
A a l bo rg U n i v e r s i t y

Warping Torsion

in

3D Beam Finite Elements

Master’s Thesis, M.Sc. in Structural and Civil Engineering

Dennis N. Olsen Lynge U. Andersen

School of Engineering and Science

2015



© Aalborg University, spring 2015

Dennis Nedergaard Olsen and Lynge Udengaard Andersen

The content of this report is freely accessible, however publication

(with source references) is only allowed upon agreement with the authors

This report is typeset in New TX and New TX Math, 11pt

Layout and typography by the authors using LATEX



Master’s Thesis, Master of Science

School of Engineering and Science

Study Board of Civil Engineering

Fibigerstræde 10

9220 Aalborg East

http://www.en.ses.aau.dk/

Title:

Warping Torsion in 3D Beam Fi-

nite Elements

Project period:

4th semester M.Sc, spring 2015

Supervisor:

Johan Clausen

Page numbers: 56

Appendix numbers: 4

Handed in: The 10th of June 2015

Participants:

Synopsis:

This project deals with torsion both analyt-

ically and numerically. The report starts by

presenting analytical derivations of spatial

beam theory from which everything orig-

inates. Torsion can be looked at in two

ways, which depend on the support and

load condition. Both scenarios, homoge-

neous torsion and non-homogeneous, are
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Preface

This report presents the master’s thesis of Dennis Nedergaard Olsen and Lynge Udengaard

Andersen from the 4th semester master program in Structural and Civil Engineering at

Aalborg University. The main subject is “Warping Torsion in 3D Beam Finite Elements”

with focus on documentation of beam theory, formulation of torsion, both homogeneous

and non-homogeneous, and inclusion of the 7th degree of freedom in the beam finite

element formulation. Finally a comparison between a home made finite element code

in Matlab and the advanced numerical software program ABAQUS is made in order to

verify the correctness of the finite element code.

The project was made during spring semester and delivered on 10.06.2015. Guidance

was achieved from supervisor, Associate Professor Johan Clausen, which we are truly

grateful for. We would also like to thank the lecturers Jesper W. Stærdahl, Johan Clausen

and Lars Andersen for a start-up finite element program, which we were able to build

further on to include non-homogeneous torsion.

Reading Guidelines

The project starts with an introduction, which starts by outlining previous knowledge

about the field of torsion followed by a brief research documentation of the problem’s

severity when looking at I/H-profiles. The introduction concludes by converging into

specific areas of interest mentioned above. A theoretical basis is establish within the

spatial beam theory chapter, presenting analytical solutions for both St. Venant and

Vlasov torsion. A basis for the finite element code is presented in the basics of the finite

element method chapter. Numerical results of the home-made finite element code in

Matlab and the numerical analysis in the software program ABAQUS are presented in

chapter 4 which rounds off the master’s thesis along with the conclusion.

References throughout the report are collected in a bibliography at the back of the

report, where all the sources of knowledge are mentioned with the needed data. Sources

are presented using the Harvard Method, presenting a reference as: [Author, Year].

Tables, pictures and equations are given reference numbers, starting with the number

of the chapter. If needed, commentary text is added below figures/tables presenting a

more user friendly readable report.
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Nomenclature

A Cross-sectional area

b Width

B Bending centre, bimoment

B0 Concentrated bimoment

E Young’s modulus

F Vector of internal forces

G Shear modulus

H Shear force per unit length

h Height

ı̂ Unit vector in x-direction

I Moment of inertia

̂ Unit vector in y-direction

K Stiffness matrix

k̂ Unit vector in z-direction

L Profile length

M Moment

m Uniform distributed moment

M Vector of internal moments

m Vector of uniform distributed mo-

ments

M0 Concentrated torsional moment

N Normal force

n Normal arc-length coordinate

n Unit normal vector

Q Shear force

q Uniform distributed load

q Vector of uniform distributed loads

r Radii of curvature, moment arm

r Vector of internal reaction forces

s Arc-length coordinate

s Unit tangential vector

S Shear centre, Prandtl’s stress func-

tion, statical moment

t Thickness

T Transformation matrix

u Displacement

u Vector of displacement field

v Direction vector

w Displacement

w Vector of displacements

W Work

x x-axis

y y-axis

yS y-distance to shear centre

z z-axis

zS z-distance to shear centre
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viii Contents

αT Value contained in hyperbolic stiff-

ness matrix

βT Values contained in hyperbolic stiff-

ness matrix

Γ Closed boundary curve

γT Values contained in hyperbolic stiff-

ness matrix

δ Virtual

δT Values contained in hyperbolic stiff-

ness matrix

ε Strain

θ Rotation

θ Vector of rotations

κ Curvature

ϕ Shape function

Φ Matrix containing shape functions

σ Stres

τ Maximum shear stress

ω Warping function, work per unit

length

Ω Open boundary curve

Notation and Indices

(·)i External

(·)e Element

(·)f Flange

(·)f Free degrees of freedom

(·)i Internal

(·)n Normalized

(·)f Prescribed degrees of freedom

(·)s St. Venant, with respect to the s-

direction

(·)v Vlasov

(·)w Web

(·)ω With respect to ωn

(·)x With respect to the x-axis

(·)y With respect to the y-axis

(·)z With respect to the z-axis



1 Introduction

Torsion can be divided into two parts, namely homogeneous and non-homogeneous

torsion. The support condition and load scenario clarifies what should be accounted for

with respect to the two torsional phenomena.

The finite element method is a calculation tool used in bearing structural elements

worldwide, where complicated systems of beam elements can be set up and solved

numerically. A standard beam element consists of two nodes, each containing a set of

degrees of freedom, which in the two-dimensional situation consists of two translations

and one rotation. The analysis is often used when dealing with simple load situations,

where torsion and rotation of the beam’s second axis is negligible. When dealing with

more advanced structures in three dimensions, the load exposure can result in magnitudes,

where the mentioned factors can no longer be neglected, which is why beams with six

degrees of freedom per node are utilized (three translations and three rotations). A good

understanding of the torsional behaviour of beams is therefore crucial when dealing with

three-dimensional frame structures.

A lot of standard implementations of three-dimensional beam elements only accounts

for one contribution to torsion, namely the first correct analysis of torsion in beams and

this analysis was given by St. Venant (1855). The rate of change of rotation about

the x-axis was thought as constant, meaning the warping in all cross-sections becomes

identical, this was the underlying assumption by St. Venant, see figure 1.1. As a result

of this, the axial strain from torsion disappeared and the distribution of the shear strains

were identical in all sections. This gave rise to another reference name than St. Venant

torsion known as homogeneous torsion.

In additional situations, specifically when dealing with open cross-sections as I/H-

profiles, a big underestimation of the deformation is happening when omitting the other

contribution to torsion originated from warping of the cross-section, under the assumption

of fixed support conditions. The rate of twist can no longer be thought as constant as a

Figure 1.1: St. Venant/Homogeneous torsion

1



2 1. Introduction

function of x , when warping or the twist of the cross-section is prevented at one or more

cross-sections, see figure 1.2. Axial strains are now developed, and as a consequence of

this, with respect to the constitutive condition, axial stresses arise and the shear strains and

shear stresses are varying along the beam. Vlasov in 1961 systematically analysed these

phenomena for thin-walled beams and for this reason Vlasov torsion is often referred to

as non-homogeneous torsion.

Figure 1.2: Vlasov/Non-homogeneous torsion

Not every analytical calculation takes into account the non-homogeneous torsion

phenomena and practical commercial software like FEM-design, [Strusoft, 2015] and

Autodesk Robot Structural Analysis Professional, [Autodesk, 2015a] is therefore inves-

tigated as done in the following problem severity investigation:

Problem severity research document

I/H-profiles are commonly used within the construction industry and these profiles

are particularly critical with respect to torsion as they fall under the category open

thin-walled profiles. On the basis of the previous, a research of the problem

severity with respect to the deviations of the utilization percentage, in a wide

variety of I/H-profiles when comparing St. Venant and Vlasov torsion, is presented

in the following.

Both investigated commercial software uses eurocodes to evaluate the utilization.

The steel eurocode points out, non-homogeneous torsion must be evaluated if

present. The steel eurocode states:

“(4) The following stresses due to torsion should be taken into

account:

- The shear stress σxs due to St. Venant torsion Mx,s

- The direct stresses σxx due to bimoment B and shear stresses

σxs due to warping torsion Mx,v

(5) For the elastic verification the yield criterion in 6.2.1(5) may be

applied.”

[Eurocode 3, 2007, Section 6.2.7 Torsion]

Most commercial software (Autodesk robot, FEM-design etc.), used in consulting

engineering companies, uses the steel eurocode, as previous mentioned, to check
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the bearing capacity but only accounts for St. Venant torsion even though having

boundary conditions as fixed at the ends of a beam. This gives rise to some

significant deviations worthy of announcing.

In situations, when having a fixed beam subjected to a torsional moment, non-

homogeneous torsion should be investigated, as listed in the statement above. A

case with a fixed support in one end is a cantilever beam which is investigated

further. The boundary and load condition are shown below:

M0

l

x xy
y

z

z

tw

b

h

tf

Figure 1.3: Boundary- and load condition for a cantilever beam.

The theory and equations used to find the St. Venant torsion in I/H steel profiles are

shown in section 2.5.2, see (2.45) and the utilization is found with respect to Von

Mises, see (C.3), whereas for Vlasov torsion it can be found in section 2.6, where

the normal stress is estimated from (2.62) and the shear stress from (2.69), as both

the contribution from St. Venant and Vlasov is included in Grashof’s formula.

The utilization with respect to Vlasov torsion is also checked by means of Von

Mises. The critical deviations in utilization between exposure of St. Venant- and

Vlasov torsion are especially clear when looking at the utilization of a IPE 450

steel profile, see figure 1.4.
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Figure 1.4: Utilization of a IPE 450 steel profile.



4 1. Introduction

The dots on each line presents data points. St. Venant torsion is increasing linearly

with increasing torsional moment, similar is the non-homogeneous torsion but

with twice the slope of St. Venant torsion. already from torsional moments of

magnitude 1 kNm, St. Venant torsion starts underestimating the utilization of the

IPE 450 steel profile due to the gentler slope, presented with a red dotted line in

figure 1.4. A substantial error is therefore made, when using commercial software,

like Autodesk Robot Structural Analysis Professional and FEM-design, to design

structures in situations where torsional exposure is occurring.

Looking at the steel profile types HEM, the following utilizations are found:
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Figure 1.5: The left picture shows utilization in a 3D surface plot and the right picture

shows utilization in a contour plot, when HEM profiles are exposed to St. Venant torsion.
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Figure 1.6: The left picture shows utilization in a 3D surface plot and the right picture

shows utilization in a contour plot, when HEM steel profiles are exposed to Vlasov torsion.

The steeper slope for Vlasov torsion can clearly be seen in the 3D surface plot

of figure 1.5 and stating, that the behaviour in figure 1.4 is present in all sizes of

the HEM profiles. The behaviour can also be seen in the contour plot of figure

1.6, as the contour lines are more compact and therefore showing a drastically

increase in utilization contradictory to 1.5. It can furthermore also be concluded

from the contour plot in figure 1.5, a rather small area is covered with light green

and therefore only a small interval of the HEM profiles is fully utilized within

the presented torsional moment interval when having St. Venant torsion. The

torsional moments have to be very high in order to fully utilize the profiles, which

is very contradictory compared to the Vlasov torsion case, see the contour plot of
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figure 1.6, where a much larger area is covered with light green and profiles up

to size HE200M are fully utilized within the higher end of the torsional moment

interval. It can clearly be stated, the discrepancies are present in all steel profile

types, when comparing the results of HEM, HEA, HEB, INP and IPE profiles.

Surface plot combined with a contour plot visualizations of every I/H-shaped steel

profile types are presented in appendix A.

Identical deviations are present for all types of H-profiles as seen in figure 1.7 and

1.8 below.
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Figure 1.7: The left picture shows utilization when exposed to St. Venant torsion and the

right picture shows utilization when exposed to Vlasov torsion in HEA profiles, displayed

in a contour plot.
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Figure 1.8: The left picture shows utilization when exposed to St. Venant torsion and the

right picture shows utilization when exposed to Vlasov torsion in HEB profiles, displayed

in a contour plot.

When comparing the two figures in 1.7 it can be seen, when looking at e.g.

a torsional moment of 8 kNm and St. Venant torsion a HE260A is required as

this profile is not 100% utilized, but a HE320A is required in order to keep

the utilization below 100% when dealing with Vlasov torsion. This phenom-

ena is more or less present throughout all the profile sizes which is also why

the light green area in the Vlasov torsion case is larger compared to St. Venant,

see figure 1.7. The same deviations are occurring when looking at HEB pro-

files in figure 1.8 where a HE200B is needed when having the same a torsional

moment(8 kNm) and St. Venant torsion, whereas a HE260B is required when

having a non-homogeneous torsional case. Notice the HEB profiles require a
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smaller profile size in order to withstand the same torsional moment compared

to the HEA profiles meaning HEB profiles are better suited to obtain torsional

moments but still weaker compared to HEM profiles, see figure 1.5 and 1.6.

Similar deviations are equally present for I-profiles as shown in figure 1.9 and

1.10 below.
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Figure 1.9: The left picture shows utilization when exposed to St. Venant torsion and the

right picture shows utilization when exposed to Vlasov torsion in INP profiles, displayed

in a contour plot.
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Figure 1.10: The left picture shows utilization when exposed to St. Venant torsion and the

right picture shows utilization when exposed to Vlasov torsion in IPE profiles, displayed

in a contour plot.

