
Secure Multi-Party Computations

using Secret Sharing Schemes
A coding theoretical approach

Master’s Thesis

Aalborg University

Johan M. Sorknæs

September 2016

Department of Mathematical Sciences

Aalborg University

Fredrik Bajers Vej 7G

Phone number 99 40 99 40

http://www.math.aau.dk

Title Secure Multi-Party Computations

using Secret Sharing Schemes - A

coding theoretical approach

Topic Secure multi-party computation

Project period

February 2016 - September 2016

Project group

Johan Milton Sorknæs

Supervisor Diego Ruano

Circulation 3

Total number of pages 88

Appendix None

Completed September 11, 2016

Synopsis

This master’s thesis concerns secure multi-

party computations (MPC) using secret

sharing schemes (SSS) based on linear

codes.

We introduce actively and passively secure

protocols for MPC throughout the project,

and give several examples using linear SSSs

based on linear codes, particularly a ramp

version of Massey’s SSS.

First we consider an actively secure proto-

col for MPC using linear SSS, however, this

only allows for addition and scalar multi-

plication. Therefore, we introduce multi-

plicative and strongly multiplicative SSSs,

which allows us to construct passively and

actively secure protocols for any function.

Since multiplicative SSSs, and their associ-

ated matrices, are difficult to find we give

several examples of multiplicative SSSs in

the project.

Lastly, we introduce a passively secure pro-

tocol for MPC, which reduces the commu-

nication between participants by grouping

multiplications.

The reports content is freely available, but publication (with source reference) may only happen after agree-

ment with the author.

Preface

This report serves as the master’s thesis of Johan Milton Sorknæs, and has been com-

posed from February 2016 to September 2016 as part of the masters program in applied

mathematics, at the department of Mathematical Sciences at Aalborg University.

The topic of the report is secure multi-party computations. In this report both actively

and passively secure multi-party computation protocols are presented, each using linear

secret sharing schemes constructed from linear codes. The thesis is a continuation of work

from the preceding semester of the masters program, in which the basics of secret sharing

schemes and their security were studied. Due to this, the chapter on secret sharing schemes

has been condensed to the essentials.

Bibliographical references in the report are noted with [number]. The number refers to the

numbered bibliography which can be found at the end of the report. The page numbers

in the bibliography refers to the pages in the report, where the given source is cited.

It is expected that the reader has basic knowledge of coding theory, information theory,

and general abstract algebra, including finite fields.

I would like to thank my supervisor, Associate Professor Diego Ruano, whom has been a

great help during the thesis.

i

ii

Danish Abstract

Det generelle form̊al med denne specialeafhandling er at konstruere protokoller til sikkert

distribueret beregninger ved brug af secret sharing ordninger baseret p̊a lineære koder i en-

delige legemer, heriblandt en udvidet udgave af Masseys secret sharing. Specialet starter

med en introduktion af secret sharing ordninger generelt, efterfulgt af to konstruktion

af lineære secret sharing ordninger baseret p̊a lineære koder. En secret sharing ordning

opdeler en hemmelighed i flere delinger, s̊aledes at visse delmængder af disse delinger kan

rekonstruere hemmeligheden. Motivationen for at betragte disse typer af secret sharing

ordninger er at kunne bruge teoretiske kodnings begreber til rekonstruktion i ordningerne,

alts̊a korrektion af sletning og fejl. Denne form for rekonstruktion i disse ordninger gen-

nemg̊as sideløbende med sikkerheden af en secret sharing ordning.

Herefter introduceres sikkert distribueret beregninger, som er en beregning af en offentlig

funktion afhængig af privat data uden at noget information om de private data lækker.

Der gives desuden en aktivt sikker protokol for funktioner best̊aende af addition og skalar

multiplikation ved brug af lineære secret sharing ordninger. Det bevises, vha. Lagrange

interpolation, at enhver funktion i et endeligt legeme er ækvivalent med et polynomium af

grad mindre end antallet af elementer i legemet. Alts̊a, kan enhver funktion i et endeligt

legeme løses med blot addition og multiplikation. Derfor introduceres multiplikative se-

cret sharing ordninger, for hvilke produktet af hemmeligheders delinger kan rekonstruere

produktet af de tilsvarende hemmeligheder. Ved brug af denne egenskab præsenteres en

passivt sikker protokol for alle funktioner ved brug af multiplkative secret sharing ord-

ninger.

Da det at finde en multiplikativ secret sharing ordning kan være besværligt, gennemg̊as der

for kodetyperne Reed-Solomon og Reed-Muller, hvorn̊ar de udvidede Massey secret sharing

ordninger baseret p̊a disse koder er multiplikative. For Reed-Solomon koder bevises det,

at hvis dimensionen af koden er under en hvis grænse, s̊a vil secret sharing ordningen være

multiplikativ. For Reed-Muller koder bevises det, hvilke koder er selv-ortogonale, hvilket

iii

det bevises, at hvis en kode er selv-ortogonal, s̊a er Masseys secret sharing ordning, som

er baseret p̊a koden, multiplikativ. For begge kodetyper vises ligeledes deres tilhørende

rekombinations matricer.

For aktivt sikkert distribueret beregninger, der bygger p̊a secret sharing ordninger, intro-

duceres en distribution af delinger i en secret sharing ordning, hvor alle deltager i secret

sharing ordningen er i stand til at verificere de delinger, som de modtager. Med denne

distribution af delinger præsenteres ogs̊a en aktivt sikker protokol for alle funktioner ved

brug af stærk multiplikative secret sharing ordninger.

Slutteligt reduceres mængden af kommunikation mellem deltagerne i en sikker distribueret

beregning ved at bruge en tungere definition af multiplikative secret sharing ordninger.

Med denne definition introduceres en passivt sikker protokol for alle funktioner ved brug

af secret sharing ordninger, der opfylder denne tungere definition af multiplkativ. Denne

protokol tillader gruppering af flere multiplikationer, hvilket reducerer mængden af gange,

som deltagerne behøver at kommunikere. Der gives ligeledes en kodetype, som konstrueres

ud fra binære Reed-Muller koder. For denne kodetype vises der, at ved visse valg, kan

koderne bruges til en secret sharing ordning, som opfylder denne tungere definition af

multiplikativ. Det vises desuden ogs̊a, hvordan man finder disse valg.

iv

Contents

1 Secret Sharing Schemes 1

1.1 LSSS(C) . 3

1.2 LSSS(Ĉ, C) . 7

1.3 Security of Secret Sharing Schemes . 13

2 Multi-Party Computation 17

2.1 MPC Protocol for Addition using Linear SSS 18

2.2 Multiplicative Secret Sharing Schemes . 22

2.2.1 Passively secure MPC protocol for multiplication 24

2.3 Multiplicative LSSS(C) . 26

3 Reed-Solomon Codes 29

3.1 Recombination Matrix for Reed-Solomon codes 30

4 Reed-Muller Codes 39

5 Actively Secure MPC Protocol 47

5.1 Distribution Method for Active Security . 47

5.2 Actively Secure Multiplication . 50

v

6 Passively Secure MPC Protocol for Grouping of Multiplications 53

6.1 Spherically Punctured Reed-Muller Codes 55

6.1.1 Security of C(V,m) . 61

6.2 Example of Grouping Multiplications . 65

7 Discussion 71

7.1 Protocols . 71

7.2 Secret Sharing Schemes . 72

7.3 Future Work . 74

Bibliography 76

vi

1
Secret Sharing Schemes

A secret sharing scheme (SSS) is a method for sharing a secret value among n participants

by constructing shares from the secret and distributing them among the participants, such

that only specific subsets of the participants are able to reconstruct the secret using their

shares.

A SSS can only share a secret that is an element of its secret space, noted S. The secret

is a string of length `, and in this project we generally use S = F`q. If ` > 1 the scheme is

called a ramp SSS, and if ` = 1 it is called a non-ramp SSS. Given a secret s ∈ S, the set

Xs is the set of possible share vectors for the secret s, each element in a share vector is

equal to a participant’s share of the secret. In this project we generally use Xs ⊂ Fnq .

Definition 1.1. A SSS has t-privacy and r-reconstruction if

• t is largest possible, such that any subset of t or less participants are unable to recover

any information about the secret,

• and r is smallest possible, such that any subset of r or more participants can recon-

struct the secret.

A SSS with t-privacy and r-reconstruction is called a (t, r)-SSS. If r = t− 1 it is called a

t-threshold SSS. For ramp schemes we introduce a more general definition of privacy and

reconstruction.

1

Definition 1.2. A SSS has (t1, . . . , t`)-privacy and (r1, . . . , r`)-reconstruction if

• tm is largest possible, such that any subset of tm or less participants are unable to

recover m or more bits of information about the secret,

• and rm is smallest possible, such that any subset of rm or more participants are able

to recover m or more bits of information,

where 1 ≤ m ≤ `.

Note, that in this notation t1 = t and r` = r. In this project we will work in Fq, hence the

bits of information mentioned above are q-bits. Since the privacy and reconstruction only

give the size of subsets that are or are not able to recover m q-bits of information of the

secret, we introduce the access structure for a complete picture of the information that a

subset is able to recover.

Definition 1.3. The access structure of a SSS with secret length ` is Γ = {A0, . . . ,A`},
where Am is the family of subsets of participants able to recover exactly m q-bits of infor-

mation, for 1 ≤ m ≤ `.

Note that any set A ∈ A` can reconstruct the secret. These sets are called accepted sets.

Any set A ∈ A0 are unable to recover any information about the secret, these sets are

called rejected sets.

Using the notation of the access structure we can write the tm and rm as

tm = min
A⊆I

{
|A| : A ∈

⋃̀
i=m

Ai

}
− 1,

rm = max
A⊆I

{
|A| : A /∈

⋃̀
i=m

Ai

}
+ 1,

for 1 ≤ m ≤ `, where I = {P1, . . . , Pn}, which is the set of participants. Generally we will

use the notation I for the set of participants going forward.

A set A ⊆ I being able to recover m q-bits of information about the secret, is equivalent to

reducing the number of possible secrets from q` to q`−m. This is a reduction of uncertainty

of the secret, and using notation from information theory we can write this reduction as

Iq

(
~S, φ(A)

)
= Hq

(
~S
)
−Hq

(
~S|φ(A)

)
= `− (`−m) = m,

2

where ~S is the discrete random variable for the secret, and φ(A) is the shares of the

participants in A. Since we work in Fq, we generally omit the q when using entropy and

mutual information, i.e. Hq(~S) = H(~S). Using mutual information we can define the sets

Am, for 0 ≤ m ≤ `, as

A ∈ Am ⇔ I
(
~S, φ(A)

)
= m, 0 ≤ m ≤ `,

where A ⊆ I.

In general, if the SSS is not designed after a certain access structure, the access structure

is difficult to compute, hence the privacy and reconstruction (or often bounds hereof) are

used instead.

For certain applications of SSSs we want the properties of linearity, hence we want the

SSS to be linear.

Definition 1.4. A SSS is linear if for any s, s′ ∈ S and λ ∈ N

Xs +Xs′ ⊆ Xs+s′ , and

λXs ⊆ Xλs.

1.1 LSSS(C)

To be sure that the chosen SSS is always linear, we introduce a linear SSS obtained by a

linear code. This type of SSS, as well as an improved version, will be used throughout the

project.

Let C be an [n + `, k, d] code over Fq, with ` < d⊥, where d⊥ is the minimum weight of

the dual code. The code C, is generated by the rows of a generator matrix

G =
[
ek1, . . . , e

k
` , g`+1, . . . , gn+`

]
where eki is the ith standard vector of Fkq , for 1 ≤ i ≤ `, and gj ∈ Fkq , for `+ 1 ≤ j ≤ n+ `.

Note, that since ` < d⊥ a generator matrix for C can always be given on this form by row

operations and permutations.

The generator matrix G motivates a simple construction of a linear SSS with n partici-

pants, where S = F`q. Namely, a SSS where the secret is equal to the first ` coordinates

of a codeword, and the shares are equal to the remaining n coordinates. This is a ramp

version of Massey’s secret sharing scheme [11].

3

Definition 1.5. [3] Given an [n + `, k, d] code C over Fq, with ` < d⊥, where d⊥ is the

minimum weight of the dual code C⊥.

The linear SSS with S = F`q and Xs =
{
c̃ ∈ Fnq : (s, c̃) ∈ C

}
, for any s ∈ S is denoted

LSSS(C).

The reason for using linear codes for SSSs is not only that it is always linear, but also

that we gain the properties of linear codes, e.g. error and erasure correction. Hence, if

a subset of participants is trying to reconstruct a secret in LSSS(C), they would simply

use erasure correction.

Therefore, the following methodology for reconstruction will recover any information that

the subset of participants trying to reconstruct the secret can recover. Note, that the

solution of the secret, s, might include some free variables, and the number of q-bits of

information recovered is equal to `−m, where m is the number of free variables in s.

For the methodology to be possible a generator matrix for C is needed. Since the generator

matrix used for the SSS does not contain any information about the secret, it can be

considered public information in LSSS(C).

Let A ⊆ I be the set of participants trying to reconstruct the secret.

1. Construct vector y ∈ Fnq , where yi is the share of Pi, if Pi ∈ A, and let yi be unknown

otherwise, for 1 ≤ i ≤ n.

2. Construct a parity check matrix H for C. Solve the equation system (s, y)HT = 0,

where s = (s1, . . . , s`) ∈ F`q is unknown.

3. Output any solutions found for (s1, . . . , s`).

Note, that the time complexity of this methodology is dominated by the construction of

the parity check matrix for C, which in turn is dominated by Gaussian elimination, hence

the methodology has time complexity O(k3). Furthermore, if the SSS is used more than

once, then the parity check matrix H, computed during reconstruction, can be stored as

public information for later use.

4

Example 1.6

We want to show how to share a secret s in an LSSS(C) over Fq, and how some subsets

of participants will attempt to reconstruct the secret. Therefore, we first need a linear

code C. Let C be an [8, 4] code over F7, with generator matrix

G =


1 0 6 2 0 4 4 4

0 1 1 6 3 3 3 1

0 0 1 3 0 2 3 1

0 0 6 2 1 3 6 0

 .

Note, that we have chosen a generator matrix, where the choice of ` is easy, hence we let

` = 2.

Let s = (5, 5) ∈ F27 be the secret we want to share. In order to construct a share vector we

choose x ∈ F`−k=2
7 uniformly at random, and compute a share vector c̃, where (s, x)G =

(s, c̃).

In this case we use x = (3, 2), so we get

(s, x)G = (5, 5, 3, 2)


1 0 6 2 0 4 4 4

0 1 1 6 3 3 3 1

0 0 1 3 0 2 3 1

0 0 6 2 1 3 6 0

 = (5, 5, 1, 4, 3, 5, 0, 0),

and hence the share vector is c̃ = (1, 4, 3, 5, 0, 0).

We will now show two attempts of reconstruction using the methodology above. Therefore,

we need to produce a parity check matrix for the code C. By Gaussian elimination we get

the parity check matrix

H =


1 6 2 4 1 0 0 0

6 2 1 6 0 1 0 0

2 4 1 1 0 0 1 0

3 2 1 4 0 0 0 1

 .

5

Let A = {P1, P3, P6} attempt to reconstruct the secret. Using the methodology we get

the vector y = (1, y2, 3, y4, y5, 0), and thus

(s, y)HT = (s1, s2, 1, y2, 3, y4, y5, 0)



1 6 2 3

6 2 4 2

2 1 1 1

4 6 1 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= 0.

Solving the equation system we get

s1 = 5 + 2y5, s2 = 5 + y5, y2 = 4 + 5y5, and y4 = 5 + 5y5.

Notice, that the solution for the secret has one free variable when the set A attempts

reconstruction. Therefore, A ∈ A1, since A achieves 1 q-bit of information about the

secret.

Now let the set of participants B = {P1, P3, P4, P6} attempt to reconstruct the secret. We

get the equation system

(s, y)HT = (s1, s2, 1, y2, 3, 5, y5, 0)



1 6 2 3

6 2 4 2

2 1 1 1

4 6 1 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= 0.

Solving the system we get

s1 = 5, s2 = 5, y2 = 4, and y5 = 0.

Hence, B is able to reconstruct the secret, i.e. B ∈ A2. 4

We give a proof for a lower bound for the privacy and an upper bound for the reconstruction

in LSSS(C). These bounds are useful to prove, since they are sharp for some types of

linear codes.

6

Theorem 1.7. [3] LSSS(C) has (≥ d⊥−`−1)-privacy and (≤ n+`−d+1)-reconstruction.

Proof. Let C be an [n + `, k, d] code over Fq. Assume c, c′ ∈ C, such that c and c′ agree

in at least n+ `− (d− 1) coordinates. Since C is linear c− c′ ∈ C, however

wH(c− c′) ≤ n+ `− (n+ `− d+ 1) = d− 1,

thus no two codewords can agree in n+`−d+1 coordinates. Therefore, for any n+`−d+1

shares, there exists exactly one unique c ∈ C. Hence, the reconstruction of LSSS(C) is

≤ n+ `− d+ 1.

Since any d⊥−1 columns of the generator matrix G are linearly independent, the ` columns

generating s and any other d⊥ − `− 1 columns are linear independent. Hence, since each

column generates either an element of the secret or a share, it follows that any d⊥ − `− 1

shares are independent of the secret, and thus give no information. Therefore, the privacy

of LSSS(C) is ≥ d⊥ − `− 1.

A maximum distance separable (MDS) [n+`, k, d] code C has d = n+`−k+1, and the dual

code, C⊥, of an MDS code is also an MDS code, hence d⊥ = n+`− (n+`−k)+1 = k+1.

Therefore, the following lemma follows from theorem 1.7.

Lemma 1.8. Let C be an [n + `, k] MDS code, then LSSS(C) has (k − `)-privacy and

k-reconstruction.

Proof. Let C be an [n + `, k] MDS code, then d = n + ` − k + 1 and d⊥ = k + 1. Let

LSSS(C) have t-privacy and r-reconstruction, from theorem 1.7 we get the bounds

t ≥ d⊥ − `− 1 = k + 1− `− 1 = k − `,

r ≤ n+ `− d+ 1 = n+ `− (n+ `− k + 1) + 1 = k.

Since the amount of information given by a share can never be more than one q-bit the

bounds has to be sharp, hence the lemma follows.

1.2 LSSS(Ĉ, C)

The following SSS is constructed using an [n, k̂, d̂] code Ĉ and a non-empty subcode C ⊂ Ĉ.

The secret is then hidden in another subcode S ⊂ Ĉ, such that S⊕C = Ĉ. The advantage

of this construction, compared to LSSS(C), is that the dimension of the secret space is

bounded by the dimension of the code, rather than the minimum weight of its dual code.

Additionally, since the secret is not directly hidden in the codewords, the codelength is

shorter, since each coordinate of a codeword is a share.

7

Definition 1.9. [3] Given two linear codes C ⊂ Ĉ ⊆ Fnq , with dimC > 0 and dim Ĉ −
dimC = `, and an arbitrary isomorphism ψ : F`q → S, where S ⊕ C = Ĉ.

The linear SSS with S = F`q and Xs = ψ(s) + C, for any s ∈ S, is denoted LSSS(Ĉ, C).

An exciting property of the LSSS(Ĉ, C) construction of linear SSSs is, that, as shown in

the following theorem, any linear SSS is equivalent to a SSS on the form LSSS(Ĉ, C).

