
Controller Synthesis
- By Solving Multi Weighted Games -

Project Report

des902e16

Aalborg University
Department of Computer Science

Copyright c© Aalborg University 2016

Department of Computer Science
Aalborg University

http://www.aau.dk

Title:
Controller Synthesis By Solving Multi
Weighted Games

Theme:
Synthesis

Project Period:
Fall Semester 2016

Project Group:
des902e16

Participant(s):
Isabella Kaufmann
Lasse S. Jensen
Søren M. Nielsen

Supervisor(s):
Kim G. Larsen
Jirí Srba

Copies: 0

Page Numbers: 54

Date of Completion:
December 20, 2016

Abstract:

Controller synthesis is investigated
through a game theoretic view. In
the context of games, synthesis is
the extraction of a winning strategy.
We investigate multi-weighted games,
and various strategy types. We hier-
archically order these strategy types
by expressiveness. We also present
a weighted computation tree logic,
for which we provide an undecid-
ability result, and a decidable sub-
logic, limited to reachability with up-
per bounds. Further more we pro-
vide complexity results for the synthe-
sis problem with the reachability sub-
logic. We present two methods for
synthesis of strategies in 1-weighted
games: We extend the attractor set
method with weights giving a global
algorithm with polynomial time com-
plexity. And we also show how a strat-
egy can be extracted using prefixed-
point assignment of a symbolic depen-
dency graph.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

Preface vii

1 Introduction 1
1.1 Related Work . 3
1.2 Outline . 4

2 Preliminaries 7
2.1 n-Weighted Kripke Structure . 7

3 n-Weighted Games and Strategies 11
3.1 Weighted Computation Tree Logic . 11

3.1.1 Reachability Computation Tree Logic (CTL) with Upper-bounds 15
3.2 n-Weighted Game . 16
3.3 Strategy . 18

3.3.1 Strategy Expressiveness . 20
3.3.2 Strategy for n-Weighted Games 25

3.4 Example: Self-driving car . 30
3.5 Synthesis . 31

4 1-Weighted Games 33
4.1 Strategy for 1-Weighted Games . 33
4.2 Attractor Set . 37

4.2.1 Pruned Attractor Set . 38
4.2.2 Complexity of the attractor method 39

4.3 Symbolic Dependency Graph . 41
4.4 Dependency graph encoding of reachability games 42
4.5 Reachability Synthesis . 44
4.6 Example: Synthesis Algorithm . 45

5 Conclusion 49
5.1 Future work . 49

5.1.1 Expand Logic . 50

v

vi Contents

5.1.2 Model Formalism . 50
5.1.3 Prototype . 51

Bibliography 53

Preface

This project is the first part of our Master’s Thesis from the Department of Com-
puter Science at Aalborg University. It is written during the fall of 2016 and our
future works describe topics we plan to cover in the second part of our Master’s
Thesis in the spring of 2017. We would like to thank our supervisors Jiří Srba and
Kim Guldstrand Larsen for the feedback they have given throughout the project.

Aalborg University, December 20, 2016

Isabella Kaufmann
<ikaufm12@student.aau.dk>

Lasse S. Jensen
<lasjen12@student.aau.dk>

Søren M. Nielsen
<smni12@student.aau.dk>

vii

Chapter 1

Introduction

Synthesis is the construction of a correct implementation based on logical specifica-
tions. The synthesis problem was first formulated by Church in 1962 [5], focusing
on whether the solution of a specification, formulated in monadic second-order
logic, can be algorithmically generated. This problem was proven decidable by
Büchi and Landweber in 1969 [3]. Following this result the problem has been
continually expanded.

Controller synthesis has for several years been studied under a game theoretic
formulation [12]. The construction of a controller acting in an environment can
also be viewed as finding and extracting a strategy in a game. In 1998 Pnueli et
al. provided a synthesis algorithm for safety games and timed safety game [12].
Other examples include synthesis for LTL by Pnueli and Rosner [13] and synthesis
of synchronisation skeletons for CTL by Emerson and Clarke [6]. Recently the
focus in this area has been on expanding the synthesis problem towards more
complex real life applications, as well as providing algorithms efficient enough to
have some practical value. There has been a great interest in verification of models
with continuous time such as the timed automata, however the free flow of time
has proven difficult to solve. In 2009 Bouyer, Larsen, and Markey showed that
properties expressed in CTL and Weighted Computation Tree Logic (WCTL) is
PSPACE-complete, with respect to a one-clock timed automata, and they become
undecidable with three or more clocks [1].

In this paper we focus on synthesis of specifications with bounds on resource
consumption. Allowing only discrete representation of time and other resources, in
the hopes of achieving results with practical application. We introduce a game for-
malism called an n-Weighted Game (n-WG). An n-WG is a two player game where
a player’s moves (choice of transition in the underlying model) cause a change in
resource levels. The underlying model of the n-WG is an n-Weighted Kripke Struc-
ture (n-WKS); an extension of the Kripke structure, with arbitrary many weights on
transitions. With this type of game, we can simulate the behavior of two player’s

1

2 Chapter 1. Introduction

(The controller and its environment) acting and influencing each other simultane-
ously. This will allow us to model real life problems and synthesize strategies to
efficient solutions.

To clarify which type of problems this kind of game can solve we give a sim-
ple example. Given a game graph which models a (knowledge) hungry student,
we can illustrate choices made in accordance to the current situation as environ-
mental, and choices free of circumstance as controllable. Consider the game graph
illustrated in Figure 1.1.

s0

s2

s1 s3

s4

[
0, 2, 1

]

[
0, 2, 1

]

[
0, 0, 1

]

[
0, 0, 0

][
3, 0, 2

] [
2, 0, 2

]

[
0, 0, 0

]

[
0, 0, 1

]
[
0, 0, 0

]

[
0, 1, 1

]

{Home}

{Campus}

{Canteen}

{Friday, Burger}

{Study, Supervisor}

Legend

Knowledge

Food
Time




Figure 1.1: 3-weighted game graph G where the first vector component models the knowledge
obtained by a student, the second her food intake, and the third component represents time elapsed.

In this game graph the choices are modeled as transitions which have a number
of weights to illustrate resource consumption and accumulation. The controllers
actions are depicted by the whole lines and the environments by the dashed lines.

Say a student needs at least 4 food units to get through the day and she can
spend time gaining knowledge, either by meeting with her supervisor or studying.
As a day only has so many hours, we can now specify the problem as ”Can a
student obtain 8 knowledge units within 16 time units, if she has to eat at least 4 food
units within the same time frame?”. By synthesizing a winning strategy in this game,
we can quickly determine how to solve this problem if there exist a solution. In
the context of Figure 1.1, the controller is the decision maker, when it comes to
the students actions, and the environments actions are phenomenons which the

1.1. Related Work 3

student has no control over. E.g. If a supervisor is available or if it is Friday. In
Figure 1.1 there is a strategy for achieving 8 units of knowledge and 4 units of food
within 16 time units. Consider this procedure of choices the student might make:

1: if Home ∧ (Food = 0) then goto s0

2: else if Home then goto s1

3: else if Campus ∧ (Food < 4) then goto s3

4: else if Friday ∧ Burger then goto s1

5: else if Canteen then goto s1

6: else goto s4

The procedure is a strategy for the student to follow and if the strategy leads
to achieving the goal, we call it a winning strategy; the above is such a strategy.
Consider the student using the strategy. She starts at home on a Thursday with all
weights set to 0.

1. (0, 0, 0). First she eats

2. (0, 2, 1). She leaves for campus.

3. (0, 2, 2). She goes to the canteen, but it is a Thursday, so she eats a regular
meal.

4. (0, 3, 3). She goes to the canteen again as she is still hungry.

5. (0, 4, 4). She can now start studying, and her supervisor is available.

6. (3, 4, 6). Her supervisor is now at another meeting, but she still studies.

7. (5, 4, 8). The supervisor can now give feedback to her work.

8. (8, 4, 10). The student has now obtained 8 units of knowledge and eaten 4
units of food, within 16 time units.

Notice, that the environment might choose to act differently, however this will
only help the student achieve her goal faster. For example, on Fridays the food is
burgers, giving double the food in the same time frame. The choice to get a burger
the dashed transition from s3 to s2. This means that the environment decides if the
student can have a burger. Despite this the student can get enough food in time,
having the regular canteen meals. It is the synthesis of such strategies, that satisfies
the properties in either case we investigate in this paper.

1.1 Related Work

Synthesis has been researched in different contexts. In 2009 Thomas [14] presented
the automaton theoretic framework, defining a generalised two player turn-based

4 Chapter 1. Introduction

game comprised of: a game graph, a winning condition and a strategy. We ex-
tend this framework to two player game and weights on player actions (transitions
in the game).

In 2008 Bouyer et al. [2] studied games both in a timed and un-timed setting.
Additionally they look at both negative and positive weights in the pursuit of find-
ing infinite strategies that keep the accumulated weight of a resource in some inter-
val. In 2011 Fahrenberg et al. [7] explored the same domain, with multiple weights
in the formalism. In contrast we do not consider timed games and only look at
nonnegative weights. However, we consider the possibility of modeling multiple
resources, and specify a more expressive logic to express the desired properties.

In 2006 Jobstmann and Bloem [10] presented a polynomial time method for
synthesising strategies in the context of co-Büche tree automatons and the full lin-
ear temporal logic. In contrast we specify winning conditions in CTL variants with
multiple weights. Bouyer, Larsen, and Markey [1] showed that model checking of
CTL, with respect to a Weighted Timed Automata (WTA), to be decidable with 1
clock and undecidable with 3 clocks (2 clocks remain unknown). In 2005 Cassez et
al. [4], investigated an on-the-fly approach for synthesis of reachability and safety
properties for Timed Automata (TA) based games. In this article, we use a game
model without continuous time, and instead extend with multiple weights, allow-
ing discretion of time and other resources.

Cassez et al. [4] used the Dependency Graph (DG) framework first presented by
Liu and Smolka [11] in 1998. They developed the DG framework with the intention
of solving the HORNSAT problem. The DG framework has been extended since
then, and used to solve other problems than HORNSAT. In 2014 Jensen et al. [9]
presented the Symbolic Dependency Graph (SDG) framework, which were used
to model check WCTL1 properties of Weighted Kripke Structure (WKS) with 1
weight. In this paper we show how the SDG framework can be used to synthesize
strategies for a subset of WCTL.

1.2 Outline

In this paper we define the notion of games, and how computing strategies for
games relates to synthesis of controllers. In Chapter 2 we present the preliminary
formalities used throughout the paper; including n-Weighted Kripke Structure (n-
WKS), WCTL and n-Weighted Games. We also define four types of strategies
with different memory usage and define their relation to the synthesis problem.
In Chapter 4 we present two methods for synthesizing strategies for 1-weighted
reachability games, the attractor method and SDG framework. Lastly we define
the encoding af a 1-weighted reachability game as a symbolic dependency graph

1The WCTL is a subset of the WCTL presented in this article.

1.2. Outline 5

and show a synthesis algorithm using this construction. Chapter 5 concludes the
paper and gives an overview of topics for future work.

Chapter 2

Preliminaries

In this chapter we present the basic formalism and notation used throughout the
paper; starting with the n-WKS a Kripke structure with arbitrary many weights on
transitions. Next we define WCTL over n-WKS and show that the full WCTL is
undecidable, based on this we then define a decidable subset of the logic, namely
Reachability CTL with Upper-bounds (ReachWCTLu). Following this the n-WG is
presented and with it the notion of a strategy. We define four types of strategies
and show how they relate to different sub-logics of WCTL. Lastly we introduce the
synthesis problem and its relation to model checking when extracting and verifying
a winning strategy.

2.1 n-Weighted Kripke Structure

In this section we present the n-Weighted Kripke Structure (n-WKS), and we write
N0 = N∪ {0} and N∞ = N0 ∪∞.

Definition 2.1 (n-Weighted Kripke Structure)
An n-WKS is a tuple K = (S, s0,AP , L, T) where:

– S is a set of states,

– s0 ∈ S is the initial state,

– AP is a finite set of atomic propositions,

– L : S→ P(AP) is a labeling function,

– T ⊆ S×Nn
0 × S is a transition relation, with a weight vector of length n.

When (s, w, s′) ∈ T, where s, s′ ∈ S and w ∈Nn
0 is a vector, then we write s w−→ s′.

