
ScrumBut in Professional Software Development

Aalborg University � Department of Computer Science

Master's Thesis � Group IS1016F16 � Spring 2016

Drægert and Petersen (2016)

Department of Computer Science

Selma Lagerløfs Vej 300

9220 Aalborg Ø

Phone (+45) 9940 9940

Fax (+45) 9940 9798

http://www.cs.aau.dk

Title:
ScrumBut in Professional
Software Development

Subject:
Systems Development

Project period:
2016-02-01 � 2016-08-22

Project group:
IS1016F16

Participants:
Alexander Drægert
Dan Petersen

Supervisor:
John Stouby Persson

Printings:
4

Pages:
56

Appendices:
26

Total pages:
96

Abstract:

Agile methodologies are widely used

in the software industry with Scrum

being the most common framework.

Scrum has few, well-de�ned prac-

tices, but many companies still de-

viate from the textbook version.

Limited research has investigated

the underlying explanation of why.

Against this backdrop, we report

an investigation of ScrumButs in

professional software development

based on a multimethod research

approach analysing 17 empirical re-

search papers on Scrum modi�ca-

tions and interviews with 9 Scrum

practitioners from 7 software com-

panies. ScrumButs were identi�ed

pertaining to all parts of the Scrum

framework, and the analysis shows

how particular ScrumButs may in-

volve di�erent forms of reasoning

re�ecting di�erent forms of organ-

isational culture. We discuss how

these �ndings may nuance our as-

sessments of ScrumButs beyond im-

plicit value judgments of being in-

herently good or bad, and how the

agility of the modi�ed practices may

be a�ected.

The content of the report is freely available, but may only be published (with source reference) with

consent from the authors.

Aalborg University Page i

http://www.cs.aau.dk

Drægert and Petersen (2016)

Page ii Aalborg University

Drægert and Petersen (2016)

Summary

Software development is a complex endeavour with numerous variables determining
whether or not a project is successful. To manage these variables a wide range of
methodologies have been developed. Amongst these exists a set of methodologies
and frameworks known as agile. In this study we focus on the most widely used
agile framework Scrum, and speci�cally on the modi�cation or omission of Scrum
practices, known as ScrumBut.

ScrumBut is an established phenomenon in the Scrum community, however it
is still being discussed whether this phenomenon is harmful or benign. Previous
research of ScrumBut has yielded many reasons, narrated by software professionals,
for prevalent instances of ScrumBut. However, limited research have investigated
the underlying explanation of why ScrumBut emerges.

To investigate this we conduct a Grounded Theory study with data collected
from 17 empirical research papers on Scrum modi�cations and interviews with 9
Scrum practitioners from 7 software companies.

ScrumButs are identi�ed in all practices of the Scrum framework and presented
along with the reasoning behind, as reported by Scrum practitioners and empirical
research papers. Further analysis show that these reasonings can be associated
with the competing values model of organisational cultures. The competing values
model is a framework through which four di�erent forms of organisational culture
can be distinguished based on the core values pertaining each culture. To illustrate
this association, we show how particular ScrumButs may involve di�erent forms of
reasoning re�ecting di�erent forms of organisational culture.

By relating these �nding to existing literature we con�rm the �ndings of those
who investigate the di�erent variations of ScrumBut by identifying similar varia-
tions. Additionally, existing literature focusing on tailoring of agile methodologies
is extended by providing a better basis for understanding the conditions in which
adaptations are made, through a presentation of the reasonings behind the adap-
tations of Scrum. Finally, the association between ScrumButs and organisational
culture breaks with the current discussion of whether ScrumButs are harmful or be-
nign, and moves it towards a more nuanced point of view, taking the organisation's
core values into account.

A condensed and more focused representation of the �ndings and contributions
of this study has been compiled into an article at the end of the report.

Aalborg University Page iii

Drægert and Petersen (2016)

Page iv Aalborg University

Drægert and Petersen (2016) Preface

Preface

This report was written by two 10th semester software engineering students at
Aalborg University. It combines the preliminary �ndings from 9th semester with a
more thorough study of relevant literature and several interviews.

A big thank you goes out to everybody who allowed us to interview them � without
you the project would not have been very interesting at all.

We, of course, also want to thank our supervisor, John S. Persson, for his help,
guidance and not least patience throughout the project.

The main �ndings of the report can be found in the form of an article in Appendix F.

Aalborg, August 22, 2016

Alexander Drægert Dan Skøtt Petersen

Aalborg University Page v

Preface Drægert and Petersen (2016)

Page vi Aalborg University

Drægert and Petersen (2016) CONTENTS

Contents

Preface v

1 Introduction 1

2 Agile Software Development,
Scrum & ScrumButs 5
2.1 Agile Software Development . 5
2.2 Scrum . 6

3 Research Methodology 13
3.1 Methods . 14
3.2 Data Collection . 17

4 Findings 23
4.1 Reasoning of ScrumButs . 23
4.2 Organisational Culture and ScrumButs 32

5 Discussion 41
5.1 Contribution . 41
5.2 Limitations . 44
5.3 Future Research . 45

6 Conclusion 47

Bibliography

A Methodology Considerations

B Complete Literature Search Queries

C Reviewed Papers

D Interview Guide

E Tools

F Article

Aalborg University Page vii

CONTENTS Drægert and Petersen (2016)

Page viii Aalborg University

Drægert and Petersen (2016) 1. Introduction

Introduction 1
Software development is a complex endeavour with numerous variables determining
whether or not a project is successful. Tiwana and Keil [92] present six risk factors
which impact the success rate of a project. Among those risk factors, the one with
the highest impact factor is Methodology Fit. They argue that there is no �one size
�ts all methodology� and one methodology may �t one project, but not another.
Thus it is important to be aware of what di�erent methodologies entail in order to
select the correct �t for one's project.

It has long been commonly agreed that methodologies can be categorised into
two categories: heavyweight and lightweight. In heavyweight methodologies a se-
quential series of steps is followed resulting in a �big bang� delivery of all func-
tionality at the same time. They measure success according to the conformance
with a requirements speci�cation which is compiled early in the project and stays
relatively stable throughout the project. Thus, they have an anticipatory style of
development attempting to anticipate and plan for risks and tasks [58, 64]. Some
common heavyweight methodologies are: The Spiral Model, Rational Uni�ed Pro-
cess (RUP), Incremental Model, and Waterfall Model. Lightweight methodologies
are conducted by following a iterative series of steps resulting in an incremental
delivery of functionality over time. They measure success according to the business
value delivered by relying on frequent customer interactions and rapid changes to
the requirements. Thus they have an adaptive style of development attempting to
adapt to the emerging risks and tasks [58, 64]. Some common lightweight method-
ologies are: Agile, Prototype Model, and Rapid Application Development (RAD).
As of 2015 Hewlett-Packard Development Company [38, p. 1] found that �[t]he vast
majority of organisations [...] use Agile� out of all methodologies, which makes it
particularly interesting to study.

The Agile methodology �rst got its name, when Alistair Cockburn expressed
dissatisfaction with methodologies being labelled �lightweight�, at the meeting from
which the �Agile Software Development Alliance� emerged [29]. This meeting was
held to better de�ne the common values of these �lightweight� (now agile) method-
ologies. In attendance was a large group of prominent people from the community
(Beck et al. [6]), who in collaboration described the values and principles of Agile
and thus created the Manifesto for Agile Software Development [6]. The set of val-
ues and principles which they introduced was later used by Conboy [17] to de�ne
what it means for a method or methodology to be agile. The de�nition, values,

Aalborg University Page 1 of 86

1. Introduction Drægert and Petersen (2016)

and principles of agile software development are further explained in Section 2.1.
Some of the most common agile frameworks and methodologies are, according to
VersionOne [98]: Scrum, Extreme Programming (XP), Lean Software Development,
Feature Driven Development (FDD), and Crystal. Leading the poll is Scrum with
nearly 70%, making it the most widely followed agile methodology, and as such,
research into Scrum is paramount.

The methodology Scrum was �rst de�ned in 1997 by Je� Sutherland and Ken
Schwaber in the paper �SCRUM Software Development Process� [77]. It is an agile
methodology which focuses on managing complex product development projects.
The motivation for Scrum is allowing the team to react to changes in requirements
and other aspects during the project's execution [21]. When problems or changes
occur, the change is inspected and the team adapts as needed. This learning process
of �inspect and adapt� is a core element of Scrum in addition to �transparency� as
encouraged by the components of the framework. The Scrum framework consists of
three roles, �ve events, and three artefacts which are described in Section 2.2.1.

This limited amount of components makes Scrum appealing to adopt and in some
cases customise. Looking at the numbers from VersionOne [98] one can extrapolate
that 23% of Scrum followers extend the framework with additional methodologies
or practices. This is what the community calls ScrumAnd [97] while changes to
Scrum components are called ScrumBut [78]. Especially ScrumBut is an interesting
phenomenon as it is often seen in professional software development [22, 45, 70, 82],
while the community still argue whether they are �signs of dysfunction� [78] or �a
natural part of any agile methodology� [19]. Both of these phenomenon are further
explained in Section 2.2.2.

These changes to the methodology is in the research community known as
method adaptation, method con�guration, method customisation, method engineer-
ing, method modi�cation, method tailoring, situational method engineering, etc. The
di�erence between these terms are not clear and can be di�erent depending on the
author of a given paper. Ågerfalk and Fitzgerald [3], Baskerville and Stage [5] dis-
covered that two distinct views on method tailoring exist. Aydin et al. [4] furthered
this discovery by distinguishing these views as static and dynamic method tailor-
ing. He also found that these views often used di�erent terms when describing the
phenomenon method tailoring.

Static method tailoring share some assumptions with the plan-driven methodol-
ogy, as it assumes that the context is static and structured, disregarding any progress
in the method during the project, as they con�gure or engineer the methods [53, 55].
In static method tailoring it is often method engineers, project management o�ces,
and the like that tailor the methods [4]. This often leaves the developers as method
users, who just use the methods as instructed [54, 55]. When describing static
method tailoring the commonly used terms are: Method con�guration, method en-
gineering, method modi�cation, etc.

Dynamic method tailoring share some assumptions with the agile methodology,
as they assume that the context is ever-changing and the method has to change
with it [28]. The focus of dynamic method tailoring is on �how methods are enacted
in practice� Karlsson [52, p. 14], and as such it is often both method users, i.e.

Page 2 of 86 Aalborg University

Drægert and Petersen (2016) 1. Introduction

developers, and method engineers that tailor the methods [4]. In dynamic method
tailoring the commonly used terms are: method adaptation, method customisation,
situational method engineering, etc.

Aydin et al. [4, p. 26] further state that �the [dynamic] tailoring process often is
ill-structured so it becomes di�cult to document changes and their rationale�. This
may also answer as to why there is so limited empirical research into ScrumButs. To
contribute to the body of research on adaptations of Scrum, this study will explore
the emergence and reasoning of ScrumButs in professional software development.
To guide the study, the following research questions are proposed:

I. What ScrumButs are prevalent in professional software development?
II. How are ScrumButs reasoned in professional software development?

To study these research questions we use a pluralist methodology as described
by Mingers [65], as his research suggests that this will give a richer understanding of
the results. We follow a Grounded Theory approach, described by Wolfswinkel et al.
[101], to analyse existing literature supplemented with in-depth laddering interviews
of practitioners, described by Schultze and Avital [76]. A more detailed explanation
about the use of research methods in this study is described in Chapter 3.

The remainder of the report is structured as follows: In Chapter 2 some nec-
essary information about Agile Software Development, Scrum, and ScrumButs is
presented. In Chapter 3 we present the argumentation and execution of our re-
search methodology. This is followed by Chapter 4 where we present our �ndings.
In Chapter 5 we discuss the contribution and limitations of the study, as well as
suggestions for future research. Lastly, in Chapter 6, we conclude the study.

Aalborg University Page 3 of 86

1. Introduction Drægert and Petersen (2016)

Page 4 of 86 Aalborg University

Drægert and Petersen (2016)
2. Agile Software Development,

Scrum & ScrumButs

Agile Software Development,
Scrum & ScrumButs 2

This chapter outlines the research conducted in the area of agile software develop-
ment. In addition, Scrum is described to provide a frame of reference for modi�ca-
tions to the framework. Finally, ScrumBut is explained while presenting research
and disputes regarding the phenomenon.

2.1 Agile Software Development

The Agile Manifesto [6] consists of four values and twelve principles to support them.
The values are:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Notice that the values to the right are still considered important, but not as
important as the values to the left. Along with the four values, the manifesto for-
mulates twelve principles to follow in agile software development, but as argued by
Dingsøyr et al. [23], the principles do not constitute an actual de�nition of agility.
In the years following the publication of the agile manifesto, several researchers
started de�ning the term (e.g. [37, 62]). Focusing on information systems develop-
ment (ISD), Conboy [17, p. 340] de�nes agility as �the continued readiness of an
ISD method to rapidly or inherently create change, proactively or reactively embrace
change, and learn from change while contributing to perceived customer value (econ-
omy, quality, and simplicity), through its collective components and relationships
with its environment.� This de�nition is widely used (e.g. [49, 71]) and while the fo-
cus is on ISD, it is applicable to software development in general; Dingsøyr et al. [23,
p. 1214] call it �by far the most comprehensive de�nition of software development
agility.� In addition to the de�nition itself, Conboy [17] formulated a taxonomy (see
Table 2.1) that is useful for determining whether or not a given method component
can be considered agile.

Besides studying agility as a concept, other subjects are also being studied.
Many study individual practices or methodologies (e.g. [43, 66, 84, 100]), and in
a recent example Eloranta et al. [25] study Scrum anti-patterns. Others look at

Aalborg University Page 5 of 86

2. Agile Software Development,
Scrum & ScrumButs Drægert and Petersen (2016)

1. To be agile, an ISD method component must contribute to one or
more of the following:

a) creation of change

b) proaction in advance of change

c) reaction to change

d) learning from change

2. To be agile, an ISD method component must contribute to one or
more of the following, and must not detract from any:

a) perceived economy

b) perceived quality

c) perceived simplicity

3. To be agile, an ISD method component must be continually ready,
i.e., minimal time and cost to prepare the component for use.

Table 2.1: Taxonomy of ISD Agility [17, p. 341].

the relationship between organisational agility and project agility (e.g. [9, 71]) or
the impact of organisational culture on agile method use (e.g. [49, 86]). Iivari and
Iivari [49] propose a number of hypotheses on the subject of the latter. Dingsøyr
et al. [23] notes a growing interest in combining agile software development with
principles of lean software development; a trend that continued after their study
(see e.g. [73, 87]).

Another common subject, the one in focus in this project, is that of agile method-
ology tailoring. Some focus on tailoring speci�c methodologies (e.g. [10, 13, 19]),
while others focus on how to tailor agile methodologies in general (e.g. [12, 18, 39]).
An example of tailoring speci�c methodologies can be seen in Conboy and Fitzger-
ald's [19] study in which the objective is to �assess how amenable XP is to tailoring,
and to develop a set of recommendations for its improvement in this regard� and
�investigate how developers are undertaking XP tailoring e�orts and to develop a
set of best practices for developers to follow� [19, p. 2:2]. Hoda et al. [39] study
tailoring of agile methodologies in general by relating adaptations from di�erent
sources [40, 41, 42] to the context of their independent projects, and they �nd that
agile teams �evolve their methods and practices to be as e�ective as possible within
their projects' contexts� [39, p. 86].

2.2 Scrum

Takeuchi and Nonaka's [88] paper �The New New Product Development Game�
discusses the need for a new approach to product development. Using the rugby term
scrum, they presented the philosophy of an approach using self-organising teams.
They found those teams to perform better than traditional hierarchical teams. Their
paper ultimately led to the development of a framework to support this philosophy,
and sticking with the analogy from the original paper it was named Scrum [77, 81].
Since then several improvements have been made, and today Scrum is used by the
majority of organisations practising agile software development [81, 98]. Many of

Page 6 of 86 Aalborg University

Drægert and Petersen (2016)
2. Agile Software Development,

Scrum & ScrumButs

the organisations claiming to do Scrum, modify it to �t the context in which they are
working. Schwaber [78] calls these changes ScrumButs and their signi�cance will be
discussed in Section 2.2.2, after the presentation of Scrum itself in Section 2.2.1. A
previous version of these two sections can be found as Chapter 2 of our 9th semester
project report [24].

2.2.1 What is Scrum?
Scrum (noun): A framework within which people can address complex adaptive

problems, while productively and creatively delivering products of
the highest possible value.

[80]

Several books and papers exist on the subject, providing a much more detailed
account of the framework [7, 60, 74, 79]. To keep the discussion on an abstraction
level simple enough to cover the entire framework, this study will focus on the
description in �The Scrum Guide� [80]. Scrum, as described in �The Scrum Guide�,
consists of 3 roles, 5 events, and 3 artefacts. The following serves as an overview
of the ideal use of Scrum according to said guide, which is chosen because it gives
a relatively simple overview of the framework, and is written by the people who
formalised the �rst version of Scrum.

Scrum Roles

The Scrum Team consists of a Product Owner, a Scrum Master, and the Devel-
opment Team. It is self-organising, meaning it is responsible for directing its own
work. It is cross-functional, meaning it has all the expertise needed in the team,
without having to rely on, for example, external consultants.

Product Owner The Product Owner is responsible for managing the Product
Backlog, including making sure Product Backlog items are clearly de�ned, under-
standable and ordered. The Product Owner has full control over the requirements,
and nobody else is allowed to change what the Development Team works on.

Scrum Master The Scrum Master enforces proper Scrum practice and manages
communication with people outside the Scrum Team. The Scrum Master also serves
as facilitator of Scrum events, and is ultimately responsible for making sure the
Development Team is able to do their job with as few impediments as possible.

Development Team The Development Team should have between three and
nine developers, and it is their job to turn the Product Backlog into Increments of
potentially shippable product, i.e., �Done� product. Aside from receiving guidance
from the Scrum Master on how to properly do Scrum, the Development Team only
answers to the Product Owner. There is no hierarchy on the team � everyone has
the title developer regardless of their function.

Aalborg University Page 7 of 86

2. Agile Software Development,
Scrum & ScrumButs Drægert and Petersen (2016)

Scrum Events

The 5 Scrum Events, shown in Figure 2.1, are used to reduce the need for ad-hoc
meetings and to create regularity in the work �ow. All Scrum Events are time-boxed
to avoid unnecessary discussions.

Figure 2.1: Overview of events and artefacts in Scrum.

Sprint A Sprint is an event with a duration of up to a month, in which a �Done�
product increment is created. A new Sprint starts immediately after the previous
Sprint ends. Changes to the Sprint Backlog during a Sprint should be avoided, but
the Product Owner and Development Team are allowed to renegotiate the scope,
without endangering the Sprint Goal or quality goals. The Product Owner may
cancel the Sprint, should the Sprint Goal become obsolete.

Sprint Planning Sprint Planning is a collaborative e�ort where the Scrum Team
works together in turning Product Backlog items into a Sprint Backlog, as well as
creating a Sprint Goal. In a Sprint Planning meeting it is decided what can be
delivered at the end of the Sprint and how to accomplish that goal. The meeting is
time-boxed to a maximum of eight hours.

Daily Scrum In the Daily Scrum the Development Team members present what
they did since the last meeting and plan what they will do the next 24 hours.
Impediments that prevent meeting the Sprint Goal are presented as well and a
possible solution is found either during or after the meeting. The meeting is time-
boxed to a maximum of 15 minutes, and should be held the same time and place
every day. The Daily Scrum can be followed by a more detailed discussion to adapt
the rest of the Sprint.

Sprint Review The Sprint Review is a meeting between the Scrum Team and
key stakeholders, held at the end of each Sprint. The Product Owner presents the
progress made during the Sprint, and the Development Team goes over problems as
well as what went well, followed by a demonstration of the new features. Afterwards,
the Product Backlog is revised, and business related topics are discussed if needed.
The Sprint Review should produce a revised Product Backlog, including probable
items to include in the following Sprint. The Sprint Review is time-boxed to a
maximum of 4 hours.

