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Abstract:

This project is on autonomous quadro-
tor flight. In relation to the UAWORLD
project it is desired to fly indoors us-
ing simple sensors. For good estimation
of the states a position measurement is
needed. A system from GamesOnTrack
is in this project used for this. This
leaves some problems in terms of mea-
surement of the states, which is solved in
this project with different estimators (Ex-
tended Kalman Filter and sensor driven
Extended Kalman filter). For more appli-
cable flight capability, the quadrotor sys-
tem should also be able to yaw freely, also
while moving. This allows for a payload
to be pointed in a desired direction. This
problem is handled by good yaw estima-
tion and by generating the error vector in
the body reference frame. The error vector
could then be used with a Linear Quadratic
Regulator (LQR) for flight in three dimen-
sions and with free yaw control. It is also
desired that the quadrotor should be tol-
erant to physical disturbances. Different
methods for handling these is therefore in-
vestigated. The system was tuned and
tested through simulation. An implemen-
tation scheme was designed but was un-
fortunately never implemented on the real
system.

The contents of this report is freely accessible, however publication (with source references) is only
allowed upon agreement with the authors.
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Group Members

Reading guide

To ease the reading of the report an introduction to the syntax used is given.

Internal references

All references in the report is denoted as for example Figure 6.2. All equations is denoted
with parentheses and the equation number as for instance: (3.2).

Note on notation

To separate vectors and matrices from scalars they are written like this:

Matrices : A

Vector : v̄

Identity matrix : 1

Reference frames

In this study there is used four reference frames. When something is described in a specific
reference frame it is assigned with the following letters.

Inertial Reference Frame: i

Body Reference Frame: b

The entity in question is then notated as bX in case it is in body reference frame. When
an entity has to be rotated from one reference frame to another a rotation matrix is used.
These are denoted h

i R where the lower case is where it is from and the upper case is where
it is to.
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Abbreviations

AAU . . . . . . . . . Aalborg University

BRF . . . . . . . . . Body Reference Frame

EKF . . . . . . . . . Extended Kalman Filter

ESC . . . . . . . . . Electronic Speed controller

GOT . . . . . . . . GamesOnTrack

IMU . . . . . . . . . Inertial Measurement Unit

IRF . . . . . . . . . Inertial Reference Frame

LQR . . . . . . . . . Linear Quadratic Regulator

PID . . . . . . . . . Proportion-Integral-Derivative

PWM . . . . . . . . Pulse Width Modulation

RPM . . . . . . . . Rotations Per Minute

SDK . . . . . . . . . Software Development Kit
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Chapter 1

Introduction

Quadrotors has recently become a viable platform for many applications, due to the
advancements in Inertial Measurement Unit (IMU), Electronic Speed controller (ESC)
and batteries precision and price. Aalborg University (AAU) is involved with a project
called UAWORLD, which is aimed at indoor quadrotor flight for industrial tasks. There
have been several student projects in UAWORLD. Most of these has flown with locked
yaw orientation. Which is okay for some applications, but not ideal. This project will
not use locked yaw, but will instead show how "forward flight" can be automated, and
explain why it is an advantage in some cases. For this type of flight to function, a good
estimation of the yaw is needed. Another parallel problem is disturbances. If a quadrotor
is to be used for any physical tasks, such as lifting or spraypainting, then it will experience
an external force. This project will investigate what effect these can have on a quadrotor,
and how they can be handled. [Nielsen 15]

1.1 Problem Description

The main problems this project will deal with, is the problem handling disturbances and
flying with yaw.

This problem opens up a series of other problems which is related to such operations:

1. Interacting with other physical objects would properly require precise position and
orientation (attitude) control. This leads to the problem: How does a quadrotor fly
and operate at/between different positions with different orientations.

2. How does a system calculate its states when not all are measured.

3. Most quadrotor models does not take external forces into account, since it is assumed
that there will be no physical contact with other objects. This leads to the problem:
How can an autonomous controller handle physical disturbances.

1.2 Report outline

Chapter 2. System Overview: This chapter outlines how the system works in general,
both the internal of the quadrotor and the overall setup.

Chapter 3. Modelling This chapter describes what tools have been used to model the
quadrotor, and outline the modelling process.
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1. Introduction

Chapter 4. Controller This Chapter details how the controller for the quadrotor is
designed, and what thoughts has gone into the design choices.

Chapter 5. Disturbances As described in the problem formulation, the quadrotor can
expect to be disturbed by external forces. This Chapter describes these disturbances,
and how they can be: predicted, modelled and handled.

Chapter 6. Estimation This Chapter describes how the sensor suit is used to estimate
the position and attitude of the quadrotor.

Chapter 7. Simulation In this Chapter, a short introduction to the simulation
environment is given. The different simulation scenarios is then presented with their
results.

Chapter 8. Implementation The designs and systems made through out this project
is implemented on a real quadrotor. A short run through all the solution is described
in this chapter.

Chapter 9. Closure Conclusions are drawn based on the simulations and tests results.
The project is wrapped up and evaluated. Suggestions for future projects based on
experiences are presented.

4



Chapter 2
System Overview

Quadrotors are a subgroup of helicopters, signified by having four rotors mounted vertically.
The rotors are usually powered by brushless electric motors, which in turn is powered and
controlled by ESC. Quadrotors are normally equipped with a series of internal sensors,
such as 3D-gyroscopes and accelerometers. These are used to make an estimate of the
quadrotors state.

In this project, the quadrotor will be equipped with a disturbance- predictor and modeller.
This system will be able to predict when and how a known disturbance is going to enter
the system, and how it will affect the system.

In Figure 2.1 an overview of the internals of the system is shown.

Ref. Errorb

Disturbance
predictor

Disturbance
Controller

Motors

Body

SensorsEstimator

Flight
ctrl.

Figure 2.1: Overview of the quadrotors internal control system

All indoor quadrotor flight at AAUs Automation and control section is done in its “Vicon
lab”. It is an unfurnished room big enough for basic flight tests, equipped with two
measuring systems. The first system is a Vicon system. It uses infra-red light and reflectors
to measure the position and orientation of the test subject. The second system is a newly
aquired system called GamesOnTrack, which uses ultra sound trilateration to measure
the position of the test subject. Both systems interface with desktop computer in the
adjacent room. The Vicon data is used as true value when evaluating the system, the
GamesOnTrack (GOT) data is forwarded to the quadrotor. The test executer should also
be able to interface with the quadrotor. A wireless link is therefore introduced. A diagram
of the setup can be seen on Figure 2.2
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2. System Overview

DUT
(Device

Under Test)

Vicon System

GamesOnTrack

Laboratory
Computer

Interface computer

Test executioner

Wireless connection

Figure 2.2: Diagram of the laboratory setup
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Chapter 3

Modelling

This chapter will describe the quadrotor in mathematical form, such as to allow the design
of controllers for autonomous flight

The models have been extracted in many previous projects, so this chapter will focus on
showing the models rather than extrapolating them.

3.1 Reference frames

Reference frames are an important tool for modelling systems in relation to each other.
Right handed cartesian coordinate system are used. A reference frame is defined by its
origin and the direction of two of its axis, as the third is then given.

3.1.1 Inertial reference frame

The Inertial Reference Frame (IRF) is set to be the drone laboratory in which test will be
executed. With origin in the centre of the room, at ground level. And the x-and y-axis
parallel with the walls, such as to match the Vicon system and the GOT. The Z-axis is
thereby defined as being positive toward the roof. The coordinate system is notated as "i"
{ix̄,iȳ,iz̄}

3.1.2 Body reference frame

The Body Reference Frame (BRF) is fixed in the quadrotor. The BRF origin is in the
centre of mass of the quadrotor. The x-axis is the roll-axis, and is set to be between two
of the "arms" of the quadrotor. The y-axis is the pitch axis, and is set to be 90 degrees
in horizontal plane from the x-axis. The z-axis is thereby defined to be the vertical axis.
The coordinate system is notated as "b" {bx̄,bȳ,bz̄}. The coordinate system can be seen
on Figure 3.1
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3. Modelling

bx̄

bȳ bz̄

1

23

4

d

Figure 3.1: The BRF in relation to the quadrotor

3.2 Quadrotor parameters

3.2.1 Actuator

The quadrotor have four actuators, in the form of the four brushless motors and their
attached propellers. The propellers spin in clockwise and anti-clockwise direction in pairs,
as illustrated in Figure 3.1. The motor is powered by a three phase signal coming from
an ESC, which is controlled by a Pulse Width Modulation (PWM) signal from the micro
controller. The relation between the PWM and the Rotations Per Minute (RPM), and the
relation between RPM and thrust was found in a previous project. The result of these can
be seen in [Thomsen 15]. These measurements are used to find the different gains.

3.2.2 Mass

The mass of the quadrotor affects it in several ways. The weight itself results in a force
downward (gravity). The distribution of mass throughout the quadrotor affects the change
in rotation speed. It is therefore important to have a an estimate of the weight and the
distribution of mass. The mass properties were found in [Thomsen 15] to be: The mass of
the quadrotor is: 1250grams
The total moment of inertia matrix was found to be:

I =

0.0088 0 0
0 0.0088 0
0 0 0.176

 kg ·m2 (3.1)

3.3 Kinematic model

Quaternions is used for describing attitude in this project. The kinematic models describe
the derivative of the quaternion, equalling the angular velocity of the attitude

q(t) is the attitude of the quadrotor at the time t, and q(t + ∆t) is the attitude at the
time t+ ∆t. q(t+ ∆t) can be seen as the quaternion multiplication of q(t) and q′(∆t).

At infinitesimal small rotations (∆Φ) the following approximation can be used:

cos

(
∆Φ

2

)
≈ 1

sin

(
∆Φ

2

)
≈ 1

2
ω∆t

(3.2)
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3.4. Dynamic model

ω is the angular velocity. By using these approximations, the following equation can be
found:

q̄(t+ ∆t) ≈

14x4 +
1

2
ω∆t


0 −u1 −u2 −u3
u1 0 −u3 u2
u2 u3 0 −u1
u3 −u2 u1 0


 · q̄(t) (3.3)

This can be rewritten as:

q(t+ ∆t)− q(t)

∆t
=

1

2
Ω(t)4×4 · q(t) (3.4)

WhereΩ(t)4×4 is a skew symmetric quaternion multiplication matrix.

Ω(t)4×4 =


0 −ω1(t) −ω2(t) −ω3(t)

ω1(t) 0 −ω3(t) ω2(t)
ω2(t) ω3(t) 0 −ω1(t)
ω3(t) −ω2(t) ω1(t) 0

 , ω̄ = ω · ū (3.5)

The time derivative of q(t) is then found be letting ∆t go towards zero, thereby finding
the kinematic function:

q̇(t) = lim
∆t→0

q(t+ ∆t)− q(t)

∆t
=

1

2
·Ω(t)4×4 · q(t) (3.6)

The time derivative of a rotation matrix ([̇R](t)) is found in a similar matter to be:

Ṙ(t) = −Ω(t)3×3 ·R(t) (3.7)

Where:

Ω(t)3×3 =

 0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

 (3.8)

and R(t) is the rotation matrix with the follow property:

yv̄ = y
xR(t) xv̄ (3.9)

In both q̇(t) and Ṙ(t) is it seen that the time derivative of the orientation is dependant
on the current orientation, and the angular velocity.