The same characteristics are present in the INP profiles when looking at a torsional

moment of 8 kNm, here St. Venant torsion requires a INP 300 profile, whereas

a INP 400 profile is needed when having non-homogeneous torsion. The same

deviation between St. Venant- and non-homogeneous torsion is present for IPE

profiles where a IPE 450 profile is needed when the beam is exposed to St. Venant

torsion and a IPE 550 profile is required for Vlasov torsion, which is a significant

deviation in profile size. This is why a significantly larger light green area is

seen, when looking at the Vlasov torsion in figure 1.9 and 1.10 compared to

the St. Venant torsion for both profiles. It should again be noticed a difference

between the profile types INP and IPE is occurring, showing INP profiles are

stronger against torsional exposure as a smaller profile size is required when

subjected to the same torsional moment as for IPE profiles.
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It can furthermore be stated, HEM profiles would be a wise choice of profile in

areas, where the structure is subjected to torsional moments, as small profiles can

accumulate a high torsional moment which is very different from IPE profiles,

see figure 1.5 and St. Venant torsion of figure 1.10.

In order to verify the correlation between the analytical solutions, presented in

section 2.5.2, 2.6 and 2.8, and the commercial software programs, the procedure of

the analysis is investigated within the software programs. The same results are ob-

tained in both models(simply supported and fixed) in the programs and utilization

ratio is the same compared to the analytical solution for St. Venant torsion(when

adding partial coefficients), furthermore see quotation below, which is present-

ing a statement directly from the feature:“troubleshooting” at the homepage of

Autodesk:

“Issue:

Are both torsional effects in the analysis of one-dimensional mem-

bers: St Venant torsion (uniform) and warping torsion (non-uniform)

supported?

Answer:

Since in Robot one-dimensional members, e.g. beams and columns,

are modelled with six degrees-of-freedom only St Venant torsion is

accounted for and warping torsion is neglected.”

[Autodesk, 2015b]

Results from the commercial software can be seen in appendix A, where the

results from a simply supported beam subjected to torsion is compared to a fixed

supported beam and the results are as previous mentioned revealing identical

results in the two support scenarios, meaning non-homogeneous torsion is not

accounted for in programs like Autodesk Robot Structural Analysis Professional

and FEM-Design, as the results are identical to the analytical results for St. Venant

torsion.

Practical calculations, performed in consulting engineering companies, of torsion

in steel members, in most cases, follow the codes and guidelines presented in the steel

eurocode, meaning the codes and guidelines needs to have credibility. As previous dis-

played in the problem severity research document, the steel eurocode states [Eurocode 3,

2007, Section 6.2.7 Torsion], the following stresses due to torsion should be taken into

account. Firstly the shear stresses due to St. Venant torsion, secondly the direct stress due

to bimoment and shear stress from warping torsion, here introducing one more degree of

freedom in the finite element perspective, making it a total of seven degrees of freedom

per node. Numerical calculations in a home-made Matlab program [Mathworks, 2015]

are compared with an advanced commercial software program ABAQUS [SIMULIA,

2015], in order to evaluate possible deviations in estimating the stresses due to non-

homogeneous torsion.

The primary advantage of Vlasov torsion theory, seen from an engineering point of

view, is the way the theory explains that restraining the beam and therefore preventing

warping leads to much stiffer structural elements than achieved in the case of homoge-

neous warping, i.e. a given torsional moment will induce a smaller twist, which is one
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of the basic features of beams.

By the inclusion of a thick plate orthogonal to the beam axis and welded to the

flanges and the web, warping of the cross-section can be counteracted, as the profile in

these cross-sections is seen as a rectangle instead of an open profile. The prevention of

torsion in this way is particularly useful in the case of slender beams with open thin-

walled cross-sections, which are prone to coupled flexural–torsional buckling. Obviously,

Vlasov torsion theory needs to be applied for the analysis of such problems, and it is

therefore of deep interest to investigate Vlasov torsion further both analytically as well

as numerically.

1.1 Objective and scope

With the presented deviations in the problem severity research text box above, non-

homogeneous torsion should be thought as crucial and worthy of investigating in more

advanced software programs like Matlab and ABAQUS using finite element method,

which will be issued as a main objective in this report.

How can non-homgeneous torsion be taken into account in a finite element

code and how large a deviation in stress magnitudes and displacement from

non-homogeneous torsion is actually present, between analytical solutions,

a home-made numerical program in Matlab and an advanced numerical

software program ABAQUS?

Only numerical results for an open I/H profiles is investigated, as these profiles are

commonly used in the industry and problems can occur with respect to non-homogeneous

torsion situations. As I/H profiles is most commonly fabricated with steel as material,

material properties for steel is used only. The case of pure torsion is only investigated,

as this case is sought to be adequate, due to torsion being the main focus area. Profile

IPE 450 is one of the profiles with the largest deviation in utilization when looking at

St. Venant and Vlasov torsional exposure and numerical results from the Matlab code

and ABAQUS is only generated with respect to this profile.



2 Spatial Beam Theory

The following chapter derives the general differential equations for spatial beams based

on Euler-Bernoulli beam theory with an additional component due to twisting of the

beam. This includes axial, bending and torsional deformations. The described theory is

greatly inspired by [Andersen and Nielsen, 2008] and [Nielsen and Hansen, 1978].

As the theory is based on first order theory the following assumptions are basis:

– The material behaves lineary elastic which means, that Hooke’s law is valid without

any restrictions.

– The displacements are so small that the equilibrium conditions may be formulated

in the undeformed state and kinematic relations may be linearised.

– In biaxial bending with axial force, Bernoulli’s hypothesis is assumed, which states

that cross-sections remain plane and orthogonal to the beam axis.

Firstly, the equations of equilibrium are presented.

2.1 Equations of Equilibrium

In a referential right-handed (x,y, z)-coordinate system an initially straight beam is

considered as shown on figure 2.1. The beam has a length l with an arbitrary cross-

section, that everywhere is identical and whose normal is parallel to the x-axis throughout

the beam length.

The beam is loaded by a distributed load per unit length defined as q = q(x ) and

distributed moment load per unit length m = m(x ) as

q =


qx
qy
qz

 , m =


mx

my

mz

 . (2.1a−b)

As shown on figure 2.1 an infinitesimal segment of the beam is considered with a length

dx and loaded by the external force vector qdx and external moment vector mdx .

These external loads deforms the beam into a current state where the external loads

are balanced by internal sectional forces F = F(x ) and internal sectional moments

M =M(x ). The components of these vectors are

F =


N

Qy

Qz

 , M =


Mx

My

Mz

 , (2.2a−b)

where N is the axial force,Qy andQz are signified as the shear force components in they-

and z-direction, respectively. Mx is the torsional moment and the components My andMz

9
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x

y

z

dx

l

ı̂

̂

k̂
M + dM

ı̂dx

F + dF
mdxqdx

M

F

Figure 2.1: Beam in referential state.

are the bending moments in the y- and z-direction causing normal bending and buckling.

The vectors act on the cross-section with the base unit vector ı̂ as an outward directed

normal vector. In the left end of the beam segment the section forces and moment acting

are F and M and in the right end these are changed differentially into F+dF and M+dM.

Here d (·) are increments and may fully be written as, d (·) =
(

d (·) /dx
)

dx .

Force and moment equilibrium can be formulated as:

−F + F + dF + qdx = 0 ⇒
dF

dx
+ q = 0, (2.3a)

−M +M + dM + ı̂dx × (F + dF) +mdx = 0 ⇒
dM

dx
+ ı̂ × F +m = 0. (2.3b)

Here × is the cross-product between two vectors. Also, second order terms have been

disregarded due to dx → 0 and the equivalent component relations are:

dN

dx
+ qx = 0,

dMx

dx
+mx = 0,

dQy

dx
+ qy = 0,

dMy

dx
−Qz +my = 0,

dQz

dx
+ qz = 0,

dMz

dx
+Qy +mz = 0.

(2.4a−f)

2.2 Uncoupled System of Equations

Figure 2.2: Right-hand rule ap-

plied to define the positive mo-

ment and rotation directions.

By choosing a coordinate system in a smart way, cou-

pled deformation variables from the axial force (N ) and

bending moments (My ,Mz) are avoided. The origin

B called the bending centre only induces an uniform

axial displacement over the cross-section from the ax-

ial force; otherwise the point of attack of an axial force

would produce a bending moment as well. Furthermore

the axes of y and z are determined to be principal axes

of the beam cross-section. These ensure that a bending

moment around the axes will neither produce an axial

force nor flexural displacement in the other direction.

The positive direction of moment and rotation are de-

fined as illustrated on figure 2.2, commonly referred to

as the right-hand rule.
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Another important reference point in the cross-section is the shear centre, presented

as the point S , which is positioned the distance (yS , zS ) from B. If the line loads (qy ,qz)

and shear forces (Qy ,Qz) acts in this point of application, uncoupling between bending

and torsional deformation are utilized and the torsion caused is solely produced by the

moment loadmx (this includes contributions from the translation of qy and qz to S).

By having both axial, bending, and torsional deformations uncoupled the different

situations can be dealt with separately and superpositioned to give the total response of

the beam. The differential equations of the beam are presented in section 2.9.

On figure 2.3 the point of application and sign convention are shown for the defor-

mation, load, internal force and moment, and stress variables. The deformation variables

apply to the bending centre, which are the displacements ux ,uy ,uz in the x,y, z direction,

respectively. The cross-sectional bending momentsMy ,Mz and associated rotation θy ,θz
components also apply here, where the index indicates on which axis the rotation is about.

The loads per unit length qx ,my ,mz also act in the bending centre while mx ,qy ,qz are

positioned at the shear centre. Lastly, the internal axial force N acts at the bending centre

and shear forces Qy ,Qz and the torsional moment Mx are applied at the shear centre.

x,ux

θy

θz

y,uy

z,uz

N

Mz

My

Mx ,θx

B

S
my

qx

mz

qy

qz

mx

yS
zS

σxz
σxy

σxx
dA

Qz
Qy

Figure 2.3: Variables in local beam (x ,y, z)-coordinate system and definition of positive sign

convention.



12 2. Spatial Beam Theory

2.3 Internal Forces, Moments and Stresses

As seen on figure 2.3 the normal stress σxx and the shear stresses σxy and σxz act on the

cross-section over an area dA. These stresses must be a resultant of the force vector F

and moment vector M and must be statically equivalent as the following relations:

N =

∫
A

σxx dA, Mx =

∫
A

(

σxz (y − yS ) − σxy (z − zS )
)

dA,

Qy =

∫
A

σxy dA, My =

∫
A

σxx z dA,

Qz =

∫
A

σxz dA, Mz = −

∫
A

σxx y dA.

(2.5a−f)

2.4 Deformation, Kinematic and Constitutive Relations

As stated before the basic assumption in Euler-Bernoulli beam theory is, that the cross-

section remains plane and orthogonal to the x-axis. In other words, the cross-section

translates and rotates as a rigid body.

As seen on figure 2.4 the deformed position of a cross-section throughout the beam

can be described by the position vector w = w(x ) and the rotation vector θ = θ (x ) with

the following components:

w =


wx

wy

wz

 , θ =


θx
θy
θz

 . (2.6a−b)

Here, the longitudinal displacement wx refers to the bending centre B while the

displacements wy and wz describes the displacement of the shear centre S .

Furthermore, due to the displacement components all being small compared to the

beam length together with the rotation components also being small, the kinematic

relations can be linearised, which means that sinθ ≃ tanθ ≃ θ . From figure 2.4 the

entire displacement field can be expressed as:

ux (x,y, z) = wx (x ) + zθy (x ) − yθz (x ) +ω (y, z)
dθx (x )

dx
(2.7a)

uy (x,y, z) = wy (x ) − (z − zS ) θx (x ) (2.7b)

uz (x,y, z) = wz (x ) + (y − yS ) θx (x ) (2.7c)

In all cross-sections except circular ones, the torsional moment Mx will induce an

additional non-planar displacement in the x-axis seen in (2.7a), where ω (y, z) is called

the warping function. A more explained derivation of the displacement field and warping

due to torsion in thin-walled cross-sections are presented in section 2.5.2.

The kinematic constraint that involves the beam to be orthogonal to its normal, the

rotation of the cross-section in y- and z-direction is directly equivalent to the change of

the transverse displacement with respect to the longitudinal direction, thus

θy = −
dwz

dx
, θz =

dwy

dx
. (2.8a−b)
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x

y

z

θz

dwy

dx

wxwx

wy

xy

z

−θy

dwz

dx

wx

wz

x y

z

θx

S

B

yS

zS

Figure 2.4: Deformation components in beam theory.

These are merely caused by bending components and are related to the curvature of the

beam. The radii of curvatures ry and rz are related to the rotation increments dθz and

−dθy over a differential beam element with length dx as:

rydθz ≃ dx

κz =
1
ry

 κz =
dθz

dx
=

d2wy

dx2
(2.9a)

−rzdθy ≃ dx

κy = −
1
rz

 κy =
dθy

dx
= −

d2wz

dx2
(2.9b)

Going back to (2.7a) an additional component is now added to the displacement. This is

because of non-planar displacements from warping due to torsion. The warping function

is dependent on the geometry of the cross-section and it is part of finding the solution

to the torsion problem. An exact solution is seldom possible and one must resort to

numerical procedures to obtain an expression to solve the equations. An approximate

solution for thin-walled cross-section are given in section 2.5.2.