Page 8 of 86 Aalborg University

Drægert and Petersen (2016)
2. Agile Software Development,

Scrum & ScrumButs

Sprint Retrospective The Sprint Retrospective takes place between the Sprint
Review and the following Sprint. It is time-boxed to a maximum of 3 hours, and
only members of the Scrum Team participate. The objective is to �nd out what
went well during the sprint and what can be improved, and to create a plan for how
to implement the improvements.

Scrum Artefacts

The Scrum Artefacts are used to create transparency in the development process.
They serve as ways to manage what has to be done, work in progress, and the
�nished product. The Scrum Artefacts are shown in relation to the Scrum Events
in Figure 2.1.

Product Backlog The Product Backlog is an ordered list of items the Product
Owner determines might be needed in the �nished product. Each item is estimated
by the Development Team, but the Product Owner has full responsibility of the
actual contents: description, prioritisation, estimation, and expected value. The
Product Backlog should be re�ned regularly, but e�ort should not exceed 10% of
the Scrum Team's time. If it is relevant for the project, several Scrum Teams may
share one Product Backlog.

Sprint Backlog The Sprint Backlog is the result of the Sprint Planning event.
It contains a description of the Sprint Goal and a list of items from the Product
Backlog the Development Team �nd should be implemented to reach it. Only the
Development Team is allowed to alter the Sprint Backlog during a Sprint, and during
the Daily Scrum they asses it to decide how likely it is they will reach the Sprint
Goal. The Sprint Backlog should constantly be updated to re�ect progress, new
tasks, �nished or unnecessary items, etc.

Increment An Increment contains the items completed in the current and previ-
ous Sprints. The Increment only contains �Done� items, regardless of whether they
will be released or not.

2.2.2 What is ScrumBut?
ScrumBut (noun): A modi�cation or omission of a Scrum practice following the

syntax (We use Scrum, but)(Reasoning)(Workaround).

[51, 78]

The term ScrumBut was coined in 2006 by Gunnerson, and is a prevalent occurrence
when studying Scrum practices in professional software development, as seen in for
example [36, 61, 70]. Research into this phenomenon often focuses on what instances
are prevalent and their relation to Scrum [22, 25, 45]. So far there is a limited amount
of research explaining why ScrumButs emerge.

An example of a ScrumBut is given by Schwaber [78] as �(We use Scrum, but)
(having a Daily Scrum every day is too much overhead,) (so we only have one per
week.)�

Aalborg University Page 9 of 86

2. Agile Software Development,
Scrum & ScrumButs Drægert and Petersen (2016)

Schwaber [78] argues that ScrumButs are �exposing dysfunctions that contributes
to problems� and that allowing ScrumButs �retains the problem while modifying
Scrum to make it invisible.� Others have di�erent views on ScrumButs as for exam-
ple Kniberg [59] who argues that �anything that works for you is right, anything that
doesn't is wrong� and one should not be afraid of doing Scrum wrong if it works, a
sentiment Je�ries [51] agrees with. Conboy and Fitzgerald [19, p. 2:4] further argue
that �anything labelled as agile should itself be �exible and amenable to tailoring.�
The di�erent views are seen throughout the professional software development in-
dustry, with supporters of both arguments [18]. Despite this controversy, limited
studies into the practical e�ects of ScrumBut have been conducted. Heikkilä et al.
[36, p. 94] have conducted a study on ScrumButs regarding user story manage-
ment and sprint planning, concluding that changes to these �cannot be said to be
categorically harmful ScrumButs.�

In addition to ScrumBut, another term has been coined in regards to modi�ca-
tion of Scrum. This is the term ScrumAnd which is used when extending Scrum
with additional practices, for example implementing XP practices such as Pair Pro-
gramming in collaboration with Scrum. Although di�erentiating between ScrumBut
and ScrumAnd seems easy, not all cases are straight forward. As such Krishna and
Basu [61] developed a set of principles to determine if a deviation from Scrum is
a ScrumBut or a ScrumAnd. To easier use these principles to determinate which
concept a given instance should be de�ned as, they developed three tables, shown
here in Table 2.2, Table 2.3, and Table 2.4.

Open-Closed Principle
Open for
extension,
additional
feature

Closed for
modi�cation in
Scrum practices

OCP
Result

Status

Yes/No Yes Yes
Scrum or
ScrumAnd

Yes/No No No ScrumBut

Table 2.2: Open-Closed Principle Table [61, p. 3].

Single Responsibility Principle
Single
Responsibility

Multiple
Responsibility

SRP
Result

Status

Yes No Yes Scrum
No Yes No ScrumBut

Table 2.3: Single Responsibility Principle Table [61, p. 3].

Page 10 of 86 Aalborg University

Drægert and Petersen (2016)
2. Agile Software Development,

Scrum & ScrumButs

Applying OCP and SRP
OCP SRP Status
Not Applicable Not Applicable Scrum
No No/Not Applicable ScrumBut
Yes/Not Applicable No ScrumBut
Yes Not Applicable ScrumAnd
No/Not Applicable Yes Scrum
Yes Yes ScrumAnd

Table 2.4: Application Table [61, p. 3].

To illustrate the use of these tables, the concept of the instance �we use Scrum,
but/and we use a product owner committee instead of a single product owner�
can be determined. First we look at Table 2.2 to see whether Scrum allows for
modi�cation of this practice. The Scrum Guide [80, p. 5] says �the Product Owner
is one person, not a committee,� thus it is not amenable for modi�cation and the
OCP Result is No. Secondly, we look at Table 2.3 to see if the role in question
has more than a single responsibility as prescribed by The Scrum Guide [80]. In
this case there are multiple role holders which divides the responsibility, and thus
the answer to Single Responsibility will be No, prompting the SRP Result to also
be No. Lastly, we look at Table 2.4 to determine if the statement is a ScrumBut,
ScrumAnd or just regular Scrum. The results from Table 2.2 and Table 2.3 was No
and No, respectively, resulting in the statement being de�ned as ScrumBut. In this
study we focus only on ScrumButs. Scrum does not account for every part of the
development of a product, and adding practices is therefore natural.

Aalborg University Page 11 of 86

2. Agile Software Development,
Scrum & ScrumButs Drægert and Petersen (2016)

Page 12 of 86 Aalborg University

Drægert and Petersen (2016) 3. Research Methodology

Research Methodology 3
The term methodology should not be confused with the term method. A method is,
according an interpretation of [16, 47] by Mingers [65, pp. 241�242], a �well de�ned
sequence of operations that if carried out pro�ciently yield predictable results.� A
methodology can be de�ned by one of three de�nitions:

1. The study of methods.

2. The combination of methods used in a given project.

3. A prede�ned combination of methods collected under a name.

In this study we will use to the second de�nition of methodology.

Before selecting or developing a methodology to follow in this study, we �rst looked
at the questions we try to answer. These questions are open inquiries into what
ScrumButs are prevalent and how these ScrumButs are reasoned in professional
software development. Given these questions it is ideal to collect data from a profes-
sional software development environment. As there exists several methods to do this,
we looked into recommendations for conducting studies. We found that Mingers [65]
recommends combining multiple methods when developing our methodology. Using
two or more methods based on di�erent paradigms allows for a richer and more
nuanced understanding of the problem at hand. By viewing the problems through
di�erent lenses, details that are overlooked from one point of view may be spotted
from another, allowing the di�erent views to support each other, thereby giving a
richer understanding of the research results. Mingers [65] points out, that of the
studies that do use di�erent methods, many stay within the same paradigm and/or
use methods that are traditionally linked closely together, mentioning, for example,
interviews and case studies. The used methods and their results are not claimed
to be bad, but a more nuanced conclusion could likely be gained by exceeding one
paradigm.

Heeding Mingers' [65] recommendation we decided to collect data from both
practice and academia. To collect this data we decided to develop a methodology
based on Schultze and Avital's [76] laddering interview technique and Wolfswinkel
et al.'s [101] approach to Grounded Theory. Tailoring these two methods can be
done in numerous ways. We have listed and discussed some of these in Appendix A.1.
After consideration and the recommendation from Adolph et al. [2], not to get caught

Aalborg University Page 13 of 86

3. Research Methodology Drægert and Petersen (2016)

up in choosing a con�guration, we decided to use the con�guration illustrated in
Figure 3.1, which uses both methods concurrently, while combining the results in
one shared NVivo (data analysis) project. This con�guration is the fourth discussed
in Appendix A.1.

Figure 3.1: Overview of events and artefacts in Scrum.

In practice, the criteria for the literature search and potential interviewees are
de�ned according to Wolfswinkel et al.'s [101] and Schultze and Avital's [76] in-
structions. The data collection is performed and the resulting data is collected and
analysed in NVivo. This process continues until a saturation point is reached, i.e.
until no signi�cant new knowledge is obtained.

3.1 Methods

In this section we introduce the rationale for selecting the two methods in our
methodology, as well as theories, principles and instructions pertaining to these
methods.

3.1.1 Grounded Theory

Grounded Theory is so named because the method is used to generate a theory which
is grounded in the data [32]. This theory is a set of integrated conceptual hypotheses
that explain a substantive area [31]. The concepts and categories that integrate these
hypotheses are used to account for patterns of behaviour which are relevant to the
substantive area [30]. The unique thing about Grounded Theory is that it �rst
collects data and then systematically develops a substantive theory directly from
the data. In contrast, other logico-deductive research methods develop a theory
without relying on data, and then systematically collect data to substantiate or test
the validity of this theory [32].

Page 14 of 86 Aalborg University

Drægert and Petersen (2016) 3. Research Methodology

The research questions for this study are open and are not pre-formulated theo-
ries needing validation. Instead they are inquiries about the understanding, realisa-
tion, and reasoning of a process. This kind of inquiry is highly suited for Grounded
Theory as, according to Schreiber and Stern [75, p. 13], �the research questions that
begs to be answered through Grounded Theory is: What is going on here?� They
further argue that �Grounded Theory best analyses processes and identi�es complex
and hidden processes� which is exactly what this study does. Although Grounded
Theory has a long history of usage in empirical studies of social phenomenons and
social studies, the method only started being used in software engineering research
in recent years. Adolph et al. [2, p. 488] states that �Grounded Theory is an excel-
lent method for studying software engineering and generating theories,� con�rming
it not to be immature for this �eld of study. They further state that �Grounded
Theory is useful for research in areas that have not been previously studied or where
a new perspective might be bene�cial� [2, p. 491] which further warrants the use of
Grounded Theory in this study.

When investigating Grounded Theory one quickly discovers that numerous ver-
sions of the method exist. The most common versions are Glaserian Grounded
Theory [30, 32], Straussian Grounded Theory [20, 85], and Constructivist Grounded
Theory [14, 15]. It is debated in the Grounded Theory community which method(s)
should be called �real� Grounded Theory and which one is the �best� [11, 57]. In
software engineering there is a tendency to use Straussian Grounded Theory, and
Adolph et al. [2] argue that this might be because this approach is the most pro-
cedural. They do, however, give the following recommendation: �Do not get caught
up in the debate over which method is the �best� Grounded Theory method. The best
method is the one that has the most resource and support availability. Nonetheless,
be clear which method you are employing in your study� [2, p. 509]. Following this
advice, we have chosen to follow Wolfswinkel et al.'s [101] approach to Straussian
Grounded Theory, due to its comprehensive guide to conducting literature studies.

Wolfswinkel et al.'s [101] Grounded Theory consists of �ve steps which can be
seen in Table 3.1 with the pre�x �GT�. The table also shows the steps included in the
interview part, which are explained in Section 3.1.2. It is imperative to know that
despite the representation being staged, the process is iterative. As, for example,
the data collection (step 1-3) is performed numerous times until a saturation point
has been reached. This point is reached when collecting more data does not reveal
any new categories in the analysis and only supports existing ones. The analysis
is iterative as well, as each new category leads to a re-evaluation of all existing
higher-order categories, thus in�uencing the theory.

Categories are created during the analysis step which is divided into three sub-
steps: open coding, axial coding, and selective coding. Wolfswinkel et al. [101]
suggest that before starting to analyse the data, to �rst mark the areas containing
useful data. This focuses the analysis e�ort on the useful parts of the data and
prevents the researchers to be distracted or waste time on information not pertinent
to the study.

After preparations are made the open coding begins. This step involves identi-
fying �a set of categories or a bird's eye image of the study's �ndings� [101]. This

Aalborg University Page 15 of 86

3. Research Methodology Drægert and Petersen (2016)

abstraction enables us to build a set of concepts derived from numerous di�erent
sources, without adhering to each speci�c source. In this study we conceptualised
the ScrumButs and their respective justi�cations into categories as open codes.

Grounded Theory

GT1. De�ne

a. De�ne inclusion/exclusion
criteria

b. De�ne research �eld

c. De�ne sources

d. De�ne search terms

GT2. Search

a. Perform search

GT3. Re�ne sample

a. Perform sample re�nement

Interview

I1. De�ne

a. Identify relevant
interviewees

I2. Contact

a. Contact relevant
interviewees

I3. Prepare

a. Create/update
interview guide

I4. Perform

a. Perform interview

GT4. Analyse

a. Open coding

b. Axial coding

c. Selective coding

GT5. Present

a. Represent and structure content

b. Structure article/report

Table 3.1: Step-wise representation of our methodology.

The next step is axial coding with the goal of identifying �the interrelations
between categories and their sub-categories� [101]. These axial codes or higher-order
categories as they also are named, represents the themes or patterns in the �ndings
in the data. To �nd these existing axial codes are continuously compared and
restructured.

The last step is selective coding where we �integrate and re�ne higher-order cate-
gories� by �identifying and developing relations between the higher-order categories�
[101]. It is in this step we theorise about the higher-order categories to answer our
research questions.

Page 16 of 86 Aalborg University

Drægert and Petersen (2016) 3. Research Methodology

3.1.2 Laddering Interview

An interview makes it possible to �get a �rst-person account of the participant's
social reality� [76, p. 2]. In an interview, views are exchanged between the researcher
and a respondent, but according to Grunert and Grunert [33, p. 212] the outcome
should �be a result more of the respondent's cognitive structures and processes than
of the researcher's cognitive structures and processes.� To accomplish this, Grunert
and Grunert [33] calls for open methods (e.g. unstructured interviews), that allow
the respondent to answer with natural speech.

Conducting interviews is a good way to generate data for this study, as it allows
for gaining detailed insight into the respondent's reality. For interviewing single
individuals Myers and Newman [67] describe two types of interviews: structured and
unstructured or semi-structured. The structured interview has a strict script, and
leaves no room for improvisation. In an unstructured or semi-structured interview
there is little to no script, and improvisation is needed. For this study, the semi-
structured interview is ideal. Coupled with the Grounded Theory approach, a semi-
structured interview can help us make sure all important aspects of Scrum are
covered while still allowing the respondents to express their reality as they experience
it.

Schultze and Avital [76] present three types of interviews: appreciative, ladder-
ing, and photo-diary. A more detailed discussion of the approaches can be found
in Appendix A.2. The approach found to be most appropriate for this study was
the laddering interview, as it allows for a more comprehensive understanding of the
interviewee's reality. Schultze and Avital [76] describe a version, that includes use
of the Repertory Grid method, however, as we are not interested in a comparison
of interviewee's di�erent views, we focus only on the second part of the approach,
namely the laddering process. In the laddering process the respondent is encour-
aged to elaborate their answers, by being asked to explain their previous answer.
In the context of this study, loosely based on the example given by Schultze and
Avital [76, p. 9], a respondent may state that they have no Scrum Master, and the
interviewer will ask why that is the case: �why do you not have a Scrum Master?�
The respondent could answer �we prefer to have a project manager instead�, and the
interviewer continues �why do you prefer to have a project manager?� This process
continues as long as meaningful answers can be given.

3.2 Data Collection

In this section we present the criteria, decisions, and de�nitions which we base our
data collection on.

3.2.1 Literature Study

This study is a continuation of a pilot study conducted and presented in Drægert
and Petersen [24]. The �rst step in a literature study, when following Wolfswinkel
et al.'s [101] approach to Grounded Theory, is to de�ne the search parameters.
Hence the following paragraphs will describe this study's search parameters.

Aalborg University Page 17 of 86

3. Research Methodology Drægert and Petersen (2016)

Inclusion/Exclusion Criteria The primary objective of these criteria is to �lter
out papers not relevant to this study while including papers which are. Therefore
criteria such as outlet reputation, paper citations, or the quality of theory presented
in a paper is not regarded, as the focus is solely on empirical data pertaining to
ScrumButs.

Inclusion criteria

� Papers published in or after 2001,
due to the �rst book published about
Scrum by Schwaber and Beedle [79].

� Papers stating the use of an empirical
research approach.

� Papers presenting data of ScrumButs
from a professional software develop-
ment environment.

� Papers presenting circumstances lead-
ing to the experienced ScrumButs.

� Papers written in English.

Exclusion criteria

� Papers comparing frameworks, prac-
tices, methods and/or methodologies.

� Papers with data collected from ed-
ucational institutions or other non-
professional software development en-
vironments.

� Papers focusing on tools, models, or
metrics.

� Papers solely proposing and/or testing
newly developed frameworks.

De�ne Research Field We focus on the �eld of Computer Science, as it is here
we can obtain observations about the professional software development industry.
Although papers concerning Scrum is also to be found in other research �elds,
e.g. management, we have discovered that the papers regarding Scrum in software
development settings are listed in the research �eld of Computer Science as well as
other research �elds. This observation lets us disregard other research �elds without
losing relevant data, as the papers we exclude will focus on the theory of Scrum and
not the usage in a professional software development setting.

De�ne Sources We have selected the four largest software engineering digital
libraries to query. These digital libraries are all well regarded in the �eld and
contain only papers that have been peer-reviewed to ensure quality [1, 26, 46, 91].
The four digital libraries are:

� Association for Computing Machinery (ACM) Digital Library

� Institute of Electrical and Electronics Engineers (IEEE) Xplore

� Scopus

� Web of Science

De�ne Search Terms The search terms are developed as an aggregation of
�Scrum� and research �eld terms synonymously with �tailoring�. These terms will
be used to search titles, abstracts, and keyword for matches. The search terms are:

Page 18 of 86 Aalborg University

Drægert and Petersen (2016) 3. Research Methodology

� Scrum AND

adapt*
customi*
modif*
tailor*

� ScrumBut

Search Results Performing the search with the speci�ed de�nitions results in 388
papers1. As per Wolfswinkel et al.'s [101] instructions, these 388 papers were re�ned
until only 17 papers, meeting the speci�ed criteria, remained. The instructions for
this re�nement consist of �ve steps, which are shown in Figure 3.2.

62 Papers

388 Papers

Filter out doubles 236 Papers

Refine based on
title and abstract

Refine based on
full text

 17 Papers

Foward and
backward citation

17 Papers

Saturated?3 Iterations Final sample
17 Papers

No Yes

Figure 3.2: Literature search re�nement process.

As seen in the �gure, the process restarted 3 times as a result of the analysis not
reaching a saturation point. When a new iteration of literature search started, the
criteria and parameters were broadened. To make the re�nement process easier, all
papers from each digital library were stored in the research tool Zotero2. The �nal
list of re�ned papers can be found in Appendix C.

3.2.2 Interview Study

Where meta-data for a literature study is available and searchable, meta-data for
interviews is more di�cult to obtain. In other words, it is hard to make sure the
interviewees ful�l the required criteria before the interview. As with the literature
study, the �rst step in �nding the right candidates is to de�ne the criteria. On a
general level we are interested in candidates who can help us understand ScrumBut

1The exact queries can be found in Appendix B
2A screenshot and description of Zotero can be found in Appendix E.1.

Aalborg University Page 19 of 86

3. Research Methodology Drægert and Petersen (2016)

and its emergence in practice. In this section we cover which criteria a candidate
need to ful�l, present the �nal candidates, and how the interviews were conducted.

On an individual level, the ideal candidate:

� is a member of the Scrum Team,

� has thorough knowledge of how the team does Scrum, and

� knows if, which and why adaptations have been made.

