
MASTER’S THESIS IN GEOINFORMATICS
by JONAS NYGAARD PEDERSEN

SUPERVISORS:
HENNING STEN HANSEN
&
MORTEN WINTHER FUGLSANG

Department of Development and Planning

Course: Master’s Thesis

4th Semester

Project period: February 2016 - June 2016

Submission date: 15.06.2016

Line of Sight Calculation as a Service

Jonas Nygaard Pedersen
nr: 20143001

supervised by
Henning Sten Hansen

Morten Winther Fuglsang

Geoinformatics
Aalborg University Copenhagen

A.C. Meyers Vænge 15
2450 Copenhagen SV

Secretary: Trine Kort Lauridsen

Abstract
This thesis explores how visibility can be calculated as a line of sigt
between two points and then implementing this solution in a PostgreSQL
database containing raster data on elevation as a custom PL/pgSQL
function. This functionality is then published as a service that is easily
consumable by web map libraries using the WPS standard. To evaluate
the precision and performance of the product an analysis on the result
will be performed by comparing it to ortho imagery, an on-site photo,
a DEM and a 3D model.
Lastly the potential value of such a tool in a property tax environment
is examined as part of a larger modular standardised framework.

i

Contents

List of Figures v

List of Tables vi

List of Listings vii

List of Abbreviations ix

1 Introduction and Problem Statement 1
1.1 Introduction . 1
1.2 Problem Statement . 3

2 Theory 4
2.1 Standards and Their Role in the Geospatial Community 4
2.2 Web Processing Service . 5

2.2.1 OGC WPS Standard . 5
2.2.2 REST . 6
2.2.3 Key-Value Pairs Used and Data Returned 6
2.2.4 OGC WPS Data Types . 9

2.3 ZOO-Project Framework . 11
2.3.1 Kernel . 12
2.3.2 Services . 12

2.4 Data . 13
2.4.1 Raster . 13
2.4.2 Sampling . 14
2.4.3 Line of Sight Using Points . 14

2.5 Digital Elevation Models . 15
2.5.1 Collecting Data . 15
2.5.2 Generating Point Cloud from Aircraft Mounted LiDAR System . . 15

2.6 Trigonometry . 17
2.6.1 Calculating Visibility . 17
2.6.2 Compensation for Earth Curvature 20

2.7 Languages Used and Evaluated . 20
2.7.1 Python - An Interpreted Language 21

ii

2.7.2 SQL - A Language to Query Structured Data 22
2.7.3 PL/pgSQL . 26

2.8 Data Structure . 27
2.8.1 Relational Database Management System 27
2.8.2 Indexes . 28
2.8.3 Common Table Expression . 29
2.8.4 GeoJSON . 29
2.8.5 GML . 30

2.9 Housing Tax . 30

3 Methodology 31
3.1 Installing ZOO-Project WPS and Dependencies 31

3.1.1 Dependencies . 31
3.1.2 Geospatial Data Abstraction Library 33
3.1.3 GEOS . 34
3.1.4 PostgreSQL with PostGIS . 34
3.1.5 Installing the ZOO-Project Package 35

3.2 Selection and Preparation of Data . 36
3.2.1 Selection of Area for Raster Coverage 36
3.2.2 Preparation of Data . 36
3.2.3 Importing Data into PostgreSQL 38

3.3 Working in PostgreSQL/PostGIS Environment 39
3.3.1 Creating Indexes to Optimise Search Speed 40

3.4 Creating Line of Sight PL/pgSQL function 41
3.4.1 Establishing a Line String Representing the LoS 41
3.4.2 Using PostGIS Functions to Access Raster Values 42
3.4.3 Using PostGIS Functions to Calculate Earth Curvature Influence . 43
3.4.4 Adding a Z Value to the Points . 44
3.4.5 Using PostgreSQL Built-in Trigonometric Functions to Calculate

Angles to Each Point . 44
3.4.6 PostgreSQL Window Function . 46
3.4.7 Converting PostgreSQL table to GeoJSON output 48
3.4.8 Custom Functions in PostgreSQL 49

3.5 Defining the Metadata for Inputs and Outputs 50
3.5.1 The ZOO Configuration File (. zcfg) 51

3.6 Python Scripting . 53
3.6.1 Connecting to DB with Psycopg2 53

3.7 Connecting the Dots and Running the Web Processing Service 54

4 Results and Discussion 56
4.1 WPS output . 56
4.2 Evaluating Line of Sight Result . 58

4.2.1 Evaluate Line of Sight Result Against Orthoimagery 59
4.2.2 Evaluate Line of Sight Result Against Original DEM 61

iii

4.2.3 Evaluate Line of Sight Result Against 3D Model and On-Sight
Photography . 63

4.3 Performance Evaluation . 67
4.3.1 How do the Three Solutions Compare in Speed of Execution? . . . 67

4.4 Usability of Line of Sight as a Parameter in Housing Tax 69

5 Conclusion 71

Bibliography 72

iv

List of Figures

2.1 Terminology of the right-angled triangle. 18
2.2 Calculating θ at each point. 19
2.3 Visible (green) and invisible points (red). Inspired by “Extending the

Applicability of Viewsheds in Landscape Planning”(Fisher 2006) 19
2.4 Influence of earth curvature calculated using the Pythagorean theorem. . . 20
2.5 Spatial relationship between line and raster. 25
2.6 Grouping of raster cells based on closeness create a GiST index (figure

inspired by Westra 2013). 28

3.1 The relationship between distance and height to point from the start point
including the influence of earth curvature. 45

3.2 evaluated window keywords. Between unbounded preceding and 1 preceding
highlighted. 48

4.1 The physical structure and interdependencies of the WPS process. 57
4.2 The line of sight result overlaid orthoimagery. 60
4.3 The line of sight result overlaid the original DEM. 61
4.4 Slope calculation based on the DEM. 62
4.5 Measuring the height of photo lense at the line of sight start point 63
4.6 Photo taken at the start point of the line of sight calculation 64
4.7 3D View at the start point looking towards end point 65
4.8 3D view at the start point overlaid with line of sight result 66
4.9 Original photo from the point of view of the line of sight calculation start

point, superimposed onto the 3D view including the line of sight result. . . 66
4.10 Chart showing the relative speed of each line of sight service at different

distances. 68
4.11 Example of interconnected WPS to create a repeatable workflow for visi-

bility calculations from addresses to geodata features. 70

v

List of Tables

2.1 Mandatory and optional contents of OGC standards WPS GetCapabilities
document (OGC 2008) . 7

2.2 Mandatory and optional contents of OGC standards WPS DescribeProcess
document. Modified from OGC 2008 . 8

2.3 Mandatory and optional contents of the DataInputs section of the DescribeProcess
document. Modified from OGC 2008 . 8

2.4 Possible data types for OGC WPS DataInput and Outputs 9
2.5 The ComplexData type is described using this notification 9
2.6 The LiteralData type is described using this notification 10
2.7 The ExecuteResponse document is returned to the client containing the

mandatory parameters in the table along with any optional specified. . . . 11
2.8 Programming languages supported by the ZOO-Kernel and their respective

KVP data structure (Modified from footnote to zoo www). 12
2.9 A table, users, containing the names and emails of users. 23
2.10 Result of of query in listing 2.2. 23
2.11 Magazine subscriptions. 24

3.1 PostgreSQL table structure for imported raster data. The binary blobs in
the rast column have been truncated to fit. 40

4.1 The response time in milliseconds for each service at different distances
queried. 67

vi

List of Listings

2.1 A module imported, a Python function defined and dictionary defined and
used. 21

2.2 Basic SQL syntax. 22
2.3 INNER JOIN returning rows that have matching id = user_id. 24
2.4 INNER JOIN returning raster cells that are intersected by LineString. . . 25
2.5 An example of a custom PL/pgSQL function that declares a function

parameter, initiates a LOOP and uses a CASE WHEN conditional statement. 26
2.6 The output of for_loop_through_query(5) (5 as the input). 27
2.7 CTE syntax. 29
3.1 Adding PGDG repository and public encryption key. 35
3.2 Updating repository and installing the database system. 35
3.3 Output of the gdalinfo command. 37
3.4 bash script to convert raster data type. 38
3.5 Flags used when exporting . tif files into the database using raster2pgsql

and psql. 39
3.6 SQL code to create the index dhm04_ST_ConvexHull_idx on the rast

column. 41
3.7 Create a line between start point and target and add measure element. . . 42
3.8 Using st_locatealong and st_dump to get points at specified intervals

along the line. 42
3.9 Extracting values from the raster and assigning id to points based on its

position counted from the observation point. 43
3.10 Including the effect of earth curvature on elevation. 44
3.11 Adding a Z dimension to the points. 45
3.12 Calculating the angle for each point. 46
3.13 Window function to establish if angles calculated in previous CTE are

lower than any angles closer to observation point. 47
3.14 Converting table output to GeoJSON. 49
3.15 Start of custom PL/pgSQL function. 50
3.16 End of custom PL/pgSQL function. 50
3.17 Meta data on Line of Sight service. 51
3.18 Defining the startpoint parameter. 52
3.19 Defining the endpoint parameter. 52

vii

3.20 Defining the height parameter. 53
3.21 Defining the result data output. 53
3.22 Wrapping the PostgreSQL function in a thin Python wrapper. 54
4.1 GetCapabilities command sent to the WPS. 56
4.2 DescribeProcess command sent to the WPS. 57
4.3 Execute command sent to the WPS. 58

viii

List of Abbreviations

API Application Programming Interface

DEM Digital elevation model

FOSS Free and open-source Software

GEOS Geometry Engine - Open Source

GIS Geographic Information System

GML Geography Markup Language

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

KVP Key Value Pair

OGC Open Geospatial Consortium

PL/pgSQL Procedural Language/PostgreSQL

RDBMS Relational Data Base Management System

REST Representational State Transfer

SDI Spatial Data Infrastructure

SKAT Danish Tax and Customs Authorities

SQL Structured Query Language

WFS Web Feature Service

WMS Web Map Service

WMTS Web Map Tiling Service

WPS Web Processing Service

ix

WSDL Web Service Definition Language

W3C World Wide Web Consortium

XML Extensible Markup Language

x

Chapter 1

Introduction and Problem
Statement

1.1 Introduction

Working with Geographic Information Systems (GIS) is mostly a field reserved for
professionals within the GIS community. While these professionals can create content that
is consumable by laymen or share data and packages optimised for the GIS community’s
specialised software, it has not been easy for laymen themselves to do spatial analysis.
By increasing simplicity the user base of spatial analysis will increase and bring with it
new possible scenarios for the use of spatial analysis.

The Danish Customs and Tax Administration are experiencing that their methods of
valuing housing and property for the use in subsequent tax calculations are at the centre
of a heated public debate. Their current methodology is being accused of being subjective
and non-repeatable and leading to great inconsistencies in the property and housing tax
levels even within similar types of property (Drachmann 2016; Drachmann and J. Hansen
2016; Dengsøe 2015; Bang 2013).

The negative public perception of the Danish Customs and Tax Administration and
the negative trend in the publicly perceived sense of justice of the valuation results
can potentially undermine the collective national contract of equality that supports the
welfare model employed in Danish society. Undermining this model can result in greater
resistance towards participation in the model and an increased tendency towards tax
evasion.

With these issues receiving increased public attention, the Danish Customs and Tax
Administration face a possible reform of their housing and property valuation methodology,
moving from a somewhat subjective process that have resulted in the great debate on
its legitimacy, to a an objective process that includes geodata as some of the possible
parameters that influence valuation.

The previous government recognised the issues at hand and undertook an expert
hearing to formulate a new and more objective methodology for the valuation of housing
and property (Skatteministeriet 2013b). The expert hearing suggestions and findings

1

included the increased use of geodata as an objective valuation parameter and a focus on
repeatability of the calculations used (P. E. Jensen et al. 2014).

To implement these findings in a model, it is an obvious short reach to use the geodata
available from different state agencies and ministries to construct an objective model
that can process the information in a considerate fashion that respects the parameters’
influence on real life pricing.

Among these possible geodata parameters is the visibility of amenities such as forest
and coast, which are often considered premium localities, or the visibility of features such
as motorways and rail-roads, which have a negative connotation. This thesis will focus
on the visibility parameter and its possible calculation on the basis of national elevation
data and its possible usage in property tax valuation.

One way of creating such a calculation and publish it as a single task spatial analysis
package is the Open Geospatial Consortiums Web Processing Service standard (WPS),
which can be employed to create standardised (the different OGC standards are inter
connectible) geospatial processing services, where the main burden of data and analysis
processing can be located on a remote server.

Beyond offloading the burden of most of the data used for the analysis, the WPS
enables a simplified approach to spatial analysis so that the user only will need a browser
(or other WPS client, like QGIS) to do the analysis.

2

1.2 Problem Statement

The visibility of the geodata features can have an influence on property valuation, but how
should the visibility be calculated, how can such a calculation be exposed in a simple and
accessible format so that non-GIS workers can use the service and how can the visibility
calculation be incorporated into The Danish Customs and Tax Administration valuation
workflow. To answer this problem statement the following clarifying questions will be
sought answered:

Thesis Questions:

• How can a software stack capable of hosting a remote server running a spatial
processing service that is accessible from across a network be implemented?