14 2. Spatial Beam Theory

The strains of the displacement field can be found as:

εxx =
∂ux

∂x
=

dwx

dx
+ z

dθy

dx
− y

dθz

dx
+ω

d2θx

dx2
, (2.10a)

εyy =
∂uy

∂x
= 0, εzz =

∂uz

∂x
= 0, (2.10b−c)

γxy =
∂ux

∂y
+

∂uy

∂x
=

[
∂ω

∂y
− (z − zS )

]
dθx

dx
, (2.10d)

γxz =
∂ux

∂z
+

∂uz

∂x
=

[
∂ω

∂z
+ (y − yS )

]
dθx

dx
, (2.10e)

γyz =
∂uy

∂z
+

∂uz

∂y
= −θx + θx = 0. (2.10f)

Similarly, the stresses are:

σxx = Eεxx = E

(

dux

dx
+ z

dθy

dx
− y

dθz

dx
+ω

d2θx

dx2

)

, (2.11a)

σxy = Gγxy = G

[
∂ω

∂y
− (z − zS )

]
dθx

dx
, (2.11b)

σxz = Gγxz = G

[
∂ω

∂z
+ (y − yS )

]
dθx

dx
. (2.11c)

2.5 Homogeneous Torsion

The simplest form of torsion (also refereed to as homogeneous torsion or St. Venant

torsion) is dealt with in this section. Figure 2.5 shows a cross-section of a prismatic

beam subjected to a statically equivalent twisting moment Mx,s at both ends. It is

assumed that there is no restraint with respect to axial displacements at the ends and the

torsional moment Mx,s remains unchanged along the beam.

x

y

z

Mx,s

Mx,s

S

B

dx

θx + dθx

θx

Figure 2.5: Differential beam subjected to homogeneous torsion.



2.5. Homogeneous Torsion 15

The displacement components from (2.7) reduces to:

ux = ω
dθx

dx
, uy = − (z − zS ) θx , uz = (y − yS ) θx . (2.12a−c)

The corresponding strains must be independent of x since each cross-section is subjected

to the same moment, meaning that the incremental twist per unit length dθx/dx must be

constant. Thus, the axial displacement (warping) must be the same in all cross-sections,

ux = ux (y, z) and implies that warping in homogeneous torsion does not induce normal

strains, nor normal stresses

εxx =
∂ux

∂x
= 0, σxx = Eεxx = 0. (2.13a−b)

Hence, only shear stresses σxy and σxz are present and expressed by (2.11b) and (2.11c).

The shear stresses must be statically equivalent to the shear forces Qy = Qz = 0 and the

torsional moment Mx,s . The torsional moment Mx,s around S is expressed in (2.5) and

can be reduced to

Mx,s =

∫
A

(

σxz y − σxy z
)

dA. (2.14)

Here it has been used that
∫
A σxy dA =

∫
A σxz dA = 0.

(2.14) can be expressed by substituting the shear stresses and one obtains:

Mx,s =

∫
A

(

G

[
∂ω

∂y
− (z − zS )

]
dθx

dx
y −G

[
∂ω

∂z
+ (y − yS )

]
dθx

dx
z

)

dA

= GIx
dθx

dx
,

(2.15)

where it has been used that
∫
A z dA =

∫
A y dA = 0 and

Ix =

∫
A

(

y2
+ z2
+ y
∂ω

∂z
− z
∂ω

∂y

)

dA. (2.16)

Ix is denoted the torsional constant. From (2.15) it can be seen that torsional moment

depends linearly on dθx/dx .

2.5.1 Solution to Homogeneous Torsion

An often used solution to the homogeneous torsion problem is based on the formulation

of a Prandtl’s stress function S . This approach is especially useful in relation to torsion

of thin-walled profiles and will be used in the following derivations.

On figure 2.6 a cross-section of a prismatic beam is shown. The curve along the

outer periphery is denoted as Γ0 while the interior boundary curves are determined as Γj ,

j = 1, 2, . . . ,N , for N number of holes. At the boundary curves arc-length coordinates

s0, s1, . . . , sN are defined. The arc-length coordinate s0 along Γ0 is orientated in an

anti-clockwise direction, while the interior boundaries Γ1, Γ2, . . . , ΓN , are orientated in a

clock-wise direction. Each boundary curve has an outward directed unit vector denoted

nj , j = 0, 1, . . . ,N . The unit tangential vector to a boundary curve is denoted sj and

follows the same direction as the arc-length coordinate sj . A local coordinate system

is defined with the base unit vectors as {ı̂, nj , sj }. The exterior and interior arc-length

coordinates insured that the related (x,nj , sj )-coordinate system forms a right-handed

coordinate system.
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The stresses in terms of Prandtl’s stress function can be expressed as

σxy =
∂S

∂z
, σxz = −

∂S

∂y
. (2.17a−b)

Volume loads are ignored and the equilibrium equations read:

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0, (2.18a)

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= 0, (2.18b)

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
= 0. (2.18c)

x y

z

sj

Γj Γ0

n0

n0
s0

s0

s0

nj
njsjsj

Figure 2.6: Cross-section with holes. Interior and exterior edges and definition of local (x ,nj , sj )-

coordinate.

With σxx = σyy = σzz = σyz = 0, and σxy and σxz only depends on y and z, (2.18b)

and (2.18c) are fulfilled and (2.18a) reduces to

∂σxy

∂y
+

∂σxz

∂z
=

∂2S

∂y∂z
−
∂2S

∂z∂y
= 0, (2.19)

which can be seen as automatically fulfilled. From (2.11b) and (2.11c) it follows that

∂σxy

∂z
−
∂σxz

∂y
=

(

∂2ω

∂z∂y
− 1

)

G
dθx

dx
−

(

∂2ω

∂y∂z
+ 1

)

G
dθx

dx
= −2G

dθx

dx
. (2.20)

By insertion of (2.17) on the left hand side of (2.20) the differential equation for S is

obtained:
∂2S

∂y2
+

∂2S

∂z2
= −2G

dθx

dx
, (x,y) ∈ A. (2.21)

(2.21) is a compatibility condition for the stress function S in the order that the kinematic

conditions from (2.11) are fulfilled. On the boundary shear stresses can be expressed
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along the local n- and s-axis, as σxn and σxs respectively. The boundary condition can

be expressed as

σxn = σxyny + σxznz , (2.22)

where ny and nz are the vector components of the unit normal vector n. Since exterior

and interior surfaces are considered free of surface traction it follows that

0 = σxyny + σxznz . (2.23)

The boundary condition for S is obtained by insertion of (2.17) in (2.23)

∂S

∂z
ny −

∂S

∂y
nz = 0. (2.24)

It can be seen that the tangential unit vector can be expressed as sT = [sy , sz ] = [−nz ,ny ]

and (2.24) becomes
∂S

∂y
sy +

∂S

∂z
sz =

∂S

∂s
= 0. (2.25)

(2.25) implies that S is along exterior and interior boundary curves

S = Sj , j = 0, 1, . . . ,N , (x,y) ∈ Γ0 ∪ Γ1 ∪ · · · ∪ ΓN . (2.26)

For pure torsion the shear stresses σxy and σxz must be statically equivalent to the shear

forces Qy = Qz = 0 and the torsional moment Mx . By applying Green’s theorem on the

expression for the shear force, the relation between the integral over the plane region A

and the line integral around the closed curves Γj is obtained:

Qy =

∫
A

σxy dA =

∫
A

∂S

∂z
dA = −

N∑

j=0

Sj

∮
Γj

dy = 0 (2.27a)

Qz =

∫
A

σxz dA = −

∫
A

∂S

∂y
dA = −

N∑

j=0

Sj

∮
Γj

dz = 0 (2.27b)

Since Sj is constant along the boundary curve it has been transferred outside the

circular integral. Since
∮
Γj
dy =

∮
Γj
dz = 0, it follows that any solution to the boundary

value problem from (2.21) and (2.26) automatically provides a solution fulfilling Qy =

Qz = 0.

The torsional moment expressed by (2.14) and by substituting (2.17) in the expression,

it is obtained

Mx,s = −

∫
A

(

∂S

∂y
y +
∂S

∂z
z

)

dA = −

∫
A

(

∂

∂y
(Sy) +

∂

∂z
(Sz)

)

dA + 2

∫
A

S dA, (2.28)

where the product rule by differentiation has been utilized. Green’s theorem of the terms

in the parenthesis gives:

∫
A

(

∂

∂y
(Sy) +

∂

∂z
(Sz)

)

dA =

N∑

j=0

Sj

∮
Γj

(ydz − zdy) = 2A0S0 −

N∑

j=1

2AjSj . (2.29)

Here it has been used that 2Aj =
∮
j (ydz − zdy) and negative sign on clockwise circulation

on interior boundaries. Since the shear stresses remain unchanged if an arbitrary constant
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is added toS , it can be chosen thatS0 = 0, which is assumed in the following. The torsional

constant Ix can be determined by comparing (2.15) and (2.29).

The warping function and Prandtl’s stress function has the relation by comparing

(2.11b), (2.11c) and (2.17):

∂S

∂z
= G

[
∂ω

∂y
− (z − zs )

]
dθx

∂x
(2.30a)

−
∂S

∂y
= G

[
∂ω

∂y
+ (y − ys )

]
dθx

∂x
(2.30b)

Example 2.1: Homogeneous torsion of infinitely long rectangular cross-section

A torsional moment Mx,s is applied to an infinitely long rectangular cross-section

as shown on figure 2.7. The torsional moment is carried by the shear stresses in

the y-direction which makes S = S (z) independent of y, and the boundary value

problem becomes:

d2S

dz2
= −2G

dθx

dx
, S (−t/2) = S (t/2) = 0, (2.31a−b)

with the solution

S (z) =
1

4

(

t2 − 4z2
)

G
dθx

dx
. (2.32)

The shear stresses follows from (2.17) as

σxy =
∂S

∂z
= −2zG

dθx

dx
, σxz = −

∂S

∂y
= 0. (2.33a−b)

dy dy
z

y y

dMx,s

t

σxy

Figure 2.7: Infinitely long rectangular cross-section subjected to torsion.
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Since the shear stresses are independent of y, a differential cross-sectional seg-

ment of the length dy can be analysed to be exposed to a torsional moment increment

dMx,s . From (2.29) the increment dMx,s is related to the stress function:

dMx,s = 2

∫ t/2

−t/2

S (z) dy dz =
1

3
t3dyG

dθx

dx
. (2.34)

Furthermore dMx,s = GdIx dθx/dx , where it can be seen that

dIx =
1

3
t3dy, (2.35)

where dIx is the torsional constant for the differential segment and will be applied

for the approximation of open thin-walled cross-sections.

2.5.2 Homogeneous Torsion of Open Thin-Walled Cross-Sections

x y

z

B

S

Ω(s )

θx

α

αr (s )

r (s )

uy

uz

us

− (z − zS )

(y − zS )

Figure 2.8: Torsional displacements due to the

rotation θx around the shear centre.

It is desired to describe the warping func-

tion and stresses of thin-walled cross-

section by approximating the governing

formulas. An open cross-section of a pris-

matic beam is shown on figure 2.9. An

arc-length coordinate s is defined along

the midpoints of the profile wall, where

the start position can be chosen arbitrarily.

Here it has been chosen that the starting

position s = 0 is at one of the free ends,

and that s follows the counter-clock wise

direction of the local (s,n)-coordinate sys-

tem until the other end located at s = L. L

denotes the total length of the profile wall,

and the wall thickness at the arc-length

coordinate s is specified as t (s). The mo-

ment arm r (s) is the distance between the

tangent of the centre of the profile wall and

the shear centre defined as

r (s) = (y − yS )
dz

ds
− (z − zS )

dy

ds
. (2.36)

As mentioned before the cross-section will rotate as a rigid body around the shear centre

with the angle θx . A more detailed derivation of the displacement field due to torsion

will be derived here and is illustrated on figure 2.8. Here a point lying in the middle of the

profile wall is displaced by a length us . It can be seen that tan (θx/2) r (s) = us/2 and a

linearisation due to θx is of small angles, reveals thatus = θx r (s). Then the displacement

in the y- and z-direction can be expressed when use of sinα = − (z − zS ) /r (s) and

cosα = (y − yS ) /r (s):

uy = us sinα = − (z − zS ) θx , uz = us cosα = (y − yS ) θx . (2.37a−b)

By considering the shear strain in the tangent plane (s-direction) is it assumed that

γxs (x, s, 0) ≈ 0 (based on the shear stress is 0 here, which is implied in example 2.7).
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Then,

γxs =
∂ux

∂s
+

∂us

∂x
=

∂ux

∂s
+

dθx

dx
r (s) = 0, (2.38a)

⇓

∂ux

∂s
= −

dθx

dx
r (s) = −

dθx

dx

dωn (s)

ds
(2.38b)

⇓

ux = −
dθx

dx

∫
Ω

r (s) ds + u0(x ) = −
dθx

dx
ωn (s) + u0(x ) , (2.38c)

where it can be seen according to (2.7a) that ωn (s) =
∫
Ω r (s) ds and u0(x ) is an arbitrary

function, which is simply set to 0. As seen the sector-coordinate (warping function) with

respect to the shear centre S is defined as:

dω (s)

ds
= r (s) , (2.39)

and the solution to (2.39) which gives

∫
Ω

ωn (s) t (s) ds = 0, (2.40)

is called the normalized sector-coordinate with respect to S . If ω is an arbitrary solution

to (2.39) as ∫
Ω

ω (s) t (s) ds = ω0, (2.41)

then the normalized sector-coordinate is determined by:

ωn (s) = ω (s) −
ω0

A
. (2.42)

The sector-coordinates can be seen on figure 2.9 where the two different locations of ωn

and ω are shown.

For thin-walled cross-sections it is further assumed that t (s) ≪ L. Then the profile

can be considered to be constructed by differential rectangles of the length ds, as those

illustrated in example 2.1, where each has the torsional constant dIx = 1/3 t3ds. Thus,

the torsional constant for the whole profile is given as

Ix =
1

3

∫
Ω

t3(s) ds . (2.43)

The shear stresses are specified in the local (x,n, s)-coordinate system and (2.33) becomes

σxs = 2nG
dθx

dx
, σxn = 0. (2.44a−b)

AsGdθx/dx = Mx,s/Ix , the maximum shear stresses at n = t (s) /2 becomes:

τ = G
dθx

dx
t (s) =

Mx,s

Ix
t (s) . (2.45)
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x y

z

B

s = 0

s = L

n

s

s

S

Mx,s ,θx

Ω(s)

t (s)

1
2
ωn (s)

1
2
ω (s)

r (s)

Figure 2.9: Thin-walled cross-section with defined sector-coordinates.

