility is to used a second Arduino (or any other microcontroller) to
communicate with the thruster controller through the RS-232 interface. A circuit con-
sisting of two 7-segment displays to show angle set point and two buttons to increase
or decrease the angle could be implemented relatively easy. While requiring some more
effort than a simple PC program, it has the advantage that it can be combined in a small
control box and this box could be used by anyone quite intuitively.

One interesting factor which will not be known before the system is tested, is how
the ROV will interact with the pitch control system. This is one factor which no amount
of testing of the pitch system can identify. The risk here, is that the auto depth and auto
heading systems of the ROV will notice something is incorrect as the ROV is angled. This
could lead the ROV to behave in a manner that is not only unwanted, but could also be
dangerous for the integrity of the ROV.

Even if the ROV controller behaves correctly, there is also the pitch controller which
could react in unpredictable ways. As the ROV manoeuvres around the water column,
the current and waves that move around the ROV can cause some swaying, and if the
pitch controller misinterprets these motions, there is the possibility it will start to behave
erratic. How these combination will function, will not be found out, before the full system
test is ready, it seems reasonable however, that a large bassin of water is used, to reduce
the chance anything critical breaks on the ROV.

A final consideration, by the equation of the torque generated by the ROV, the torque
working against the pitching of the ROV. The maximum torque needed to pitch the ROV
360 ◦ can be found.

τmax
360 ◦(

π
2

) = 419.93 N m · sin2(
π
2

) + 442.80 N m · sin2(
π
2

) = 862.73 N (6.1)

Equation 6.1 show the maximum torque that the ROV generates as it is pitched. This
peak is reached as the ROV is at 90 ◦, from this, it can also be observed that the thruster
needs to deliver at least a torque of 862.73 Nm to allow for full rotational pitching.

Comparing this with the SM-7 thruster, it was found through the experiments in
Section 2.4 that the maximum force of the thruster is ≈ 60 kg ≈ 589.2 N. This means, using
the calculation of force into torque, the distance the thruster should be from the centre of
rotation can be found.

τ = F · r→ r =
τ
F
→ r =

862.73 Nm
589.2 N

= 1.46 m

This means, the thruster needs to be almost double the distance from the centre of the
ROV if a full 360 ◦ pitch functionality is required. With this being said, it is probably a
good safety feature, that no input to the thruster, can pitch the ROV in a full circle.

References

[1] NovAtel. Attitude - Pitch/Roll/Yaw. [Online]. Available from: http://www.novatel.
com/solutions/attitude/. Accessed 8th January 2017.

[2] Saab Seaeye. Seaeye Cougar-XT. [Online]. Available from: http://www.seaeye.com/
cougar-xt.html. Accessed 13th October 2016.

[3] Saab Seaeye Ltd. Seaeye cougar technical manual book 2 of 2 - system 1471. Product
manual distributed with system, 2016.

[4] Arduino. Arduino Nano. [Online]. Available from: https://www.arduino.cc/en/
Main/ArduinoBoardNano. Accessed 24th October 2016.

[5] Mean Well. 15W Single Output DC-DC Converter - SD-15 series. [Online]. Available
from: http://www.meanwell.com/productPdf.aspx?i=51. Accessed 25th October
2016.

[6] Atmel. ATmega328/P. [Online]. Available from: http://www.atmel.com/Images/
Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf.
Accessed 25th October 2016.

[7] Ian Poole. RS232 voltage levels & RS-232 Signals. [Online]. Avail-
able from: http://www.radio-electronics.com/info/telecommunications_
networks/rs232/signals-voltages-levels.php. Accessed 25th October 2016.

[8] RSS-systems. SCHNITTSTELLEN TTL/RS232/RS485/CAN, 3V/5V/12V. [On-
line]. Available from: http://rss-systems.de/mcu-tools/mcu-bausaetze/
ttl-rs232-rs485-can/index.php. Accessed 25th October 2016.