3.4 Dynamic model

This chapter will outline the dynamics present in a quadrotor. The quadrotor is assumed
to be rigid.

The quadrotor has six degrees of freedom, translation in three dimensions and orientation
in three dimensions, all containing dynamics. The dynamics are therefore split into
rotational- and translation-dynamics.

3.4.1 Rotational dynamics

The rotational dynamics describe how the quadrotor reacts to torques, in relation to its
current orientation and rotation speed.
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3. Modelling

Eulers second law states:
iτ̄ (t) =

i ˙̄L(t) (3.10)

Where iτ̄ (t) is the torques acting on the quadrotor, and
i ˙̄L(t) is the change in angular

momentum. In order for introducing external disturbances later, the actuator torque is
modelled as bτ̄ (t) and the disturbance torque is modelled as iτ̄ ext(t). The relation between
the these two torques is:

iτ̄ (t) = iτ̄ ext(t) + i
bR(t)(t) · bτ̄ (t) (3.11)

Angular momentum of the quadrotors rigid body is defined as:

i
L̄b = Iquad · iω̄(t) (3.12)

Where Iquad is the moment of inertia of the quadrotors rigid body, and iω̄(t) is the rotation
speed of the quadrotor body, in the IRF. The propellers and the rotating part of the motor
also have an angular momentum. The fact that their centre of rotation is not in the centre
of mass of the quadrotor has no effect, it also has no effect that they do not spin in the
same direction [Symon 71] . The angular momentum for each propeller is:

i
L̄n = Iprop. · iω̄n(t) (3.13)

Where iω̄n(t) is the rotation speed of propeller "n". The rotation speed of the propellers are
controlled by the quadrotor. The moment of inertia of each propeller is found by assuming
uniform mass distribution, with the mass being eight grams and the length being 25cm.

I =
1

12
· 0.008kg · (0.25m)2 = 0.00004166kg ·m2 (3.14)

The angular momentums can be summed together:

i
L̄ =

i
L̄b +

4∑
n=1

i
L̄n (3.15)

The moment of inertia of the propellers are significantly smaller than the body’s, but
spinning at 4000 RPM, their angular momentum contribution is relevant for the model.

To get external torques into the system, a translation for IRF to BRF is made:

b
L̄(t) = b

iR(t) · iL̄(t) (3.16)

Using the derivative kinematics from 3.7:

b ˙̄L(t) =
b
iṘ(t) · iL̄(t) + b

iR(t) ·
i ˙̄L(t) (3.17)

By using equation 3.10 to replace
i ˙̄L(t) with iτ̄ (t) the following can be derived:

b ˙̄L(t) = Iquad ·
b ˙̄ω(t) = − bΩ3x3 ·

b
L̄(t) + b

iR(t) · iτ̄ext(t) (3.18)

It can be seen that the angular acceleration is dependant on the; mass of the quadrotor,
the rotation speed of the body and of the propellers, and on the torques affecting the
quadrotor.

10



3.5. Linearisation

3.4.2 Translation dynamics

The translation model describes the movement of the quadrotor in relation to the applied
forces. The model is derived from Newtons second law:

F̄tot = m · ā (3.19)

Where F̄tot is the sum of all forces affecting the quadrotor. The two main forces affecting
the quadrotor is the gravity and the thrust from the propellers.

Gravity is static, and in IRF only has a component in the z-axis. It can therefore be
modelled as:

b
F̄gravity = b

iR · (− iḡ) ·m (3.20)

Where g is gravity, and m is the mass of the quadrotor.

All four propellers generate thrust. These can be summed together into one combined
thrust in the centre of the quadrotor. In the BRF this combined thrust is only present in
the z-axis.

b
T̄total =

b
T̄1 +

b
T̄2 +

b
T̄3 +

b
T̄4 = [0 0 bTtotal]

> (3.21)

By rearranging Newtons second law, the acceleration can be extrapolated.

bā =

b
F̄gravity +

b
T̄total

m

iā =
i
bR ·

b
T̄total
m

− [0 0 g]>

(3.22)

3.5 Linearisation

Linear systems are easier to work with, in relation to estimation and control. Very few
systems are actually linear by nature, and so would need to be linearised. This is done by
looking at a small area of function, and making a linear model of this. The disadvantage
of this type of approach comes when the system leaves the linearised area, as the model
starts to deviate from the real system then, which in turn could lead to instability or in
the case of quadrotors lead to a collision. So before this approach is begun it must first be
argued if the system can stay with the area for the desired use.

3.5.1 Area of linearisation

Quadrotors normally operate around its hover orientation. This is is the orientation where
the z-axis in the BRF and in the IRF are the same, the x- and y-axis does not need to
correlate between the two reference frames. This means that the x- and y-axis (the arms of
the quadrotor) are horizontal. In this orientation the quadrotor can hang in one position,
and move along the z-axis in the IRF. As it is desired to move in three dimensions this is not
adequate. The quadrotor accelerates on the x- and y-axis in IRF by pitching and rolling
the body. This works because some of the thrust vector normally used to lift the quadrotor
is rotated in these axis. How many percentage of the thrust is transferred, is dependant
on the amount of degrees pitch/roll, but the amount of acceleration is dependant on the
mass of the quadrotor and the thrust in the in this axis. If the pitch/roll is small enough,
then it could be acceptable for a linearisation. The amount of thrust in the different axis
in percentage can be found by the simple cosinus/sinus relation seen on Figure 3.2
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3. Modelling
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Figure 3.2: Graph illustrating the relation between pitch/roll angle

In hover the quadrotor has a given thrust, if this thrust is held at this level while
pitching/rolling then it will result in an acceleration in the z-axis (dropping towards the
ground). This effect is not desired and should be minimized. A look on this effect over
short pitch/roll maneuvers is therefore made in Figure 3.3

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0
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Angle of pitch/roll [rad]

D
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p
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is
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]

Meters dropped in 2 seconds

Figure 3.3: Graph illustrating the relation between pitch/roll angle and change in height over
2 seconds

Based on Figure 3.2 and 3.3 it is decided to investigate the linearisation point 0 ◦ ± 5 ◦,
as this gives up to 0.1 g acceleration along the x- and y-axis, and only a height loss of
0.1 meter after 2 seconds. When designing the controller it would be relevant to choose a
method to limit the pitch and roll within this area.

5◦

Figure 3.4: The green line is the linearisation, the black is the true system

Additionally, the angle of yaw is desired to be constant in the linearisation point, as this
simplifies the model. When doing this it is important to note that acceleration of the
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3.5. Linearisation

quadrotor is the same in BRF at any yaw, while speed changes direction in BRF as it is
in relation toIRF.

3.5.2 Linearisation

With the linearisation point found, a first order Taylor approximation is used to linearise
the system.

b
iq̄ =

[
1 0 0 0

]>
ω̄ =

[
0 0 0

]> (3.23)

With this ω̄,Ω(t)4×4 from equation 3.4 becomes:

Ω(t)ω̄ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (3.24)

In the linearisation point, there is also no torque from the thrusters, and no external
torques.

bτ̄ (t) = 0̄, iτ̄ext(t) = 0̄ (3.25)

In the linearisation point. When doing pitch, roll or/and yaw, it will move away from the
linearisation point.

The first order Taylor approximation is done by inserting into equation 3.6. The linearised
rotation speed Ω(t)ω̄ is inserted with the actual quaternion b

iq, and the actual rotation
speed matrix Ω(t)4×4 with the linearised quaternion b

iq̄

b
iq̇ =

1

2
(Ω(t)ω̄ · biq + Ω(t)4×4 · biq̄) =

1

2
·
[
0 ωx ωy ωz

]> (3.26)

The non-linear parts of equation 3.18 is also linearised:

b ˙̄L(t) = Iquad ·
b ˙̄ω(t) = − bΩ3x3 ·

b
L̄(t)

⇓

Iquad ·
b ˙̄ω(t) +

4∑
n=1

(Iprop. ·
b ˙̄ωn(t)) = − bΩ3x3 · (Iquad · bω̄(t) +

4∑
n=1

(Iprop. · bω̄n(t)))

⇓The speed of the rotors do not change in hover

Iquad ·
b ˙̄ω(t) = − bΩ3x3 · (Iquad · bω̄(t) +

4∑
n=1

(Iprop. · bω̄n(t)))

⇓In hover the angular momentum from the propellers equals out

Iquad ·
b ˙̄ω(t) = − bΩ3x3 · (Iquad · bω̄(t))

⇓Move the inertia to the right side
b ˙̄ω(t) = I−1

quad · (− bΩ3x3 · (Iquad · bω̄(t)))

(3.27)

Under the assumption that both body and propellers has diagonal inertia matrices and
only spin around the z-axis, the following extrapolation is reached:

b ˙̄ω(t) =


Iy−Iz
Ix
· ωy · ωz

− Ix−Iz
Iy
· ωx · ωz

Ix−Iy
Iz
· ωx · ωy

 (3.28)
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3. Modelling

In perfect hover the rotation speed of the quadrotor is zero, the linearisation area is slightly
bigger, and very small rotation speed might therefore occur. When multiplying two very
small numbers the result is close to zero:

b ˙̄ω(t) ≈

0
0
0

 (3.29)

Only the linear component then remains:

b ˙̄ω(t) ≈ I−1 · bτ̄ext(t) (3.30)

The translation 3.22 also has to be linearised. In hover all thrust is in the z-axis, and
the rotation matrix between BRF and IRF can therefore be simplified. The acceleration
is therefore:

iā = i
bR ·

b
T̄total
m

− [0 0 g]> ≈

2 · (q1 · q3 + q2 · q0)
2 · (q2 · q3 − q1 · q0)
−1− 2 · q2

1 − 2 · q2
2

 · bT̄total
m

− [0 0 g]> (3.31)

With the quaternion being:

b
iq̄ =

[
q0 q1 q2 q3

]
≈
[
1 0 0 0

]
(3.32)

The first order Taylor approximation of equation 3.31 is then:

iā ≈

 2 · q2

−2 · q1

1

 · bT̄total
m

−

0
0
g

 (3.33)

The models are now ready to be used in a linear model.
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Chapter 4

Controller

This chapter will describe how a controller is found based on the model of the quadrotor
found in Chapter 3

As shown on Figure 2.1, the controller will get an estimation and a reference as input.
Additionally disturbances can enter the system, and the controller should therefore be
robust towards unknown/unpredicted disturbances, and able to handle know/predicted
disturbances.

4.1 State space

The quadrotor can be described in state space form. The quadrotor itself can be described
by its; position, speed, orientation and angular velocity.

x̄b = [q1 q2 q3 ωx ωy ωz x y z ẋ ẏ ż]

for short:x̄ = [q̄ ω̄ P̄ ˙̄P ]
(4.1)

The quadrotor can essentially only do four things; roll, pitch, yaw and thrust. With these
it can change the states of the quadrotor. A state space system can be made such that
one controller sets the desired; roll, pitch, yaw and thrust, and the second translates these
into motor signals.