When s′ is reachable from s, by any number of transitions, we write s −→∗ s′ and
when s has no outgoing transitions we write s 6→.

7

8 Chapter 2. Preliminaries

An n-WKS K = (S, s0,AP , L, T) is finite whenever S is a finite set of states and T
is a finite transition relation. An example of a finite 2-WKS is illustrated in Figure
2.1.

s0

s1

s2
[
2, 1

] [
1, 8

]

[
2, 2

]

{a}

{a, b}{start}

Figure 2.1: Example of an n-WKS. The initial state s0 is marked with a double circle and a, b, start ∈
AP

Let w ∈Nn
0 be a vector of length n. We denote the i-th component of w by w[i],

where 1 ≤ i ≤ n. To set the i-th component of w to a specific value k ∈ N0 we
write w[i→ k].

Definition 2.2 (Ordering on Vectors)
Let w = (w[1], . . . , w[n]) and w′ = (w′[1], . . . , w′[n]) be vectors of length n, we
write w ≤ w′ iff w[i] ≤ w′[i] for all i where 1 ≤ i ≤ n.

We define a run ρ in the n-WKS K to be an infinite or finite sequence of states
and transitions:

ρ = s0
w0−→ s1

w1−→ s2
w2−→ . . .

where si
wi−→ si+1 for all i ≥ 0. Given a position i ∈ N0 along ρ, let ρ(i) = si, and

Last(ρ) be the last position along ρ, if ρ is finite. We also define the concatenation

operator ◦, s.t. if ρ = s0 →∗ sn then ρ ◦ (sn
wn−→ sn+1) = (s0 →∗ sn

wn−→ sn+1).

We write the set of all runs ρ in the n-WKS K of the form (ρ = s0
w0−→ s1

w1−→ . . .)
as ΠK. Furthermore we write the set of all finite runs ρ in the n-WKS K of the form

(ρ = s0
w0−→ . . .

wn−1−−→ sn) as Π f in
K . Lastly, we define ΠMax

K as the set of all runs ρ s.t.
ρ is infinite or Last(ρ) is in a deadlock s.t. Last(ρ) 6→.

Remark 1
In this paper we utilize standard vector operations when adding and subtracting
the cost of a run.

2.1. n-Weighted Kripke Structure 9

Definition 2.3 (Cost)
Let K = (S, s0,AP , L, T) be an n-WKS and (ρ = s0

w0−→ s1
w1−→ . . .) be a run in K.

The cost of ρ, at position i ∈N0, is then defined as:

Costρ(i) =





0n if i = 0
i−1
∑

i=0
wi otherwise,

if ρ is finite, we denote Costρ(Last(ρ)) as Cost(ρ).

Chapter 3

n-Weighted Games and Strategies

We begin this chapter with the definition of Weighted Computation Tree Logic
(WCTL) defined in relation to n-WKSs. We prove that model checking of this logic
is undecidable and define a decidable subset Reachability CTL with Upper-bounds
(ReachWCTLu). We then extend the automaton theoretic framework, presented by
Thomas [14], to n-Weighted Games (n-WGs) and define four types of strategies for
this type of game. The expressiveness of each type is then hierarchically deter-
mined and we prove that for a specific type of game, the reachability game, that
there is a winning Single-State Cost Strategy (SSC strategy) if there exists a win-
ning strategy. Lastly we give a short example of the correlation between n-WGs
and strategies.

3.1 Weighted Computation Tree Logic

We define Weighted Computation Tree Logic (WCTL) in relation to an n-WKS
K = (S, s0,AP , L, T).

Syntax

ϕ :=true | false | a | ψ1 ./ ψ2 | ¬ϕ |
ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2 |
AX ϕ | EX ϕ | AG ϕ | EG ϕ | AF ϕ | EF ϕ |
Eϕ1Uϕ2 | Aϕ1Uϕ2 | reset #i in ϕ

ψ :=#i | c | ψ1 ⊕ ψ2 | ψ1 ./ ψ2

where a ∈ AP , ./ ∈ {<,≤,=,≥,>}, ⊕ ∈ {+,−, ·}, c ∈ N0, and i is a component
index in a vector s.t. 1 ≤ i ≤ n.

11

12 Chapter 3. n-Weighted Games and Strategies

Semantics

We define the semantics for a minimal set of operators as:

K, s �w true

K, s �w a if a ∈ L(s)

K, s �w ¬ϕ if s 2w ϕ

K, s �w ϕ1 ∨ ϕ2 if s �w ϕ1 or s �w ϕ2

K, s �w Eϕ1Uϕ2 if there exists (ρ = s
w0−→ s1

w1−→ s2 . . .) ∈ ΠMax
K and a position i ≥ 0

such that K, ρ(i) �w+costρ(i) ϕ2 and K, ρ(j) �w+costρ(j) ϕ1 for all j < i

K, s �w Aϕ1Uϕ2 if for all (ρ = s
w0−→ s1

w1−→ s2 . . .) ∈ ΠMax
K , there is a position i ≥ 0

such that K, ρ(i) �w+costρ(i) ϕ2 and K, ρ(j) �w+costρ(j) ϕ1 for all j < i

K, s �w EX ϕ if there is a state s′ such that s w′−→ s′, and K, s′ �w+w′ ϕ

K, s �w reset #i in ϕ if K, s �w[i→0] ϕ

K, s �w ψ1 ./ ψ2 if evalw(ψ1) ./ evalw(ψ2)

The evaluation of ψ is:

evalw(c) = c

evalw(#i) = w[i]

evalw(e1 ⊕ e2) = evalw(e1)⊕ evalw(e2)

evalw(e1 ./ e2) = evalw(e1) ./ evalw(e2)

The remaining operators, from the syntax, can be derived from the minimal set,
and likewise can their semantics. The derived operators are defined as:

AF ϕ ≡ A(true)U(ϕ) EF ϕ ≡ E(true)U(ϕ)

AG ϕ ≡ ¬EF¬ϕ EG ϕ ≡ ¬AF¬ϕ

AX ϕ ≡ ¬EX(¬ϕ) ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2 ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

Given an n-WKS K = (S, s0,AP , L, T) and a WCTL formula ϕ the model check-
ing problem is the question of whether K, s �w ϕ where s ∈ S and w is vector of
length n. When the n-WKS K is obvious from context and the vector w is 0n we
simply write s � ϕ.

Theorem 1 (Undecidability of WCTL)
The model checking problem for WCTL is undecidable on a finite n-Weighted
Kripke Structure (finite n-WKS).

3.1. Weighted Computation Tree Logic 13

Proof. We use reduction from the halting problem for 2-counter machines. Let M
be a two-counter-machine (2CM) with two non-negative counters C1 and C2 and a
finite set of instructions where each instruction Insi is either

– e: Halt

– Increment i: Cj := Cj + 1; Goto(l).

– Decrement i: If Cj > 0 then (Cj := Cj − 1; Goto(l)) else Goto(m).

Where j ∈ {1, 2} and 1 ≤ l, m ≤ e. To simulate the machine, let K be a finite 4-WKS
where whenever K is in state si then M is in Insi. We use the vector of length four
to increase and decrease the value of the counters, by the cost of a run ρ ∈ Π f in

K s.t.

C1 = Costρ(i)[1]−Costρ(i)[3],

C2 = Costρ(i)[2]−Costρ(i)[4],

where 0 ≤ i is the position of si in the run ρ. We now construct K and the formula
ϕ s.t. M will halt for the empty input (C1 = 0, C2 = 0) iff s0 � ϕ. In the simulation,
the instructions are translated as seen in Figure 3.1 s.t. halt is simulated in Figure
3.1a, Increment in Figure 3.1b and 3.1c and Decrement in Figure 3.1d and Figure
3.1e.

We then construct the formula,

ϕ = E(A ∧ B)U({halt})

where

A :={not_zero_1} ⇒ #1 > #3∧ {not_zero_2} ⇒ #2 > #4

B :={is_zero_1} ⇒ #1 = #3∧ {is_zero_2} ⇒ #2 = #4

The formula ϕ ensures that M is simulated faithfully, as the counters are calculated
in ϕ. When encountering the decrement rules, ϕ enforces that the correct choice is
taken, as the next state of the path will never satisfy both pre-conditions A and B
if it is not allowed in M. To simulate the empty input, the weight vector w = 0n.
As M is faithfully simulated, we have that if K, s0 �0n ϕ then M will halt. We also
know that when running M the n-WKS K can simulate the exact same instructions,
so that if M will halt, then a state sh is reached in K by a run ρ s.t. Last(ρ) = sh
and for all 0 ≤ i s.t. ρ(i) 6= Last(ρ) it holds that K, ρ(i) � A ∧ B, hence if M halts,
then K, s0 �0n ϕ. �

14 Chapter 3. n-Weighted Games and Strategies

si sh

[
0, 0, 0, 0

]

{halt}

(a) Halt rule.

si sl

[
1, 0, 0, 0

]

(b) Increment rule for C1.

si sl

[
0, 1, 0, 0

]

(c) Increment rule for C2.

si

s′ sl

s′′ sm

[
0, 0, 1, 0

]

[
0, 0, 0, 0

]

[
0, 0, 0, 0

]
[
0, 0, 0, 0

]

{not zero 1}

{is zero 1}

(d) Decrement rule for C1.

si

s′ sl

s′′ sm

[
0, 0, 0, 1

]

[
0, 0, 0, 0

]

[
0, 0, 0, 0

]
[
0, 0, 0, 0

]

{not zero 2}

{is zero 2}

(e) Decrement rule for C2.

Figure 3.1: n-WKS simulation of a 2CM

3.1. Weighted Computation Tree Logic 15

3.1.1 Reachability CTL with Upper-bounds

In this section we present ReachWCTLu, a sub-logic of the WCTL from Section 3.1.

Syntax

Let K = (S, s0,AP , L, T) be an n-WKS. We then define the ReachWCTLu syntax,
over K, as follows.

ϕ := EF≤cψ | AF≤cψ

ψ := a | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

where a ∈ AP and c ∈Nn
∞.

Semantics

We define the semantics in relation to the logic presented in Section 3.1. The left-
hand side is a formula in ReachWCTLu while the right-hand is a formula in WCTL.
Following is the semantics for ReachWCTLu:

AF≤cψ ≡ A(true)U((#1 ≤ c[1] ∧ · · · ∧ #n ≤ c[n]) ∧ ψ)

EF≤cψ ≡ E(true)U((#1 ≤ c[1] ∧ · · · ∧ #n ≤ c[n]) ∧ ψ)

Theorem 2 (Decidability of ReachWCTLu)
The model checking problem for ReachWCTLu is decidable on a finite n-WKS.

Proof. Let K = (S, s0,AP , L, T) be an n-WKS and ϕ be a ReachWCTLu formula
and s0 � ϕ. Then there are two cases:

ϕ = EF≤cψ Assume that given a run ρ ∈ ΠK s.t. ρ(i) � ψ and Costρ(i) ≤ c, then
there is an acyclic finite run ρ′ where Last(ρ′) � ψ, Cost(ρ′) ≤ c. As S is
finite there are finitely many acyclic runs, hence ϕ is decidable by brute force
enumeration of all finite acyclic runs.

ϕ = AF≤cψ Assume that there exists a run ρ ∈ ΠMax
K s.t. for all 0 ≤ i we have that

ρ(i) 6� ψ. Then ρ is either acyclic and therefore finite, or ρ is cyclic and has
two positions 0 ≤ i, j s.t. ρ(i) = ρ(j) = s. Then there exists a prefix ρ′ of ρ

s.t. (ρ′ = s0 →∗ s →+ s). Thus we can decide if ϕ holds in K by brute force
enumeration of the finite prefixes of the form (ρ′ = s0 −→∗ s −→+ s) ∈ Π f in

K
where the prefix (s0 −→ s) is acyclic, and if a run ρ is cyclic and does not
satisfy ψ in the prefix ρ’ we terminate and answer K, s0 20 ϕ.

We can now conclude that ReachWCTLu on a finite n-WKS is decidable. �

16 Chapter 3. n-Weighted Games and Strategies

3.2 n-Weighted Game

We now consider a game with two players and show how synthesis relates to
model checking. We define the graph on which the game is played as the game
graph.

Definition 3.1 (n-Weighted Game Graph)
An n-Weighted Game Graph (n-WGG) is a tuple G = (S, s0,AP , L, Tc, Tu) where
Tc and Tu are disjoint sets and K = (S, s0,AP , L, Tc ∪ Tu) is an n-WKS.