[9] The Physics Classroom. Newton’s Second Law. [Online]. Available from: http://www.
physicsclassroom.com/class/newtlaws/Lesson-3/Newton-s-Second-Law. Ac-
cessed 3rd November 2016.

[10] J. Peraire & S. Widnall. Lecture L26 -3D Rigid Body Dynamics: The In-
ertia Tensor. [Online]. Available from: https://ocw.mit.edu/courses/
aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/
MIT16_07F09_Lec26.pdf. Accessed 20th December 2016.

[11] Maplesoft. Rotation: Moment of Inertia and Torque. [Online]. Avail-
able from: http://www.maplesoft.com/content/EngineeringFundamentals/4/
MapleDocument_30/Rotation%20MI%20and%20Torque.pdf. Accessed 2nd November
2016.

52

http://www.novatel.com/solutions/attitude/
http://www.novatel.com/solutions/attitude/
http://www.seaeye.com/cougar-xt.html
http://www.seaeye.com/cougar-xt.html
https://www.arduino.cc/en/Main/ArduinoBoardNano
https://www.arduino.cc/en/Main/ArduinoBoardNano
http://www.meanwell.com/productPdf.aspx?i=51
http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf
http://www.atmel.com/Images/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_datasheet.pdf
http://www.radio-electronics.com/info/telecommunications_networks/rs232/signals-voltages-levels.php
http://www.radio-electronics.com/info/telecommunications_networks/rs232/signals-voltages-levels.php
http://rss-systems.de/mcu-tools/mcu-bausaetze/ttl-rs232-rs485-can/index.php
http://rss-systems.de/mcu-tools/mcu-bausaetze/ttl-rs232-rs485-can/index.php
http://www.physicsclassroom.com/class/newtlaws/Lesson-3/Newton-s-Second-Law
http://www.physicsclassroom.com/class/newtlaws/Lesson-3/Newton-s-Second-Law
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec26.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec26.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec26.pdf
http://www.maplesoft.com/content/EngineeringFundamentals/4/MapleDocument_30/Rotation%20MI%20and%20Torque.pdf
http://www.maplesoft.com/content/EngineeringFundamentals/4/MapleDocument_30/Rotation%20MI%20and%20Torque.pdf

References 53

[12] Sarah Friedl. Buoyancy: Calculating Force and Density with Archimedes’
Principle. [Online]. Available from: http://study.com/academy/lesson/
buoyancy-calculating-force-and-density-with-archimedes-principle.html.
Accessed 3rd November 2016.

[13] Jon. Tyngdeaccelerationen, g. [Online]. Available from: http://fysiklokalet.dk/
index.phtml?con_id=55. Accessed 4th November 2016.

[14] Nasa. The Drag Equation. [Online]. Available from: https://www.grc.nasa.gov/
www/k-12/airplane/drageq.html. Accessed 14th November 2016.

[15] Det Norske Veritas. Modelling and Analysis of Marine Operations. [Online]. Available
from: https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2012-12/RP-H103.
pdf. Accessed 14th November 2016.

[16] hyperphysics. Torque Calculation. [Online]. Available from: http://hyperphysics.
phy-astr.gsu.edu/hbase/torq2.html. Accessed 25th December 2016.

[17] National Instruments. The Fundamentals of FFT-Based Signal Analysis and Measurement
in LabVIEW and LabWindows/CVI. [Online]. Available from: http://www.ni.com/
white-paper/4278/en/. Accessed 27th December 2016.

[18] Eric W. Weisstein. Nyquist Frequency. [Online]. Available from: http://mathworld.
wolfram.com/NyquistFrequency.html. Accessed 27th December 2016.

[19] National Instruments. Aliasing. [Online]. Available from: http://zone.ni.com/
reference/en-XX/help/370051M-01/cvi/libref/analysisconcepts/aliasing/.
Accessed 27th December 2016.

[20] Steven W. Smith. Moving Average Filters. [Online]. Available from:
http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_
book_Ch15.pdf. Accessed 29th December 2016.