• How can a line of sight that returns information on visibility be calculated?

• How do the proposed service perform against corporate services?

• What precision does the line of sight calculation yield compared against an on sight
investigation?

• How can a line of sight calculation be used in housing and property tax valuation?

3

Chapter 2

Theory

2.1 Standards and Their Role in the Geospatial Community

The Web Processing Service standard is one of many standards defined by the Open
Geospatial Consortium (OGC). The OGC is a non-profit organisation that is committed
to creating open standards for the geospatial community to facilitate the easy sharing of
data. Along with some proprietary formats like ESRI shape files, the OGC standards
are at the base of much of the data sharing that takes place within the community.

Beyond data sharing within the geospatial community OGC standards are prevalent
as a method of publishing geospatial data on the web in the form of several standards, of
which the most widespread are the Web Mapping Service, which is designed to retrieve
geo-registered images from a server (OGC 2006), the Web Map Tile Service that also
retrieves geo-registered images, but which are pre-rendered (OGC 2010b), Web Coverage
Service, which provides raster coverage data (OGC 2012) and Web Feature Service, which
serves features and enables querying and editing of these features (OGC 2010a). Lastly
of the OGC ’s web services is the Web Processing Service (WPS), which is used to enable
server side execution of a processing algorithm on spatial data (OGC 2008).

These standards, when adopted broadly, are effective in avoiding isolated islands of
data, which would else not be easily utilised. Allowing data to be easily utilised avoids
the expenses associated with the need to acquire new software or acquiring similar data
and facilitates the sharing of data in a way that facilitates the interoperability of data
(Steiniger and Hunter 2011).

As the implementation standards from OGC are free of royalties they have been
picked up by several software packages and web frameworks as the basis for distribution
of geospatial data(OGC 2010a; OGC 2010b; OGC 2008; OGC 2006).

This ubiquity makes the OGC standards an obvious choice as a basis for creating a
spatial data infrastructure (SDI) (Steiniger and Hunter 2011).

4

2.2 Web Processing Service

Spatial analysis has traditionally, or at least simultaneously with the rise of the digital age,
been done using desktop class geographical information systems (GIS)(Matt Duckham
and Worboys 2007). The use of these have primarily been in the realm of a small group
of GIS specialists, to an extent excluding the layman.

These software packages have been characterised by being expensive excluding even
further, the practise of spatial analysis to a small subset of professionals. The advent of
Free and Open Source Software (FOSS) has to some extent alleviated this problem, but
usability, installation issues and complexity still prevails within the community and the
software on which it depends.

With the advent of the web and subsequently web standards the possibilities of
integrating hitherto desktop bound spatial analyses in to a web framework has increased
(Matt Duckham and Worboys 2007). Development within JavaScript mapping libraries
and map sources helped along by the standards defined by OGC creating standards like
Web Mapping Service (WMS) (OGC 2006), Web Mapping Tile Service (WMTS) (OGC
2010b), Web Feature Service (WFS) (OGC 2010a) and the subject of this thesis, the Web
Processing Service (WPS).

The line of sight service product, which is one of the goals of this thesis, runs within
the ZOO-Project WPS framework (ZOO-Project team 2016). Like PyWPS (PyWPS
2016), 52◦North WPS (52◦ North GmbH 2016) and GeoServer (Open Source Geospatial
Foundation 2016), ZOO-Project WPS is a framework that enables spatial processing to
be handled as a remote process according to the previously presented OGC standard
(OGC 2008).

2.2.1 OGC WPS Standard

In the following section the focus will be on the OGC WPS standard version 1.0.0 and
the ZOO-Project WPS framework, which is an implementation of the OGC standard
(ZOO-Project WPS also supports version 2.0.0, but this version will not be used and will
not covered any further).

The WPS processes can be designed to call other web services of the OGC flavour
and thus it can act as a processing engine that can drive an analysis work flow. These
processes are made discoverable through a series of commands that can be sent to the
server. With the command GetCapabilities returning an overview of the of the different
services that are available at the server and also additional information on keywords, title,
the name of the provider and physical address.

The available processes each have an unique id, which in turn can be queried through
the use of the DescribeProcess command. This returns the meta data defined for the
specific process including the needed input(s), format of the input(s) and the format of
the output(s). Both the GetCapabilities and the DescribeProcess commands returns a
human readable meta data document in the XML format (OGC 2008).

The WPS standard supports the use of a multitude of protocols for communication
between user and server, among them the Web Service Description Language (WSDL)

5

and SOAP (Previously known as Simple Object Access Protocol) (Fu and Sun 2011).
These two methods will not be investigated further as they will not be utilised in the
subsequent WPS product.

2.2.2 REST

Instead of using the WSDL or SOAP protocol, communication between user and server is
done through the Representational State Transfer (REST) protocol using a http GET
transfer. Where the WDSL and SOAP protocols wrap requests and responses in a SOAP
XML wrapper, REST is designed to transmit information over http without the XML
wrapper that SOAP needs. This is done by sending the command as a URL, which can
be read by the server. This URL contains the different parameters that the service or
process supports in a Key-Value Pair (KVP) format separated by the & symbol (Fu and
Sun 2011; OGC 2008).

2.2.3 Key-Value Pairs Used and Data Returned

The following is a theoretic walk-through of the key-value pairs used by the WPS set up
as the product of this thesis. As these KVPs are of the nested type, the total depth and
subsequent complexity of the explanation is outside the scope of this thesis. Instead I will
focus only on the KVP parameters that are absolutely relevant for the end product. For
a total description of the OGC WPS standard I refer to the official standard from OGC 1.

The mandatory GetCapababilites request has to be combined with the service key
containing the value of the service type, in this case WPS. If other OGC services are
present on the server, their GetCapabilities documents can be accessed by specifying their
service value (WMS, WMTS, etc.).

Optionally the keys AcceptVersions (filtering processes by which WPS version they
support) and language (Specifying the return language of the GetCapabilities document)
can be included in the REST payload of the URL if supported by the server.

When receiving the GetCapabilities request from the user, the server returns an XML
document containing the mandatory and supported optional sections shown in table 2.1.
Each of these sections can contain further nested KVP, e.g. the Operation Metadata
section provides information on which request type are implemented by the server and
the section Process Offerings section provide the identity and a brief description of the
processes offered (OGC 2008).

Table 2.2 shows the mandatory and optional sections returned by the DescribeProcess
command, which can be combined with any process identifier available from the GetCapabilities
return. Like the GetCapabilities return each section can contain several nested properties.

The DataInputs section (see table 2.3) contains the identifier of each input used as the
key in the REST payload of the URL as well as the number of occurrences of the inputs.
The InputFormChoice refers to the data type(s) supported by each input as described in
the next section.

1http://www.opengeospatial.org/standards/wps

6

http://www.opengeospatial.org/standards/wps

Name Definition Data type and value Multiplicity
and use

service Service Identifier Character String type, not
empty, Shall contain WPS One (mandatory)

version Specification version for
operation

Character String type, not
empty, Shall contain 1.0.0 One (mandatory)

update sequence

Service metadata document version, having values that
are "increased" whenever
any change is made in
service metadata
document.

Character String type, not empty.
Values are selected by each
server implementation.

Zero or One (optional)

lang Language Identifier

Character string type, not
empty
RFC4646 language code of the
human readable text

One (mandatory)

Service
Identification

Metadata about this specific
server.

The schema of this section
shall be the same as for all
OWSs, as specified in
Subclause 7.4.4 and
owsServiceIdentification.xsd
of [OGC 06-121r3].

One (mandatory)

Service
Provider

Metadata about the
organization operating this
server.

The schema of this section
shall be the same for all
OWSs, as specified in
Subclause 7.4.5 and
owsServiceProvider.xsd of
[OGC 06-121r3].

One
(mandatory)

Operations
Metadata

Metadata about the operations specified by this service
and implemented by this server, including the
URLs for operation
requests.

The basic contents and
organization of this section
shall be almost the same as
for all OWSs, as specified inSubclause 7.4.6 and
owsOperationsMetadata.xsd
of [OGC 06-121r3], modified
as specified in subclause
8.3.2 below.

One
(mandatory)

Process
Offerings

Unordered list of brief
descriptions of the
processes offered by the
server

ProcessOfferings data
structure, see subclause 8.3.3
below.

One
(mandatory)

Languages Languages supported by the
server

Languages data structure, see
subclause 8.3.4 below.

One
(mandatory)

WSDL

Location of a WSDL
document describing all
operations and processes
offered by the server

WSDL data structure, see
subclause 8.3.5 below.

Zero or One
(optional)

Table 2.1: Mandatory and optional contents of OGC standards WPS GetCapabilities
document (OGC 2008)

7

Name Definition Data type and values Multiplicity and use

Identifier Server unique process identifier ows:CodeType One (mandatory)

Title Process title Character string type One (mandatory)

Abstract Abstract description Character string type Zero or one (optional)

Metadata Metadata on process ows:Metadata Zero or more (optional)

Profile URN type. E.g OGC:WPS:somename Zero or more (optional)

processVersion Version of the process ows:VersionType One (mandatory)

WSDL
Location of a WSDL
document that describes
this process

WSDL data structure Zero or one (optional)

DataInputs
List of the required and
optional inputs to this
process

DataInputs data Zero or one (optional)

ProcessOutputs
List of the required and
optional outputs from
executing this process

ProcessOutputs data One (mandatory)

storeSupported
Indicates if complex data output(s)
from this process can stored by
the WPS server as web-accessible resources

Boolean type Zero or one (optional)

statusSupported
Indicates if Execute operation
response can be returned quickly
with status information

Boolean type Zero or one (optional)

Table 2.2: Mandatory and optional contents of OGC standards WPS DescribeProcess
document. Modified from OGC 2008

Name Definition Data type and values Multiplicity and use

Identifier Process unique identifier ows:CodeType One (mandatory)

Title Title of process Character string type One (mandatory)

Abstract Abstract describing process Character string type Zero or one (optional)

minOccurs

Minimum number of times
that
values for this parameter are
required

non-negative integer type One (mandatory)

maxOccurs
Maximum number of times
that
this parameter may be present

positive integer type One (mandatory)

Metadata Reference to more metadata about
this input ows:Metadata Zero or more

(optional)

InputForm
Choice

Identifies the type of this input,
and provides supporting information

InputFormChoice data
structure One (mandatory)

Table 2.3: Mandatory and optional contents of the DataInputs section of the
DescribeProcess document. Modified from OGC 2008

8

2.2.4 OGC WPS Data Types

The OGC WPS standard for data inputs supports three general types of data inputs,
which can be seen in table 2.4. The product developed in tandem with this thesis only
uses the ComplexData and LiteralData types, so only those two will be described in the
following.

Name Definition Data type and values Multiplicity and use

ComplexData

Indicates that this
input shall be a complex
data structure
(such as a GML fragment),
and provides lists of formats,
encodings, and schemas supported

See table XX for Data structure for ComplexData

Zero or one
(conditional).
Only one of these
shall be included

LiteralData

Indicates that this input
shall be a simple literal
value (such as an integer)
that is embedded in the
execute request, and describes
the possible values

See table XX for Data structure for LiteralData
Zero or one(conditional).
Only one of these
shall be included

BoundingBoxData

Indicates that this input shall
be a BoundingBox
data structure that is embedded
in execute request,
and provides a list of the
CRSs supported in these Bounding Boxes

No further description of BoundingBoxData
as it is not used further

Zero or one(conditional).
Only one of these
shall be included

Table 2.4: Possible data types for OGC WPS DataInput and Outputs

ComplexData The ComplexData type is designed to contain data of a more complex
nature than the LiteralData described later. ComplexData covers data types such as
image types like .png, geospatial data formatted as GML or GeoJSON and all other
formats that are supported by the MIME internet protocol (Klensin, T. Hansen, and
Freed 2013).

Name Definition Data type and values Multiplicity and use

MimeType Format for process input
or output

Character String type,
not empty One (mandatory)

Encoding Encoding for process input
or output URI type Zero or one (optional)

Schema Schema document for
process input or output URI type

Zero or one (optional)
Include when encoded
usingXML schema

Table 2.5: The ComplexData type is described using this notification

The structure of the ComplexData section is shown in table 2.5. Here the MimeType
refers to the format which is covered by the MIME internet protocol (Klensin, T. Hansen,

9

and Freed 2013), the Encoding refers to the character encoding that text input must be
in, and Schema refers to XML encoding schema used when the input is encoded as such.

The ComplexData data type can used as both the default format or the supported.
This enables a process to accept arbitrary number of formats as inputs or outputs. Lastly
the ComplexData type can be assigned a maximumMegabytes value, which limits the
size of the input to an integer value representing megabytes.

LiteralData The LiteralData type is designed to contain simple data types like integers,
floats, character string, dates and other types represented in the World Wide Web
Consortium(W3 n.d.) (W3C) XML Schema language standards specification (OGC 2008).