The theorem was first stated in [3] and then elaborated in [7], here we present a detailed

proof for completeness.

Theorem 1.10. Any linear SSS over Fq with S = F`q and n participants is equivalent to

LSSS(Ĉ, C) for some linear codes C ⊂ Ĉ ⊆ Fnq , where dim Ĉ − dimC = `.

Proof. Let s, s′ ∈ F`q be two secrets in a linear SSS, with Xs and Xs′ as the sets of possible

share vectors for each secret respectively. Then, since the SSS is linear the following holds

for all α, β ∈ Fq

αXs + βXs′ ⊆ Xαs+βs′ .

Let Ĉ = ∪s∈F`qXs and C = X0, it is clear that Ĉ and C are linear since the SSS is linear,

and that C ⊂ Ĉ ⊆ Fnq . Moreover, since |Xs| = |Xs′ | for all s, s′ ∈ F`q due to linearity, and

Xs ∩Xs′ = ∅ due to reconstruction in a SSS, it follows that

|Ĉ| = q`|C|.

Since the SSS is over Fq and the codes are linear, dim Ĉ = log |Ĉ| and dimC = log |C|,
hence

|Ĉ| = q`|C|

⇔ log |Ĉ| = log(q`|C|)

⇔dim Ĉ = `+ dimC

⇔dim Ĉ − dimC = `.

Let S ⊂ Ĉ, where S ⊕ C = Ĉ. Note that dimS = `, hence |S| = q`, and from S ⊕ C = Ĉ

it then follows that if x, y ∈ S and x, y ∈ Xs, for some s ∈ F`q, then x = y. Therefore, we

can construct the following isomorphism.

Let ψ be an isomorphism ψ : F`q → S, such that ψ(s) ∈ Xs, for any s ∈ F`q. Then ψ(s) + c,

where c ∈ C = X0 is chosen at random, is a share vector for the secret s, since, from

linearity of the SSS, ψ(s) + c ∈ Xs+0 = Xs.

8

Hence, from the choice of ψ any secret s ∈ F`q has the same possible share vectors in the

original linear SSS as in LSSS(Ĉ, C) for the linear codes Ĉ = ∪s∈F`qXs and C = X0, and

equivalence follows.

We now introduce a general methodology that can be used for reconstruction of secrets

in an LSSS(Ĉ, C). Recall that not all subsets of participants are able to reconstruct the

secret, i.e. if a subset of participants A ∈ Am tries to reconstruct the secret, they will

recover m q-bits of information about the secret, for 1 ≤ m ≤ `.

The methodology uses coding theory to reconstruct the secret. Therefore, the shares

are considered as a received word, where any missing shares are seen as erasures. These

missing shares are those of participants whom are not involved in the reconstruction.

The methodology first reduces the number of erasures, if possible, and through puncturing

of the received word and a generator matrix then solve a linear equation system in order

to find s.

The solution of s might include some free variables. The amount of q-bits recovered about

the secret is equal to ` −m, where m is the number of free variables in s. Note, that if

m ≥ ` then no q-bits of information are recovered.

Let A ⊆ I be the set of participants trying to reconstruct the secret.

1. Construct vector y ∈ Fnq , where yi is the share of Pi, if Pi ∈ A, and let yi be unknown

otherwise, for 1 ≤ i ≤ n.

2. Construct a parity check matrix H for Ĉ. Solve the equation system yHT = 0

in order to decrease the number of erasures. Replace the unknowns in y with any

solutions found.

3. Construct a generator matrix G =

[
GC

GS

]
, where GC is any generator matrix for C

and GTS = [u1, . . . , u`] is the generator matrix for S, such that ψ(s) = s1u1+· · ·+s`u`.

4. Let y∗ and P(G) be the generator matrix G and the vector y, respectively, each

punctured on the indexes corresponding to the unknowns in y. Solve the equation

system (x, s)P(G) = y∗, where x ∈ FdimC
q .

The methodology’s time complexity is dominated by the Gaussian elimination used in the

construction of the parity check matrix. Hence, the time complexity is O
(
k̂3
)

.

Note, that for the methodology to be possible, bases for C and Ĉ has to be known, as well

as the isomorphism ψ. Since none of this contains information about the secret, these are

considered public information in LSSS(Ĉ, C).

9

Example 1.11

We want to show how to share a secret s in an LSSS(Ĉ, C) over Fq, and how some subsets

of participants will attempt to reconstruct the secret. Firstly, we set q = 13, n = 11, ` = 2,

and dim Ĉ = 6. Now we need to choose the codes Ĉ and C. We define the code Ĉ as the

[11, 6] code generated by the matrix Ĝ, and C as the [11, 6− 2] subcode generated by the

submatrix G.

Ĝ =



1 1 1 1 1 1 1 1 1 1 1

1 2 4 8 3 6 12 11 9 5 10

1 4 3 12 9 10 1 4 3 12 9

1 8 12 5 1 8 12 5 1 8 12

1 3 9 1 3 9 1 3 9 1 3

1 6 10 8 9 2 12 7 3 5 4


,

G =


1 1 1 1 1 1 1 1 1 1 1

1 2 4 8 3 6 12 11 9 5 10

1 4 3 12 9 10 1 4 3 12 9

1 8 12 5 1 8 12 5 1 8 12

 .

Note that the codes Ĉ and C are Reed-Solomon codes, hence we know that the minimum

weight of Ĉ is d̂ = 11 − 6 + 1 = 6, and the minimum weight of C is d = 11 − 4 + 1 = 8.

Furthermore, in [8] it is shown for the reconstruction and privacy of LSSS(Ĉ, C), where Ĉ

and C are MDS codes, that rm = dimC +m and tm = rm− 1, for 1 ≤ m ≤ `. Hence, our

SSS has (4, 5)-privacy and (5, 6)-reconstruction, i.e. the access structure, Γ = {A0,A1,A2},
is given as

A0 = {A ⊂ I : |A| ≤ 4},

A1 = {A ⊂ I : |A| = 5},

A2 = {A ⊆ I : |A| ≥ 6}.

From definition 1.9 we have that S ⊕ C = Ĉ, hence

S = 〈(1, 3, 9, 1, 3, 9, 1, 3, 9, 1, 3), (1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4)〉 .

Therefore, we choose our isomorphism ψ : F213 → S as

ψ(s) = s1(1, 3, 9, 1, 3, 9, 1, 3, 9, 1, 3) + s2(1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4).

Note that for any secret s ∈ F213, a share vector, ψ(s) + c, where c ∈ C, can be computed

as (x, s)Ĝ, where x ∈ F413 is chosen uniformly at random.

10

Now that we have our SSS, we need a secret that we want to share, here we let s = (3, 12).

In order to compute a share vector we choose uniformly at random x ∈ F413, in this case

x = (11, 10, 4, 6). Hence, the share vector is

ĉ = (x, s)Ĝ = (7, 7, 9, 8, 5, 2, 3, 0, 0, 12, 3).

The shares are distributed such that participant Pi receives the share ĉi, for 1 ≤ i ≤ 11.

Note, that the index of each participant is public information, e.g. it is known that P3’s

share is ĉ3, but the value of the share is private.

We now look at two different attempts to reconstruct the secret, using the methodology

listed earlier. In the following the steps referred to, are the steps of the methodology for

reconstruction.

First, the subset of participants A = {P3, P10, P11} try to reconstruct the secret. From

step 1, we get the vector

y = (y1, y2, 9, y4, y5, y6, y7, y8, y9, 12, 3).

In order to construct a parity check matrix for Ĉ, we use Guassian elimination on Ĝ to

get a generator matrix for Ĉ on the form [I P], where I is the identity matrix and P is

some 6 × 5 matrix. Then the 5 × 11 matrix [−P T I] is a parity check matrix for Ĉ, i.e.

we get the parity check matrix

H =


8 7 12 7 2 2 1 0 0 0 0

10 7 9 11 3 11 0 1 0 0 0

3 11 5 10 2 7 0 0 1 0 0

9 6 5 8 9 1 0 0 0 1 0

5 2 7 11 6 7 0 0 0 0 1

 .

Solving the equation system yHT = 0 we get the following solutions for the unknowns

y1 = y1,

y2 = 7y1 + 7y4 + 8y5 + 5,

y4 = y4,

y5 = y5,

y6 = y1 + 2y4 + 8y5 + 4,

y7 = 6y1 + 5y4 + 4y5 + 5,

y8 = 8y1 + 9y4 + 9y5 + 9,

y9 = 4y1 + 3y4 + 10y5 + 2.

Since we do not have a clear solution to any of the unknowns we cannot replace any

unknown in y.

11

The generator matrix Ĝ has all the properties required of the matrix constructed in step

3, hence we simply use the matrix Ĝ. We puncture the vector y and generator matrix

Ĝ on the indexes corresponding to the unknowns in y, and define them as y∗ and P(Ĝ),

respectively, hence we get the following

y∗ = (9, 12, 3),

P(Ĝ) =



1 1 1

4 5 10

3 12 9

12 8 12

9 1 3

10 5 4


.

Solving the system (x, s)P(Ĝ) = y∗ we get

x1 = 8x4 + 9s1 + 6s2 + 7,

x2 = 6x4 + 5s1 + 7s2 + 5,

x3 = 7x4 + 9s1 + 7s2 + 7,

x4 = x4,

s1 = s1,

s2 = s2.

It is clear that since s1 and s2 are free variables, the participants in A are not able to

recover any information about the secret. Note that it is not necessary to solve x1, . . . , x4

in order to reconstruct the secret.

Now let the set A = {P3, P5, P9, P10, P11} attempt to reconstruct the secret. In step 1 we

get the vector

y = (y1, y2, 9, y4, 5, y6, y7, y8, 0, 12, 3).

Using the parity check matrix H from before we solve the system yHT = 0, and get the

equations

y1 = 9y4,

y2 = 5y4 + 6,

y4 = y4,

y6 = 11y4 + 5,

y7 = 7y4 + 12,

y8 = 3y4 + 2.

12

Again we do not have a clear solution for any of the unknowns in y. However, note that

since there is only one free variable there are only 13 possible solutions for the vector y,

and since Xs ∪ Xs′ = ∅ for any two secrets s, s′ in any SSS, it follows that there are at

most 13 possible secrets.

Now we solve the equation system (x, s)P(Ĝ) = y∗, where

y∗ = (9, 5, 0, 12, 3),

P(Ĝ) =



1 1 1 1 1

4 3 9 5 10

3 9 3 12 9

12 1 1 8 12

9 3 9 1 3

10 9 3 5 4


,

and get s1 = 8s2 + 11 and s2 = s2. Hence, we get only 13 possible secrets, rather than 132

as when no information is given about the secret. This means that the participants have

recovered 1 q-bit of information about the secret, i.e. I
(
~S, φ(A)

)
= 1, which matches the

privacy and reconstruction of the SSS. 4

1.3 Security of Secret Sharing Schemes

In general a SSS shares a secret such that no single participant should be able to reconstruct

the secret, however, some subsets of participants are able to reconstruct the secret, or to

recover some partial information hereof. The access structure gives these subsets.

Therefore, security in SSSs is defined by the attacks on participants. These attacks are

done by adversaries. An adversary corrupts a subset of the participants, and acquires any

information that the participants might have. Corruption can be put into two possible

categories; passive corruption, where the adversary only acquires the participants’ infor-

mation, and active corruption, where the adversary can choose the participants’ actions.

Note, that in both cases of corruption the adversary acquires any information held by the

corrupted participants.

Through passive corruption an adversary can simply recover the same information about

the secret as the set of corrupted participants would be able to. In other words, we can

think of passive corruption as an attempt of reconstruction by an unauthorized source.

Note, that an adversary corrupting t or less participants cannot recover any information

about the secret, if the SSS has t-privacy.

13

In active corruption the adversary can also influence what values the corrupted participants

give when reconstruction is attempted. E.g. if all the participants try to reconstruct the

secret, and four participants are actively corrupted, four of the shares might be the wrong

values.

Note, that these types of corruption give rise to mainly two security problems. Firstly,

someone might be able to reconstruct the secret by obtaining information from partici-

pants. Secondly, someone might be able to invalidate the SSS by changing the information

held by participants so that the shares reconstruct the wrong secret.

Since the information held by the participants, i.e. the shares, have to be enough for

reconstruction, there is no way to completely avoid these security problems. However, we

can try to minimize their impact. First, to avoid adversaries reconstructing the secret,

we choose a SSS with t-privacy, where t is large. Hence, any adversary corrupting t or

less participants cannot recover any information about the secret, and with a large t the

adversary needs to corrupt a large subset of participants. In order to avoid invalidation

of the SSS, we look at our methodology for reconstruction.

In the methodologies for reconstruction we presented earlier for both LSSS(C) and

LSSS(Ĉ, C), reconstruction is solved as a coding theoretic problem. Missing shares are

equal to erasures, and likewise wrong values of shares, as can be received from an actively

corrupted participant, are equivalent to errors. Hence, we can update the methodologies

from before to include error correction, in order to obtain some security towards active

corruption.

For LSSS(C)

1. Construct vector y ∈ Fnq , where yi is the share of Pi, if Pi ∈ A, and let yi be unknown

otherwise, for 1 ≤ i ≤ n.

2. Let y′ be the vector y punctured on the unknowns, and P(C) be the code C punc-

tured on the corresponding indexes. Use a relevant error correction algorithm for

the code P(C) to correct any errors in y′.

3. Update the vector y by correcting any errors found in y′.

4. Construct a parity check matrix H for C. Solve the equation system (s, y)HT = 0,

where s = (s1, . . . , s`) ∈ F`q is unknown.

5. Output any solutions found for (s1, . . . , s`).

Note, that we simply add error correction before erasure correction. It is clear that the

time complexity of the methodology, including error correction, is now dominated by either

the Gaussian elimination used to construct the parity check matrix or the error correction

algorithm. Therefore, the time complexity is ≥ O(k3).

14

For LSSS(Ĉ, C)

The methodology for LSSS(Ĉ, C) is updated almost identically to that for LSSS(C), and

the time complexity follows in the same way.

1. Construct vector y ∈ Fnq , where yi is the share of Pi, if Pi ∈ A, and let yi be unknown

otherwise, for 1 ≤ i ≤ n.

2. Let y′ be the vector y punctured on the unknowns, and P(Ĉ) be the code Ĉ punc-

tured on the corresponding indexes. Use a relevant error correction algorithm for

the code P(Ĉ) to correct any errors in y′.

3. Update the vector y by correcting any errors found in y′.

4. Construct a parity check matrix H for Ĉ. Solve the equation system yHT = 0

in order to decrease the number of erasures. Replace the unknowns in y with any

solutions found.

5. Construct a generator matrix G =

[
GC

GS

]
, where GC is any generator matrix for C

and GTS = [u1, . . . , u`] is the generator matrix for S, such that ψ(s) = s1u1+· · ·+s`u`.

6. Let y∗ and P(G) be the generator matrix G and the vector y, respectively, each

punctured on the indexes corresponding to the unknowns in y. Solve the equation

system (x, s)P(G) = y∗, where x ∈ FdimC
q .

Note, that this approach will only work as long as the number of errors from actively

corrupted participants is small. More precisely correcting errors in linear codes are twice

the cost of correcting erasures, hence we can correct errors and reconstruct the secret if

r ≤ n− 2e− ε,

where n is the number of participants, r is the reconstruction of the SSS, e is the number

of errors, and ε is the number of erasures. Therefore, in order to avoid invalidation of the

SSS from active corruption we want a SSS with as low a reconstruction as possible. Hence,

for optimal security of a (t, r)-SSS we want high privacy, t, and low reconstruction, r.

Example 1.12

We try to reconstruct the secret in example 1.11, however, this time we include an error.

The participants A = {P1, P2, P3, P5, P6, P9, P10, P11} attempt to reconstruct the secret,

but P2 sends the wrong share, and we receive the vector

y = (7, 12, 9, y4, 5, 2, y7, y8, 0, 12, 3).

15

First, we puncture the vector on the unknowns and get y′ = (7, 12, 9, 5, 2, 0, 12, 3). The

code Ĉ punctured on the same indexes is an [11− 3, 6] Reed-Solomon code. We therefore

apply an error correcting algorithm for Reed-Solomon codes in order to correct up to

τ =
⌊
n−k
2

⌋
= 1 errors, and get the vector y′ − e = (7, 7, 9, 5, 2, 0, 12, 3). Updating the

vector y we get

y = (7, 7, 9, y4, 5, 2, y7, y8, 0, 12, 3).

Solving yHT = 0, we get y4 = 8, y7 = 3, and y8 = 0, and by replacing them with the

unknowns in y, we get the vector y = (7, 7, 9, 8, 5, 2, 3, 0, 0, 12, 3).

Lastly, we need to solve the linear equation system (x, s)Ĝ = y. Note that the generator

matrix and vector are left un-punctured since there are no unknowns in y. We get that

s = (3, 12), which the secret shared in example 1.11. 4

An adversary is defined by the possible subset of participants that it is able to corrupt,

called an adversary structure. An adversary structure is a family of subsets of participants,

noted A. An adversary with adversary structure A is called an A-adversary.

Which subset A ∈ A that an A-adversary corrupts is either chosen once before the SSS

starts, or can be changed at any point during the SSS, depending on the type of adversary.

An adversary that chooses whom to corrupt once is called a static adversary, and an

adversary that can change whom it corrupts at any point is called an adaptive adversary.

However, the complete subset of participants that an adaptive A-adversary chooses to

corrupt during a SSS has to be in A.

16

2
Multi-Party Computation

Multi-party computation (MPC) is a computation of a public function involving private

data of n participants, without revealing any information about the private data to the

other participants. A simple example of MPC is the summation of private data.

Example 2.1

Three participants, P1, P2, and P3, want to compute their combined wealth without

revealing any information of their own wealth to the other participants. Let s1, s2, and

s3 be the wealth of each participant respectively.

A simple approach would be for each participant to split their wealth in three smaller

chunks, i.e. ci,1 +ci,2 +ci,3 = si, for 1 ≤ i ≤ 3, and then Pi gives ci,j to Pj , for 1 ≤ i, j ≤ 3.

Now Pi will have c1,i, c2,i, and c3,i, and sums them, such that Ci = c1,i + c2,i + c3,i, for

1 ≤ i ≤ 3. It is easy to see that
∑3

i=1 si =
∑3

i=1Ci, i.e.

3∑
i=1

si =

3∑
i=1

 3∑
j=1

ci,j

 =
∑
i,j

ci,j =

3∑
j=1

(
3∑
i=1

ci,j

)
=

3∑
j=1

Cj .

Hence, to compute their combined wealth each Pi gives Ci, for 1 ≤ i ≤ 3, and the

function can be publicly computed without revealing any information about the individual

participants wealth. 4

Note, that in example 2.1 if we assume that each participants wealth is positive, then it is

clear that the result of the public function will provide information about each participant’s

wealth, in the form of an upper bound. Hence, even though no information about the

private data can be obtained during the MPC, the result will, in this case, always contain

some information.

Furthermore, it is clear that in general if the computation only involves two participant,

e.g. if the function is f = s1 + s2, where s1 and s2 is the private data of participants P1

and P2 respectively, then the two participants will be able to compute each other’s private

17

data from the result. Therefore, any function involving the private data of two, or one,

participants will leak information, hence the function of a MPC should always include at

least three participants.