[21] National Instruments. What are Anti-Aliasing Filters and Why are They
Used? [Online]. Available from: http://digital.ni.com/public.nsf/allkb/
68F14E8E26B3D101862569350069E0B9. Accessed 7th January 2017.

[22] Industrial Controls. Basics of PID Control (Proportional+Integral+Derivative). [Online].
Available from: http://www.industrialcontrolsonline.com/training/online/
basics-pid-control-proportionalintegralderivative. Accessed 7th January
2017.

[23] Control Tutorials for Matlab & Simulink. Introduction: PID Controller Design. [On-
line]. Available from: http://ctms.engin.umich.edu/CTMS/index.php?example=
Introduction§ion=ControlPID. Accessed 7th January 2017.

[24] The Engineering ToolBox. Density and specific weight of water at temperatures ranging
0 - 100 C (32 - 212 F) . [Online]. Available from: http://www.engineeringtoolbox.
com/water-density-specific-weight-d_595.html. Accessed 1st November 2016.

[25] AmBrSoft. Materials density table. [Online]. Available from: http://www.ambrsoft.
com/CalcPhysics/Density/Table_2.htm. Accessed 2nd November 2016.

http://study.com/academy/lesson/buoyancy-calculating-force-and-density-with-archimedes-principle.html
http://study.com/academy/lesson/buoyancy-calculating-force-and-density-with-archimedes-principle.html
http://fysiklokalet.dk/index.phtml?con_id=55
http://fysiklokalet.dk/index.phtml?con_id=55
https://www.grc.nasa.gov/www/k-12/airplane/drageq.html
https://www.grc.nasa.gov/www/k-12/airplane/drageq.html
https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2012-12/RP-H103.pdf
https://rules.dnvgl.com/docs/pdf/DNV/codes/docs/2012-12/RP-H103.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/torq2.html
http://hyperphysics.phy-astr.gsu.edu/hbase/torq2.html
http://www.ni.com/white-paper/4278/en/
http://www.ni.com/white-paper/4278/en/
http://mathworld.wolfram.com/NyquistFrequency.html
http://mathworld.wolfram.com/NyquistFrequency.html
http://zone.ni.com/reference/en-XX/help/370051M-01/cvi/libref/analysisconcepts/aliasing/
http://zone.ni.com/reference/en-XX/help/370051M-01/cvi/libref/analysisconcepts/aliasing/
http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf
http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf
http://digital.ni.com/public.nsf/allkb/68F14E8E26B3D101862569350069E0B9
http://digital.ni.com/public.nsf/allkb/68F14E8E26B3D101862569350069E0B9
http://www.industrialcontrolsonline.com/training/online/basics-pid-control-proportionalintegralderivative
http://www.industrialcontrolsonline.com/training/online/basics-pid-control-proportionalintegralderivative
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
http://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html
http://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html
http://www.ambrsoft.com/CalcPhysics/Density/Table_2.htm
http://www.ambrsoft.com/CalcPhysics/Density/Table_2.htm

References 54

[26] TutorVista. Center of Mass Formula. [Online]. Available from: http://formulas.
tutorvista.com/physics/center-of-mass-formula.html. Accessed 3rd Novem-
ber 2016.

http://formulas.tutorvista.com/physics/center-of-mass-formula.html
http://formulas.tutorvista.com/physics/center-of-mass-formula.html

Appendix A

Calculations

A.1 Simplified Cougar model

To get the inertia tensor, a simplified model, emulating the weight distribution of the real
cougar, is drawn. The following contains the calculations used to create this model.

A.1.1 Volume & density of frame

The volume of the frame is used to create a block with an equal density to the ROV frame
without buoyancy foam.

mROV
air = 237 kg

length f rame = 1.495 m

mROV
water = 60 kg

width f rame = 1.006 m

ρwater = 998.2 kg/m3[24]

First the water displacement of the frame is calculated. This is based on the ROV
without lead.