The underlying structure of the game graph is an n-WKS and we denote the
specific n-WKS as KG for the game graph G.

Definition 3.2 (n-WKS of a game graph)
Let G = (S, s0,AP , L, Tc, Tu) be a n-WGG, then we define KG = (S, s0,AP , L, Tc ∪
Tu) as the n-WKS constructed from the game graph.

The set of transitions Tc is owned by the controller, and the set Tu is owned by
the environment. We write,

s w−→ s′ if (s, w, s′) ∈ Tc

s
w99K s′ if (s, w, s′) ∈ Tu

from here on we will refer to transitions of the type −→ as controllable transitions
and 99K as uncontrollable transitions. We write s −→ when there is some control-
lable outgoing transitions from s and s 99K when there is some uncontrollable
outgoing transition from s.

Figure 3.2 shows an example of an n-WGG, which models a self driving car. In
the graph, transitions considered to be uncontrollable are marked as dashed lines,
whereas transitions considered controllable are solid lines.

Lastly we define a winning condition as a WCTL formula ϕ over the n-WKS
KG = (S, s0,AP , L, Tc ∪ Tu) .

Definition 3.3 (Game)
Given a n-WGG G and a WCTL winning condition ϕ we define the resulting
game as the tuple (G, ϕ).

We say that a game defined with a ReachWCTLu winning condition is a reach-
ability game.

3.2. n-Weighted Game 17

s0 s1 s2

s3 s4 s5

s6 s7 s8

[
2, 1

] [
2, 1

]

[
1, 2

] [
5, 5

] [
2, 1

]

[
3, 4

] [
1, 1

]

[
1, 2

] [
2, 2

] [
2, 1

]

[
1, 2

] [
1, 2

]

[
2, 2

]

{Work}

{Home}

Legend[
Time
Fuel

]

Figure 3.2: Example of a 2-WGG where #1 is time spent and #2 is fuel consumption. Arrows indicate
controllable transitions and dashed arrows are uncontrollable.

18 Chapter 3. n-Weighted Games and Strategies

3.3 Strategy

In the game a strategy defines a players actions, that is which transitions to choose
in which state of the game. As we want to model systems where the controller
needs to be ready for anything the environment does, we are only concerned with
the controllers strategy. Since we model branching logic, we keep all options of the
environment to investigate the branching structure of the Kripke structure result-
ing from the strategy. We now introduce four different strategy types, and provide
results on their expressiveness.

The four strategy types utilizes memory to a different degree. We strive to find
the strategy type that utilizes the least amount of memory for a given problem.
First we define the Full Memory Strategy (FM strategy), where each move in the
game graph is recorded in memory, and future decisions are based thereon. Recall
that Π f in

KG
is the set of all finite runs in KG, starting from s0.

Definition 3.4 (FM strategy)
Let G = (S, s0,AP , L, Tc, Tu) be an n-WGG, then the Full Memory Strategy (FM
strategy) of the controller is a function σ mapping a finite run ρ to a transition
going from Last(ρ), where

σ : Π f in
KG
→ Tc ∪ {nil},

and nil is the choice to do nothing. We restrict the use of nil s.t. for any ρ ∈ Π f in
KG

we have σ(ρ) = nil only if Last(ρ) 6→ and if σ(ρ) = s w−→ s′ then s = Last(ρ).

Second, we define the All States Cost Strategy (ASC strategy), where instead of
recording each move in memory, only the states visited are recorded, along with
the cost of the run.

Definition 3.5 (ASC strategy)
A strategy σ is an All States Cost Strategy (ASC strategy) if for all ρ, ρ′ ∈ Π f in

KG
we

have σ(ρ) = σ(ρ′), whenever ρ(i) = ρ′(i) for all 0 ≤ i and Cost(ρ) = Cost(ρ′).

Third, we define the SSC strategy, where only the current state is known, along
with the cost of thr run.

3.3. Strategy 19

Definition 3.6 (SSC strategy)
A strategy σ is a Single-State Cost Strategy (SSC strategy) if for all ρ, ρ′ ∈ Π f in

KG
we

have σ(ρ) = σ(ρ′), whenever Last(ρ) = Last(ρ′) and Cost(ρ) = Cost(ρ′).

The last type of strategy is the Memoryless Strategy (ML strategy). If the controller
has an ML strategy then the choice of which transition to choose is only dependent
on the current state.

Definition 3.7 (ML strategy)
A strategy σ is Memoryless Strategy (ML strategy) if for all ρ, ρ′ ∈ Π f in

KG
we have

σ(ρ) = σ(ρ′) whenever Last(ρ) = Last(ρ′).

Given a strategy σ, we can apply that strategy onto the n-WKS KG and get a
modified n-WKS, by only keeping the controllable transitions that are in the co-
domain of σ.

Definition 3.8 (Strategy restricted n-WKS)
Given a game graph G = (S, s0,AP , L, Tc, Tu) and a FM strategy σ, we define
G�σ = (S′, s0,AP , L′, T′c�σ∪ T′u) as the n-WKS resulting from restricting the game
graph under the strategy σ.

– S′ ⊆ Π f in
KG

– L′(ρ) = L(Last(ρ))

– T′c�σ = {(ρ, w, (ρ ◦ σ(ρ))) | ρ ∈ Π f in
KG
}

– T′u = {(ρ, w, ρ ◦ (Last(ρ)
w−→ s′)) | (Last(ρ)

w99K s′) ∈ Tu}.

When for all (ρ = ρ0 → ρ1 → . . .) ∈ ΠG�σ, it holds for all i ∈ N0 that
ρi 6= ρur ∈ S′, then we call ρur unreachable. When ρur is unreachable, we write that
Cost(ρur) = ∞n. In future illustrations we only include the part of G�σ reachable
from s0.

We say that a strategy is a winning strategy if the n-WKS resulting from restrict-
ing the game graph by the strategy satisfy the winning condition.

20 Chapter 3. n-Weighted Games and Strategies

Definition 3.9 (Winning Strategy)
The strategy σ is a winning strategy over the game (G, ϕ) iff G�σ, s0 �0n ϕ, where
G = (S, s0,AP , L, Tc, Tu) and ϕ is a WCTL formula.

Consider the game reachability (G, AF≤6({Home})) where G is the 1-WGG
illustrated in Figure 3.3a. Given the ML strategy strategy σ defined,

σ(ρ) =





nil if Last(ρ) 6→, else

(s0, 2, s1) ∈ Tc if Last(ρ) = s0, else

(s2, 2, s4) ∈ Tc if Last(ρ) = s2, else

(s3, 2, s4) ∈ Tc if Last(ρ) = s3

we can now illustrate the restricted 1-WKS, G�σ in Figure 3.3b.

s0

s1

s2s3

s4

[
2
]

[
1
]

[
4
]

[
4
]

[
5
]

[
2
]

[
2
]

{Work}

{Home}

(a) 1-WGG G

s0
s0

[
2
]

−−→ s1

s0

[
2
]

−−→ s1

[
4
]

−−→ s2

s0

[
2
]

−−→ s1

[
4
]

−−→ s3

s0

[
2
]

−−→ s1

[
4
]

−−→ s3

[
1
]

−−→ s1

. . .

. . .

s0

[
2
]

−−→ s1

[
4
]

−−→ s2

[
2
]

−−→ s4

s0

[
2
]

−−→ s1

[
4
]

−−→ s3

[
2
]

−−→ s4

[
2
]

[
4
]

[
2
]

[
2
]

[
2
]

[
1
]

[
2
]

[
1
]

{Work}

(b) Restricted 1-WKS G�σ .

Figure 3.3: Example of a strategy and the resulting restricted 1-WKS

Notice that for the reachability game (G, AF≤6({Home})) there is no winning

strategy as the uncontrollable transition s3
[1]
99K s1 creates an infinite branch in G�σ

that does not satisfy ψ within the upper-bound.

3.3.1 Strategy Expressiveness

The expressiveness of the strategies is illustrated in Figure 3.4 where ML strategy is
the least expressive and FM strategy is the most expressive. Each type of strategy

3.3. Strategy 21

has a subset of the logic for which it is the smallest strategy required. This is
ascertained from propositions 1 to 3.

Proposition 3

Proposition 2

Proposition 1

ML

SSC

ASC

FM

Figure 3.4: Classification of the strategies over n-WGs.

Proposition 1
There is a game (G, ϕ) with a winning FM strategy, but no winning ASC strategy.

Proof. Let (G, ϕ) be a game, where G is the game graph illustrated in Figure 3.5
and the WCTL formula ϕ is shown below.

ϕ = AF
(
(α ∧ #1 ≤ 1∧ AF(#1 = 4∧ β))∨
(α ∧ #1 ≥ 2∧ AF(#1 = 4∧ γ))

)
, where α, β, γ ∈ AP

s0 s1 s2

s3

s4

[
1
]

[
2
]

[
2
]

[
1
]

[
1
]

[
1
]

{α}

{β}

{γ}

Figure 3.5: Game graph G, where an ASC strategy is insufficient for WCTL logic.

Now, there exists a winning FM strategy σ1 for (G, ϕ) and it is defined as:

σ1(s0) = nil

σ1(s0
1−→ s1) = s1

2−→ s2 σ1(s0
2−→ s1) = s1

1−→ s2

σ1(s0
1−→ s1

2−→ s2) = s2
1−→ s3 σ1(s0

2−→ s1
1−→ s2) = s2

1−→ s4

22 Chapter 3. n-Weighted Games and Strategies

We can construct G�σ1 = (S′, s0,AP , L′, T′c�σ1 ∪ T′u) s.t. G�σ1, s0 �0n ϕ, illustrated in
Figure. 3.6.

s0

s0

[
1
]

−−→ s1 s0

[
1
]

−−→ s1

[
2
]

−−→ s2 s0

[
1
]

−−→ s1

[
2
]

−−→ s2

[
1
]

−−→ s3

s0

[
2
]

−−→ s1 s0

[
2
]

−−→ s1

[
1
]

−−→ s2 s0

[
2
]

−−→ s1

[
1
]

−−→ s2

[
1
]

−−→ s4

[
1
]

[
2
]

[
2
]

[
1
]

[
1
]

[
1
]

{α}

{α}

{β}

{γ}

Figure 3.6: G�σ1 s.t. G�σ, s0 �0n ϕ

We will now show that there is no ASC strategy for (G, ϕ) that is winning.
Assume σ2 is a winning ASC strategy for (G, ϕ). We get, from Definition 3.5, that

σ2(s0
1−→ s1

2−→ s2) = σ2(s0
2−→ s1

1−→ s2), we call this transition t. Therefore G�σ2 will
either be as illustrated in Figure 3.7, where the only label at the tree leaves are β, or
the opposite where only leaves with γ exists. This means that we cannot construct

σ2 s.t. β is a label in the leaf, when the environment has chosen s0
199K s1 from

the initial state, while γ is a label in the leaf, when the environment has chosen

s0
299K s1.

s0

s0

[
1
]

−−→ s1 s0

[
1
]

−−→ s1

[
2
]

−−→ s2 s0

[
1
]

−−→ s1

[
2
]

−−→ s2

[
1
]

−−→ s3

s0

[
2
]

−−→ s1 s0

[
2
]

−−→ s1

[
1
]

−−→ s2 s0

[
2
]

−−→ s1

[
1
]

−−→ s2

[
1
]

−−→ s3

[
1
]

[
2
]

[
2
]

[
1
]

[
1
]

[
1
]

{α}

{α}

{β}

{β}

Figure 3.7: G�σ2 s.t. G�σ2, s0 20n ϕ

Hence there exists a winning FM strategy, but there does not exist a winning
ASC strategy for (G, ϕ). �

Proposition 2
There is a game (G, ϕ) with a winning ASC strategy, but no winning SSC strategy.

3.3. Strategy 23

Proof. Let (G, ϕ) be a game, where G is the game graph illustrated in Figure 3.8
and the WCTL formula ϕ is shown below.

ϕ = AF
(
(α ∧ AF(δ))∨
(β ∧ AF(γ))

)
where α, β, γ, δ ∈ AP

s0

s1

s2

s3

s4

s5

[
1
]

[
1
]

[
1
]

[
1
]

[
1
]

[
1
]

{α}

{β} {γ}

{δ}

Figure 3.8: Game graph G, where a SSC strategy is insufficient for WCTL logic.