In general a MPC protocol securely computes a given function if the function computes

correctly and no information about any participant’s private data is revealed or can be

recovered. However, a MPC protocol can only securely compute a given function, if the set

of corrupted participants are in some adversary structure A to which the MPC protocol

is secure.

We say that the MPC protocol is secure with respect to A, where A is the largest adversary

structure to which the MPC protocol is secure. Moreover, the security of a MPC protocol

is given in two parts, for passive corruption and for active corruption.

A MPC protocol is passively secure with respect to A, if any set of participants A ∈ A
cannot recover any information about the secret. A MPC protocol is actively secure with

respect to A, if for any A ∈ A, the protocol will compute the function correctly, even if

the participants in A are actively corrupted.

2.1 MPC Protocol for Addition using Linear SSS

In the following section we will introduce an actively secure MPC protocol for functions

consisting of addition and scalar multiplication, that uses linear SSSs. First we show how

to apply linear SSSs to solve a sum, similar to the MPC in example 2.1.

If we look at the ’chunks’ in example 2.1 as shares, and the private data as secrets, we see

that each participant is using a SSS in order to distribute shares of their secret among the

participants. Hence, we can solve the problem in example 2.1 with SSSs, more precisely

any linear SSS will work.

Recall that in a linear SSS, any two secrets s, s′ with share vectors c ∈ Xs and c′ ∈ Xs′

respectively, the vector c+c′ is a share vector for s+s′. Hence, we can solve the MPC with

n participants and the public function
∑n

i=1 si, where si is the private data of participant

Pi, for 1 ≤ i ≤ n, using a linear SSS.

The n participants, each holding their private data si, each constructs shares according to

a linear SSS for the secret si, such that ci is a share vector for si, for 1 ≤ i ≤ n. Participant

Pi then distributes the shares ci = (ci,1, . . . , ci,n) among the n participants, for 1 ≤ i ≤ n.

Now each participant Pi holds the shares c1,i, . . . , cn,i. Note that since the SSS is linear,

the sum of the shares held by any participant is equal to a share for the sum of the

participants’ private data. Hence, by summing their shares, each participant now holds a

share for the secret that is equal to
∑n

i=1 si.

18

Lastly, each participant’s computed sum of their received shares is then used for secret

reconstruction, and the reconstructed secret is then equal to the result of the public

function.

Example 2.2

Given 6 participants, Pi, with private data si ∈ F211, for 1 ≤ i ≤ 6, we want to compute the

public function
∑6

i=1 si. We will use a linear SSS to solve this MPC problem, specifically

LSSS(Ĉ, C) over F11, where Ĉ is generated by the matrix Ĝ,

Ĝ =


1 2 2 1 2 2

3 3 3 1 3 2

10 9 9 8 7 6

10 2 2 10 2 10

 ,

the code C = 〈(1, 2, 2, 1, 2, 2), (3, 3, 3, 1, 3, 2)〉, hence, since S ⊕ C = Ĉ,

S = 〈(10, 9, 9, 8, 7, 7), (10, 2, 2, 10, 2, 10)〉 ,

and we define the isomorphism ψ : S→ s, as

ψ(s) = s1(10, 9, 9, 8, 7, 7) + s2(10, 2, 2, 10, 2, 10).

Now each participant chooses an xi ∈ F211 uniformly at random, for 1 ≤ i ≤ 6, and

generates the share vector ψ(si) + ci = (xi, si)Ĝ = ĉi, for 1 ≤ i ≤ 6. Note, that ci =

(xi, 0)Ĝ, for 1 ≤ i ≤ 6. In table 2.1 is an overview of each participant’s private data,

choice of xi, computed ci and ψ(si), as well as the corresponding share vector ĉi, for

1 ≤ i ≤ 6.

Pi si xi ψ(si) ci = (xi, 0)Ĝ ĉi = ψ(si) + ci

P1 (1, 2) (3, 2) (8, 2, 2, 6, 0, 4) (9, 1, 1, 5, 1, 10) (6, 3, 3, 0, 1, 3)

P2 (4, 7) (3, 9) (0, 6, 6, 3, 9, 6) (8, 0, 0, 1, 0, 2) (8, 6, 6, 4, 9, 8)

P3 (8, 10) (3, 5) (4, 4, 4, 10, 10, 5) (7, 10, 10, 8, 10, 5) (0, 3, 3, 7, 9, 10)

P4 (2, 2) (10, 0) (7, 0, 0, 3, 7, 10) (10, 9, 9, 10, 9, 9) (6, 9, 9, 2, 5, 8)

P5 (6, 3) (2, 2) (2, 5, 5, 1, 4, 0) (8, 10, 10, 4, 10, 8) (10, 4, 4, 5, 3, 8)

P6 (3, 1) (5, 10) (7, 7, 7, 1, 1, 6) (2, 7, 7, 4, 7, 8) (9, 3, 3, 5, 8, 3)

Table 2.1: The private data, random xi, computed ci and ψ(si), and share vector ĉi for
each participant Pi.

Each participant Pi now distributes their share vector, ĉi = (ĉi,1, . . . , ĉi,6), among the

participants, such that Pi sends ĉi,j to Pj , for 1 ≤ i, j ≤ 6.

19

In order to visualize which shares are hold by which participant after the distributions of

shares, we construct a matrix D, where row i are the shares distributed by Pi and column

j are the shares received by Pj , for 1 ≤ i, j ≤ 6. Note that the matrix D will never exist

in a MPC, unless an adversary has corrupted all participants and chooses to construct it.

D =



6 3 3 0 1 3

8 6 6 4 9 8

0 3 3 7 9 10

6 9 9 2 5 8

10 4 4 5 3 8

9 3 3 5 8 3


.

Let δi be the sum of the shares held by Pi, for 1 ≤ i ≤ 6, then δ = (6, 6, 6, 1, 2, 7).

Reconstructing the secret with share vector δ is equivalent to solving the public function.

Since we have every share, and assume no errors, we can skip most of the methodology

and simply solve (x, s)Ĝ = δ, where we get (x, s) = (4, 6, 2, 3), hence

6∑
i=1

si = (2, 3).

4

We have seen how we can use linear SSSs to solve MPC problems with addition. Recalling

the other part of the linearity of SSSs; given a share vector ĉ for a secret s, then λĉ is

a share vector for the secret λs, we see that it is also possible to solve MPC problems

with scalar multiplication of private data using linear SSSs. This is simply done by each

participant multiplying the corresponding shares they hold by the scalar.

The MPC protocol for functions consisting only of addition and scalar multiplication using

a linear SSSs, as used in example 2.2, can be divided into four steps.

1. Each participant distributes shares of their private data according to the SSS.

2. Each participant computes the function using his or her corresponding shares.

3. Each participant outputs the result of step 2., which due to the linearity of the SSS

is a share of the result of the given function.

4. The outputs of the participants are used as shares for reconstruction of the functions

result. See section 1.3 for the methodology.

The passive security of this protocol follows from the SSS, since the distributions of shares

are independent of each other. Hence, if an adversary passively corrupts t or less partic-

ipants, then the adversary cannot recover any information about any of the participants’

private data.

20

Likewise, since an adversary can only change the shares that an actively corrupted par-

ticipant is holding, it is clear that only the outputs of actively corrupted participants are

affected by active corruption in this protocol, and hence active security also follows from

the SSS.

A more formal description of the actively secure MPC protocol described above, is pre-

sented as protocol 1.

Input
Each participant generates shares of their private data according to the SSS, and
distributes the shares among the participants.

Computation
The following steps are run for each computation in the function, until a share of f
is stored for each participant.

• Addition If sm + sh is the computation, where sm and sh are secrets, then
Pj computes dm,j + dh,j , for 1 ≤ j ≤ n, where dm,j and dh,j are Pj ’s shares of
sm and sh respectively. The result is stored privately as Pj ’s share of the secret
sm + sh.

• Scalar multiplication If λsm is the computation, where sm is a secret and λ
is a scalar, then Pj compute λdm,j , for 1 ≤ j ≤ n, where dm,j is Pj ’s share of
the secret sm. The result is stored privately as Pj ’s share of λsm.

Output and reconstruction
Each participant outputs their share of f . The shares are then used for reconstruction
using the methodology outlined in section 1.3 that corresponds to the linear SSS
applied in this protocol.

Protocol 1: Actively secure MPC protocol for addition and scalar multiplication using a
linear SSS.

Note, that for active security we have assumed that no participant is corrupted before

or during the initial distribution of shares. In chapter 5 we present a methodology for

distribution, which verifies the shares distributed by each participant. This methodology

is not restricted to MPC protocols, but can be used for distribution of shares in any linear

SSS.

21

2.2 Multiplicative Secret Sharing Schemes

For any function f : F`q → F`q, the domain of f is of size q`, which is finite, hence

by Lagrange interpolation, we can construct a polynomial p ∈ F`q[x] using the points

(x, f(x)), for all x ∈ F`q. Thus, deg(p) < q`, and p(x) = f(x), for all x ∈ F`q, i.e. any

function f : F`q → F`q is equivalent to a polynomial p ∈ F`q[x] with deg(p) < q`. It follows

that the public function of any MPC problem in F`q can be expressed as a polynomial of

degree < q`, and hence only addition and multiplication is necessary for any function in

F`q.

Earlier in this chapter we have shown how to compute public functions consisting of

addition and scalar multiplication in MPC problems using linear SSSs. However, we are

missing multiplication of two secrets from their shares in order to solve any MPC problem

using linear SSSs.

We introduce the following notations. Let v ∗ u = (v1u1, . . . , vnun), where v, u ∈ Fnq , i.e.

v∗u is the coordinatewise product of the vectors v and u. Let vA = (vi)Pi∈A, where A ⊆ I,

i.e. vA is the vector v ∈ Fnq punctured in the coordinates corresponding to Ā.

Definition 2.3. A linear SSS has r̂-product reconstruction if for every set A ⊆ I, where

|A| ≥ r̂, there exists some linear function ρA : F|A|q → F`q such that

ρA
(
cA ∗ c′A

)
= s ∗ s′,

where s, s′ ∈ S, c ∈ Xs, and c′ ∈ Xs′.

In other words, given two share vectors in a linear SSS with r̂-product reconstruction,

the coordinatewise product of the two corresponding secrets can be computed using any

r̂ or more (corresponding) coordinates of the share vectors. Hence, by definition 2.3 it is

possible to do coordinatewise multiplication of private data in a MPC using a linear SSS

with r̂-product reconstruction.

Note, that by definition, if a linear SSS has r̂-product reconstruction it also has r̃-product

reconstruction, for any n ≥ r̃ > r̂.

Definition 2.4. A multiplicative SSS is a linear SSS with n-product reconstruction.

22

We introduce a bound on the privacy t of a multiplicative SSS.

Theorem 2.5. If a SSS with t-privacy is multiplicative, then 2t < n. [4]

Proof. Let 2t ≥ n, and let A1, A2 ∈ A0, where A0 are the rejected sets of the SSS and

A1 ∪ A2 = I. Hence, there exists c̃1 ∈ Xs1 and c̃2 ∈ Xs2 , such that (c̃1)A1 = 0 and

(c̃2)A2 = 0, and s1, s2 6= 0. Therefore, c̃1 ∗ c̃2 = 0 ∈ X0, hence the theorem follows by

contradiction.

In general a multiplicative SSS is secure against passive corruption, however, for active

corruption we need a stronger property than multiplicative, specifically strongly multi-

plicative. We discuss active security of MPC involving multiplications in chapter 5.

Definition 2.6. [2] A strongly multiplicative SSS is a linear SSS with t-privacy and (n−t)-
product reconstruction.

We proof a bound of t for strongly multiplicative SSSs similar to theorem 2.5.

Theorem 2.7. If a SSS with t-privacy is strongly multiplicative, then 3t < n.

Proof. Let 2t ≥ n− t and let A1, A2 ∈ A0, where A0 are the rejected sets of the SSS and

|A1 ∪ A2| = n − t. Hence, there exists c̃1 ∈ Xs1 and c̃2 ∈ Xs2 , such that (c̃1)A1 = 0 and

(c̃2)A2 = 0, and s1, s2 6= 0. Therefore, c̃1∗ c̃2 will have at least n−t zero coordinates, hence

the SSS has (< n−t)-product reconstruction and the theorem follows by contradiction.

From the proof of theorem 2.7 it is clear that we can generalize theorem 2.5 and theorem

2.7 to corollary 2.8.

Corollary 2.8. If a SSS with t-privacy has r̂-product reconstruction, then 2t < r̂.

We now introduce an updated version of our protocol for MPC involving addition and

scalar multiplication using linear SSSs, protocol 1, in order to include multiplication.

23

2.2.1 Passively secure MPC protocol for multiplication

In this section we show how the multiplicative property of a linear SSS used in protocol 1

permits a revised protocol that is passively secure and allows for multiplication of secrets.

We do this by adding a multiplication step to the computation phase. As with the other

steps during the computation phase, the multiplication step will outline the actions needed

for a participant to generate a share of s ∗ s′ from the participant’s shares of the secrets s

and s′.

Assume that each participant has received shares distributed by a multiplicative SSS with

secret space S = F`q. Let ρI : Fnq → F`q be the linear function such that ρI (c ∗ c′) = s ∗ s′,
where s, s′ ∈ F`q, c ∈ Xs, and c′ ∈ Xs′ . Since ρI is a linear function from Fnq to F`q, it

can be represented as a matrix transformation, i.e. ρI (c ∗ c′) = (c ∗ c′)R, where R is an

n× ` matrix called the recombination matrix. Let Ri be the ith row of the matrix R, for

1 ≤ i ≤ n. By matrix multiplication we have that

s ∗ s′ = ρI
(
c ∗ c′

)
=
(
c ∗ c′

)
R

=

[
n∑
i=1

(
c ∗ c′

)
i
ri,1, . . . ,

n∑
i=1

(
c ∗ c′

)
i
ri,`

]

=
n∑
i=1

[
cic
′
iri,1, . . . , cic

′
iri,`

]
=

n∑
i=1

cic
′
iRi.

Since the function ρI can be public without loss of security, cic
′
iRi can be computed locally

by participant Pi, for 1 ≤ i ≤ n. However, due to privacy we cannot simply sum these

publicly. Therefore, we use the linearity of the SSS, i.e. the fact that the sum of share

vectors is a share vector for the sum of the secrets.

So Pi generates share vectors for the computed value cic
′
iRi, and distributes the shares

among the participants, for 1 ≤ i ≤ n. Such that Pj will have the jth share for each

computed value cic
′
iRi, for 1 ≤ i, j ≤ n. Then Pj simply sums these shares, and will now

have a share for the secret s ∗ s′, for 1 ≤ j ≤ n. Below is a revised version of protocol 1 to

include this computation step for coordinatewise product of secrets.

24

Input
Each participant generates shares of their private data according to the SSS, and
distributes the shares among the participants.

Computation
The following steps are run for each computation in the function, until a share of f
is stored for each participant.

• Addition If sm + sh is the computation, where sm and sh are secrets, then
Pj computes dm,j + dh,j , for 1 ≤ j ≤ n, where dm,j and dh,j are Pj ’s shares of
sm and sh respectively. The result is stored privately as Pj ’s share of the secret
sm + sh.

• Scalar multiplication If λsm is the computation, where sm is a secret and λ
is a scalar, then Pj compute λdm,j , for 1 ≤ j ≤ n, where dm,j is Pj ’s share of
the sm. The result is stored privately as Pj ’s share of the secret λsm.

• Multiplication of secrets If sm ∗ sh is the computation, where sm and sh are
secrets, then each participant Pj takes the following steps, where dm,j and dh,j
are Pj ’s shares of sm and sh, respectively, and Rj is the jth row of the SSS’s
recombination matrix, for 1 ≤ j ≤ n.

1. Pj computes δ(m,h),j = dm,jdh,jRj .

2. Pj generate shares of δ(m,h),j according to the SSS, and distributes the
shares among the participants.

3. Pj sums the shares received in 2. The sum is stored privately as Pj ’s share
of the secret sm ∗ sh.

Output and reconstruction
Each participant outputs their share of f . The shares are then used for reconstruction
using the methodology outlined in section 1.3 that corresponds to the linear SSS
applied in this protocol.

Protocol 2: Passively secure MPC protocol including multiplications using a multiplicative
SSS.

Note that protocol 2 is only secure against passive corruption, since an actively corrupt

participant that distributes wrong shares during multiplication will corrupt each partici-

pant’s following summation. The passive security of protocol 2 follows as for protocol 1

since the distribution of shares during multiplication uses the SSS. We present an actively

secure MPC protocol that include multiplication in chapter 5.

25

2.3 Multiplicative LSSS(C)

In this project we will study multiplicative SSSs of the type LSSS(C) exclusively. The

advantage of using less space with SSSs of the type LSSS(Ĉ, C), rather than LSSS(C), is

heavily outweighed by the added complexity and computation necessary when constructing

multiplicative LSSS(Ĉ, C) schemes, and performing multiplications.

Therefore, in the following we look at multiplicative SSSs of the type LSSS(C). We

present general results for multiplicative LSSS(C), as well as some result for ` = 1.

We introduce the following notations for the coordinatewise product of linear codes.

C ∗ C ′ = {c ∗ c′ : c ∈ C, c′ ∈ C ′},

C∗a = C ∗ · · · ∗ C︸ ︷︷ ︸
a

.

Theorem 2.9. [2] LSSS(C) has r̂-product reconstruction if LSSS(C∗2) has r∗-reconstruction,

where r∗ ≤ r̂ ≤ n.

LSSS(C∗2) has r∗-reconstruction if LSSS(C) has r̂-product reconstruction, for all r∗ ≤
r̂ ≤ n.

Proof. Let C be an [n + `, k, d] code over Fq, and let c = (s, c̃) ∈ C and c′ = (s′, c̃′) ∈ C,

then c̃ ∈ Xs and c̃ ∈ Xs′ in LSSS(C). Since the secret in LSSS(C) is equal to the first

` coordinates of the codeword, the first ` coordinates of the coordinatewise product c ∗ c′

will equal the coordinatewise product of the secrets s and s′, i.e. s ∗ s′.

For any two codewords c, c′ ∈ C, we know that, by definition, c ∗ c′ ∈ C∗2, hence, if

LSSS(C∗2) has r∗-reconstruction, then there exists a function ρA : F|A|q → F`q, where

A ⊆ I and |A| ≥ r∗, such that

ρA(c̃A ∗ c̃′A) = s ∗ s′.

Indeed the function ρA is the reconstruction of the secret s ∗ s′ in LSSS(C∗2), from

the shares (c̃ ∗ c̃′)A, and since the SSS is linear ρA is linear. Thus, it follows that if

LSSS(C∗2) has r∗-reconstruction, then LSSS(C) has r∗-product reconstruction, and r∗-

product reconstruction implies r̂-product reconstruction for any r∗ ≤ r̂ ≤ n.

Let LSSS(C) have r̂-product reconstruction for r∗ − 1 ≤ r̂ ≤ n, and assume LSSS(C∗2)

has r∗-reconstruction. Let A ⊂ I, where |A| = r∗ − 1 and A ∈ A`−1, i.e. the participants

in A are able to recover exactly `−1 q-bits of information about the secret. Hence, there is

no function ρA : F|A|q → F`q, such that ρA(c̃A ∗ c̃′A) = s ∗ s′, where c̃ and c̃′ are share vectors

for the secrets s and s′, respectively. Hence, the theorem follows by contradiction.