Name Definition Data type and values Multiplicity and use

DataType Data Type of this output (or
input) ows:DataType type Zero or one (optional)

UOMs

List of units of measure
supported
for this numerical
output (or input)

Units of Measure Zero or one (optional)

LiteralValues
Choices

Identifies type of literal input
and provides supporting
information

AllowedValuesAnyValue
ValuesReference One (mandatory)

DefaultValue Default value of this input CharacterString, not
empty Zero or one (optional)

Table 2.6: The LiteralData type is described using this notification

The data structure of a LiteralData input as described in the WPS standard (OGC
2008) can be seen in table 2.6. The DataType refers to the simple data types represented
in the W3C XML Schema language standards specification, the UOMs refer to the units
of measure supported for the input, the LiteralValues refer to which values in the form of
a range, maximum or minimum can be accepted or if any value will work, and DefaltValue
refer to an optional default value of the input.

Analogue to the DataInputs section, the Outputs section specifies an Identifier for the
result, a title, an optional abstract, a optional metadata value, and an OutputFormChoice,
which like the specifications for DataInputs in table 2.4 can contain either ComplexData,
LiteralData or BoundingBox data, all with the same nested possible data types available
as DataInputs.

Using GetCapabilities and DescribeProcess then returns the information needed to
formulate an URL with a REST payload to request an Execute command for the wanted
process. The Execute command is the last of the mandatory commands that the WPS
should be able to handle (OGC 2008). The Execute command is used to run a specific
process from the WPS by the client. Specifying the inputs along with other mandatory
and optional parameters in an URL with REST is very similar to the DescribeProcess
command parameters listed in table 2.2 (OGC 2008).

10

As a result of the Execute command, the WPS then returns a ExecuteResponse XML
document containing the mandatory parameters along with any specified optionals as
shown in table 2.7.

Name Definition Data type and values Multiplicity and use

service Service Identifier Shall contain ’WPS’ One (mandatory)

version Specification version for
operation Version of WPS standard One (mandatory)

lang Language identifier RFC4646 language code of
the human readable text One (mandatory)

statusLocation

location
where current
ExecuteResponse
document is stored

URL type

Zero or one (optional)
Include when
storeExecuteResponse=
TRUE

serviceInstance

GetCapabilities URL of
the
WPS service which
was invoked

URL type One (mandatory)

Process Process description Compressed DescribeProcess
KVP One (mandatory)

Status Execution status of this
process

Created time, Accepted,
Started, Paused, Succeeded,
and failed

Except for Created time,
only one can be present

DataInputs List of inputs provided to
this process execution

DataInputs data structure,
see table 2.4

Zero or one (optional)
Include if lineage=TRUE

OutputDefinitions
List of definitions of
outputs desired from
executing this process

OutputDefinitions
see table

Zero or one (optional)
Include if lineage=TRUE

ProcessOutputs List of values of outputs
from process execution

ProcessOutputs
see table 2.4

Zero or one (optional)
Include when process
execution succeeded

Table 2.7: The ExecuteResponse document is returned to the client containing the
mandatory parameters in the table along with any optional specified.

In the following section I will present the ZOO-Project framework and outline its
functionality, specialities and stand-out features.

2.3 ZOO-Project Framework

The ZOO-Project framework is an open source implementation of the previously described
OGC WPS standard. The implementation relies on three components, the ZOO-Kernel,
the ZOO-Services (these are what in the OGC WPS standard is called processes) running
on the kernel and the ZOO API, which is used for chaining of WPS processes.

11

2.3.1 Kernel

The ZOO-Kernel is a WPS server programmed in the C language running as a CGI
program on top of a web server like Apache. The kernel takes inputs in the request form
standardised by the OGC WPS standard described in section 2.2.1 as well as returns
outputs conforming to the same standard.

The ZOO-Project stands out from many other WPS implementations by being a
polyglot supporting processes written in multiple programming languages2 as seen in
table 2.8 (Evangelidis et al. 2014).

Language DataStructure

C / C++ maps* M

Java HashMap

Python Dictionary

PHP Array

Perl Not defined

Ruby Hash

Fortran CHARACTER*(1024) M(10,30)

JavaScript Object or Array

Table 2.8: Programming languages supported by the ZOO-Kernel and their respective
KVP data structure (Modified from footnote to zoo www).

The ZOO-Kernel is configured using a main.cfg configuration file where options for
the WPS, such as version, encoding, language, provider data, WPS title and abstract,
along with more technical details such as directory paths to temporary file storage (used
when storage of an Execute response is requested), the URL to access temporary files,
and the server address, which is the URL to the ZOO-Kernel instance (Fenoy, Bozon,
and Raghavan 2012).

The main section also allows for optional configuration of the kernel to access
MapServer instance, Cross origin resource sharing, and database connection to responses.

2.3.2 Services

ZOO-Services are what in OGC standard terms is coined a process. In all further
descriptions I will refer to OGC processes as services, when in the context of the ZOO-
Project.

These services connects through the ZOO-Kernel, which handles the parsing of user
defined inputs and the return of XML response including the process result data (Fenoy,

2http://zoo-project.org/doc/_build/html/kernel/what.html

12

http://zoo-project.org/doc/_build/html/kernel/what.html

Bozon, and Raghavan 2012).
A service can utilise any of the supported programming languages represented in table

2.8 and consists of a . zcfg ZOO-Service configuration file, and the source code of the
service in one of the supported languages.

The . zcfg file consist of three different sections;

• A main section, containing values corresponding to table 2.2 as in the OGC stan-
dard, a serviceType key holding the used to implement the service, and also a
serviceProvider key holding the file name of the source code without the extension

• A list of inputs and their metadata, corresponding the OGC standard in table 2.3 ,
which which further holds the optional data type values as described in table 2.4.
For ComplexData these will hold parameters seen in table 2.5 and for LiteralData
they will hold the parameters as seen in table 2.6

• The output section is analogue to the inputs section and contains the relevant
parameters for the chosen data types

The main section contains the identifier of the service in [square brackets] as the very
first line, which must also be the name of the function inside the source code. This way
the source code can contain the functionality of several services, each with their own
. zcfg file associated.

Likewise each input and output also has an identifier cast in square brackets. All the
identifiers are used by the ZOO-Kernel to construct a KVP data structure in the format
corresponding to the services programming language (see table 2.8) with the identifiers as
key and the client defined inputs stored as values nested in a key [value] a level below.
The output value is assigned to a key in the data structure of the language source code
function.

This value is then served back to the client wrapped in a XML, ExecuteResponse,
document which contains information on the time of execution, the executed process,
location of the ZOO-Kernel CGI, execution status and the process outputs, all according
to the OGC specification for the ExecuteResponse document as seen in table 2.7.

2.4 Data

This section will introduce the data used to calculate the line of sight, how it was used
and the output data that is the result.

2.4.1 Raster

The DEM, which is at the base of all analysis performed in the product of this thesis, is a
raster acquired from download.kortforsyningen.dk. A raster is a matrix structure, where
each cell holds a value, usually used to convey images. In the context of GIS, a raster
is usually a georeferenced raster matrix, where the pixels in the raster are defined in a
spatial reference system (Matt Duckham and Worboys 2007).

13

Georeferenced rasters often include more than one band, each representing a specific
data type, which overlaps. The Danish Height Model (DHM) is a DEM, which holds just
one band containing a height value for each pixel.

The height values are stored as 32 bit floating point numbers, a data type that can
hold numbers in the range 10±38 and 6 to 9 significant decimal places (Higham 1996).
This range and precision is also used when doing calculations on the values.

Later the data type will be transformed into 16 bit signed integer that can hold
integers in the range −1x215 = −32, 768 to 215 − 1 = 32, 767 for faster calculations
(Higham 1996).

The overall raster can be divided into smaller raster called tiles. This is done to
increase the speed of operations involving the rasters, so that a filter can be applied that
selects only the relevant tiles (Regina O Obe 2015).

2.4.2 Sampling

From the georeferenced raster a sampling strategy needs to be employed that samples at
both a detailed rate to ensure as good a fit as possible, as well as having a service that
performs well. As each pixel is a 0.4 by 0.4 meter square, a sample every 0.4 meters is
the maximum sampling frequency considered. To ensure the performance of the service,
a frequency of one sample per 1 meter is considered ’good enough’ detail wise and good
for performance.

2.4.3 Line of Sight Using Points

As this service is envisioned as an official housing tax variable, the primary objective is a
simple browser based tool to enable the quantification of the view at a specific location
and height. A few web based line of sight tools that utilise the DHM exists already all
of which are vector end products created by polling an underlying DEM at set intervals,
determining the visibility of the specific point and then connecting the points with lines
that are supposed to represent an uninterrupted line of sight.3

This methodology creates a good looking result of an uninterrupted line, which
indicates that the visibility is determined continuously along the line, but as mentioned
above, this is not the case. Depending on how often the underlying DEM is sampled,
there is a significant potential for height variations between the sampling points.

The solution chosen by Sweco and Septima, which assumes continuous visibility until
the next point on the line is evaluated, is problematic in a taxation context. That is
why the service product at the centre of this thesis will not assume anything about the
heights and visibility of any locations not sampled and will thus not aggregate point data
together into line strings.

3Septima documentation: http://labs.septima.dk/sigt/info.html. Conversations with developers
at Sweco confirms that they also poll.

14

http://labs.septima.dk/sigt/info.html

2.5 Digital Elevation Models

To construct the raster which is used for the line of sight calculations (in this case
the Danish Height Model), various kinds of original data like contour lines (e.g. from
pre-digital maps), photogrammetry, Interferiometric Synthetic Aperture Radar and Light
Detection and Ranging (LiDAR) (J. R. Jensen 2007) can be coerced into the raster
format.

In the subsequent sections a description of how a DEM is created from initial LiDAR
data to final raster is provided. This transformation of LiDAR point cloud to a DEM
georeferenced raster is analogue to the creation of the DHM (Geodatastyrelsen 2015a;
Geodatastyrelsen 2015b).

2.5.1 Collecting Data

The LiDAR system consists of the following components and excludes the software needed
later for interpretation and post-processing of the data

• A laser, used to emit pulses of light

• Scanning mirror optics, a rotating mirror that reflects the emitted light pulse in a
perpendicular-angle pattern to the flight direction

• A receiver, which records the return time and intensity of the return signal generated
by the emitted pulse

• Differential Global Positioning System (DGPS), a highly accurate GPS to record
the exact position of the laser

• A Inertial Measurement Unit (IMU), which is used to record the absolute orientation
of the laser for each emitted pulse (J. R. Jensen 2007; Charaniya, Manduchi, and
Lodha 2004; Koukoulas and Blackburn 2005)

For a national DEM like the DHM covering a large area, the most viable solution is to
mount the LiDAR system on an aircraft to be able to cover the total area extent within
the given time-frame of two years (Geodatastyrelsen 2015b).

2.5.2 Generating Point Cloud from Aircraft Mounted LiDAR System

To employ the LiDAR system on an aircraft, various parameters needs to be considered for
both the actual sensors and the aircraft. In the following a walk-through of the involved
parameters on the final data collection will be presented.

The emitted pulses are used to measure the height of the area that they hit. This is
done by measuring the time it takes for a pulse to return to the receiver. The return time
relates to the range as shown in equation 2.1

t = 2
R

c
(2.1)

15

where t is the time it takes for the pulse to travel from the laser and back to the
receiver, R is the range from the transmitter to the surface and c is the speed of light.
From this equation R can be determined as in equation 2.2

R =
1

2
tc (2.2)

The area scanned for each emitted pulse is an approximate circle, which is deformed
according to the angle between the point on the surface surveyed and the perpendicular
line from the surface to the aircraft. The diameter (Fpinst) of this approximate circle can
be determined from equation 2.3

Fpinst =
h

cos2(θinst)
γ (2.3)

where h is the height of laser above the surface, θinst is the scan angle, and γ is the
divergence of the laser beam.

The specifications of the rotating scanning mirror determines which angular coverage
perpendicular to the flight path the emitted pulses cover. The metric coverage on the
surveyed surface or swath (sw) can be determined by equation 2.4 as

sw = 2h tan
θ

2
(2.4)

where h is the aircraft’s altitude above the ground and θ is the effective angular
coverage of the rotating scanning mirror.

The perpendicular resolution or space between the pulses when hitting the surface
perpendicular to the flight path is determined by the pulses per second frequency (PS),
the aircraft’s height above the surface h, the instantaneous angular scanning speed in
radians per second (αinst), and the instantaneous scan angle (θinst) as in equation 2.5

perpendicular resolution =
h

cos2(θinst)
× αinst

PS
(2.5)

The resolution along the flight path is determined by the ground speed (v) of the
aircraft and the time used for one perpendicular line scan (tsc) as in equation 2.6

along resolution = vtsc (2.6)

Together the perpendicular and along path resolutions determines the density of the
point cloud that is generated from the system. All the above equations are inspired by
the work in (Wehr and Lohr 1999; J. R. Jensen 2007; Koukoulas and Blackburn 2005).

Individual Georeferencing To ensure the accuracy of the range calculation for the
emitted pulse, each of them is georeferenced according to the the data from the IMU
and the DGPS systems. The IMU determines the roll, pitch and heading of the aircraft,
so that the direction of each pulse can be determined with a high degree of accuracy.
The orientation information is combined with the the x, y, z location of the aircraft as

16

determined using DGPS. The DGPS works by having a ground based GPS station, which
location has been surveyed to a very high precision, and a GPS mounted on the aircraft.
As the ground based GPS station has been surveyed independently from the GPS, the
difference between the GPS signal and the surveyed position can be subtracted from the
aircraft mounted GPS position. This process increases the precision of the signal to < 5
cm (Wehr and Lohr 1999; J. R. Jensen 2007).