Overall, the candidates should consist of people with di�erent roles on the Scrum
Team, di�erent amounts of experience, and from multiple companies. To get an idea
of how adaptations are perceived from the developers' point of view compared to
that of the Scrum Master/Product Owner, having both a developer and Scrum
Master/Product Owner from the same team is ideal.

Table 3.2 shows the �nal list of interviewees. The interviews are listed in chrono-
logical order, except for Interview X which is moved to the bottom as it is not used
directly in the �ndings. Interviews 2 and 3 are listed as the same organisation, but
the interviewees come from di�erent departments, which according to the intervie-
wee from Interview 3 do not have any direct interaction. Interview 2 and X each
have two rows in the table: one per interviewee. Team sizes include Scrum Master,
Product Owner, and developers. In cases where a developer is also Product Owner
or Scrum Master, they are only counted once. Scrum experience indicates the ex-
perience of the interviewee, not the team as a whole. The rightmost column shows
the reference used in the remainder of the report.

Interview Scrum Role Org.
Team
Size

Scrum
Exp.

Interview
Duration

Ref.

1 Scrum Master α 6-7 3 years 1:32 [I1]

2A Developer β 7 13 years 1:38 [I2A]

2B Project Manger β 7 8 years 1:38 [I2B]

3 Developer β 10 2 years 1:14 [I3]

4 Developer γ 10 12 years 1:05 [I4]

5 Scrum Master δ 4 <1 year 1:08 [I5]

6 Product Owner ε 7-10 10 years 1:09 [I6]

7 Scrum Master γ 10 11 years 1:18 [I7]

8
Developer &
Scrum Master

θ 3 1 year 1:05 [I8]

9 Product Owner ω 5-7 10 years 0:55 [I9]

XA Scrum Coach 2:42 [XA]

XB Scrum Coach 2:42 [XB]

Table 3.2: Table of interviews.

Page 20 of 86 Aalborg University

Drægert and Petersen (2016) 3. Research Methodology

Besides the 9 software development professionals, we interviewed two highly
experienced Scrum coaches (Interview X). This interview was focused on Scrum, so
as to strengthen and broaden our understanding of Scrum. During the interview
the coaches were kind enough to relate some of their experiences and understanding
of ScrumBut, which we used to develop talking points for further interviews.

Before the �rst interview, an interview guide was put together, detailing a list of
questions about the background of the team and interviewee, the important topics
to focus on, and some probes in case the conversation should stop. In addition it
describes the roles of all participants. After each of the �rst two or three interviews
the interview guide was updated to re�ect our new experience, but it is worth noting
it was used as a means of keeping the interview on track � not as a manuscript. The
�nal interview guide is shown in Appendix D (Danish).

All interviews were recorded for later analysis, and all followed a similar pattern.
First we asked questions about the interviewee, the team, and the company. Then
we would allow the interviewee to describe how they do Scrum. When ScrumButs
were mentioned, they were noted to be explained later. If the description neglected
any Scrum practice, this was also noted for later explanation. After the descrip-
tion, we would start questioning the mentioned ScrumButs and neglected Scrum
practices. These questions were repeated, as described in Section 3.1.2, until satis-
factory answers were given for all inquires where this was possible. Then we would
start a line of questioning regarding ScrumButs discovered in previously analysed
interviews or papers, in cases where they had not already been mentioned. Finally,
the interview was concluded by allowing the interviewee(s) to ask us questions.

Aalborg University Page 21 of 86

3. Research Methodology Drægert and Petersen (2016)

Page 22 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

Findings 4
In this chapter, we explore the di�erent ScrumButs and present the patterns discov-
ered when coding the data. Although the coding was done in an iterative manner,
as detailed in Chapter 3, the �ndings presented here represent the �nal iteration of
coding.

The chapter is organised into two sections: In Section 4.1 an overview of the
identi�ed ScrumButs is presented along with examples of the immediate reasoning
behind them, i.e. the reasons given to explain the ScrumBut. In Section 4.2 the
reasonings are related to an organisational culture based on the Competing Values
Model to illustrate the association between organisational culture and the emergence
of ScrumBut.

When an interview is referenced, it is done as shown in Table 3.2, e.g. the �rst
interview will be referenced as [I1].

4.1 Reasoning of ScrumButs

ScrumButs were identi�ed in all parts of Scrum, and in this section the ScrumButs
are presented to provide an overview of the changes made. As in Section 2.2, the
ScrumButs are presented in three groups: Roles, Events, and Artefacts.

The ScrumButs are presented in Tables 4.1-4.6. The tables are structured as
follows: In the left column a snippet from the Scrum Guide shows how a given part
of Scrum should be done, and in the middle column the corresponding ScrumBut is
presented along with references to all identi�ed instances. The right column shows
the reasoning behind each ScrumBut.

4.1.1 Scrum Roles

The Scrum Team consists of only three di�erent roles � Product Owner, Scrum
Master, and Developer � and the Development Team should have between three and
nine members [80]. Table 4.1 shows the identi�ed ScrumButs related to the Product
Owner and Scrum Master, and Table 4.2 shows those related to the Development
Team.

Aalborg University Page 23 of 86

4. Findings Drægert and Petersen (2016)

Roles (part 1)

Scrum [80] ScrumBut Reasoning

�The Product Owner
is one person, not a
committee.�

Having a Product
Owner Committee
[I1, I8, 8, 25, 22, 35, 93]

People with di�erent stakes in the
project need authority [I1].

Decision makers do not want to give
up mandate [I8].

The product has several branches
[8, 93].

Multiple client relations [35].

The Product Owner
is acountable for: �Or-
dering the items in the
Product Backlog.�

Product Owner Not
Accountable for Order-
ing of Product Backlog
Items
[I1]

Wish to keep board of directors ac-
countable for direction of product
[I1].

�The Scrum Team
consists of a Product
Owner, the Develop-
ment Team, and a
Scrum Master.�

No Product Owner
[I1, I2A, I2B, I6,
22, 25, 95]

Product Owner tasks handled by
legacy roles [I2B].

Internal tasks can be handled by team
lead [I6].

Redundant because of separate pro-
duct/project management o�ce [I1,
22].

Requirements received directly from
client [I2A, 22].

�The Scrum Team
consists of a Product
Owner, the Develop-
ment Team, and a
Scrum Master.�

No Scrum Master
[I2A, I8, 22, 27, 50, 95]

It is easier to engage the team without
a Scrum Master [27].

Replaced by a Project Manager [50].

Extra resources for development gives
more value [22].

The team does not use enough events
to justify having a Scrum Master [I8].

�The Scrum Master
helps those outside the
Scrum Team under-
stand which of their
interactions with the
Scrum Team are helpful
and which aren't.�

Scrum Master Not
Protecting the Team
[I1, 25]

Table 4.1: ScrumButs related to the Product Owner and Scrum Master.

The Scrum Master and Product Owner are both very central aspects of Scrum,
yet as seen in Table 4.1, several examples have been identi�ed of a Scrum Team
having No Scrum Master or No Product Owner. The reasons for not having a Scrum
Master include giving the responsibility to another role [50] and not perceiving the
role to add enough value [I8, 22]. In one of the cases, where the role is not perceived

Page 24 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

to add enough value, their explicit goal is to �avoid reducing the overall capacity
by assigning a developer as full-time Scrum Master� [22, p. 46]. The reasons for
not having a Product Owner all relate to either having other roles taking over the
Product Owner's responsibilities [I1, I2B, I6, 22] or simply getting requirements
directly from the client [I2A, 22], while Having a Product Owner Committee is
grounded in not being willing to let one person have the �nal word [I1, I8, 8, 35, 93].
One interviewee reasoned: �I think, in our case, it is because neither of us want
to give up our authority as we all have an idea of how to run a company�and in
which direction we want to take it� [I8, translated from Danish]. The fact that these
roles are so central to Scrum may help explain why so many cases are identi�ed, as
more people will have an understanding of how the roles are supposed to be used,
increasing the chance of being aware of ScrumButs relating to them. In addition,
the roles may clash with roles already existing in the company from before Scrum
was used (e.g. [I2B, 50]).

Table 4.1 only shows few identi�ed cases of the Scrum Master Not Protecting the
Team, which is surprising because that can be a very di�cult task to accomplish.
Additionally, the few identi�ed cases provide no explanation. It is possible the lack
of instances of this ScrumBut is caused by lack of focus in interviews as well as
papers � while important, it is arguably not a very visible part of Scrum, and it can
easily be forgotten. Another possibility is that Scrum Masters are simply (perceived
to be) better at protecting their teams than expected.

Scrum Master Not Protecting the Team as well as Team Not Self-organising
both have no associated reasonings. The lack of explanation further strengthens
the argument that the ScrumButs are not related to a central part of Scrum and
may have been forgotten, as the teams using them have not even considered the
reason why. The lack of explanation can also be linked to the fact that they, along
with Product Owner Not Accountable for Ordering of Product Backlog Items, only
have one or two identi�ed cases. ScrumButs with few identi�ed cases are included
because they help show a more complete picture, and the purpose of these �ndings
is not to show statistical evidence of how often a given ScrumBut appears.

Table 4.2 shows the ScrumButs related to the Development Team. Having Titles
on Development Team has been identi�ed in several cases, and the explanations are
all found in the interviews conducted for this study, although cases were identi�ed
in papers as well. Notice that all reasons relate to things outside the power of the
team itself; e.g. to ease personnel management [I1] or because it is required by the
organisation [I6].

Aalborg University Page 25 of 86

4. Findings Drægert and Petersen (2016)

Roles (part 2)

Scrum [80] ScrumBut Reasoning

The Development team
should have between
three and nine mem-
bers.

Exceeding Team Size
Boundaries
[I1, I8, 22, 45]

The team works on a project that
does not require many resources [I1].

The company is very new [I8].

The team was large before Scrum was
introduced [22].

�Scrum recognizes no
titles for Development
Team members other
than Developer.�

Having Titles on Devel-
opment Team
[I1, I4, I6, 44, 95]

It makes personnel management easier
[I1].

Architects are highly skilled/experi-
enced and in high demand [I4].

Dictated by organisation and part of
people's identity in the company [I6].

It makes it easier for people to move
to di�erent departments [I6].

�Development Teams
are cross-functional.�

Development Team Not
Cross-functional
[I4, 25]

Development some times depends on
legacy components [I4].

There is a separate testing team [25].

�Scrum Teams are
self-organising.�

Team Not Self-
organising
[25]

Table 4.2: ScrumButs related to the Development Team.

Several instances were identi�ed of Exceeding Team Size Boundaries, which in-
dicates the team is either too small or too big. The reasonings show no particular
pattern, and it should be noted that the teams in question only barely exceeded
the suggested limits of a Development Team size of three to nine developers. The
smallest teams reported having two developers (e.g. [I1, I8]) while the largest teams
reported having around ten members (e.g. [22, 45]).

4.1.2 Scrum Events

The Scrum Events �create regularity� and �minimize the need for meetings not de-
�ned in Scrum� [80, p. 7]. The Scrum Events play a central role in Scrum, and as
Tables 4.3 and 4.4 show that many di�erent ScrumButs were identi�ed, relating to
them.

Page 26 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

Events (part 1)

Scrum [80] ScrumBut Reasoning

Daily Scrums should
take place every day.

Daily Scrums Cancelled
or Postponed
[I2B, I8, I9, 22, 27, 45,
63, 70, 93, 94, 99]

Only done when Scrum Master needs
updates [I2B].

Frequent meetings with externals [I9].

Working closely together makes meet-
ings super�uous [I8, 27, 94].

It is di�cult for the team members to
meet daily [45, 70, 99].

Some times a team member could not
meet on time [63, 93].

Progress is not su�cient to warrant
meeting [70].

The team is very small [45].

Sprint Retrospectives
should be held at the
end of every Sprint.

Retrospectives Can-
celled or Postponed
[I1, I2B, I4,
I5, I6, I8, I9,
22, 27, 35, 45, 70, 95]

People, especially Product Owner,
cannot attend [I4, 27].

Problems are solved as they appear
[I8, I9, 27].

Not enough to talk about every Sprint
[I1, I6, 45].

Time pressure dictated from outside
the team (e.g. management) [70].

Team is too large [45].

Lack of feedback [45].

Issues handled through other meetings
[45].

Sprint Reviews should
be held at the end of
every Sprint.

Sprint Review Can-
celled or Postponed
[27, 83]

A stong client relationship with fre-
quent contact makes Sprint Reviews
unnecessary [27].

A �Weekly Meeting� makes Sprint
Reviews unnecessary [83].

Sprint Planning should
be held at the begin-
ning of every Sprint.

Sprint Planning Can-
celled or Postponed
[I2B, I4, I9, 83, 95]

No estimations, so planning is done on
demand [83].

Sprints are replaced with Flow [I2B,
I9].

People, especially Product Owner,
cannot attend [I4].

Table 4.3: Cancelling or postponing Scrum Events.

All Scrum Events have one type of ScrumBut in common, namely being post-
poned or cancelled; these ScrumButs are presented in Table 4.3. Daily Scrums are

Aalborg University Page 27 of 86

4. Findings Drægert and Petersen (2016)

more often postponed than cancelled completely. In several cases it is simply im-
practical for all to meet daily [I9, 45, 70, 99]; for example one interviewee stated
�We constantly visit our clients, and we would rather prioritise having three days
instead of �ve� [I9, translated from Danish], thereby opening up days for visiting
clients without disturbing the meetings.

In some cases team members have problems being there on time [63, 93], and
instead of having the meeting without full attendance, it is postponed or arranged
in a way, so all members can attend. In a few cases the Daily Scrum is used as
a way to share task based progress with the team or management than a way for
assessing the progress towards the Sprint Goal, and the meeting is instead only held
when there is su�cient progress to justify a meeting [I2B, 70]. In some instances,
the meeting is not conducted at all, because the teams perceive their members to
work so closely together that the meeting is super�uous [I8, 27, 94]. It is especially
noteworthy that the reasons given for cancelling or postponing both Daily Scrums
and Sprint Retrospectives are di�erent in nature.

Sprint Retrospectives are cancelled or postponed for some of the same reasons
as Daily Scrums: Team members have trouble attending [I4, 27] or there is not
enough to talk about after only one Sprint [I1, I6, 45]. In other cases the problems
are simply resolved as they appear, removing the need for a formal meeting [I8, I9,
27]. In one case it is mentioned that the Sprint Retrospective is incorporated in
other meetings because �the Scrum model was working e�ectively and any issues or
changes could be adequately handled through the other meetings� [45, p. 113].

Only two cases of Sprint Review Cancelled or Postponed were identi�ed, and the
event is either replaced by another meeting [83] or considered unnecessary because
of a strong client relationship [27]. As seen in Table 4.4, several cases of having
Sprint Review Without Stakeholders have been identi�ed, so while the meeting is
seen as important enough to conduct, it can be di�cult to include stakeholders.
Four di�erent reasons are given, but all indicate that participating in the meeting
is not perceived to be worth the time of external stakeholders, and instead the
meeting is done with only the Scrum Team�sometimes with a team member acting
as stand-in for the client (e.g. [I4]).

Most events are time-boxed to take a maximum of 4 hours, with the exception
of the Daily Scrum, which is time-boxed to take a maximum of only 15 minutes;
the bottom four ScrumButs in Table 4.4 show examples of those time-boxes being
exceeded. The reason for exceeding the time-box of the Daily Scrum is mostly that
discussions are allowed during the meeting, instead of waiting until after the meeting
[I2B, I9, 22, 45, 63, 96].

One case explains why the discussions are tolerated during the meeting: The
discussions are important, but the team does not have a lot of time, so by allowing
the discussions to take place during the meeting rather than afterwards, the max-
imum duration can be used as an incentive to stay on track�even if it means it is
some times exceeded [I9]. The other events are, except for a few cases, done within
the set time-box. In fact, many teams �nish the meetings much faster than the
prescribed maximum duration, and many report having planning meetings lasting
less than two hours, compared to the limit of eight hours (e.g. [22, 70]).

Page 28 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

Events (part 2)

Scrum [80] ScrumBut Reasoning

�The heart of Scrum is
a Sprint.�

Replacing Sprints with
Flow
[I2B, I9, 27]

Not Using Sprints
[25]

Project lengths are very short [I2B].

It is necessary to be very responsive to
clients' needs [I9, 27].

�The Sprint Retrospec-
tive occurs after the
Sprint Review.�

Merging Events
[I6, 22, 45, 70]

Separating the meetings feels unneces-
sary [I6].

Separate meetings take too much time
[70].

No real Sprint Retrospective planned,
so its agenda is added to the Sprint
Review [70].

The whole Development
Team should participate
in one meeting.

Multiple Daily Scrums
[45]

The Development Team is too big to
include everybody in one meeting [45].

�Attendees include the
Scrum Team and key
stakeholders.�

Sprint Review Without
Stakeholders
[I4, 22, 45, 63, 70]

Stakeholders do not have time to
participate [I4].

Internal reviews by other teams [45].

Product Owner or other acts as stand-
in [I4, 45].

Meeting too long and detailed [63].

Daily Scrum is an event
for the Development
Team.

Some Developers Not
Attending Daily Scrum
[63]

A combination of delay and unfocused
discussion [63].

�The Daily Scrum is a
15-minute time-boxed
event.�

Extending Duration of
Daily Scrum
[I2B, I9, 22, 45, 50, 63,
96]

Detailed discussions allowed during
meeting [I2B, I9, 22, 45, 63, 96].

Daily Scrum not held daily [22].

�Once a Sprint begins,
its duration is �xed and
cannot be shortened or
lengthened.�

Extending Duration
of Sprint During the
Sprint
[25, 99]

Use of new technologies without prior
training [99].

�Sprint Planning is
time-boxed to a maxi-
mum of eight hours for
a one-month Sprint.�

Extending Duration of
Sprint Planning
[93]

Estimating tasks is complicated by in-
ability to agree on required complexity
[93].

�This is a four-hour
time-boxed meeting for
one-month Sprints.�

Extending Duration of
Sprint Review
[22]

Table 4.4: Remaining ScrumButs related to the Scrum Events.

Aalborg University Page 29 of 86

4. Findings Drægert and Petersen (2016)

In most cases the Sprint duration is static and time-boxed to between two and
four weeks. In those cases, a common way to deal with unexpected high priority
tasks is to allocate a bu�er � a duration of time with no preallocated tasks (e.g.
[35]). Two cases mention another approach: The duration of the Sprint can be
extended after the Sprint started [25, 99]. Vilain and Martins [99] report using a
new technology, and instead of allocating a set amount of time for getting acquainted
with the technology, they will extend the Sprint if it causes delays. They argue that
this approach allows actual product development to start sooner. In addition it
serves as a way to keep the development team focused on the tasks at hand: �The
idea behind that decision was to prevent a newly created sprint from causing team
members to lose their focus on the issues related to learning the new technology,
and also to save the team from unnecessary frustration resulting from a signi�cant
number of sprints not being completed� [99, p. 599].

4.1.3 Scrum Artefacts

The Scrum Artefacts are ``speci�cally designed to maximize transparency of key
information�, and they serve as an important role in providing �opportunities for in-
spection and adaptation� [80, p. 12]. Table 4.5 shows the ScrumButs where manage-
ment is interfering with the Scrum Team or where the Product Backlog is in�uenced.
Table 4.6 shows the remaining ScrumButs related to the Scrum Artefacts.

The �rst thing worth noticing in Table 4.5 is that several ScrumButs have the
reasoning that the team is interrupted by requests or requirements from management
that cannot be ignored. As with Having Titles on Development Team (see Table 4.2)
these ScrumButs have reasons originating from outside the team itself: In some
cases the teams are required to do bug �xes and ad-hoc tasks even if they interfere
with the original Sprint Goal [I2B, 89]. In other words, management obstructs the
Development Team's plan to reach the Sprint Goal. In other cases, the Development
Team does not even make the Sprint Backlog themselves [I3, 22]. In the one case
backed with a reason an old hierarchical approach already had a set practice in place
[22]. Lastly there are examples where the Development Team does not estimate
Product Backlog items, but instead it is done by people deemed to have the necessary
domain knowledge [I2A, 99]. One interviewee stated that �it's not really necessary
for the whole team to do planning poker; it's su�cient to include the ones with the
appropriate domain knowledge� and when asked why, replied �it's my perception that
it's deemed to take too much time� [I2A, translated from Danish].