26

The two parts of theorem 2.9 show that the reconstruction of LSSS(C∗2) is equal to the

lowest value of product reconstruction of LSSS(C).

Let LSSS(C) have t-privacy and r-reconstruction, due to the bounds in theorem 1.7,

t ≥ d⊥ − `− 1 and r ≤ n+ `− d+ 1, the following corollary follows from theorem 2.9.

Corollary 2.10. LSSS(C) has r̂-product reconstruction, where r̂ = n − d(C∗2) + ` + 1,

and d(C∗2) is the minimum weight of C∗2.

For non-ramp schemes, i.e. where ` = 1, we will show that LSSS(C) is multiplicative if

C is self-orthogonal. First, we proof an equivalent expression for self-orthogonal codes,

which is more suited for multiplicative codes.

Lemma 2.11. Let C be an [n, k] code, then C is self-orthogonal if and only if C∗2 ⊥ 1.

Proof. To proof that the two expression are equivalent, we need only proof that c · c′ =

(c ∗ c′) · 1, for all c, c′ ∈ C, and the lemma follows. This is easily shown for all vectors.

c · c′ =
n∑
i=1

cic
′
i =

n∑
i=1

cic
′
i · 1 =

(
c1c
′
1, . . . , cnc

′
n

)
· 1 = (c ∗ c′) · 1.

Theorem 2.12. Let C be an [n + 1, k, d] code over Fq. If C∗2 ⊥ 1, then LSSS(C) is

multiplicative.

Proof. Let C be an [n + 1, k, d] code over Fq, where C∗2 ⊥ 1. Consider LSSS(C),

c = (s, c1, . . . , cn) ∈ C, and c′ = (s′, c′1, . . . , c
′
n) ∈ C. Note, that (c1, . . . , cn) ∈ Xs and

(c′1, . . . , c
′
n) ∈ Xs′ . Since C∗2 ⊥ 1, we know that (c ∗ c′) · 1 = 0, hence

(ss′, c1c
′
1, . . . , cnc

′
n) · 1 = 0⇔ ss′ +

n∑
i=1

cic
′
i = 0⇔ ss′ = −

n∑
i=1

cic
′
i.

It is clear that LSSS(C) satisfies the definition of multiplicative SSS, and that the linear

function ρI(v) = −
∑n

i=1 vi = x, where (x, v) ∈ C∗2.

In the following chapters we will examine LSSS(C) for some algebraic families of linear

codes in order to generate multiplicative SSSs based on these codes. We will also show

how to solve MPCs involving coordinatewise multiplications of the private data using these

SSS.

27

28

3
Reed-Solomon Codes

Reed-Solomon codes are linear codes, where the codewords are the evaluation of univariate

polynomials in pairwise distinct points. More precisely an [n, k] Reed-Solomon code C over

Fq is

C = {(f(p1), . . . , f(pn)) : f ∈ Fq[x],deg(f) < k} ,

where p1, . . . , pn ∈ Fq are pairwise distinct. Due to the n pairwise distinct elements of

Fq, it is clear that n ≤ q for an [n, k, d] Reed-Solomon code, in fact, in many applications

p1, . . . , pn have to be non-zero, hence n < q instead. Here we will work with non-zero

points p1, . . . , pn.

It is easy to show that Reed-Solomon codes are MDS. Let C be an [n, k, d] Reed-Solomon

code, and c = (f(p1), . . . , f(pn)) ∈ C, since deg(f) < k the polynomial f has at most k−1

distinct roots. Therefore, any c ∈ C has at most k − 1 zeros, i.e. d ≥ n− (k − 1), and by

the Singleton bound, it follows that Reed-Solomon codes are MDS.

Theorem 3.1. Let C be an [n + `, k] Reed-Solomon code, then LSSS(C) has (2k − 1)-

product reconstruction if k ≤ n+1
2 .

Proof. Let C be an [n+ `, k] Reed-Solomon code over Fq, by definition

C∗2 = {(f(p1)g(p1), . . . , f(pn+`)g(pn+`)) : f, g ∈ Fq[x], deg(f) < k, deg(g) < k} .

Since the set of the monomials that generate C is
{

1, x, . . . , xk−1
}

the set of all pairwise

products of those monomials is a generating set for C∗2. Therefore, we can write C∗2 as

C∗2 = {(h(p1), . . . , h(pn+`)) : h ∈ Fq[x],deg(h) < 2k − 1} ,

hence C∗2 is an [n+`, 2k−1] Reed-Solomon code, and by lemma 1.8 LSSS(C∗2) has (2k−
1)-reconstruction. Thus, by theorem 2.9 LSSS(C) has (2k − 1)-product reconstruction if

2k − 1 ≤ n⇔ k ≤ n+1
2 .

29

If C is an MDS code, then LSSS(C) has (t = k − `)-privacy, by lemma 1.8, hence the

subsequent corollary follows from theorem 3.1.

Corollary 3.2. Let C be an [n+`, k] Reed-Solomon code, then LSSS(C) has (2t+2`−1)-

product reconstruction if t ≤ n+1−`
2 , where LSSS(C) has t-privacy.

3.1 Recombination Matrix for Reed-Solomon codes

In the following we will show how the linear functions ρA in definition 2.3 are given for a

multiplicative LSSS(C), where C is a Reed-Solomon code.

Consider LSSS(C), where C is an [n + `, k] Reed-Solomon code over Fq, with k ≤ n+1
2 .

It follows from theorem 3.1 that LSSS(C) has (2k − 1)-product reconstruction.

Let c = (s, c̃) =
(
f(p1), . . . , f(pn+`)

)
∈ C and c′ = (s′, c̃′) =

(
g(p1), . . . , g(pn+`)

)
∈ C, note

that deg(f) < k, deg(g) < k, c̃ ∈ Xs, and c̃′ ∈ Xs′ .

From the definition of product reconstruction, definition 2.3, we have that there exists a

linear function ρA(c̃A ∗ c̃′A) = s ∗ s′, for any A ⊆ I, where |A| ≥ 2k − 1.

First we note that c̃ ∗ c̃′ =
(
h(p`+1), . . . , h(pn+`)

)
, where h = (f · g), hence deg h < 2k− 1.

By Lagrange interpolation it is possible to construct the polynomial h from 2k−1 or more

points. Let {γ1, . . . , γ2k−1} ⊆ {p1, . . . , pn+`} be the 2k − 1 points chosen to construct the

polynomial h, by Lagrange interpolation we get

h(x) =
2k−1∑
i=1

f(γi)g(γi)
2k−1∏
j=1

j 6=i

x− γj
γi − γj

.

Since s =
(
f(p1), . . . , f(p`)

)
and s′ =

(
g(p1), . . . , g(p`)

)
, we have that s∗s′ =

(
h(p1), . . . , h(p`)

)
.

Therefore, the mth coordinate of the secret s ∗ s′ is

(s ∗ s′)m =
2k−1∑
i=1

f(γi)g(γi)

2k−1∏
j=1

j 6=i

pm − γj
γi − γj

, (3.1)

for 1 ≤ m ≤ `.

Though the 2k − 1 points in the Lagrange interpolation above are chosen from among all

the points, in our application we cannot use any points that are equivalent to the secret,

therefore, we use {γ1, . . . , γ2k−1} ⊆ {p`+1, . . . , pn+`} from this point forward.

30

Since f(γi)g(γi), where γi = pa+`, is the product of participant Pa’s shares of the secrets s

and s′, for any 1 ≤ a ≤ n, we can express the function ρA, where A ⊆ I and |A| ≥ 2k− 1,

from equation (3.1) as

ρA
(
cA ∗ c′A

)
=

∑
i∈A

cic
′
i

∏
j∈A
j 6=i

p1 − p`+j
p`+i − p`+j

, . . . ,
∑
i∈A

cic
′
i

∏
j∈A
j 6=i

p` − p`+j
p`+i − p`+j



=
∑
i∈A

cic
′
i

∏
j∈A
j 6=i

p1 − p`+j
p`+i − p`+j

, . . . ,
∏
j∈A
j 6=i

p` − p`+j
p`+i − p`+j

 . (3.2)

Now that we have the function ρA, we need a way to apply it for MPC.

Let A = {α1, . . . , α|A|} ⊆ {1, . . . , n} and RAi,m =
∏

j∈A
j 6=αi

pm−p`+j
p`+αi−p`+j

for 1 ≤ m ≤ ` and

1 ≤ i ≤ |A|, where |A| ≥ 2k− 1. Note, that RAi,m is only dependent on public information,

hence it can be computed either locally or publicly without any loss of security. The matrix

RA =
(
RAi,m

)
∈ F|A|×`q is called the recombination matrix for the set of participants A,

note that RI = R. By replacing the products in equation (3.2) with entries of RA, we get

the following expression

ρA
(
cA ∗ c′A

)
=
∑
i∈A

cic
′
i

(
RAi,1, . . . , R

A
i,`

)
= s ∗ s′. (3.3)

We already have that the entries of RA can be computed from public information, and

since cic
′
i is the product of participant Pi’s shares for secrets s and s′, respectively, for

i ∈ A, they can be computed locally. Hence, each term of the sum in equation (3.3) can

be computed by its corresponding participant without leaking any information.

Let δi = cic
′
i

(
RAi,1, . . . , R

A
i,`

)
∈ F`q, for i ∈ A, then, by equation (3.3)

∑
i∈A

δi = s ∗ s′.

Due to the linearity of LSSS(C) the sum of share vectors for δi for all i ∈ A, is a share

vector for the secret s ∗ s′. Therefore, each participant Pi, after locally computing δi,

distributes shares of δi among the n participants, for every i ∈ A. Then all n participants

simply sum their received shares in order to get a share for s ∗ s′.

We have now shown how to compute shares for the coordinatewise product of two secrets,

i.e. s ∗ s′, in a multiplicative LSSS(C), where C is an [n + `, k] Reed-Solomon code.

In order to clarify the methodology we give two examples of MPC with coordinatewise

multiplication using LSSS(C), where C is a multiplicative Reed-Solomon code.

31

The first example is a simple MPC with only a single coordinatewise multiplication of

secrets as the public function, and will explain the process in detail.

The second example is an intricate MPC, where the public function includes both coordi-

natewise multiplication and addition. In this example some details are dropped.

Example 3.3

Let C be an [n + `, k] Reed-Solomon code over F7, where n = 4, ` = 1, and k = 2,

with pi = i, for 1 ≤ i ≤ 4 + 1. Since k ≤ n+1
2 , it follows from theorem 3.1, that C has

(2k − 1 = 3)-product reconstruction. The matrices G and H are a generator matrix and

a parity check matrix, respectively, for the code C.

G =

[
1 1 1 1 1

0 1 2 3 4

]

, H =

 1 5 1 0 0

2 4 0 1 0

3 3 0 0 1

 .
We want to compute the function f(s1, . . . , s4) = s1 ∗ s2, where si is the private data of

participant Pi, for 1 ≤ i ≤ 4. Note, that the function in this MPC problem only includes

the secrets s1 and s2, hence only P1 and P2 need to generate shares for their secrets.

However, all four participants are still needed during the computation, since the SSS will

generate four shares for a secret.

Listed in table 3.1 are the private data of participants P1 and P2, as well as the shares

generated for the secrets by the random vector xi ∈ F7, for 1 ≤ i ≤ 2.

Pi si xi ci = (si, xi)G c̃i

P1 5 6 (5, 4, 3, 2, 1) (4, 3, 2, 1)

P2 2 3 (2, 5, 1, 4, 0) (5, 1, 4, 0)

Table 3.1: The private data, random xi, computed ci, and share vector c̃i for participants
P1 and P2.

Participants P1 and P2 distribute the share vectors c̃1 and c̃2, respectively, among the four

participants. Table 3.2 shows the shares as distributed among the participants.

Pi Share of s1 Share of s2

P1 4 5

P2 3 1

P3 2 4

P4 1 0

Table 3.2: The shares held by each participant.

32

In order to compute shares for the secret s1 ∗ s2, we first need to choose a subset A ⊆ I,

where |A| ≥ 3, since C has 3-product reconstruction. This choice of A will decide which

recombination matrix, RA, we need to use, and which participants Pi that have to compute

δi = (c̃1)i (c̃2)iR
A
i,1, for each i ∈ A. Here we choose A = {1, 2, 3}, and get the matrix

RA =

 3

4

1

 .

Now each participant Pi, where i ∈ A, i.e. P1, P2, and P3, locally computes δi =

(c̃1)i (c̃2)iR
A
i,1, the results can be seen in table 3.3.

Pi (c̃1)i (c̃2)i δi = (c̃1)i (c̃2)iR
A
i,1

P1 4 5 δ1 = 4 · 5 · 3 = 4

P2 3 1 δ2 = 3 · 1 · 4 = 5

P3 2 4 δ3 = 2 · 4 · 1 = 1

Table 3.3: The δi’s computed for each i ∈ A.

Each δi is treated as a secret, and each participant Pi generates a share vector for their

corresponding δi, for each i ∈ A. The generated share vectors for each δi, noted c̃δi , can

be seen in table 3.4.

Pi δi xi (δi, xi)G c̃δi

P1 4 6 (4, 3, 2, 1, 0) (3, 2, 1, 0)

P2 5 4 (5, 2, 6, 3, 0) (2, 6, 3, 0)

P3 1 5 (1, 6, 4, 2, 0) (6, 4, 2, 0)

Table 3.4: The share vectors for each δi, where i ∈ A.

After the shares are generated, they are distributed among the four participants. In order

to compute a share for the secret s1 ∗ s2, each participant simply sums their shares of δ1,

δ2, and δ3. Each participant’s shares of δ1, δ2, and δ3 as well as the resulting sum, i.e.

their share of s1 ∗ s2 can be seen in table 3.5.

Pi Share of δ1 Share of δ2 Share of δ3 Share of s1 ∗ s2
P1 3 2 6 3 + 2 + 6 = 4

P2 2 6 4 2 + 6 + 4 = 5

P3 1 3 2 1 + 3 + 2 = 6

P4 0 0 0 0 + 0 + 0 = 0

Table 3.5: Each participant’s shares of δ1, δ2, and δ3, and their computed share of s1 ∗ s2.

33

We now simple use the methodology for reconstructing a secret in LSSS(C). We assume

that only the participants P1, P3, and P4 attempts to reconstruct the secret. Therefore,

we get the share vector y = (4, y2, 6, 0), where y2 is the unknown share of participant P2.

Left is only to attempt reconstruction by solving (s1 ∗ s2, y)HT = 0, i.e.

(s1 ∗ s2, 4, y2, 6, 0)


1 2 3

5 4 3

1 0 0

0 1 0

0 0 1

 =
[

0 0 0
]
.

From this we get the following linear equation system.

s1 ∗ s2 + 4 · 5 + y2 · 1 = 0,

2(s1 ∗ s2) + 4 · 4 + 6 · 1 = 0,

3(s1 ∗ s2) + 4 · 3 + 0 · 1 = 0.

Solving the equation system yields the results y2 = 5 and s1 ∗ s2 = 3. To show that our

result is correct, we do a simple check and by direct computation s1 ∗ s2 = 5 · 2 = 3. Note,

that this is only possible because we have full information, which would not normally be

true. 4

Example 3.4

Let C be an [n + `, k] Reed-Solomon code over F11, where n = 5, ` = 2, and k = 3, with

pi = i, for 1 ≤ i ≤ 5 + 2. Since k ≤ n+1
2 it follows that C has (2k − 1 = 5)-product

reconstruction. The matrices G and H are a generator matrix and a parity check matrix,

respectively, for the code C.

G =

 1 0 10 9 8 7 6

0 1 2 3 4 5 6

0 0 1 3 6 10 4

 ,

H =


10 3 8 1 0 0 0

8 8 5 0 1 0 0

5 4 1 0 0 1 0

1 2 7 0 0 0 1

 .

We want to solve the MPC problem f(s1, . . . , s5) = (s1 + s2) ∗ s3 + s4 ∗ s5, where si is

the private data of participant Pi, for 1 ≤ i ≤ 5. Each of the 5 participants generate

shares for their private data according to LSSS(C), and distributes the shares among the

participants. The private data and corresponding share vectors can be seen in table 3.6.

34

Pi si xi ci = (si, xi)G c̃i

P1 (7, 2) 2 (7, 2, 10, 9, 10, 2, 7) (10, 9, 10, 2, 7)

P2 (1, 4) 6 (1, 4, 2, 6, 5, 10, 10) (2, 6, 5, 10, 10)

P3 (10, 5) 0 (10, 5, 0, 6, 1, 7, 2) (0, 6, 1, 7, 2)

P4 (2, 9) 7 (2, 9, 1, 0, 6, 8, 6) (1, 0, 6, 8, 6)

P5 (6, 3) 9 (6, 3, 9, 2, 4, 4, 2) (9, 2, 4, 4, 2)

Table 3.6: The private data, random xi, computed ci, and share vector c̃i for each partic-
ipant Pi.

We solve the function f(s1, . . . , s5) = (s1 +s2)∗s3 +s4 ∗s5 in arithmetic order from left to

right, hence we first do the computations corresponding to (s1+s2). Here, each participant

simply sums their shares for s1 and s2 and store the result for future computations. The

shares held by each participant after this operation can be seen in table 3.7.

Pi Share of s1 Share of s2 Share of s3 Share of s4 Share of s5 Share of (s1 + s2)

P1 10 2 0 1 9 10 + 2 = 1

P2 9 6 6 0 2 9 + 6 = 4

P3 10 5 1 6 4 10 + 5 = 4

P4 2 10 7 8 4 2 + 10 = 1

P5 7 10 2 6 2 7 + 10 = 6

Table 3.7: The shares held by each participant Pi.

The next computation is (s1 + s2) ∗ s3, here we need to use our methodology for coordi-

natewise product of secrets. Firstly, we need to choose 2k − 1 = 5 participants, however,

here n = 5 so only one choice is possible, i.e. using every participant. The recombination

matrix for the set of all participants, i.e. RI , is given as

RI =


4 5

4 1

1 10

9 6

5 1

 .

The 3 steps of the multiplication are as follows. In step 1, each participant Pi computes

f(i + 2)g(i + 2)RIi , where f(i + 2) and g(i + 2) are the participant’s shares of (s1 + s2)

and s3, respectively, and RIi is the ith row of RI , for 1 ≤ i ≤ n.

In step 2, each participant generates a share vector for the vector computed in step 1, and

distributes the shares among the participants. Lastly, as step 3, each participant sums the

shares received during step 2. The result of this summation is now the participant’s share

of the secret (s1 + s2) ∗ s3.

35

The results of the three steps of the multiplication are summarized in table 3.8.

Pi δi = f(i+ 2)g(i+ 2)RIi (δi, xi)G Share of (s1 + s2) ∗ s3
P1 1 · 0 · (4, 5) = (0, 0) (0, 0, 7)G = (0, 0, 7, 10, 9, 4, 6) 7 + 8 + 2 + 9 + 10 = 3

P2 4 · 6 · (4, 1) = (8, 2) (8, 2, 1)G = (8, 2, 8, 4, 1, 10, 9) 10 + 4 + 0 + 8 + 10 = 10

P3 4 · 1 · (1, 10) = (4, 7) (4, 7, 3)G = (4, 7, 2, 0, 1, 5, 1) 9 + 1 + 1 + 6 + 1 = 7

P4 1 · 7 · (9, 6) = (8, 9) (8, 9, 10)G = (8, 9, 9, 8, 6, 3, 10) 4 + 10 + 5 + 3 + 5 = 5

P5 6 · 2 · (5, 1) = (5, 1) (5, 1, 2)G = (5, 1, 10, 10, 1, 5, 0) 6 + 9 + 1 + 10 + 0 = 4

Table 3.8: For the operation (s1 + s2) ∗ s3, the locally computed values, noted δi, the
corresponding share vector for some random chosen xi, and each participant’s resulting
share of (s1 + s2) ∗ s3.