LiDAR Returns Each pulse emitted by the LiDAR system creates a return when it
hits the ground and it is not necessarily a 1:1 ration between emitted pulse and returns.
When a pulse hits a surface it interacts with the surface on an area sw as described
in equation 2.4. If this area is completely flat, only one signal from the pulse will be
returned, but if the sw area is a heterogeneous collection of angled surfaces like a tree
canopy, the emitted signal will generate multiple return signals. In LiDAR terminology
these returns are numbered according to the return timing of the signal, so that the first
return (in this example the top of the canopy) is marked as the first return, there can
subsequently be several levels of returns, each time another object is hit by the sw area.
The last return signal will be the actual terrain.

From these multiple returns signal levels a terrain model can be put together from the
1st and 2end returns and a surface model including all features can be generated from
the last returns (J. R. Jensen 2007).

From Point Cloud to Raster Creating a raster surface model from the 1st and 2end
returns collected in the point cloud, can be done by interpolating from the points using the
x, y, z information that each point contain. Common methods used for the interpolation
is the Inverse Distance Weighting (IDW) that assigns a weight to points based on their
proximity to the currently evaluated point, natural neighbour that is based on Voronoi
polygons and nearest neighbour that simply takes the value of the closest ’real’ measured
point (Bater and Coops 2009; Guo et al. 2010).

2.6 Trigonometry

The issues of calculating visibility and compensating for the curvature of earth when
calculating visibility, can both be solved in the realm of trigonometry and specifically the
domain of the right-angled triangle.

Below I will account for the theory behind calculating visibility by an angular rela-
tionship and the influence of distance from the line of sight start point on the effect of
earth curvature.

2.6.1 Calculating Visibility

Determining visibility for a target point has to account for the height and distance related
to the original observation point of all points that are between the original point of
observation and the target.

17

To account for these factors the problem is reduced to a trigonometry issue, where
the angle at the vertex created by the hypotenuse and adjacent in a right angled triangle
created by difference in observation and target height and distance to point is calculated
for each point (see figure 2.1) (Young 2012; Haverkort, Toma, and Zhuang 2009; Fisher
1993).

Figure 2.1: Terminology of the right-angled triangle.

To calculate the angle at the vertex, the trigonometry functions describing a right-
angled triangle is used. For the specific vertex where hypotenuse and adjacent meet, the
tangent to the angle is equal to the relationship between the opposite and adjacent sides
in the right-angled triangle as in equation 2.7:

tan θ =
opposite

adjacent
(2.7)

By using the inverted function arctan on the relationship as in equation 2.8 θ can be
determined.

θ = arctan

(
opposite

adjacent

)
(2.8)

As can be seen from figure 2.2 each sampled point along the line of sight (id1 - idn)
has the angle θ calculated using the trigonometry relationship in equation 2.8.

On the same figure it can also be seen that the θ angle for id9 is apparently smaller
than the θ for idn, but point idn is obviously still not visible. This is because θ calculated
to points that are below the initial observation point has a negative angle, so while θ gets
more obtuse while the target point moves further below the initial observation point, the
numeric value gets smaller as the negative number goes higher.

After calculating θ, determining the visibility is a matter of evaluating if any point,
which is closer to the original observation point, has a higher angle than the evaluated
point, and if this is the case, then the point is not visible as the line of sight is blocked by
one or more points (see figure 2.3) (Haverkort, Toma, and Zhuang 2009; Fisher 1993).

18

Figure 2.2: Calculating θ at each point.

Figure 2.3: Visible (green) and invisible points (red). Inspired by “Extending the
Applicability of Viewsheds in Landscape Planning”(Fisher 2006)

19

2.6.2 Compensation for Earth Curvature

As the line of sight calculation is done across the surface of the earth, the influence of
the curvature of the earth surface increases exponentially as a function of distance (if the
earth is thought of as completely round any ways). To compensate for the earth curvature
when calculating visibility the curvature effect at each point is subtracted from the point
height. The influence is visualised in figure 2.4.

Figure 2.4: Influence of earth curvature calculated using the Pythagorean theorem.

The right-angled triangle is formed by the distance (x), the earth radius (R) and
R+ δ. The δ can be calculated using the Pythagorean theorem as seen in equation 2.9
(Young 2012; Sullivan 2011).

(R+ δ)2 = R2 + x2 ⇒ δ =
√
R2 + x2 −R (2.9)

The calculated effect is subtracted from the height of all points.

2.7 Languages Used and Evaluated

Programming languages are designed to interact with the underlying hardware and
operating system and they do this at different levels of abstraction to the underlying
hardware. Low-level languages such as machine language interacts directly with the
hardware, and can be incredibly fast at execution time, but be equally incredible slow to
write and interpret as a human, also machine language can not easily be transferred to
other machines.

Higher-level languages such as Python, Java and C sacrifice some of the speed of
execution to enhance readability and writability. The high-level languages relates to
the hardware through several abstraction layers, where the shared common is the bare
hardware, the operating system and on top of that often a compiler and even a virtual
machine. At each step from the initial source code until execution on the hardware, the
code gets transformed into code readable by the abstraction layer below (Sebesta 2015).

20

While an actual functionality walk-through of the different languages introduced in
this section is beyond the scope of this thesis, an overview of the general design principles
and syntax will be provided along with some of the terms used.

2.7.1 Python - An Interpreted Language

Python is a relatively recent object-oriented interpreted scripting language. As opposed
to Java, which is a compiled language, the interpreted nature of Python means that the
source code is interpreted at execution time. In some cases this leads to slower execution
compared to compiled languages.

On the other hand, the fact that the source code is not compiled means that for the
programmer can iterate on code faster and smother as their is no time consuming compile
time (Sebesta 2015; Westra 2013).

Python also features an extension interface, that makes it easy to extend the function-
ality of the core language. This is done by importing external modules.

In this thesis only few of the Python languages functionality will be used. The most
important will be presented below.

1 import json
2

3 def chili_properties(chilies):
4 print("\n\nChili’s and their strength:")
5 for plant, strength in chilies.items():
6 print("\nPlant: %s" % plant)
7 print("Strength: %s" % strength)
8

9

10 chilies = {’Bhut jolokia’: ’1.58M SHU’,
11 ’Naga Viper’: ’1.4M SHU’,
12 ’Carolina Reaper’: ’2.2M SHU’,}
13

14 chili_properties(chilies)
15

16 how_hot_is_this_chili = "\nThe Bhut jolokia is " + chilies[’Bhut jolokia’] + " strong!"
17

18 print(how_hot_is_this_chili)
19

20 print("\nJSON formated chilies\n" + json.dumps(chilies, sort_keys=True, indent=4,
separators=(’,’, ’: ’)))↪→

Listing 2.1: A module imported, a Python function defined and dictionary defined and
used.

In the thesis product Python will act as a mean of communication between the ZOO-
Project framework and the PostgreSQL database. This involves importing modules for
non-core functionality, the use of dictionaries to hold and input data to the ZOO-Kernel
and the format of the Python code. Listing 2.1 is used in the following to illustrate these
pythonic concepts.

21

Custom Function When creating a Python WPS process the ZOO-Kernel expects
that the source code contains a custom function with the same name as the the as the
serviceProvider parameter in the corresponding . zcfg file. A function is a block of code
that is easy to reuse when called again and as such facilitates the reuse of code (the
“Don’t Repeat Yourself” principle) (Herman 2013).

A function is prefixed in the header by the reserved keyword def, then follows the
function name and a parameter list in parenthesis. The naming and number of parameters
in the function has to correspond to the inputs used in the body of the function. In
listing 2.1 the function chili_properties is defined, which takes exactly one argument as
parameter, the variable chilies . The function header is ended with a :.

Below the header, the body is indented two spaces and the chilies parameter is the
only parameter referenced.

Dictionaries The dictionary type is a simplified database structure, that associates
any data with a look-up value, called a key. The dictionary syntax uses {} to encapsulate
the structure, inside the keys are quoted in ’’ and are on the left of the :, and the value
is on the right (see listing 2.1, where the chilies variable holds the dictionary referenced
in the function) (Herman 2013).

Specific data contained under a key is accessed by the name of the variable holding
the dictionary followed by the key in angle-brackets as in line 16 of listing 2.1.

The dictionary type is the pythonic way to define KVPs.

Modules In Python modules are used to extend the functionality (adding extra func-
tions) of the core language. On line 1 in listing 2.1 a module is imported using the syntax
import module_name. This module then provides the function json.dumps, which is
used to transform the chilies dictionary into a JSON formatted string.

2.7.2 SQL - A Language to Query Structured Data

As opposed to the two other programming languages described, Structured Query Lan-
guage (SQL), is used to express programs using symbolic logic to derive a result. Whereas
the two other languages could be described as procedural, the SQL language is declarative
as in the programmer specifies the parameters that the result must comply to. When
using such a program the user asks a question, which the program attempts to answer by
regarding the previously mentioned parameters as a set of rules and facts (Sebesta 2015).

As such the program does not exactly state how the result is to be computed but
instead describe the form of the result. It is the job of the RDBMS’s query planner to
decide to decide the most efficient plan to obtain the requested result.

1 SELECT email FROM users WHERE name = ’Billy’;

Listing 2.2: Basic SQL syntax.

22

users
id email name
1 metus.In@Donecest.org Troy
2 montes.nascetur@lacusQuisque.com Billy
3 nisi.nibh@dui.com Billy
4 mus@pellentesquemassalobortis.com Tove
5 commodo@gravida.ca Rune

Table 2.9: A table, users, containing the names and emails of users.

To query a table relation like the one in table 2.9, a set of specific parameters and
rules can be set up that a result would have to fulfil, e.g show all email addresses for
users named Billy would, in SQL syntax4, be written as in listing 2.2

where SELECT email denotes the column, FROM users the table, and the filter
WHERE name = ’Billy’ denotes rows that fulfil the condition that the value under name
must be ’Billy’. The output of this query is shown in table 2.10. Note that information
on the name associated with the email address was not requested, so only the email value
is returned.

email
montes.nascetur@lacusQuisque.com
nisi.nibh@dui.com

Table 2.10: Result of of query in listing 2.2.

Queries can also be expanded to create new relations that include more than one
table by joining them together on a common key. Table 2.11 contains publications that
the users from table 2.9 subscribes to. The common key between these two table is the
column id from the user table and the column user_id from the subscription table (Date
2015).

To utilise this common key when querying the data a join between the two table
relations can be made. In listing 2.3 an INNER JOIN that combines the two tables based
on equal values in the id and user_id columns is created.

The INNER JOIN is used to return a new relations table consisting of all rows that
share the common key, in this case the condition u.id = s.user_id.

The INNER JOIN is just one of many join types used to query table relations.
LEFT JOIN returns all rows from the left table in the query and the rows from the right
that match the common key. RIGHT JOIN is the mirror join of the LEFT JOIN. The
FULL OUTER JOIN returns all rows from both table relations, but only combine rows
where there is a matching key (Beaulieu 2009).

4In the following PostgreSQL specific SQL is used, which conforms very close to the ISO/IEC 9075
"Database Language SQL" standard (Dar et al. 2015)

23

subscription
id user_id magazine
1 2 Luctus Ut Pellentesque Magazine
2 2 Porttitor Interdum News
3 1 Non Enim Commodo Limited
4 2 Eu Accumsan Daily
5 3 Cras Lorem Lorem Update

Table 2.11: Magazine subscriptions.

SELECT name, email, magazine FROM users u INNER JOIN subscription s ON u.id =
s.user_id;↪→

Listing 2.3: INNER JOIN returning rows that have matching id = user_id.

Extending the traditional capabilities of the PostgreSQL RDBMS, spatial data can
be be stored and queried using the PostGIS extension. Analogue to the above queries,
spatial data can be queried in a similar manner to traditional table relations.

24

Querying the relationship between a line string and a raster to return only raster cells
that are intersected by the line string can be done with an INNER JOIN in a similar
fashion as the example in listing 2.3. If the raster is table raster and the raster cells are
rows, rast and the linestring it table line and the geometry is row geom (respectively
grid and red line in figure 2.5), then returning the raster cells that are intersected by the
line is done using the SQL in listing 2.4.

Figure 2.5: Spatial relationship between line and raster.

SELECT rast FROM rasters r INNER JOIN line l ON ST_Intersects(r.rast, l.geom);

Listing 2.4: INNER JOIN returning raster cells that are intersected by LineString.

The result of this query is the raster cells or rows rast marked in figure 2.5 with the
thick outline.

25

2.7.3 PL/pgSQL

As the standard PostgreSQL SQL is not a procedural but a declarative language the
traditional flow control statements LOOP, WHILE, FOR and FOREACH are not avail-
able. Instead of including these directly in the SQL, PostgreSQL includes a procedural
programming language, PL/pgSQL, that, in practice, extend the declarative SQL language
with a procedural part5 (Dar et al. 2015).