The remaining ScrumButs in Table 4.5 a�ect the transparency of the Product
Backlog negatively. It is important for the Product Backlog to be transparent, as
it shows upcoming work needed on the product. One ScrumBut has simply been
dubbed Product Backlog Not Transparent, which covers cases that do not warrant
their own category, but still signi�cantly reduce the transparency of the Product
Backlog to a point where it may be an impediment to the work-�ow of the team;
three cases �t that description [8, 70, 95]. In one of these cases, the lack of trans-
parency comes from the fact that the Product Backlog is split into several parts,
each maintained by one Product Owner, and as a direct consequence of Having
a Product Owner Committee [8]. In two interviews, it was stated that irrelevant

Page 30 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

Artefacts (part 1)

Scrum [80] ScrumBut Reasoning

�Only the Development
Team can change its
Sprint Backlog during a
Sprint.�

Management Changing
Sprint Backlog During
Sprint
[I2B, 89]

Management requires ad-hoc tasks
and bug �xes to take priority [I2B,
89].

�The Development
Team is responsible for
all estimates.�

Development Team Not
Making Estimations
[I2A, 25, 99]

It is su�cient to include those with
domain knowledge [I2A, 99].

Estimated product cost needed in
advance [25].

It takes too much time [I2A].

The Sprint Backlog
should be selected by
the Development Team

Management Making
Sprint Backlog
[I3, 22]

Remains from old hierarchical devel-
opment process [22].

The Product Backog
should be �visible,
transparent, and clear
to all.�

Product Backlog Not
Transparent
[8, 70, 95]

Several Product Owners each main-
tain their own (partial) backlog [8].

�The Product Backlog
is an ordered list of ev-
erything that might be
needed in the product.�

Irrelevant Product
Backlog Items Not
Removed
[I1, I6]

The people responsible do not know if
a given item might be needed [I1].

It takes too much time to constantly
re�ne, and the most important tasks
are in the top [I6].

�The Product Backlog
is an ordered list.�

Product Backlog Not
Ordered
[25, 70]

It takes to much time and e�ort
[70, 25].

No Product Owner [25].

Product Owner does not possess the
required knowledge [25].

The Product Backlog is
a central artefact.

No Product Backlog
[25]

�Product Backlog items
have the attributes of
a description, order,
estimate and value.�

No Estimations
[25]

Table 4.5: ScrumButs related to interfering management and the Product Backlog.

Product Backlog items are not regularly removed [I1, I6]. In one case, where it was
argued that removing irrelevant items would take too much time, it was stated that
the Product Backlog was very long, but as the important tasks are always on top,
it is su�cient to remove irrelevant items a few times a year [I6]. In the other case
the people responsible�there is no Product Owner in that particular case�do not
have su�cient domain knowledge to know if a given item is needed or not [I1]. The
ScrumButs related to the Product Backlog also cause other ScrumButs, e.g. Sprint
Planning being done on demand due to a lack of estimations [83].

Aalborg University Page 31 of 86

4. Findings Drægert and Petersen (2016)

Artefacts (part 2)

Scrum [80] ScrumBut Reasoning

Product Backlog Items
selected for the Sprint
Backlog should be
doable within a Sprint.

Stories Longer than
Sprint Duration
[I5, 94, 96]

Student developers only work part
time [I5].

Some items require a lot of research /
experimentation [96].

�Any one product or
system should have a
de�nition of �Done�
that is a standard for
any work done on it.�

Not De�ning Done
[I5, I8, 22, 70, 94]

Done criteria are de�ned on a backlog
item level [I5, 70].

Development has not started yet, but
is planned to be included later [I8].

�Development Teams
deliver an Increment of
product functionality
every Sprint.�

No Increment
[I1, 25, 94]

Separate test site resulted in test-
ready features rather than potentially
releasable features after a sprint [94].

Sprints alternate between new devel-
opment and testing, so a new Incre-
ment is produced every other Sprint
[25].

New features are released immediately
[I1].

Table 4.6: Remaining ScrumButs related to the Scrum Artefaccts.

An interesting observation is, that there are several ScrumButs related to the
Product Backlog, but as shown in Table 4.6, and aside from interference by man-
agement, only two ScumButs in�uence the Sprint Backlog: Not De�ning Done and
Stories Longer than Sprint Duration. Not De�ning Done was identi�ed in several
interviews and papers, and besides one case where the team had not started devel-
oping the product [I8], the reason given was that describing the Done criteria on
a backlog item level is su�cient [I5, 70]. Stories Longer than Sprint Duration was
identi�ed in fewer cases, and both reasons are centred around team and product
rather than process and management: either to account for having part time team
members [I5] or to allow for experimentation which can be di�cult to estimate [96].

Having No Increment (after every Sprint) can be associated to either a need for
fast delivery [I1] or a separation of development and testing [25, 94], but in some
interviews the interviewee seemed to understand Increment as a synonym for release
(e.g. [I6]). In the example of Interview 6, the interviewee then went on to explain
that they do indeed end each Sprint with something potentially releasable: �I think
all teams aim for�after each iteration�having something that could be released� [I6].

4.2 Organisational Culture and ScrumButs

During analysis a pattern emerged in the data, and it became clear that an associa-
tion can be made between the emergence of ScrumButs and organisational culture.

Page 32 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

Relating a reason for using a ScrumBut to a culture does not prevent the company
or team in question from having qualities from the other cultures.

4.2.1 Competing Values Model

Culture can be understood as �a symbolic system consisting of learned, shared,
patterned sets of meanings guiding the actions of cultural members� [49, p. 511].
The Competing Values Model (CVM) can be used to distinguish four di�erent cul-
tures based on the dimensions Internal Focus vs. External Focus and Stability vs.
Change, namely Developmental, Consensual, Rational and Hierarchical [49]. Fig-
ure 4.1 shows the dimensions and the corresponding cultures.

Internal focus

Change

External focus

Stability

Consensual Developmental

RationalHierarchical

Figure 4.1: The dimensions of the Competing Values Model [49].

Being placed in one culture does not prevent a you from having values from
the other cultures. Ngwenyama and Nielsen [69] present an overview of key values,
based on Quinn and McGrath [72]. The values, shown in Table 4.7, will be used
to associate a ScrumBut's reasonings with a culture, illustrating the association
between organisational culture and the emergence of ScrumButs.

4.2.2 Categorising the Data

Each ScrumBut is associated with a culture based on evidence found in the paper or
interview. For each ScrumBut, if a reason is given, the reason is analysed in relation
to the values in Table 4.7. If the reason itself is not enough to make an association,
the search is expanded to the surrounding area in the interview or paper, to look for
evidence explaining the root cause of the reason. In some cases there is not su�cient
evidence to make an association, in which case it is not placed. To illustrate how

Aalborg University Page 33 of 86

4. Findings Drægert and Petersen (2016)

Aspect Developmen-

tal

Consensual Rational Hierarchical

Organisational

orientation

Flexibility,
adaptability,
and readiness

Cohesion and
morale

Productivity
and e�ciency

Stability and
control

Organisational

objectives

Growth and
development

Group
maintenance

Pursuit of
objectives

Execution of
regulations

Organisational

structure

Complex tasks;
Collaborative
work groups

Complex tasks;
Collaborative
work groups

Complex tasks;
Responsibilities

based on
expertise

Routine tasks
and technology;
Formal rules
and policies

Base of Power Values Ability to
cultivate

relationships

Competence Knowledge of
organisational
rules and
procedures

Decision

making

Organic,
intuitive

Participatory,
deliberative

Goal-centred,
systematic and

analytical

Top-down
pronouncements

Leadership

style

Idealistic, risk
oriented,

empowering

Team builder,
concerned,
supportive

Rational
achiever, goal

oriented

Dominance,
conservative,
cautious

Compliance Commitment to
values

Commitment to
process

Contractual
agreement

Monitoring and
control

Evaluation of

members

Intensity of
e�ort

Quality of
relationships

Level of
productivity

Adherence to
rules

Orientation to

change

Change is
embraced as
part of growth

Open to change Open to goal
driven change

Resistant
(orientated to
maintaining the
status quo)

Table 4.7: Overview of competing values in organisational culture [69, 72].

the associations are made, an example is given for ScrumBut reasonings from each
of the four cultures.

4.2.2.1 Developmental

The following is a reason for Extending Duration of Sprint During the Sprint :

The sprints can have their time length increased by 25% in case of error in the
estimate due to the lack of experience with new technologies.

[99, p. 599]

The reasoning indicates an orientation towards �exibility and adaptability, agree-
ing with the developmental culture.

Page 34 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

4.2.2.2 Consensual

In this example the ScrumBut Daily Scrums Cancelled or Postponed is reasoned
with working closely together:

At some point, the problem presented at the Daily Scrum was �there is no point in
doing a Daily Scrum� and, after re�ecting brie�y on that, the team decided that if
they kept the discipline of changing pairs often and asking for help whenever they
needed it, the meeting could be abolished.

[27, p. 105]

The decision to remove the event is made by the entire team, �tting with the
participatory decision making, which lies in the consensual culture as shown in
Table 4.7.

4.2.2.3 Rational

One of the many reasons for having No Scrum Master is given below:

In all companies without a dedicated Scrum Master, the costs seem to play a major
role. They avoid reducing the overall capacity by assigning a developer as full-time
Scrum Master.

[22, p. 46]

The wish to avoid reducing the overall capacity indicates an orientation towards
productivity which agrees with values of the rational culture, as seen in Table 4.7.

4.2.2.4 Hierarchical

The last example is from an interview, and the ScrumBut is Having Titles on De-
velopment Team. The explanation for that is:

[To make personnel management easier] we have a role called team lead. Some of
the team leads are Scrum Masters while others have another role we use, namely
Business Architect.

[I1] (translated from Danish)

This reasoning indicates an orientation towards stability and control, as well as
top-down decision making: The team lead role is put on the team by management,
because it makes it easier to manage the personnel. As seen in Table 4.7, that places
the reasoning in the hierarchical culture.

4.2.3 ScrumButs Associated with Cultures

In Tables 4.8-4.10 each ScrumBut is assigned to appropriate cultures based on its
underlying reasons, revealing which ScrumButs appear in which cultures.

Aalborg University Page 35 of 86

4. Findings Drægert and Petersen (2016)

4.2.3.1 Scrum Roles

Table 4.8 shows the ScrumButs related to roles associated with their respective
cultures. Scrum Master Not Protecting the Team and Team Not Self-organising are
not included, as no reasonings were given.

Roles
ScrumBut Dev. Con. Rat. Hie.

Having a Product
Owner Committee

[I8] [35, 93] [I1, 8]

Product Owner Not
Accountable for
Ordering of Product
Backlog Items

[I1]

No Product Owner [I6] [I1, I2A, I2B,
22]

No Scrum Master [I8, 27] [22, 50]

Exceeding Team Size
Boundaries

[I8] [I1, 22]

Having Titles on
Development Team

[I4] [I1, I6]

Development Team
Not Cross-functional

[I4]

Table 4.8: Cultures of ScrumButs related to the Scrum Roles.

Not having a Product Owner at all only happens in rational and hierarchical cul-
tures; generally because they use traditional product management instead. Similarly
Having Titles on Development Team also only happens in rational and hierarchical
cultures, as a way of keeping track of personnel and knowing who to go to when
expertise and experience is needed.

The reasons for having No Scrum Master are associated with consensual and
rational cultures, which is interesting as the cultures are diametrically opposed (see
Figure 4.1). Looking at the underlying reasons, it does make sense to place them
in those two cultures: The cases placed in the consensual culture sees the Scrum
Master as a hindrance to the team's engagement, while the cases placed in the
rational culture sees resources spent on a Scrum Master as better invested in a
Developer. No Scrum Master is also the only ScrumBut related to the Scrum
Roles that does not have any reasonings associated to the hierarchical culture. As
it will become apparent in the remainder of this chapter, most reasonings can be
associated to these two cultures, with only few associated to the developmental and
consensual cultures. Examples show that the same sources use both developmental
and consensual arguments ([I8]) or rational and hierarchical arguments ([I4, I6, 22]).

4.2.3.2 Scrum Events

The ScrumButs related to the Scrum Events are shown in Table 4.9, and more
ScrumButs have reasons grounded in developmental and consensual cultures com-

Page 36 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

pared to the ScrumButs in Table 4.8. In spite of that it is clear that the reasoning
behind most of the identi�ed ScrumButs can be associated with the values of the
rational and hierarchical cultures. That notion is especially true if Daily Scrums
Cancelled or Postponed and Retrospectives Cancelled or Postponed are ignored when
looking at the full picture, which is reasonable as they appear to happen regardless
of cultural alignment, and as such cannot be regarded as a trait speci�c to a given
culture.

Events
ScrumBut Dev. Con. Rat. Hie.

Daily Scrums
Cancelled or
Postponed

[I8, 63] [27, 94] [I9, 93, 99] [I2B, 45, 70]

Retrospectives
Cancelled or
Postponed

[I8] [I6, I9, 27] [45] [I4, 45, 70]

Sprint Review
Cancelled or
Postponed

[27]

Sprint Planning
Cancelled or
Postponed

[I2B, I9] [I4]

Replacing Sprints
with Flow

[27] [I9] [I2B]

Merging Events [I6] [70]

Multiple Daily
Scrums

[45]

Sprint Review
Without
Stakeholders

[63] [I4, 45]

Some Developers
Not Attending Daily
Scrum

[63]

Extending Duration
of Daily Scrum

[96] [I2B, I9, 63] [45]

Extending Duration
of Sprint During
Sprint

[99]

Extending Duration
of Sprint Planning

[93]

Table 4.9: Cultures of ScrumButs related to Events.

The fact that Daily Scrums and Retrospectives are cancelled or postponed across
cultures, shows that sometimes reasonings based on di�erent values can result in
similar ScrumButs. In both Table 4.8 and Table 4.9 several ScrumButs have only one
example of a reasoning associated with the culture. It does not provide much insight
about the particular ScrumBut, but in combination with other ScrumButs it helps

Aalborg University Page 37 of 86

4. Findings Drægert and Petersen (2016)

paint a picture of the culture as a whole. ScrumButs with reasonings placed in the
rational culture match the culture's organisational orientation towards productivity
and e�ciency, as most of those ScrumButs can be attributed to a wish for an
increase in productivity. For example, one interviewee explained why they did not
use Sprint Planning: �The client tells us [about new requirements] with short notice,
and [Sprint Planning] does not work well for that; [the plan] collapses as soon as
the Sprint starts. We realised that quite early on, so we replaced it with an approach
closer to ScrumBan.� [I9, translated from Danish]. The example shows rational
values, both in terms of the pursuit of objectives and openness to goal driven change
(see Table 4.7). In another example, the Sprint Planning time-box is extended: �We
wrestle with some of the more challenging features that impact the core data model.
We explore di�erent design ideas in an attempt to maintain a balance between getting
something done for this release versus creating a more lasting solution.� [93, p. 156].
Again, an example of rational culture, with goal-centred, systematic and analytical
decision making.

4.2.3.3 Scrum Artefacts

The ScrumButs related to the Scrum Artefacts are shown in Table 4.10, and as
before, most are still placed in the rational and hierarchical cultures.

Artefacts
ScrumBut Dev. Con. Rat. Hie.

Management
Changing Sprint
Backlog During
Sprint

[I2B, 89]

Development Team
Not Making
Estimations

[I2A, 99] [25]

Management Making
Sprint Backlog

[22]

Product Backlog Not
Transparent

[8]

Irrelevant Procuct
Backlog Items Not
Removed

[I6] [I1]

Procuct Backlog Not
Ordered

[70]

Stories Longer than
Sprint Duration

[96] [I5]

Not De�ning Done [I5, I8] [70]

No Increment [I1] [94]

Table 4.10: Cultures of ScrumButs related to Artefacts.

One thing to note is the fact that all ScrumButs related to management doing
the tasks of the Development Team are placed in cultures oriented towards stability;

Page 38 of 86 Aalborg University

Drægert and Petersen (2016) 4. Findings

instead of using the Scrum Artefacts as tools for providing transparency they are
used as project management tools. That is especially apparent in Product Backlog
Not Transparent where several Product Owners each maintain a partial Product
Backlog (see Table 4.5), and only collect the higher priority backlog items before a
Sprint Planning meeting [8].

Only few ScrumButs related to the Scrum Artefacts have reasons placed within
the cultures oriented towards change, and the ones that do, Stories Longer than
Sprint Duration and Not De�ning Done, make sense in a setting where decision
making is organic and intuitive and the organisation is oriented towards �exibility.
The one case in the consensual culture is placed based on the supportive leadership
style, allowing the team members working part time to participate even though
limited work time some times make tasks exceed the Sprint duration. The lack of
reasonings placed in developmental and consensual cultures seems to indicated that
when changes are made to the Scrum Artefacts they are mostly made to adapt them
to an environment that values stability.

Aalborg University Page 39 of 86

4. Findings Drægert and Petersen (2016)

Page 40 of 86 Aalborg University

Drægert and Petersen (2016) 5. Discussion

Discussion 5
In this chapter we will discuss our �ndings in terms of contribution to the �eld of
research in agile methodologies, limitations of the study, and �nally we will suggest
ideas for future research.

5.1 Contribution

The contribution of this study is twofold: �rstly it extends current knowledge of why
ScrumButs emerge in practice, and secondly i shows the existence of a relationship
between organisational culture and the reasoning behind ScrumButs.

5.1.1 Scrum Anti-patterns

In June, 2016 Eloranta et al. [25] published a paper called �Exploring ScrumBut � An
empirical study of Scrum anti-patterns� in the highly ranked software engineering
journal �Information and Software Technology�. As the name suggests, the paper
is similar to this study, with a focus on the identi�cation of ScrumButs. Others
have studied the di�erent use of Scrum practices (e.g. [22]), but Eloranta et al. [25]
provide the �rst comprehensive attempt at mapping the di�erent ScrumButs found
in practice. Instead of grouping the ScrumButs by culture, the paper describes
anti-patterns including consequences and suggestions to move away from each anti-
pattern. The study is based on 18 interviews in 11 di�erent Finnish companies, and
a total of 14 anti-patterns were identi�ed. It is worth noting that explicit examples
of ScrumButs from Eloranta et al. [25] were included in the �ndings of this project,
but the anti-patterns themselves were not.

In most of the cases presented by Eloranta et al. [25] we have supporting evidence
of the emergence of a given ScrumBut, often including reasoning behind it. One
example is their anti-pattern Business as usual (No Sprint Retrospective), which
corresponds to our Retrospective Cancelled or Postponed. Eloranta et al. [25] present
a context in which this happens, namely in situations where agile development and
Scrum is not su�ciently understood, or when there is no Scrum Master or the Scrum
Master role is not used correctly. Our study does not link Retrospective Cancelled or
Postponed to the same context, but instead provides additional context though the
associated rationales. For example we identi�ed the ScrumBut in cases where central
people had trouble attending the event [I4, 27] or external time pressure dictated

Aalborg University Page 41 of 86

5. Discussion Drægert and Petersen (2016)

it [70]. Mapping these reasonings to organisational cultures provides additional
insight into the context in which a given ScrumBut may be present, which helps in
understanding why ScrumButs emerge in software development. For some of the
anti-patterns presented by Eloranta et al. [25] the Scrum Guide o�ers no speci�c
recommendation. As this study focuses exclusively on ScrumButs that contradict
the Scrum Guide, we have not recorded anything to support those anti-patterns.

In addition to interviews from a di�erent social culture, our study includes a
literature study of a wide range of papers that mention adaptations of Scrum along
with reasons for the adaptations. This study also presents a number of more rare
ScrumButs (e.g., No Estimations) that have no associated reasoning, but that help
in painting a more complete picture of the ScrumButs that may be encountered.
With our �ndings we con�rm most of the �ndings of Eloranta et al. [25], as well as
extending them with additional context and ScrumButs. Some �ndings from related
studies are not con�rmed, but no contradictions were found.