4.1.1 Body model

With T being the total thrust in the linearisation point, and the input being:

ū = [Fx Fy Fz τx τy τz]
> (4.2)
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4. Controller

Ab =



0 0 0 1/2 0 0 0 0 0 0 0 0
0 0 0 0 1/2 0 0 0 0 0 0 0
0 0 0 0 0 1/2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

0 2 · Tm 0 0 0 0 0 0 0 0 0 0

−2 · Tm 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



Bb =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1

Ix
0 0

0 0 0 0 1
Iy

0

0 0 0 0 0 1
Iz

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1
m 0 0 0 0 0
0 1

m 0 0 0 0
0 0 1

m 0 0 0



Cb =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

Db =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(4.3)

The output matrix C is chosen based on the sensor availability described in table 6.1.

4.1.2 Actuator model

The actuator model translates from; motor signals to; roll, pitch, yaw and thrust. The
state of the actuator is the rotation speed “r” of the propellers.

x̄a = [r1 r2 r3 r4]>

Aa =


1
t1

0 0 0

0 1
t2

0 0

0 0 1
t3

0

0 0 0 1
t4

 , Ba =


G1 0 0 0
0 G1 0 0
0 0 G1 0
0 0 0 G1



Ca =



0 0 0 0
0 0 0 0
G2 G2 G2 G2

−G2 · d −G2 · d G2 · d G2 · d
−G2 · d G2 · d G2 · d −G2 · d
−G3 G3 −G3 G3

 , Ȳ = [Tx Ty Tz τx τy τz]
>

(4.4)

Where:

• r1,2,3,4 are the RPM of the propellers

• t1,2,3,4 are the time constant of the propellers

• G1 is the gain from motor signal to RPM

• G2 is the gain from RPM to thrust

• G3 is the gain from RPM to torque
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4.2. LQR

• d is the distance shown on Figure 3.1 [m]

• Tx,y,z is the thrusts [N]

• τx,y,z are the torques in the BRF [Nm]

G1, G2, G3 and t1,2,3,4 are found through experiment, found in (skal laves)

4.1.3 Combined model

Two state space models have been made, and now need to be combined in one model for
later use. The actuator models output goes into the body model. The combined model is:

[
˙̄xb
˙̄xa

]
=

[
Ab Bb ·Ca

0 Aa

]
·
[
x̄b
x̄a

]
+

[
0

Ba

]
· ū[

ȳb
ȳa

]
=

[
Cb 0
0 Ca

]
·
[
x̄b
x̄a

] (4.5)

The observability and controllability can now be assessed. The combined system has 16
states, 12 from the body model and four from the actuator.

The rank of the controllability matrix is found to be 16. This means that a controller
can be designed which can bring all states to zero from any value, via a series of control
signals.

The rank of the observability matrix is also found to be 16. This means that while not
all states can be measured directly, all states can be observed via the systems outputs.

4.1.4 Discretization

The two state space models have been combined into one, but the models is continuous.
For the Kalman filter and for the controller as discrete model is needed. The model is
discretized with Matlabs “C2D” function

4.2 LQR

As outlined in Chapter 2, the system will use an Linear Quadratic Regulator (LQR)
controller as its main flight controller. This choice has been made because it gives a good
performance, and it has been tested on quadrotors before. The LQR controller will be
set to run at 10 Hz, as that will be the speed of the estimator. To design a discrete
LQR controller requires a discrete state space model of the system, and a series of tuning
parameters. The discrete state space model has been found previous in this chapter.

Before the tuning of an LQR controller can begin, a few decisions has to be made.

1. Reference states

2. Maximum speed required

17



4. Controller

4.2.1 Reference states

The reference states are the states which the user sets, and the controller attempts to
achieve. A quadrotor can be flown in many different ways depending on the choice of
these. Normally it is said that because the system has four degrees of freedom, up to four
reference states can be chosen. Below is a short introduction of some the selections which
could be used

Attitude - Height/Thrust

This choice is favored by hobby RC flight as it allows easy control from two joysticks. The
human operator then acts as a position/velocity controller as (s)he controls the attitude
to move the quadrotor around. This mode is also used for First Person Flight, as it is
very similar to the controls of an air plane. Directly controlling the attitude also allows
the user to do “tricks” such as flips and “loop de loops”.

Velocity - yaw

This mode is more for autonomous flight systems, as it can be confusing for manual users to
keep track of the direction, especially if the velocity is given in IRF. It has the advantages
that quadrotor either does not need to compute the position estimate as it is obsolete, or
that it can use the position state as the integral of the reference and thereby use a full
Proportion-Integral-Derivative (PID) controller (this effect can also be used in LQR). This
type of controller could be used for indoor flight by making a potential field system as in
[Thomsen 14], this would keep the system from hitting walls, it requires a good position
estimate. If the system has the position state, and uses it in its controller, then a position
reference has to be generated based on the velocity reference.

Position - yaw

This mode is for autonomous flight, as the user has little control over how the state is
achieved. It is often used for waypoint flight, where the user defines a path of locations
the quadrotor has to pass through. The user can then use his/her time on controlling the
payload, and maybe yaw the quadrotor to get the right attitude for the payload, like a
camera filming. This mode is good for indoor flight, but especially with LQR it has a
weakness to large changes in the reference, as this will give high velocities, which could be
unstable.

Choice

For this project the position and yaw state has been chosen as the reference states. This
is because the system will test the GOT system which measures the position, and the
position control allows for easy safe flight in our laboratory. The yaw state will allow the
system to face all directions, which is a core part of this project. To prevent big spikes a
limit is put on the error of the position state entering the controller. The velocity will be
used as derivative state in the controller, and its reference is set to zero.

4.2.2 Maximum speed

For tuning the LQR controller Brysons rule, which is based on maximum allowed deviation
from reference. It is therefore relevant to talk what the maximum allowed speed is, as it
will act a the derivative of the main state.
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4.2. LQR

The quadrotor will in this project fly in a relatively small room, measuring 5x5 meters.
Its functionality is not to fly fast, or get from one point to another at any specific time. On
the other hand, as the system is experimental there is an increased change of accidents.
It is therefore decided that the maximum speed should be 0.1 meter per second. This is a
sufficient speed for testing, while being slow enough for an operator to stop accidents.

4.2.3 Generation and tuning

The LQR controller is a matrix. By multiplying this matrix with the state errors the
control signals are obtained. The LQR matrix is made by solving the Riccati equation
with Matlabs LQR function. The LQR function requires the model, as found earlier, and
a R and Q matrix.

The R matrix tunes the control signals, meaning tuning the controllers tendency to use
bigger control signals. This is important to control, as the output of the controller should
be a number between zero and one indicating the percentage of power on the given motor.
The values in the matrix which is used for tuning is in this system the diagonal of the
matrix.

The Q matrix tunes the controller in regards to the error states. The basis of tuning here
will be based on Brysons rule, which states that the tuning parameter on Qs diagonal shall
be:

Qi,j=i =
1

Maximum allowed value2 (4.6)

The LQR controller is tuned and tested in the simulation 7
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Chapter 5

Disturbances

This chapter will outline what types of disturbances is relevant for a quadrotor, and model
these disturbances

5.1 Disturbances

Disturbances are external forces (or lack thereof) acting on the quadrotor. This analysis
is based on an indoor quadrotor executing physical tasks.

5.1.1 Wind

Normally their is no significant winds indoors, but a drag/gust might occur through a
building. For simplicity sake it is assumed that wind will hit the entire quadrotor at once,
with equal force. Under this assumption wind will not significantly affect the yaw of a
quadrotor. But it could have an effect on roll/pitch, thrust and movement.

Drag or gusts of wind can be difficult to detect, but with a distributed sensor system
throughout a building it would be possible. It could therefore be relevant for a quadrotors
disturbance controller, to have handling techniques for both unpredicted winds as well as
predicted winds.

5.1.2 Touch / continous

When interacting with the external hardware or using physical payloads, the quadrotor
can experience a continuous force upon its body. These forces can enter the system at
different locations, such as under an engine or under the centre of mass. And they can
come at different angles.

The: time, location, angle and size can be known or unknown. Locally controlled payloads
can be modelled, and all the parameters could thereby the predicted. When interacting
with the world the time of interaction can be predicted with a good map and a good
position estimation, but the other parameters can be hard to predict precisely. But if the
disturbance is from an unknown source, then none of the parameters can be predicted, but
they could be estimated and countered.

5.1.3 Hit / impulse

Some payloads, tasks or unknown disturbances comes in the form of a impulse, a
short/instant force. Some payloads and tasks will enable prediction of all or some of
the parameters: time, location, angle and size.
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5. Disturbances

The disturbance controller should be able to take disturbance predictions/measurements
and translate these into control signals which counteracts the disturbance. Two approaches
where tried to this problem. A Model Predictive controller (MPC) is used as the classic
approach, it uses the system model to plan the optimal control signals to the motor in
order to achieve the references. A Model Predictive controller would have to replace the
LQR controller if used, a different approach is therefore investigated. An experimental
controller which is decoupled from the main controller and only focus on removing the
disturbance through use of the actuators.

5.2 Model Predictive control (MPC)

The MPC is optimal for the length of its control horizon, and by adding disturbance
models to the state space, and adding the disturbances as states, the disturbances should
be tolerable.

5.2.1 Adding disturbance

The disturbances are modeled as first order systems. The resulting equations are:

Ḟdx,y,z = aF · Fd + eF (5.1)

τ̇dx,y,z = aτ · τ + eτ (5.2)

The noise eF and eτ are white noise processes.

The new controller is based upon the a linear discrete state space model, like the one
in section 4.1. The dynamics of the disturbances can then be inserted into Ab. The
disturbance states are then coupled with the system state; The force disturbance is inserted
into the speed row as 1/m, and the torque disturbance is coupled to the rotation speed
row via 1/Ix,y,z.

5.2.2 Theory

Model predictive controllers are quite different from more normally used controller such
as PID and LQR. Normal controllers take an error as input, and based on the inputs
calculates an input which should make the error go towards zero. The MPC takes both
the reference, feedback(estimation) and control signal as input. The MPC also calculates
in changes of the control signal. [Maciejowski 02]

This section will explain the theory behind the model predictive controller.

Reference frame

The estimations and references are in the IRF. The MPC uses prediction based on the
states, and therefore has to operate in the IRF. The MPC output a control signal in IRF,
but the actuators need the control signals in the correct yaw, and the signal vector is
therefore rotated by the estimated yaw. The disturbances also need to be rotated into the
IRF.
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5.2. Model Predictive control (MPC)

Gravity

For the MPC to function optimally it needs to account for the Earths gravity. State space
models does not allow for insertion of constant. Instead it is added as disturbance force
on the z-axis. The size of which is:

Fz = mquad · g (5.3)

Prediction

The prediction is based on the current state estimate (x̄k|k) and the previous control signal
Ūk−1.