Now, there exist a winning ASC strategy σ1 for (G, ϕ) and it is defined as:

σ1(s0) = nil

σ1(s0
[1]−→ s1) = s1

[1]−→ s3 σ1(s0
[1]−→ s2) = s2

[1]−→ s3

σ1(s0
[1]−→ s1

[1]−→ s3) = s3
[1]−→ s4 σ1(s0

[1]−→ s2
[1]−→ s3) = s3

[1]−→ s5

We can construct G�σ1 = (S′, s0,AP , L′, T′c�σ1 ∪ T′u) s.t. G�σ1, s0 �0n ϕ, illustrated in
Figure 3.9.

s0

s0

[
1
]

−−→ s1

s0

[
1
]

−−→ s2

s0

[
1
]

−−→ s1

[
1
]

−−→ s3

s0

[
1
]

−−→ s2

[
1
]

−−→ s3

s0

[
1
]

−−→ s1

[
1
]

−−→ s3

[
1
]

−−→ s4

s0

[
1
]

−−→ s2

[
1
]

−−→ s3

[
1
]

−−→ s5

[
1
]

[
1
]

[
1
]

[
1
]

[
1
]

[
1
]

{α}

{β} {γ}

{δ}

Figure 3.9: G�σ1, s.t. G�σ, s0 �0n ϕ

The strategy σ1 is winning, because the transition chosen in s3 is dependent
on what states were visited previously, and as a SSC strategy cannot differentiate,
only one transition is available from s3.

24 Chapter 3. n-Weighted Games and Strategies

s0

s0

[
1
]

−−→ s1

s0

[
1
]

−−→ s2

s0

[
1
]

−−→ s1

[
1
]

−−→ s3

s0

[
1
]

−−→ s2

[
1
]

−−→ s3

s0

[
1
]

−−→ s1

[
1
]

−−→ s3

[
1
]

−−→ s4

s0

[
1
]

−−→ s2

[
1
]

−−→ s3

[
1
]

−−→ s4

[
1
]

[
1
]

[
1
]

[
1
]

[
1
]

[
1
]

{α}

{β} {δ}

{δ}

Figure 3.10: G�σ2, s.t. G�σ2, s0 20n ϕ

This means that when constructing the SSC strategy σ2, then σ2(s0
[1]−→ s1

[1]−→
s3) = σ2(s0

[1]−→ s2
[1]−→ s3) as illustrated in Figure 3.10, where σ2(s0

[1]−→ s1
[1]−→ s3) =

σ2(s0
[1]−→ s2

[1]−→ s3) = s3
[1]−→ s4 and only δ is available in the leaves. Otherwise if

σ2(s0
[1]−→ s1

[1]−→ s3) = σ2(s0
[1]−→ s2

[1]−→ s3) = s3
[1]−→ s5 then only β is available in the

leaves.
Hence there exists a winning ASC strategy, but there does not exist a winning

SSC strategy for (G, ϕ). �

Proposition 3
There is a reachability game (G, ϕ), with a winning SSC strategy, but no winning
ML strategy.

Proof. Let (G, AF≤[1, 1](end)) be a reachability game, where G is illustrated in Fig-
ure 3.11a. Let σ1 be a winning SSC strategy defined as:

σ1(s0) = nil σ1(s0
[1, 0]−−→ s) = s

[0, 1]−−→ s f σ1(s0
[0, 1]−−→ s) = s

[1, 0]−−→ s f

This is illustrated in Figure 3.11b.
We will now show that there exists no ML strategy for (G, AF≤[1, 1]end). Assume

there exists a winning ML strategy σ2. By Definition 3.7 we get that σ2(s0
[1, 0]−−→ s) =

σ2(s0
[0, 1]−−→ s) and let that transition be t. Now, There are two cases:

1. Either t = s
[1, 0]−−→ s f , and σ2 cannot be winning, as the branch s0

[1, 0]−−→ s
[1, 0]−−→ s f

exceeds the upper-bound of [1, 1].

3.3. Strategy 25

s0

s

sf

[
0, 1

]

[
0, 1

]

[
1, 0

]

[
1, 0

]

{end}

(a) Game graph G

s0

s0

[
0, 1

]

−−−−→ s

s0

[
1, 0

]

−−−−→ s

s0

[
0, 1

]

−−−−→ s

[
1, 0

]

−−−−→ sf

s0

[
1, 0

]

−−−−→ s

[
0, 1

]

−−−−→ sf

[
0, 1

]

[
1, 0

]

[
1, 0

]

[
1, 0

]

{end}

{end}

(b) G�σ1, s.t. G�σ, s0 �0n AF≤[1, 1](end)

Figure 3.11: Example of a reachability game where there exist a winning SSC strategy but not a
winning ML strategy.

2. Or t = s
[0, 1]−−→ s f and σ2 cannot be winning, as the branch s0

[0, 1]−−→ s
[0, 1]−−→ s f

exceeds the upper-bound of [1, 1].

Hence there exist a winning strategy SSC strategy for (G, AF≤[1, 1](end)) but not a
winning ML strategy. �

We have proven that each strategy has a unique sub-logic for which it is the
smallest sufficient strategy guaranteed to be winning.

3.3.2 Strategy for n-Weighted Games

In the remainder of this paper we focus on the ReachWCTLu subset of the WCTL.
We find that in relation to synthesis the ReachWCTLu formula ϕ = EF≤cψ is not
very interesting as it reduces to model checking.

Proposition 4
Let (G, EF≤cψ) be a game where G = (S, s0,AP , L, Tc, Tu) is an n-WGG. Then the
synthesis problem for (G, EF≤cψ) has a solution iff KG, s0 �0n EF≤cψ.

Proof. Let (G, EF≤cψ) be a game where G = (S, s0,AP , L, Tc, Tu) is an n-WGG.

⇒ Let σ be winning for (G, EF≤cψ). Since G�σ is a restriction of KG and
G�σ, s0 �0n EF≤cψ, then trivially KG, s0 �0n EF≤cψ.

⇐ Let KG, s0 �0n EF≤cψ. By the semantics, there must exist a run ρwitness ∈ ΠMax
KG

where there exists an 0 ≤ i s.t. ρwitness(i) � ψ. Let Πρwitness be the set of prefixes

26 Chapter 3. n-Weighted Games and Strategies

of ρwitness. The solution to the synthesis problem for (G, EF≤cψ), is then to
construct a strategy σ s.t. the run ρ′ ∈ Πρwitness is a reachable state in G�σ,
where Last(ρ′) = ρwitness(i). We then define σ(ρ) for all ρ ∈ Π f in

KG
as:

σ(ρ) =





Last(ρ)
w−→ s If there exists (ρ ◦ (Last(ρ)

w−→ s)) ∈ Πρwitness

and (Last(ρ)
w−→ s) ∈ Tc

Last(ρ)
w−→ s′ else if there exists Last(ρ)

w−→ s′ ∈ Tc,

nil otherwise.

As σ does not restrict uncontrollable transitions, these are trivially preserved.
Hence ρ′ is a reachable state in G�σ and G�σ, s0 �0n EF≤cψ, thus σ is winning
for (G, EF≤cψ).

�
Remark 2
By Proposition 4 an EF reachability objective in synthesis reduces to the model
checking problem. In games with two players we want to ensure that whatever the
environment does, the controller must always be able to reach a state satisfying
the proposition. Thus we are interested in all runs in the underlying n-WKS and
they should all satisfy the proposition, for the controller to have a winning strategy.
Therefore, from now on, we only consider the following subset of ReachWCTLu,
when exploring reachability objectives.

ϕ := AF≤cψ

ψ := a | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

We will now prove that a reachability game (G, AF≤cψ) can be solved using a
SSC strategy. First, we define the the following sets of prefixes of an n-WKS.

Definition 3.10 (Potentially Satisfying Prefixes)
Let (G, AF≤cψ) be a reachability game and σ be a winning strategy for that game.
We then define the set of Potentially Satisfying Prefixes of G�σ as:

ΠPSP
G�σ = {ρi | ρ = ρ0 → ρ1 → ρ2 → · · · → ρk ∈ Π f in

G�σ and ρi 6� ψ for all 0 ≤ i ≤ k}

Notice, that for G�σ = (S′, s0,AP , L′, T′c�σ ∪ T′u) we have that ΠPSP
G�σ ⊆ S′.

3.3. Strategy 27

Definition 3.11 (Distance function)
Let K = (S, s0,AP , L, T) be a finite n-WKS s.t s0 � ϕ where ϕ = AF≤cψ. For
all states s ∈ S we define the distance to a state s′ ∈ S s.t. s′ � ψ as a function
Dist(K,ϕ) : S→N∞, where

Dist(K,ϕ)(s) = max{n | s→n s′ and s′ � ψ}

and max(∅) = ∞.

Remark 3
Recall that given the n-WKS G�σ = (S′, s0,AP , L′, T′c�σ ∪ T′u) we have that a state

in S′ is a finite run ρ ∈ Π f in
KG

.

Observe that given the n-WKS G�σ = (S′, s0,AP , L′, T′c�σ ∪ T′u) where σ is a
winning strategy for a reachability game (G, AF≤cψ) we have that Dist(ρ) is finite
for all ρ ∈ ΠPSP

G�σ .
We show that when a game (G, AF≤cψ) has a winning FM strategy σ1, there

exists a winning SSC strategy σ2. First we define that whenever two runs have that
same cost and end in the same state they are SSC equivalent.

Definition 3.12 (SSC equivalent run)
We define that two finite runs ρ, ρ′ ∈ Π f in

KG
are SSC equivalent if and only if

Last(ρ) = Last(ρ′) ∧Cost(ρ) = Cost(ρ′)

We write that ρ
SSC≡ ρ′, when ρ and ρ’ are SSC equivalent.

We then define the set of states in G�σ which are SSC equivalent to some run
ρ ∈ Π f in

KG
as the set of SSC equivalent prefixes.

Definition 3.13 (SSC equivalent prefixes)
Let (G, AF≤cψ) be a reachability game where G = (S, s0,AP , L, Tc, Tu). Assume
there exists an FM strategy σ s.t. G�σ, s0 � AF≤cψ. We define SSC equivalent

prefixes as a function Π
SSC≡ : Π f in

KG
→ P(ΠPSP

G�σ) s.t.

Π
SSC≡
G�σ(ρ) = {ρ′ | ρ′ ∈ ΠPSP

G�σ ∧ ρ
SSC≡ ρ′}

28 Chapter 3. n-Weighted Games and Strategies

We now define how to construct a winning SSC strategy σ2 from the restricted
n-WKS G�σ1 for some winning FM strategy σ1. We then show that σ2 is constructed
s.t. G�σ2, s0 � AF≤cψ.

Definition 3.14 (Constructed SSC strategy)
Let (G, AF≤cψ) be a reachability game where G = (S, s0,AP , L, Tc, Tu). Assume
there exists an FM strategy σ1 s.t. G�σ1, s0 � AF≤cψ. We construct the SSC
strategy σ2 by doing the following for all ρ ∈ Π f in

KG
:

σ2(ρ) =





nil if Last(ρ) 6→, else

(Last(ρ), w, s) ∈ Tc if Π
SSC≡
G�σ1

(ρ) = ∅, else

σ1(ρ
′) ρ′ = arg min

ρ′′∈Π
SSC≡
G�σ1

(ρ)

Dist(G�σ1,ϕ)(ρ
′′)

(3.1)

As all SSC equivalent runs ρ, ρ′ ∈ Π f in
KG

which have an SSC equivalent prefix in
G�σ1 have exactly the same output we guarantee that σ2 is indeed a SSC strategy.
For a visual illustration of the construction, referrer to Figure 3.12.

Notice here how there are two states ρ, ρ′ ∈ S′, where Last(ρ) = Last(ρ′) = s1

and Cost(ρ) = Cost(ρ′) = [1, 0]. When constructing the SSC strategy σ2 for these

two runs, then σ2(ρ) = σ2(ρ′) = s1
[10, 10]−−−→ s6, since this is the strategy in σ1 for

the run ρ with the shortest distance. If we had constructed the strategy with the

longest distance then we would have that σ2(ρ) = σ2(ρ′) = s1
[0, 0]−−→ s1 and we would

repeat an infinite loop. This strategy will obviously not be winning. Based on this
observation we define the measure as the distance from the SSC equivalent prefix
and verify that the measure is always decreasing.