Mdisplaced = mair −mwater ⇒ mdisplaced = 177 kg (A.1)

The weight of the displaced water is converted to a displaced volume, based on the
density of water.

Vwater =
mdisplaced

ρwater
⇒ Vwater = 0.177 m3 (A.2)

The volume of the frame is equal to the volume of the water displaced. As the frame is
simulated by a box, where the length and width is known, the heigh of it can be calculated.

height f rame =
V f rame

length f rame ∗ width f rame
⇒ height f rame = 0.118 m (A.3)

The density of the frame can likewise be calculated.

ρ f rame =
mair

V f rame
⇒ ρ f rame = 1338.98 kg/m3 (A.4)

As all these calculations are based on the ROV without lead added, calculated mass
of the lead in water from Equation A.8 is added to the mass of the ROV in air in order to
get the density of the frame with lead on it.

55

A.1. Simplified Cougar model 56

ρ f rame W/lead =
mair + mlead

water

V f rame
⇒ ρ f rame W/lead = 1740.85 kg/m3 (A.5)

In Equation A.5 the density of the lead in water is used, so the calculation of the
density for the frame is independent of the displacement of the lead, as this is already
included in the calculation for the lead weight in water.

A.1.2 Foam volume & density

In the following the volume of the foam and density of it is calculated. This is used in the
simplified Cougar model.

mROWW/O f oam W/Olead
water = 60 kg

mROWW/O f oam W/Olead
air = 237 kg

m f oam
air = 105 kg

mlead
air = 78 kg

ρlead = 11341kg/m3 [25]

ρwater = 998.2 kg/m3 [24]

All calculations are based on the standard Cougar setup, however, as the ballast weight
on the cougar had been removed during the project period, the weight of the ROV in wa-
ter with the ballast attached and without foam is not known, it has to be calculated. The
amount of lead was measured, and the added weight can be calculated as the following.

First the weight of the lead in water is needed. To do this, the displacement of the
lead, and thereby the volume of it is needed.

Vlead =
mlead

ρlead
⇒ Vlead = 0.0069 m3 (A.6)

mdisplacement = Vlead ∗ ρwater ⇒ mdisplacement = 6.87 kg (A.7)

mlead
water = mlead

air −mdisplacement ⇒ mlead
water = 71.13 kg (A.8)

From this, the weight of the cougar in water with lead, can be easily obtained and the
displaced water of the cougar, with lead, both with and without foam can be calculated,
from which the volume of the foam can be obtained.

mROVW/lead W/O f oam
water = mROWW/Olead W/O f oam

water + mlead
water ⇒ mROVW/lead W/O f oam

water = 131.13 kg
(A.9)

mROVW/lead W/O f oam
air = mROWW/Olead W/O f oam

air + mlead
air ⇒ mROVW/lead W/O f oam

water = 315 kg (A.10)

VROVW/lead W/O f oam =
mROVW/lead W/O f oam

air −mROVW/lead W/O f oam
water

ρwater
⇒ VROVW/lead W/O f oam = 0.1842 m3

(A.11)

A.1. Simplified Cougar model 57

The total displacement of the ROV is equal to total weight of the ROV with foam in
air divided by the density of water, as at this point the weight of the water displaced is
equal to the weight of the ROV.

VROVW/lead W/ f oam =
m f oam

air + mROVW/lead W/O f oam
air

ρwater
⇒ VROVW/lead W/ f oam = 0.4208 m3 (A.12)

From this the volume of the foam can be calculated.

V f oam = VROVW/lead W/ f oam
− VROVW/lead W/O f oam

⇒ V f oam = 0.2366 m3 (A.13)

and the density of the foam can be calculated as well.