The states at step k + 1 can then be calculated as:

ˆ̄xk+1|k = Ax̄k|k + B(∆ˆ̄u(k|k) + Ūk−1) (5.4)

Where ∆ˆ̄u(k|k is the change in the control signal outputted by the controller at the current
step. This method can be continued into future time step:

ˆ̄xk+2|k = A2x̄k|k + AB(∆ˆ̄u(k|k) + Ūk−1) + B(∆ˆ̄u(k + 1|k) + ∆ˆ̄u(k|k) + Ūk−1) (5.5)

The pattern in this method is that the state is propagated by A for each step, and the
change in the state from the previous step’s input is also propagated by A. This pattern
repeats all the way up to the control horizon (k+hc− 1), after this step the control signal
does not change. The prediction pattern is continued all the way to the prediction horizon
(k + hp − 1). It is required that the prediction horizon is equal to or greater than the
control horizon.

The pattern can be put on matrix form:

X̄(k) =Ap
ˆ̄x(k|k) + Buū(k − 1) + B∆u∆̄u(k)

X̄(k) =



ˆ̄x(k + 1|k)
...

ˆ̄x(k + hc|k)
...

ˆ̄x(k + hp|k)



Aps =


A
...

Ahc

...
Ahp



Bu =


B

AB + B
...

hp∑
i=0

AiB



B∆u =


B 0 0 · · · 0

AB + B B 0 · · · 0
...

. . . . . . · · · 0
hp∑
i=0

AiB
hp−1∑
i=0

AiB · · ·
hp−hc−1∑
i=0

AiB
hp−hc∑
i=0

AiB



(5.6)
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Cost function

As stated earlier the MPC is an optimal solution to the control problem. But optimal is
meaningless without a set of costs, the MPC can then solve the problem at the lowest cost.
The costs is the tuning parameters of the controller. An initial set of costs is set based on
Bryson’s rule similar to process used for LQR tuning. Weight is especially put on keeping
the attitude and the height correct.

There is also a cost associated with the control signals, these costs is set to keep them
from going into saturation.

The state weights in put on the diagonal of Q(i), and the control signal cost on the
diagonal of R(i). The “i” indicator indicates which step in the prediction the cost is set
for. This allows for different weights along the predicted path. To focus the controller on
stability the cost on pitch and roll is increased towards the control horizon.

The cost function is the quadratic equation:

V (k) =

Hp∑
i=Hw

||ˆ̄z(k + i|k)− r̄(k + i|k)||2Q(i) +

Hc∑
i=0

||∆ˆ̄u(k + i|k)||2R(i) (5.7)

Where r̄(k + i|k) is the reference vector, and ˆ̄z(k + i|k) is the state estimation feedback.
Since the system has full state feedback from the estimator, the feedback equals the states.

The cost optimization is gonna be made against current control signal throughout the
horizon. The expected error in this scenario therefore needs to be generated. Since the
reference is user controlled, the controller cannot know what changes in the reference is
gonna be, and the reference vector for the horizon is therefore:

R(k) =

r(k|k)
...

r(k|k)

 (5.8)

The predicted error is then:

E(k) = R(k)−Ap
ˆvectx(k|k)−Buū(k − 1) (5.9)

With the predicted error and full state feedback the cost function can be reformulated as:

V (k) = ||B∆u∆ ˆ̄U(k)−E(k)||2Q + ||∆ ˆ̄U(k)||2R (5.10)

By finding the minimum value of V (k) with ∆ ˆ̄U(k) as the only adjustable set of variables
the optimal solution can be found. The equation can be optimized for computation by
rewriting it to:

V (k) = const−∆ ˆ̄U(k)>g + ∆ ˆ̄U(k)>H∆ ˆ̄U(k) (5.11)

Where:

g = 2B>∆uQE(k)

H = B>∆uQB∆u + R
(5.12)

Constraints

There are some constraints in the system which should be kept, and MPC has this
functionality built into its design.
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5.2. Model Predictive control (MPC)

Slew rate (E) can be set a constraint, it is the maximum change in control signal. This
is not set as a constraint for the quadrotor as the optimization of energy use is not a focus
in this project.

Actuator range (F) is an important constraint. In systems that have limits to their
control signals (most systems have), this constraint will allow the MPC to optimize the
control signals to levels that can actually be achieved in the system. For this system the
limit for the controls signals are; minimum 0.1 and maximum 1.

The constraint need to be setup in a matrix inequality form which can be used in
the constrained optimization problem. The optimization problem is given in relation to
∆ ˆ̄U(k), and so the constraints will have to be relative to it as well.

Variables (G) can also be constrained. For indoor flight of the quadrotor this can be
used to keep the quadrotor away from the walls, lowering the speeds and keeping the
attitude close to the linearization point. Limit are set on multiple states as shown in the
table below

Table 5.1: State limits for MPC

Limits Minimum Maximum
q1 -0.1 0.1
q2 -0.1 0.1
q3

ωx
ωy
ωz 0.3 0.3
Px -10 10
Py -10 10
Pz 9 11
Ṗx -0.1 0.1
Ṗy -0.1 0.1
Ṗz -0.1 0.1

The limits of the states are set such that the quadrotor should not hit walls, the floor or
the ceiling, while also keeping the system stable.

The limits also needs to be put on matrix inequality relative to ∆ ˆ̄U(k).

Stability

MPC with finite horizon does not guarantee stability, as it does not plan beyond the
horizon, and the states might therefore be going towards unstable paths.

Stability can be guaranteed for controllable system by using infinite prediction horizon.
Infinite horizon is not possible to implement in real systems.

By inserting constraints on the states towards the horizon the system goes towards stable.
For this particular problem where disturbance enters the system, stability can not be
guaranteed.

Computing control signals

The control signals are computed by finding the minimum value of the cost function,
subject to the matrix inequalities made from limits. The problem is a convex minimization
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5. Disturbances

problem which can be hard to solve, therefore the CVX Matlab tool is used.

5.2.3 Implementation

The MPC need to be implemented into the simulink environment for testing. First a matlab
script is made to test out the design and feasibility of the controller. This script can be seen
in appendix A. Unfortunately CVX is not available in the simulink environment, and it
was therefore inserted with the standard MPC block, and the controller itself was created
using the MPC toolbox in matlab. The controller is tuned and tested in simulation. For
unexplainable reasons the MPC block could not be configured correctly in time for the
finishing of this project, this will be investigated towards the examination.

5.3 Experimental controller

This controller is made in a more unorthodox fashion. The controller is designed with
the assumption that all disturbances enter the system as a step, and it then attempts to
counter them optimally in regard to time and position disturbance.

From the actuator model in section 4.1.2, it can be seen that the actuator of the quadrotor
cannot directly make force in the BRF x and y direction. It is therefore decided to make
the disturbance controller in two parts; a controller for the thrust and three torques, and a
controller for the forces on the x and y direction in BRF. The controllers will be designed
with the design philosophy of countering the disturbances as precisely as possible, such that
as little disturbance propagates to the states and is corrected by the main flight controller.

The controller controlling thrust and the three torques is fairly simply designed. As there
is a model from actuator signal to the four effects, and these consists of a few gains and
only a single fast pole, the model can simply be inverted to obtain the controller. The
resulting controller is then given as:

kthrust −kRP −kRP −kyaw
kthrust −kRP kRP kyaw
kthrust kRP kRP −kyaw
kthrust kRP −kRP kyaw

 ·

bThrust
bTorquex
bTorquey
bTorquez

 =


U1

U2

U3

U4

 (5.13)

Where:

• Ux is the control signal for motor x

• bThrust is the force required to counteract the disturbance in the BRF z-axis

• bTorque is the torque required to counteract the disturbance in BRF

• kthrust is the inverse of the actuator model from 4.1.2 for force along the BRF z-axis

• kRP is the inverse of the actuator model from 4.1.2 for Roll and Pitch in BRF

• kyaw is the inverse of the actuator model from 4.1.2 for yaw in BRF

The pole in the propeller gives a small error in the disturbance counter. To counteract
this effect, a filter is inserted. As the filter needs to be discrete, the Direct form 1 of an
IRR filter is chosen. The filter should have two properties; 1. It should have DC-gain of
one 2. The integral of the output from the actuator should be the same as the integral

26



5.3. Experimental controller

of the input on the disturbance controller. Stepping a pole results in an asymptotic curve
equal to:

y(t) = a · (1− e(−t/τ)) (5.14)

Where “a” is the step size. The integral of this function can never be as big as the integral
of the step itself. It can thereby be deduced that the filter at least /optimally is a second
order filter. The first order trying to overshoot the step, and the second one dropping it
back down to DC Gain.

a0 · (1− e(−(1/30)/τ))− a1 · (e(−(1/30)/τ)) = 1 (5.15)

∫ 1/30

0
a0 · (1− e(−t/τ)) dt+

∫ 1/30

0
a1 · e(−t/τ) dt = 2/30 (5.16)

The two equations can be solved to find the two unknown variables a0 and a1. The direct
form 1 filter then becomes:

a0·X(n)+(−a0+(a0·(1−e(−(1/30)/τ))−a1))·X(n−1)+(1−(a0·(1−e(−(1/30)/τ))−a1))·X(n−2) = Y (n)
(5.17)

This filter is setup in the simulation environment, and tested on the motor model. The
resulting signal should have DC gain of one, and have the same integration result as a
step.
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Figure 5.1: The poles response to the found filter

The two remaining forces along the x and y-axis in BRF, cannot be induced directly by
the actuator. The quadrotor can only generate force in its +Z direction. A system which
uses gravity to counteract could also be investigated, but has been ignored for simplicity,
it is also not guaranteed to work against all disturbances. The solution is therefore to
pitch or roll the quadrotor such that part of the force generated in the +z direction (in
BRF) is translated to the x and y-axis of the IRF. The system already has a controller
which controls the orientation of the quadrotor; the normal controller. This could therefore
potentially be used by changing this controllers error input accordingly.

The normal controller is designed under the linearization assumption that the quadrotor
is always close to hover. This same assumption can be used to simplify the design of this
disturbance controller. Part of the hover state is a constant thrust, or in better terms a
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constant force bTtotal along the quadrotors z-axis in its BRF. The force can be translated
to the x and y-axis of the IRF by:

bF x,y = sin( bhR) · bTtotal (5.18)

The controller should calculate the angle needed, and this is therefore isolated by:

asin(bF x,y/
bTtotal) = Rx,y (5.19)

Where bF x,y is the force required to counteract the disturbance. This gives us the angle
needed to generate the force needed to counteract the disturbance. To add this angle to
the error input of the normal controller, it must first be translated to a quaternion, and
then this quaternion can be added to the error quaternion via quaternion multiplication.
This then results in the normal controller rotating the quadrotor. The normal controller
is an LQR as designed in 4.2. And depending on the tuning of this, it might not give the
angling needed for counteracting the disturbance. A gain on the calculated angle (before
transforming it into quaternion, to keep unity) is therefore added for tuning. A value for
this tuning is found through simulation, and must be confirmed in flight

5.4 Modeling

The quadrotor model is split in two parts, the rotational- and the translation dynamics.
These respectively take torque and force as input. So if a system in which any of the
above mentioned disturbances can be translated into torques and forces can be made, then
that would ease the handling of these. Non of the described disturbances are directly
torques, they are all forces on one or more points of the quadrotor. By describing the
point of disturbance on the quadrotor as bP̄ (t) = [x y z]>, and the direction and size
as b

F̄ (t) = [Fx Fy Fz]
>, all disturbances can be described in a uniform fashion. The

torque can be calculated as:
bτ̄ =

b
P̄ (t)× b

F̄ (t) (5.20)

In the case of unknown / unpredicted disturbances, the flight controller should be able to
handle these to a certain degree, as they will lead to a change in the states different from
the references.