Definition 3.15 (SSC measure)
Let (G, ϕ) be a reachability game where G = (S, s0,AP , L, Tc, Tu) and ϕ =

AF≤cψ. Let σ1 is a winning FM strategy for that game and we define a mea-
sure function m : Π f in

KG
→N∞ s.t.

m
SSC≡
G�σ1

(ρ) = min
ρ′∈Π

SSC≡
G�σ1

(ρ)

(Dist(G�σ1,ϕ)(ρ
′)), (3.2)

where min ∅ = ∞.

3.3. Strategy 29

[
1, 0

] [
0, 1

] [
1, 1

]

[
0, 0

] [
2, 0

]
[
0, 7

]

[
10, 10

] [
0, 0

]

s0,
[
0, 0

]
3s0

[
0, 0

]

s1,
[
1, 0

]
2 s2,

[
0, 1

]
2 s3,

[
1, 1

]

� ψ

0

s1,
[
1, 0

]
1 s4,

[
2, 1

]

� ψ

0 s5,
[
0, 8

]
1

s6,
[
11, 10

]

� ψ

0 s7,
[
0, 8

]

� ψ

0

(a)

Last(ρ), Cost(ρ) σ2(ρ)

s0, [0, 0] s0
[1, 1]−−→ s3

s1, [1, 0] s1
[10, 10]−−−→ s6

s2, [0, 1] nil

s3, [1, 1] nil

s4, [2, 1] nil

s5, [0, 8] s5
[0, 0]−−→ s7

s6, [11, 10] nil

s7, [0, 8] nil

(b)

Figure 3.12: Figure 3.12a is an example of a restricted game graph G�σ1 = (S′, s0,AP , L′, T′c�σ1 ∪ T′u),
where σ1 is an FM strategy. The last state of a run ρ ∈ S′ along with the cost of ρ represents the
states, and the number outside each state is the distance s.t. it is equal to Dist(G�σ1,ϕ)(ρ). In Figure
3.12b the construction of σ2 for each run ρ is illustrated in the two columns

Observe from Definition 3.15 that if Dist(G�σ1,ϕ)(s0) is finite, then so is m
SSC≡
G�σ1

(s0).
For simplicity we will omit G�σ from the notation s.t.

ΠPSP = ΠPSP
G�σ2

Π
SSC≡ = Π

SSC≡
G�σ1

m = m
SSC≡
G�σ1

Dist = Dist(G�σ1,ϕ)

Lemma 3
Let (G, AF≤cψ) be a reachability game where G = (S, s0,AP , L, Tc, Tu), σ1 is a
winning FM strategy for that game, and σ2 a SSC strategy constructed by Definition
3.14. If there exists ρ ∈ ΠPSP s.t. m(ρ) is finite and ρ′ = ρ ◦ t, where t ∈ Tu ∪ σ2(ρ),

t = (Last(ρ)
w−→ s) and s ∈ S then m(ρ′) < m(ρ).

Proof. Let m(ρ) be finite. Then by Definition 3.15 it holds that Π
SSC≡(ρ) 6= ∅ and

then by Definition 3.14 we have that ρ′ = ρ ◦ t, where t ∈ Tu ∪ σ2(ρ) and t =

Last(ρ)
w−→ s, for some s ∈ S. We show that m(ρ′) < m(ρ). Since m(ρ) is finite

there exists a ρmin ∈ Π
SSC≡(ρ) s.t. m(ρ) = Dist(ρmin). By Definition 3.14 observe that

(ρmin ◦ t) ∈ Π
SSC≡(ρ′), hence

m(ρ′) ≤ Dist(ρmin ◦ t) < Dist(ρmin) = m(ρ).

30 Chapter 3. n-Weighted Games and Strategies

Thus m(ρ′) < m(ρ). �

Theorem 4
If there is a winning FM strategy for a reachability game (G, AF≤cψ) then there is
a winning SSC strategy for (G, AF≤cψ).

Proof. Let σ1 be a winning FM strategy for (G, AF≤cψ), and let σ2 be constructed
as defined in Definition 3.14. Then by Lemma 3 we know that for all ρmax ∈ ΠMax

G�σ2
,

there exists a position 0 ≤ i s.t. either m(ρmax(i)) > 0 and the measure is de-
creasing or m(ρmax(i)) = 0 hence ρmax(i) � ψ. Observe that Costρmax(i) ≤ c as
Costρmax(i) = Cost(ρ). �

It follows from theorem 4 that a reachability game (G, AF≤cψ) has a SSC strat-
egy whenever there exits a winning strategy for that game

3.4 Example: Self-driving car

We consider a self driving car, where the car has to choose a route from work to
home. A central system may influence the route of the car, based on the current
road data, to avoid congestion.

In Figure 3.2, the road network is illustrated in a 2-WGG G = (S, s0,AP , L, Tc, Tu).
The states are road intersections and transitions depicts the roads between inter-
sections. Each road has an associated weight vector, where the first component is
time and the second is the fuel consumed. Roads chosen by the central system are
shown in dashed lines, and roads chosen by the car are solid.

Let us say the car has 8 units of fuel, and we would like to reach Home without
a refuel. To ensure this we need to devise a strategy, such that no matter the
environment actions, we will still reach home using no more than 8 units of fuel.
We can formulate this formally as: Given the reachability game (G, ϕ) where ϕ =

AF≤[∞, 8](Home) does there exists a strategy σ such that G�σ, s0 � ϕ.
For this reachability game (G, ϕ) there is a finite number SSC strategies within

the bound but only one produces a resulting n-WKS G�σ which satisfies AF≤[∞, 8](Home).
Formally the winning strategy σ is defined as follows:

σ(s0) = s0
[2, 1]−−→ s1 σ(s0

[2, 1]−−→ s1
[2, 1]−−→ s2

[2, 1]−−→ s5) = s5,
[2, 1]−−→ s8

σ(s0
[2, 1]−−→ s1) = s1

[2, 1]−−→ s2 σ(s0
[2, 1]−−→ s1

[2, 1]−−→ s2
[2, 1]−−→ s5

[1, 1]−−→ s4) = s4
[2, 2]−−→ s7

σ(s0
[2, 1]−−→ s1

[2, 1]−−→ s2) = s2
[2, 1]−−→ s5 σ(s0

[2, 1]−−→ s1
[2, 1]−−→ s2

[2, 1]−−→ s5
[1, 1]−−→ s4

[2, 2]−−→ s7) = s7
[1, 2]−−→ s8

3.5. Synthesis 31

Note that σ has defined input/output for two different runs in the game graph
G from Figure 3.2. This is due to the uncontrollable transition encountered in s5,
where the central system may choose to send the car on a detour. For each route
generated by our strategy we get a finite run in G�σ , and we are now able to
calculate the cost of each run, by adding each vector in the run.

If we instead were to consider time as the limited resource we could construct
the formula ϕ = AF≤[8, ∞]({Home}) giving us the game (G, AF≤[8, ∞](Home)). Now
the winning strategy is defined as follows:

σ(s0) = s0
[1, 2]−−→ s3 σ(s0

[1, 2]−−→ s3
[3, 4]−−→ s4) = s4

[2, 2]−−→ s7

σ(s0
[1, 2]−−→ s3) = nil σ(s0

[1, 2]−−→ s3
[1, 2]−−→ s6

[1, 2]−−→ s7) = s7
[1, 2]−−→ s8

σ(s0
[1, 2]−−→ s3

[1, 2]−−→ s6) = s6
[1, 2]−−→ s7 σ(s0

[1, 2]−−→ s3
[3, 4]−−→ s4

[2, 2]−−→ s7) = s7
[1, 2]−−→ s8

While this strategy is still guaranteed to reach the label Home the fuel con-
sumption using this strategy can be as high as 10 unites. It is easy to see that if the
formula had been specified as ϕ = AF≤[10, 10](Home) both of these strategies would
have been winning strategies.

3.5 Synthesis

Church defined the synthesis problem in [5], and in later work Pnueli et al. describe
a game-theoretic view of controller synthesis[12]. From this we define the synthesis
problem as "Extraction of the winning strategy for the controller in a two-player game."
Formally,

Definition 3.16 (Synthesis problem for reachability games)
Given a reachability game (G, ϕ) where G = (S, s0,AP , L, Tc, Tu) and ϕ = AF≤cψ

the synthesis problem is to find a strategy σ s.t. G�σ � ϕ.

The synthesis problem is closely related to the model checking problem. Given
a reachability game (G, AF≤cψ) and a SSC strategy σ, we can deduce if σ is winning
by verifying that G�σ � AF≤cψ. There are finitely many SSC strategies in a game,
since the formula is given a bound c and we therefore only consider strategies
where the cost w ≤ c. As there are finitely many strategies we need to consider
we can extract σ by enumerating all the strategies of the game. This brute force
approach is illustrated in Algorithm 1.

32 Chapter 3. n-Weighted Games and Strategies

Algorithm 1 Brute Force Synthesis Algorithm
Input: A n-WG (G, AF≤cψ).
Output: A winning strategy σ for the ϕ = AF≤cψ over the game graph G, if such

a strategy exists.
1: for all SSC strategies σ over G do
2: if G�σ, s0 �0n ϕ then return σ

return NoSolution

Since the model checking problem for reachability is decidable, and there are
finitely many strategies to enumerate, it is clear that the synthesis problem for
reachability is also decidable. However, Algorithm 1 suffers from a high complex-
ity limiting its applicability. As such we investigate different methods in an attempt
to diminish the complexity.

Chapter 4

1-Weighted Games

In this chapter we prove that for 1-weighted reachability games there is a win-
ning ML strategy if there exists a winning strategy. We then present an on-the-
fly technique for synthesizing strategies for 1-weighted reachability games. First
we introduce the weighted attractor set method, from which a strategy can be ex-
tracted. We then reduce the computation of attractor sets to computing a minimum
prefixed-point assignment of a Symbolic Dependency Graph (SDG), by presenting
an encoding of the game into an SDG. Lastly, we present an algorithm which can
extract the strategy from a minimum prefixed-point assignment of an SDG.

In the context of single weighted games, we omit the vector notation, e.g. w ∈
N1

0 becomes k ∈N0.

4.1 Strategy for 1-Weighted Games

We show that when a 1-WG (G, AF≤cψ) has a winning SSC strategy σ1, then there
exists a winning ML strategy σ2. First we define that whenever two runs end in
the same state they are ML equivalent.

Definition 4.1 (ML equivalent run)
We define that two finite runs ρ, ρ′ ∈ Π f in

KG
are ML equivalent if and only if

Last(ρ) = Last(ρ′)

We write that ρ
ML≡ ρ′, when ρ and ρ’ are ML equivalent.

We then define the set of states in G�σ which are ML equivalent to some run
ρ ∈ Π f in

KG
as the set of ML equivalent prefixes.

33

34 Chapter 4. 1-Weighted Games

Definition 4.2 (ML equivalent prefixes)
Let (G, AF≤cψ) be a reachability game where G = (S, s0,AP , L, Tc, Tu) is a 1-
WGG and let σ be a winning strategy of that game. We define the memoryless

equivalent prefixes as a function Π
ML≡
G�σ : Π f in

KG
→ P(ΠPSP

G�σ):

Π
ML≡
G�σ(ρ) = {ρ′ | ρ′ ∈ ΠPSP

G�σ ∧ ρ
ML≡ ρ′}

We now define how to construct a winning ML strategy σ2 from the restricted 1-
WKS G�σ1 for some winning SSC strategy σ1. We then show that σ2 is constructed
s.t. G�σ2, s0 � AF≤cψ.

Definition 4.3 (Constructed ML strategy)
Let (G, ϕ) be a 1-WG where G = (S, s0,AP , L, Tc, Tu) is a 1-WGG and ϕ =

AF≤cψ. Let σ1 be a SSC strategy s.t. G�σ1, s0 � ϕ. We construct the ML strategy
σ2, in the following way for all ρ ∈ Π f in

KG
:

σ2(ρ) =





nil if Last(ρ) 6→, else

(Last(ρ), w, s) ∈ Tc if Π
ML≡
G�σ1

(ρ) = ∅, else

σ1(ρ
′) ρ′ = arg max

ρ′′∈Π
ML≡
G�σ1

(ρ)

Cost(ρ′′)
(4.1)

As all ML equivalent runs ρ, ρ′ ∈ Π f in
KG

which have an ML equivalent prefix in
G�σ1 have exactly the same output we guarantee that σ2 is indeed a ML strategy.
For a visual illustration of the construction, referrer to Figure 4.1.