ρ f oam =
m f oam

V f oam
⇒ ρ f oam = 443.79 kg/m3 (A.14)

Finally, the hight of the foam block can also be calculated.

height f oam =
V f oam

length f oam ∗ width f oam
⇒ height f oam = 0.157 m (A.15)

A.1.3 Centre of Mass’

To model the moment of torque for of the Cougar, the axis of rotation of the cougar is
needed, this will be the centre of mass of the Cougar. Further, the two forces treated, the
weight of the ROV weighing it down, and the buoyancy modules dragging it upwards,
both has a centre of mass, which is offset from the centre of mass of the complete ROV.
These two centre of mass’ is where those forces are acting upon, and as described in
Section 2.3.1, the horizontal alignment between those three centres creates the moment of
torque.

To calculate the centre of mass’, a simplification of the cougar is created. First of all,
only the torque around the Y0 axis, as illustrated in Figure 2.3, is of interest, as the model
only describes pitching of the ROV. For this reason, the centre of mass’ is calculated purely
in 2-D. The concept is illustrated in Figure A.1.

Figure A.1: Simplified model of Cougar

A.1. Simplified Cougar model 58

Both the bottom and top block (in Figure A.1) are treated as being of uniform density,
and their length and width are equal to the dimensions of the ROV (the width is the axis
which is being ignored). Due to treating the blocks as having uniform density, their centre
of mass will be located in the centre of the shape, which means if the third axis was to be
included it would be simple to calculate the location on this axis as well.

An important note is, that the system in will be treated as if submerged in water. This
is important, because out of the water, the foam will not create buoyancy but instead
also act as an increase in weight of the ROV. Further, the mass of the frame used is
the mass of the frame as submerged in water, which was found in Equation A.9 to be
mROVW/lead W/O f oam

water = 131.13 kg. As the ROV is mutual buoyant the force exerted by the
foam block is equal to the bottom block, but the force is in the opposite direction.

Calculating the centre of mass for both the foam block and frame block is needed as
this is the centre of force, meaning it is where the force can be treated as being applied.
As the density is uniform, the centre of mass is simply the geometric centre as well.

Cx
f oam = length f oam/2 = 0.748 m Cy

f oam = height f oam/2 = 0.079 m (A.16)

Cx
f rame = length f rame/2 = 0.748 m Cy

f rame = height f rame/2 = 0.059 m (A.17)

Both centres are calculated relative to there bottom left corner of each block. By
implementing a reference frame at the bottom left corner of the frame block, the location
centre of the foam block is shifted by the height of the ROV minus half the height of the
block.

Cy
ROV =

m1 y1 + m2 y2

m1 + m2
[26] (A.18)

Equation A.18 can be used to calculate the y location of the centre of mass of the whole
ROV system. The x location of the ROV is equal to the two other blocks location. The
mass of the buoyancy foam is treated as being equal to the frame.

Cy
ROV =

mROVW/lead W/O f oam
water Cy

f rame + m f oam (ROVheight − Cy
f oam)

mROVW/lead W/O f oam
water + m f oam

(A.19)

Where the mass of the frame and the height of the ROV is given by the following.

mROVW/lead W/O f oam
water = 131.13 kg ROVheight = 0.790 m

Cy
ROV = 0.385 m

Appendix B

DNV Drag Coefficients

Figure B.1: Table from DNV-RP-H103 [15]

59

Appendix C

Code

The following section contains the source code for the microcontrollers used during the
project.

C.1 Load cell monitor

1 i n t analogData ;
2 i n t loadCel lP in = A0 ;
3
4 void setup () {
5 S e r i a l . begin (1 1 5 2 0 0) ;
6 }
7
8 void loop () {
9 analogData = createSample (5 0) ;

10
11 S e r i a l . p r i n t l n (analogData) ;
12
13 delay (2) ; / / d e l a y 2 ms
14 }
15
16 i n t createSample (i n t avgN) {
17 unsigned long tempReading = 0L ;
18 for (i n t i = 0 ; i < avgN ; i ++) \ {
19 tempReading += analogRead (loadCel lP in) ; / / Analog r e a d t a k e s ~0.0001 s e c
20 }
21 return tempReading / avgN ;
22 }

Listing C.1: Load cell monitoring code

C.2 Thruster Test Controller

The following code is the arduino code used for the thruster during the test to aqcuire the
thrust data in the test described in Section 3.1-SM-7 Model.