The disturbance controllers ability to counteract disturbances is limited by the actuators.
The actuators is in simulation found to be running at 64% in normal hover. This leaves
an additional 20.516 Newton in lift in total from the four rotors, equaling about 2 kg.

The worst case for torque disturbances is it being around one of the arms, such that
only one pair of rotors can counteract it. This would result in one of the rotors in the
pair ramping up towards maximum, and the other ramping down towards minimum RPM.
The increasing rotor can deliver an additional 0.834 Nm, and decreasing the opposing rotor
equally will contribute an additional 0.4265 Nm, for a total of 1.2605 Nm, which is equal
to a ≈ 790 gram weight hanging under one of the rotors.
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Chapter 6
Estimation

For the controller to function, it must have information about both the reference and the
current state. In some systems the sensor data is sufficient, But if they are not, then an
estimator is necessary

6.1 Sensors

The quadrotor in this project is equipped with a sensor suite consisting of:

• Gyroscope, measures angular velocity [◦/s]

• Accelerometer, measures acceleration [m/s2]

• Magnetometer, measures the magnetic field [T ]

• GamesOnTrack, measures position [m]

The gyroscope and the accelerometer are the base inertia sensors, they are reliable,
reasonable precise sensors. The magnetometer is supposed to measure the Earths magnetic
field, which within reasonably distances is static. But when flying indoors or near electric
equipment, the magnetic field is quickly altered, and the measurement are then useless.
It is therefore important to be aware of such fluctuations. The GamesOnTrack system
is a positional system based on ultra sound, which is currently being tested for indoor
quadrotor use at AAU, as it is originally for model trains. So far it has been found that
high RPM propellers can disturb the system, but the propellers used in this project has
not generated this problem.

As mentioned in Section 4.1, the system has a series of states which is desired observed.
To get an overview of the association between measurements and these a table has been
formed

As seen on the table the speed ˙̄P cannot be measured directly, and should the
magnetometer be disturbed by foreign magnetic field then the orientation q̄ also becomes
unmeasurable. The missing states could be made via integration or differentiation, but
these have a tendency to be vulnerable to noise.

29



6. Estimation

Table 6.1: Sensor overview

Sensor \State q̄ ω̄ P̄ ˙̄P

Gyroscope M
Accelerometer 1/s
Magnetometer I
GamesOnTrack M

Table 6.2: M indicates direct measurement, I denotes indirect and 1/s denotes that the state
can be found via integration

6.2 Estimators

An estimator uses sensor data, system models and in some cases control signal, to calculate
an estimate of the states. There are several types of estimators, with different properties
and advantages. The best fitting estimator type should be selected, designed and verified.

6.2.1 Particle filter

A particle filter is an estimator.

A particle filter method can be simplified as:

1. Select the current state

2. Generate the possible new state via a uniform distribution

3. Compare the possible new states with measurement data

4. Select the most likely result

The particle filter is well suited for system of a highly stochastic nature, but it can be
very computationally heavy if number of possibilities is set high.

6.2.2 Kalman filter

Kalman filter is an estimator which uses state space models and sensor data to calculate
the states.

The Kalman can be seen as an algorithm.

1. Previous states

2. Predict change, using models and input signals

3. Correct with measurement data

4. Output states

The Kalman filter is a proven filter, and is simple to implement. For some non-linear
systems, a linear estimator is not sufficient, in such case non-linear estimator is needed.

Extended Kalman filter

The extended Kalman filter is different from the ordinary Kalman filter, in that it uses a
non-linear model to predict the states. This means finding the jacobians at each time step
for the current states, which is computationally heavy.
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6.3. Sensor driven extended Kalman filter

Unscented Kalman filter

The unscented Kalman filter gives a better performance in highly non-linear systems
compared to the extended Kalman filter. This is due to the method the extended Kalman
filter propagates the covariance matrix. The unscented Kalman filter uses a different
technique to utilize the non-linear model to propagate all parameters. The unscented
Kalman filter also avoids the problem of having to find the jacobians at every time step.

While the unscented Kalman filter in some cases gives better performance, it can also be
much heavier than the extended Kalman filter [St-Pierre 04]

Choice

The Extended Kalman filter is chosen, as it gives a good estimation for all states. Two
versions of the Extended Kalman Filter (EKF) is made in order to investigate if there is
a performance difference. The first will be a regular EKF, based on the nonlinear model
for prediction and using all the sensors for the update step. The second estimator will be
a sensor driven EKF, which is mainly driven by the sensors in both the prediction and
update step.

The performances of the two estimators will be evaluated through simulations. It is
especially of interest to see; ability to correct wrong initial conditions, effect of model
parameters imprecisions, and general precision of the estimations.

6.3 Sensor driven extended Kalman filter

The prediction step is driven by differential equations based on the gyroscope and
Accelerometer. The update step generates a ful state vector based on the magnetometer
and the GOT data. The two state vectors are then mixed via a Kalman gain according
to their noise levels. The advantage of a sensor driven EKF is that it does not rely on
the system model, and the precise measurement of the parameters in the model, such as
inertia and propeller gains. It also makes the estimator applicable to any similar system.

The start state of the quadrotor is the linearisation point at the position measured by the
GamesOnTrack system and speed is zero.

6.3.1 Prediction step

Non-linear functions are used for the predictions, as they should give a better prediction
than linearised models. The data from gyroscope and the accelerometer are used in
calculating the predictions.

ˆ̄xk|k−1 = ˆ̄xk−1|k−1 + ¯f(x)k−1

Pk|k−1 = F(ˆ̄xk|k−1) ·Pk−1|k−1 · F(ˆ̄xk|k−1)
>

+ Q
(6.1)

Where:
ˆ̄xk|k−1 is the estimated state vector at time step “k” based on time step “k-1”

¯f(x)k−1 is the discrete non-linear system functions at time step “k-1”
F(ˆ̄xk|k−1) is the Jacobian of f̄
Pk|k−1 is the covariance matrix of the error in the estimation
Q is the process noise
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6. Estimation

The estimator has the same states as the model in Chapter 3, and additionaly has the
acceleration in IRF; [q̄ ω̄ P̄ ˙̄P ¨̄P ].

¯f(x) consists of five functions:
ω̄k = i

bR(q̄k−1) · bω̄imu + ēw
∆q̄k = 1

2Ω(ω̄k) ·∆t · q̄k−1 + ēq

∆ ¨̄P k =
b ¨̄P imu − [0 0 − g]>

∆ ˙̄P k = i
bR(q̄k) · ¨̄P k−1 ·∆t

∆P̄k = ˙̄P k ·∆t
i
bR(q̄k−1) is the rotation matrix between the quadrotors body and the inertial reference
frame. The rotation matrix can be constructed from a quaternion according to [Kuipers 02]
as:

R(q̄) =

2q2
0 − 1 + 2q2

1 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q2
0 − 1 + 2q2

2 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 − 1 + 2q2

3

 (6.2)

The Ω function is defined in equation 3.5

For predicting the covariance matrix, the Jacobian of the f̄ is needed. The Jacobian is
the first partial derivative of a vector function. The Jacobian F of f̄ is made by taking
MATLABs Jacobian function, times the time-step plus an identity matrix of equal size.
In the first run of the estimator, the covariance matrix Pk−1|k−1 is set to be a diagonal
matrix, with the variance of errors as entries.

6.3.2 Update step

The Update step is partly dependant on the GOT data, and those calculations can therefore
only be run when new GOT data is available, if it is not then results is set to previous
result.

ỹk = z̄k − h̄(ˆ̄xk|k−1)

Sk = H(ˆ̄xk) ·Pk|k−1 ·H(ˆ̄xk)
> + R

Kk = Pk|k−1 ·H(ˆ̄xk)
> · S−1

k

ˆ̄xk|k = ˆ̄xk|k−1 + Kk · ỹk
Pk|k = (1−Kk ·H(ˆ̄xk)) ·Pk|k−1

(6.3)

Where:
z̄k is a second set of predicted states based on the magnetometer and GOT
˜̄yk is the difference between the two predictions
h(ˆ̄xk|k−1) is the observation function, which maps states to sensors
H(ˆ̄xk) is the observation matrix, which maps states to sensors at the current state
Sk is the covariance matrix for ỹk
R is the covariance matrix of the observation noise
Kk is the Kalman gain, which is used to correct the state estimation

z̄k is made from the magnetometer measurement bm̄ and the GOT measurement b
P̄got

. The magnetometer is used to find the yaw of the quadrotor. In some orientations the
pitch and/or roll can also be found from this measurement, but as this is not valid for
all orientations and consists of solving a 3D problem it was chosen to not be done. The
yaw was found by: Assuming the earths magnetic field im̄ is know in the given location.
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6.4. Standard extended Kalman filter

By taking only the measurements from the X- and Y-axis, an angle between the two 2D
vectors can be found by:

Φz = atan2((im̄ ˙ bm̄), (im̄× bm̄)) (6.4)

It is important that both vectors have the same length, they are therefore both divided by
their own norm. This is okay because it is the direction of the vectors which is of interest.
This method degrades in precision as the pitch and roll increases, this effect is put into the
process noise matrix. The b

P̄got is a direct measurement of the position state. Taking the
first time derivative results in the speed in IRF, ˙̄P . Taking the second time derivative of
b
P̄got result in the acceleration of the quadrotor. The acceleration is directly linked with
the pitch/roll and the control signal.

ax = sin(Φy) · U ·G1 ·G2 and ay = sin(Φx) · U ·G1 ·G2 (6.5)

The angle can then be isolated to:

asin(
ax

U ·G1 ·G2
) = Φy and asin(

ay
U ·G1 ·G2

) = Φx (6.6)

The newly found yaw, pitch and roll angles are then made into a quaternion. The three
angles are also time derived to get an estimate of the rotation speed.

Because rotation quaternions has to be unit, the update of this is modified. The three
imaginary parts are used as states, and the real part is made based on these. The kalman
gain is multiplied onto the imaginary parts. The quaternion predictions are made such
that the real part is always positive. This way the real part can be made by finding the
real value between zero and one which makes the quaternion vector have size one. The
resulting error quaternion is then quaternion multiplied onto the predicted quaternion.

With this method for doing the update step, the observation function and matrix is 1-to-1,
because the update contains a full state vector.

The sensor driven Extended Kalman filter is implemented and tested through simulation
in Chapter 7

6.4 Standard extended Kalman filter

The standard EKF uses a nonlinear model for generating a full state vector. The states
are then compared with the sensor measurements via a sensor model. A Kalman gain is
then computed based on the covariance matrices of the prediction and update step, and is
finally used to mix the computed states and sensor into the final estimated states vector.
As this project uses quaternions some modification will have to be made to the process as
quaternions is not linear and commutative.