1 CREATE OR REPLACE FUNCTION public.for_loop_through_query(n integer DEFAULT 10)
2 RETURNS void
3 LANGUAGE plpgsql
4 AS $function$
5 DECLARE
6 rec RECORD;
7 BEGIN
8 FOR rec in SELECT name
9 FROM users

10 ORDER BY name
11 LIMIT n
12 LOOP
13 CASE WHEN rec.name = ’Billy’ THEN RAISE NOTICE ’%’, ’BAD CUSTOMER!’ ;
14 ELSE RAISE NOTICE ’%’, rec.name;
15 END CASE;
16 END LOOP;
17 END;
18 $function$

Listing 2.5: An example of a custom PL/pgSQL function that declares a function
parameter, initiates a LOOP and uses a CASE WHEN conditional statement.

In listing 2.5 the PL/pgSQL functionality used in creating the thesis product is
demonstrated on the tables previously used to demonstrate the SQL syntax in section
2.7.2, table 2.9. Starting with creating the function and defining the input parameters on
the first line. A name for_loop_through_query is defined and the input is aliased as n
declared as type integer. As the return of the function is not at table or a record, the
return type is set to VOID in line 2.

In line 3, the specific PL language is declared, here PL/pgSQL. The actual function
body is the defined between the $function$ at line 4 and 18.

In the function body, the variable rec, is declared as a type RECORD before the SQL
evaluation begins. The RECORD type is a pseudo-type, that just indicates that it is a
unspecified row type (Dar et al. 2015). The SQL evaluation starts at BEGIN and ends
with END;.

A FOR LOOP is initialised on line 8 that loops through the names in the users table
(see table 2.9). A limit on the number of records returned is declared in line 11, where
the n alias is substituted with the user input when initiating the function.

On line 13 a CASE WHEN statement is initialised that when meeting the criteria
that a loop record matches the string ’Billy’ THEN it raises a notice BAD CUSTOMER!

5Other procedural language extensions are available for PostgresSQL, like PL/Python (based on
Python), PL/R (based on R) and many more

26

indicating some very bad experiences with users named Billy. To handle all other CASEs
the ELSE keyword is employed in this case raising a notice with the name of the user.

The CASE WHEN statement is ended using END CASE on line 15 and the loop is ter-
minated with END LOOP on line 16. When using the function as in SELECT for_loop_through_query(5);,
where 5 is input as the parameter value (5 substitutes n in the function) the resulting
output is shown in listing 2.6.

NOTICE: BAD CUSTOMER!
NOTICE: BAD CUSTOMER!
NOTICE: Dan
NOTICE: Ditte
NOTICE: Poul

Listing 2.6: The output of for_loop_through_query(5) (5 as the input).

2.8 Data Structure

The data, which underlies all output of the WPS, is stored in a PostgreSQL database,
which is queried by the user to determine visibility. The input data provided by the user
is in the GML format and the output from the WPS process is provided in the GeoJSON
format. Below I will describe the characteristics of the different systems.

2.8.1 Relational Database Management System

Storage and Accountability The relational database management system model is
designed to reliably store a large amount of data in a centralised server and at the same
time accommodate large number of concurrent users accessing said data.

The main development point for the RDBMDS model has been focused on efficiency
and integrity - especially integrity (Sumathi and Esakkirajan 2007; Stones and Matthew
2006). This integrity permeates all aspects of how data in the database can be accessed
and modified.

The data can be read, inserted, updated and deleted as the privileges of the user allow.
These user roles can be defined in a very granular fashion based on individual users or as
groups sharing privileges.

By incorporating a user based access to the database it is possible to create a trail of
actions for each of these users (Dar et al. 2015). Registering information on the event (like
a SELECT query), time stamp and user.This would be especially useful in an environment
where auditing is critical to support a legally binding system like the Danish housing and
property tax.

This functionality will not be incorporated into the WPS to be created along with
the thesis, but it will be brought up as part of the discussion on using the line of sight
WPS in a housing and property tax environment.

The database system is deleted, updated and queried through the use of the SQL
language presented in section 2.7.2.

27

2.8.2 Indexes

One of the advantages of using a RDBMS like PostgreSQL is the possibility of employing
indices on the stored data, which can have a profound influence on the speed of a query
or other statement.

The data stored in the database is unstructured and as such any query will have to
look trough all records before returning a record set. this situation can be optimised with
the use of indices. An index can be created on one or more columns in a table and builds
an ordered structure, which for large tables are faster to query. Many different index
types exist, below I will describe just two, the B-tree index and the GiST index which is
used to index geometries in the PostGIS enabled database.

Figure 2.6: Grouping of raster cells based on closeness create a GiST index (figure inspired
by Westra 2013).

A B-tree (Balanced tree) index is organised like a tree with branches where each
subsequent branch from the stem will hold fewer and fewer elements, until only one
indexable element is left. This last branch then hold the location of the records that have
the specified value in the indexed column. The B-tree index is not used any further in
the thesis product, but is included as it is the default index in many RDBMS (Beaulieu
2009).

28

In many ways the GiST index, which is used to index spatially related geometries,
works similarly to the previously described B-tree index. The GiST index uses the
minimum bounding rectangle around each geometry and then groups geometries together
by closeness as shown in figure 2.6. Here the individual raster cells are each registered
by a bounding box at the lowest level, and then they are grouped together on iterative
higher levels by closeness. The level above the individual cells is the green bounding
boxes BB1-BB4 followed by the next level - the red bounding boxes BB5-BB6 (Westra
2013; Regina O Obe 2015; Marquez 2015).

This enables using the GiST index similarly to the B-tree, where the query on
geometries moves through the nested branches of the index until it reaches the last
bounding box to encapsulate the requested geometries avoiding a costly sequential scan
where each row (containing a raster value) must be examined.

2.8.3 Common Table Expression

The Common Table Expression (CTE) is a SQL syntax used to define a temporary table,
which is only available in the query in which it is included. These CTEs can be chained
and as such can be used to filter and alter data sent through the chain. Listing 2.7 shows
a short example where the CTEs name is defined with the WITH keyword and inside the
parathesis the structure of the CTE is defined.

1 WITH dummy_cte AS
2 (
3 SELECT part_type, price * 0.25 AS price_inc_vat
4 FROM volvo_parts
5)
6

7 SELECT part_type, price_inc_vat FROM dummy_cte;

Listing 2.7: CTE syntax.

The CTE is ended with a) and now the SELECT statement can be used to query
the CTE as a normal table.

2.8.4 GeoJSON

GeoJSON is used as the output format for the WPS process and is a standard based
on the JSON format, used to represent geographic features as points, lines and polygon.
The GeoJSON object consists of name-value pairs, where some of the names are required.
"type" has to exist and have a value of either "Point", "MultiPoint", "LineString",
"MultiLineString", "Polygon", "MultiPolygon", "GeometryCollection", "Feature", or
"FeatureCollection". If the object contains a type "FeatureCollection", as is the case for
all GeoJSON object output from the WPS, the GeoJSON is a feature collection and must
then contain "name" features, which contains an array of GeoJSON features (Richardson
and Amundsen 2013; Butler, Gillies, and Schaub 2016). Outputting to GeoJSON has
been chosen as many standard JavaScript mapping libraries supports GeoJSON.

29

2.8.5 GML

The GML format is used to handle the inputs of the start and endpoint for the line of
sight calculation. GML is based on XML and is used to represent geographic features
like points, lines and polygons. The standard was created by the OGC to facilitate the
transport of geospatial data over the internet (OGC 2002; Regina O Obe 2015) .

GML exists in different formats with 2.1.2 and 3.1.1 being the commonly used (Regina
O Obe 2015). For the line of sight process input, GML 2.1.2 was chosen, as this format is
often supported in WFS systems, possibly easing the interconnection of the line of sight
service with other OGC services (Regina O Obe 2015).

The GML standard is able to handle geometries represented in the ’Simple Features
Specification’ (OGC 1999).

2.9 Housing Tax

Currently the Danish Tax and Customs Authorities (SKAT) base their housing and
property tax on a valuation of the housing or property, which takes its value from an
average based on a not specifically defined average of the market value of ’comparable
properties’ traded in a not defined area near the evaluated property. This average is then
adjusted to the date of the valuation by a projection that incorporates market trading
trends (Skatteministeriet 2013a; P. E. Jensen et al. 2014). For each valuation case, SKAT
can employ a valuation method that they deem effective.

The subjective nature of which properties and housing to include in the average is
also the subject of much debate and seem to the fluctuate among property that for a
layman might seem very similar (Drachmann 2014).

As such there is no market independent valuation, which can be problematic especially
when valuing housing or property that is atypical and not traded regularly, such that a
reasonable average can be obtained.

These challenges to the housing and property tax has been recognised by the previous
government, which initiated a expert hearing to explore the possible structure of new
and more objective valuation of property. One of the main results from this hearing was
a new focus on geodata to be included in the development of an automated valuation
model, with an emphasis on repeatability of calculations (P. E. Jensen et al. 2014).

In this thesis I will explore the possible value of a line of sight model as a parameter
in a new housing and property tax model.

30

Chapter 3

Methodology

The following chapter will deal with the practical implementation of the thesis project.
Detailing the process from installing the required frameworks to coding and setting up
the actual product.

3.1 Installing ZOO-Project WPS and Dependencies

The line of sight service product, which is one of the goals of this thesis, runs within the
ZOO-Project framework (Fenoy, Bozon, and Raghavan 2012; ZOO-Project team 2016).
Like PyWPS (PyWPS 2016), 52◦North WPS (52◦ North GmbH 2016) and GeoServer
(Open Source Geospatial Foundation 2016), ZOO-Project WPS is a framework that
enables spatial processing to be handled as a service.

The framework can be installed on a variety of operating systems, including several
flavours of Linux, Windows and OS X but in the following I will describe the installation
process for Ubuntu Server 14.04, which is a command line only server edition of the
popular Ubuntu Linux operating system. Ubuntu was chosen as its popularity entails a
large amount of available software packages and a healthy community that offers help
and advice on issues (Haines 2015; Tsai et al. 2016). Version 14.04 is a long term support
version released in April 2014 with support until 20191.

The server edition of Ubuntu was chosen to avoid the unnecessary system overhead of
a graphical user interface and to be able to easily remote deploy the system.

3.1.1 Dependencies

The ZOO-Project WPS is dependent on several open source software packages to be able
to perform its job. Below I will introduce the most important packages, their use and
how to install them.

1Official Canonical support periods: http://www.ubuntu.com/info/release-end-of-life

31

http://www.ubuntu.com/info/release-end-of-life

flex Flex is a tool which recognises lexical patterns in text. When finding defined
patterns, flex executes an associated piece of C code. For the ZOO-Project frame-
work, this is used when parsing . zcfg and . cfg metadata files2. On Ubuntu Server
the package is installed using the the apt−get package manager with the command
sudo apt−get install flex . sudo is used to run the command with superuser rights, which
is necessary to obtain the needed privileges to write and execute within the shell. All
following commands associated with the apt-get package manager are assumed to be
prefixed with sudo.

Bison Bison is a general purpose parser generator and is used in conjunction with flex
to parse the metadata . zcfg and . cfg files associated with the service (Fenoy, Bozon,
and Raghavan 2012). The Bison package was installed using the apt−get install bison
command.

FastCGI FastCGI or Fast Common Gateway Interface is used along with the Apache
http-server for the client to access server-based executables, in this case the ZOO-
Kernel through the zoo_loader.cgi. The FastCGI package was installed using the
apt−get install libfcgi −dev command.

Libxml2 Libxml2 is the XML C parser and tool kit used to create and parse the
metalanguage3. In the ZOO-Project Kernel, it is used to format outputs as XML. The
XML C package was installed using the apt−get install libxml2 libxml2−dev command.

cURL cURL is needed when transferring large and complex data as inputs or outputs in
the ZOO-Project framework. The cURL package is installed with the apt−get install curl
command.

OpenSSL The OpenSSL package is a tool kit that enables the use of Transport Layer
Security (TLS) and the Secure Sockets Layer protocols. In effect it enables communication
through the https standard, which is a uniform resource identifier scheme with an
encryption layer that provides authentication security between client and server. The
package is installed with the command apt−get install openssl command.

GNU Autoconf Autoconf is used to produce configure scripts for the building and
installation of software on the system. This is done by testing the target system’s already
installed components against the dependencies of the source code and configuring the
makefile as to correspond to the target system. This way the software in question can
be installed with as little user interaction as possible. The GNU Autoconf package is
installed with the command apt−get install autoconf.

2ZOO-Project SVN http://zoo-project.org/trac/browser/trunk
3Official page: http://xmlsoft.org

32

http://zoo-project.org/trac/browser/trunk
http://xmlsoft.org

Apache2 Web Server Apache is the web server that serves the content from server
to client. The main process associated with Apache is the httpd daemon, which handles
requests from users and serves content back. All settings and permissions are set up in
the associated plain text .conf files, where permissions for the WPS . cgi files can also be
set. The Apache web is installed using the apt−get install apache2 command.