1
2 i n t PWM_PIN = 5 ;
3 i n t DIR_PIN = 2 ;
4 i n t DIRNOT_PIN = 9 ;
5 S t r i n g rcv_data ;

60

C.2. Thruster Test Controller 61

6 i n t pwm_Percent ;
7 bool d i r ;
8
9 void setup () {

10 setPwmFrequency (PWM_PIN, 1024) ;
11 pwm_Percent = 1 0 0 ;
12 analogWrite (PWM_PIN, pwm_Percent * 2 . 5 5) ;
13 S e r i a l . begin (9 6 0 0) ;
14 pinMode (DIR_PIN , OUTPUT) ;
15 pinMode (DIRNOT_PIN , OUTPUT) ;
16 d i r = f a l s e ;
17 s e t D i r () ;
18 }
19
20 void loop () {
21 while (S e r i a l . a v a i l a b l e () > 0) {
22 i n t tempChar = S e r i a l . read () ;
23
24 i f (i s D i g i t (tempChar)) {
25 rcv_data += (char) tempChar ;
26 }
27
28 e lse i f (tempChar == ’ F ’ | | tempChar == ’B ’) {
29 i f (tempChar == ’ F ’) {
30 d i r = t rue ;
31 } e lse i f (tempChar == ’B ’) {
32 d i r = f a l s e ;
33 }
34 pwm_Percent = 1 0 0 ;
35 analogWrite (PWM_PIN, pwm_Percent * 2 . 5 5) ;
36 s e t D i r () ;
37 }
38 e lse i f (tempChar == ’ \ n ’) {
39 i f (rcv_data . length () > 0) {
40 pwm_Percent = 100 − rcv_data . t o I n t () ;
41 analogWrite (PWM_PIN, pwm_Percent * 2 . 5 5) ;
42 }
43 S e r i a l . p r i n t l n ("PWM: ") ;
44 S e r i a l . p r i n t l n (pwm_Percent) ;
45 S e r i a l . p r i n t l n ("DIR : ") ;
46 S e r i a l . p r i n t l n (d i r) ;
47 rcv_data = " " ;
48 }
49 }
50
51 }
52
53 void s e t D i r () {
54 i f (d i r) {
55 d i g i t a l W r i t e (DIRNOT_PIN , LOW) ;
56 d i g i t a l W r i t e (DIR_PIN , HIGH) ;
57 } e lse i f (! d i r) {
58 d i g i t a l W r i t e (DIR_PIN , LOW) ;
59 d i g i t a l W r i t e (DIRNOT_PIN , HIGH) ;
60 }
61 }
62
63
64 / / −−−−−−−−−−−−−−−−−−−−−−−

C.2. Thruster Test Controller 62

65 / / PWM FREQUENCY PRESCALER
66 / / −−−−−−−−−−−−−−−−−−−−−−−
67 / / Wri t t en by K i w i s i n c e b i r t h 2014
68 / / R e v i s e d by MacTester57 t o a l l o w c o r r e c t PWM f r e q u e n c i e s (c o n f i r m e d with

o s c i l l o s c o p e) . J anuary 2015
69 / / − p r e s c a l e v a r i a b l e : r e p l a c e d u i n t 8 _ t with u i n t 1 6 _ t d a t a t y p e (f i x e s bug ,

which d i d not a l l o w f r e q u e n c i e s < 492Hz)
70 / / − mode v a r i a b l e : r e p l a c e d hex f o r m a t wi th b i n a r y t o make i t more r e a d a b l e ,