The next computation is again a coordinatewise multiplication, (s4 ∗ s5), the results are

summarized in table 3.9.

Pi δi = f(i+ 2)g(i+ 2)RIi (δi, xi)G Share of s4 ∗ s5
P1 1 · 9 · (4, 5) = (3, 1) (3, 1, 7)G = (3, 1, 6, 7, 4, 8, 8) 6 + 9 + 4 + 0 + 5 = 2

P2 0 · 2 · (4, 1) = (0, 0) (0, 0, 9)G = (0, 0, 9, 5, 10, 2, 3) 7 + 5 + 9 + 9 + 6 = 3

P3 6 · 4 · (1, 10) = (2, 9) (2, 9, 10)G = (2, 9, 4, 9, 2, 5, 7) 4 + 10 + 2 + 10 + 4 = 8

P4 8 · 4 · (9, 6) = (2, 5) (2, 5, 3)G = (2, 5, 0, 9, 10, 3, 10) 8 + 2 + 5 + 3 + 10 = 6

P5 6 · 2 · (5, 1) = (5, 1) (5, 1, 8)G = (5, 1, 5, 6, 4, 10, 2) 8 + 3 + 7 + 10 + 2 = 8

Table 3.9: For the operation s4 ∗ s5, the locally computed values, noted δi, the corre-
sponding share vector for some random chosen xi, and each participant’s resulting share
of s4 ∗ s5.

The last computation is addition, for a better overview we present the results of the two

previous computations as well as the final shares in table 3.10.

Pi Share of (s1 + s2) ∗ s3 Share of s4 ∗ s5 Share of f(s1, . . . , s5)

P1 3 2 3 + 2 = 5

P2 10 3 10 + 3 = 2

P3 7 8 7 + 8 = 4

P4 5 6 5 + 6 = 0

P5 4 8 4 + 8 = 1

Table 3.10: The resulting shares held by each participant Pi.

36

Lastly, we simply apply the methodology for reconstruction of a secret in LSSS(C) to get

the result of the function f , i.e. we need to solve (s′, y)HT = 0, where y = (5, 2, 4, 0, 1)

and s′ ∈ F211.

(s′1, s
′
2, 5, 2, 4, 0, 1)



10 8 5 1

3 8 4 2

8 5 1 7

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


= 0.

We get the solution f(s1, . . . , s5) = s′ = (4, 2). 4

37

38

4
Reed-Muller Codes

A generalization of Reed-Solomon codes, are Reed-Muller codes, where the polynomials

that are used to construct the code have m variables. We define the degree of a multi-

variate monomial as deg(xi11 · · ·ximm) =
∑m

j=1 ij .

A (ζ,m) Reed-Muller code C over Fq is

C = {(f(p1), . . . , f(pn)) : f ∈ Fq[x1, . . . , xm], deg(f) ≤ ζ} ,

where {p1, . . . , pn} = Fmq .

We can see that the codelength of an (ζ,m) Reed-Muller code is n = qm, however, the

dimension and minimum weight of a Reed-Muller code are not clear from the definition.

Theorem 4.1. The dimension of an (ζ,m) Reed-Muller code over Fq is

k =

ζ∑
i=0

m∑
j=0

(−1)j
(
m

j

)(
i− jq +m+ 1

i− jq

)
.

Proof. Let C be an (ζ,m) Reed-Muller code over Fq. Note, that the evaluation of the

monomials in Fq[x1, . . . , xm] of degree ≤ ζ form a basis of C. Hence, the dimension of C

is equal to the number of monomials in Fq[x1, . . . , xm] of degree ≤ ζ.

For the theorem to follow, we only need to proof that the number of monomials of degree

i, for 0 ≤ i ≤ ζ, is

m∑
j=0

(−1)j
(
m

j

)(
i− jq +m+ 1

i− jq

)
. (4.1)

The number of monomials of degree i is equal to the number of m-tuples (j1, . . . , jm),

where 0 ≤ ja ≤ q − 1, for 1 ≤ a ≤ m, and j1 + · · ·+ jm = i.

39

This is clearly a combinatorial problem, where ja is the number of objects in cell a, for

1 ≤ a ≤ m, and i is the total number of objects. Firstly, we have number of ways i objects

can be placed in m cells without any restrictions, which is(
i+m− 1

i

)
.

This would be the number of monomials if there was no upper bound of ja, for 1 ≤ a ≤ m.

However, since we are in Fq, we need to exclude any of these combinations, where one or

more cells contains at least q objects.

The number of ways i objects can be placed in m cells, such that j specified cells contain

at least q objects is (
i− jq +m+ 1

i− jq

)
.

We need to subtract these combinations for 0 ≤ j ≤ m, and thus by the inclusion-exclusion

principle equation (4.1) follows, and thus the theorem.

Theorem 4.2. The minimum weight of an (ζ,m) Reed-Muller code over Fq, where ζ =

λ(q − 1) + α and 0 ≤ α < q − 1, is

d = (q − α)qm−λ−1.

The proof of theorem 4.2 is omitted, since it would require deviation from the main focus

of the project. A classic proof of theorem 4.2 is given in [10], and a proof based on Gröbner

bases is given in [6].

From the minimum weight of a Reed-Muller code C and theorem 1.7, we can now give an

upper bound for the reconstruction of LSSS(C). Let C be an (ζ,m) Reed-Muller code

over Fq, where ζ = λ(q − 1) + α and 0 ≤ α < q − 1, then

r ≤ (qm − 1)− (q − α)qm−λ−1 + 1 = ((qλ − 1)q + α)qm−λ−1,

where r is the reconstruction of LSSS(C).

Now that we have the dimensions of Reed-Muller codes, we also want to know the dual

code. The dual code can be used to find self-dual Reed-Muller codes, which we can use

for multiplicative SSSs.

40

Theorem 4.3. [1] The dual code C⊥ of the (ζ,m) Reed-Muller code C over Fq, is the

(m(q − 1)− ζ − 1,m) Reed-Muller code over Fq.

Proof. Let C be an (ζ,m) Reed-Muller code over Fq and C ′ an (ζ ′,m) Reed-Muller code

over Fq. If C⊥ = C ′, then c·c′ = 0 for all c ∈ C and c′ ∈ C ′. Let c = (f(p1), . . . , f(pn)) ∈ C
and c′ = (g(p1), . . . , g(pn)) ∈ C ′, where f = xf11 · · ·x

fm
m and g = xg11 · · ·x

gm
m , and let (pi)j

be the jth coordinate of the point pi, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then

c · c′ = f(p1)g(p1) + · · ·+ f(pn)g(pn)

=
n∑
i=1

f(pi)g(pi) =
n∑
i=1

(
((pi)1)

f1 · · · ((pi)m)fm)
)(

((pi)1)
g1 · · · ((pi)m)gm)

)
=

n∑
i=1

(
((pi)1)

f1+g1 · · · ((pi)m)fm+gm
)

=
∑
a1∈Fq

af1+g11

 ∑
pi∈Fmq

(pi)1=a1

(
((pi)2)

f2+g2 · · · ((pi)m)fm
) (by the distributive law)

= · · · =
∑
a1∈Fq

af1+g11 · · ·
∑
am∈Fq

afm+gm
m .

It is clear that c · c′ = 0 if and only
∑

ai∈Fq a
fi+gi
i = 0, for one or more 1 ≤ i ≤ m. Since

each sum is a summation of all elements of Fq to some power, we need only consider the

powers. Let b denote the power.

For b = k(q − 1), if k = 0 then∑
a∈Fq

ab =
∑
a∈Fq

a0 = q ≡ 0 mod q.

If k > 0, from Fermat’s Theorem we know that aq − a ≡ 0 mod q, for a ∈ F∗q , hence∑
a∈Fq

ab =
∑
a∈Fq

ak(q−1) = 0 +
∑
a∈F∗q

ak(q−1) = q − 1,

where k > 0.

For b 6= k(q − 1), since F∗q =
{
α0, . . . , αq−2

}
= 〈α〉, for some α ∈ F∗q , we can write

∑
a∈Fq

ab = 0 +

q−2∑
i=0

(
αi
)b

=

q−2∑
i=0

(
αb
)i

=
1−

(
αb
)q−1

1− αb
=

1− 1

1− αb
≡ 0 mod q.

Note that αb = 1, if and only b = k(q − 1), hence 1− αb 6= 0.

41

We see that c · c′ = 0 if and only if fi + gi 6= k(q − 1), where k > 0, for some 1 ≤ i ≤ m.

Hence, as long as deg f + deg g < m(q − 1), we know that c · c′ = 0. Since, f and g are

monomials, it is clear that the result follows for all c ∈ C and c′ ∈ C ′. Hence, c · c′ = 0,

for all c ∈ C and c′ ∈ C ′, if ζ + ζ ′ < m(q − 1), i.e. ζ ′ ≤ m(q − 1)− 1− ζ.

Lastly, in order to proof that C⊥ = C ′, where ζ ′ = m(q− 1)− 1− ζ, we need to show that

dimC ′ = n− dimC. From theorem 4.1, we know that

dimC =

ζ∑
i=0

m∑
j=0

(−1)j
(
m

j

)(
i− jq +m+ 1

i− jq

)
.

From the proof of theorem 4.1 we know that the number of monomials of degree i is

m∑
j=0

(−1)j
(
m

j

)(
i− jq +m+ 1

i− jq

)
,

and the dimension of the dual of C is equal to the number of monomials of degree i � ζ,

i.e. ζ + 1 ≤ i ≤ m(q − 1), which, by symmetry of binomial coefficients, is equal to the

number of monomials of degree i, where (ζ + 1) − (ζ + 1) = 0 ≤ i ≤ m(q − 1) − (ζ + 1).

Hence,

dimC⊥ =

m(q−1)−ζ−1∑
i=0

m∑
j=0

(−1)j
(
m

j

)(
i− jq +m+ 1

i− jq

)
= dimC ′,

and it follows that the dual code of an (ζ,m) Reed-Muller code over Fq is an (m(q− 1)−
1− ζ,m) Reed-Muller code over Fq.

From theorem 2.12 we know that LSSS(C) is multiplicative if the code C is self-orthogonal,

and ` = 1. Hence by theorem 4.3, we have the following result for multiplicative LSSS(C),

where C is a Reed-Muller code.

Corollary 4.4. Given an (ζ,m) Reed-Muller code C over Fq, where 2ζ = m(q − 1) − 1,

then LSSS(C) is multiplicative if ` = 1.

From theorem 4.3 we see that an (ζ,m) Reed-Muller code over Fq is self-dual, if and

only if 2ζ = m(q − 1) − 1. Note, that if q is odd then m(q − 1) is even for any m, and

2ζ 6= m(q − 1) − 1 for all ζ. Since, the product of two odd numbers is an odd number,

and q = pk, for some prime number p, a Reed-Muller code over Fq can only be self-dual if

q = 2k.

42

Example 4.5

Let C be a (1, 3) Reed-Muller code over F2, by corollary 4.4 the scheme LSSS(C), where

` = 1, is multiplicative. The matrix G is a generator matrix for the code C.

G =


1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

 .

We want to compute s1 ∗ s2 using LSSS(C). Note that the number of participants in

LSSS(C) is qm− ` = 23− 1 = 7. Participants P1 and P2 generate shares for their secrets.

Pi si xi (si, xi)G Shares of si

P1 1 (0, 1, 0) (1, 1, 0, 1, 0, 1, 0, 0) (1, 0, 1, 0, 1, 0, 0)

P2 0 (1, 1, 1) (0, 1, 1, 1, 0, 0, 0, 1) (1, 1, 1, 0, 0, 0, 1)

Table 4.1: The secrets and generated shares of participants P1 and P2.

The shares are distributed among the participants, and each participant Pi computes

cic
′
iRi, where Ri is the ith row of the recombination matrix, and ci and c′i are participant

Pi’s received shares of s1 and s2, respectively.

As shown in the proof of theorem 2.12, the recombination matrix is R = [q−1, . . . , q−1]T =

[1, . . . , 1]. Hence, the participants only have to compute the product of their received

shares. Each participant’s received shares and the product hereof are shown in table 4.2.

Pi Share of s1 Share of s2 Product of shares, c̃i

P1 1 1 1

P2 0 1 0

P3 1 1 1

P4 0 0 0

P5 1 0 0

P6 0 0 0

P7 0 1 0

Table 4.2: The shares of s1 and s2 as distributed among the participants, and the computed
products of those shares.

43

Each participant Pi now generates shares for the product c̃i computed above, for 1 ≤ i ≤ 7.

The shares generated by each participant are shown in table 4.3.

Pi c̃i xi (c̃i, xi)G Shares of c̃i

P1 1 (1, 0, 0) (1, 0, 1, 1, 0, 0, 1, 0) (0, 1, 1, 0, 0, 1, 0)

P2 0 (0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0)

P3 1 (1, 1, 0) (1, 0, 0, 1, 1, 0, 0, 1) (0, 0, 1, 1, 0, 0, 1)

P4 0 (0, 1, 1) (0, 0, 1, 1, 1, 1, 0, 0) (0, 1, 1, 1, 1, 0, 0)

P5 0 (0, 1, 1) (0, 0, 1, 1, 1, 1, 0, 0) (0, 1, 1, 1, 1, 0, 0)

P6 0 (0, 1, 0) (0, 0, 1, 0, 1, 0, 1, 1) (0, 1, 0, 1, 0, 1, 1)

P7 0 (1, 1, 1) (0, 1, 1, 1, 0, 0, 0, 1) (1, 1, 1, 0, 0, 0, 1)

Table 4.3: Shares generated by each participant for the secrets c̃i.

The shares of the secrets c̃i, for 1 ≤ i ≤ 7, received by each participant are shown in table

4.4, as well as the sum of those shares.

Pi Shares received Sum of shares received

P1 (0, 0, 0, 0, 0, 0, 1) 1

P2 (1, 0, 0, 1, 1, 1, 1) 1

P3 (1, 0, 1, 1, 1, 0, 1) 1

P4 (0, 0, 1, 1, 1, 1, 0) 0

P5 (0, 0, 0, 1, 1, 0, 0) 0

P6 (1, 0, 0, 0, 0, 1, 0) 0

P7 (0, 0, 1, 0, 0, 1, 1) 1

Table 4.4: Shares received by each participant for the secrets c̃i, and their sums.

Each participant now have a share of the secret s = s1 ∗s2, and left is only the reconstruc-

tion of the secret from these shares. We get the equation (s, x)G = (s, 1, 1, 1, 0, 0, 0, 1),

which is equivalent to the equation system

s+ x1 = 1, s+ x2 = 1,

s+ x3 = 1, s+ x1 + x2 = 0,

s+ x1 + x3 = 0, s+ x2 + x3 = 0,

s+ x1 + x2 + x3 = 1.

Solving the equations we get s = s1 ∗ s2 = 0. 4

44

In order to examine the security of LSSS(C) from example 4.5 we consider the bounds of

privacy and reconstruction given in theorem 1.7. First, we need to compute the minimum

weight, d, of the code C. From theorem 4.2 we know that d = (q − α)qm−λ−1, where

ζ = λ(q − 1) + α, and 0 ≤ α < q − 1. Note, that since C ⊂ F82 it is clear that λ = ζ = 1

and 0 ≤ α < q − 1 = 1, i.e. α = 0, hence

d = (q − α)qm−λ−1

= (2− 0)2m−ζ−1

= 2m−ζ = 23−1 = 4.

Now by theorem 1.7 we get following bounds for the privacy and reconstruction.

t ≥ d⊥ − `− 1 = d = 4,

r ≤ n+ `− d+ 1 = 8− 4 + 1 = 5.

Since we know that t+ ` ≤ r for any SSS, we have 4 + 1 ≤ t+ ` ≤ r ≤ 5, hence the bounds

are sharp, i.e. t = 4 and r = 5.

45

46

5
Actively Secure MPC Protocol

In section 2.1 we argued that protocol 1 is an actively secure MPC protocol for functions

consisting of addition and scalar multiplication, when we assume that the participants are

honest during the initial distribution of shares. In this chapter we introduce a method

for distributing shares, such that we are able to verify the received shares. By applying

this method we also revise the multiplication step in protocol 2, in order to construct an

actively secure MPC protocol for any function using a strongly multiplicative SSS with

` = 1.

In the following we present a method for participants to verify the shares they receive

without receiving additional information. The following methodology is heavily inspired

by the ’Protocol Generalized Commit’ from [4].

5.1 Distribution Method for Active Security

In this section we introduce a methodology for distributing and verifying participants’

shares, using a strongly multiplicative LSSS(C) with ` = 1. The methodology is heavily

inspired by the ’Protocol Generalized Commit’ from page 154 of [4].

Throughout this section participant Pj will be the one distributing shares. Let C be an

[n + 1, k, d] code over Fq, let M be the generator matrix for the code C that is used for

generating shares in the scheme LSSS(C), and let t and r̂ be the privacy and product

reconstruction of LSSS(C), respectively.

Participant Pj constructs a random symmetric matrix Qaj ∈ Fk×kq , with aj as the top left

coordinate, where aj ∈ Fq is the secret that Pj intends to share. Let mi ∈ Fkq be the ith

column of the matrix M , then Pj sends ui = mT
i+1Qaj to Pi, for 1 ≤ i ≤ n. Note, that by

the SSS the first coordinate of ui is a share of aj . Hence each participant Pi now has a

vector ui containing a share of aj .

47

Note that since Qaj is symmetric then

uimh+1 =
(
mT
i+1Qaj

)
mh+1 = mT

h+1

(
mT
i+1Qaj

)T
=
(
mT
h+1Qaj

)
mi+1 = uhmi+1,

for all 1 ≤ i, h ≤ n. Hence, if Pi computes uimh+1 and sends it to Ph, then Ph can verify

if the shares received by Pi and Ph are consistent. If uimh+1 = uhmi+1, then Ph will

conclude that the shares are consistent. Furthermore, since Qaj is an unknown symmetric

matrix for all participants except Pj , this verification process can be done without any

loss of security.

During this distribution of shares, each Pi sends uimh+1 to Ph, and each Ph checks that

uimh+1 = uhmi+1, for 1 ≤ i, h ≤ n. If the check is false, then Ph will accuse Pj of being

corrupted. However, this only proves that at least one of Pi, Pj , and Ph is corrupted, since

Pi could have sent the wrong value to Ph, or Ph could be corrupted and accuse Pj even

though the check is true.

Therefore, we include a step such that an honest participant, Ph, will not accuse Pj if they

receive the wrong uimh+1 from Pi. We solve this by letting Pj respond to accusations,

in this case by broadcasting publicly the value uimh+1 corresponding to each accusation.

Hence, if both Pi and Ph accuse Pj then both numbers will be broadcast publicly, if they

are not equal then Pj is clearly corrupt. If only Ph accuses Pj then the number will be

broadcast once, and Ph will be able to check if the number received from Pi is incorrect.