A similar study, i.e., a study focussing on tailoring of agile software develop-
ment, was made by Conboy and Fitzgerald [19] who studied tailoring of XP instead
of Scrum, but with a more general topic of �nding out how to make agile method-
ologies more amenable to tailoring. The study is made up of two phases; �rst 20
researchers were interviewed to lay a foundation, or framework, for the areas to
study, and later 16 practitioners were interviewed based on the framework. The
�ndings are a number of constructs, identi�ed in the �rst phase of the study, along
with a re�ection of the construct in practice and a recommendation for researchers
to improve the situation. For example, relating to the constructexplicit statement
of method boundaries, it was found that most teams had problems identifying the
boundaries of XP (i.e., where it should and should not be applied) in spite of con-
siderable e�ort. Because of this the recommendation for researchers was to study
�levels of project success across di�erent potentially problematic software develop-
ment environments� [19, p. 2:24]. Our �ndings extend this and other research in
tailoring of agile software development methodologies by collecting and presenting
the reasoning behind adaptations of Scrum, thereby providing a better basis for
understanding under which conditions tailoring is done.

5.1.2 Organisational Culture and Agile Methodology

In the previous section concrete changes to Scrum were discussed, related to the
�rst part of the �ndings, presented inSection 4.1. In this section the focus is on the
�ndings presented in Section 4.2, where associations between organisational culture
and ScrumButs are made through the competing values model of organisational
culture. In a recent study, Persson et al. [71] hint that the agility of an organisation
as a whole is linked directly to the agility of individual projects. The connection be-
tween organisational culture and agile methodology use was hypothesised by Iivari
and Iivari [49] in 2011. The hypotheses were made based on an earlier study of tradi-
tional software development methodologies ([48]) coupled with their understanding
of agile development. The focus in their paper is not on Scrum, but agile method-
ologies in general. As the focus in this report is on Scrum, we will comment on
the hypotheses from the point of view of Scrum only. Two of the hypotheses are

Page 42 of 86 Aalborg University

Drægert and Petersen (2016) 5. Discussion

presented in Table 5.1; note that method is used in the sense of methodology, i.e., �a
prede�ned combination of methods collected under a name�, as described in Chap-
ter 1. The hypotheses are aimed towards quantitative studies, but we are still able
to provide some insight.

In Table 5.1 hypotheses H63b suggest that teams with a hierarchical culture ori-
entation perceive traditional methodologies to better support their values than agile
methodologies. H67b suggests that teams with a developmental culture perceive ag-
ile methodologies to better support their values than traditional methodologies.

H63b The hierarchical culture orientation has a negative impact
on IT managers' and software developers' beliefs in agile method
support for the values of the hierarchical culture when compared
with traditional methods.

H67b The developmental culture orientation has a positive im-
pact on IT developers' and software developers' beliefs in agile
method support for the values of the developmental culture when
compared with traditional methods.

Table 5.1: Hypotheses about the hierarchical culture orientation [49].

The fact that a big part of the identi�ed ScrumButs are placed in the hierarchical
culture shows there might be a mismatch between the hierarchical values and those
perceived to be supported by Scrum. That mismatch goes well in hand with the fact
that the hierarchical culture is resistant to change. In Table 2.1 Conboy's [17] pro-
posed taxonomy of ISD agaility prescribes three requirements that must be ful�lled
for a practice to be considered agile. Looking at the di�erent ScrumButs placed
in the hierarchical culture, there is a tendency to make changes that causes the
Scrum practice to lose some of its agility. This goes well in hand with the hierarchi-
cal culture's values on decision making, top-down pronouncements, and dominating,
conservative leadership style shown in Table 4.7. An example emphasising those
values is found in Table 4.10 where the ScrumBut Management Changing Sprint
Backlog During Sprint moves Scrum towards a more traditional approach, where
the team is not self-organising. The ScrumBut can be formulated as follows:

(We use Scrum, but) (ad-hoc tasks and unplanned bug �xes take priority,) (so
management may make changes to the Sprint Backlog of an ongoing Sprint.)

[I2B, 89]

The workaround, management may make changes to the Sprint Backlog of an on-
going Sprint can be held against the taxonomy, and while it goes against the pre-
scriptions of the Scrum Guide, the �rst requirement is satis�ed as there is both a
creation of change and a reaction to change. The second requirement is, however,
not satis�ed as perceived simplicity is negatively impacted, with perceived economy
and perceived quality are both in a more grey area. This example shows a change of
a Scrum component that negatively impacts agility, and while it neither proves nor

Aalborg University Page 43 of 86

5. Discussion Drægert and Petersen (2016)

disproves the �rst hypothesis in Table 5.1, it does agree with it. On the other hand
there are not many ScrumButs that can be linked to the developmental culture,
which is consistent with the similarities between the agile values and developmental
culture. For example, agile values responding to change over following a plan, where
in developmental culture, change is embraced as part of growth. An example, how-
ever, of a ScrumBut linked to the developmental culture is the merging of events,
found in Table 4.9. In this speci�c example, the ScrumBut can be formulated as
follows:

(We use Scrum, but) (we �nd it unnecessary to conduct two individual meetings,)
(so our Sprint Planning and Sprint Review have been merged.)

[I6]

Looking again at the taxonomy of ISD agility we see that this modi�cation does
not take away the agility of the original method component; the merged meeting
still contributes to at least reaction to change, satisfying the �rst requirement. The
meetings already contribute to perceived economy, and by making the change per-
ceived simplicity arguably improves, while retaining perceived quality. The third
requirement is satis�ed before and after the merge as well, as the events are planned
to take place at the same time every Sprint.

By focussing on the most common agile methodology, Scrum, our �ndings extend
existing research by contributing to the understanding of the connection between
use of agile methodologies and organisational culture. The connection between or-
ganisational culture and ScrumBut can nuance the debate of whether ScrumButs
are good or bad. The nuance lies in moving the attribution of a ScrumBut's nature,
from an inherent nature, to a nature dependent on its values and the values of its
environment. An example of this can be demonstrated by the ScrumBut of De-
velopment Team Not Making Estimations : Instead of assuming its inherent nature
as bad, looking at its reasoning and the values behind it, in association with the
values of organisational cultures, shows its nature as more nuanced. It is shown
in Table 4.10 that one of the reasonings behind this ScrumBut, estimated product
cost needed in advance [25], is associated to the value-set of the hierarchical culture.
Given this association it can be argued that this ScrumBut is benign, or even bene-
�cial, in a company with strong hierarchical values, as the change is made to better
support the organisation's values. Thus, the nature of a ScrumBut might not be as
simple as the binary judgment of being inherently good or bad.

5.2 Limitations

The relationship between organisational culture and method use, as discussed by
Iivari and Iivari [49], is complex and views on the relationship range from it being
causal (one causes changes in the other) to emergent (the relationship is constantly
evolving). We believe that the relationship is emergent, but this study only �nds
how organisational culture a�ects the emergence of ScrumButs. The limitation does
not invalidate the �ndings, but further research is necessary to learn about how the
emergence of ScrumButs a�ect organisational culture. Organisational culture was

Page 44 of 86 Aalborg University

Drægert and Petersen (2016) 5. Discussion

found to in�uence the emergence of ScrumButs, but it may not be the only source
of in�uence. As no other sources of in�uence are accounted for in the study, the
�ndings may have been a�ected. Other sources of in�uence could be project budget,
experience of developers, etc. These factors may in�uence the organisational culture
directly as well, complicating the situation further.

The interviewees selected for the study were all situated within a relatively small
area, as a result of which their social cultures may have been similar enough to in�u-
ence the results. The limitation is partially neutralised by also studying literature
with interviews from many di�erent social cultures. The data obtained from the
literature, however, has the limitation that the explanations are sometimes not very
thorough. Some studies have no explanations at all, and as they provide little value
for the study, general Scrum case studies were �ltered in the search criteria, despite
these likely containing various examples of ScrumButs. This decision limited our
data, but as we sampled some of these, we found that only very few were aware
of the ScrumButs and even fewer presented a reasoning for them (e.g. [68, 90]).
Despite �ltering out these papers, the study reached a saturation point, minimising
the impact these papers could have presented.

The �nal limitation pertains to the Grounded Theory process itself: the act of
coding the data, although attempted to be done in an objective manner, becomes
subjective when decisions have to be made as to which parts of the data are impor-
tant. To minimise this problem, and focus the analysis around similar topics, the
coding process was frequently discussed during the analysis process.

5.3 Future Research

In this study we researched the practices and reasonings behind ScrumButs. Grounded
in the data we found a connection between organisational culture and the emergence
of ScrumButs. We have two suggestions for possible future research:

First, we suggest conducting a study to quantify the connection between or-
ganisational culture and ScrumBut reasoning. Such a study could improve the
understanding of how organisational culture a�ects the adaptation of Scrum and
provide new insights for the discussion of whether ScrumButs are inherently bad or
not.

Secondly, we propose an expansion of this study, but with a focus on the evo-
lution of Scrum and ScrumButs over time in the same company, shedding light
on how organisational culture in�uences the emergence of ScrumButs, and on how
ScrumButs in�uence organisational culture. In addition, it would be interesting to
hold the ScrumButs found in such a study up to the taxonomy of ISD agility (Ta-
ble 2.1) to determine if organisational culture in�uences the agility of ScrumButs,
as discussed in Section 5.1.2.

Aalborg University Page 45 of 86

5. Discussion Drægert and Petersen (2016)

Page 46 of 86 Aalborg University

Drægert and Petersen (2016) 6. Conclusion

Conclusion 6
The purpose of this study was to explore adaptations of Scrum in the form of Scrum-
Buts, i.e., changes to the existing practices of the framework. The empirical research
on the subject of ScrumButs is limited, and the question of the underlying reasoning
is unexplored in research literature. In the study, the following two questions were
pursued:

I. What ScrumButs are prevalent in professional software development?
II. How are ScrumButs reasoned in professional software development?

We collected 17 papers through a thorough literature search, using the four largest
software engineering digital libraries of peer-reviewed papers, and by interviewing 9
representatives from 7 local software development companies using semi-structured
interviews with a laddering approach. This data was then analysed through several
iterations of open and axial coding until a selective code was identi�ed and built
upon.

ScrumButs were identi�ed in all Scrum practices and their reasons ranged from
precipitate, e.g. not ordering the Product Backlog because it takes too much time
and e�ort [25, 70], to highly deliberate arguments, e.g. extending a Sprint after it
starts to ensure there is enough time to experiment with new technologies [99]. We
showed that our �ndings are consistent with the Scrum anti-patterns presented by
Eloranta et al. [25], and that we contribute to research in agile methodology tailoring
by extending the knowledge of which ScrumButs emerge in professional software
development. For most ScrumButs one or more reasons were given to explain why
the practice was changed. Individually, the reasons give little insight other than for
the instance it explains, but after several iterations of analysis a pattern emerged.
By holding each reason up against the values in the Competing Values Model, it
was found that most reasons can be linked to values of an organisational culture.
The connection between organisational culture and ScrumBut reasonings can help
nuance the discussion of whether ScrumButs should be considered good or bad,
by focusing on the underlying values of the reasoning and relating them to the
organisation's culture.

We discussed the �ndings, and showed that the study connects ScrumBut rea-
sonings to organisational culture in a way that �ts the hypotheses proposed by Iivari
and Iivari [49]. We also presented an example of how a ScrumBut linked to the hi-
erarchical culture lost its agility when held up against the taxonomy of ISD agility
[17], while another ScrumBut linked to the developmental culture did not. More
research is needed to show if that trend can be found in other ScrumButs.

Aalborg University Page 47 of 86

6. Conclusion Drægert and Petersen (2016)

Page 48 of 86 Aalborg University

Drægert and Petersen (2016) BIBLIOGRAPHY

Bibliography

[1] ACM (2015). PEER-REVIEW SYSTEM. http://www.acm.org/

publications/submissions. [Online; Accessed 2016-05-02].

[2] Adolph, S., W. Hall, and P. Kruchten (2011). Using Grounded Theory to Study
the Experience of Software Development. Empirical Software Engineering 16 (4),
487�513.

[3] Ågerfalk, P. J. and B. Fitzgerald (2006). Exploring the Concept of Method
Rationale: A Conceptual Tool for Method Tailoring. In Advanced Topics in
Database Research, Volume 5, pp. 63�78. Idea Group Publishing.

[4] Aydin, M. N., F. Harmsen, K. van Slooten, and R. A. Stagwee (2005). On the
Adaptation of an Agile Information Systems Development Method. Journal of
Database Management (JDM) 16 (4), 25�40.

[5] Baskerville, R. and J. Stage (2001). Accommodating Emergent Work Practices:
Ethnographic Choice of Method Fragments. In Realigning Research and Practice
in Information Systems Development: The Social and Organizational Perspective,
pp. 11�28. Springer.

[6] Beck, K., M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Je�ries, J. Kern, B. Mar-
ick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas (2001).
Manifesto for Agile Software Development. http://www.agilemanifesto.org/.
[Online; Accessed 2016-04-02].

[7] Beedle, M., M. Devos, Y. Sharon, and K. Schwaber. Scrum: An extension
pattern language for hyperproductive software development.

[8] Block, M. (2011). Evolving to Agile: A story of agile adoption at a small SaaS
company. In Agile Conference (AGILE'11), pp. 234�239. IEEE.

[9] Boehm, B. W. and R. Turner (2003). Balancing Agility and Discipline: A Guide
for the Perplexed. Addison-Wesley Longman.

[10] Bowers, J., J. May, E. Melander, M. Baarman, and A. Ayoob (2002). Tailor-
ing xp for large system mission critical software development. In Conference on
Extreme Programming and Agile Methods, pp. 100�111. Springer.

[11] Boychuk Duchscher, J. E. and D. Morgan (2004). Grounded theory: re�ections
on the emergence vs. forcing debate. Journal of advanced nursing 48 (6), 605�612.

Aalborg University Page 49 of 86

http://www.acm.org/publications/submissions
http://www.acm.org/publications/submissions
http://www.agilemanifesto.org/

BIBLIOGRAPHY Drægert and Petersen (2016)

[12] Brinkkemper, S. (1996). Method Engineering: Engineering of Information
Systems Development Methods and Tools. Information and Software Technol-
ogy 38 (4), 275�280.

[13] Cao, L., K. Mohan, P. Xu, and B. Ramesh (2004). How extreme does extreme
programming have to be? Adapting XP practices to large-scale projects. In
Hawaii International Conference on System Sciences (HICSS'04). IEEE.

[14] Charmaz, K. (2000). Grounded Theory: Objectivist and Constructivist Meth-
ods. In Handbook of Qualitative Research (2nd ed.)., pp. 509�535. SAGE.

[15] Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide
Through Qualitative Analysis. SAGE.

[16] Checkland, P. (1981). Systems Thinking, Systems Practice. Wiley.

[17] Conboy, K. (2009). Agility from First Principles: Reconstructing the Con-
cept of Agility in Information Systems Development. Information Systems Re-
search 20 (3), 329�354.

[18] Conboy, K. and B. Fitzgerald (2006). The Views of Experts on the Current
State of Agile Method Tailoring. In Organizational Dynamics of Technology-Based
Innovation: Diversifying the Research Agenda, pp. 217�234. Springer.

[19] Conboy, K. and B. Fitzgerald (2010). Method and Developer Characteristics
for E�ective Agile Method Tailoring: A Study of XP Expert Opinion. ACM
Transactions on Software Engineering and Methodology (TOSEM) 20 (1), 2:1�
2:30.

[20] Corbin, J. M. and A. L. Strauss (1990). Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative Sociology 13 (1), 3�21.

[21] Deemer, P., G. Bene�eld, C. Larman, and B. Vodde (2012). The Scrum Primer
(2nd ed.). InfoQ.

[22] Diebold, P., J.-P. Ostberg, S. Wagner, and U. Zendler (2015). What Do Prac-
titioners Vary in Using Scrum? In Agile Processes in Software Engineering and
Extreme Programming, pp. 40�51. Springer.

[23] Dingsøyr, T., S. Nerur, V. Balijepally, and N. B. Moe (2012). A decade of
agile methodologies: Towards explaining agile software development. Journal of
Systems and Software 85 (6), 1213�1221.

[24] Drægert, A. and D. S. Petersen (2015). Understanding scrumbut. Aalborg
University. Student Report.

[25] Eloranta, V.-P., K. Koskimies, and T. Mikkonen (2016). Exploring ScrumBut
- An empirical study of Scrum anti-patterns. Information and Software Technol-
ogy 74, 194�203.

[26] Elsevier (2016). About Scopus. https://www.elsevier.com/solutions/

scopus. [Online; Accessed 2016-05-02].

Page 50 of 86 Aalborg University

https://www.elsevier.com/solutions/scopus
https://www.elsevier.com/solutions/scopus

Drægert and Petersen (2016) BIBLIOGRAPHY

[27] Fernandes, C. (2012). There and back again: From iterative to �ow... and back
to iterative! In Agile Conference (AGILE'12), pp. 103�110. IEEE.

[28] Fitzgerald, B., N. L. Russo, and T. O'Kane (2003). Software Development
Method Tailoring at Motorola. Communications of the ACM 46 (4), 64�70.

[29] Fowler, M. and J. Highsmith (2001). The agile manifesto. Software Develop-
ment 9 (8), 28�35.

[30] Glaser, B. G. (1978). Theoretical Sensitivity: Advances in the Methodology of
Grounded Theory. Sociology Press.

[31] Glaser, B. G. and J. Holton (2004). Remodeling Grounded Theory. In Fo-
rum Qualitative Sozialforschung / Forum: Qualitative Social Research, Volume 5.
FQS.

[32] Glaser, B. G. and A. L. Strauss (1967). The Discovery of Grounded Theory -
Strategies for Qualitative Research. Aldine Transaction.

[33] Grunert, K. G. and S. C. Grunert (1995). Measuring subjective meaning struc-
tures by the laddering method: Theoretical considerations and methodological
problems. International journal of research in marketing 12 (3), 209�225.

[34] Gunnerson, E. (2006). Scrumbut. https://blogs.msdn.microsoft.com/

ericgu/2006/10/13/scrumbut/. [Online; Accessed 2016-05-06].

[35] Heeager, L. T. and J. Rose (2015). Optimising agile development practices
for the maintenance operation: nine heuristics. Empirical Software Engineer-
ing 20 (6), 1762�1784.

[36] Heikkilä, V. T., M. Paasivaara, and C. Lassenius (2013). ScrumBut, But Does
it Matter? A Mixed-Method Study of the Planning Process of a Multi-team
Scrum Organization. In 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 85�94.

[37] Henderson-Sellers, B. and M. K. Serour (2005). Creating a Dual-Agility
Method: The Value of Method Engineering. Journal of Database Manage-
ment 16 (4), 1�23.

[38] Hewlett-Packard Development Company (2015). Agile is the new normal:
Adopting Agile project management. http://www8.hp.com/h20195/v2/getpdf.
aspx/4AA5-7619ENW.pdf?ver=1.0. [Online; Accessed 2016-06-28].

[39] Hoda, R., P. Kruchten, J. Noble, and S. Marshall (2010). Agility in context.
ACM SIGPLAN Notices 45 (10), 74�88.

[40] Hoda, R., J. Noble, and S. Marshall (2009). Negotiating Contracts for Agile
Projects: A Practical Perspective. In Agile Processes in Software Engineering
and Extreme Programming, pp. 186�191. Springer.

[41] Hoda, R., J. Noble, and S. Marshall (2010a). Agile Undercover: When Cus-
tomers Don't Collaborate. In Agile Processes in Software Engineering and Ex-
treme Programming, pp. 73�87. Springer.