2.6 Non-homogeneous Torsion of Open Thin-Walled Cross-

Sections

x

ds

σxx + dσxx

dx

σxx

σxs + dσxs

H ,σsx

σxs

H + dH ,σsx + dσsx

s

t (s )

Figure 2.10: Differential element of a thin-

walled cross-section.

In this section the governing equations for

non-homogeneous torsion for thin-walled

cross-sections (also commonly referred to

as Vlasov torsion).

The displacement field described in

(2.38c) is considered and due to non-

homogeneous torsion dθx/dx is no longer

a constant. This implies that the elonga-

tion strain becomes:

εxx =
∂ux

∂x
= −

d2θx

dx2
ωn (s) (2.46)

The normal stresses that stems from warp-

ing are found by means of Hookes law, as

σxx = −E
d2θx

dx2
ωn (s) . (2.47)

These normal stresses will induce shear stresses due to equilibrium which will be con-

sidered in the following. The shear stress component σxn vanishes at the surfaces

n = ±1/2t (s), and since t ≪ L it follows from continuity that σxn is ignorable in the

interior of the wall, thus

σxn ≃ 0. (2.48)
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By looking at figure 2.10, a differential element with the side lengths dx and ds is cut

free from the wall. The shear force per unit length H and H + dH acts at the sections

with arc-length coordinates s and s + ds.

Furthermore due to symmetry of the stress tensor it is implied that σsx = σxs . Then

it is assumed that σsx is evenly distributed over the wall thickness

H (x, s) =

∫ t/2

−t/2

σsx (x,n, s) dn ≃ σxs (x, s) t (s) . (2.49)

Equilibrium in the x-direction by use of figure 2.10 gives:

0 = (σxx + dσxx ) t (s) ds − σxx t (s) ds + (H + dH ) dx −Hdx

= dσxx t (s) ds + dH dx

=

∂σxx

∂x
dx t (s) ds +

∂H

∂s
ds dx

⇓

0 =
∂H

∂s
+

∂σxx

∂x
t (s) (2.50)

The shear force per unit length is then expressed in terms of the normalized sector

coordinate as

∂H

∂s
= −
∂σxx

∂x
t (s) = E

d3θx

dx3
ωn (s) t (s) , (2.51a)

⇓

H (x, s) = E
d3θx

dx3

∫
Ω

ωn (s) t (s) ds +H0 (x ) , (2.51b)

where H0 (x ) represent an integration constant. In open thin-walled cross-sections the

boundary condition σxs = 0 applies at the ends of the profile, and to have (2.51b) obey

this boundary condition requires that H0(x ) = 0. The shear stresses are assumed to be

constant over the thickness, thus

σxs =
1

t (s)
H (x, s) =

1

t (s)
E
d3θx

dx3

∫
Ω

ωn (s) t (s) ds . (2.52)

The internal forces that stems from the rotational displacement must only be equivalent

to a torsional moment Mx,v . The other components as the normal force, shear forces and

bending moments must be zero if the assumed displacement field is valid. The internal

forces are related to the stresses by (2.5) and the normal force is:

N =

∫
A

σxx dA = −E
d2θx

dx2

∫
Ω

ωn (s) t (s) ds = 0, (2.53)

where it can be seen that the normalized sector-coordinate is used in order to have the

condition fulfilled since (2.40) must be true. Furthermore it is realised that the arbitrary

function u0 (x ) from (2.38c) must also be zero.

The shear force in the y-direction is found by projecting H (x, s) on the y-axis and

integrating over the area as:

Qy =

∫
A

σxy dA =

∫
Ω

H (x, s)
dy

ds
ds, (2.54)

and by integration by parts it is obtained that (2.54) becomes[
H (x, s) y

]
Ω
−

∫
Ω

∂H

∂s
y ds . (2.55)
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H1 H2

H3
HN

s

x

Figure 2.11: Equilibrium of shear flow with

multiple branches in cross-section.

If the integration limits are to set to a pro-

file similar to the one shown in 2.9, it is

easy to see that the first term in (2.55)

will be 0, due to the fact that H (x, s) is 0

at the integration limits. It is ensured by

(2.51b) that H (x, s) is 0 at the free bound-

aries, also if there is branches leading up

to multiples ends. Such a cross-section is

shown on figure 2.11 and for that case the

first term in (2.51a) is also 0. This can be

explained by the sign convention as shown

on figure 2.11. If the path s is following

the paths as indicated by the figureHi (x, s) can be projected on the x-axis and equilibrium

states that

H1 (x, s) =

N∑

i=2

Hi (x, s) , (2.56)

where N is the total number of branches in the cross-section. With (2.56) inserted in the

first term of (2.55) showing that the term must be 0.

Then

Qy =

∫
Ω

∂H

∂s
y ds = −E

d3θx

dx3

∫
Ω

ωn (s) yt (s) ds = −E
d3θx

dx3
Iωy . (2.57a)

Similar, with H (x, s) projected on the z-axis Qz becomes

Qz =

∫
Ω

∂H

∂s
z ds = −E

d3θx

dx3

∫
Ω

ωn (s) zt (s) ds = −E
d3θx

dx3
Iωz . (2.57b)

The bending moments is also investigated, and it can be seen that

My =

∫
A

σxx z dA = −E
d2θx

dx2

∫
Ω

ωn (s) zt (s) ds = −E
d2θx

dx2
Iωz , (2.57c)

Mz = −

∫
A

σxx y dA = −E
d2θx

dx2

∫
Ω

ωn (s) yt (s) ds = −E
d2θx

dx2
Iωy . (2.57d)

It can be seen that in order to fulfil the conditions that Qy = Qz = My = Mz = 0 it

requires that Iωy = Iωz = 0, which is satisfied when the cross-section rotates about the

shear centre S . The torsional moment must be statically equivalent to the shear force H

acting at the distance h (s), which can be expressed as

Mx,v =

∫
Ω

H (x, s) r (s) ds = −

∫
Ω

∂H

∂s
ωn (s) ds = −E

d2θx

dx3

∫
Ω

ω2
n (s) t (s) ds

= −EIω
d3θx

dx3
,

(2.58)

then the shear stress can be expressed as

σxs (x, s) = −
Mx,v

t (s) Iω
Sω (s) . (2.59)

Thus, when a cross-section it subjected to a non-homogeneous torsional moment, the

condition Mx = Mx,s +Mx,v is met, and with insertion of (2.15) and (2.58) in Mx , then

Mx = GIx
dθx

dx
− EIω

d3θx

dx3
. (2.60)
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Some side notes are made for open thin-walled beams. It is in practical engineering often

useful to define a “7th internal force”, the bimoment, which is defined as

B (x ) =

∫
Ω

σxx ωn (s) t (s) ds = −E
d2θx

dx2

∫
Ω

ω2
n (s) t (s) ds

= −EIω
d2θx

dx2
.

(2.61)

Then the normal stresses can be expressed as

σxx (x, s) =
B

Iω
ωn (s) , (2.62)

and the shear stresses as

σxs (x, s) = −
1

t (s) Iω

dB

dx
Sω , (2.63)

where Sω =
∫
Ω ωn (s) t (s) ds.

2.7 Shear stresses due to Bending in Open Thin-Walled Cross-

sections

As seen in section 2.4 the shear forces (and shear stresses) cannot be derived from the

kinematic conditions of the beam theory and therefore have to be determined from the

static equations instead, which will be dealt with in this section. A thin-walled cross-

section is shown on figure 2.12 and subjected to the bending moments My and Mz and

the shear forces Qy and Qz . The shear stresses σxs and σxn are defined in the local

(x,n, s)-coordinate system, which are caused by the shear forces.

x y

z

B

s = 0

s = L

n

s

s

S

My

Mz

Qy

Qz

Ω(s)

t (s)

Figure 2.12: Thin-walled cross-section exposed to bending.
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The normal stress from the bending components follows from (2.11a)

σxx = E

(

z
dθy

dx
− y

dθz

dx

)

=

My

Iy
z −

Mz

Iz
y, (2.64)

where Iy =
∫
A z

2 dA and Iz =
∫
A y

2 dA and the relations for My and Mz have been

utilized from (2.5).

The same assumptions as stated in section 2.6 are made. It follows from (2.51b) that

∂H

∂s
= −
∂σxx

∂x
t (s) = −

(
dMy

Iy
z (s) −

dMz

Iz
y(s)

)

t (s)

= −

(
Qy

Iz
y(s) +

Qz

Iy
z (s)

)

t (s)

⇓

H (x, s) =

∫
Ω

∂σxx

∂x
t (s) ds = −

Qy

Iz
Sy −

Qz

Iy
Sz ,

(2.65)

where Sy =
∫
Ω z (s) t (s) ds and Sz =

∫
Ω y(s) t (s) ds. It is again used that the integration

constant H0 (x ) is 0, which also must be obeyed by the statical moments, Sy and Sz .

Further, the equilibrium between the bending moment and shear force has been used

from (2.4a−f).

The shear stress then becomes

σxs (x, s) =
1

t (s)
H (x, s) = −

Qy

t (s) Iz
Sz (s) −

Qz

t (s) Iy
Sy (s) . (2.66)

(2.66) is known as Grashof’s formula. This equation is used to determine shear stresses

in thin-walled beams and is derived from the static equations alone and therefore inde-

pendent of any kinematic constraint which is known from the beam theory.

2.8 Generalised Internal Forces and Stresses

For three-dimensional beam elements the generalized internal forces are given in this

section with their associated stresses. All the internal components from F and M are

expressed in terms of w and θx with additional components that stems from the cross-

sectional data.

The internal sectional forces and moments follows from (2.11a), (2.5), (2.4a−f),

(2.14), and (2.58) and are summarized as

N (x ) = EA
dwx

dx
, (2.67a)

My (x ) = −EIy
d2wz

dx2
, (2.67b)

Mz (x ) = EIz
d2wy

dx2
, (2.67c)

Qy (x ) = −EIz
d3wz

dx3
, (2.67d)

Qz (x ) = −EIy
d3wy

dx3
, (2.67e)

Mx,s (x ) = GIx
dθx

dx
, (2.67f)

Mx,v (x ) = −EIω
d3θx

dx3
, (2.67g)

B (x ) = −EIω
d2θx

dx2
. (2.67h)

The normal stresses follows from what is referred to as Navier’s generalised formula:

σxx =
N

A
−
Mz

Iz
y +

My

Iy
z +

B

Iω
ωn (2.68)
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And the shear stresses follows from Grashof’s generalised formula:

σxs = −
1

t

(
Qy

Iz
Sz +

Qz

Iy
Sy +

Mx,v

Iω
Sω ±

Mx,s

Ix
t2

)

(2.69)

Example 2.2: Cross-Sectional Properties of a I/H-profile.

Until now the formulas have been derived for an arbitrary open thin-walled cross-

section, and in this example the cross-sectional dependent variables are to be de-

termined for a I/H-profile. This includes A, Sy , Sz , Sω , Ix , Iy , Iz , Iω and ωn .

x y

z

n

n

n

n

n

s s

s

s

s
s1 s2

s3 s4
s5

Figure 2.13: Definition of arc-length coordinates and

local (nj , sj )-coordinate systems.

The profile is shown on figure

1.3 with a height h, width b,

flange thickness tf , and web

thickness tw . Since the cross-

section is double symmetric the

principle axis are coincide with

the lines of symmetry. This im-

plies that the bending and shear

centres are also coincide in the

double symmetry point.

It is assumed that the thick-

ness is tf ≪ b and tw ≪ h,

which means that the thin-wall

assumption applies. The cross-

sectional area and the bending

moments of inertia become

A = 2tf b + twh, Iy =
1

2
tf bh

2
+

1

12
twh

3, Iz =
1

6
tf b

3. (2.70a−c)

As can be seen on figure 2.13, arc-length coordinates sj are defined by the local
(

nj , sj
)

-coordinate systems for each of the four branches and for the web of the

profile. The statical moment of the area segment (defined by the line domain Ω)

around the y-axis becomes:

Sy (s1) =
1

2
htf s1, Sy (s2) =

h

2
tf s2

Sy (s3) = −
1

2
htf s3, Sy (s4) = −

1

2
htf s4,

Sy (s5) = −
1

2
bhtf −

1

2
tws5 (h − s5) .

(2.71a−e)

The statical moment around the z-axis becomes:

Sz (s1) =
1

2
tf s1 (s1 − b) Sz (s2) = −

1

2
tf s2 (s2 − b)

Sz (s3) =
1

2
tf s3 (s3 − b) Sz (s4) = −

1

2
tf s4 (s4 − b)

(2.72a−d)

The distribution of these statical moments is visualised on figure 2.14.
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Figure 2.14: Distribution of Sy and Sz according to the (nj , sj )-coordinate systems.

Next, the normalized warping function ωn (s) is determined. Using the already

defined arc-length coordinate s1 and s2, (2.41) becomes

ω (s1) = −

∫ b

0

1

2
htf s1 ds = −

1

4
hb2tf

ω (s2) =

∫ b

0

1

2
htf s1 ds =

1

4
hb2tf

(2.73a−b)

Then from (2.42) the normalized sector coordinate is found:

ωn (s1) = −
1

2
hs1 +

hb2tf

4btf
=

1

4
h (b − 2s1)

ωn (s2) =
1

2
hs2 −

hb2tf

4btf
= −

1

4
(b − 2s2)

(2.73c−d)

Then the static moment of ωn becomes

Sω (s1) =

∫ s1

0

(

1

4
bh −

1

2
hs1

)

tf ds =
1

4
htf s1 (b − s1)

Sω (s2) =

∫ s2

0

(

1

2
hs2 −

1

4
bh

)

tf ds = −
1

4
hs1tf (b − s2)

(2.74a−b)

These distributions can be seen on figure 2.15. Finally, the sector moment of inertia

becomes,

Iω =

∫ b

0

(

1

4
h (b − 2s1)

)2

tf ds +

∫ b

0

(

−
1

4
(b − 2s2)

)2

tf ds =
1

24
h2b3tf (2.75)
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1
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1
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Figure 2.15: Distribution of Sy and Sz according to the (nj , sj )-coordinate systems.