The procedure for the EKF is:

ˆ̄xk|k−1 = ˆ̄xk−1|k−1 + ¯f(x)k−1

Pk|k−1 = F(ˆ̄xk|k−1) ·Pk−1|k−1 · F(ˆ̄xk|k−1)
>

+ Q

ỹk = z̄k − h̄(ˆ̄xk|k−1)

Sk = H(ˆ̄xk) ·Pk|k−1 ·H(ˆ̄xk)
> + R

Kk = Pk|k−1 ·H(ˆ̄xk)
> · S−1

k

ˆ̄xk|k = ˆ̄xk|k−1 + Kk · ỹk
Pk|k = (1−Kk ·H(ˆ̄xk)) ·Pk|k−1

(6.7)
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6. Estimation

¯f(x) consists of five nonlinear functions:
∆ω̄k = i

bR(q̄k−1) · bτ̄ ·∆t/I + ēw
τ is generated by an actuator model which take controls signals as input, it outputs the
three torques into τ̄ and also generates the lift F for later. I is the quadrotors inertia, m
is the mass.

∆q̄k = 1
2Ω(ω̄k) ·∆t · q̄k−1 + ēq

∆ ¨̄P k = [0; 0;F ]>/m+ (biR(q̄k) · [0 − g] ∆ ˙̄P k = (ibR(q̄k) · ¨̄P k ·∆t+ ēa) ·∆t
∆P̄k = ˙̄P k ·∆t
The function F(ˆ̄xk|k−1) is the jacobian of ¯f(x) at the current state. The covariance
matrix is propagated through this, and process noise is added. The process noise reflects
how well the model fits, and can be used to adjust the estimator.

ỹk is made by subtracting a transform of the predicted state vector from the sensor
measurements. The transform is setup such that it outputs sensor reading at the
predicted states. Three of the four sensors fit directly to a state (Gyroscope, GOT and
Accelerometer), the magnetometer need a transform.

The magnetometer measures the Earths magnetic field. The magnetic field (m̄) is static,
meaning the measurement is only dependent on the quadrotor attitude. The predicted
measurement can therefore be calculated as:

h̄m = b
iR(ˆ̄qk) · m̄ (6.8)

The Kalman gain can now be calculated and put into use. Normally the Kalman gain
is simply multiplied onto ỹk and the result added to the predicted state, but quaternion
require a modification to this process. The three top rows of the Kalman gain matrix
results in the three complex parts of a quaternion. And since the quaternion is a unit
quaternion (attitude quaternion), the real part (q0) can be calculated as:

q0 =
√

(1− norm([q1 q2 q3])) (6.9)

The resulting quaternion is then added to the predicted quaternion via quaternion
multiplication.

This estimator can be tuned by; changing the initial value of P for more or less trust in
the initial states of the estimator, or by adjusting the process noise to de- or increase trust
in the model prediction. The parameters in the model could also be adjusted for better
predictions.

6.5 Yaw offset

The estimation can result in an offset in yaw estimation. This can occur if the magnetic
field is not as expected. Big yaw errors can result in destabilizing the system. The effect
of a yaw offset is investigated through simulation.

Three scenarios is tested; perfect yaw estimation, small deviation and big deviation. In
all three scenarios the quadrotors reference is to go to: x = 2 y = 2 yaw = 45◦ while
keeping a steady altitude. The resulting paths can be seen on figure 6.1 below:
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Figure 6.1: Data from simulation

It can be seen that small deviation in the yaw estimate leads to circular paths. And a big
deviation is seen to make the system uncontrollable. A method of correcting a yaw offset
is therefore desired.

First a detection method is needed. It is seen that the path the quadrotor should follow
in the x- y-plane is straight line that can be described by a vector in IRF equaling:

ēx,y = r̄x,y − ˆ̄xx,y (6.10)

The speed vector
ˆ̄̇
P x,y of the quadrotor in IRF should be parallel to this vector. If the

quadrotor is instead flying in a circular path, these vector will be angled on each other.
By taking the cross product between these two vectors (normalized), the angle direction
can be observed as the z-axis product. A negative angle offset results in a positive output,
and positive angle results in a negative output.

The solution to the problem is to subtract the offset from the estimation. As the error
is assumed to be a static offset, an integral controller is tried. The output from earlier is
integrated over a small tuning constant, and the resulting angle is turned into a quaternion,
which can then be added to the estimation. The solution is tested in simulation:
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Figure 6.2: Data from simulation

It was found that the system could handle much bigger yaw offsets, while still maintaining
functionality with no offset, which is important.

6.5.1 Conclusion

Based on these simulations, it is highly recommended to implement this type of solution
for systems which should go in a straight line towards its target position.
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Chapter 7

Simulation

Simulation is a common tool in control and automation, as it gives the designer an
opportunity to verify the work before implementing anything in the real world. The
simulation in this project is based on the nonlinear models found in 3. The simulation
is made in MATLABs Simulink environment

This chapter will briefly describe the setup of the simulation and then go on to outline
how it was used for tuning, and finally show the simulated performance of the system

7.1 Simulation environment

The simulation environment was split up into several blocks, similar to classic feedback
systems diagrams. :Figure:

7.1.1 Reference system

The reference system generates the reference states the controller shall attempt to achieve.
Normally the height state is set to 10 meters, the quadrotor is given 20 seconds to achieve
this height before other states are altered, as it needs to lift of and settle on the height.

Figure 7.1: Reference system in simulation environment
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7. Simulation

7.1.2 Error maker

The error maker system generates the difference between the reference and the feedback.
In most systems this is simply a subtraction, but as there are both different reference
frames and quaternions involved it gets a bit more complicated.
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Figure 7.2: Error maker system in simulation environment

Included in the generated error is an anti gravity, which should remove most of the steady
state error in height. The disturbance controller also gives as part of its control signal a
rotation needed to counter disturbances, this is also subtracted in this block.

7.1.3 Controller

The controller block mainly contains the LQR controller. The controller is a matrix which
is multiplied onto the error vector, which generates four control signals. The control signals
should be between zero and one as it represents a percentage of thrust, and the signal is
therefore passed through a limiter to prevent more than 100 percentage thrust. In addition
this block also contains the disturbance controller.
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7.1. Simulation environment

Figure 7.3: Control system

7.1.4 Motor

The motor block contains both the motor and rotor model, and it mixes the rotor outputs
into forces in the BRF. The models are non-linear.
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Figure 7.4: The motor block translates from control signals to forces and torques

The model cannot generate forces in the x- and y-axis in the BRF, therefore these are set
to zero.
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7.1.5 Body

The body block is the main physics simulator in the simulation. It takes forces and torques
as inputs, and output all the states of the quadrotor.
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Figure 7.5: The body model takes forces and torques as inputs, and outputs the states of the
quadrotor

The plant model is non-linear, and contains both gravity and air drag.
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7.1.6 Sensors

The sensor blocks is meant to simulate the real measurements made by the sensor systems.
This means measuring in the correct reference frames, and adding realistic noise to the
sensors.
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Figure 7.6: The sensor block takes the true states and output realistic representation of what
a sensor would record

7.1.7 Estimator

The estimators, as described in Chapter 6, is an extended Kalman filter and a sensor driven
Extended kalman filter. Because they are very complex and filled with matrices, it was
built as a Matlab function. The estimator is run at 50 Hz

7.2 Tuning

One of the primary uses and reasons why a simulation is made in this project is for pre
tuning the system. Simulation is easy and fast to reset between runs. There are three
systems which needs tuning in this project, the LQR controller, the estimator and the
disturbance controller. Additionally a good estimate of the anti gravity value can be found
through simulation. Before any tuning can begin, the environment has to be verified first
though.

7.2.1 Simulation environment verification

The blocks which are interesting here is the motor and body blocks. It is important for
the conclusions of the simulations that these represent the real behaviour of the quadrotor
as close as possible. This could be done with real data, sending in control signals and
comparing the output states to real measured data. In this project another approach has
been used, due to lack of applicable data. The control signals are manually set such that
the outputs are easily predictable.

42



7.2. Tuning

Motor verification

Each motor can take one input and outputs an RPM. The RPMs are then mixed into the
forces and torques the motors combined generate. The verification process will be a series
of small tests, with given inputs and expected outputs.

In the first test all the input are set to 70% and then after 5 seconds drop to 60%. The
resulting output should be a force upwards, which is lowered after 5 seconds. The result
from the test was exactly as expected.

The second test is of the torque generation. From section 4.1.2 it can be seen that the
expected result would be that if signal one and three is lower than two and four, then a
positive torque on the z-axis should appear (as well as some force upwards). The resulting
torque from this test can be seen on Figure 7.7 below.

Figure 7.7: Data from simulation

Only a torque around the z-axis and force upwards was observed, as expected. The pole
in the motor can be seen in the plot as well, and it fits the measured pole.

Lastly the roll and pitch torques are tested. The control signals are again based on section
4.1.2. It will be set to first roll (x-axis) then pitch (y-axis).
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7. Simulation

Figure 7.8: Data from simulation

The output from the motor block is as expected. It can therefore be concluded that the
simulation of the motor block is valid.

Body verification

The body model take forces and torques as inputs, and output all the states of the system.
The verification of this block is especially focused on the rotational effects.

The first test is to check the start orientation, and the rotation of thrust. The body is
exerted to a thrust, and then after 10 seconds a torque on the z-axis. The result from
this should be upwards acceleration (given thrust is big enough), and when the torque is
applied an increasing rotation speed around the z-axis in IRF. The rotation around the
z-axis should not affect the upwards acceleration. The acceleration was seen to be constant
throughout the test. The rotation was observed by rotating a simple [100] vector by the
rotation matrix, resulting in the graph seen below in Figure 7.9
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7.2. Tuning

Figure 7.9: Data from simulation

The Figure shows a response similar to the expected response.

The second test checks rotation of rotational speed between the two frames. This is done
by rotating around the z-axis by 90◦, and then rotating around the y-axis (in BRF. The
expected result from this is rotation around the x-axis in IRF in the negative direction.
The result is again seen on the effect on a [100] vector in Figure 7.10 below

Figure 7.10: Data from simulation
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7. Simulation

It can be seen that the vector is first rotated 90◦ around the z-axis finishing around 4
seconds. Then the system is rotated negatively around the x-axis, completely as expected.

The rotation of the accelerations was done in a similar manner, and where found to be
functioning as intended.

Lastly in the body block, the rotation matrix is translated into a quaternion. The
quaternion should describe rotation from IRF to BRF (ibQ̄). The same control signals
are as used in the second test. Interpreting quaternions with more than one axis in use
can be difficult, instead a simple vector is rotated by the quaternion. The resulting vector
behaves identical with the result from the second test, and the quaternion generation is
thereby correct.

In conclusion; the body model functions correctly, and is ready for use.

The conclusion is that this simulation environment is a sufficient representation of the
real system, and it can therefore be used for tuning and preliminary testing of the system.

7.2.2 LQR tuning

As mentioned in section 4.2, the LQR controller is tuned in the simulation environment.
This is done to be more efficient, and prevent unnecessary damage to the real quadrotor.
The simulation is set to use the true states as feedback. During the tuning, attention will
be put on control signals size (should be between 0.1 and 1), overshoots and settling times,
as well as general stability of the system.