The problem here is that Pj can still be corrupted even if being honest when broadcasting,

therefore, for each Ph, where uhmi+1 is broadcast, Ph checks that it matches with the uh

received. If this is not the case, then Ph accuses Pj for being corrupt. Hence, this step

checks that Pj calculated the value uhmi+1 with the same uh as was sent to Ph. For each

Ph accusing Pj in this step, Pj broadcasts uh.

Lastly, each Ph that accused Pj above, verifies that the uh broadcast is equal to the

uh received privately, if not then Ph accuses Pj . If the broadcast uhmi+1 and uh are

inconsistent, or if more than t participants have accused Pj during the methodology, then

the participants output fail. Otherwise participants who accused Pj due to the broadcast

uhmi+1 and the privately received uh not matching, replaces the privately received uh

with the broadcast uh.

The reason for the methodology failing if more than t participants accuse Pj is that the

SSS is strongly multiplicative, i.e. r̂ = n − t. Hence, if more than t participants accuse

Pj , then either Pj is corrupt, or more than t participants are corrupt.

This expanded methodology for distribution and verifying shares can be summed up in

the following 5 steps. Note that any accusation is a public broadcast.

48

1. Pj wants to distribute shares of aj . Pj randomly generates a symmetrical matrix

Qaj , where aj is the top left coordinate, and sends ui = mT
i+1Qaj to Pi for 1 ≤ i ≤ n.

Pi sends uimh+1 to Ph.

2. If uimh+1 6= uhmi+1 for some i, then Ph accuses Pj of being corrupted, and broad-

casts publicly the corresponding is.

For each accusation, Pj broadcasts publicly uimh+1 for the corresponding i and h.

3. If the broadcast uhmi+1 does not match the uh received, then Ph accuses Pj .

For each accusation, Pj broadcasts publicly the distributed vector uh for the corre-

sponding h.

4. If the broadcast uh does not match the privately received uh, then Ph accuses Pj .

5. If the broadcast information is inconsistent, or if more than t participants have ac-

cused Pj , the participants output fail.

Otherwise, participants who accused Pj in step 3 replaces the privately received vec-

tors uh with those broadcast by Pj , remaining participants keep the vectors received

in step 1. The received share of aj is equal to the first coordinate of the vectors.

In order to argue that more than t participants accusing Pj is enough for the methodology

to fail, we give the following theorem.

Theorem 5.1. In the methodology above, if the SSS is strongly multiplicative, and no

more than t participants accuses Pj, then no matter how the corrupt participants behave,

honest participants will either all output fail, or will all have a share of the same sharing

of aj. [4]

Proof. Since the choice whether to return fail is based on public information it is clear

that participants who remain honest will either all output fail, or will all have a share of

a. We assume that the honest participants did not output fail. Let I be the set of all

participants, A be the set of participants that accused Pj , and L be the set of corrupt

participants at the end of the distribution.

We assume that |L| ≤ t, since otherwise the methodology would not work, and that

|A| ≤ t. Since the SSS is strongly multiplicative we know from theorem 2.7 that 3t < n,

hence S = (I \A)\L is the set of honest participants, who did not accuse Pj , and |S| > t.

Since S is not a rejected set, and ` = 1, the set of participants S is able to reconstruct the

secret.

Let H be the set of all honest participants. If Pi ∈ H had a new vector broadcast in step

3, and Ph ∈ S accuses Pj in step 4, then Ph /∈ S. Conversely if, Pi did not have a new

vector broadcast in step 3, then Pi keeps the originally received vector, as does Ph, hence

neither have accused Pj at any time. Therefore, we know, that if Pi ∈ H and Ph ∈ S,

then the check uimh+1 6= uhmi+1 in step 2 of the methodology will be false.

49

Consider the matrices UH and US , with rows equal to the vectors {ux : x ∈ H} and

{uy : y ∈ S} respectively. Let M be the generator matrix used for generating shares in the

SSS, and let MV be the matrix consisting of the columns {Mi+1 : i ∈ V }. Then USMS is

a matrix containing all check values uimh+1, for Pi, Ph ∈ S. Therefore, from the above it

follows that UHMS = (USMH)T .

Let vS be the vector that reconstructs the secret aj from the shares of participants in S.

Let xS be the vector, such that xS = vSUS , i.e. xS = (aj , x)M , where x ∈ Fk−1q is the

random vector used to generate the distributed shares. Hence,

xSMH = vSUSMH = vS(UHMS)T = vSM
T
S U

T
H = ek1U

T
H ,

where ek1 ∈ Fkq is the standard vector (1, 0, . . . , 0). Note that, ek1U
T
H is equal to the vector

of shares of aj distributed to participants in H, i.e. honest participants. Hence, it follows

that if at most t participants accuses Pj , then the set S can reconstruct the secret, and the

shares held by the honest participants are shares of aj from the same sharing of aj .

5.2 Actively Secure Multiplication

In this section we will show how the methodology in section 5.1 is applied in order to create

an actively secure multiplication in a MPC, where LSSS(C) is strongly multiplicative,

with ` = 1. Firstly, we have to note that during multiplication in a MPC each participant

will try distributing shares, hence the methodology is run for each participant. In the

following any distribution of shares mentioned uses the methodology of section 5.1.

Assume that s1s2 is the multiplication we wish to generate shares for, where s1 and s2 are

secrets with distributed share vectors (d1,1, . . . , d1,n) and (d2,1, . . . , d2,n), respectively, and

let RAi be the ith row of the recombination matrix for the set A ⊆ I, for 1 ≤ i ≤ n. Using

protocol 2 each participant, Pi, would have distributed shares for d1,id2,iR
I
i , however, since

the recombination matrix used is for all participants, i.e. I, the distributed shares are only

usable if all participants distributes shares correctly.

Therefore, for actively secure multiplication of s1s2, the participant Pi, distributes shares

of d1,id2,i. Let A be the set of participants for which this distribution did not fail. Then

each participant should have received a share of d1,jd2,j for which j ∈ A. From the

definition of product reconstruction, definition 2.3, we know that
∑

j∈A ∆(1,2),j,i is a share

of s1s2, where ∆(1,2),j,i is the share of d1,jd2,jR
A
j received by Pi. Due to linearity it follows

that
∑

j∈A δ(1,2),j,iR
A
j is a share of s1s2, where δ(1,2),j,i is the share of d1,jd2,i received

by participant Pi. Hence, each participant Pi preforms the following steps in order to

generate shares for s1s2.

50

1. Pi distributes shares for d1,id2,i, where d1,i and d2,i is his or her shares of s1 and s2

respectively.

2. Pi computes
∑

j∈A δ(1,2),j,iR
A
j , where A is the set of participants for which the dis-

tribution of shares in step 1 did not fail, and δ(1,2),j,i is the share of d1,jd2,j received

by Pi.

Since, the SSS has (n− t)-product reconstruction the MPC fails if the set of participants

A is less than n− t. Protocol 3 is a revised version of perotocol 2 for active security.

Input
Each participant generates shares of their private data according to the SSS, and
distributes the shares among the participants.

Computation
The following steps are run for each computation in the function, until a share of f
is stored for each participant, or the protocol fails.

• Addition If sm + sh is the computation, where sm and sh are secrets, then
Pj computes dm,j + dh,j , for 1 ≤ j ≤ n, where dm,j and dh,j are Pj ’s shares of
sm and sh respectively. The result is stored privately as Pj ’s share of the secret
sm + sh.

• Scalar multiplication If λsm is the computation, where sm is a secret and λ
is a scalar, then Pj compute λdm,j , for 1 ≤ j ≤ n, where dm,j is Pj ’s share of
the sm. The result is stored privately as Pj ’s share of the secret λsm.

• Multiplication of secrets If smsh is the computation, where sm and sh are
secrets, then each participant Pj takes the following steps, where dm,j and dh,j
are Pj ’s shares of sm and sh, respectively, RBj is the jth row of the SSS’s recom-
bination matrix for the set of participants B, for 1 ≤ j ≤ n, and A = I

1. Pj computes δ(m,h),j = dm,jdh,j .

2. Pj generates shares of δ(m,h),j according to the SSS, and distributes the
shares among the participants. For each Pj , where the distribution of shares
fail, remove Pj from A.

3. If |A| ≥ n − t, then Pj computes the sum
∑

Pj∈A ∆(m,h),i,jR
A
j , where

∆(m,h),i,j is Pj ’s share of dm,idh,i. The sum is stored privately as Pj ’s share
of smsh.
If |A| < n− t, then the protocol fails.

Output and reconstruction
Each participant outputs their share of f . The shares are then used for reconstruction
using the methodology outlined in section 1.3 that corresponds to the linear SSS
applied in this protocol.

Protocol 3: Actively secure MPC protocol using a strongly multiplicative SSS, with ` = 1.

51

52

6
Passively Secure MPC Protocol for Grouping of

Multiplications

In previous chapters each participant had to generate and distribute shares among the

participants each time two secret had to be multiplied. E.g. using protocol 2 with the

function f = s1 ∗ s2 ∗ s3, the participants would first have to compute shares for s1 ∗ s2
by generating and distributing shares, and then by using that result they could compute

shares for s1 ∗ s2 ∗ s3, again by generating and distributing shares.

In this chapter we present a stronger definition of product reconstruction, which will allow

us to group multiplication of secrets when using linear SSS with such property. This will

allow us to revise our previous passively secure MPC protocol, protocol 2, as to reduce

the number of times the participants communicate during the computation phase.

Definition 6.1. A linear SSS has (µ, r̂)-product reconstruction if for every set A ⊆ I,

where |A| ≥ r̂, there exists linear functions ραA : F|A|q → F`q, for 2 ≤ α ≤ µ, such that

ραA

(
(c1)A ∗ · · · ∗ (cα)A

)
= s1 ∗ · · · ∗ sα,

where c1, . . . , cα are share vectors of the secrets s1, . . . , sα respectively.

Note, that by definition 6.1 a SSS with (µ, r̂)-product reconstruction allows the multipli-

cation of µ secrets from their shares in one computation. Also note, that the previous

definition of product reconstruction, definition 2.3, is equivalent to (2, r̂)-product recon-

struction.

As with the previous definition of product reconstruction, since the functions ραA are linear

they can be represented by a matrix transformation. We call, the matrix transformation

that represents the function ραA, the recombination matrix for the set of participants A

and the product of α secret, noted RA,α.

53

By changing the multiplication of secrets step of the computation phase in protocol 2 to

allow for the grouping of the multiplication of µ secrets we get the passively secure MPC

protocol for grouping of multiplications, protocol 4.

Input
Each participant generates shares of their private data according to the SSS, and
distributes the shares among the participants.

Computation
The following steps are run for each computation in the function, until a share of f
is stored for each participant.

• Addition If sm + sh is the computation, where sm and sh are secrets, then
Pj computes dm,j + dh,j , for 1 ≤ j ≤ n, where dm,j and dh,j are Pj ’s shares of
sm and sh respectively. The result is stored privately as Pj ’s share of the secret
sm + sh.

• Scalar multiplication If λsm is the computation, where sm is a secret and λ
is a scalar, then Pj compute λdm,j , for 1 ≤ j ≤ n, where dm,j is Pj ’s share of
the sm. The result is stored privately as Pj ’s share of the secret λsm.

• Multiplication of secrets If sm1 ∗ · · · ∗ smα is the computation, where
sm1 , . . . , smα are secrets, and 2 ≤ α ≤ µ, then each participant Pj takes the fol-
lowing steps, where dm1,j , . . . , dmα,j are Pj ’s shares of sm1 , . . . , smα , respectively,

and RI,αj is the jth row of the SSS’s recombination matrix for α multiplications,
for 1 ≤ j ≤ n.

1. Pj computes δ(m,h),j =
(∏

1≤i≤α dmi,j

)
RI,αj .

2. Pj generate shares of δ(m,h),j according to the SSS, and distributes the
shares among the participants.

3. Pj sums the shares received in 2. The sum is stored privately as Pj ’s share
of the secret sm1 ∗ · · · ∗ smα .

Output and reconstruction
Each participant outputs their share of f . The shares are then used for reconstruction
using the methodology outlined in section 1.3 that corresponds to the linear SSS
applied in this protocol.

Protocol 4: Passively secure MPC protocol including grouping of up to µ multiplications
using a linear SSS with (µ, n)-product reconstruction SSS.

Similar to theorem 2.12 for multiplicative SSS, we show that if C∗α ⊥ 1, for all 2 ≤ α ≤ µ,

then C has (µ, n)-product reconstruction.

Theorem 6.2. Let C be an [n+ 1, k, d] code over Fq. If C∗α ⊥ 1, for all 2 ≤ α ≤ µ, then

LSSS(C) has (µ, n)-product reconstruction.

54

Proof. Let C be an [n+ 1, k, d] code over Fq, where C∗α ⊥ 1, for all 2 ≤ α ≤ µ. Consider

LSSS(C), and the codewords ci = (si, ci,1, . . . , ci,n) ∈ C, for 1 ≤ i ≤ α. Note, that

(ci,1, . . . , ci,n) ∈ Xsi , for all 1 ≤ i ≤ α. Since C∗α ⊥ 1, we know that (c1 ∗ · · · ∗ cα) · 1 = 0,

hence ∏
1≤i≤α

si,
∏

1≤i≤α
ci,1, . . . ,

∏
1≤i≤α

ci,n

 · 1 = 0⇔
∏

1≤i≤α
si +

n∑
j=1

 ∏
1≤i≤α

ci,j

 = 0

⇔
∏

1≤i≤α
si = −

n∑
j=1

 ∏
1≤i≤α

ci,j

 .

It is clear that LSSS(C) satisfies the definition of a linear SSS with (µ, n)-product recon-

struction, and that the linear functions ραI(v) = −
∑n

i=1 vi = x, where (x, v) ∈ C∗α, for

2 ≤ α ≤ µ.

6.1 Spherically Punctured Reed-Muller Codes

In this section we will show how to construct linear codes C over F2 from Reed-Muller

codes, such that LSSS(C) has (µ, n)-product reconstruction.

The codes are similar to (1,m) Reed-Muller codes over F2, except for two main differences.

The polynomials that generate the code have no constant term, and rather than evaluating

at all points of Fm2 , the polynomials are only evaluated at points with certain weights.

Let F2[x1, . . . , xm]a=0 be the subspace of F2[x1, . . . , xm] consisting of polynomials with the

constant term, a, equal to 0, and V ⊆ {1, . . . ,m}, we define the code

C(V,m) = {(f(p1), . . . , f(pn)) : f ∈ F2[x1, . . . , xm]a=0, deg f ≤ 1},

where p1, . . . , pn are the n =
∑

i∈V
(
m
i

)
points in Fm2 with Hamming weight ∈ V .

For a (1,m) Reed-Muller code over F2 the matrix G, where the first row is all 1’s and

the remaining m rows are a matrix with columns equal to all possible points in Fm2 , is a

generator matrix. E.g. let C be a (1, 4) Reed-Muller code over F2, the following matrix is

a generator matrix for C.

G =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

 .

From this construction of G we can construct a generator matrix for C(V,m).

55

Let Ai,m be the m ×
(
m
i

)
matrix, where each column is a vector in Fm2 with weight i, for

0 ≤ i ≤ m. Note, that the generator matrix G, shown above for a (1, 4) Reed-Muller code

over F2, can be decomposed into the following matrices.

G =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

0︸︷︷︸ 0 0 0 1︸ ︷︷ ︸ 0 0 1 0 1 1︸ ︷︷ ︸ 0 1 1 1︸ ︷︷ ︸ 1︸︷︷︸


.

A0,4 A1,4 A2,4 A3,4 A4,4

Hence, if we delete the row of 1’s from the generator matrix G, we will have the matrix G̃ =

[A0,4A1,4A2,4A3,4A4,4]. Let V = {1, 3, 4}, then the code C(V,4) is generated by the matrix

[A1,4A3,4A4,4]. In other words, the matrix [Ai1,m . . . Ai|V |,m], where V = {i1, . . . , i|V |}, is a

generator matrix for the code C(V,m). Note, that A0,m is never included in the generator

matrix for any codes C(V,m), since V ⊆ {1, . . . ,m}.

In order to construct C(V,m) such that LSSS
(
C(V,m)

)
has (µ, n)-product reconstruction,

we show how to choose V and m such that C∗µ(V,m) ⊥ 1. Since we are in F2, we first show

that it is enough that the codewords of C∗µ have even weight for LSSS(C(V,m)) to have

(µ, n)-product reconstruction.

Lemma 6.3. Let C be an [n + 1, k, d] code over F2. If all codewords in C∗µ have even

weight, then LSSS(C) has (µ, n)-product reconstruction.

Proof. Let C be an [n+1, k, d] code over F2, where all codewords in C∗µ have even weight.

Since C ⊆ F2, we have that c ∗ c = c, for all c ∈ C, and it follows that C∗α ⊆ C∗µ, for all

1 ≤ α ≤ µ, hence all codewords in C∗α for 1 ≤ α ≤ µ have even weight.

By theorem 6.2 it is enough to show that C∗α ⊥ 1, for all 2 ≤ α ≤ µ. Let ci =

(ci,1, . . . , ci,n+1) ∈ C, and ci,j = 1, for m j’s, where 1 ≤ j ≤ n + 1, for 1 ≤ i ≤ α.

Hence wH(c1 ∗ · · · ∗ cα) = m, and thus (c1 ∗ · · · ∗ cα) · 1 = m, but since c1 ∗ · · · ∗ cα ∈ C∗α

and all codeword in C∗α have even weight m ≡ 0 mod 2.

Hence, if we can construct an [n+ 1, k, d] code C over F2, where the codewords of C∗µ all

have even weight, then LSSS(C) has (µ, n)-product reconstruction.

To construct a C(V,m) code where all codewords have even weight, we first look at the

weight of the coordinatewise product of µ different rows of Ai,m. Recall that C(V,m) is a

code over F2 and hence the matrices Ai,m are also over F2.

56

Lemma 6.4. The weight of the coordinatewise product of µ ≥ 1 different rows of Ai,m for

any 1 ≤ i ≤ m is
(
m−µ
i−µ
)
. [5]

Proof. Let v = r1 ∗ · · · ∗ rµ, where r1, . . . , rµ are pairwise distinct rows of Ai,m. If vj = 1

then r1, . . . , rµ all have 1 as their jth coordinate, else vj = 0, for 1 ≤ j ≤ n. Hence, the

weight of v is equal to the number of coordinates where r1, . . . , rµ all have 1.

The columns of Ai,m are by definition all the possible vectors of length m with weight i.

Hence, µ distinct rows of the matrix Ai,m all have 1 in the same number of coordinates as

the number of vectors of length m− µ with weight i− µ. It follows that the weight of v,

i.e. the coordinatewise product of µ different rows of Ai,m, is
(
m−µ
i−µ
)
.

We introduce the following notation. The matrix M∗µ is the matrix with rows equal to

the vectors

{m1 ∗ · · · ∗mµ : mi is row a of M, and mi 6= mj , for 1 ≤ i, j ≤ µ}.

That is, the matrix M∗µ is the matrix with rows equal to the coordinatewise product of µ

different rows of the matrix M . For the matrices A∗µi,m we proof the following properties.

Lemma 6.5. For 1 ≤ µ ≤ i the matrix A∗µi,m is an
(
m
µ

)
×
(
m
i

)
matrix, with columns of

weight
(
i
µ

)
and rows of weight

(
m−µ
i−µ
)
. Furthermore, the columns and rows of A∗µi,m are all

distinct. [5]

Proof. First we proof that the rows of A∗µi,m are distinct. Let {r1, . . . , rµ} 6= {r′1, . . . , r′µ} be

two different sets of 1 ≤ µ ≤ i pairwise distinct rows of Ai,m, where r1∗· · ·∗rµ = r′1∗· · ·∗r′µ.