Python The python−dev package adds header files, a static library and especially
important for ZOO-Project development tools for building Python modules, extending
the Python interpreter or embedding Python in applications. python−dev is installed
using the command apt−get install python−dev

Spidermonkey JavaScript Spidermonkey is the Mozilla Foundations JavaScript
engine. The JavaScript header files and library is used when compiling the ZOO-
Project kernel to enable the use of the JavaScript language for creating and linking
services in the WPS framework. The JavaScript engine is installed using the command
apt−get install libmozjs185.

Build-essential build-essential is a meta package that contains a list of dependency
packages to be installed, which are needed for compiling programs from source code. In
the case of the ZOO-Project WPS the source code is written in the C language4. To
compile the ZOO-Project source code the contents of the build-essential meta package
is needed. Of notable importance are the gcc (Gnu C Compiler) compiler package, the
libc-dev, libc6-dev packages containing an embedded version of the GNU C library with
development libraries and header files, and the make package that is used in conjunction
with a Makefile, which is a script that controls the compiling of the source code, and the
previously mentioned gcc compiler.

3.1.2 Geospatial Data Abstraction Library

Geospatial Data Abstraction Library (GDAL) is a library that provides spatial processing
algorithms, translation between geospatial file formats and as such act as the standard
link between much open source geospatial software. For both the ZOO-Project WPS,
and PostGIS I need to install the developer files which are used when incorporating the
GDAL into other software (GDAL Development Team 2016).

To install theGDAL library I will first need to employ the command add−apt−repository,
to add a specialised GIS repository from the UbuntuGIS team. UbuntuGIS employs
two branches for publishing GIS related packages - the stable and the unstable branch
(The UbuntuGIS Team 2016). These two branches offer different versions of many of the
same GIS related packages, and normally one would assume that the unstable branch
should only be used for testing new features with a high risk of bugs and instability,
whereas the stable branch should offer stable and tested packages. In the case of these
two branches the stable branch unfortunately is several years old and looks to be basically

4http://zoo-project.org/docs/kernel/what.html

33

http://zoo-project.org/docs/kernel/what.html

unmaintained, resulting in outdated packages that are not compatible with many other
current dependencies. The unstable branch on the other hand gets regular maintenance
and updates, leaving it in effect as the only viable repository for GIS packages.

To add the UbuntuGIS Unstable repository the command add−apt−repository ppa:ubuntugis/ubuntugis−unstable
is executed and afterwards apt−get update to include the new repository. After the new
repositories has been linked, installation of the GDAL developer library is done using the
command apt−get install libgdal1−dev.

3.1.3 GEOS

Geometry Engine - Open Source (GEOS) is a Open Source Geospatial Foundation project5

that provides the spatial geometry functions on which the PostGIS extension relies on when
executing functions involving intersects, length, distance and others, and defines the data
types Point, MultiPoint, LinesString, MultiLineString, Polygon, MultiPolygon and Geome-
tryCollection (which themselves are based of the OGC Simple Features Specifications(OGC
1999)). The GEOS library is installed using the command apt−get install libgeos−dev.

3.1.4 PostgreSQL with PostGIS

Choosing, which versions of the PostgreSQL and PostGIS packages to install depends on
the feature set needed to complete the task at hand and balance between stability and
speed.

Older maintained versions of the software might provide best stability at the cost that
fewer features are present and speed is not optimised. The opposite is the case for the
newest versions which offer the maximum number of features and optimised speed at the
cost of stability.

Lastly the different types and versions of the operating system can also limit the
availability of software.

PostgreSQL version (9.5) offers general performance enhancements, but also more
specific enhancements that benefits working in the spatial realm like the improvements
made to GiST indices (The PostgreSQL Global Development Group 2016a) (see section
2.8.2 for the theory behind GiST indices).

For the PostGIS extension, the just released version 2.2 added new functions, which
was considered possibly beneficial as parts of the final product like in-database raster
processing and new spatial clustering functions and also a general code optimisation, which
should add to the speed of spatial calculations (The PostgreSQL Global Development
Group 2016b).

As this thesis is partially about the performance of a RDBMS both PostgreSQL and
PostGIS was installed in the latest stable release version at the time of the thesis start.

The actual installation of the software was done from The PostgreSQL Global De-
velopment Group (PGDG)’s repository, which was added to the Ubuntu Server package
system along with the repositories public encryption key using the command in listing
3.1.

5https://trac.osgeo.org/geos/

34

https://trac.osgeo.org/geos/

sudo sh -c ’echo "deb http://apt.postgresql.org/pub/repos/apt trusty-pgdg main" >>
/etc/apt/sources.list’;↪→

sudo apt-get install wget ca-certificates;
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add

-;↪→

Listing 3.1: Adding PGDG repository and public encryption key.

After connecting to the repository it is necessary to update the contents of the package
system before installing both PostGIS 2.2 and PostgreSQL 9.5 using the commands in
listing 3.2.

sudo apt-get update;
sudo apt-get install postgresql-9.5-postgis-2.2 postgresql-contrib-9.5;

Listing 3.2: Updating repository and installing the database system.

In listing 3.2 I also install the postgresql−contrib−9.5 package, which supplies some
basic administrative tools through the adminpack extension. With the PostgreSQL package
installed, the next step is to add the adminpack extension to the standard postgres
database using the postgres user using the command CREATE EXTENSION adminpack;
from within any PostgreSQL client or the psql bin. The postgres user is only meant for
accessing the database software, so next I’ll create a user that only has the minimum of
privileges for an associated database and nothing else. sudo -u postgres psql

The new user with the proper rights and an associated database is created using the
commands CREATE ROLE zoo_wps WITH login; CREATE DATABASE zoo_wps WITH OWNER zoo_wps; CREATE SCHEMA rasters; GRANT ALL ON SCHEMA rasters TO zoo_wps;
Now a new database accessible only by the postgres superuser and the zoo_wps user has
been created. If ever another service or program needs database access, a separate user
and database would be created with the steps above, to enable a database system where
each user has as few privileges as possible.

To enable the PostGIS extension I run the command CREATE EXTENSION postgis;.
This completes the setup of the PostgreSQL/PostGIS framework. A few utilities to load
raster data into the database are still needed though.

3.1.5 Installing the ZOO-Project Package

After installing all dependencies, installation of the ZOO-Project WPS framework was
done by using svn6 to download the latest version into a directory zoo−project using the
command svn checkout http://svn.zoo−project.org/svn/trunk zoo−project.

Provided with the download of the ZOO-Project is cgic7, a C library for creating
CGI-based programs. In this case it is used as the basis for the zoo_loader.cgi executable
which handles input and output to the kernel.

6svn (subversion) is used as a revision control system by ZOO-Project http://zoo-project.org/
docs/contribute/dev.html

7https://www.boutell.com/cgic/#whatis

35

http://zoo-project.org/docs/contribute/dev.html
http://zoo-project.org/docs/contribute/dev.html

The cgic library is implemented by navigating to the directory zoo−project/thirds/cgic206/
and running the make command to compile the library locate its contents at its proper
locations.

The ZOO-Kernel is installed by navigating to the directory ../../ zoo−project/zoo−kernel/,
creating a configure script by running the command autoconf (see paragraph on GNU Auto-
conf), running the configure script using the command ./configure −−with−js=yes −−with−python=yes −−with−geosconfig=/usr/bin/geos−config
will create the Makefile required to compile the ZOO-Kernel. The arguments after
./configure are included to hook into JavaScript and GEOS, which are both optional
inclusions.

The created Makefile has to be edited though as one of the pointers to dependencies
within the script points to a /usr/lib64 directory whereas /usr/lib is the correct directory
path.

Lastly ZOO-Project is compiled by running the Makefile using the command make
and the result is placed in the proper locations by executing sudo make install.

3.2 Selection and Preparation of Data

The line of sight calculation which is covered in this thesis, relies on raster data on
elevation and the processing of these data in PostgreSQL with the spatial functions
provided by the PostGIS extension.

Selecting a subset of the total Danish dataset on elevation is needed as the resources
to store all them is not available for this student.

As the raster data type is suboptimal for the purpose intended here, the data type will
be transformed before importing it in to the database. Below I will present the selected
data, its transformation and the import method.

3.2.1 Selection of Area for Raster Coverage

As the physical data size of a download and subsequent storage of a total coverage DHM
is very large and would require an investment in hardware beyond the scope of this thesis
(the DHM covering all of Denmark consists of 628, 10 by 10 kilometre raster products,
each the size of approximately 2 gigabytes, equalling around 1.3 terabytes) I have chosen
to focus on just one of the 10 by 10 kilometre cells of which the DHM is divided into.
The 10 by 10 kilometre cell that was chosen covers an area around Hillerød, Birkerød and
Lillerød north of Copenhagen and has the extent 710000, 6190000 : 720000, 6200000 in
the ETRS89 UTM 32N projection. When downloaded and unpacked from the delivered
zip file the size of the content is 2.5 gigabyte.

3.2.2 Preparation of Data

Getting several gigabytes of raster into the PostgreSQL/PostGIS database requires an
automated process to be practically possible. For this purpose there are several small
utilities installed along with the GDAL and PostGIS package, which I will use for the
preparation and import of data into the database.

36

The PostGIS package comes with a small utility or bin called raster2pgsql that can
export raster files in all GDAL supported file formats into a specified database, schema
and table. The raster2pgsql can also, at execution time, tile the raster data into even
smaller tiles as to improve performance when querying the raster layer (Regina O Obe
2015)

gdalinfo gdalinfo is part of the GDAL package and is used to extract the metadata
on GDAL supported raster files. The metadata for the selected raster data will be used
to optimise the sql code described later, to specify bounding box values for the service,
determine optimal tile size and determining the data type of the raster.

When using the command gdalinfo DSM_1km_6190_710.tif the output seen in
listing 3.3 shows that the pixel size is 0.4 as the heigh of the raster in meters divided
by the height in pixels (1000 meters

2500 pixels = 0.4) and that the projection is ETRS89 UTM 32N
(Rosenkranz 2014). The data is of type FLOAT32.

Driver: GTiff/GeoTIFF
Files: /Users/jonaspedersen/Desktop/rasters/raster/DSM_1km_6190_710.tif
Size is 2500, 2500
Coordinate System is:
PROJCS["ETRS89 / UTM zone 32N",

GEOGCS["ETRS89",
DATUM["European_Terrestrial_Reference_System_1989",

SPHEROID["GRS 1980",6378137,298.2572221010002,
AUTHORITY["EPSG","7019"]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6258"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4258"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",9],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1,

AUTHORITY["EPSG","9001"]],
AUTHORITY["EPSG","25832"]]

Origin = (710000.000000000000000,6191000.000000000000000)
Pixel Size = (0.400000000000000,-0.400000000000000)
Metadata:

AREA_OR_POINT=Area
Image Structure Metadata:

COMPRESSION=DEFLATE
INTERLEAVE=BAND

Corner Coordinates:
Upper Left (710000.000, 6191000.000) (12d21’ 7.79"E, 55d49’ 7.77"N)
Lower Left (710000.000, 6190000.000) (12d21’ 5.01"E, 55d48’35.48"N)
Upper Right (711000.000, 6191000.000) (12d22’ 5.15"E, 55d49’ 6.20"N)
Lower Right (711000.000, 6190000.000) (12d22’ 2.36"E, 55d48’33.91"N)
Center (710500.000, 6190500.000) (12d21’35.08"E, 55d48’50.84"N)
Band 1 Block=256x256 Type=Float32, ColorInterp=Gray

NoData Value=-9999

Listing 3.3: Output of the gdalinfo command.

37

Raster Data Type Transformation As seen in the previous section, the values
contained in the raster are of the type Float32, which is used internally in the GDAL
package to denominate a 32 bit floating point number. As shown in the section 2.4.1, the
data type Float32 is an expensive type, which is far too precise for the purposes of this
thesis and associated products. To save space and speed up processing I will convert the
GeoTIFF files before importing them into the database.

When converting the raster from a type float in meters to a integer type, I also want
to convert the data to centimetres by multiplying by 100 so that it conforms well to the
new format. This should be reasonable for representing the Danish landscape heights,
which lie within a range of approximately -700 to around 17,000 centimetres (see theory
section 2.4.1 on data types).

The conversion is done using the bin gdal_calc.py, installed using apt−get install python−gdal,
wrapped in a bash script to iterate over all the . tif files downloaded from down-
load.kortforsyningen.dk as is shown in listing 3.4.

#!/bin/bash
for i in *.tif
do
gdal_calc.py -A $i --calc="A*100" --type=Int16 --outfile=dhm_new_type/"new_$i"
done

Listing 3.4: bash script to convert raster data type.

The −A option specifies the input file, which in this case is an iteration over all the
. tif files in the directory using the variable constructor $ with i as defined in the loop.
As the A iterator changes along with the i iterator the A used within the −−calc is being
calculated for each . tif as a multiplication of 100. With the −−type flag and Int16 value
I specify that the output raster values should be of the type 16 bit signed integer instead
of the original 32 bit floating point. Lastly I specify a directory for all the files and that
the filename should be the same as the $i iterator prefixed with new_ and be put in the
directory dhm_new_type using the −−outfile flag.

The resulting new . tif files have a size of 1.1 gigabyte instead of the original 2.5
gigabyte.