First the reference is set to 10 meter height, zero yaw. This equals take-off. The Q and
R matrices are tuned such that this is achieved in about 10 seconds without overshoot,
and the control signal does not go above one.

Thereafter the quadrotor is stepped in a directional flight. It was seen that big step would
make the attitude change too much and crash the quadrotor, so a limit on the position error
was instituted, and set to 5 meters. This kept the system from crashing. The controller
then had minor adjustments to prevent too much of a height loss when doing movement.
The limit on the error does not prevent the system from reaching the reference.

Lastly the yaw was stepped, while there was still an error on the position. Firstly it was
confirmed that the position rotates correctly as the quadrotor rotates. Minor tweaks was
made to the controller for settling time and overshoot of the yaw rotation

The quadrotor can in simulation take off, fly to a given position while yawing freely, with
state feedback.

7.2.3 Estimator tuning

The extended Kalman filter can be tuned by setting the noise levels and covariances, and
set the initial values of the state error covariance matrices, which in practise translates to
defining whether the filter should trust the prediction over sensor measurements.

The filter was tuned initially while the system got the true states as feedback to the
controller, and the references made the quadrotor take off and fly around while yawing.
This way the true states could be compared with the estimators output on a stable system.

Finally the system was set to use the output of the estimators as feedback to the error
maker.
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7.3. Simulations

7.3 Simulations

The simulation environment is used to verify and measure the performance of the system
design. Different scenarios will be set up for the various parts of the system.

7.3.1 Experimental disturbance controller

The experimental controller found in Section 9.1.2 is setup up in the environment. For the
purpose of removing noise and getting the best view into the controllers performance the
state feedback is used for this testing, instead of the estimator.

The scenario used for the test is a movement from hover in both the x- and y-direction
from hover, and later a rotation around the z-axis. This scenario is chosen because it
uses all the states of the system to achieve the end result, and is thereby vulnerable to all
disturbances.

Clean run

The first run is without any disturbance, and no action from the disturbance controller.
The result from this run will act as a baseline performance for the later runs. The reference
they are set to follow is: after 20 seconds go to position x = −5y = 5, after 40 seconds
rotate 22.5 degrees. The disturbances are always activated after 25 seconds.

The resulting position and quaternion can be seen on figure 7.11 and 7.12
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Figure 7.11: Data from simulation
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Figure 7.12: Data from simulation

It takes 21.65 seconds to reach within 0.1 meter from the x reference, 21.59 for the y
reference and 13.47 to reach within 95% of the rotation reference.

No control with disturbance

A series of runs with disturbances, but with no response from the disturbance controller is
made, to establish how the disturbances would normally affect the quadrotor. The size of
the disturbance is set such that the controller is expected to have good performance. The
results is put into a table below.

Table 7.1: Comparison table

Ref Px (0.4N) Py (0.4N) Pz (-10N) τx (0.4Nm) τy (0.4Nm) τz (-0.1Nm) Baseline
X 79.44 s at-4.06 32.89 s at -5.65 21.6 s Failed Failed 22.61 s 21.65 s
Y 79.47 s at 5.7 31.4 s at 5.66 21.53 s Failed Failed 28 s 21.59 s
Yaw 13.47 s 13.47 s 13.54 s Failed Failed Failed 13.47 s

In the z-direction test, there was an offset on the z-axis of −42.56 cm. In the Z-torque
test, the system never achieved a stable attitude on the z-axis.

Control with disturbance

The disturbance controller is turned on, and the same tests are run again. The results can
be seen in the table below

Table 7.2: Comparison table

Ref Px (0.4N) Py (0.4N) Pz (-10N) τx (0.4Nm) τy (0.4Nm) τz (-0.1Nm) Baseline
X 92.42 s at-4.64 29.79 s at -5.95 21.66 s 22.55 s 24.99 s 21.8 s 21.65 s
Y 97 s at 5.99 33.73 s at 5.36 21.59 s 25.44 s 22.05 s 21.41 s 21.59 s
Yaw 13.5 s 13.5 s 13.54 s 13.46 s 13.46 s 16.81 s 13.47 s
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7.3. Simulations

The z-direction test resulted in an offset of +8 cm.

Conclusion

The experimental controller has now been tested through simulation. The primary result
is that the controller makes the system stable for disturbances of these sizes and smaller.

This controller is not good at handling forces along x- and y-direction.

The controller has some loss of performance. Up to 18% slower in achieving the reference.

7.3.2 Flight scenario

This simulation aims to show the systems ability to fly using the LQR controller and the
estimators.

The reference in all runs is: after 20 seconds go to position x = −5y = 5, after 40 seconds
rotate 45 degrees.

Static Kalman gain

In this run a static Kalman gain is used in the Extended Kalman filter. The true values
of the states was recorded, and the position can be seen in figure 7.13
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Figure 7.13: Data from simulation

In general was the performance good, but beyond the 80 seconds mark it can be seen that
the position starts to drift. This is found caused by the offset on the speed estimate which
is not corrected properly.

Extended Kalman filter

In this run the extended Kalman filter was used, the resulting true states can be seen on
figure 7.14
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Figure 7.14: Data from simulation

The performance is good, and there is no offset on the position. In general this is a
good performing estimator. One of thee weaknesses of the extended Kalman filter comes
to play when the system deviate from the model. Another run is therefore made with a
disturbance on the Z-axis. The resulting positions can be seen on figure 7.15

Figure 7.15: Data from simulation

As it can be seen the system is not stable in this configuration. This is because the model
cannot account for the disturbance.

Including the disturbance model in the extended Kalman filter might solve this problem.
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7.3. Simulations

Sensor driven Extended Kalman filter

Lastly the sensor driven extended Kalman filter is used as estimator. First a normal run
is done, and the resulting positions can be seen on figure 7.16

Figure 7.16: Data from simulation

The performance is good, and there is no offsets. One of the advantages of the sensor
driven extended Kalman filter is that it is not model dependant. It should therefore not
be vulnerable to disturbances. A run with a disturbance on the Z-axis is therefore run,
the result can be seen on figure 7.17
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Figure 7.17: Data from simulation
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7. Simulation

The system was stable and kept good performance despite the disturbance.

Conclusion

The conclusion drawn from the flight scenarios is that the system is stable. With no
disturbances the LQR and either EKF or sensor driven EKF is sufficient for flight. When
disturbances are introduced either the EKF needs to be approved else the sensor driven
EKF is needed.
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Chapter 8

Implementation

The implementation of this project into the real world was unsuccessful. This chapter
describes the design of the intended implementation, and what problems this design ran
into.

It was originally the plan to put the estimator and controller(s) on the quadrotors Arduino
Mega 2560, but the heavy matrix operations would not be able to run on this. It was
therefore decided to run the estimator and controller on a PC, and the uplink the control
signals to the quadrotor, while downlinking sensor data to the PC. The system can be seen
on Figure 8.1 below.

Figure 8.1: System overview

8.1 System setup

The systems on Figure 8.1 has to be implemented and setup to interact with each other.
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8. Implementation

8.1.1 GamesOnTrack system

The GOT system used in this project is a test version on loan. The system handles the
positional measurement of the quadrotor. The quadrotor is equipped with an ultra sonic
transmitter, which is timed with the GOT system via a wireless link. The ultra sonic wave
is received by several ultra sonic receivers which are placed in a calibrated pattern around
the room. The distance between each receiver and the transmitter can then be calculated,
and used for trilateration of the position of the transmitter in a 3D environment. This
calculation is done in an Software Development Kit (SDK) on a PC. The SDK is edited
such that the position is low pass filtered, as the system sometimes generates large errors.
And then transmits its results to a MATLAB process.

8.1.2 Radio link

The quadrotors on-board Arduino needs to be able to get data to and from the PC,
a wireless radio link is therefore setup. The radio is an XBee S1, and is setup to be
“transparent”, meaning it passes data straight through and to the Arduino and the PC it
looks like they are directly connected.

The radio link will be used to pass data and control signals. To simplify the
communication handling, a standard package is used for both upload and download. The
package consists of 17 bytes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Start Ctrl U1 U2 U3 U4 mx my mz ax ay az gx gy gz test End

Table 8.1: The arrangement of data in each package

The radio link ended up being one critical components which prevented a full
implementation, as this specific one did not allow faster communication than 10Hz, which
is to slow for stable controller.

8.2 Arduino

The Arduino Mega 2560 was chosen because it is easy and quick to program. It was the
hope that by using this simple platform, future projects would be easier. The Arduino in
this project shall take data from the IMU and transmit them to the PC, while receiving
motor signals from the PC and translating these to PWM for the motors ESC.

For a control loop to function properly it is important to control the frequency of the
control loop, but as the control signals come from the PC, the Arduinos loop should run
as fast as possible to induce the smallest amount of delay from the PC to motor speed
change.

As a safety feature a communication watchdog was implemented. It tracked how many
failed communication attempts had occurred in a row. And when this number ran over a
limit it would trigger the stop mode.

IMU data

The IMU is mounted directly to the Arduino on a custom shield, made by the UA-world
project. It returns the three sensors values as floats. These data are stored in the next
downlink data package, if new sensor data is not ready then the value in the package is set
to maximum, such that the PC can ignore them.
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8.3. Matlab / PC

Motor control

The Arduino is directly connected to the ESCs. These are controlled by PWM in a
specific interval. The code in the arduino is setup such that when flying the motor are
never stopped fully.

When the quadrotor is first initialised, a calibration of the ESCs are needed. This consist
of setting the PWM to the minimum value for 1500ms and then increasing the value for
an additional 1500ms. This enables the motors, which is confirmed by a beeping noise
from each motor.

Communication handler

The communication handlers task is to ensure that all incoming commands and data are
received and stored, while also sending data packages to the PC.

It ensure the validity of incoming packages by searching incoming data for the start byte
of a package, it then checks if the end byte is in the correct position relative to the start
byte, and if yes passes the package as being valid. This system could be improved by
calculating a checksum and adding it to the package from the source, and then confirming
the content of the package.

The PC in the system has a similar communication handler.

8.3 Matlab / PC

A PC is setup with matlab for the purpose of collecting and processing data from the GOT
system, the quadrotor and for verification purposes data from the VICON system. The
PC is also used as user interface, which is also programmed in Matlab.

Initialization The Matlab script start by setting variables, starting the user interface
and connecting to the GOT, VICON and the Xbee module. The GOT system is connected
by starting its SDK, which has been modified to send its output data to a local port, which
Matlab can read.

User input The user input is made as a Matlab figure with a selection of buttons that
can be clicked, and key presses.

The buttons controls the “Ctrl” variable, which decides the flight mode to be in. The
modes are:

1. Stop

2. Calibrate

3. Calibrated (hidden)

4. Initialize

5. Fly

Key presses can be used to change the reference, such that the user can control the position
and yaw reference.

Communication handler The communication handler checks bytes available from the
Xbee module, if more than 15 is available, then it checks for start and end bytes being
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Figure 8.2: Matlab flowchart

placed correctly. If the package is setup correct, then it is accepted and copied into local
variables. If not then the package is discarded.