Aalborg University Page 51 of 86

https://blogs.msdn.microsoft.com/ericgu/2006/10/13/scrumbut/
https://blogs.msdn.microsoft.com/ericgu/2006/10/13/scrumbut/
http://www8.hp.com/h20195/v2/getpdf.aspx/4AA5-7619ENW.pdf?ver=1.0
http://www8.hp.com/h20195/v2/getpdf.aspx/4AA5-7619ENW.pdf?ver=1.0

BIBLIOGRAPHY Drægert and Petersen (2016)

[42] Hoda, R., J. Noble, and S. Marshall (2010b). Balancing Acts: Walking the Agile
Tightrope. In ICSE Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE'10), pp. 5�12. ACM.

[43] Hoda, R., J. Noble, and S. Marshall (2011). The impact of inadequate cus-
tomer collaboration on self-organizing Agile teams. Information and Software
Technology 53 (5), 521�534.

[44] Hong, N., J. Yoo, and S. Cha (2010). Customization of Scrum Methodology for
Outsourced E-Commerce Projects. In Asia Paci�c Software Engineering Confer-
ence (APSEC'10), pp. 310�315. IEEE.

[45] Hossain, E., P. L. Bannerman, and R. Je�ery (2011). Towards an Understand-
ing of Tailoring Scrum in Global Software Development: A Multi-case Study.
In International Conference on Software and Systems Process (ICSSP'11), pp.
110�119. ACM.

[46] IEEE (2016). Peer Review. http://www.ieee.org/publications_

standards/publications/authors/publish_benefits.html. [Online; Ac-
cessed 2016-05-02].

[47] Iivari, J., R. Hirschheim, and H. K. Klein (1998). A paradigmatic analysis
contrasting information systems development approaches and methodologies. In-
formation Systems Research 9 (2), 164�193.

[48] Iivari, J. and M. Huisman (2001). The relationship between organisational
culture and the deployment of systems development methodologies. In Interna-
tional Conference on Advanced Information Systems Engineering, pp. 234�250.
Springer.

[49] Iivari, J. and N. Iivari (2011). The relationship between organizational cul-
ture and the deployment of agile methods. Information and Software Technol-
ogy 53 (5), 509�520.

[50] Inayat, I., M. Noor, and Z. Inayat (2012). Successful Product-based Agile
Software Development without Onsite Customer: An Industrial Case Study. In-
ternational Journal of Software Engineering and its Applications 6 (2), 1�14.

[51] Je�ries, R. (2013). Fractional Scrum, or �Scrum-But�. http://agileatlas.

org/articles/item/fractional-scrum-or-scrum-but. [Online; Accessed
2016-08-06].

[52] Karlsson, F. (2008). A Wiki-based Approach to Method Tailoring. In Interna-
tional Conference on the Pragmatic Web (ICPW'08), pp. 13�22. ACM.

[53] Karlsson, F. and P. J. Ågerfalk (2007). Multi-Grounded Action Research in
Method Engineering: The MMC Case. In Situational Method Engineering: Fun-
damentals and Experiences, pp. 63�78. Springer.

[54] Karlsson, F. and P. J. Ågerfalk (2004). Method con�guration: adapting to sit-
uational characteristics while creating reusable assets. Information and Software
Technology 46 (9), 619�633.

Page 52 of 86 Aalborg University

http://www.ieee.org/publications_standards/publications/authors/publish_benefits.html
http://www.ieee.org/publications_standards/publications/authors/publish_benefits.html
http://agileatlas.org/articles/item/fractional-scrum-or-scrum-but
http://agileatlas.org/articles/item/fractional-scrum-or-scrum-but

Drægert and Petersen (2016) BIBLIOGRAPHY

[55] Karlsson, F. and P. J. Ågerfalk (2005). Method-User-Centred Method Con-
�guration. In Situational Requirements Engineering Processes (SREP'05), pp.
31�43.

[56] Kelly, G. A. (1955). The psychology of personal constructs. WW Norton and
Company.

[57] Kendall, J. (1999). Axial Coding and the Grounded Theory Controversy. West-
ern journal of nursing research 21 (6), 743�757.

[58] Khan, A. I., R. J. Qurashi, and U. A. Khan (2011). A Comprehensive Study
of Commonly Practiced Heavy and Light Weight Software Methodologies. Inter-
national Journal of Computer Science Issues 8 (2), 441�450.

[59] Kniberg, H. (2011). What to do When Scrum Doesn't Work.
https://www.scrumalliance.org/community/articles/2011/february/

what-to-do-when-scrum-doesn%E2%80%99t-work. [Online; Accessed 2016-05-
06].

[60] Kniberg, H. (2015). Scrum and XP from the Trenches - 2nd Edition. InfoQ.

[61] Krishna, V. and A. Basu (2011). Scrum+ :: Is it �ScrumBut� or �ScrumAnd�.
pp. 1�4. IEEE.

[62] Lee, G. and W. Xia (2010). Toward agile: an integrated analysis of quantitative
and qualitative �eld data on software development agility. MIS Quarterly 34 (1),
87�114.

[63] Lorber, A. A. and K. D. Mish (2013). How We Successfully Adapted Agile for
a Research-Heavy Engineering Software Team. Agile Conference (AGILE'13),
156�163.

[64] Meso, P. and R. Jain (2006). Agile Software Development: Adaptive Systems
Principles and Best Practices. Information Systems Management 23 (3), 19�30.

[65] Mingers, J. (2001). Combining IS Research Methods: Towards a Pluralist
Methodology. Information Systems Research 12 (3), 240�259.

[66] Molnar, W. and J. Nandhakumar (2009). Managing Projects in an Embedded
System Development Context: An In-Depth Case Study from an Improvisational
Perspective. In Hawaii International Conference on System Sciences (HICSS'09),
pp. 1�10. IEEE.

[67] Myers, M. D. and M. Newman (2007). The qualitative interview in is research:
Examining the craft. Information and organization 17 (1), 2�26.

[68] Nejmeh, B. and D. S. Weaver (2014). Leveraging scrum principles in collabo-
rative, inter-disciplinary service-learning project courses. In 2014 IEEE Frontiers
in Education Conference (FIE) Proceedings, pp. 1�6. IEEE.

[69] Ngwenyama, O. and P. A. Nielsen (2003). Competing Values in Software Pro-
cess Improvement: An Assumption Analysis of CMM From an Organizational
Culture Perspective. IEEE Transactions on Engineering Management 50 (1),
100�112.

Aalborg University Page 53 of 86

https://www.scrumalliance.org/community/articles/2011/february/what-to-do-when-scrum-doesn%E2%80%99t-work
https://www.scrumalliance.org/community/articles/2011/february/what-to-do-when-scrum-doesn%E2%80%99t-work

BIBLIOGRAPHY Drægert and Petersen (2016)

[70] Pauly, D., B. Michalik, and D. Basten (2015). Do Daily Scrums Have to
Take Place Each Day? A Case Study of Customized Scrum Principles at an
E-commerce Company. In Hawaii International Conference on System Sciences
(HICSS'15), Volume 48, pp. 5074�5083. IEEE.

[71] Persson, J. S., J. Nørbjerg, and P. A. Nielsen (2016). Improving ISD Agility
in Fast-Moving Software Organizations. In European Conference on Information
Systems (ECIS'16), pp. 1�16. AIS.

[72] Quinn, R. E. and M. R. McGrath (1985). The transformation of organizational
cultures: A competing values perspective. Organizational culture, 315�334.

[73] Rodríguez, P., J. Partanen, P. Kuvaja, and M. Oivo (2014). Combining lean
thinking and agile methods for software development: A case study of a �nnish
provider of wireless embedded systems detailed. In Hawaii International Confer-
ence on System Sciences (HICSS'14), pp. 4770�4779. IEEE.

[74] Rubin, K. S. (2012). Essential Scrum: A Practical Guide to the Most Popular
Agile Process. Addison-Wesley Professional.

[75] Schreiber, R. S. and P. N. Stern (2001). Using Grounded Theory In Nursing.
Springer.

[76] Schultze, U. and M. Avital (2011). Designing interviews to generate rich data
for information systems research. Information and Organization 21 (1), 1�16.

[77] Schwaber, K. (1997). SCRUM Development Process. In Business Object Design
and Implementation, pp. 117�134. Springer.

[78] Schwaber, K. (2015). ScrumBut. https://www.scrum.org/scrumbut. [Online;
Accessed 2015-12-14].

[79] Schwaber, K. and M. Beedle (2001). Agile Software Development with Scrum.
Prentice Hall PTR.

[80] Schwaber, K. and J. Sutherland (2013). The Scrum guide. http://www.

scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf. [Online; Ac-
cessed 2015-12-15].

[81] Schwaber, K. and J. Sutherland (2015). The History of Scrum. http://www.

scrumguides.org/history.html. [Online; Accessed 2015-12-01].

[82] ScrumAlliance (2015). The 2015 State of Scrum Report. https://

www.scrumalliance.org/scrum/media/scrumalliancemedia/files%20and%

20pdfs/state%20of%20scrum/scrum-alliance-state-of-scrum-2015.pdf.
[Online; Accessed 2016-07-28].

[83] Sienkiewicz, L. D. and L. A. Maciaszek (2011). Adapting scrum for third party
services and network organizations. In Federated Conference on Computer Science
and Information Systems (FedCSIS'11), pp. 329�336. IEEE.

[84] Stacey, P. and J. Nandhakumar (2008). Opening up to agile games develop-
ment. Communications of the ACM 51 (12), 143�146.

Page 54 of 86 Aalborg University

https://www.scrum.org/scrumbut
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf
http://www.scrumguides.org/history.html
http://www.scrumguides.org/history.html
https://www.scrumalliance.org/scrum/media/scrumalliancemedia/files%20and%20pdfs/state%20of%20scrum/scrum-alliance-state-of-scrum-2015.pdf
https://www.scrumalliance.org/scrum/media/scrumalliancemedia/files%20and%20pdfs/state%20of%20scrum/scrum-alliance-state-of-scrum-2015.pdf
https://www.scrumalliance.org/scrum/media/scrumalliancemedia/files%20and%20pdfs/state%20of%20scrum/scrum-alliance-state-of-scrum-2015.pdf

Drægert and Petersen (2016) BIBLIOGRAPHY

[85] Strauss, A. L. and J. M. Corbin (1998). Basics of Qualitative Research: Second
Edition: Techniques and Procedures for Developing Grounded Theory. SAGE.

[86] Strode, D. E., S. L. Hu�, and A. Tretiakov (2009). The impact of organiza-
tional culture on agile method use. In Hawaii International Conference on System
Sciences (HICSS'09), pp. 1�9. IEEE.

[87] Swaminathan, B. and K. Jain (2012). Implementing the lean concepts of con-
tinuous improvement and �ow on an agile software development project: An
industrial case study. In Agile India 2012, pp. 10�19. ASCI.

[88] Takeuchi, H. and I. Nonaka (1986). The New New Product Development Game.
Harvard Business Review 64 (1), 137�146.

[89] Tanner, M. and A. Mackinnon (2013). Sources of Disturbances Experienced
During a Scrum Sprint. In International Conference on Information Systems
Management and Evaluation (ICIME'13)), pp. 255�262. ACPI.

[90] Tanner, M. and C. Wallace (2012). Towards an Understanding of the Contex-
tual In�uences on Distributed Agile Software Development: a Theory of Practice
Perspective. In European Conference on Information Systems.

[91] Thomsom Reuters (2016). The Thomsom Reuters Journal Selection Pro-
cess. http://wokinfo.com/essays/journal-selection-process/. [Online;
Accessed 2016-05-02].

[92] Tiwana, A. and M. Keil (2004). The one-minute risk assessment tool. Com-
munications of the ACM 47 (11), 73�77.

[93] Upender, B. (2005). Staying agile in government software projects. In Agile
Development Conference (ADC'05), pp. 153�159. IEEE.

[94] Vallon, R., C. Drager, A. Zapletal, and T. Grechenig (2014). Adapting to
changes in a project's DNA: A descriptive case study on the e�ects of trans-
forming agile single-site to distributed software development. In Agile Conference
(AGILE'14), pp. 52�60.

[95] Vallon, R., S. Strobl, M. Bernhart, and T. Grechenig (2013). Inter-
organizational Co-development with Scrum: Experiences and Lessons Learned
from a Distributed Corporate Development Environment. In H. Baumeister and
B. Weber (Eds.), Agile Processes in Software Engineering and Extreme Program-
ming, pp. 150�164. Springer.

[96] Verdugo, J., M. Rodríguez, and M. Piattini (2014). Using agile methods to
implement a laboratory for software product quality evaluation. In Agile Processes
in Software Engineering and Extreme Programming, pp. 143�156. Springer.

[97] Verheyen, G. (2014). Maximizing Scrum. https://www.scrum.org/Blog/

ArtMID/1765/ArticleID/15/Maximizing-Scrum. [Online; Accessed 2016-06-06].

[98] VersionOne (2015). 10th Annual State of Agile� Survey. https://versionone.
com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf. [Online;
Accessed 2015-09-28].

Aalborg University Page 55 of 86

http://wokinfo.com/essays/journal-selection-process/
https://www.scrum.org/Blog/ArtMID/1765/ArticleID/15/Maximizing-Scrum
https://www.scrum.org/Blog/ArtMID/1765/ArticleID/15/Maximizing-Scrum
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf
https://versionone.com/pdf/VersionOne-10th-Annual-State-of-Agile-Report.pdf

BIBLIOGRAPHY Drægert and Petersen (2016)

[99] Vilain, P. and A. J. B. Martins (2011). Neglecting agile principles and prac-
tices: A case study. In International Conference on Software Engineering and
Knowledge Engineering (SEKE'11), pp. 596�601.

[100] Wang, X., K. Conboy, and M. Pikkarainen (2012). Assimilation of agile prac-
tices in use. Information Systems Journal 22 (6), 435�455.

[101] Wolfswinkel, J. F., E. Furtmueller, and C. P. M. Wilderom (2013). Using
grounded theory as a method for rigorously reviewing literature. European Journal
of Information Systems 22, 45�55.

Page 56 of 86 Aalborg University

Drægert and Petersen (2016) A. Methodology Considerations

Methodology Considerations A
In this chapter we go over some of the considerations made when deciding how to
combine the literature study with an interview study. To learn about conducting
interviews, we read �Designing interviews to generate rich data for information sys-
tems research� by Schultze and Avital [76]; a discussion of the di�erent approaches
presented in the paper has no place in the main report, but we want to include our
argumentation for why we ultimately went with the approach we did.

A.1 Combining the Studies

A number of di�erent methods were considered for the overall methodology of the
project. We will not present all in detail, but to present some of the considerations
we made, some of the possible con�gurations we considered are presented here.

The �rst con�guration separates the two studies completely. Coding of the
empirical data is done in a separate NVivo project in a sequential fashion. That
way the two studies are treated as two completely di�erent studies � one based on
[101] and the other on [2]. The conclusions can then be compared in the end, but the
approach has a big amount of uncertainty, as the conclusions might not have much
in common. This is particularly true given the open-minded nature of the approach
by Adolph et al. [2]. Unless the theory from the literature study is directly taken
into account during the analysis of the interviews, it is unlikely the �ndings of the
two studies would align.

The second con�guration would still keep the two studies in separate NVivo
projects, but the studies would run in parallel. This approach still impedes the
ability to be open-minded in the analysis of the interviews, but the two studies
would in�uence each other much more directly. Instead of simply comparing the
results, the studies would shape each other and �ndings from one study can help
guide the direction of the other. Consequently, the main category used as a focus in
the interview study is in�uenced, not only by patterns identi�ed in the interviews
themselves, but also by the ones found in the literature.

The third con�guration joins the NVivo projects, but the studies are carried out
sequentially. That way, the empirical study is conducted on top of the literature
study, allowing a quick identi�cation of a main category to pursue, but also assuming
that the interviews have been carried out in such a way that there is a direct relation

Aalborg University Page 57 of 86

A. Methodology Considerations Drægert and Petersen (2016)

between the �ndings from the literature and the content of the interviews. Coding in
the same NVivo project requires a mapping of the two coding styles. For example, it
is not certain that the selective codes from the Straussian approach directly correlate
to the understanding of selective codes in the Glaserian approach.

The fourth con�guration also stays within one NVivo project, but as with the
second con�guration the studies are carried out in parallel. A parallel approach
makes it even more important to keep the coding styles compatible. This con�g-
uration would completely integrate the two studies, essentially making one study
based on two data sets. With the two data sets being as di�erent as they are �
one being much more detailed than the other � it can be perceived that one might
overshadow the other, thus losing the nuanced perspective that is the goal of using
the two di�erent data sources.

As described in Chapter 3 we decided to go with an approach resembling the
fourth con�guration.

A.2 Interview Approaches

As for conducting the actual interview Schultze and Avital [76] suggest three di�erent
approaches: Appreciative, photo-diary, and laddering.

In appreciative interviewing, the interviewer uses positive feedback to encourage
the interviewee to give a rich account of the subject of the interview. The interview
switches between a retrospective phase (the current situation) and a prospective
phase (possible future situation). Appreciative interviewing especially focuses on
making the participant envision possibilities, based on what already is, and it is
especially well suited for coming up with new or developing existing ideas. As the
purpose of this study is of a more re�ective manner, the appreciative interviewing
approach is not ideal.

In the photo-diary interview method the interviewee prepares for the interview
by taking pictures and writing a diary/log relevant to the interview subject. The
photos are then used as a visual aid in the interviews, allowing for deeper re�ections
on what happened in a given situation. The photo-diary approach has a good �t
with the purpose of this study, but due to the relatively big amount of work required
by the interviewee, we decided to instead go with the third option: laddering.

The laddering approach recommended by Schultze and Avital [76] has two parts.
Partly they suggest using Repertory Grid (RepGrid) method, based on and devised
by Kelly [56]. The RepGrid method is very good for comparing the interviewee's
views on di�erent aspects of the topic in a systematic manner, but it also takes
a lot of time to set up. The second part is the laddering itself. Paired with the
RepGrid, a means-ends chain is identi�ed by asking a sequence of why's about the
distinctions found in the RepGrid. As we are interested in covering all aspects of the
interviewee's Scrum use, we decided to go with only the laddering part. Without the
RepGrid as support the process becomes much simpler, and we minimise the risk
that we spend so much time on setting up the RepGrid that we run out of time to
ask the important questions. This way we simply ask questions about each Scrum

Page 58 of 86 Aalborg University

Drægert and Petersen (2016) A. Methodology Considerations

practice and extend the questions with as many levels of "why?" as the interviewee
is able to answer. Using this approach allows us to get a better understanding
of their arguments by using laddering, while still leaving enough �exibility to get
around every Scrum practice.

The use of laddering (i.e., continuously asking for the reasoning behind the
previous answer) does not guarantee that the answers re�ect an absolute truth.
Instead it gives a reasoning that is true in the eyes of the interviewee, and by
combining the answers with a Grounded Theory approach we hope to be able to
�nd patterns that explain the situation in more general terms.

Aalborg University Page 59 of 86

A. Methodology Considerations Drægert and Petersen (2016)

Page 60 of 86 Aalborg University

Drægert and Petersen (2016) B. Complete Literature Search Queries

Complete Literature Search
Queries B

"query": {
acmdlTitle:(+scrumbut) OR recordAbstract:(+scrumbut) OR
keywords.author.keyword:(+scrumbut) OR
acmdlTitle:(+scrum +adapt*) OR recordAbstract:(+scrum +adapt*) OR
keywords.author.keyword:(+scrum +adapt*) OR
acmdlTitle:(+scrum +tailor*) OR recordAbstract:(+scrum +tailor*) OR
keywords.author.keyword:(+scrum +tailor*) OR
acmdlTitle:(+scrum +modif*) OR recordAbstract:(+scrum +modif*) OR
keywords.author.keyword:(+scrum +modif*) OR
acmdlTitle:(+scrum +customi*) OR recordAbstract:(+scrum +customi*) OR
keywords.author.keyword:(+scrum +customi*)

}
"�lter": {"publicationYear":{ "gte":2001 }}

Figure B.1: Query for ACM.

queryText=(scrumbut) OR (scrum adapt*) OR (scrum tailor*) OR (scrum modif*) OR
(scrum customi*) AND ranges=2001_2016_Year1

Figure B.2: Query for IEEE Xplore

(TITLE-ABS-KEY(scrumbut) AND PUBYEAR > 2001 AND SUBJAREA(COMP)) OR
(TITLE-ABS-KEY(scrum adapt*) AND PUBYEAR > 2001 AND SUBJAREA(COMP)) OR
(TITLE-ABS-KEY(scrum tailor*) AND PUBYEAR > 2001 AND SUBJAREA(COMP)) OR
(TITLE-ABS-KEY(scrum modif*) AND PUBYEAR > 2001 AND SUBJAREA(COMP)) OR
(TITLE-ABS-KEY(scrum customi*) AND PUBYEAR > 2001 AND SUBJAREA(COMP))

Figure B.3: Query for Scopus.