Notice here how there are two states ρ, ρ′ ∈ S′, where Last(ρ) = Last(ρ′) = s1.
When constructing the ML strategy σ2 for these two runs, we have to account for
the cost, as mapping the wrong transition might cause σ2 to breach the upper-

bound. As such we construct σ2 to be cautious, by defining σ2(ρ) = σ2(ρ′) = s1
1−→

s3. If we had constructed the strategy by the shortest distance we would have that

σ2(ρ) = σ2(ρ′) = s1
6−→ s2 and this will cause us the breach the upper-bound the

restricted game.
As the cost of the ML equivalent runs influence our choices, we also define

a measure m
ML≡
G�σ1

(ρ) for a run ρ s.t. cost influence the measure; in fact, it is the
dominant factor.

4.1. Strategy for 1-Weighted Games 35

s0, 0 3

s1, 11

[
1
]

s2, 70

[
6
]

s1, 5 2

[
5
]

s3, 6 1

[
1
]

s4, 7 0

[
1
]

{start}

{end}

{end}

(a) The restricted 1-WKS G�σ1

Last(ρ) σ2(ρ)

s0 nil

s1 s1
[1]−→ s3

s2 nil

s3 s3
[1]−→ s4

s4 nil

(b) The strategy σ1. First column is the do-
main, and second column is the co-domain.

Figure 4.1: Figure 4.1a is an example of a restricted game graph G�σ1 = (S′, s0,AP , L′, T′c�σ1 ∪ T′u),
where σ1 is an SSC strategy. The last state of a run ρ ∈ S′ along with the cost of ρ represents the
states, and the number outside each state is the distance s.t. it is equal to Dist(G�σ1,ϕ)(ρ). In Figure
4.1b the construction of σ2 for each run ρ is illustrated in the two columns.

Definition 4.4 (ML strategy measure)
Let (G, ϕ) be a 1-WG where G = (S, s0,AP , L, Tc, Tu) is a 1-WGG and ϕ =

AF≤cψ. Let σ1 is a winning SSC strategy for that game, and we define a measure

function m
ML≡
G�σ : Π f in

KG
→N∞:

m
ML≡
G�σ1

(ρ) =





∞ If Π
ML≡
G�σ1

(ρ) = ∅
(c− max

ρ′∈Π
ML≡
G�σ1

(ρ)

Cost(ρ′)) ∗ Dist(G�σ1,ϕ)(s0) + Dist(G�σ1,ϕ)(ρ
′) Otherwise

Observe that if Dist(G�σ1,ϕ)(s0) is finite then m
ML≡
G�σ1

(s0) is finite. For simplicity
we will omit G�σ from the notation s.t.

ΠPSP = ΠPSP
G�σ2

Π
ML≡ = Π

ML≡
G�σ1

m = m
ML≡
G�σ1

Dist = Dist(G�σ1,ϕ)

36 Chapter 4. 1-Weighted Games

Lemma 5
Let (G, AF≤cψ) be a 1-WG, where G = (S, s0,AP , L, Tc, Tu) is a 1-WGG. Let σ1 be a
winning SSC strategy for the game, and let σ2 be an ML strategy constructed from

Definition 4.3. Given ρ ∈ ΠPSP then there exists a ρmax ∈ Π
ML≡(ρ) s.t. σ1(ρmax) =

σ2(ρ) and we have that Cost(ρ) ≤ Cost(ρmax).

Proof. By induction on the length of ρ′. Assume there exist ρ ∈ ΠPSP s.t. σ1(ρmax) =

σ2(ρ) and Cost(ρ) ≤ Cost(ρmax), where ρmax ∈ Π
ML≡(ρ). Then by Definition 4.3

ρ′ = ρ ◦ t where t ∈ Tu ∪ σ2(ρ) and t = Last(ρ)
w−→ s, for some s ∈ S. Since

Cost(ρ) ≤ Cost(ρmax) we have that Cost(ρ ◦ t) ≤ Cost(ρmax ◦ t) and obviously

(ρ ◦ t)
ML≡ (ρmax ◦ t).

Given s0 ∈ ΠPSP it is clear that there exists some run ρ ∈ Π
ML≡(s0) and as

Cost(s0) = 0 then Cost(s0) ≤ Cost(ρ) and thus we have that for all ρ ∈ ΠPSP

there is a ρmax ∈ Π
ML≡(ρ) s.t. σ1(ρmax) = σ2(ρ) and Cost(ρ) ≤ Cost(ρmax). �

Lemma 6
Let (G, AF≤cψ) be a 1-WG where G = (S, s0,AP , L, Tc, Tu) is a 1-WGG, σ1 is a
winning SSC strategy for that game and σ2 a strategy constructed by Definition
4.3. If ρ′ = ρ ◦ t and t = Last(ρ)

w−→ s ∈ Tu ∪ σ2(ρ), for some s ∈ S, where
ρ ∈ ΠPSP, then m(ρ′) < m(ρ)

Proof. Let m(ρ) be finite. Then by Definition 4.4 it holds that Π
ML≡(ρ) 6= ∅ and then

by Definition 4.3 we have that ρ′ = ρ ◦ t, where t ∈ Tu ∪ σ2(ρ) and t = Last(ρ)
w−→ s,

for some s ∈ S. We show that m(ρ′) < m(ρ). Since m(ρ) is finite there exists a

ρmax ∈ Π
ML≡(ρ) s.t. σ1(ρmax) = σ2(ρ) and by Definition 4.3 there exists at least one

ρ′max ∈ Π
ML≡(ρ′) s.t. σ1(ρ

′
max) = σ2(ρ′) and by Lemma 5 Cost(ρ′) ≤ Cost(ρ′max).

As the cost of a run can never decrease it follows trivially that Cost(ρmax) ≤
Cost(ρ′max).

If Cost(ρmax) = Cost(ρ′max) then Cost(ρmax ◦ σ1(ρmax)) = Cost(ρ′max) and as
σ1 is a SSC strategy then it follows that Dist(ρ′max) = Dist(ρmax ◦ σ1(ρmax)) and thus
Dist(ρ′max) < Dist(ρmax).

If Cost(ρmax) < Cost(ρ′max) then it is trivial to see that as the cost is the dom-
inant factor in m we do not care about distance. Hence, for both cases we have
that:

m(ρ′) = (c−Cost(ρ′max)) ∗ Dist(s0) + Dist(ρ′max)

<

m(ρ) = (c−Cost(ρmax)) ∗ Dist(s0) + Dist(ρmax)

By the observation that if Dist(s0) is finite, then so is m(s0), we have that for all
ρ ∈ ΠPSP and ρ′ = ρ ◦ (Last(ρ)

w−→ s), where s ∈ S and m(ρ) is finite and that

4.2. Attractor Set 37

m(ρ′) < m(ρ) whenever σ1 is winning for (G, AF≤cψ). �

Theorem 7
If there is a winning SSC strategy for a 1-WG (G, AF≤cψ) then there is a winning
ML strategy for (G, AF≤cψ).

Proof. Let σ1 be a winning FM strategy for (G, AF≤cψ), and let σ2 be constructed
as defined in Definition 4.3. Then by Lemma 6 we know that for all ρmax ∈ ΠMax

G�σ2

there exists a position 0 ≤ i s.t. either m(ρmax(i)) > 0 and ρmax(i) � ψ or
m(ρmax(i)) = 0 hence ρmax(i) � ψ. By Lemma 5 we get that for all 0 ≤ i we
have that Costρmax(i) ≤ c. �

It now follows from theorem 7 that a 1-weighted reachability game (G, AF≤cψ)

has a ML strategy whenever there exits a winning strategy for that game.

4.2 Attractor Set

One method of synthesizing ML strategy for a 1-weighted reachability game is to
extract it from the attractor set. Traditionally the attractor set Fi is the set of states
from which the controller can force a visit to some final state in i steps or less.
Intuitively this gives us a set of states from which the controller has a winning
strategy.

Formally, let (G, AF≤cψ) be a game, where G = (S, s0,AP , L, Tc, Tu) is a 1-
WGG. We define S f = {s ∈ S | s � ψ} as the set of final states. We can now define
the attractor set Fi as the set of pairs (s, k), where s ∈ S and k ∈ N0, from which
the controller can force a visit to a state s′ ∈ S f in i steps or less with the cost k ≤ c.
The set F0 is simply the pairs consisting of a final state and cost of 0:

F0 = {(s, 0) | s ∈ S f }

Fi is then calculated in the following manner for all i ∈N.

Fi = Fi−1 ∪ Addi

And Addi is calculated as follows for all i ∈N:

Addi =





(s, k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Whenever s
k199K s′ then ∃(s′, k2) ∈ Fi−1 where k1 + k2 ≤ c and

if s→ then ∃s
k1−→ s′ s.t. (s′, k2) ∈ Fi−1 where k1 + k2 ≤ c and

k = max




min
s

k1−→s′

(
min

(s′,k2)∈Fi−1

(k1 + k2)
)

max
s

k199Ks′

(
min

(s′,k2)∈Fi−1

(k1 + k2)
)








38 Chapter 4. 1-Weighted Games

As there are finitely many states and the cost is non-decreasing we know that
at some point the set stabilizes s.t. Fi = Fi+1. We denote this set as Ff inal . Extracting
a winning ML strategy, is now a check, asserting whether (s0, k) ∈ Ff inal for some
k, and then returning a sequence of states starting at s0 where the cost we need to
pay to reach a final state is always decreasing.

4.2.1 Pruned Attractor Set

A side effect of the calculation of Fi, for any i > 2, is that we can have several pairs
with the same state but a different cost. Consider the example in Figure 4.2 where
Figure 4.2a is the game graph, and Table 4.2b shows the incremential computation
of Ff inal for the 1-WG (G, AF≤∞(Final)).

s0

s1

s2

s3

{Final}

[
0
]

[
1
]

[
3
]

[
1
] [

4
]

[
2
]

(a) Game graph G.

Fi Elements of Fi

F0 {(s3, 0)}
F1 {(s3, 0), (s2, 0), (s1, 2), (s0, 4)}
F2 {(s3, 0), (s2, 0), (s1, 1), (s1, 2), (s0, 3), (s0, 4)}
F3 {(s3, 0), (s2, 0), (s1, 1), (s1, 2), (s0, 2), (s0, 3), (s0, 4)}
F4 {(s3, 0), (s2, 0), (s1, 1), (s1, 2), (s0, 2), (s0, 3), (s0, 4)}

(b) Computation of Fi for the game (G, AF≤∞(Final)).

Figure 4.2: Example of a game where Addi causes pairs of the same state and different cost to be
added to Fi

Having multiple pairs with the same state in Ff inal is unnecessary, and the com-
plexity of computing Ff inal increases. Hence we introduce a method for continually
computing a subset of Ff inal , that is, the subset only consisting of a state and the
least cost. We start by defining the pruning function P : P(S×N0) → P(S×N0)

where
P(Fi) = {(s, k) ∈ Fi | there is no j s.t. j ≤ k and (s, j) ∈ Fi}

For each calculation of Fi a pruning is performed, such that only a single pair for

4.2. Attractor Set 39

each state is kept. We therefore define the pruned attractor set FP
i for all i ∈N0 as

FP
0 = {(s, 0) | s ∈ S f }

FP
i = P(Fi−1 ∪ Addi)

Again, consider the example in Figure 4.2, using the pruned attractor set method
we get the following computation instead:

FP
0 ={(s3, 0)}

FP
1 ={(s3, 0), (s2, 0), (s1, 2), (s0, 4)}

FP
2 ={(s3, 0), (s2, 0), (s1, 1), (s0, 3)}

FP
3 ={(s3, 0), (s2, 0), (s1, 1), (s0, 2)}

FP
4 ={(s3, 0), (s2, 0), (s1, 1), (s0, 2)}

Notice, that the number of iterations does not decrease using the pruned at-
tractor set method, however the space needed to store the attractor set decrease
significantly.

4.2.2 Complexity of the attractor method

We observe that the addition of pairs with the smallest possible cost for a given
state must appear regularly. We define such a pair as a minimal pair.