Let s1, . . . , si−µ be i−µ different rows of Ai,m not in the two previous sets, hence we have

that

r1 ∗ · · · ∗ rµ ∗ s1 ∗ · · · ∗ si−µ = r′1 ∗ · · · ∗ r′µ ∗ s1 ∗ · · · ∗ si−µ.

However, by lemma 6.4, the coordinatewise product of i different rows of Ai,m has weight(
m−i
i−i
)

=
(
m−i
0

)
= 1 and length

(
m
i

)
. Furthermore, any i distinct rows of Ai,m only have one

unique coordinate, where all i rows contain 1. Hence, r1 ∗ · · · ∗ rµ 6= r′1 ∗ · · · ∗ r′µ, which is

a contradiction. Therefore, it follows that the rows of A∗µi,m are all distinct. Furthermore,

from lemma 6.4 the weight of each row is
(
m−µ
i−µ
)
.

For the dimensions of A∗µi,m, since the length of the rows is preserved during coordinatewise

product the number of columns is equal to that of Ai,m, i.e.
(
m
i

)
. The number of rows in

A∗µi,m is equal to the number of possible permutations of µ different rows of Ai,m, i.e.
(
m
µ

)
.

Hence, A∗µi,m is an
(
m
µ

)
×
(
m
i

)
matrix.

57

We now proof that the columns in A∗µi,m are all distinct. Since the rows in A∗µi,m are all the

possible coordinatewise products of µ different rows of A∗µi,m, for two columns in A∗µi,m to

be the equal, the two corresponding columns in A∗µi,m must both be equal to 1 in the same

coordinates. Hence, if two columns are equal in A∗µi,m, then the corresponding columns in

Ai,m are equal, which is a contradiction, hence the columns in A∗µi,m are all distinct.

Lastly, we need to proof the weight of each column in A∗µi,m is
(
i
µ

)
. Note again that the

rows in A∗µi,m are all the possible coordinatewise products of µ different rows of Ai,m, and

the columns of Ai,m are equal to all vectors of length m with weight i. Hence, the weight

of the columns in A∗µi,m is equal to the number of ways in which to choose µ elements from

a set of i elements. Note, that these elements are equal to the 1’s in the columns of Ai,m.

It follows that the weight of the columns in A∗µi,m is
(
i
µ

)
.

By lemma 6.5, if M is a generator matrix for the code C(V,m) then M∗µ is a generator

matrix for some code

C̃∗µ(V,m) =
{
c1 ∗ · · · ∗ cµ : ci ∈ C(V,m), and ci 6= cj , for 1 ≤ i, j ≤ µ

}
.

Since the code C∗µ(V,m) =
{
c1 ∗ · · · cµ : ci ∈ C(V,m), for 1 ≤ i ≤ µ

}
, we have that

C∗µ(V,m) =
⊕

1≤i≤µ
C̃∗i(V,m).

Hence, if all codewords in C̃∗i(V,m) have even weight for all 1 ≤ i ≤ µ, then all codewords in

C∗µ(V,m) have even weight, and by lemma 6.3 LSSS(C(V,m)) has (µ, n)-product reconstruc-

tion.

We introduce a vector representation for the choice of V ⊆ {1, . . . ,m}. Let v ∈ Fm2 ,

where vi = 1 if i ∈ V , and vi = 0 if i /∈ V , for 1 ≤ i ≤ m. For notational ease we let

C(V,m) = C(v,m).

In the following we proof that the set of possible choices of v ∈ Fm2 such that all codewords

in C̃∗α(v,m) have even weight, for some 1 ≤ α ≤ m, is a subspace of Fm2 .

Theorem 6.6. The set of possible v ∈ Fm2 such that all codewords in C̃∗α(v,m) have even

weight, for 1 ≤ α ≤ m, is a subspace of Fm2 with dimension m− 1.

Proof. First note that if the rows of the generator matrix [A∗αi1,m . . . A
∗α
i|V |,m

], where V =

{i1, . . . , i|V |}, have even weight, then any codeword of C̃∗α(v,m) will also have even weight.

We divide the matrices A∗αi,m, for 1 ≤ i ≤ m, into three categories based on the weight of

their rows, zero, non-zero even, and odd.

58

Let emi be the ith standard vector of length m, i.e. emi = (0, . . . , 0, 1, 0, . . . , 0), where 1 is

the ith coordinate. The weight of the rows of each A∗αi,m, for 1 ≤ i ≤ α− 1, all have weight

zero, we define the set Zα = {emj : 1 ≤ j ≤ α − 1}. The set Zα denotes the choices of a

matrix Aj,m, where the rows of A∗αj,m have weight zero. Note, that if α = 1, then Zα = ∅.

For the rows of even weight we define the set Eα =
{
emj : α ≤ j ≤ m,

(
m−α
j−α

)
is even

}
.

The set Eα denotes the choices of a matrix Aj,m, where the rows of A∗αj,m have even weight.

For the matrices with rows of odd weight, we define a set of choices of pairs of matrices,

such that the combined matrix of the two will have rows of even weight. Let Fm
i,j =

(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) ∈ Fm2 , where the two 1’s occur at position i and j, and i < j.

Define the set Oα =
{
fmi,j :

(
m−α
i−α
)

and
(
m−α
j−α

)
are odd,

(
m−α
x−α

)
is even for all i < x < j

}
.

The set Oα denotes the choices of a consecutive pair of matrices, Ai,m and Aj,m, where

the rows of A∗αi,m and A∗αj,m have odd weight, hence the matrix [A∗αi,mA
∗α
j,m] has rows of even

weight.

Let v be a linear combination of vectors from Zα, Eα, and Oα, then the resulting generator

matrix M∗α will have rows of even weight. Hence, Zα ∪ Eα ∪ Oα ⊂ Fm2 is a basis for the

choices of v for which all codewords of C̃∗αv,m have even weight. Also, since |Zα| is equal

to the number of matrices with weight zero, |Eα| is equal to the number of matrices with

rows of non-zero even weight, and |Oα| is equal to the number of matrices with odd weight

minus one, it is clear that |Zα ∪ Eα ∪ Oα| = m − 1. Hence, the possible set of choices of

v ∈ Fm2 , where all codewords in C̃∗αv,m have even weight is a subspace of Fm2 with dimension

m− 1.

The proof of theorem 6.6 not only shows that for half of all possible v ∈ Fm2 the codewords

of C̃∗α(v,m) all have even weight, but also which v’s.

Example 6.7

Here we give an example of how to find the possible choices of V such that all codewords

in C∗2(V,m) have even weight. Let m = 4, and let R(A(i,m)) be the weight of the rows in

A(i,m), for 1 ≤ i ≤ m, then

R(A(1,4)) =

(
4− 1

1− 1

)
= 1, R(A(2,4)) =

(
4− 1

2− 1

)
= 3,

R(A(3,4)) =

(
4− 1

3− 1

)
= 3, R(A(4,4)) =

(
4− 1

4− 1

)
= 1.

Let Z1, E1, and O1 be as in the proof of theorem 6.6, then

Z1 = ∅, E1 = ∅, and O1 = {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)}.

59

Hence, the set of choices of V for which all codewords in C(V,4) have even weight is

V1 =
{
∅, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}

}
.

Note, that of the 24 = 16 sets in total, we find 8 possible choices for which the codewords

of C(V,4) will have even weight, which is equal to half of the sets, as shown in theorem 6.6.

We now do the same for C̃∗2(V,4).

R
(
A∗2(1,4)

)
=

(
4− 2

1− 2

)
= 0, R

(
A∗2(2,4)

)
=

(
4− 2

2− 2

)
= 1,

R
(
A∗2(3,4)

)
=

(
4− 2

3− 2

)
= 2, R

(
A∗2(4,4)

)
=

(
4− 2

4− 2

)
= 1.

Let Z2, E2, and O2 be as in the proof of theorem 6.6, then

Z2 = {(1, 0, 0, 0)}, E2 = {(0, 0, 1, 0)}, and O2 = {(0, 1, 0, 1)}.

Hence, the set of choices of V for which all codewords in C̃∗2(V,4) have even weight is

V2 =
{
∅, {1}, {3}, {1, 3}, {2, 4}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
.

It should be clear that the possible choices of sets V for which the codewords of both

C(V,m) and C̃∗2(V,m) have even weight are equal to the sets in V1 ∩ V2. Hence, V1 ∩ V2 is the

set of possible sets of V for which all codewords of C∗2(V,m) have even weight, i.e. the sets

V1 ∩ V2 =
{
∅, {1, 3}, {2, 4}, {1, 2, 3, 4}

}
.

It should be clear that even though ∅ is a possible choice, the resulting code is empty, and

hence is of no interest.

Let V = {1, 3}, then a generator matrix for C(V,4) is

G = [A1,4A3,4] =


1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

 .

Hence, LSSS(C(V,4)) has (2, 7)-product reconstruction, i.e. it is multiplicative. 4

In the above example we applied lemma 6.6 twice in order to find the set of V ’s for which

all codewords of C∗2(V,4) have even weight. In the following theorem we proof the number

of possible sets of V for which all codewords of C∗µ(V,m) have even weight.

60

Theorem 6.8 is closely related to theorem 6 in [5], however, the latter part of the proofs

are severely different.

Theorem 6.8. The set of possible v ∈ Fm2 such that all codewords of C∗µ(v,m) have even

weight is a subspace of Fm2 with dimension m− µ, for 1 ≤ µ ≤ m.

Proof. Let V =
{
i1, . . . , i|V |

}
, then M =

[
Ai1,m . . . Ai|V |,m

]
is a generator matrix for the

code C(v,m).

We note that if all codewords in C∗µ(v,m) have even weight, then the codewords in the codes

C̃∗α(v,m) all have even weight, for 1 ≤ α ≤ µ, where

C̃∗α(v,m) =
{
c1 ∗ · · · ∗ cα : ci ∈ C(v,m), and ci 6= cj , for 1 ≤ i, j ≤ α

}
.

From lemma 6.5 we have that the weight of the rows of A∗αi,m is
(
m−α
i−α
)
, for 1 ≤ i ≤ m.

Since, M∗α is the generator matrix for C̃∗α(v,m), it follows that if
∑

i∈V
(
m−α
i−α
)

is even, then

all codewords of C̃∗α(v,m) have even weight, for 1 ≤ α ≤ µ.

From theorem 6.6 we know that the set of possible v ∈ Fm2 such that all codewords in

C(v,m) have even weight is a subspace of Fm2 with dimension m − 1. Let this subspace

be Λ1 ⊂ Fm2 , and fix an isomorphism Ψ1 : Fm−1q → Λ1. Then let Λ2 ⊂ Λ1 ⊂ Fm2 be the

subspace consisting of v’s for which all codewords of both C(v,m) and C̃∗2(v,m) have even

weight.

Since, Ψ1

(
Fm−12

)
= Λ1, to find Λ2 is equivalent to finding the set U of possible vectors

u ∈ Fm−12 for which all codewords in C(u,m−1) have even weight, i.e. Ψ1(U) = Λ2. Hence

from theorem 6.6 it follows that the dimension of Λ2 = (m− 1)− 1 = m− 2. We can now

fix an isomorphism Ψ2 : Fm−2q → Λ2, and by induction we have that if Λµ is the set of

possible v ∈ Fm2 for which every codeword in C̃∗α(v,m), for all 1 ≤ α ≤ µ, have even weight,

then dim Λµ = m− µ, and the theorem follows.

From lemma 6.3 and theorem 6.8 we get the following corollary.

Corollary 6.9. The number of choices of v ∈ Fm2 such that C(v,m) has (µ, n)-product

reconstruction is 2m−µ.

6.1.1 Security of C(V,m)

In order to compute the bounds of the privacy and reconstruction of LSSS(C(V,m)), we

need the parameters of the code. It is clear from the matrices A(i,m) that k = dimC(V,m) =

m, and that n =
∑

i∈V
(
m
i

)
, for the minimum weight d we present the following theorem.

61

Theorem 6.10. The minimum weight of the code C(V,m) is

d = min
1≤u≤m

∑
i∈V

 ∑
u1≤j≤u2

(
u

2j − 1

)(
m− u

i− 2j + 1

) ,

where u1 = max
(
1, u+1+i−m

2

)
and u2 = min

(
i+1
2 , u+1

2

)
. [5]

Proof. Firstly, we consider the weight of a codeword obtained by the addition of u rows

in Ai,m, i.e. the linear combination of rows, for any 1 ≤ i ≤ m. Let v = r1 + · · · + ru =(
v1, . . . , v(mi)

)
, where r1, . . . , ru are u rows of Ai,m, and let rhj be the jth coordinate of

row rh, for 1 ≤ h ≤ u and 1 ≤ j ≤
(
m
i

)
.

If vj = 1, for some 1 ≤ j ≤
(
m
i

)
, then {r1j , . . . , ruj} contains an odd number of 1s. There

are
(
u
1

)(
m−1
i−1
)

possible choices of j, where {r1j , . . . , ruj} contains a single 1 and the rest

are 0, hence,
(
u
1

)(
m−1
i−1
)

1s will appear in the vector v. Similarly, if {r1j , . . . , ruj} contains

three 1s and the rest are 0, then there are
(
u
3

)(
m−u
i−3
)

possible choices of j. By induction

we get that the weight of the sum of m rows of Ai,m is

∑
j

(
u

2j − 1

)(
m− u

i− 2j + 1

)
.

Note, that the sum only works if 0 ≤ 2j − 1 ≤ u and 0 ≤ i − 2j + 1 ≤ m − u, i.e.

max (1, u+ i+ 1−m) ≤ 2j ≤ min (i+ 1, u+ 1), and the bounds u1 and u2 follow.

Now that we have the weight of the sum of u rows of Ai,m we expand this to the weight

of the sum of u rows of
[
Ai1,m . . . Ai|V |,m

]
, where V =

{
i1, . . . , i|V |

}
. The vector resulting

from the summation of u rows in this case, is simply equal to vectors as above appended

together, each from a matrix Ai,m, where i ∈ V . Hence, the weight of the sum of u rows

of the matrix
[
Ai1,m . . . Ai|V |,m

]
, where V =

{
i1, . . . , i|V |

}
, is

∑
i∈V

 ∑
u1≤j≤u2

(
u

2j − 1

)(
m− u

i− 2j + 1

) .

Lastly, since the matrix
[
Ai1,m . . . Ai|V |,m

]
, where V =

{
i1, . . . , i|V |

}
, is a generator matrix

for C(V,m), the possible sums of u rows of the matrix are the codewords of C(V,m) for

0 ≤ u ≤ m, where the sum of 0 rows is the zero codeword. Hence, the minimum weight of

the code C(V,m) is

min
1≤u≤m

∑
i∈V

 ∑
u1≤j≤u2

(
u

2j − 1

)(
m− u

i− 2j + 1

) ,

where u1 = max
(
1, u+1+i−m

2

)
and u2 = min

(
i+1
2 , u+1

2

)
.

62

We now give an example of MPC with multiplication using LSSS(C(V,m)).

Example 6.11

Let C(V,m) be the [n + `, k] code over F2, where n = 7, ` = 1, and k = 4, constructed in

example 6.7, i.e. V = {1, 3} and m = 4.

In order to map the secret to the first coordinate, the first column of the generator matrix

used in LSSS(C(V,m)) has to be equal to ek1. Here we use the matrix

G = [A1,4A3,4] =


1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1

 .

Using LSSS(C(V,m)) we want to solve the MPC f = s1 ∗ s2. Since f is only dependent

on s1 and s2, we only generate shares for s1 and s2. The secrets and shares for P1 and P2

are shown in table 6.1.

Pi si xi ∈ F32 (s1, xi)G Shares, ci

P1 1 (0, 1, 1) (1, 0, 1, 1, 0, 0, 1, 0) (0, 1, 1, 0, 0, 1, 0)

P2 0 (0, 1, 0) (0, 0, 1, 0, 1, 0, 1, 1) (0, 1, 0, 1, 0, 1, 1)

Table 6.1: Secrets and shares for participants P1 and P2.

Each participant receives a share from both P1 and P2, then computes their product.

Pi Share of s1 Share of s2 Product of shares, c̃i

P1 0 0 0

P2 1 1 1

P3 1 0 0

P4 0 1 0

P5 0 0 0

P6 1 1 1

P7 0 1 0

Table 6.2: The shares of s1 and s2 as distributed among the participants and the computed
product of the received shares.

As shown in the proof of theorem 2.12, we know that

ρI
(
c ∗ c′

)
= −

n∑
i=1

cic
′
i ≡ (q − 1)

n∑
i=1

cic
′
i,

63

hence the recombination matrix is R = [q − 1, . . . , q − 1]T . Therefore, each participant Pi

generates shares for (q− 1)c̃i, where c̃i is the product of the participant’s received shares,

for 1 ≤ i ≤ 7. Note, that since q = 2, the participants generate shares for the product of

the received shares.

Pi c̃i xi ∈ F32 (c̃i, xi)G Shares of c̃i

P1 0 (0, 1, 1) (0, 0, 1, 1, 1, 1, 0, 0) (0, 1, 1, 1, 1, 0, 0)

P2 1 (1, 0, 0) (1, 1, 0, 0, 0, 0, 1, 1) (1, 0, 0, 0, 0, 1, 1)

P3 0 (0, 1, 0) (0, 0, 1, 0, 1, 0, 1, 1) (0, 1, 0, 1, 0, 1, 1)

P4 0 (0, 1, 1) (0, 0, 1, 1, 1, 1, 0, 0) (0, 1, 1, 1, 1, 0, 0)

P5 0 (1, 0, 1) (0, 1, 0, 1, 1, 0, 1, 0) (1, 0, 1, 1, 0, 1, 0)

P6 1 (1, 0, 1) (1, 1, 0, 1, 0, 1, 0, 0) (1, 0, 1, 0, 1, 0, 0)

P7 0 (1, 0, 0) (0, 1, 0, 0, 1, 1, 0, 1) (1, 0, 0, 1, 1, 0, 1)

Table 6.3: Shares generated by each participant for the secrets c̃i.

The shares generated for each participant’s computed product of shares is listed in table

6.3. Each participant receives a share from each of the other participants and sums the

shares to get a share of s1 ∗ s2. The received shares for each participant and their sum are

listed in table 6.4.

Pi Shares received Sum of shares

P1 (0, 1, 0, 0, 1, 1, 1) 4 ≡ 0

P2 (1, 0, 1, 1, 0, 0, 0) 3 ≡ 1

P3 (1, 0, 0, 1, 1, 1, 0) 4 ≡ 0

P4 (1, 0, 1, 1, 1, 0, 1) 5 ≡ 1

P5 (1, 0, 0, 1, 0, 1, 1) 4 ≡ 0

P6 (0, 1, 1, 0, 1, 0, 0) 3 ≡ 1

P7 (0, 1, 1, 0, 0, 0, 1) 3 ≡ 1

Table 6.4: The shares received by each participant for the secrets c̃i, and their sums.