It is important to notice that the calculated stresses from these cross-sectional de-

pendent quantities are defined after their corresponding (nj , sj )-coordinate system,

meaning that if σxs (sj ) < 0 the stress act in the opposite direction of sj . The only

nj -dependent stress quantity are the shear stresses from St. Venant torsion that acts

in both directions of sj , which is the reason for the ± sign in (2.69) for which the

sign that gives the largest magnitude of σxs is chosen.

Some final notes are made for torsion of I/H-profiles. As can be seen distribution

of the static moment Sω , the shear stresses from Vlasov torsion σxs induces opposite

resulting shear forces Qf in the flanges as shown on figure 2.16.

x

y

z

Qf

Qf

Mf

Mf

Mx,v

B

Figure 2.16: Vlasov torsional moment and bimoment for I/H profile.

The normal stresses σxx follows the distribution of the sector coordinate ωn , which

can be seen as a opposite resulting moments in the flanges Mf , similar to bending of

beam cross-sections. The top flange rotates the angle θz as indicated by figure 2.17.

x

y

z

Qf

Mf
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Figure 2.17: Rotation of top flange.

For both flanges the work becomes

δWe = 2Mf δθz . (2.76)

The rotation of the flange can be expressed in terms of the displacement us (s) =

θxr (s). And the rotation angle θz becomes:

θz = −
dus

dx
= −

dθx

dx
r (s) . (2.77)

Thus, the external work done is

δWe = −2Mf r (s)
dδθx

dx
,

= −B (x )
dδθx

dx
, (2.78)

meaning that the generalised virtual displacement work conjugated to B (x ) is −δθ ′x .

2.9 Differential Equations

In the following the governing differential equations to describe beam deformations are

derived. These includes axial, bending and torsional deformation.

Axial Deformation

(2.67a) may be recast from the axial equilibrium equation (2.4a−f) to the differential

equation
d

dx

(

EA
dwx

dx

)

+ qx = 0. (2.79)

This equation should be solved with proper boundary conditions. Let x0 denote the

abscissa of any of the two end-section, then x0 is either x0 = 0 or x0 = l . At x = x0 either

kinematical or mechanical boundary conditions may be prescribed as:

wx (x0) = wx,0

N (x0) = N0

 , for x0 = 0, l . (2.80)

Bending Deformation

(2.67b) and (2.67c) are recast from the equilibrium equations expressed by (2.4a−f). The

differential equations for bending deformations become:

d2

dx
*,EIz

d2wy

dx2
+- − qy +

dmz

dx
= 0, (2.81a)

d2

dx

(

EIy
d2wz

dx2

)

− qz −
dmy

dx
= 0, (2.81b)
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with the boundary conditions

wy (x0) = wy,0

wz (x0) = wz,0

w ′z (x0) = θy,0

w ′y (x0) = θz,0

My (x0) = My,0

Mz (x0) = Mz,0



, for x0 = 0, l . (2.82)

Homogeneous Torsion

Recasting (2.67f) with the equilibrium equations from (2.4a−f), the following differential

equation is obtained
d

dx

(

GIx
dθx

dx

)

+mx = 0, (2.83)

with the boundary conditions

θx (x0) = θx,0

Mx (x0) = Mx,0

 , for x0 = 0, l . (2.84)

Non-homogeneous Torsion

The total torsional moment is expressed as Mx = Mx,s + Mx,v , which is recast by the

equilibrium equations from (2.4a−f) to

GIx
d2θx

dx2
− EIω

d4θ

dx4
+mx = 0, (2.85)

with the boundary conditions

θx (x0) = θx,0

θ ′x (x0) = θ
′
x,0

Mx (x0) = Mx,0

B (x0) = B0


, for x0 = 0, l . (2.86)
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Example 2.3: Non-homogeneous Torsion of Cantilever I/H-beam Exposed to a

Torsional Moment.

A cantilever beam as shown on figure 1.3 is exposed to the torsional moment

Mx = M0 at x = l . mx = 0 and the differential equation of (2.85) becomes

−EIω
d4θx

dx4
+GIx

d2θx

dx2
= 0, (2.87a)

⇓

d4θx

dx4
− k2d

2θx

dx2
= 0, (2.87b)

where k2
= GIx/ (EIω ). At x = 0 both the rotation and warping is prevented,

meaning that the kinematic boundary conditions become

θx (0) = 0, (2.88a)

ux (0) = −
d

dx
θx (0)ωn (s) = 0⇒

d

dx
θx (0) = 0. (2.88b)

The mechanical boundary condition follows from (2.60) and (2.61) as

M0 = GIx
d

dx
θx (l ) − EIω

d3

dx3
θx (l ) ,

0 = −EIω
d2

dx2
θx (l ) .

(2.89)

The general solution to (2.87b) has the form of

θx (x ) = c0 + c1x + c2 coshkx + c3 sinhkx . (2.90)

From the kinematic boundary conditions at x = 0 it is found that

c0 + c2 = 0

c1 + c3k = 0

 (2.91)

thus, the solution fulfilling the kinematic boundary conditions can be expressed with

only the integration constants c2 and c3 as

θx (x ) = c2 (coshkx − 1) + c3 (sinhkx − kx ) . (2.92)

A unique solution for c2 and c3 is now sought. (2.89) can be expressed in another

way as,

M0

GIx
=

d

dx
θx (l ) −

1

k2

d3

dx3
θx (l ) , (2.93)

0 =
d2

dx2
θx (l ) . (2.94)
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Insertion of (2.92) in (2.93) results in

M0

GIx
= −c3k, (2.95)

⇓

−
M0

GIxk
= c3. (2.96)

Next, c2 is determined by insertion of (2.92) with c3 from (2.96) in (2.93). Then,

0 = c2 cosh (kl ) k2 −
M0

GIx
sinh (kl ) k, (2.97)

⇓

c2 =
M0

GIxk
tanhkl, (2.98)

⇓

θx (x ) =
M0

GIxk
(tanhkl (coshkx − 1) − (sinhkx − kx )) (2.99)

Then Mx,s (x ), Mx,v (x ) and B (x ) becomes from (2.15), (2.58) and (2.61):

Mx,s (x ) = M0 +M0 (tanhkl sinhkx − coshkx ) (2.100a)

Mx,v (x ) = −M0 (tanhkl sinhkx − coshkx ) (2.100b)

B (x ) = −
M0

k
(tanhkl coshkx − sinhkx ) (2.100c)

As expected Mx,s (x ) +Mx,v (x ) = M0.

Figure 2.18 shows the variation of Mx,s (x ) and Mx,v (x ) for kl = 1, 5 and 10.

Close to the support at x = 0 the torsional moment M0 is primarily carried by

the Vlasov moment, whereas the St. Venant moment is small. For kl = 1 both

torsion mechanisms contribute to M0 throughout the beam. However, for kl = 10

the influence of the Vlasov moment reduces fast, and the torsional moment M0 is

carried by St. Venant in the major part of the beam. The variation of B (x ) shows the

largest values at the fixed support where the warping is prevented and induces the

largest normal stresses. At the free end the beam can warp freely which means the

normal stresses is zero, thus B (l ) = 0.
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Figure 2.18: Variation of Mx,s/M0, Mx,v/M0 and B (x ) /M0 along the beam for kl = 1, 5

and 10. For B (x ) k is set to 2.

If one were to calculate θx by homogeneous torsion it is obtained that θx (l ) =

M0/ (GIx ) l , and by non-homogeneous torsion

θx (l ) =
M0

GIxk
(kl − tanhkl ) =

M0

GIx
l

(

1 −
1

kl
tanhkl

)

, (2.101)

where it can be seen that the torsional angle is less than for homogeneous torsion.

For increasing values of l it can be seen that

lim
l→∞

(

M0

GIx
l

(

1 −
1

kl
tanhkl

))

=

M0

GIx
l . (2.102)





3 Basics of the Finite Element

Method

The basic theory of the finite element method will be outlined in this chapter. The idea

is to make discretization of a structural system into a number of beam elements, each

with two nodal points. Subsequently, displacement, internal forces and moments can be

determined by cutting free a beam element at the nodes and formulate equilibrium at the

nodes with help from the principle of virtual displacements, which is used to derive the

stiffness matrix and nodal load vector for a beam element, such that these are connected

to the corresponding deformation at the beam ends. Sources for the following derivations

are [Andersen and Nielsen, 2008] and [Kindmann and Kraus, 2011].

3.1 The Principle of Virtual Displacements

In the principle of virtual displacements the actual sectional forces and moments are

assumed to be in equilibrium with the loads and the reaction forces applied at the end

sections. The virtual displacements (and rotations) are considered as arbitrary increments

to the actual displacements and they only need to fulfil homogeneous kinematic boundary

conditions, so that the combined field of the actual forces and virtual displacement always

fulfils the actual non-homogeneous boundary conditions.

The virtual work for linear beam theory becomes:

δWi =

∫
V

δεxx σxx + δγxs σxs dV

=

∫ l

0

dδwu

dx
EA

dwu

dx
+

d2δwy

dx2
EIz

d2wy

dx2
+

d2δwz

dx2
EIy

d2wz

dx2

+

dδθx

dx
GIx

dθx

dx
+

d2δθx

dx2
EIω

d2θx

dx2
dx

(3.1)

The external virtual work due to concentrated forces follows as:

δWe = δwx Nx + δwy Qy + δwz Qz + δθz Mz

+ δθy My + δθx Mx −
dδθx

dx
B

(3.2)

And the external virtual work for distributed loads per unit length is:

δωe = δwx qx + δwy qy + δwz qz

+ δθymy + δθzmz + δθxmx

(3.3)

35
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3.2 Basic Deformation and Shape Functions

On figure 3.1 a beam element with the length l and the stiffness constants EA, GIx and

EIω are shown. The sign convention for FEM differs from the derived theory as both

end-nodes have same sign convention as illustrated on the figure. The element has 7

degrees of freedom defining the displacements, rotations and the extra nodal degree of

freedom introduced, denoted as the rotation gradient −θ ′x, j , at both ends.

we =

[
we,1

we,2

]
=

[
wx,1 wy,1 wz,1 θx,1 θy,1 θz,1 −θ ′

x,1

wx,2 wy,2 wz,2 θx,2 θy,2 θz,2 −θ ′
x,2

]⊺
(3.4)

The rotation gradient is chosen as negative, since the bimoment B is work conjugated to

the rotation gradient by the relation δW = −Bδθ ′x . The opposite sign convention could

have been chosen for the rotation gradient, but since it is often the applied loads which

are known and displacement only known at supports, the chosen sign convention seems

more appropriate.

The nodal forces are assembled in the vector:

re =

[
re,1
re,2

]
=

[
N1 Qy,1 Qz,1 Mx,1 My,1 Mz,1 B1

N2 Qy,2 Qz,2 Mx,2 My,2 Mz,2 B2

]⊺
(3.5)

The idea is to use appropriate shape functions to describe the displacement field through-

x

x

x

y

y

y

z

z

z

N1 N2

B0 M0

B1 B2Mx ,1 Mx ,2

mx

qx

wx ,1 wx ,2θx ,1 θx ,2θ ′
x ,2

θ ′
x ,1

EA,GIx , EIω
x0

θz,1, Mz,1

θz,2, Mz,2

wy,1, Qy,1 wy,2, Qy,2

EIz

EIy

qy

mz

qz

my
wz,1, Qz,1 wz,1, Qz,1

θy,1, My,1

θy,2, My,2

l

Figure 3.1: Beam element with definition of degrees of freedom and nodal reaction forces.

out the beam by interpolating the nodal displacement values, expressed as:

ue (x ) = Φ(x ) we , (3.6)
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and the virtual displacement field in the element,

δue (x ) = Ψ(x ) δwe . (3.7)

Deformation by Axial Force

The differential equation for this case is described by (2.79). Ignoring the term of qx
double integration leads to solution

wx (x ) = c0 + c1x, (3.8)

and with the boundary conditions wx (0) = wx,1 and wx (l ) = wx,2 the function for the

longitudinal displacement becomes a first degree polynomial,

wx (x ) =
(

1 −
x

l

)

wx,1 +
x

l
wx,2, (3.9)

and can expressed in terms of linear shape functions ϕ1(x ) and ϕ2(x ):

wx (x ) =
[
ϕ1(x ) ϕ2(x )

] [
wx,1

wx,2

]
, (3.10)

where ϕ1(x ) = 1 − x/l and ϕ2(x ) = x/l . These correspond to the deformation at the

given node by adopting the value 1, while the deformation at the other node describes

the value 0.