Definition 4.5 (Minimal pair)
A pair (s, k) is minimal in some Fi if for all (s, k′) ∈ Fi it holds that k ≤ k′. We
say (s, k) is a local minimal pair if it is minimal in Fi and Fi 6= Ff inal . Likewise, we
say (s, k) is a global minimal pair if it is minimal in Fi and Fi = Ff inal .

Although a minimal pair is defined with respect to Fi, notice that it also holds
for FP

i . In fact, Fp
i consists only of local minimal pairs of Fi.

Lemma 8
For any pair (s, k) ∈ Fi\Fi−1, for some i > 0, there is a pair (s′, k′) ∈ Fi−1\Fi−2 s.t.

s w−→ s′ or s
w99K s′.

Proof. Follows from definition of Fi. Any pair in Fi\Fi−1 was not added to Fi−1

because no such pair could satisfy the criteria of Addi−1. �

We define the function Di : S×N0 → S×N0 for any i > 0 as:

Di((s, k)) = {(s′, k′) | (s′, k′) ∈ Fi\Fi−1 and s w−→ s′ ∨ s
w99K s′ and w + k′ ≤ k}

40 Chapter 4. 1-Weighted Games

Lemma 9
Given Fi = Fi−1 ∪ Addi then whenever Fi\Fi−1 6= ∅ then there is a pair (s, k) ∈
Fi\Fi−1 s.t. (s, k) is a global minimal pair.

Proof. We show that for any Fi, where Fi\Fi−1 6= ∅, there is a global minimum
pair. We do so by finding a local minimal pair in Fi\Fi−1 and show that it is also a
local minimum pair in Fj for all j > i. First, we pick the pair (smin, kmin) ∈ Fi\Fi−1

s.t. kmin ≤ k′ for all (s′, k′) ∈ Fi\Fi−1. It follows from the definition of Addi
that (smin, kmin) is a local minimum pair in Fi. We now show that for any pair
(s, k) ∈ Fi+1\Fi, it holds that k ≥ kmin. By Lemma 8 then given a pair (s, k) ∈ Fi+1\Fi
there is a pair

(si, ki) = arg min
(s′,k′)∈Di+1((s,k))

k′.

By definition of Addi it holds that ki ≤ k, however kmin ≤ ki, hence k 6< kmin. We
therefore have that (smin, kmin) is also a local minimum pair in Fi+1. By induction
on i we have that (smin, kmin) is a local minimal pair in Fj, for all j > i. Eventually
Fj = Ff inal thus (smin, kmin) is a global minimal pair. �

Theorem 10 (Computing attractor set complexity)
Given a 1-WG (G, AF≤cψ) and an initial state s0, there is a polynomial time algo-
rithm for computing a winning ML strategy σ, s.t. G�σ, s0 � AF≤cψ.

Proof. Let (G, AF≤cψ) be a reachability game, where G = (S, s0,AP , L, Tc, Tu) is
a 1-WGG. We solve (G, AF≤cψ) by computing the attractor set Ff inal and extracting
the ML strategy. Computing any Fi takes O(|S| + |T|) where T = Tc ∪ Tu. By
Lemma 9, we have that in every iteration of Fi we add at least one minimal pair.
Therefore there can be at most |S| iterations. Thus computing Ff inal can be done in
O(|S| ∗ (|S|+ |T|).

Extracting the ML strategy is now simply a matter of checking whether s0 is in
Ff inal and then choosing transitions s.t. the target state appears in a smaller Fi. This
can be done in O(|S|+ |T|).

Hence computing a winning ML strategy takes O(|S|2 + |S| ∗ |T| + |S| + |T|)
time.

�
This method has the drawback, that the set S f , must be known prior to the

execution, disallowing an approach where the game graph is generated on-the-
fly. We will therefore now consider a forward exploratory approach, with back-
propagation of possible local answers.

4.3. Symbolic Dependency Graph 41

4.3 Symbolic Dependency Graph

To find an on-the-fly algorithm for calculating a set of states with a winning strat-
egy, we look at the DG framework. In 1998 Liu and Smolka presented a local
on-the-fly minimum pre fixed-point algorithm for DGs[11]. A symbolic extension
of DGs was presented by Jensen et al. [9] where they extend the local fixed-point
algorithm for DGs into a minimum fixed-point algorithm for SDGs.

Definition 4.6 (Symbolic dependency graph)
A SDG is a tuple D = (V, E, C) where:

– V is a finite set of configurations,

– E ⊆ V ×P(N0 ×V) is a set of weighted hyper-edges, and

– C ⊆ V ×N∞ ×V is a set of cover edges.

Let D = (V, E, C) be an SDG. For a weighted hyper-edge, e = (v, T) ∈ E, we say
v is the source, T is the target set, and (w, u) ∈ T is a weighted hyper-edge branch
with weight w to the target v. From here on, we refer to weighted hyper-edges as
hyper-edges. We define the function succ : V → E as the successor function where
succ(v) = {(v, T) ∈ E} ∪ {(v, w, u) ∈ C} is the set of cover- and hyper-edges with
v as the source.

An assignment is a function A : V → N∞ assigning values to configurations
of an SDG D = (V, E, C). We denote the set of all assignments as A and the
assignment A(v) = ∞ for all v ∈ V as A∞. Furthermore, we define the partial
order of assignments v as A v A′ if and only if A(v) ≥ A′(v) for all v ∈ V. Note,
(A,v) is a complete-lattice.

The monotonic function F : A → A is defined as:

F(A)(v) =





0 If exists (v, w, u) ∈ C s.t. A(u) ≤ w < ∞ or

A(u) < w = ∞

min
(v,T)∈E

(
max

(w,u)∈T
(A(u) + w)

)
Otherwise

We assume that max(∅) = 0 and min(∅) = ∞. A prefixed-point assignment A ∈ A
is an assignment such that F(A) v A. By Knaster-Tarskis fixed-point theorem
we get that here exists a unique minimum prefixed-point assignment of an SDG,
denoted Amin. Let D = (V, E, C) be an SDG, then Amin of G can be computed by
applying F on A∞ finitely many times [9]. We refer to F as the global algorithm.

Jensen et al. also presented an on-the-fly algorithm for computing a local mini-
mum prefixed point assignment of an SDG[9]. We refer to this as the local algorithm
and it has a pseudo polynomial time complexity. For further details we refer the
reader to [9].

42 Chapter 4. 1-Weighted Games

4.4 Dependency graph encoding of reachability games

In this section we show how to encode a 1-weighted reachability game into an
SDG. Given a game (G, AF≤cψ) we construct the corresponding SDG rooted at
〈s0, AF≤ψ〉. Figure 4.3 illustrate the hyper-edge and cover-edge rules for construct-
ing the SDG. The upper-bound from the ReachWCTLu formula is encoded as the
weight of the cover-edge going from v0, see Figure 4.3a. Notice here that this
method only supports a strict upper-bound, as ∞ has been assigned a different
meaning. Below this point all configurations are of the form 〈s〉. The base case
where the configuration 〈s〉 has a transition to the empty set is shown in Figure
4.3b.

The encoding of the remaining hyper-edges is then based on the same principle
as computing the attractor set. There are two cases:

– When there are only uncontrollable transitions we encode all of them as a
single hyper-edge as they will all need to be part of the winning strategy,
illustrated in Figure 4.3c.

– In the case where there are controllable transitions we need to make sure that
at least one of the controllable transitions and all of the uncontrollable transi-
tions are part of a winning strategy. In order to achieve this each hyper-edge
consists of one unique controllable transition and all of the uncontrollable
transitions, see Figure 4.3d.

As a result of this encoding, propagating an assignment to configuration 〈s〉 intu-
itively corresponds to adding the state s to the attractor set, giving us an obvious
way to generate a winning strategy from the assignment.

Theorem 11 (Encoding correctness)
Let (G, ϕ) be a 1-WG where G = (S, s0,AP , L, Tc, Tu) and ϕ = AF≤cψ. Let D =

(V, E, C) be the SDG constructed with root 〈s0, ϕ〉. There exists a ML strategy σ s.t.
G�σ, s0 �0 ϕ, if and only if Amin(〈s0, ϕ〉) = 0.

The proof is future work, however we provide a small proof sketch.

Proof sketch. We prove Theorem 11 by structural induction on the formula.
There are two cases:

Formula is AF≤cψ: Show Amin(〈s, AF≤cψ〉) = 0 iff. s � AF≤cψ.

Formula is ψ: Let 〈s〉 be a configuration, then there are two cases:

s � ψ: Trivial case. By Figure 4.3b and induction hypothesis we get that s � ψ

iff Amin(〈s〉) = 0.
s 6� ψ: Again, there two cases, where c′ ≤ c:

4.4. Dependency graph encoding of reachability games 43

〈s,AF≤cψ〉

c

〈s〉

(a)

〈s〉 if s � ψ

∅

(b)

〈s〉 if s 6→ , let {(s1, k1), . . . , (sn, kn)} = {(si, ki) | s
ki99K si ∈ Tu}

〈sn〉

kn

〈s1〉

k1

. . .

(c)

〈s〉 if s −→ and s 99K , let {(s1, k1), . . . , (sn, kn)} = {(si, ki) | s ki−→ si ∈ Tc}
and {(sn+1, kn+1), . . . , (sm, km)} = {(si, ki) | s

ki99K si ∈ Tu}

〈s1〉

k1

〈sn+1〉

kn+1

〈sm〉

km

〈sm〉

kn

〈sn+1〉

kn+1

〈sn〉
km

. . .

.

(d)

Figure 4.3: Dependency graph encoding of a 1-weighted reachability game (G, AF≤cψ)

44 Chapter 4. 1-Weighted Games

If s � AF≤c′ψ then Amin(〈s〉) = c′: Define AFj
≤cψ s.t. a state s′ � AF0

≤cψ

iff s′ � ψ. Proof by induction on j.
If Amin(〈s〉) = c′ then s � AF≤c′ψ: Proof by induction.

Notice that the proof for case s 6� ψ includes both the edges from Figure 4.3c and
4.3d. �

4.5 Reachability Synthesis

As mentioned in the last section, there is a close correspondence between assigning
a value to a configuration in an SDG and adding a state to an attractor set. In this
section we present an algorithm, that based on this relationship, extracts a ML
strategy from a minimum prefixed-point assignment of an SDG.

We start by defining a mapping between the constituents of an SDG and a 1-
WG. Let (G, AF≤cψ) be a 1-WG, where G = (S, s0,AP , L, Tc, Tu) is a 1-WGG and
D = (V, E, C) be an SDG constructed from G by the rules presented in Section
4.4. We define a mapping between hyper-edges and controllable transitions as a
function ET : E→ Tc as:

ET(e = (v, T)) =

{
t = (v, k, u) if t ∈ Tc and (k, u) ∈ T

nil otherwise

Note, by the rules of construction from Section 4.4, there can be only a single
controllable transition which can satisfy the if condition of the ET function.

The strategy extraction is presented in Algorithm 2. It takes four inputs: An
SDG D, a root configuration v0 = 〈s0, AF≤cψ〉, Amin of D and a 1-WG G from which
D was constructed. Throughout its execution it maintains two data structures: A
set of pairs Q containing states and natural numbers, and a function Σ which
assigns controllable transitions to states. Upon termination the algorithm returns
Σ. Notice that since the strategy is memoryless, it suffices to only map states to
transitions. We write Σnil when Σ(s) = nil for any s ∈ S.

Algorithm 2 extracts the winning ML strategy based on the premise, that when
a configuration in the SDG gets assigned a value less than infinity, then it is part
of the attractor set. As such there exists a strategy from the corresponding state to
a final state within some bound. The cover-edges act as guards, where its weight
determines the maximal assigned value of its target configuration. If this value
exceeds the weight of cover-edge, a ML strategy does not exist within the desired
upper-bound. From here, Algorithm 2 deduces which hyper-edge propagated an
assigned value, computes the controllable transition, if any such exists, and maps
that to a state.

A winning ML strategy for a game can now be computed in the following
manner: First, compute Amin of an SDG constructed from the rules of Section 4.4.

4.6. Example: Synthesis Algorithm 45

Algorithm 2 Strategy extraction algorithm for 1-weighted reachability games
Input: a SDG D = (V, E, C), a root configuration v0 ∈ V, an Assignment A and a

game (G, AF≤cψ).
Output: A winning strategy Σ for (G, AF≤cψ) (if it exists).