TS=(scrumbut) AND PY=(2001-2016) AND SU=(Computer Science) OR
TS=(scrum AND adapt*) AND PY=(2001-2016) AND SU=(Computer Science) OR
TS=(scrum AND tailor*) AND PY=(2001-2016) AND SU=(Computer Science) OR
TS=(scrum AND modif*) AND PY=(2001-2016) AND SU=(Computer Science) OR
TS=(scrum AND customi*) AND PY=(2001-2016) AND SU=(Computer Science)

Figure B.4: Query for Web of Science

1http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&sortType=

&rowsPerPage=&searchField=Search_All&matchBoolean=true&queryText=(scrumbut)

%20OR%20(scrum%20adapt*)%20OR%20(scrum%20tailor*)%20OR%20(scrum%20modif*)%20OR%

20(scrum%20customi*)&ranges=2001_2016_Year

Aalborg University Page 61 of 86

http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&sortType=&rowsPerPage=&searchField=Search_All&matchBoolean=true&queryText=(scrumbut)%20OR%20(scrum%20adapt*)%20OR%20(scrum%20tailor*)%20OR%20(scrum%20modif*)%20OR%20(scrum%20customi*)&ranges=2001_2016_Year
http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&sortType=&rowsPerPage=&searchField=Search_All&matchBoolean=true&queryText=(scrumbut)%20OR%20(scrum%20adapt*)%20OR%20(scrum%20tailor*)%20OR%20(scrum%20modif*)%20OR%20(scrum%20customi*)&ranges=2001_2016_Year
http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&sortType=&rowsPerPage=&searchField=Search_All&matchBoolean=true&queryText=(scrumbut)%20OR%20(scrum%20adapt*)%20OR%20(scrum%20tailor*)%20OR%20(scrum%20modif*)%20OR%20(scrum%20customi*)&ranges=2001_2016_Year
http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&sortType=&rowsPerPage=&searchField=Search_All&matchBoolean=true&queryText=(scrumbut)%20OR%20(scrum%20adapt*)%20OR%20(scrum%20tailor*)%20OR%20(scrum%20modif*)%20OR%20(scrum%20customi*)&ranges=2001_2016_Year

B. Complete Literature Search Queries Drægert and Petersen (2016)

Page 62 of 86 Aalborg University

Drægert and Petersen (2016) C. Reviewed Papers

Reviewed Papers C
Outlet Article Ref.

Agile Conference (4)

Block (2011)

Fernandes (2012)

Lorber and Mish (2013)

Vallon, Drager, Zapletal, and Grechenig (2014)

[8]

[27]

[63]

[94]

International Conference on
Agile Software Development (3)

Diebold, Ostberg, Wagner, and Zendler (2015)

Vallon, Strobl, Bernhart, and Grechenig (2013)

Verdugo, Rodríguez, and Piattini (2014)

[22]

[95]

[96]

Agile Development Conference (1) Upender (2005) [93]

Asia Paci�c Software Engineering
Conference (1)

Hong, Yoo, and Cha (2010) [44]

Empirical Software Engineering (1) Heeager and Rose (2015) [35]

Federated Conference on Computer
Science and Information Systems (1)

Sienkiewicz and Maciaszek (2011) [83]

Hawaii International Conference on
System Sciences (1)

Pauly, Michalik, and Basten (2015) [70]

Information and Software
Technology (1)

Eloranta, Koskimies, and Mikkonen (2016) [25]

International Conference on
Information Systems Management
and Evaluation (1)

Tanner and Mackinnon (2013) [89]

International Conference on
Software and Systems Process (1)

Hossain, Bannerman, and Je�ery (2011) [45]

International Conference on
Software Engineering and
Knowledge Engineering (1)

Vilain and Martins (2011) [99]

International Journal of Software En-
gineering and its Applications (1)

Inayat, Noor, and Inayat (2012) [50]

Table C.1: Reviewed articles

Aalborg University Page 63 of 86

C. Reviewed Papers Drægert and Petersen (2016)

Page 64 of 86 Aalborg University

Drægert and Petersen (2016) D. Interview Guide

Interview Guide D
Generel info

Har du eller andre på teamet certi�kater inden for Scrum?

Hvor stort er teamet, og hvordan er det sammensat?

Hvor længe har du arbejdet med Scrum? I forhold til gennemsnittet på teamet?

Hvad er din(e) rolle(r)?

Probes og uddybende spørgsmål

Spørg ind til (husk 3-5x why):

� Scrum Master, Product Owner, Development Team

� Sprint Backlog Product Backlog, Increment

� Daily Scrum, Retrospective, Review, Planning, Sprint

Mulige uddybninger:

Kan du uddybe, hvordan I bruger X?

Kan du nævne noget I aktivt har valgt at ændre (i forhold til X)?

Er der noget I har valgt at undlade?

Er der noget ekstra I har valgt at inkludere?

Hvad har fungeret godt/skidt i det projekt du arbejder på?

Pris i forhold til budget.

Features i forhold til forventninger.

Miljø / arbejdsmoral.

Hvordan går det i forhold til forventninger generelt?

Bekymringer.

Scrum vs. plandrevet?

Afslut med: Har du en afsluttende kommentar eller spørgsmål til os?

Aalborg University Page 65 of 86

D. Interview Guide Drægert and Petersen (2016)

Rollefordeling

Interviewperson:

Snakker om Scrum!

Så vidt muligt kun én person.

Interviewer:

Stiller spørgsmål og holder gang i samtalen.

Spørg specielt ind, når der nævnes ændringer.

Vær opmærksom på at få så mange niveauer med som muligt (laddering).

Notetager:

Holder styr på tid.

Skriver noter i forhold til hver Scrum practice og noterer tidspunkt for note.

Bryd ind i samtalen, hvis vigtigt emne misses.

Optagelse:

1 stk computer med mikrofon

1 stk tablet

Sørg for at starte optagere og tid på samme tid.

Start stopur, så det er let for notetager at se tidspunkt.

Page 66 of 86 Aalborg University

Drægert and Petersen (2016) E. Tools

Tools E
In this chapter the tools we used for reference management (Zotero) and coding
(NVivo) are described. The tools deserve a description because of their central role
in both data collection and coding.

E.1 Zotero

Zotero is a reference management tool, and it was used to organise and �lter the
papers found in the four databases as described in Section 3.2. Through a browser
extension all results from any given query can be easily imported into the tool for
further processing. As opposed to NVivo, Zotero synchronises with a server online,
allowing multiple people to work seamlessly on the same project.

Figure E.1 shows a screenshot of the main window of Zotero. The window
contains three parts (left, middle, and right), and most of the work is done in those
three parts. The left view provides an overview of the folders used to organise the
�ltering process illustrated on Figure 3.2. For example, all search results are added
to folder the folder Scrumbut [1] - With Duplicates, and after �nishing all queries
the entries are copied to Scrumbut - [2] Without Duplicates. In the second folder,
the tool's duplication removal tool is used to �lter most duplicates, and the ones
that were missed are removed manually. The entries are copied rather than moved
to preserve the numbers needed for illustrating the process in Figure 3.2.

The middle view is for interacting with the papers, including deleting and moving
them to di�erent folders. It allows sorting by any of the columns, which is especially
useful for preventing clashes when more than one person is working on it at the same
time.

The right view shows details about the selected paper, including tags and notes,
which are especially useful for marking papers that are in the grey zone in terms
of whether or not they should be included. More importantly the Info tab includes
the abstract, which is very useful for step 3 (re�ning by abstract). Because of the
aforementioned synchronisation with a server, the storage space is limited to 300 MB
in the free version, which is not enough to store the PDF with each entry. Showing
the abstract directly in the tool means the PDFs do not need to be downloaded

Aalborg University Page 67 of 86

E. Tools Drægert and Petersen (2016)

until after re�ning by abstract, leaving us with only 62 papers to download instead
of 236.

The tool does have some quirks, most notably the deletion process. If an item
is deleted by pressing the delete button it is not removed from the index listing
all items, which can be confusing. Instead the item has to me moved to the Trash
folder and then deleted from there. If items are deleted the wrong way, the easiest
way to restore the project is by creating a new project from scratch and move the
contents from each folder over to the new project.

Overall the tool was invaluable for keeping track of the re�nement process, and
especially the browser extension saved us countless hours; adding almost 400 papers
manually would have taken many hours.

Page 68 of 86 Aalborg University

D
ræ

gert
and

P
etersen

(2016)
E
.
T
ools

Figure E.1: Screenshot from the research tool Zotero.

A
alborg

U
niversity

P
age

69
of

86

E. Tools Drægert and Petersen (2016)

E.2 NVivo

NVivo is a tool for organising qualitative data analysis, and it was useful for man-
aging both papers and audio from the interviews. Each source, e.g. audio �le or
pdf, can be imported into the program, and when an NVivo project is saved the
sources are embedded directly into the project �le, making it easy to move around
and share without having to worry about each individual �le. Figure E.2 shows
an overview of all the imported sources. Double-clicking a source opens either the
audio editor or pdf editor, allowing to code the source.

Figure E.2: Sources, interviews and papers, in NVivo.

Page 70 of 86 Aalborg University

Drægert and Petersen (2016) E. Tools

Figure E.3 shows a paper opened in the pdf editor. To mark an area as relevant,
an area annotation was added, covering the paragraph with a transparent blue area.
When a ScrumBut is identi�ed, the area is highlighted and added to an existing node
(shown in the �gure) or a new node. Already coded areas are marked by yellow.

Figure E.3: Coding a paper in NVivo.

Aalborg University Page 71 of 86

E. Tools Drægert and Petersen (2016)

Figure E.4 shows the editing of an audio �le. One of the options in the Playback
menu allows for speeding up the audio, making it possible to go through the inter-
view much faster. It was found to be unnecessary to transcribe the whole �le, and
instead only areas where ScrumButs were mentioned were transcribed and added
to one or more relevant nodes. In addition it was found to not add enough value to
mark relevant areas as we did in the papers because any part of the interview could
be relevant, and marking every area would be too time consuming.

Figure E.4: Editing the transcript for an audio �le.

Page 72 of 86 Aalborg University

Drægert and Petersen (2016) E. Tools

Figure E.5 shows the node view, giving an easy overview of all identi�ed nodes.
In our case we have one node for each ScrumBut. The nodes are easily sortable
on, for example, number of sources or number of codes, and multiple layers can be
added, allowing groups of nodes to be collected � useful for managing the granularity
of the ScrumButs.

Figure E.5: Nvivo's node view, showing all nodes.

Aalborg University Page 73 of 86

E. Tools Drægert and Petersen (2016)

Each code collected under a node from any source is easily viewable by double-
clicking a node from the node view. Figure E.6 shows some of the codes for Daily
Scrums Cancelled or Postponed with examples from both papers and interviews.
One code is highlighted in blue, indicating it has an annotation adding a comment
to it. In some cases the codes can be di�cult to read in this view, especially those
made from highlighting text in a pdf. In cases like that, or if further context is
needed, the title of the source can be clicked to open the full source.

Figure E.6: Codes belonging to the node Daily Scrums Cancelled or Postponed.

Overall, NVivo was found to have a number of quirks making it slightly harder
to use, but it still was a much better solution than organising the coding manually.

Page 74 of 86 Aalborg University

Drægert and Petersen (2016) F. Article

Article F
The article starts on the next page.

Aalborg University Page 75 of 86

ScrumBut in Professional Software Development

Alexander Drægert and Dan Skøtt Petersen

Aalborg University, Aalborg Ø 9220, Denmark,
{adrage11, dspe11}@student.aau.dk

Abstract. Agile methodologies are widely used in the software industry
with Scrum being the most common framework. Scrum is a small frame-
work with few, but well-de�ned, practices. While many companies still
deviate from the textbook version of Scrum, limited research has inves-
tigated the underlying explanation of why. Against this backdrop, we re-
port an investigation of ScrumButs in professional software development
based on analysis of 17 empirical research papers on Scrum modi�cations
and interviews with 9 Scrum practitioners from 7 software companies.
We found instances of ScrumButs pertaining to all parts of the Scrum
framework and analyze the associated reasoning with the competing val-
ues model of organizational culture. The analysis shows how particular
ScrumButs may involve di�erent forms of reasoning re�ecting di�erent
forms of organizational culture. We discuss how these �ndings may nu-
ance our assessments of ScrumButs beyond implicit value judgments of
being inherently good or bad.

1 Introduction

Software development is a complex endeavour with numerous variables determin-
ing whether or not a project is successful. Tiwana and Keil [23] present six risk
factors which impact the success rate of a project. Among those risk factors the
one with the highest impact factor is Methodology Fit. The most commonly used
agile methodology is, according a survey from VersionOne Inc. [28], Scrum with
nearly 70% usage. However, when inspected in more detail, many make changes
to Scrum for one reason or another. These changes to Scrum are referred to as
ScrumButs, and it is debated whether these ScrumButs are signs of dysfunction
or a natural part of any software development practice (e.g. [12, 17]).

In this study we will �rst investigate which ScrumButs can be identi�ed
in professional software development and how their emergence is reasoned.
Secondly, we will investigate why these ScrumButs emerge. To do so, we re-
view 17 empirical research papers and interview 9 practitioners from 7 di�erent
companies.

This paper is structured as follows: Section 2 introduces ScrumBut and orga-
nizational culture, which forms the foundation for this paper. Section 3 provides
an overview of the methodology used to conduct the study. Section 4 summarizes
the �ndings of the study in three tables. Section 5 discusses related research and
the contributions of this study, followed by limitations and suggestions for future
research. Section 6 concludes the paper.

2 A. Drægert and D.S. Petersen

2 Background

Scrum is used by the majority of organizations practising agile software devel-
opment [18], [28], but many of the organizations claiming to use Scrum modify
it to �t the context in which they are working. Schwaber [17] calls these changes
ScrumButs. In this section we describe ScrumBut and organizational culture as
a foundation for the discussion of why ScrumButs emerge.

2.1 ScrumBut

ScrumBut, as a phenomenon, is a prevalent occurrence when studying Scrum
practices in professional software development as seen in for example [3], [8],
[15], but only recently has a more elaborate study been made on the subject [4].
A ScrumBut can be written as (ScrumBut)(Reason)(Workaround), and an
example could be �(We use Scrum, but) (having a Daily Scrum every day is too
much overhead,) (so we only have one per week)� [17].

Some argue that using ScrumButs is a sign of dysfunction [17], while others
argue that you should do what works best for you [11, 12]. Conboy and Fitzger-
ald [2] argue that for a method to be agile, it should be amenable to change.
Others again take a neutral standpoint [4]; we concur with the latter, as claiming
ScrumButs to be universally good or bad requires evidence that does not exist.

2.2 Organizational Culture

Iivari and Iivari [9] hypothesize that a connection exists between organizational
culture and the deployment of agile methodologies. ScrumButs exist as part of
the deployment of Scrum, and according to the hypotheses a connection between
ScrumButs and organizational culture exists. To be able to illustrate the connec-
tion, a brief introduction to organizational culture and the Competing Values
Model (CVM) is necessary. CVM is based on the relationship between two di-
mensions: change vs. stability and internal focus vs. external focus [9]. Based on
the two dimensions, four types of culture can be distinguished: Developmental
(change and external focus), Consensual (change and internal focus), Rational
(stability and external focus) and Hierarchical (stability and internal focus). The
key values of the four cultures are shown in Table 1 (based on [14], [16]). Note
that an organization can have values from several cultures. The values will be
used to place the ScrumBut reasonings in a culture, putting our �ndings into
perspective.

3 Research Approach

To answer the questions of which, how, and why ScrumButs are prevalent in
software development, we performed a Grounded Theory study of existing em-
pirical research (based on [30]). The literature study was supplemented with

ScrumBut in Professional Software Development 3

Table 1. Overview of competing values in organizational culture [14], [16].

Aspect Developmental Consensual Rational Hierarchical

Organizational

orientation

Flexibility,
adaptability and

readiness

Cohesion and
morale

Productivity and
e�ciency

Stability and
control

Organizational

objectives

Growth and
development

Group
maintenance

Pursuit of
objectives

Execution of
regulations

Organizational

structure

Complex tasks;
Collaborative work

groups

Complex tasks;
Collaborative work

groups

Complex tasks;
Responsibilities

based on expertise

Routine tasks and
technology; Formal
rules and policies

Base of Power Values Ability to cultivate
relationships

Competence Knowledge of
organizational
rules and
procedures

Decision making Organic, intuitive Participatory,
deliberative

Goal-centred,
systematic and

analytical

Top-down
pronouncements

Leadership style Idealistic, risk
oriented,

empowering

Team builder,
concerned,
supportive

Rational achiever,
goal oriented

Dominance,
conservative,
cautious

Compliance Commitment to
values

Commitment to
process

Contractual
agreement

Monitoring and
control

Evaluation of

members

Intensity of e�ort Quality of
relationships

Level of
productivity

Adherence to rules

Orientation to

change

Change is
embraced as part

of growth

Open to change Open to goal
driven change

Resistant
(orientated to
maintaining the
status quo)

data from in-depth laddering interviews of practitioners, based on [19], for a
deeper understanding of ScrumBut as a phenomenon. This research method was
selected due to its favorable properties towards investigating social processes,
especially where previous research is lacking in depth, or where a new point of
view appears promising.

Existing empirical research was selected from the four largest peer-reviewed
software engineering digital libraries (ACM, IEEE, Scopus, WoS) to ensure qual-
ity and broadness. Included research had to pass the criteria of explicitly stating
both workaround and reasoning for presented ScrumButs. Additional criteria
were: research must explicitly state ScrumBut as a focus, and empirical evi-
dence of ScrumButs must be from professional software development. Meeting
these criteria were the 17 papers: [1], [3, 4, 5, 6, 7, 8], [10], [13], [15], [20], [22],
[24, 25, 26, 27], [29].

As supplement, we conducted semi-structured interviews with subjects about
their experienced ScrumButs and deployment of Scrum. Candidates were se-
lected with an aim to maximize variation by seeking candidates from di�erent
types of companies with di�erent roles and experience levels. The 9 interviewed
candidates and general info about the interviews are listed in Table 2. Note that
interview [I2A] and [I2B] were conducted in the same session, hence the shared
index.

4 A. Drægert and D.S. Petersen

Table 2. Table of interviews.

Interview Scrum Role Org. Team Size
Scrum

Exp.

Interview

Duration
Ref.

1 Scrum Master α 6-7 3 years 1:32 [I1]

2A Developer β 7 13 years 1:38 [I2A]

2B Project Manger β 7 8 years 1:38 [I2B]

3 Developer β 10 2 years 1:14 [I3]

4 Developer γ 10 12 years 1:05 [I4]

5 Scrum Master δ 4 <1 year 1:08 [I5]

6 Product Owner ε 7-10 10 years 1:09 [I6]

7 Scrum Master γ 10 11 years 1:18 [I7]

8 Developer & Scrum Master θ 3 1 year 1:05 [I8]

9 Product Owner ω 5-7 10 years 0:55 [I9]

Interviews were conducted with one of the authors as interviewer and
another as note taker. During the interview, when a ScrumBut was mentioned,
an elaboration or explanation was requested, until the interviewer was satis�ed
with the explanation or the candidate was unable to answer, thereby achieving
richer explanations.