Deformation by Bending

The differential equation describing the bending deformation around the z-axis is given

by (2.81a). Ignoring the term of qy and integration four times leads to

wy (x ) = c0 + c1x + c2x
2
+ c3x

3. (3.11)

With the boundary condition wy (0) = wy,1,wy (l ) = wx,2,w
′
x (0) = θy,1 andw ′y (l ) = θy,2

it follows that

wy (x ) =

(

1 − 3
x2

l2
+ 2

x3

l3

)

wy,1 +

(

x − 2
x2

l
+

x3

l2

)

θz,1

+

(

3
x2

l2
− 2

x3

l3

)

wy,2 +

(

x3

l2
−
x2

l

)

θz,2,

(3.12)

or more compactly:

wy (x ) =
[
ϕ3(x ) ϕ4(x ) ϕ5(x ) ϕ6(x )

] 

wy,1

θz,1
wy,2

θz,2


, (3.13)

The same is now done with bending around the y-axis. wz (x ) is described with the same

polynomial as (3.11) but with the change of the boundary conditions as, w ′z (0) = −θy,1
and w ′z (l ) = −θy,2, which stems from (2.8). This means that

wz (x ) =
[
ϕ3(x ) −ϕ4(x ) ϕ5(x ) −ϕ6(x )

] 

wz,1

θy,1
wz,2

θy,2


. (3.14)
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Deformation by Homogeneous Torsion

Integration twice of (2.83) leads to the equation

θx (x ) = c0 + c1x (3.15)

which is similar to the case with axial displacement, which means that a first degree

polynomial for the shape function is suitable. With the boundary conditions θ ′x (0) = θx,1
and θ ′x (l ) = θx,2, then

θx (x ) =
(

1 −
x

l

)

θx,1 +
x

l
θx,2, (3.16)

or

θx (x ) =
[
ϕ1 (x ) ϕ2(x )

] [
θx,1
θx,2

]
. (3.17)

Deformation by Non-Homogeneous Torsion

The general solution to (2.85) takes the form of (2.90). As it can be seen, if one were

to derive the shape functions based on hyperbolic functions, these will be included in

the stiffness matrix which can lead to numerical difficulties for small or large values of

kl implied by the sources [Damkilde, 1999] and [Kindmann and Kraus, 2011]. Instead

other suitable shape functions are sought. The functions must be at least three times

differential, and the cubic functions from (3.13) is used, which results in

θx (x ) =

(

1 − 3
x2

l2
+ 2

x3

l3

)

θx,1 +

(

x − 2
x2

l
+

x3

l2

)

θ ′x,1

+

(

3
x2

l2
− 2

x3

l3

)

θx,2 +

(

x3

l2
−
x2

l

)

θ ′x,2,

(3.18)

or more compactly:

θx (x ) =
[
ϕ3(x ) −ϕ4(x ) ϕ5(x ) −ϕ6(x )

] 

θx,1
−θ ′

x,1

θx,2
−θ ′

x,2


. (3.19)

The shape functions describing the exact displacement from (2.90) is obtained by solving

the integration constants for the boundary conditions θx (0) = θx,1, θ ′x (0) = θ
′
x,1

, θx (l ) =

θx,2 and θ ′x (l ) = θ ′
x,2

. Then the shape functions ϕ7, ϕ8, ϕ9 and ϕ10 can be found

in Appendix D, and the torsional rotation expressed in terms of the nodal values is

expressed as

θx (x ) =
[
ϕ7(x ) −ϕ8(x ) ϕ9(x ) −ϕ10 (x )

] 

θx,1
−θ ′

x,1

θx,2
−θ ′

x,2


. (3.20)

3.3 Stiffness Matrix for a Beam Element

In this section the stiffness matrix will be derived for a beam element by use of the

principle of virtual work.
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Axial Stiffness

The weak form of the differential equation from (2.79), with a virtual (variation) field

δwy and afterwards integrated by parts with respect to x :

∫ l

0

δwx EA
d2wx

dx2
dx +

∫ l

0

δwx qx dx = 0

⇓ ∫ l

0

dδwx

dx
EA

du

dx
dx =

[
δwx N

] l
0
+

∫ l

0

δwx qx dx (3.21)

The physical displacement field is here denoted aswx (x ) = Φ(x ) we , which includes the

values from (3.10). The weight function is used in the virtual field asδwx (x ) = Ψ(x ) δwe ,

and by use of the Galerkin approach it is known that Ψ(x ) = Φ(x ). These are substituted

in (3.21) and it is obtained that

δw
⊺
e

∫ l

0

dΦ⊺

dx
EA

dΦ

dx
dx we = δw

⊺
e

[
Φ
⊺N

] l
0
+ δw

⊺
e

∫ l

0

Φ
⊺qx dx ,

⇓ ∫ l

0

dΦ⊺

dx
EA

dΦ

dx
dx

︸                 ︷︷                 ︸
Ke

we =

[
Φ
⊺N

] l
0
+

∫ l

0

Φ
⊺qx dx

︸                        ︷︷                        ︸
fe = re + qe

, (3.22)

m

EA

l

[
1 −1

−1 1

] [
wx,1

wx,2

]
=

[
N1

N2

]
+

l

2

[
qx
qx

]
, (3.23)

where Ke is the element stiffness matrix and fe is the total load vector composed of the

vector re , which is the reaction forces and qe is the element load vector. It can be seen

that the weak form of (3.21) corresponds to the internal and external virtual work as

stated in (3.1), (3.2) and (3.3).

Bending Stiffness

The bending stiffness will be derived from the strong form of (2.81a). The weak form

is obtained by multiplication of δwy (x ) and the moment per unit length is multiplied by

δθz = δw ′y as follows.

∫ l

0

δwy EIz
d4wy

dx4
dx =

∫ l

0

δwy qy dx +

∫ l

0

δθzmz dx

⇓ ∫ l

0

d2δwy

dx2
EIz

d2wy

dx
dx =


dδwy

dx
Mz


l

0

−

δwy Qy


l

0

+

∫ l

0

δwy qy dx +

∫ l

0

dδwy

dx
mz dx

(3.24)
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By again using Galerkin’s approach and using the same weight functions as shape

function, which is described by (3.13), the weak form becomes:

δw
⊺
e

∫ l

0

d2
Φ
⊺

dx2
EIz

d2
Φ

dx2
dx we = δw

⊺
e

*.,

dΦ⊺

dx
Mz


l

0

−

Φ
⊺Qy


l

0

+

∫ l

0

Φ
⊺qy +

dΦ⊺

dx
mz dx

+/-
⇓ ∫ l

0

d2
Φ
⊺

dx2
EIz

d2
Φ

dx2
dx we =


dΦ⊺

dx
Mz


l

0

−

Φ
⊺Qy


l

0

+

∫ l

0

Φ
⊺qy +

dΦ⊺

dx
mz dx

(3.25)

m

EIz

l3



12 6 l −12 6 l

6 l 4 l2 −6 l 2 l2

−12 −6 l 12 −6 l

6 l 2 l2 −6 l 4 l2





wy,1

θz,1
wy,2

θz,2


=



Qy,1

Mz,1

Qy,2

Mz,2


+



qy l/2 −mz

qy l
2/12

qy l/2 +mz

−qy l
2/12


(3.26)

The same can be done for bending around the y-axis, which will not be shown fully here,

but the finite element form obtains the form with the shape functions from (3.14):

∫ l

0

d2
Φ
⊺

dx2
EIy

d2
Φ

dx2
dx we =


dΦ⊺

dx
My


l

0

−

Φ
⊺Qz


l

0

+

∫ l

0

Φ
⊺qz −

dΦ⊺

dx
my dx

(3.27)

m

EIy

l3



12 −6 l −12 −6 l

−6 l 4 l2 6 l 2 l2

−12 6 l 12 6 l

−6 l 2 l2 6 l 4 l2





wz,1

θy,1
wz,2

θy,2


=



Qz,1

My,1

Qz,2

My,2


+



qz l/2 +my

−qz l
2/12

qz l/2 −my

qz l
2/12


(3.28)

Homogeneous Torsion Stiffness

The weak form of (2.83) is obtained by multiplying with the virtual displacement δθx
and integrating over the domain:

∫ l

0

δθxGIx
d2θx

dx2
dx +

∫ l

0

δθxmx dx = 0 (3.29)

⇓ ∫ l

0

dδθx

dx
GIx

dθx

dx
dx =

[
δθxMx

] l
0
+

∫ l

0

δθxmx dx (3.30)

Using the relation θx (x ) = Φ(x ) we from (3.17) and assuming the Galerkin approach it

is provided that

δw
⊺
e

∫ l

0

dΦ⊺

dx
GIx

dΦ

dx
dx we = δw

⊺
e

( [
Φ
⊺Mx

] l
0
+

∫ l

0

Φ
⊺mx dx

)

⇓ ∫ l

0

dΦ⊺

dx
GIx

dΦ

dx
dx we =

[
Φ
⊺Mx

] l
0
+

∫ l

0

Φ
⊺mx dx (3.31)

m

GIx

l

[
1 −1

−1 1

] [
θx,1
θx,2

]
=

[
Mx,1

Mx,2

]
+

l

2

[
mx

mx

]
, (3.32)
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Non-Homogeneous Torsion Stiffness

The differential equation describing the phenomenon of non-homogeneous torsion was

derived and described by (2.85). Multiplying the strong form by the virtual displacement

δθx and integrating over the domain, the weak form is obtained:

∫ l

0

δθxGIx
d2θx

dx2
dx −

∫ l

0

δθxEIω
d4θx

dx4
dx +

∫ l

0

δθxmx dx = 0

⇓ ∫ l

0

dδθx

dx
GIx

dθx

dx
+

d2δθx

dx2
EIω

d2θx

dx2
dx =

δθx Mx


l

0

+

−
dδθx

dx
B


l

0

+

∫ l

0

δθxmx dx

(3.33)

Furthermore, it is desired to distribute a concentrated torsion moment M0 and bimoment

B0 at the abscisse x0. By use of the virtual work, the following is added to the right side

of (3.33),

δWe = δθx (x0)M0 − δθ
′
x (x0) B0. (3.34)

Then by Galerkin’s approach the finite element form of (3.33) is described by inserting

the relation from (3.19):

∫ l

0

(

dΦ⊺

dx
GIx

dΦ

dx
+

d2
Φ
⊺

dx2
EIω

d2
Φ

dx2

)

dxwe =

Φ
⊺Mx −

dΦ⊺

dx
B


l

0

+

∫ l

0

Φ
⊺mx dx

+ Φ
⊺ (x0)M0 −

d

dx
Φ
⊺ (x0) B0

m

*....,
GIx

30 l



36 −3 l −36 −3 l

−3 l 4 l2 3 l −l2

−36 3 l 36 3 l

−3 l −l2 3 l 4 l2


+

EIω

l3



12 −6 l −12 −6 l

−6 l 4 l2 6 l 2 l2

−12 6 l 12 6 l

−6 l 2 l2 6 l 4 l2


+////-



θx,1
−θ ′

x,1

θx,2
−θ ′

x,2



=



Mx,1

B1

Mx,2

B2


+



mx +
M0

l3
(l + 2x0) (l − x0)

2
+

6B0x0

l3
(l − x0)

M0x0

l2

(

2lx0 − x
2
0
− l2

)

+

B0

l2

(

l2 + 3x2
0
− 4lx0

)

mx +
M0x

2
0

l3
(3l − 2x0) −

6B0x0

l3
(l − x0)

M0x
2
0

l2
(l − x0) −

B0x0

l2
(2l − 3x0)



(3.35)

Using the hyperbolic shape functions instead, the stiffness matrix will look like

Ke =
EIω

l3



δT −γT l −δT −γT l

−γT l αl2 γT l βT l
2

−δT γT l δT γT l

−γT l βT l
2 γT l αT l

2


, (3.36)

where

αT =
kl (sinhkl − kl coshkl )

2 (coshkl − 1) − kl sinhkl
, βT =

kl (kl − sinhkl )

2 (coshkl − 1) − kl sinhkl
,

γT = αT + βT , δT = −
(kl )3 sinhkl

2 (coshkl − 1) − kl sinhkl
.

(3.37a−d)
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The distribution of the concentrated torsion moment M0 and bimoment B0 at the abscisse

x0 changes its extrapolated values to the nodal points and can be calculated by the terms

qe =

∫ l

0

Φ
⊺mx dxΦ⊺ (x0)M0 −

d

dx
Φ
⊺ (x0) B0. (3.38)

The total Ke matrix for an element has the size 14 × 14, and is assembled by having the

correct values at the right places corresponding to how both we and re are constructed

from (3.4) and (3.5). The element stiffness matrix is divided into four 7× 7 submatrices,

corresponding to

Ke =


Ke,11 Ke,12

Ke,21 Ke,22

 . (3.39)

3.4 System of Equations

For a system with multiple nodal points and elements as shown on figure 3.2, the

equilibrium for element e = j is referred to as

Kjwj = rj + qj for j = 1, 2, . . . ,N . (3.40)

The slightly bold notation for (·)j refers to element j, while (·) j refers to nodal point j. At

y x

z

1 2 j j + 1 j + 2 N + 1

w1 w2 wj wj+1 wj+2 wN+1

1 2 j j + 1 N

Figure 3.2: Element discretization over space with node, element and degree of freedom num-

bering.

a shared node between element j and element j + 1 the reaction forces rj,2 and rj+1,1 are

acting. Both reaction forces belonging to the right end of element j and the left end of

element j + 1 contribute to the node j + 1. The corresponding element loads are denoted

as qj,2 and qj+1,1. For the whole system the global system of equations for equilibrium

are formulated on the form

Kw = r + q, (3.41)

where

w =



w1

w2

...

wj

wj+1

wj+2

...

wN+1



, r =



r1,1

r1,2 + r2,1

...

rj−1,2 + rj,1
rj,2 + rj+1,1

rj+1,2 + rj+2,1

...

rN ,2



, q =



q1,1

q1,2 + q2,1
...

qj−1,2 + qj,1

qj,2 + qj+1,1

qj+1,2 + qj+2,1
...

qN ,2



, (3.42a−c)



3.5. Coordinate Transformation 43

and

K =



p qK1,11 K1,12

p qK1,21 K1,22 +K2,11 K2,12x y
pK2,21 K2,22 +K3,11x y

. . .
p qKj−1,22 +Kj,11 Kj,12y

pKj,21 Kj,22 +Kj+1,11x y
. . .
p qKN −1,22 +KN ,11 KN ,12y

KN ,21 KN ,22x y



.

(3.43)

Only non-zero components have been show in the stiffness matrix in (3.43). At the

internal nodes the reaction forces from adjacent element nodes cancel, meaning

rj,2 + rj+1,1 = 0 for j = 1, 2, . . . ,N − 1. (3.44)

To solve the equations some displacements are known, referred to as prescribed degrees

of freedom, wp . Some are unknown (free degrees of freedom), wf . The same goes for the

prescribed element load vector qf (corresponding to the free degrees of freedom) and

the unknown reaction forces rp (corresponding to the prescribed degrees of freedom).