1: Σ← Σnil

2: Q← {v0, 0}
3: while Q 6= ∅ do
4: Pick (v, k) from Q; Q← Q\{(v, k)}
5: if ∃e = (v, k′, u) ∈ succ(v) ∧ A(v) = 0 then
6: Q← Q ∪ {(u, k)}
7: else if succ(v) ⊆ E then
8: e = (v, T)← arg min

(v,T′)∈succ(v)
max{A(u) + k′ | (k′, u) ∈ T′}

9: Σ(v)← ET(e)
10: Q← Q ∪ {(u, k + k′) | (k′, u) ∈ T}
11: return Σ

Second, extract the winning ML strategy using Algorithm 2.

Remark 4
The purpose of algorithm 2 is to show that synthesis can be done using mini-
mum prefixed-point assignment computation of an SDG. Obviously computing
the fixed-point assignment and extracting σ can be done simultaneously, as such,
in practice, synthesis should be done, by modifying the algorithm presented in [9].

4.6 Example: Synthesis Algorithm

We will now go through the process of synthesizing a winning ML strategy, using
the SDG framework and Algorithm 2. Consider the example, from Section 3.4,
with the self-driving car. We use a modified version of this example where we
drop the first vector component from the game graph and the formula. The result-
ing formula is ϕ = AF≤8({Home}) and the resulting game graph is illustrated in
Figure 4.4.

Consider the SDG constructed from this game by the rules in Figure 4.3 We
can calculate the minimum pre-fixed point assignment using the local algorithm
presented in [9] with the SDG as input. The resulting SDG is shown in Figure 4.5
where the assignment is illustrated as annotations to the configurations.

We will now go through the execution of Algorithm 2 with the annotated SDG
as the input. Table 4.6 shows the content of Q and the mapping Σ for each iteration.
Initially Q = {(v0, 0)} and Σ maps to nil for all states. From here we iterate over
the content of Q until it is empty. We begin by picking the pair (v0, 0). Then we

46 Chapter 4. 1-Weighted Games

s0 s1 s2

s3 s4 s5

s6 s7 s8

[
1
] [

1
]

[
2
] [

5
] [

1
]

[
4
] [

1
]

[
2
] [

2
] [

1
]

[
2
] [

2
]

[
2
]

{Work}

{Home}

Figure 4.4: Modified game graph from Figure 3.2.

check whether or not v0 is the source configuration of a cover-edge or a hyper-edge.
As the initial configuration is always the source of a cover-edge, we enter the first
if-clause of the algorithm. Here we check if the upper-bound holds by checking if
the assigned value of the source is 0. We confirm this and add the pair (〈s0〉, 0) to
Q consisting of the target configuration and the unchanged cost.

In the second iteration we now pick the pair (〈s0〉, 0) and as 〈s0〉 has two out-
going hyper-edges we enter the second if-clause. We then pick the hyper-edge
which propagated the assigned value of 〈s0〉 and map the corresponding control-
lable transition if it exists. In this case it is the hyper-edge e = (〈s0〉, {(1, 〈s1〉)}),
t = (s0, 1, s1) and of course Σ(s0) = t. The last thing we need to do is add pairs
of all target configurations e and their cost from 〈s0〉 to Q. We repeat this until the
queue Q is empty and output the ML strategy.

4.6. Example: Synthesis Algorithm 47

〈s0, AF≤[8](Home)〉 0

8

〈s0〉 8

〈s3〉

2 1

8 〈s1〉 7

〈s4〉 4

5 1
2 4

〈s6〉 4 〈s2〉 6

2

〈s5〉

112 2

5

〈s8〉

2 1

0

〈s7〉 2

∅

Figure 4.5: Annotated symbolic dependency graph of the game graph from Figure 4.4. The number
to the right of each configuration is its Amin value.

Iteration Q Σ
1 {(〈s0, AF≤8(Home)〉, 0)} Σ = Σnil

2 {(〈s0〉, 0)} Σ(s0) = (s0, 1, s1)

3 {(〈s1〉, 1)} Σ(s1) = (s1, 1, s2)

4 {(〈s2〉, 2)} Σ(s2) = (s2, 1, s5)

5 {(〈s5〉, 3)} Σ(s5) = (s5, 1, s8)

6 {(〈s8〉, 4), (〈s4〉, 4)}
7 {(〈s4〉, 4)} Σ(s4) = (s4, 2, s7)

8 {(〈s7〉, 6)} Σ(s7) = (s7, 2, s8)

9 {(〈s8〉, 8)}

Figure 4.6: Algorithm 2 divided into rounds illustrating the construction of the ML strategy Σ

Chapter 5

Conclusion

We extended the automata theoretic game framework, by Thomas, by defining a two
player game with multiple weights. With this extended framework we can express
problems from domains with a multitude of discrete values. With the presented
algorithms, we can then synthesize solutions for problems with a single discrete
value. Besides extending the framework with weights, we also provide a hierarchy
for the different strategy types. With this we found that a single-state cost strategy
is sufficiently expressive in multiple weighted reachability games. We also found
that a memoryless strategy is sufficiently expressive for 1-weighted reachability
games. We then use this result to synthesize memoryless strategies for 1-weighted
reachability games, where we prove polynomial time complexity for the problem
and provide an on-the-fly algorithmic solution for the extraction. Additionally
we present an undecidability result for model checking with the full WCTL logic
and then present a decidable sub-logic, ReachWCTLu, which express reachability
properties in games.

5.1 Future work

Figure 5.1 shows an overview of possible areas of future works covering three
major areas: Expanding logic, model formalism and prototype.

Summed up, we aim to have a fully functioning prototype for WCTL with
upper- and lower-bounds. The prototype will include: A front-end (GUI) for writ-
ing games and presenting statistics, and a back-end for synthesising strategies.

We will now go through each branch of Figure 5.1 in more details in the fol-
lowing Subsections.

49

50 Chapter 5. Conclusion

Synthesis

Expand Logic Model Formalism Prototype

Reach with Lower-bounds

Non-nested WCTL

Negation

Nested WCTL formulae

Multiple weights

WCCS

Petri Nets

Weighted Automaton

1-weighted Reach games w.
UB

1-weighted games w. UB

Front-end for WCCS

1-weighted games w. LB

n-weighted games w.
U&LB

Figure 5.1: Future milestones of the project. A subset of these will be finished in the spring semester.
Milestones are separated into three categories.

5.1.1 Expand Logic

We already proved that WCTL is undecidable (In Section 3.1), hence the future
focus will be on strategies for lower- and upper-bounds. Proposition 2 showed, that
a new type of strategy is necessary in order to synthesize applicable strategies from
larger subsets of WCTL. As such, expanding the logic requires further research into
the expressiveness of the strategies, and the synthesis methods: SDG framework
and attractor set.

Another part of this area is multiple weights, shown in the very last branch of
Figure 5.1. Currently, we have proven that a SSC strategy is sufficiently expressive
to solve n-weighted reachability games. However, the synthesis methods (attractor
set and SDG framework) needs to be extended to multiple weights. The obstacle
here, is that the amount of incomparable cost vectors increase exponentially with
the number of vector components. Furthermore as we expand the set of WCTL
operators it is possible a new strategy type will have to be contrived.

5.1.2 Model Formalism

This branch is devoted to developing a model formalism which can express a large
game in a compact and concise manner. Being able to express large n-WGs using
a relative small, but expressive model, enhances the applicability. Initially we plan
on extending the process algebra Weighted Calculus of Communicating Systems
(WCCS) to a multi-weighted game variant. And possibly later, Petri Nets and
Weighted Automatons.

5.1. Future work 51

5.1.3 Prototype

The area of prototyping involves, implementing and comparing the different syn-
thesis methods presented in Sections 4.2 and 4.5. The current plan is to continue
the development of WKTool [8]. WKTool currently includes all the necessary fea-
tures to express 1-weighted WCCS processes along with various engines capable of
verifying properties expressed in WCTL with upper-bounds (a subset of the WCTL
presented in this paper). Preliminary work has already been put into a prototype
for synthesis of strategies for 1-weighted games.

Bibliography

[1] Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. “Model Check-
ing One-Clock Priced Timed Automata.” In: Logical Methods in Computer Sci-
ence 4.2 (July 28, 2009). url: http://dblp.uni-trier.de/db/journals/
lmcs/lmcs4.html#BouyerLM08.

[2] Patricia Bouyer, Uli Fahrenberg, Kim G Larsen, Nicolas Markey, and Jiří
Srba. “Infinite runs in weighted timed automata with energy constraints”.
In: International Conference on Formal Modeling and Analysis of Timed Systems.
Springer. 2008, pp. 33–47.

[3] J. Richard Büchi and Lawrence H. Landweber. “Definability in the Monadic
Second-Order Theory of Successor”. In: Journal of Symbolic Logic 34.2 (1969),
pp. 166–170.

[4] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G Larsen, and Di-
dier Lime. “Efficient on-the-fly algorithms for the analysis of timed games”.
In: International Conference on Concurrency Theory. Springer. 2005, pp. 66–80.

[5] Alonzo Church. “Logic, arithmetic and automata”. In: Proceedings of the inter-
national congress of mathematicians. 1962, pp. 23–35.

[6] E.Allen Emerson and Edmund M. Clarke. “Using branching time temporal
logic to synthesize synchronization skeletons”. In: Science of Computer Pro-
gramming 2.3 (1982), pp. 241–266.

[7] Uli Fahrenberg, Line Juhl, Kim G Larsen, and Jiří Srba. “Energy games in
multiweighted automata”. In: International Colloquium on Theoretical Aspects
of Computing. Springer. 2011, pp. 95–115.

[8] Jonas Finnemann Jensen and Lars Kaerlund Oestergaard. WKTool. 2014. url:
http://github.com/jonasfj/WKTool.

[9] Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jiří Srba, and Lars Kaer-
lund Oestergaard. “Efficient model-checking of weighted CTL with upper-
bound constraints”. In: International Journal on Software Tools for Technology
Transfer (2014), pp. 1–18.

53

http://dblp.uni-trier.de/db/journals/lmcs/lmcs4.html#BouyerLM08
http://dblp.uni-trier.de/db/journals/lmcs/lmcs4.html#BouyerLM08
http://github.com/jonasfj/WKTool

54 Bibliography

[10] Barbara Jobstmann and Roderick Bloem. “Optimizations for LTL synthesis”.
In: 2006 Formal Methods in Computer Aided Design. IEEE. 2006, pp. 117–124.

[11] Xinxin Liu and Scott A. Smolka. “Simple Linear-Time Algorithms for Min-
imal Fixed Points (Extended Abstract).” In: ICALP. Ed. by Kim Guldstrand
Larsen, Sven Skyum, and Glynn Winskel. Vol. 1443. Lecture Notes in Com-
puter Science. Springer, 1998, pp. 53–66.

[12] A Pnueli, E Asarin, O Maler, and J Sifakis. “Controller synthesis for timed
automata”. In: Proc. System Structure and Control. Elsevier. Citeseer. 1998.

[13] Amir Pnueli and Roni Rosner. “On the synthesis of a reactive module”. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. ACM. 1989, pp. 179–190.

[14] Wolfgang Thomas. “On the Synthesis of Strategies in Infinite Games.” In:
STACS. Oct. 6, 2009, pp. 1–13. url: http://dblp.uni-trier.de/db/conf/
stacs/stacs95.html#Thomas95.

http://dblp.uni-trier.de/db/conf/stacs/stacs95.html#Thomas95
http://dblp.uni-trier.de/db/conf/stacs/stacs95.html#Thomas95

	Front page
	Title Page
	Contents
	Preface
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Preliminaries
	2.1 nwks

	3 n-Weighted Games and Strategies
	3.1 wctl
	3.1.1 wctlru

	3.2 nwg
	3.3 Strategy
	3.3.1 Strategy Expressiveness
	3.3.2 Strategy for n-Weighted Games

	3.4 Example: Self-driving car
	3.5 Synthesis

	4 1-Weighted Games
	4.1 Strategy for 1-Weighted Games
	4.2 Attractor Set
	4.2.1 Pruned Attractor Set
	4.2.2 Complexity of the attractor method

	4.3 Symbolic Dependency Graph
	4.4 Dependency graph encoding of reachability games
	4.5 Reachability Synthesis
	4.6 Example: Synthesis Algorithm

	5 Conclusion
	5.1 Future work
	5.1.1 Expand Logic
	5.1.2 Model Formalism
	5.1.3 Prototype

	Bibliography