Estimator The estimator gathers data from the IMU and the GOT system, and applies
the estimator described in Chapter 6. This results in a full set of states.

The states are subtracted from the reference through an error maker just like in subsection
7.1.2.

Controller The controller is simply a matrix multiplication between the error vector and
the LQR matrix.

Depending on the “Ctrl” variable the script either send the control signal made by the
controller, or sends the lowest value. This is made for the modes where the quadrotor
should not fly.
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8.4. Conclusion

8.4 Conclusion

A lot of time was used on the implementation. In the end it was found that it was not
a good option to implement it on an Arduino, as it simply could not run the required
operations fast enough.

When coding from scratch it is very important to build in failsafes, as quadrotors can
be very dangerous when turned on inside a room with a human. These failsafes cannot
depend upon user inputs or wireless links.

It was also found that starting up the motor to their lowest RPM before going to flight
mode was a good idea, as the controller is not meant to operate from zero.
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Chapter 9

Closure

This chapter serves as round up of the project, and it will collect the conclusion on the
solutions and problems found throughout the project

9.1 Discussion

Many areas within modern quadrotor flight was investigated throughout this project.

9.1.1 LQR controller

The LQR controller was in this project used as the main controller for flight. It is a simple
and safe choice, and it is simple to tune. It performed well, achieving stable flight in
normal simulation scenarios. Disturbance scenarios showed the weakness of this approach,
as seen on table 7.1. The LQR is not optimal for handling disturbances which is unknown
to its state space model.

LQR control is a good start choice for future projects, but better solutions should be
striven for.

9.1.2 Disturbance handling

The experimental controller was an attempt at handling the disturbances separately from
the quadrotors states. The controller showed its worth in simulation against disturbances,
as seen on table 7.2. It allowed for flight while under disturbances which normally made
the system uncontrollable.

More work is needed on verifying the approach, as it is not proven stable or optimal in
this project.

The MPC approach was investigated, and seems to be a viable option. This approach
needs to be tested to verify this claim. It could also be interesting to see if the performance
increases with the use of a non-linear MPC.

9.1.3 Estimators

Three estimators was examined in this project; a Static Kalman gain EKF, an EKF and
sensor driven EKF. These where simulated in Simulink, with realistic sensor models.

The Static Kalman gain EKF had decent performance, but shoved a tendency to have a
deviating speed estimate, which led to a position drift.
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9. Closure

The EKF had good performance, giving an estimation of the states which was precise
enough that the system could remain stable and reach its reference roughly as fast as with
state feedback. It did not however handle disturbances well. Further work could be put
into incorporating the disturbances, to solve this problem

The sensor driven EKF had good performance very similar to the EKF. It handled
the estimation perfectly even with disturbances. The sensor driven EKF also have the
advantage of being easily transferable to other systems. It could be interesting to see if
the estimator works as well on other systems.

9.1.4 Yaw Estimation

The estimation of yaw is important for precise flight, especially indoors. A system which
can fix any estimation errors is therefore highly useful. The solution found improved the
flight path dramatically, and was able to reach the target destination with much bigger
initial errors, see figure 6.1 and 6.2

A solution like this one should always be present in quadrotors.

9.1.5 Simulations

The simulations ended up being the main tool of this project. After having established a
good environment, it was used to tune both controllers and estimators.

It would be a good addition if the plant in the simulation environment could be compared
to real life data, for verification purposes. The plant model also needs a drag coefficient
to enable this effect.

9.1.6 Implementation

The implementation was unfortunately not achieved at the time of finish this report, as
several problems in the system slowed this process down.

An attempt at implementing some of the solution for real world validation is planned.

9.1.7 Problems

In Section 1.1 a series of problems where given.

How does a quadrotor fly and operate at/between different positions with
different orientations.
By having a good estimate of the states, and keeping track of the reference frames,
operation in all yaw orientations can be achieved.

How does a system calculate its states when not all are measured.
Using an estimator, like the sensor driven EKF, a good state vector can be achieved.

How can an autonomous controller handle physical disturbances.
If the disturbance is known it can be fed into a controller based on the systems models.
This could be a model predictive controller or a controller similar to the experimental
controller in this project.
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Appendix A
MPC script

This appendix contains the matlab script needed for MPC, the script was originally intended
to be used in simulation, but this was not compatible.

function u = fcn(ref,est)
2 %#codegen

%Setup
4 p=6; %prediction horizon

c=5; %Control horizon
6 persistent Ap Bu Bdu g H R Q U

if isempty(Ap)
8 U=[0.604 0.604 0.604 0.604]’;

10 A=[1.0000 0 0 0.0167 0 0 0 0 0 0 0 0 0 0 0 0.0316 0 0 -0.0000 -0.0000 0.0000 0.0000
0 1.0000 0 0 0.0167 0 0 0 0 0 0 0 0 0 0 0 0.0316 0 -0.0000 0.0000 0.0000 -0.0000

12 0 0 1.0000 0 0 0.0167 0 0 0 0 0 0 0 0 0 0 0 0.0158 -0.0000 0.0000 -0.0000 0.0000
0 0 0 1.0000 0 0 0 0 0 0 0 0 0 0 0 3.7942 0 0 -0.0006 -0.0006 0.0006 0.0006

14 0 0 0 0 1.0000 0 0 0 0 0 0 0 0 0 0 0 3.7942 0 -0.0006 0.0006 0.0006 -0.0006
0 0 0 0 0 1.0000 0 0 0 0 0 0 0 0 0 0 0 1.8971 -0.0001 0.0001 -0.0001 0.0001

16 0 0.0046 0 0 0.0000 0 1.0000 0 0 0.0333 0 0 0.0006 0 0 0 0.0000 0 -0.0000 0.0000
0.0000 -0.0000

-0.0046 0 0 -0.0000 0 0 0 1.0000 0 0 0.0333 0 0 0.0006 0 -0.0000 0 0 0.0000
0.0000 -0.0000 -0.0000

18 0 0 0 0 0 0 0 0 1.0000 0 0 0.0333 0 0 0.0006 0 0 0 0.0000 0.0000 0.0000 0.0000
0 0.2778 0 0 0.0023 0 0 0 0 1.0000 0 0 0.0334 0 0 0 0.0029 0 -0.0000 0.0000

0.0000 -0.0000
20 -0.2778 0 0 -0.0023 0 0 0 0 0 0 1.0000 0 0 0.0334 0 -0.0029 0 0 0.0000 0.0000

-0.0000 -0.0000
0 0 0 0 0 0 0 0 0 0 0 1.0000 0 0 0.0334 0 0 0 0.0000 0.0000 0.0000 0.0000

22 0 0 0 0 0 0 0 0 0 0 0 0 1.0033 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1.0033 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0033 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0033 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0033 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0033 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6416 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6419 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6423 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6427];

32
B=[-0.0005 -0.0005 0.0005 0.0005

34 -0.0005 0.0005 0.0005 -0.0005
-0.0000 0.0000 -0.0000 0.0000

36 -0.0807 -0.0807 0.0807 0.0807
-0.0807 0.0807 0.0807 -0.0807

38 -0.0064 0.0064 -0.0064 0.0064
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A. MPC script

-0.0000 0.0000 0.0000 -0.0000
40 0.0000 0.0000 -0.0000 -0.0000

0.0000 0.0000 0.0000 0.0000
42 -0.0000 0.0000 0.0000 -0.0000

0.0000 0.0000 -0.0000 -0.0000
44 0.0026 0.0026 0.0026 0.0026

0 0 0 0
46 0 0 0 0

0 0 0 0
48 0 0 0 0

0 0 0 0
50 0 0 0 0

189.7558 0 0 0
52 0 189.8077 0 0

0 0 189.8595 0
54 0 0 0 189.9111];

56 C=eye(19);

58
%% System matrices

60 Ap=zeros(22*p,22); Bu=zeros(22*p,4);Bdu=zeros(22*p,4*c);
for (i=1:p)

62 Ap(1+(i-1)*22 :22+(i-1)*22,1:22)=[A^i];
end

64 Bu(1:22,1:4)=B;
for (i=1:p-1)

66 Bu((1+i*22):(i*22)+22,1:4) = A*(Bu(1+((i-1)*22):((i-1)*22)+22,1:4))+B;
end

68 j=0;i=0;

70 Bdu((1+j*22):(j*22)+22,1+i:4*(i+1))=B;
for (j=1:p-1)

72 Bdu((1+j*22):(j*22)+22,1:4)=(A^(j) *B) + Bdu((1+(j-1)*22):((j-1)*22)+22,1:4);
end

74 for (i=1:c-1)
Bdu(:,1+(i*4):4*(i+1))=[zeros(22*i,4);Bdu(1:132-22*i,1:4)];

76 end

78 R=eye(4*c);
Qi=[90 90 50 20 20 20 30 30 95 5 5 10 0 0 0 0 0 0 0 0 0 0]; %state weights

80 Q=diag([Qi,Qi,Qi,Qi,Qi,Qi]);

82
H=Bdu’ * Q * Bdu + R;

84
end

86 %%

88 e=ref-est;
g=2*Bdu’*Q*e;

90
%% constraints

92 Umax=1; Umin=0.1; %Control signal limits
Qmax=0.1; Qmin=-0.1; %Roll/Pitch limits

94 Wmax=0.3; Wmin=-0.3; %Yaw speed limit
Pmax=10; Pmin=-10; %X-Y limits

96 Zmax=11; Zmin=9;
Smax=0.1; Smin=-0.1; %Speed limits

98 Lmin=[Qmin;Qmin;Wmin;Pmin;Pmin;Zmin;Smin;Smin;Smin];
Lmax=[Qmax;Qmax;Wmax;Pmax;Pmax;Zmax;Smax;Smax;Smax];

100 L=zeros(9,22);L(1,1)=1;L(2,2)=1;L(3,6)=1;L(4,7)=1;
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L(5,8)=1;L(6,9)=1;L(7,10)=1;L(8,11)=1;L(9,12)=1;
102

Lm=zeros(9*p,22*p);
104 for (i=1:p)

Lm(1+(i-1)*9:9+(i-1)*9,:)=[zeros(9,(i-1)*22),L,zeros(9,(p-i)*22)];
106 end

108 F=[eye(4), eye(4), zeros(4,16)
eye(4), eye(4), eye(4), zeros(4,12)

110 eye(4), eye(4), eye(4),eye(4), zeros(4,8)
eye(4), eye(4), eye(4),eye(4),eye(4), zeros(4,4)

112 eye(4), eye(4), eye(4),eye(4),eye(4),eye(4)];
% CVX

114 n=c*4;
cvx_begin

116 variable dU(n);
minimize(-dU’ * g + dU’*H*dU);

118 subject to
0.1<=( F* [U; dU] )<=1; %Control signal limits

120 [Lmin;Lmin;Lmin;Lmin;Lmin;Lmin]<Lm*(Ap*est + Bu*U +
Bdu*dU)<[Lmax;Lmax;Lmax;Lmax;Lmax;Lmax];

cvx_end
122 Y= F*[U; dU];

124
u = y(5:8);
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