Lastly, we reconstruct the secret from the share vector (0, 1, 0, 1, 0, 1, 1), by solving the

linear equation system (s, x)G = (s, 0, 1, 0, 1, 0, 1, 1), where s = s1 ∗ s2. From the equation

system we get

x1 = 0, x2 = 1,

x3 = 0, s+ x1 + x2 = 1,

s+ x1 + x3 = 0, s+ x2 + x3 = 1,

x1 + x2 + x3 = 1.

Solving the equations we get s = s1 ∗ s2 = 0. 4

64

By lemma 6.3 the code C(V,m) used in example 6.7 and 6.11 is self dual, hence d = d⊥. In

order to compute the privacy and reconstruction bounds of the scheme, we first compute

the minimum weight d.

d = min
1≤u≤m

∑
i∈V

 ∑
max(1,u+1+i−m

2
)≤j≤min(i+1

2
,u+1

2
)

(
u

2j − 1

)(
m− u

i− 2j + 1

)
= min

1≤u≤4

∑
i∈{1,3}

 ∑
max(1,u+1+i−4

2
)≤j≤min(i+1

2
,u+1

2
)

(
u

2j − 1

)(
4− u

i− 2j + 1

)
= min

((
3

0

)
+

(
3

2

)
= 4,

(
2

1

)
+

(
2

1

)
= 4,

(
3

1

)
+

(
3

3

)
= 4,

(
4

1

)
+

(
4

3

)
= 8

)
= 4.

Hence, the bounds of the privacy and reconstruction of LSSS(C(V,m)), as given by theorem

1.7, are

t ≥ d⊥ − `− 1 = d⊥ = d = 4

r ≤ n+ `− d+ 1 = 8− 4 + 1 = 5.

Since the security of the MPC follows from the security of the SSS used, optimal security

requires a high t and a low r, as mentioned in section 1.3. In this case we see that the

bounds are sharp, hence t = 4 and r = 5.

If we compare the security of LSSS(C(V,m)) from example 6.11 and the Reed-Muller based

SSS from example 4.5, since they have the same number of participants, 7, we can simply

check the bounds of the of t and r. We see that in this case they are equal, and for both

the bounds are sharp.

6.2 Example of Grouping Multiplications

In this section we give an example of protocol 4 using LSSS(C(V,m)) with (3, n)-product

reconstruction. However, we first give an example of the construction of C(V,m), where all

codewords in C∗3(V,m) have even weight.

Example 6.12

In example 6.7 showed that the possible choices of V , such that C(V,4) has (2, n)-product

reconstruction, are

V1 ∩ V2 =
{
∅, {1, 3}, {2, 4}, {1, 2, 3, 4}

}
.

Hence, if V3 is the set of possible V ’s where all codewords in C̃∗3(V,4) have even weight, then

(V1 ∩ V2)∩ V3 is the set of possible V ’s for which C(V,4) has (3, n)-product reconstruction.

65

Let R(A∗αi,m) be the weight of rows in A∗αi,m, as in example 6.7, then

R
(
A∗3(1,4)

)
=

(
4− 3

1− 3

)
= 0, R

(
A∗3(2,4)

)
=

(
4− 3

2− 3

)
= 0,

R
(
A∗3(3,4)

)
=

(
4− 3

3− 3

)
= 1, R

(
A∗3(4,4)

)
=

(
4− 3

4− 3

)
= 1.

Let Z3, E3, and O3 be as in the proof of theorem 6.6, then

Z3 = {(1, 0, 0, 0), (0, 1, 0, 0)}, E3 = ∅, and O3 = {(0, 0, 1, 1)}.

Hence, V3 =
{
∅, {1}, {2}, {1, 2}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
, and

(V1 ∩ V2) ∩ V3 =
{
∅, {1, 2, 3, 4}

}
.

It follows that for C(V,4) to have (3, n)-product reconstruction V = {1, 2, 3, 4}, and thus a

generator matrix for C(V,4) is

G = [A1,4A2,4A3,4A4,4] =


1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

 .

4

In the following example we will use the C(V,m) code constructed in example 6.12 to solve

the function f = s1 ∗ s2 ∗ s3 using protocol 4.

Example 6.13

Let C(V,m) be the [n + `, k] code over F2, with V = {1, 2, 3, 4}, m = 4, and ` = 1, hence

k = 4, n = 14, and G = [A1,4A2,4A3,4A4,4] is a generator matrix for C(V,m). For the

LSSS(C(V,m)) the generator matrix used to generate shares must map the secret to the

first coordinate, hence we choose to use G.

Using LSSS(C(V,m)) we want to solve the MPC f = s1 ∗s2 ∗s3. Since f is only dependent

on s1, s2, and s3, we only generate shares for these secrets. The secrets and shares for P1,

P2, and P3 are shown in table 6.5.

Pi Si xi ∈ F32 (si, xi)G Shares, ci

P1 1 (1, 1, 0) (1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1) (1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1)

P2 1 (0, 1, 0) (1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0) (0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0)

P3 1 (1, 0, 1) (1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1) (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1)

Table 6.5: Secrets and shares for participants P1, P2, and P3.

66

Each participant receives a share from P1, P2, and P3, then computes their product. The

shares received by participant Pi of each secret and the product of these shares are shown

in table 6.6.

Pi Share of s1 Share of s2 Share of s3 Product of shares, c̃i

P1 1 0 1 0

P2 1 1 0 0

P3 0 0 1 0

P4 0 1 0 0

P5 0 0 1 0

P6 1 1 0 0

P7 0 1 1 0

P8 1 0 0 0

P9 1 1 1 1

P10 1 0 0 0

P11 0 1 1 0

P12 0 0 0 0

P13 0 1 0 0

P14 1 0 1 0

Table 6.6: The shares of s1, s2, and s3 as distributed among the participants.

From the proof of theorem 6.2 we have that RI,3j ≡ 1 mod 2, for all 1 ≤ j ≤ 14. Therefore,

each participant Pi generates shares for c̃i, which is the product of the participant’s received

shares, for 1 ≤ i ≤ 14. The shares generated for each participant’s computed product of

shares is listed in table 6.7.

67

Pi c̃i xi ∈ F32 (c̃i, xi)G Shares of c̃i

P1 0 (1, 1, 1) (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)

P2 0 (0, 1, 1) (0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0) (0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0)

P3 0 (1, 1, 1) (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)

P4 0 (0, 0, 1) (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) (0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)

P5 0 (1, 1, 1) (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)

P6 0 (1, 0, 0) (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) (1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)

P7 0 (0, 1, 1) (0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0) (0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0)

P8 0 (1, 0, 0) (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) (1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)

P9 1 (0, 1, 0) (1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0) (0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0)

P10 0 (0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

P11 0 (1, 1, 1) (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)

P12 0 (1, 1, 0) (0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0) (1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0)

P13 0 (1, 1, 1) (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1)

P14 0 (1, 0, 0) (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) (1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)

Table 6.7: Shares generated by each participant for the secrets c̃i.

Each participant receives a share from each participant and sums the shares to get a share

of s1 ∗ s2 ∗ s3. The received shares and their sum are listed in table 6.8.

Pi Shares received Sum of shares

P1 (1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1) 9 ≡ 1

P2 (1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0) 9 ≡ 1

P3 (1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0) 8 ≡ 0

P4 (1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1) 10 ≡ 0

P5 (1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0) 8 ≡ 0

P6 (1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) 9 ≡ 1

P7 (0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1) 6 ≡ 0

P8 (0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1) 7 ≡ 1

P9 (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0) 3 ≡ 1

P10 (0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1) 5 ≡ 1

P11 (0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1) 8 ≡ 0

P12 (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) 2 ≡ 0

P13 (1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1) 10 ≡ 0

P14 (1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1) 9 ≡ 1

Table 6.8: The shares received by each participant for the secrets c̃i, and their sums.

68

Each participant now has a share of the secret s1 ∗ s2 ∗ s3. Lastly, we reconstruct the

secret from the share vector (1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1), by solving the linear equation

system (s, x)G = (s, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1), where s = s1 ∗ s2 ∗ s3. From the

equation system we get

x1 = 1, x2 = 1,

x3 = 0, s+ x1 = 0,

s+ x2 = 0, s+ x3 = 1,

x1 + x2 = 0, x1 + x3 = 1,

x2 + x3 = 1, s+ x1 + x2 = 1,

s+ x1 + x3 = 0, s+ x2 + x3 = 0,

x1 + x2 + x3 = 0, s+ x1 + x2 + x3 = 1.

Solving the equations we get s = s1 ∗ s2 ∗ s3 = 1. 4

69

70

7
Discussion

In this chapter we will examine the results and theory presented in the report, and look at

the possible expansion for future work. We divide the chapter into three parts, protocols,

secret sharing schemes, and future work.

7.1 Protocols

The project has presented four different protocols that uses linear SSSs to solve MPC

problems. Each protocol starts with each participant generating shares for their private

data and distributing the shares among the participants according to the SSS.

The actively secure MPC protocol for addition and scalar multiplication, protocol 1, simply

applies the properties of a linear SSS. After having received the initial shares, the partici-

pants are each able to locally compute a share of the function’s result from their received

shares. However, the function has to consist solely of additions and scalar multiplications.

The passive and active security of protocol 1 follows directly from the linear SSS that

is used. In this report we focus on linear SSS constructed with linear codes, hence, the

reconstruction of the secret is equivalent to erasure and error correction, as shown in

section 1.3.

The passively secure MPC protocol for any function, protocol 2, requires the SSS to be

multiplicative. This is due to the fact that since we are working in finite fields, any

function f : F`q → F`q is equivalent to a polynomial p ∈ F`q[x], where deg p < q`, hence

only addition, scalar multiplication, and multiplication of secrets are necessary in order

to solve any function in a finite field. And a multiplicative SSS allows for reconstruction

of the coordinatewise product of secrets from the coordinatewise product of their shares,

see definition 2.3 and definition 2.4.

71

Protocol 2 is not actively secure since each multiplication requires the participants to

generate and distribute shares, and if one participant’s shares are missing or incorrect,

then the summation of the received shares will be incorrect for all participants. However,

the protocol is still passively secure, which follows from the multiplicative SSS used.

For protocol 1 and protocol 2 it was initially assumed that all participants are honest

during the initial distribution of shares, however, since this is not always the case we

introduce a distribution methodology in section 5.1 that will fail if too many participants

are accused as corrupt. To implement this for protocol 1 and protocol 2 we simply make

the following observation.

For the initial distribution if only one participant’s distribution fails, then any MPC in-

volving that participant’s private data would fail. For a participant to fail in a passively

secure MPC, e.g. protocol 2, only one participant needs to accuse the participant, where

for an actively secure MPC, using a SSS with t-privacy, more than t participants would

have to accuse the participant for his or her initial distribution to fail.

By revising the multiplication step of protocol 2, and applying the improved distribution

methodology from section 5.1, we construct an actively secure MPC protocol for any

function in section 5.2, protocol 3, if ` = 1, using a strongly multiplicative SSS, see

definition 2.6. The active security of this protocol follows from the strongly multiplicative

property, and the passive security follows from the SSS.

Lastly, in chapter 6 we show how to reduce the number of times the participants have

to generate and distribute shares due to multiplications. In order to do this we first

expand the definition of product reconstruction, see definition 6.1. From this property we

revise protocol 2 to construct a passively secure MPC protocol for any function including

grouping of up to µ multiplications, protocol 4, which uses a linear SSS with (µ, n)-

product reconstruction. The security of protocol 4 follows as for protocol 2, with the

passive security following from the (µ, n)-product reconstruction.

7.2 Secret Sharing Schemes

Throughout the project we solve MPC problems using SSSs, and every protocol we in-

troduce throughout the project requires some form of SSS. Therefore, SSSs and their

properties are central to the project.

Each protocol requires a different property of the SSSs. Protocol 1 only requires the SSS

to be linear, protocol 2 requires that the SSS is multiplicative, protocol 3 requires that the

SSS is strongly multiplicative, and lastly protocol 4 requires the SSS to have (µ, n)-product

reconstruction.

72

In chapter 1 we introduce the basics of SSSs as well as two constructs of linear SSSs

using linear codes. In section 1.1 we define the LSSS(C) schemes, which are a ramp

version of Massey’s secret sharing scheme [11], see definition 1.5. And in section 1.2 we

introduce LSSS(Ĉ, C), see definition 1.9, which hides the secret in a subcode, rather than

coordinates of the codewords, as is done with LSSS(C).

Therefore, Ĉ ⊆ Fnq in LSSS(Ĉ, C), hence all n coordinates of the codewords are used as

shares, whereas in LSSS(C) some of the codewords’ length is reserved for hiding the secret,

and hence cannot be used as shares. Furthermore, where LSSS(C) has the restriction

` < d⊥, LSSS(Ĉ, C) only has the restriction ` < n. And lastly, we proof in theorem 1.10

that any linear SSS is equivalent to some LSSS(Ĉ, C).

From section 1.1 and section 1.2 it would seem that LSSS(Ĉ, C) is the clear choice of

SSSs to use for MPC. However, for the protocols where the SSS needs to be multiplicative,

proving that LSSS(Ĉ, C) is multiplicative is difficult. Therefore, we study the codes

C for which LSSS(C) is multiplicative, strongly multiplicative, or has (µ, n)-product

reconstruction.

In section 1.3 we introduce the concept of security of SSSs. Since the protocols in the

project uses SSSs, most of the security described in section 1.3 applies to the protocols as

well. We also show how to reconstruct secrets from shares for the two types of schemes

LSSS(C) and LSSS(Ĉ, C). Since both types of schemes are constructed by linear codes

the methodologies for reconstruction implement the coding theoretical concepts of erasure

and error correction.

Section 2.2 introduces multiplicative SSSs, and we proof a bound for the privacy of both

multiplicative and strongly multiplicative SSSs, see theorem 2.5 and theorem 2.7. In

section 2.3 we look at multiplicative LSSS(C), and show that if C is self-orthogonal and

` = 1, then LSSS(C) is multiplicative, see theorem 2.12.

Chapter 3 and chapter 4 both consider different families of codes, Reed-Solomon and

Reed-Muller codes respectively, and show how to find a code C, where LSSS(C) is mul-

tiplicative. In chapter 3 the LSSS(C) is shown to be multiplicative if C is an [n + `, k]

Reed-Solomon code, where k ≤ n+1
2 , see theorem 3.1, and in section 3.1 we show how to

construct the SSS’s recombination matrices.

In chapter 4 we show the dual code of a Reed-Muller code, see theorem 4.3, and by applying

theorem 2.12 we found that LSSS(C) is multiplicative, where C is an (ζ,m) Reed-Muller

code over F2 if 2ζ = m− 1 and ` = 1, see corollary 4.4.

Lastly, in section 6.1 we looked at constructing codes such that LSSS(C) has (µ, n)-

product reconstruction. The codes C(V,m) are constructed similarly to Reed-Muller codes,

but rather than evaluating at all points only evaluates at points with Hamming weight i,

where i ∈ V . By choosing V such that all codewords in C∗µ(V,m) have even weight, as shown

73

in the proof of theorem 6.6, we have that LSSS(C(V,m)) has (µ, n)-product reconstruction

by lemma 6.3.

7.3 Future Work

This section will serve as a list of possible branches of work that can expand or improve

on the results of the project.

Better bounds of privacy and reconstruction

The study of generalized Hamming weight (GHW) and relative generalized Hamming

weight (RGHW) can be shown to find the exact values of the privacy and reconstruction

of LSSS(C) and LSSS(Ĉ, C), respectively, as shown in [8]. However, it can be difficult

to find the exact values of GHW and RGHW, hence in the case of RGHW [8] employs the

Feng-Rao bounds to estimate the RGHW.

Other families of codes

In this project we only show multiplicative LSSS(C), where C is a Reed-Solomon code,

a Reed-Muller code, or a code constructed from a Reed-Muller code. A clear way of

expanding the results of the project would be to proof when LSSS(C) is multiplicative,

strongly multiplicative, or has (µ, n)-product reconstruction for other families of codes.

E.g. toric codes, which was done in [9]. Similarly, the project could be further expanded

by the study of when LSSS(Ĉ, C) is multiplicative, strongly multiplicative, or has (µ, n)-

product reconstruction.

Improve protocols

In chapter 6 we showed how to group together up to µ multiplications in a MPC protocol,

using a SSS with (µ, n)-product reconstruction, in order to reduce the distributions of

secrets during multiplications. Though neither of our protocols clarifies this, the grouping

of any number of additions and scalar multiplications is possible if the SSS is linear.

Protocol 4 is only passively secure, and no actively secure version of the protocol is pre-

sented in the project, hence it would be useful to attempt to construct an actively secure

version of protocol 4, possibly as a revised version of protocol 3.

74

Bibliography

[1] Maria Bras-Amorós and Michael E. O’Sullivan. Duality of several families of evalua-

tion codes. 2013. pages 41

[2] Ignacio Cascudo. Secret sharing schemes swith algebraic properties and applications.

Pursuit of the Universal: 12th Conference on Computability in Europe, pages 68–77,

2016. pages 23, 26

[3] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod Vaikun-

tanathan. Secure computation from random error correcting codes. Eurocrypt, 2007.

pages 4, 7, 8

[4] Ronald Cramer, Ivan Bjerre Damgaard, and Jesper Buus Nielsen. Secure Multiparty

Computation and Secret Sharing. 2015. pages 23, 47, 49

[5] Iwan Duursma and Jiashun Shen. Multiplicative secret sharing schemes from reed-

muller type codes. IEEE International Symposium on Information Theory Proceed-

ings, 2012. pages 57, 61, 62

[6] Olav Geil. Evaluation codes from an affine variety code perspective. pages 40

[7] Olav Geil, Stefano Martin, Umberto Maŕınez-Peñas, Ryutaroh Matsumoto, and Diego

Ruano. On asymptotically good ramp secret sharing schemes. 2016. pages 8

[8] Olav Geil, Stefano Martin, Ryutaroh Matsumoto, Diego Ruano, and Yuan Lou. Rel-

ative generalized hamming weights of one-point algebraic geommetric codes. IEEE

Transactions on Information Theory, October 2014. pages 10, 74

[9] Johan P. Hansen. Secret sharing schemes with strong multiplication and a large

number of players from toric varieties. 2014. pages 74

[10] Tadao Kasami, Shu Lin, and W. Wesley Peterson. New generalizations of the reed-

muller codes - part i: Primitive codes. IEEE Transactions on Information Theory,

1968. pages 40

75

[11] J.L. Massey. Some apllications of coding theory in cryptography. Codes and Ciphers:

Cryptography and Coding IV, 1995. pages 3, 73

76

	1 Secret Sharing Schemes
	1.1 LSSS(C)
	1.2 LSSS(,C)
	1.3 Security of Secret Sharing Schemes

	2 Multi-Party Computation
	2.1 MPC Protocol for Addition using Linear SSS
	2.2 Multiplicative Secret Sharing Schemes
	2.2.1 Passively secure MPC protocol for multiplication

	2.3 Multiplicative LSSS(C)

	3 Reed-Solomon Codes
	3.1 Recombination Matrix for Reed-Solomon codes

	4 Reed-Muller Codes
	5 Actively Secure MPC Protocol
	5.1 Distribution Method for Active Security
	5.2 Actively Secure Multiplication

	6 Passively Secure MPC Protocol for Grouping of Multiplications
	6.1 Spherically Punctured Reed-Muller Codes
	6.1.1 Security of C(V,m)

	6.2 Example of Grouping Multiplications

	7 Discussion
	7.1 Protocols
	7.2 Secret Sharing Schemes
	7.3 Future Work

	Bibliography