3.2.3 Importing Data into PostgreSQL

Loading the new . tif files with the 16 bit signed integer data type into the database is
done with the raster2pgsql combined with the psql tool. As command line tools in Linux
can be chained together I will combine the output of the raster2pgsql with the psql tool
with the special pipe command (|). The raster2pgsql is part the GDAL package and the
psql tool is a command line PosgreSQL client. As the other tools previously used, the
functionality of the tools are defined by the specific flags used. Below I will explain these
flags used.

38

raster2pgsql When using the raster2pgsql command to export file system based . tif
files into the database environment I use the flags shown in listing 3.5. To establish a
way of referencing back to the original . tif files the flag −F adds a column in the target
table with the name from_file specified with the −n flag. The −I flag ensures that a
GiST type spatial index is created on the raster column of the target table. The −c flag
creates a table in the database schema that acts as target for the export. The −s flag
combined with the value 25832 sets the rasters projection to ETRS89 UTM 32N. The
−C enables a set of constraints on the target raster table. These constraints are used in
the raster_columns, which is a database wide registration of rasters and their associated
metadata.

raster2pgsql -F -n from_file -I -Y -c -s 25832 -C -t 125x125 *.tif
rasters.dhm04 | psql -d jonaspedersen

Listing 3.5: Flags used when exporting . tif files into the database using raster2pgsql and
psql.

If new raster data were to be appended to this dataset, it would need to adhere to
these constraints. Alternatively the constraints can be dropped and then re-added after
appending. The −t flag combined with the value 125x125 creates tiles from the input
. tif file that are 125 by 125 pixels. The small size compared to the original files 2500 by
2500 pixels extent is very practical when doing analysis on the raster later as it enables
the query planner to only select a very small subset of data for analysis. Finally the −Y
flag enables the use of the SQL COPY instead of the INSERT command. The COPY
command is much faster for bulk loading of large datasets, such as the ones being dealt
with in this thesis, as it is optimised to have less overhead when loading large datasets.
The disadvantage is that, unlike INSERT, the COPY command insert all rows as a single
statement, so in case of an error the entire load has to be redone.

psql The execution of the raster2pgsql command in conjunction with the specific flags
described above returns a very large sql output that when run from any client, would
create the raster table shown in table 3.1. To avoid saving the output of the raster2pgsql
command to a very large and very impracticable . sql file I pipe the output into another
Linux command. As seen in listing 3.5 I append the raster2pgsql with the symbol |
and the new commands. Using this operator, I direct the output of the raster2pgsql
command into the psql command. The psql command is used in conjunction with the −d
flag, which is followed by the name of the target database resulting in the output being
run a sql code directly in the psql client creating the table in the target database as seen
in table 3.1.

3.3 Working in PostgreSQL/PostGIS Environment

After setting up a working environment that is able to handle the development of the
stated service within the PostgreSQL, PostGIS and Python framework, the next step is

39

dhm04
rid rast from_file
1 01000001009A9... new_DSM_1km_6190_710.tif
2 01000001009A9... new_DSM_1km_6190_710.tif
3 01000001009A9... new_DSM_1km_6190_710.tif
4 01000001009A9... new_DSM_1km_6190_710.tif
5 01000001009A9... new_DSM_1km_6190_710.tif

Table 3.1: PostgreSQL table structure for imported raster data. The binary blobs in the
rast column have been truncated to fit.

to code the service that is to run in the WPS.
The service consists of roughly 3 interacting parts of code:

• The PostgreSQL sql code. This is the code that interacts directly with the DHM
raster and extracts the relevant height values based on the user input.

• The Python code, which enables user input to be transferred from the URL user
input into the PostgreSQL database

• The ZOO-Project ZCFG service configuration file, which defines the data types for
both inputs and outputs

Beyond the three main bullet points that defines this WPS I will look at the perfor-
mance of the PostgreSQL database and examine the specific methodologies used when
writing the main PostgreSQL sql code and how Python connects to the database.

The chapter will conclude with the details behind getting the line of sight service up
and running to be accessible using REST payloads through an URL, an evaluation of the
returned line of sight result and finally a performance evaluation of the service created
compared to Septima’s and Sweco’s own line of sight application.

3.3.1 Creating Indexes to Optimise Search Speed

As noted earlier in the theory section on indexes (page 28), one of the advantages of the
PostgreSQL/PostGIS database is the possibility to use indices to speed up the selection
of data. Different index types covers different data scenarios and in this specific scenario,
trying to speed up querying a raster table, a GiST index will be appropriate (see section
2.8.2). As covered in the theory section, the GiST index works by indexing on the
minimum bounding box for each geometry, and then grouping these by closeness. As
a raster table contains no geometries, the GiST index is instead created based on the
output of the PostGIS function ST_ConvexHull, which creates a small (bounding box)
geometry around each raster pixel. To create the index the sql code in listing 3.6 is run
(see figure 2.6 on page 28 for reference).

Having an GiST index on the raster column of our table will enable a faster execution
of the sql code that will be presented in section 3.4.2 on page 42.

40

CREATE INDEX dhm04_ST_ConvexHull_idx
ON rasters.dhm04
USING gist
(ST_ConvexHull(rast));

Listing 3.6: SQL code to create the index dhm04_ST_ConvexHull_idx on the rast
column.

3.4 Creating Line of Sight PL/pgSQL function

Having imported the DHM raster data and created an index to speed up queries on the
data, the next step is to create the actual code that will extract the relevant values from
the raster and transform them into binary values representing either a visible or invisible
point as seen from the user defined elevation above the start point.

3.4.1 Establishing a Line String Representing the LoS

As this line of sight service is based on a line that starts at the observation point and
ends at the target of interest, the first step is to construct a line between these two
points as seen in listing 3.7. In line 9 a variable is declared that contains the result of
the function ST_MakeLine. The two inputs are represented by the $1 (the start point)
and $2 (the target point). These inputs are defined by the user when calling the function.
The specifics of how variables are defined and used will be presented in section 3.4.8 on
page 49.

Encapsulating the ST_MakeLine is the function ST_SetSRID, which sets the SRID
of the line to 25832 (ETRS89 UTM 32 N), which is the same as the underlying DEM.

Adding a Measure Element The vector line which was created in the previous
paragraph defines the initial area of interest where it intersects the underlying DEM, but
as the function described in this section needs a more specific dimension to poll the DEM,
the line will be split into points.

This is a two step process where, first a measure element is added to the line using
the ST_AddMeasure function, which takes as inputs the line geometry, a start position
and an end position. In listing 3.7 line 16 the measure element is added to the previously
created line from the start of the line to the end, defined by using the st_length function
to retrieve the length of the line geometry.

The second step as can be seen on line 22 in listing 3.8 is to use the ST_LocateAlong
function to create a geometry collection that contains a point for each step of i. i is
defined by the user as the resolution in the final function and is a range of numbers
generated using the generate_series function, which in this case is the numbers between
0 and the length of the line in increments of i. For the default value of 1 (this is only
defined later in the . zcfg file for the WPS process) the st_locatealong function will collect
a point for each meter of the line length.

41

8 BEGIN
9 line := ST_SetSRID(ST_MakeLine($1,$2),25832);

10

11

12 RETURN QUERY
13

14 WITH measured_line AS
15 (
16 SELECT ST_AddMeasure(line,0,ST_Length(line)) AS geom,
17 generate_series(0, ST_Length(line)::INT,$4::INT) AS i
18),

Listing 3.7: Create a line between start point and target and add measure element.

20 points_from_mline AS
21 (
22 SELECT (ST_Dump(ST_LocateAlong(measured_line.geom,i))).geom AS geom
23 FROM measured_line
24),

Listing 3.8: Using st_locatealong and st_dump to get points at specified intervals along
the line.

As the output of the st_locatealong function is a multipoint collection and because
geometry collections are difficult to work with in the later functions, the output is
encapsulated in the ST_Dump (also line 22 in listing 3.8) function, which expands the
geometry collection to its individual parts. The result being many rows each containing a
point instead of one row containing a multipoint collection.

3.4.2 Using PostGIS Functions to Access Raster Values

After the linestring representing the line of sight was dissolved into points, the next step
is to extract the values of the underlying DEM where the points, extracted in the previous
section, intersects the DEM. The CTE height seen in listing 3.9 shows the process of
extracting the raster values using the function ST_Value. On line 29 in listing 3.9 the
raster column of the DEM and point geometry created in section 3.4.1 is used as input in
the ST_Value function. The ST_Value function then extracts the specific raster value
where the point geometry intersects the raster. This value is then associated with the
point geometry as the column cm.

To engage the index on the raster table and subsequently reduce the rows which need
to be evaluated for the ST_Value it is prudent to use a WHERE clause as filter on the
query. Here the function ST_Intersects (line 33 in listing 3.9) is used as the modifier, with
the points and raster rows as input. This clause combined with the tile size determined
at import (see section 3.2.3) reduces the amount of data to be evaluated to only the
raster rows that are intersected by the points, greatly reducing the data that has to be
evaluated (see section 3.4.2, page 42).

In the height CTE on line 30 a column id containing a sequential integer for each

42

26 height AS
27 (
28 SELECT geom,
29 ST_Value(dhm04.rast,points_from_mline.geom) AS cm,
30 row_number() over () AS id
31 FROM rasters.dhm04,
32 points_from_mline
33 WHERE ST_Intersects(points_from_mline.geom,dhm04.rast)
34),

Listing 3.9: Extracting values from the raster and assigning id to points based on its
position counted from the observation point.

point is created using the window function row_number () over (). The numbering is
related to each points position from the original observation point such that the start
point will be assigned the lowest id and the observation target (end point) will get the
highest number.

3.4.3 Using PostGIS Functions to Calculate Earth Curvature Influence

The height_incl_start_curve CTE shown in listing 3.10 serves two purposes:

• Adjusting height to include earth curvature

• Setting the observation height relative to the actual height

As described in section 2.6.2 on page 20 the influence of the earth curvature on the
points is a function of distance from the original observation point. To include the effect
of the curvature, the extracted height value in the cm column from the height CTE needs
to be modified. This is done in the next CTE height_incl_start_curve by passing each
value through the function shown in equation 3.1:

height adjusted = height−
(
distance to point2

2 ∗ earth radius

)
(3.1)

Reading listing 3.10 inside out from innermost to outermost parenthesis starting at
line 50 to 452, the point geometry with the lowest id is selected. As the id is assigned
based on the position of the point relative to start and end of the line, it is known that
the point associated with the minimum id is also the first point on the line.

Using the ST_Distance function on line 48 with the start point just found by the
association to the minimum id and point in the currently evaluated row, results in the
distance to the current point being calculated.

As the projection of the point table is in ETRS89 UTM 32 N, the units of measurement
is meters and as such the distance needs to be multiplied by 100 to achieve the same
units as the DEM which is centimetres. This result is then, using the power function,
raised to the power of 2, which is then divided by 2 and multiplied with the earth radius
in centimetres. This calculation of the effect of the earth curvature on each point is then
subtracted from the original height column cm.

43

36 height_incl_start_curve AS
37 (
38 SELECT geom,
39 id,
40 degrees_id,
41 CASE
42 WHEN
43 id = (SELECT min(id)
44 FROM height)
45 THEN cm+$3
46 ELSE
47 SELECT cm -
48 ((power((ST_Distance(
49 (
50 SELECT geom
51 FROM height
52 WHERE id IN (SELECT min(id) FROM height)
53),geom)*100),2))
54 /
55 (2*637100000))
56 END AS cm
57 FROM height
58),

Listing 3.10: Including the effect of earth curvature on elevation.

To factor in a user defined observation height a conditional expression is used. The
CASE WHEN expression8 that is initiated on line 41 in listing 3.10 is only fulfilled for
the point having the minimum id (this will always be the observation point). When the
expression is true the THEN statement is activated with the result that the height of the
observation (start) point is summed together with what the user has input in the function
(represented by the variable $3 in line 45). Being able to set a custom observation height
enables the line of sight to be calculated correctly later in the function.

3.4.4 Adding a Z Value to the Points

In the CTE points_3d seen in listing 3.11 the ST_MakePoint function is used to add
the cm value as a Z value to the already existing X and Y coordinates of the points. The
points with their new Z value are then used in the CTE pitch_at_point to calculate the
angle at the vertex where the adjacent and hypotenuse meet (see figure 2.1 on page 18
for the terminology of the right-angled triangle).

3.4.5 Using PostgreSQL Built-in Trigonometric Functions to Calculate
Angles to Each Point

Evaluating the visibility of each point relies on the ability of representing visibility as a
function of both distance and height of the point evaluated relative to the start point. As
described in section 2.6 on page 17, the angle created between the line representing the

8http://www.postgresql.org/docs/current/static/functions-conditional.html

44

http://www.postgresql.org/docs/current/static/functions-conditional.html

60 points_3d AS
61 (
62 SELECT ST_SetSRID(ST_MakePoint(ST_x(geom),ST_y(geom), cm),25832) AS geom,
63 id
64 FROM height_incl_start_curve
65),

Listing 3.11: Adding a Z dimension to the points.

point of observation and the observation target, and the line representing the observation
point and observation point nadir incorporates both height and distance and expresses
the visibility of the current point when relating this angle to all previous points on the
line, so that if any previous point has a higher degree angle, the point is not visible (see
figure 2.2 on page 19).