To ensure a common frame of reference for what constitutes a ScrumBut
we base our de�nition of Scrum on �The Scrum Guide� [21] as it is concise and
exact in its de�nition, and was written by the authors of Scrum, Schwaber and
Sutherland.

4 Findings

4.1 Reasoning of ScrumButs

ScrumButs were identi�ed in all Scrum practices, indicating that no Scrum
practice works for everyone in every context. The identi�ed ScrumButs and
their reasoning are presented in Table 3 and Table 4. Each table is structured
with the ScrumButs and references to where they emerge on the left, and the
reasonings and their source on the right.

For example, in Table 3 it is shown that the ScrumBut Development Team
Not Making Estimations emerges in [I2A], [4], and [29]. This constitutes a Scrum-
But as �The Scrum Guide� [21] states that �The Development Team is responsible
for all estimates.� One reasoning for the ScrumBut is that estimated product cost
is needed in advance which is explicated as:

Example 1. �Working practices of the company need to know an estimate in ad-
vance on how much the product will cost [so] a product manager or the Product
Owner produces work estimates.� [4, p. 200]

ScrumBut in Professional Software Development 5

Table 3. ScrumButs and their reasonings (cont.)

ScrumBut Reasoning

Daily Scrums Cancelled or Postponed
[I2B, I8, I9, 3, 5, 8, 13, 15, 24, 25, 29]

Only done when Scrum Master needs updates [I2B].
Frequent meetings with externals [I9].
Team is working closely together [I8, 5, 25].
Di�cult for team members to meet daily [8, 15, 29].
Di�cult for team members to meet on time [13, 24].
Progress is not su�cient to warrant meeting [15].
The team is very small [8].

Retrospectives Cancelled or Postponed
[I1, I2B, I4, I5, I6, I8, I9, 3, 5, 6, 8, 15,
26]

People, especially Product Owner, cannot attend [I4, 5].
Problems are solved as they appear [I8, I9, 5].
Not enough to talk about every Sprint [I1, I6, 8].
Time pressure from outside team (e.g. management) [15].
Team is too large [8].
Lack of feedback [8].
Issues handled through other meetings [8].

Sprint Review Cancelled or Postponed
[5, 20]

Stong client relationship with frequent contact[5].
A Weekly Meeting makes Sprint Reviews unnecessary [20].

Sprint Planning Cancelled or
Postponed
[I2B, I4, I9, 20, 26]

No estimations, so planning is done on demand [20].
Sprints are replaced with Flow [I2B, I9].
People, especially Product Owner, cannot attend [I4].

Not Using Sprints
[I2B, I9, 4, 5]

Project durations are very short [I2B].
Necessary to be very responsive to clients' needs [I9, 5].

Merging Events
[I6, 3, 8, 15]

Separating the meetings feels unnecessary [I6].
Separate meetings take too much time [15].
No Retrospective planned; agenda added to Review [15].

Multiple Daily Scrums [8] Development Team too big for only one meeting [8].

Sprint Review Without Stakeholders
[I4, 3, 8, 13, 15]

Stakeholders do not have time to participate [I4].
Internal reviews by other teams [8].
Product Owner or other acts as stand-in [I4, 8].
Meeting too long and detailed [13].

Development Team Not Making
Estimations
[I2A, 4, 29]

Enough to include those with domain knowledge [I2A, 29].
It takes too much time [I2A].
Estimated product cost is needed in advance. [4]

No Estimations [4] N/A

Not De�ning Done
[I5, I8, 3, 15, 25]

Done criteria are de�ned on a backlog item level [I5, 15].
Development not started; planned to be included later [I8].

No Increment
[I1, 4, 25]

Separate test site test at end of Sprint [25].
Alternating dev./testing; Increment every other Sprint [4].
New features are released immediately [I1].

Not Everybody at Daily Scrum [13] A combination of delay and unfocused discussion [13].

Extending Dur. of Daily Scrum
[I2B, I9, 3, 8, 10, 13, 27]

Detailed discussions during meeting [I2B, I9, 3, 8, 13, 27].
Daily Scrum not held daily [3].

Extending Dur. of Sprint During the
Sprint [4, 29]

Use of new technologies without prior training [29].

Extending Dur. of Sprint Planning [24] Estimating tasks is complicated by inability to agree on
required complexity [24].

Extending Dur. of Sprint Review [3] N/A

6 A. Drægert and D.S. Petersen

Table 4. ScrumButs and their reasonings.

ScrumBut Reasoning

Having a Product Owner Committee
[I1, I8, 1, 3, 4, 6, 24]

Di�erent stakeholders need authority [I1].
Decision makers do not want to give up mandate [I8].
The product has several branches [1, 24].
Multiple client relations [6].

Product Owner Not Accountable for
Ordering of Product Backlog Items [I1]

Board of directors accountable for product [I1].

No Product Owner
[I1, I2A, I2B, I6, 3, 4, 26]

Product Owner tasks handled by legacy roles [I2B].
Internal tasks can be handled by team lead [I6].
Redundant because of separate project mgm. o�ce [I1, 3].
Requirements received directly from client [I2A, 3].

No Scrum Master
[I2A, I8, 3, 5, 10, 26]

It is easier to engage the team without a Scrum Master [5].
Replaced by a Project Manager [10].
Extra resources for development gives more value [3].
Team does not use enough events [I8].

Scrum Master Not Protecting the
Team [I1, 4]

N/A

Exceeding Team Size Boundaries
[I1, I8, 3, 8]

Project does not require many resources [I1].
The company is very new [I8].
The team was large before Scrum was introduced [3].

Having Titles on Development Team
[I1, I4, I6, 7, 26]

It makes personnel management easier [I1].
Architects are highly skilled and in high demand [I4].
Dictated by organization / part of people's identity [I6].
Easier for people to move between departments [I6].

Development Team Not Cross-
functional [I4, 4]

Development may depend on legacy components [I4].
There is a separate testing team [4].

Management Changing Sprint Backlog
During Sprint [I2B, 22]

Mgm. requires ad-hoc tasks to take priority [I2B, 22].

Mgm. Making Sprint Backlog [I3, 3] Remains from old hierarchical development process [3].

Product Backlog Not Transparent
[1, 15, 26]

Several Product Owners each maintain part of backlog [1].

Irrelevant Product Backlog Items Not
Removed [I1, I6]

Responsible people lacks required knowledge [I1].
Too time-consuming; important items already �rst [I6].

Product Backlog Not Ordered
[4, 15]

It takes to much time and e�ort [15, 4].
No Product Owner [4].
Product Owner does not have required knowledge [4].

No Product Backlog [4] N/A

Stories Longer than Sprint Duration
[I5, 25, 27]

Student developers only work part time [I5].
Some items require research/experimentation [27].

Team Not Self-organising [4] N/A

4.2 Organizational Culture and ScrumBut

Utilizing the previous example, it can be shown that this ScrumBut is associated
with a hierarchical culture through the common values of its reasoning and the
values shown in Table 1. The reasoning in Example 1 shares the organizational
objective of execution of regulation, and the organizational structure of formal
rules and policies with the hierarchical culture. This association between organi-
zational culture and ScrumBut can nuance the debate of whether ScrumButs are
good or bad. The nuance lies in moving the attribution of a ScrumBut's nature,

ScrumBut in Professional Software Development 7

from an inherent nature, to a nature dependent on its values and the values of
its environment. An example of this can be demonstrated by the ScrumBut of
Development Team Not Making Estimations: Instead of assuming its inherent
nature as bad, looking at its reasoning and the values behind it, in association
with the values of organizational cultures, shows its nature as more nuanced. It
is shown that the reasoning for this ScrumBut (Example 1) is associated to the
value-set of the hierarchical culture. Given this association it can be argued that
this ScrumBut is benign, or even bene�cial, in a company with strong hierar-
chical values, as the change is made to better support the organization's values.
Thus, the nature of a ScrumBut might not be as simple as the binary judgment
of being inherently good or bad.

Table 5. Cultures of ScrumButs.

ScrumBut Dev. Con. Rat. Hie.

Having a Product Owner Committee [I8] [6, 24] [I1, 1]

Product Owner Not Accountable for
Ordering of Product Backlog Items

[I1]

No Product Owner [I6] [I1, I2A,
I2B, 3]

No Scrum Master [I8, 5] [3, 10]

Exceeding Team Size Boundaries [I8] [I1, 3]

Having Titles on Development Team [I4] [I1, I6]

Development Team Not Cross-functional [I4]

Daily Scrums Cancelled or Postponed [I8, 13] [5, 25] [I9, 24, 29] [I2B, 8, 15]

Retrospectives Cancelled or Postponed [I8] [I6, I9, 5] [8] [I4, 8, 15]

Sprint Review Cancelled or Postponed [5]

Sprint Planning Cancelled or Postponed [I2B, I9] [I4]

Replacing Sprints with Flow [5] [I9] [I2B]

Merging Events [I6] [15]

Multiple Daily Scrums [8]

Sprint Review Without Stakeholders [13] [I4, 8]

Some Developers Not Attending Daily Scrum [13]

Extending Duration of Daily Scrum [27] [I2B, I9, 13] [8]

Extending Duration of Sprint During Sprint [29]

Extending Duration of Sprint Planning [24]

Management Changing Sprint Backlog
During Sprint

[I2B, 22]

Development Team Not Making Estimations [I2A, 29] [4]

Management Making Sprint Backlog [3]

Product Backlog Not Transparent [1]

Irrelevant Procuct Backlog Items Not
Removed

[I6] [I1]

Procuct Backlog Not Ordered [15]

Stories Longer than Sprint Duration [27] [I5]

Not De�ning Done [I5, I8] [15]

No Increment [I1] [25]

8 A. Drægert and D.S. Petersen

5 Discussion

The contribution of this study is twofold: Firstly it extends the current
knowledge of why ScrumButs emerge in practice, and secondly it shows the
existence of a relationship between organizational culture and the reasoning
behind ScrumButs.

Diebold et al. [3] present a general discussion of which changes practition-
ers make to Scrum, and suggest possible explanations. Eloranta et al. [4] take
a more detailed look at the individual ScrumButs, presenting them as Scrum
anti-patterns including listing consequences and company recommendations for
working with them. This study extends current understanding of ScrumButs by
providing an extensive overview of ScrumButs and their reasonings.

Iivari and Iivari [9] discuss a number of hypotheses indicating that organiza-
tional culture in�uences the deployment of agile methodologies. We show that
an association can be made between ScrumBut reasonings and values pertaining
to organizational culture, con�rming that a connection exists.

5.1 Limitations

Organizational culture was found to in�uence the emergence of ScrumButs, but
it may not be the only source of in�uence. Other sources of in�uence could be
project budget, experience of developers, etc. As no other sources of in�uence
are accounted for in this study, the �ndings may have been a�ected. It can,
however, be argued that these factors impact organizational culture as well,
reducing the need for accounting for them directly.

The candidates interviewed for the study were all situated within a relatively
small area, as a result of which their social cultures may have been similar
enough to in�uence the results. This limitation is partially neutralized by also
studying literature with interviews from many di�erent social cultures. In the
data obtained from the literature, however, the explanations are some times not
very thorough, often without evidence of the underlying cultural values.

5.2 Future Research

We have two suggestions for possible future research: First, we suggest con-
ducting a study to quantify the connection between organizational culture and
ScrumBut reasonings. Such a study could improve the understanding of how
organizational culture a�ects the adaptation of Scrum and provide new insight
for the discussion of whether ScrumButs are inherently good or bad.

Secondly, we propose an expansion of this study, but with a focus on the
evolution of Scrum and ScrumButs over time in the same company, shedding
light on how organizational culture in�uences the emergence of ScrumButs, and
on how ScrumButs in�uence organizational culture.

ScrumBut in Professional Software Development 9

6 Conclusion

ScrumButs were identi�ed in all Scrum practices and their reasons ranged from
precipitate, e.g. not ordering the Product Backlog because it takes too much time
and e�ort [4, 15], to highly deliberate arguments, e.g. extending a Sprint after it
starts to ensure there is enough time to experiment with new technologies [29].
For most of the identi�ed ScrumButs one or more reasons were given to explain
why the practice was changed. By holding each reason up against the values
in the competing values model, it was found that most reasons can be linked
to values of an organizational culture. The link between organizational culture
and ScrumBut reasonings can help nuance the discussion of whether ScrumButs
should be considered good or bad, by focusing on the underlying values of the
reasoning and relating them to the organization's culture.

References

1. Block, M.: Evolving to Agile: A story of agile adoption at a small SaaS
company. In: Agile Conference, pp. 234�239. IEEE (2011)

2. Conboy, K., Fitzgerald, B.: Method and Developer Characteristics for E�ec-
tive Agile Method Tailoring: A Study of XP Expert Opinion. ACM Trans-
actions on Software Engineering and Methodology 20(1), 2:1�2:30 (2010)

3. Diebold, P., Ostberg, J.-P., Wagner, S., Zendler, U.: What Do Practitioners
Vary in Using Scrum? In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.)
XP 2015. LNBIP, vol. 212, pp. 40�51. Springer International Publishing
(2015)

4. Eloranta, V.-P., Koskimies, K., Mikkonen, T.: Exploring ScrumBut�An em-
pirical study of Scrum anti-patterns. Information and Software Technology
74, 194�203 (2016)

5. Fernandes, C.: There and back again: From iterative to �ow... and back to
iterative! In: Agile Conference, pp. 103�110. IEEE (2012)

6. Heeager, L.T., Rose, J.: Optimising agile development practices for the main-
tenance operation: nine heuristics. Empirical Software Engineering 20(6),
1762�1784 (2015)

7. Hong, N., Yoo, J., Cha, S.: Customization of Scrum Methodology for Out-
sourced E-Commerce Projects. In: Asia Paci�c Software Engineering Con-
ference, pp. 310�315. IEEE (2010)

8. Hossain, E., Bannerman, P.L., Je�ery, R.: Towards an Understanding of
Tailoring Scrum in Global Software Development: A Multi-case Study. In:
Proceedings of the 2011 International Conference on Software and Systems
Process, pp. 110�119. ACM, New York (2011)

9. Iivari, J., Iivari, N.: The relationship between organizational culture and the
deployment of agile methods. Information and Software Technology 53(5),
509�520 (2011)

10 A. Drægert and D.S. Petersen

10. Inayat, I., Noor, M.A., Inayat, Z.: Successful Product-based Agile Software
Development without Onsite Customer: An Industrial Case Study. Inter-
national Journal of Software Engineering and its Applications 6(2), 1�14
(2012)

11. Je�ries, R.: Fractional Scrum, or �Scrum-But� (2013), http://agileatlas.
org/articles/item/fractional-scrum-or-scrum-but

12. Kniberg, H.: What to do When Scrum Doesn't Work (2011)
https://www.scrumalliance.org/community/articles/2011/

february/what-to-do-when-scrum-doesn%E2%80%99t-work

13. Lorber, A.A., Mish, K.D.: How We Successfully Adapted Agile for a
Research-Heavy Engineering Software Team. In: Agile Conference, pp. 156�
163. IEEE (2013)

14. Ngwenyama, O., Nielsen, P.A.: Competing Values in Software Process Im-
provement: An Assumption Analysis of CMM From an Organizational Cul-
ture Perspective. IEEE Transactions on Engineering Management 50(1),
100�112 (2003)

15. Pauly, D., Michalik, B., Basten, D.: Do Daily Scrums Have to Take Place
Each Day? A Case Study of Customized Scrum Principles at an E-commerce
Company. In: 48th Hawaii International Conference on System Sciences, pp.
5074�5083. IEEE (2015)

16. Quinn, R.E., McGrath, M.R.: The Transformation of Organizational Cul-
tures: A Competing Values Perspective. Organizational Culture, 315�334
(1985)

17. Schwaber, K.: ScrumButs and Modifying Scrum, https://www.scrum.org/
scrumbut

18. Schwaber, K., Sutherland, J.: The History of Scrum, http://www.

scrumguides.org/history.html

19. Shultze, A., Avital, M.: Designing interviews to generate rich data for infor-
mation systems research. Information and Organization 21(1), 1�16 (2011)

20. Sienkiewicz, L.D., Maciaszek, L.A.: Adapting scrum for third party services
and network organizations. In: Federated Conference on Computer Science
and Information Systems, pp. 329�336. IEEE (2011)

21. Sutherland, J., Schwaber, K.: The Scrum Guide: The De�nitive Guide to
Scrum: The Rules of the Game (2013), http://scrumguides.org

22. Tanner, M., Mackinnon, A.: Sources of Disturbances Experienced During
a Scrum Sprint. In: Proceedings of the 4th International Conference on IS
Management and Evaluation, pp. 255-262. ACPI (2013)

23. Tiwana, A., Keil, M.: The one-minute risk assessment tool. Commun. ACM
47(11), 73�77 (2004)

24. Upender, B.: Staying agile in government software projects. In: Agile Devel-
opment Conference, pp. 153�159. IEEE (2005)

25. Vallon, R., Drager, C., Zapletal, A., Grechenig, T.: Adapting to changes in
a project's DNA: A descriptive case study on the e�ects of transforming
agile single-site to distributed software development. In: Agile Conference,
pp. 52�60. IEEE (2014)

ScrumBut in Professional Software Development 11

26. Vallon, R., Strobl, S., Bernhart, M., Grechenig, T.: Inter-organizational co-
development with scrum: experiences and lessons learned from a distributed
corporate development environment. In: Baumeister, H., Barbara, W. (eds.)
XP 2013. LNBIP, vol. 149, pp. 150�164. Springer, Heidelberg (2013)

27. Verdugo, J., Rodríguez, M., Piattini, M.: Using Agile Methods to Imple-
ment a Laboratory for Software Product Quality Evaluation. In: Cantone,
G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 143�156. Springer
International Publishing (2014)

28. VersionOne Inc. 10th Annual State of Agile Report (2015), http://

stateofagile.versionone.com/

29. Vilain, P., Martins, A.J.B.: Neglecting Agile Principles and Practices: A
Case Study. In: The 23rd International Conference on Software Engineering
and Knowledge Engineering, pp. 596�601. (2011)

30. Wolfswinkel, J.F., Furtemueller, E., Wilderom, C.P.M.: Using grounded the-
ory as a method for rigorously reviewing literature. European Journal of
Information Systems 22(1), 45�55 (2013)

	Preface
	1 Introduction
	2 Agile Software Development,Scrum & ScrumButs
	2.1 Agile Software Development
	2.2 Scrum
	2.2.1 What is Scrum?
	Product Owner
	Scrum Master
	Development Team
	Sprint
	Sprint Planning
	Daily Scrum
	Sprint Review
	Sprint Retrospective
	Product Backlog
	Sprint Backlog
	Increment

	2.2.2 What is ScrumBut?

	3 Research Methodology
	3.1 Methods
	3.1.1 Grounded Theory
	3.1.2 Laddering Interview

	3.2 Data Collection
	3.2.1 Literature Study
	Inclusion/Exclusion Criteria
	Define Research Field
	Define Sources
	Define Search Terms
	Search Results

	3.2.2 Interview Study

	4 Findings
	4.1 Reasoning of ScrumButs
	4.1.1 Scrum Roles
	4.1.2 Scrum Events
	4.1.3 Scrum Artefacts

	4.2 Organisational Culture and ScrumButs
	4.2.1 Competing Values Model
	4.2.2 Categorising the Data
	4.2.2.1 Developmental
	4.2.2.2 Consensual
	4.2.2.3 Rational
	4.2.2.4 Hierarchical

	4.2.3 ScrumButs Associated with Cultures
	4.2.3.1 Scrum Roles
	4.2.3.2 Scrum Events
	4.2.3.3 Scrum Artefacts

	5 Discussion
	5.1 Contribution
	5.1.1 Scrum Anti-patterns
	5.1.2 Organisational Culture and Agile Methodology

	5.2 Limitations
	5.3 Future Research

	6 Conclusion
	Bibliography
	A Methodology Considerations
	A.1 Combining the Studies
	A.2 Interview Approaches

	B Complete Literature Search Queries
	C Reviewed Papers
	D Interview Guide
	E Tools
	E.1 Zotero
	E.2 NVivo

	F Article