The displacements for the free degrees of freedom are found by

wf = K−1
f f

(

qf −Kf pwp

)

, (3.45)

and the reaction forces are calculated as

rp = Kpf wf . (3.46)

These system of equations refer to the global coordinate system. Since the stiffness matrix

is evaluated in the local beam coordinate system, some transformations and definition of

beam in space are required.

3.5 Coordinate Transformation

The general formulas to obtain the stiffness matrix have been derived, based on the

local beam coordinate system. Therefore general transformation vectors and matrices

are needed to describe the system in the global coordinate system and vice versa, when it

is desirable to look at the behaviour of the beam in the local after solving the equations.

The approach to determine the transformation matrices have been inspired by [Stærdahl,

2009].

Firstly, the description of the beam in space is required. The beam have two nodes

describing the start and end position. Furthermore, a third node is implemented to define

the position in space, see figure 3.3. This node defines the local x ′,y′ plane.

Node 1 has the coordinates (x1,y1, z1), node 2 (x2,y2, z2) and node 3 (x3,y3, z3).

These are prescribed in the global coordinate system. The vector spanning from node 1

to 2 can be calculated as

vx ′ =


x2 − x1

y2 − y1

z2 − z1

 (3.47)

while the vector spanning from node 1 to 3 can be found as

vx ′y′ =


x3 − x1

y3 − y1

z3 − z1

 . (3.48)
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Figure 3.3: Spatial beam element in global and local coordinate system.

Then the vectors in z ′ and y′ direction are

vz′ = vx ′ × vx ′y′, vy′ = vz′ × vx ′. (3.49a−b)

The unit vectors of the system can the be calculated as

ı̂ =
vx ′

|vx ′ |
, ̂ =

vy′

|vy′ |
, k̂ =

vz′

|vz′ |
. (3.50a−c)

Defining the transformation matrix Te as

Te =

[
ı̂ ̂ k̂

]
, (3.51)

The nodal coordinates in the local coordinate system can be found as

x′e = xeTe , (3.52)

where

xe =


0

v
⊺

x ′

v
⊺

y′


, x′e =


0 0 0

x ′
2

0 0

x ′
3

y′
3

0

 . (3.53a−b)

This transformation matrix also holds for displacement, rotations, forces and moments.

With beam elements with the additional degree of freedom for rate of twist this can be seen

as a scalar quantity and does not need to be converted during coordinate transformation

[Damkilde, 1999]. Defining the full 14 × 14 transformation matrix, this becomes

T =



Te 0

Te

1

Te

Te

0 1


. (3.54)

Then the vector containing the degrees of freedom and the element load vector can be

transformed as

w′e = T⊺we , q′e = T⊺qe , (3.55a−b)

and the stiffness matrix as

Ke = TK′eT⊺. (3.56)



4 Numerical Results and

Comparison

Within the following a comparison different aspects of the Matlab code is investigated,

hereunder the changes of the accuracy due to more elements and results from both

cubic and exact shape functions. A comparison with the advanced numerical program

ABAQUS is furthermore performed, shown in section 4.1.

Firstly the torsional rotation θx and the rate of torsional rotation θ ′x are investigated,

as these parameters are key components to describe the internal forces, Mx and B.

Quadratic shape functions are used in this case and results from one and two elements

are investigated. At the fixed end of the cantilever beam, θx starts by having the value
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Figure 4.1: Deformation variablesθx (x ) and θ ′x (x ) due to non-homogeneoustorsion of cantilever

beam subjected to M0 and quadratic shape functions.

zero, as the beam is prevented from moving in any direction nor rotate. When being at a

location of about half way through the beam length, the effects from the fixed support is

drastically reduced and θx starts to increase more or less linearly with a steep slope. As

θ ′x is showing the rate of change, the reverse of the θx is therefore present in figure 4.1

to the right. When having one element only, the results are deviating by a small amount

at the midspan of the beam and when having two elements, the results are somewhat in

line with the analytical result.

Despite θx and θ ′x , the St. Venant- and Vlasov moment along with the bimoment are

investigated as these are dominating factors in the stress evaluation. Figure 4.2a and 4.2b

shows the variation of Mx,s (x ) and Mx,v (x ) for the chosen beam. At x = 0 the torsional

moment M0 is fully carried by the Vlasov moment, whereas the St. Venant moment is

0. As x increases, so does the St. Venant moment and the Vlasov moment reduces until

45
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Figure 4.2: Internal forces due to non-homogeneous torsion of cantilever beam subjected to M0.

the end, where both mechanisms reaches values that are approximately the same. The

bimoment B shows the largest values at the fixed support where the warping is prevented

and induces the largest normal stresses. At the free end the beam can warp freely which

means the normal stresses is zero, thus B (l ) = 0.

Rather small deviations are observed when looking at one element describingMx,s (x ),

and nearly identical results compared to the analytical solution are obtained when using

two elements. An important aspect is observed, when looking atMx,v (x ) as it can be seen

in figure 4.2b, a lot of elements are needed in order to get near the analytical solution. This

is because Mx,v is calculated from the third derivative of θx . With the shape functions

being cubic, this gives constant values, which tries to fit the curve. The bimoment also

requires a few more elements in order to obtain something near the analytical solution

compared to Mx,s (x ).

As mentioned in chapter 2 numerical problems can occur when using hyperbolic

shape functions. Despite this, the exact shape functions are investigated and the results

for each of the above analysed parameters are shown in the figures below. As it can be

seen from figure 4.4 it was possible to obtain exact values to describe the internal forces



47

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x/l

θ
(x
)
/
θ
(l
)

Analytical

1 element

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x/l

θ
′
(x
)
/
θ
′
(l
)

Analytical

1 element

Figure 4.3: Deformation variablesθx (x ) and θ ′x (x ) due to non-homogeneoustorsion of cantilever

beam subjected to M0 with exact shape functions.
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Figure 4.4: Internal forces due to non-homogeneous torsion of cantilever beam subjected to M0

with exact shape functions.
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based on the derivatives of the exact shape functions without any numerical problems.

Due to the previous, a thought experiment is made with a cantilever beam and the rotation

θx (l ) is calculated for different values of kl , which can be seen on figure 4.5. Numerical

problems occur when kl is very small (below 10−3), which can be observed on the left

figure. One point is missing since it was calculated as negative and cannot be plotted on
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Figure 4.5: θx (l ) with different values of kl .

a log-diagram, which again implies the numerical problems in that range.

The computational power has drastically increased over the last few decades and

numerical difficulties in Matlab does not seem to be an issue in the case of a pris-

matic beam subjected to torsion, since the values of kl that leads to difficulties seems

unreasonable small. Furthermore when looking at the right figure the polynomial shape

function starts to give adequate results for increasing values of kl . This is also implied by

[Kindmann and Kraus, 2011], where it is stated that the condition kl < 1 should be met

in order to give reasonable results when using polynomial shape functions. Numerical

instability may occur with beams having varying cross-section constants and non-linear

problems like buckling, but this has not been investigated.

Cross-sectional stress variation is investigated at the fixed- and free end of the can-

tilever beam. Normal stress- and shear stress variation throughout the cross-section are

shown in figure 4.6. Red indicates positive stresses and blue negative. The normal and

shear stress at the fixed end of the cantilever beam is investigated along with the two

shear stress contributions at the free end of the beam, as the normal stress in this section

equals zero. As it can be seen in figure 4.6c, the blue line does not form a horizontal line,

as the Vlasov shear stress contribution is functional and zero at the edge of the flange

from where it develops to a maximum at the middle of the flange. It should be noticed,

the shear stress from Vlasov gives a much smaller contribution to the total shear stress

compared to the St. Venant shear stress. At the web negative shear stresses also occur

since the St. Venant shear stresses varies linearly over the thickness and is 0 in the middle

of the web.
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Figure 4.6: Cross sectional normal- and shear stresses at the fixed and free end of the cantilever

beam.

4.1 ABAQUS Comparison

Non-homogeneous torsion is evaluated in ABAQUS by use of a shell model. A shell

model is used because a thin-walled spatial beam is investigated. It is furthermore

beneficial to use a shell model with respect to computational time compared to a solid

model, because shell model work with a reduced number of finite elements meaning less

equations to solve. When it is possible to reduce the problem to a planar problem and

neglect what happens at the thickness of the element, a shell model should be chosen

prior to a solid model. Shell elements are therefore used to model structures in which

one dimension is significantly smaller than the other dimensions in this case t ≪ b, h

and l [SIMULIA, 2013].

A comparison between normal stresses in a shell- and solid model along with normal

stresses from the home-made Matlab program are showed in appendix B. Quadratic

hexahedrons are used in the shell model as twisting and bending occurs due to the loading

of the beam. The boundary- and load condition of the cantilever beam shell element

model is shown on figure 4.7. As the cross-section rotates around the shear centre as a

M0x
yz

Figure 4.7: Boundary- and load condition of the shell model in Abaqus.

rigid body, the point of investigation of the cross-section is chosen to be the outer edge

of the top flange. Here the greatest normal stresses occur due to the highest values of ωn
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in the edges of the flanges. Either outer edges of the two flanges could have been chosen.

The chosen points of investigation are seen on figure 4.8. In order to secure enough

x

y

z

Figure 4.8: Presentation of investigation point displayed with a blue line.

elements are used when simulating results, a convergence analysis is performed for the

shell model. The convergence analysis is shown in figure 4.9. Looking at the figure, it
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Figure 4.9: Convergence analysis of the shell model with respect to a IPE 450 steel profile.

can be stated that using a mesh with more than 20 000 degrees of freedom equivalent to

more or less 3250 elements is reasonable for the IPE 450 steel profile shell model, as the

data starts to converge from this amount of degrees of freedom. A model with 150 000

degrees of freedom equivalent to around 24 500 elements should be avoided as the result

is only corrected by a significantly small amount but the computational time is drastically

increased and in no way advantageous.

The convergence analysis is investigated at the free end of the cantilever beam and the

rotational angle of the cross-section θx is chosen as the convergence parameter subjected

to a torsional moment of M0 = 7 kNm. The rotational angle equals zero at the support,

from which the shell model starts to deviate by a small amount but increases until the

free end is reached, where the deviation reaches 20%. Despite comparing θx , the normal

stresses σxx are investigated in shell model, see figure 4.11. The normal stresses at each

end of the beam gets close to the results from the Matlab model but undergoes rather

large deviations throughout the beam length.
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Figure 4.10: Variation of θx through the beam length. The torsional rotation has been normalized

with respect to the analytical rotation at the end.
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Figure 4.11: Variation of σxx through the blue line. The stresses has been normalized with the

maximum normal stress obtain from analytical calculation.

An additional comparison with a solid model from ABAQUS is included in appendix

B, from where it can be seen, the solid model actually follows the Matlab model normal

stresses within the range 0.2l−0.7l , see figure B.1. At the fixed end of the cantilever beam,

nearly the same normal stresses can be observed, as the shell model and the solid model

deviates with 2% and 4% respectively. The variation of θx throughout the beam length

is shown on figure 4.12. At the fixed end of the cantilever beam, θx = −2.477 · 10−5 rad

which can be seen as zero. By moving further along the beam and therefore closing in on

the free end of the cantilever beam, θx starts to accelerate and ends up with a magnitude

of 0.159 rad. Despite θx , normal stresses along the beam length is also investigated as

shown on figure 4.13. It can clearly be seen, that the stresses are equal to zero at the free

end of the cantilever beam and starts to develop when approaching the fixed end. As the

beam can not warp freely at the fixed end, normal stresses are build up at the flanges as

these are tightened to the support and therefore can’t move in the x-direction. As the

flanges would warp in different directions on each side of the connecting point to the

web of the profile, positive stresses are build up on one side and negative on the other.

A maximum of 355 MPa is reached as this is the maximum capacity of chosen the steel
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Figure 4.12: Non-homogeneous torsion resulting in rotational angle variation along the beam.
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Figure 4.13: Non-homogeneous torsion resulting in normal stress variation along the beam.

type.



5 Conclusion

The severity of the torsional problem were stated within the introduction. Looking at

figure 1.4, it can clearly be stated, when having fixed support conditions as shown in

figure 1.3 and A.9, that Vlasov torsion must be accounted for. All sizes of both steel

profile types I/H presented in [Teknisk Ståbi, 2011] were investigated and the linear

behaviour for St. Venant and Vlasov torsion were present for both types, with Vlasov

torsion showing a much steeper slope.

A thorough presentation of spatial beam theory was presented, leading to the analy-

tical solutions and working as the foundation for the finite element method. Within the

spatial beam theory, homogeneous and non-homogeneous torsion were derived generally

to fit all types of thin-walled open profiles. By means of a few examples the general

formulas are written to fit I/H profiles, giving the possibility to discuss results across the

different objectives, analytical and FEM both with respect to the home-made Matlab

program and the shell model in ABAQUS.

A gathering of all the numerical results were made in chapter 4, from where it can

be concluded a beam finite element model with the hyperbolic shape functions gave the

exact results as the analytical. Moreover solutions with respect to polynomial shape

functions came close to the analytical solution when more than eight elements were

used despite the Vlasov moment Mx,v would require alot more elements in order to

obtain a result near the analytical solution. Using polynomial shape functions would

therefore require the use of multiple finite elements. It was stated in [Damkilde, 1999]

and [Kindmann and Kraus, 2011] that use of hyperbolic shape functions could lead to

numerical calculations difficulties. Therefore it was tested for which values of kl it could

give problems for Matlab to obtain reasonable results. With values for kl < 10−3

numerical issues occurred. It is however doubtful, that values so small would to be a

problem for prismatic beams. It has not been tested for which values of kl it would

occur when dealing with numerical integration of beams with varying cross-sectional

quantities and non-linear behaviour as buckling.

It was of interest to observe the stress development in the cross section as presented

in figure 4.6. It can be concluded that the utilization ratio of the investigated cantilever

beam should be checked for shear stresses dominating the free end, and at the fixed end.