i f compared with b i t t a b l e s in t h e 32U4 manual
71 / / − added comments
72 / /
73 / / Thi s f u n c t i o n was e x t r a c t e d from :
74 / / h t t p s : / / g i t h u b . com / k i w i s i n c e b i r t h / Arduino / t r e e / ma s t e r / l i b r a r i e s / PWMFrequency
75 void setPwmFrequency (i n t pin , i n t d i v i s o r) {
76 byte mode ;
77 i f (pin == 5 | | pin == 6 | | pin == 9 | | pin == 10) {
78 switch (d i v i s o r) {
79 case 1 : mode = 0x01 ; break ;
80 case 8 : mode = 0x02 ; break ;
81 case 6 4 : mode = 0x03 ; break ;
82 case 2 5 6 : mode = 0x04 ; break ;
83 case 1024 : mode = 0x05 ; break ;
84 default : return ;
85 }
86 i f (pin == 5 | | pin == 6) {
87 TCCR0B = TCCR0B & 0 b11111000 | mode ;
88 } e lse {
89 TCCR1B = TCCR1B & 0 b11111000 | mode ;
90 }
91 } e lse i f (pin == 3 | | pin == 11) {
92 switch (d i v i s o r) {
93 case 1 : mode = 0x01 ; break ;
94 case 8 : mode = 0x02 ; break ;
95 case 3 2 : mode = 0x03 ; break ;
96 case 6 4 : mode = 0x04 ; break ;
97 case 1 2 8 : mode = 0x05 ; break ;
98 case 2 5 6 : mode = 0x06 ; break ;
99 case 1024 : mode = 0x7 ; break ;

100 default : return ;
101 }
102 TCCR2B = TCCR2B & 0 b11111000 | mode ;
103 }
104 }

Listing C.2: Thruster controller code

Appendix D

File Structure

Path Content
.Files/Data/Backwards/*.txt Raw data from backwards thruster

test.
.Files/Data/Forwards/*.txt Raw data from forwards thruster

test.
.Files/Programs/loadCell/loadCell.ino Arduino sketch used for the load

cell monitor.
.Files/Programs/ThrusterController/SM7TestDriver.ino Arduino sketch used for the

thruster controller.
.Files/Programs/ThrusterControlClient/SUBC_TS.jar Java application used to control the

thruster during the test.
./Files/Matlab/Subssys_feedbackV2_NoController.slx System simulation without con-

troller for Simulink.
./Files/Matlab/Subssys_feedbackV2_NoController2015B.slx Compatible for previous version.
./Files/Matlab/Subssys_feedbackV4_Controller.slx System simulation with controller

for Simulink.
./Files/Matlab/Subssys_feedbackV4_Controller2015B.slx Compatible for previous version.
./Files/Matlab/readTestData.m File that reads the raw data files

from the thruster test and creates
workspace variables of it

Table D.1: File table of Data.zip file

63

	Front page
	Title page
	Contents
	Preface
	1 Introduction
	1.1 Project Description

	2 Problem Analysis
	2.1 Cougar XT ROV
	2.2 Electronics Pod
	2.2.1 Control Unit
	2.2.2 Driver Board
	2.2.3 Pod Assembly

	2.3 ROV Dynamic Model
	2.3.1 Inertia Tensor
	2.3.2 ROV Torque
	2.3.3 Drag
	2.3.4 System Model

	2.4 Thruster Test
	2.4.1 Modelling Method
	2.4.2 SM-7 Test

	2.5 Conclusion

	3 Solution
	3.1 SM-7 Model
	3.1.1 Data Preprocessing
	3.1.2 Model Identification

	3.2 System Simulation
	3.2.1 Thruster Block
	3.2.2 Disturbance Block
	3.2.3 ROV Block
	3.2.4 System Evaluation

	3.3 Controller Design
	3.3.1 P-Controller
	3.3.2 PI-Controller

	3.4 Conclusion

	4 Discussion
	5 Conclusion
	6 Perspective
	References
	A Calculations
	A.1 Simplified Cougar model
	A.1.1 Volume & density of frame
	A.1.2 Foam volume & density
	A.1.3 Centre of Mass'

	B DNV Drag Coefficients
	C Code
	C.1 Load cell monitor
	C.2 Thruster Test Controller

	D File Structure