Here normal stresses dominate because the cross-section is prevented from warping. As

the Vlasov shear stresses are very small, the worst case is obtained at the point where the

normal stress has its maximum value, which means s1 = 0, resulting in the shear stresses

from Vlasov torsion disappears. Additionally no contribution from the St. Venant shear

stress is present, as Mx,s (0) = 0.

Contradictory to this, only shear stresses are present at the free end, dominated by

St. Venant shear stresses. The maximum value is obtained at the middle of the flange,

where both St. Venant and Vlasov stresses are present, though the last mentioned are of

minor magnitude.
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An additional comparison were made between the Matlab model with exact shape

functions and the shell- and solid model in ABAQUS. This yielded some large deviations

just after the start and before the end of the beam, meaning the result values at the ends

and the middle of the beam were reasonable. It should be noticed from figure B.1, the

results from the solid model were closer to the Matlab model at the middle of the beam.

The solid model still showed the large deviations when looking at the normal stresses

closer to the ends of the beam as the shell model did.
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A Analysis of torsional behaviour

of I/H-profiles

The steel profiles of type HEM, is fully displayed in chapter 1. Results from steel HEA-,

HEB-, INP- and IPE-profiles are presented below:
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Figure A.1: Utilization ratios of HEA profiles exposed to St. Venant torsion presented in surface

plot combined with contour lines.
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Figure A.2: Utilization ratios of HEA profiles exposed to Vlasov torsion presented in surface

plot combined with contour lines.
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Figure A.3: Utilization ratios of HEB profiles exposed to St. Venant torsion presented in surface

plot combined with contour lines.
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Figure A.4: Utilization ratios of HEB profiles exposed to Vlasov torsion presented in surface

plot combined with contour lines.
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Figure A.5: Utilization ratios of INP profiles exposed to St. Venant torsion presented in surface

plot combined with contour lines.
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Figure A.6: Utilization ratios of INP profiles exposed to Vlasov torsion presented in surface plot

combined with contour lines.
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Figure A.7: Utilization ratios of IPE profiles exposed to St. Venant torsion presented in surface

plot combined with contour lines.
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Figure A.8: Utilization ratios of IPE profiles exposed to Vlasov torsion presented in surface plot

combined with contour lines.

The commercial software program:“Autodesk Robot Structural Analysis Profes-

sional” adhere to the steel eurocode to some extent, meaning when dealing with torsion,

the software only accounts for St. Venant torsion as shown in the following detailed

calculation results from Autodesk Robot, see figure A.11 and A.12.

The model is fixed in both ends and subjected to a torsional moment in the midspan

in the non-homogeneous torsion case, see figure A.9 and simply supported in both ends

in the other case, meaning the beam is able to warp freely. A torsional moment of exactly

half of what the beam is subjected to in the non-homogeneous torsion case is inflicted in

both ends of the beam in the simply supported case and these moments are acting in the

opposite direction of one another, see figure A.10. The boundary and load condition for

both models are shown below:

M0

l

Figure A.9: Boundary- and load condition for the fixed supported beam seen from the side.

M0/2M0/2

l

Figure A.10: Boundary- and load condition for a torsionally simply supported beam seen from

above.
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[Autodesk Robot - Detailed results - Torsionally simply supported beam - Page 1]
Autodesk Robot Structural Analysis Professional 2015
Author: File: St. Venant torsion.rtd
Address: Project: Structure

Date : 24/03/15 Page : 1

Symbol Values Unit Symbol description Section

MEMBER: 1  Simple bar_1  ; COORDINATE: x = 0.00 L = 0.00 m

Cross-section properties: IPE 500

Ax 11552 mm2 Cross-section area

Ay 7207 mm2 Shear area - y-axis

Az 5987 mm2 Shear area - z-axis

Ix 890000 mm4 Torsional constant

Iy 481985000 mm4 Moment of inertia of a section about the y-axis

Iz 21416900 mm4 Moment of inertia of a section about the z-axis

Wply 2194260 mm3 Plastic section modulus about the y (major) axis

Wplz 335887 mm3 Plastic section modulus about the z (minor) axis

h 500 mm Height of cross-section

b 200 mm Width of cross-section

tf 16 mm Flange thickness

tw 10 mm Web thickness

ry 204 mm Radius of gyration - y-axis

rz 43 mm Radius of gyration - z-axis

Anb 1.00 Net area to gross area ratio (6.2.2.2)

Eta 1.00 Factor for Av calculation (6.2.6.(3))

Material:

Name Steel  ( S235 )

fy 235.00 MPa Design yield strength of material (3.2)

fu 360.00 MPa limit tensile stress - characteristic value (3.2)

gM0 1.10 Partial safety factor (6.1.(1))

gM1 1.20 Partial safety factor (6.1.(1))

gM2 1.35 Partial safety factor (6.1.(1))

Designations of additional codes:

EN112 EN 1991-1-2:2003 - Fire loads on a structure

EN312 EN 1993-1-2:2005 - Steel structures - fire design

EN313 EN 1993-1-3:2005 - Steel structures from cold-formed sections

EN315 EN 1993-1-5:2005 - Steel structures - plated elements

EC111 ECCS No111:2001 - Guidebook with recommendations for fire

ENV311 ENV 1993-1-1:1992 - Steel structures - general code

Class of section

KLF 1 Flange class (5.5.2)

KLW 1 Web class (5.5.2)

(hw/tw)lim 72.00 limit slenderness of a web for shear EN315(5.1)

hw/tw 45.88 web slenderness for shear EN315(5.1)

KLSZ Plastic Web class (shear) EN315(5.1)

KL 1 Section type (5.5.2)

Parameters of lateral-torsional buckling analysis:

XLT 1.00 Reduction factor for lateral-torsional buckling (6.3.2.2.(1))

Figure A.11: Autodesk Robot - Detailed results of a torsionally simply supported beam.
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[Autodesk Robot - Detailed results - Torsionally simply supported beam - Page 2]
Autodesk Robot Structural Analysis Professional 2015
Author: File: St. Venant torsion.rtd
Address: Project: Structure

Date : 24/03/15 Page : 2

Symbol Values Unit Symbol description Section

Internal forces at characteristic points of cross section

Tt,Ed 3.50 kN*m torsional moment

Stresses at characteristic points of cross-section:

Tau,ty,Ed 62.92 MPa shear stress due to torsional moment Tt.Ed (6.2.7)

Tau,tz,Ed 40.11 MPa shear stress due to torsional moment Tt.Ed (6.2.7)

Design forces:

Verification formulas:

Section strength check:

UFS[VyT] 0.51 Tau,ty,Ed/(fy/(sqrt(3)*gM0)) (6.2.6)

UFS[VzT] 0.33 Tau,tz,Ed/(fy/(sqrt(3)*gM0)) (6.2.6)
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[Autodesk Robot - Detailed results - Fixed supported beam - Page 1]
Autodesk Robot Structural Analysis Professional 2015
Author: File: Restrained torsion.rtd
Address: Project: Structure

Date : 24/03/15 Page : 1

Symbol Values Unit Symbol description Section

MEMBER: 1  Simple bar_1  ; COORDINATE: x = 0.00 L = 0.00 m

Cross-section properties: IPE 500

Ax 11552 mm2 Cross-section area

Ay 7207 mm2 Shear area - y-axis

Az 5987 mm2 Shear area - z-axis

Ix 890000 mm4 Torsional constant

Iy 481985000 mm4 Moment of inertia of a section about the y-axis

Iz 21416900 mm4 Moment of inertia of a section about the z-axis

Wply 2194260 mm3 Plastic section modulus about the y (major) axis

Wplz 335887 mm3 Plastic section modulus about the z (minor) axis

h 500 mm Height of cross-section

b 200 mm Width of cross-section

tf 16 mm Flange thickness

tw 10 mm Web thickness

ry 204 mm Radius of gyration - y-axis

rz 43 mm Radius of gyration - z-axis

Anb 1.00 Net area to gross area ratio (6.2.2.2)

Eta 1.00 Factor for Av calculation (6.2.6.(3))

Material:

Name Steel  ( S235 )

fy 235.00 MPa Design yield strength of material (3.2)

fu 360.00 MPa limit tensile stress - characteristic value (3.2)

gM0 1.10 Partial safety factor (6.1.(1))

gM1 1.20 Partial safety factor (6.1.(1))

gM2 1.35 Partial safety factor (6.1.(1))

Designations of additional codes:

EN112 EN 1991-1-2:2003 - Fire loads on a structure

EN312 EN 1993-1-2:2005 - Steel structures - fire design

EN313 EN 1993-1-3:2005 - Steel structures from cold-formed sections

EN315 EN 1993-1-5:2005 - Steel structures - plated elements

EC111 ECCS No111:2001 - Guidebook with recommendations for fire
calculations

ENV311 ENV 1993-1-1:1992 - Steel structures - general code

Class of section

KLF 1 Flange class (5.5.2)

KLW 1 Web class (5.5.2)

(hw/tw)lim 72.00 limit slenderness of a web for shear EN315(5.1)

hw/tw 45.88 web slenderness for shear EN315(5.1)

KLSZ Plastic Web class (shear) EN315(5.1)

KL 1 Section type (5.5.2)

Parameters of lateral-torsional buckling analysis:

XLT 1.00 Reduction factor for lateral-torsional buckling (6.3.2.2.(1))

Figure A.12: Autodesk Robot - Detailed results of a fixed supported beam.
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[Autodesk Robot - Detailed results - Fixed supported beam - Page 2]
Autodesk Robot Structural Analysis Professional 2015
Author: File: Restrained torsion.rtd
Address: Project: Structure

Date : 24/03/15 Page : 2

Symbol Values Unit Symbol description Section

Internal forces at characteristic points of cross section

Tt,Ed -3.50 kN*m torsional moment

Stresses at characteristic points of cross-section:

Tau,ty,Ed 62.92 MPa shear stress due to torsional moment Tt.Ed (6.2.7)

Tau,tz,Ed 40.11 MPa shear stress due to torsional moment Tt.Ed (6.2.7)

Design forces:

Verification formulas:

Section strength check:

UFS[VyT] 0.51 Tau,ty,Ed/(fy/(sqrt(3)*gM0)) (6.2.6)

UFS[VzT] 0.33 Tau,tz,Ed/(fy/(sqrt(3)*gM0)) (6.2.6)

As it can be seen, τty,Ed = 62.92 MPa which is equivalent to a utilization of 0.51 ≤

1.0 in the IPE 450 steel profile, see figure A.11, which is exactly the same as in figure

A.12, meaning Autodesk Robot does not account for warping effects.
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If Autodesk Robot did account for warping effects, the utilization in the non-

homogeneous torsion case would be, 0.51 and therefore different from the homogeneous

case.

The same statement is valid for the commercial software program FEM-Design

where two situations again were compared with respect to homogeneous torsion and non-

homogeneous torsion, and therefore the same support conditions, but the calculations yet

again ends up with the same result, respectively
TEd
TRd
= 0.81 ≤ 1.0 in figure A.13, and

the same in figure A.14 containing results from a fixed supported beam, where it again

can be concluded, nor does FEM-design account for warping effects else, as previous

mentioned, the results would be different from each other and not 0.81 ≤ 1.0 in both

cases.
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Figure A.13: FEM-Design - Detailed results - Torsionally simply supported beam
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[FEM-Design detailed results - Torsionally simply supported beam - Page 2]
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[FEM-Design detailed results - Torsionally simply supported beam - Page 3]
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[FEM-Design detailed results - Torsionally simply supported beam - Page 4]
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[FEM-Design detailed results - Fixed supported beam - Page 1]
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Figure A.14: FEM-Design - Detailed results of fixed supported beam.
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[FEM-Design detailed results - Fixed supported beam - Page 5]
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B Shell- and solid model

comparison

Despite the shell model presented in the main report, a solid model is establish and the

normal stresses are compared in order to clarify, no errors are made by neglecting the

third dimension. The results are very similar and both the shell and the solid model

results deviates from the home-made Matlab program results of the normal stresses, as

seen in figure B.1.
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Figure B.1: Comparison of normal stresses in a shell and solid model along with the home-made

Matlab program.

It should be noticed, the normal stresses from the solid model actually follows the

home-made Matlab program normal stresses in the range 0.2l − 0.7l but deviates a lot

at the fixed support and just before the free end of the cantilever beam, similar to the

shell model.
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C von Mises Criterion

The von Mises criterion is a very often used material model to describe the stress state of

metals and steel [Ottosen and Ristinmaa, 2005]. The hydrostatic stress I1 has no influence

on the yielding and a general expression for the yield criteria can be summarized as

√

3J2 − fy = 0, (C.1)

where J2 is the second deviatoric stress invariant and fy is the yield strength of steel in

uniaxial tension. In terms of principle stresses (C.1) becomes

√

1

2

(

(σ1 − σ2)
2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2
)

− fy = 0, (C.2)

or in the general case as
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2
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+ 6
(

σ 2
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2
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2
xz
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(C.3)
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D Exact Non-Homogeneous Shape

Functions

The exact shape functions describing the rotation θx (x ) throughout the beam length by

interpolating nodal values of θx, j and θ ′x, j for j = 1, 2 are:

ϕ7(x ) =
k (x − l ) sinhkl + cosh (k (l − x )) + coshkl − coshkx − 1

2 (1 − coshkl ) + kl sinhkl
(D.1a)

ϕ8(x ) =
1

k (2 (1 − coshkl ) + kl sinhkl )

((

(l − x ) k − kl coshkx − sinhkx
)

· coshkl + (coshkx + kl sinhkx − 1) sinhkl + sinhkx + kx
) (D.1b)

ϕ9(x ) =
(coshkx − 1) coshkl + (kx − sinhkx ) sinhkl − coshkx + 1

2 (1 − coshkl ) + kl sinhkl
(D.1c)

ϕ10(x ) =
1

k (2 (1 − coshkl ) + kl sinhkl )

(

(sinhkx − kx ) coshkl

+ (kl − sinhkl ) coshkx + sinhkl − sinhkx + (x − l ) k
)

(D.1d)
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