To calculate the angle for each point extracted from the line the equation 3.2 is used:

tanx =

(
(observation height− height at evaluated point)
distance from observation point to evaluatedpoint

)
(3.2)

Figure 3.1: The relationship between distance and height to point from the start point
including the influence of earth curvature.

To implement equation 3.2 in PostgreSQL sql the observation point needs to be
selected. In listing 3.12, line 72 to 78, this point is selected using a WHERE clause to
limit the selection to only points having the minimum id from a sub-select that selects
only the minimum id. Using the ST_Z function the height at the observation point and
evaluated point is extracted. The two are then subtracted to retrieve the opposite (see
figure 3.1) in the triangle (line 70).

45

67 pitch_at_point AS
68 (
69 SELECT degrees(atan(
70 ((ST_Z(points_3d.geom) - ST_Z(
71 (
72 SELECT geom
73 FROM points_3d
74 WHERE id IN
75 (
76 SELECT min(id)
77 FROM points_3d
78)
79)))/100)
80

81 /
82

83 nullif(ST_Distance(points_3d.geom,
84 (
85 SELECT geom
86 FROM points_3d
87 WHERE id IN
88 (
89 SELECT min(id)
90 FROM points_3d
91)
92)), 0)
93)
94)
95 AS degrees,
96 geom,
97 id
98 FROM points_3d
99),

Listing 3.12: Calculating the angle for each point.

Similarly the distance to the evaluated point, used as the adjacent (see figure 3.1) in the
calculation, a sub-select is used to find the minimum id, which is also the observation
point, and use the ST_Distance function to calculate the distance to the evaluated point
(see line line 83 to 94). Figure 3.1 shows the relationship between the distance and height.
The opposite is then divided with the adjacent, but as the the distance (adjacent) is
calculated once with the value for observation point as input to both parameters, resulting
in a division by zero error, the function NULLIF is used in line 83 to replace the zero
value with NULL to eliminate this error.
Lastly, in line 69, the angle is calculated using the function atan, which returns the inverse
tangent in radians and the function degrees which converts this to degrees.

3.4.6 PostgreSQL Window Function

Having calculated the viewing angle from the observation point to all evaluated points in
the pitch_at_point CTE, the next step to determine if a point is visible is to evaluate,
for each point, if any other point, which is closer to the observation point, has a higher
viewing angle. If any point is found with a higher viewing angle, the currently evaluated

46

point is not visible (see figure 2.2 on page 19).
As calculating the distance again from the observation point to evaluated point is a
computational expensive process, I instead opt to base the evaluation of closeness on the
column id, which contains an integer representing the points position starting from the
observation point (see section 3.4.2 on page 42).
To evaluate the above conditions I employ a window function9 that for each point evaluates
all previous points by id to find the maximum viewing angle in this pool and set the
column visible to false if the maximum angle supersedes the currently evaluated point.

101 winfunc AS
102 (
103 SELECT id,
104 geom,
105 degrees,
106 visible
107 FROM (
108 SELECT id,
109 geom,
110 degrees,
111 CASE
112 WHEN degrees <= max(degrees) over (ORDER BY id ROWS BETWEEN unbounded

preceding AND 1 preceding)↪→
113 THEN FALSE
114 ELSE TRUE
115 END AS visible
116 FROM pitch_at_point
117) data
118)

Listing 3.13: Window function to establish if angles calculated in previous CTE are lower
than any angles closer to observation point.

In listing 3.13 starting at line 111 a conditional CASE WHEN expression is established to
handle the output of the window function and set a boolean TRUE or FALSE value for
the visible column. The window function starting at line 112 establishes a dynamic data
frame from within which the maximum angle is determined (max(degrees)). The data
frame is initialised by the over () keyword and is defined by ordering the id column and
then establishing the extent of the frame with the keywords unbounded preceding, which
is all rows before the current row until the first, and 1 preceding, which is the the row
just before the currently evaluated (see figure 3.2 for a visual depiction of the evaluated
extent using the previously mentioned keywords).
Each time the window is evaluated the maximum angle is found using the aggregate
function max() and if the current row has a lower angle it is not visible, which is determined
with the <= operator.

9http://www.postgresql.org/docs/current/static/sql-expressions.html#SYNTAX-WINDOW-
FUNCTIONS

47

Figure 3.2: evaluated window keywords. Between unbounded preceding and 1 preceding
highlighted.

3.4.7 Converting PostgreSQL table to GeoJSON output

Although outputting the visible points to a new PostgreSQL table or view would be the
most rational choice for performance, subsequent storage and querybility, the potential
for connectability with other frameworks like JavaScript suggests a different output route
to be chosen. As the priority to easily incorporate the result into JavaScript based web
map systems like Sweco’s Spatial Suite is high, the output chosen is the GeoJSON format
(see section 2.8.4 page 29).
To convert the traditional table structure to GeoJSON, PostgreSQL contains a few special
functions to deal with the json format. The goal of the code shown in listing 3.14 is to
convert the table structure into json attribute/value pairs. This is done in sql by using
SELECT statements to format the data properly into a GeoJSON feature collection (see
section 2.8.4 page 29) and finally formatting it as a proper json object10.
The row_to_json() function takes the column name as the attribute and the column
content as the value, the function is used first in the innermost parenthesis on line 128 in
listing 3.14. Here the column visible containing a boolean value is selected as a nested
attribute/value pair under the properties attribute.
At the same level as the properties attribute, the geometry attribute is added by using
the function ST_AsGeoJSON to transform the PostGIS geometry into a GeoJSON
compatible object. This object is then cast into a json object using the :: operator. Still
on the same level of the json structure, the standard GeoJSON attribute denoting the
object type is declared by using SELECT on a fixed text string ’Feature’ as the value
and ’TYPE’ as the key.

10The PostGIS to GeoJSON code is inspired by Regina Obe of BostonGIS http://www.postgresonline.
com/journal/archives/267-Creating-GeoJSON-Feature-Collections-with-JSON-and-PostGIS-functions.
html

48

http://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-Collections-with-JSON-and-PostGIS-functions.html
http://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-Collections-with-JSON-and-PostGIS-functions.html
http://www.postgresonline.com/journal/archives/267-Creating-GeoJSON-Feature-Collections-with-JSON-and-PostGIS-functions.html

121 SELECT row_to_json(fc) AS feature
122 FROM (
123 SELECT ’FeatureCollection’ AS TYPE,
124 array_to_json(array_agg(f)) AS features
125 FROM (
126 SELECT ’Feature’ AS TYPE ,
127 ST_AsGeoJSON(lg.geom)::json AS geometry,
128 row_to_json((SELECT l FROM (SELECT visible) AS l
129)) AS properties
130 FROM winfunc
131 AS lg)
132 AS f)
133 AS fc;

Listing 3.14: Converting table output to GeoJSON.

Moving one level up in the GeoJSON structure and one parenthesis out in the sql, on line
123 in listing 3.14 I again declare a standard GeoJSON attribute denoting (again using
SELECT on text string) the enclosing object TYPE as a ’FeatureCollection’. By the
GeoJSON standards definition (section 2.8.4 on page 29) the ’FeatureCollection’ value is
designed to nest one or more ’Feature’’s (as declared in the above paragraph).
To enable the nesting of several ’Feature’ objects under the ’FeatureCollection’ value
I employ the array_agg in line 124, which concatenates the input values into an array
structure. In this case all previously generated points and their properties, as constructed
above, goes from a table structure to array. This array is then converted with the
array_to_json aggregate function into a json structure.
Finally in the outermost parenthesis on line 121 the function row_to_json is used to
convert the single row that is the output of the previous process into a json structure.
In the next section I will wrap the sql code in a function which will simplify the later
Python script and keep most of the complexity inside the database.

3.4.8 Custom Functions in PostgreSQL

PostgreSQL allows the creation of custom functions, which can be written in multitude
of languages, like C, Perl, Python, Java, R and also the built-in Procedural Language
PL/pgSQL (see section 2.7.3 page 26).
With these languages one can achieve things that are not possible with raw sql code, like
FOR LOOPS (which will not be used) and the declaration of variables, constants and
function parameters, which I will use when wrapping the code described in the previous
sections into a PL/pgSQL function.
On line 1 in listing 3.15 the function name is declared together with the schema where it
is physically placed. In the parenthesis immediately following, the input parameters and
their data type is declared, such that the function expects a start and end point, both of
the geometry type (startpoint and endpoint), a resolution of type integer (the parameter
res) and lastly a height of type double precision (the parameter height).
Also in the function definition header, the output of the function is defined with the

49

1 CREATE OR REPLACE FUNCTION PUBLIC.los(IN startpoint geometry,
2 IN endpoint geometry,
3 IN res INTEGER,
4 IN height DOUBLE PRECISION) returns

TABLE(feature json) AS $body$↪→
5 DECLARE
6 line geometry;
7

8 BEGIN
9 line := ST_SetSRID(ST_MakeLine($1,$2),25832);

10

11

12 RETURN QUERY

Listing 3.15: Start of custom PL/pgSQL function.

RETURNS keyword. In this case a TABLE is returned with the column feature of data
type json.
After establishing the name, inputs and outputs of the function, the body of the function
starts after the $body$ string. First, in the declaration section of the function, a variable
that will hold the line is declared as a geometry type. After the declaration section, the
keyword BEGIN indicates the beginning of the actual processing of values.
The input parameters are called from inside the function using the $n nomenclature,
where n is equal to the position of the parameter in the definition. On line 9 in listing
3.15 the parameters startpoint and endpoint are called and as they are respectively the
first and second parameter defined, they are called using $1 and $2.

135 END;
136 $body$ LANGUAGE plpgsql immutable strict cost 100 ROWS 1000;
137 ALTER FUNCTION PUBLIC.los(geometry,
138 geometry,
139 INTEGER,
140 DOUBLE PRECISION) owner TO jonaspedersen;

Listing 3.16: End of custom PL/pgSQL function.

In listing 3.16, line 135, END, the antithesis to the BEGIN keyword appears and indicates
the end of the processing section. On line 136 the language, plpgsql (PL/pgSQL), is
defined and the functions volatility is classified. As this function will not modify the
database and will return the same result given the same arguments, it can be classified
as IMMUTABLE. Selecting the strictest volatility level will allow the PostgreSQL query
planner to better optimise or even cache the query plan of the function.

3.5 Defining the Metadata for Inputs and Outputs

The ZOO-Project WPS framework defines a service and enables its discovery by the
metadata provided from a ZOO configuration file (Fenoy, Bozon, and Raghavan 2012).
Below I will describe how the inputs and outputs are defined in the configuration file.

50

3.5.1 The ZOO Configuration File (. zcfg)

To enable the discovery of services by the ZOO-Kernel, a ZOO configuration file
(. zcfg) needs to be defined and created. The content of the file is accessed when the
DescribeProcess and GetCapabilities requests are sent to the kernel. Here the . zcfg file
contents are parsed by flex and Bison (see section 3.1.1) to create the XML formatted
output.

1 [ExtractlineofsightGML]
2 Title = Return LoS (points).
3 Abstract = Calculate Line of Sight from a start- and end-point and a height.
4 processVersion = 1
5 storeSupported = true
6 statusSupported = true
7 serviceProvider = lineofsightGML
8 serviceType = Python

Listing 3.17: Meta data on Line of Sight service.

The top eight lines of the . zcfg file, shown in listing 3.17, defines the basic parameters
for the service and how it is capable of interacting with the rest of the ZOO-Project
framework.
In line 1 the identifier of the service, which is used when requesting the DescribeProcess
and Execute commands is declared, in this case defined as ExtractlineofsightGML. The
Title and Abstract parameters on line 2 and 3 are returned for both the DescribeProcess
and Execute commands and are used for descriptive purposes.
Line 4 is an arbitrary version number assigned to this instance of the line of sight algorithm
in this case 1. Line 5 enables or disables the ability of the service to store the result of a
process on the server as an accessible resource and line 6 enables or disables messages on
the current status of a process (for long running processes, the it would return a message
on the service still being processed).
On line 7 and 8 the serviceProvider and the serviceType is declared where the provider
is the file name of the file containing the actual code and the type is the coding language
used, in this case the file is named lineofsightGML.py and the language is Python.
Occupying the greater part of the . zcfg document is the definition of the data inputs and
outputs. Lines 10 through 49 in listing 3.18 defines the inputs that the service expects
when running an Execute command.
These inputs consists of the three parameters; start point, end point (endpoint) and
height (height). The start point parameter is defined with an identifier startpoint on line
10 and on line 13 and 14 the minimum and maximum number of start points are defined.
As we are working with a line for which the line of sight will be calculated, only one point
can serve as the start point input.
The input data type for the start point is defined on line 15 though 21, where the data
type is defined as ComplexData (see section 2.2.4 on page 9 for details on OGC WPS
data types). For the start point parameter, the complex data container specifies the GML
data type in version 2.1.2 from line 29 through 31.

51

10 [startpoint]
11 Title = Input startpoint
12 Abstract = Input startpoint in GML format.
13 minOccurs = 1
14 maxOccurs = 1
15 <ComplexData>
16 <Default>
17 mimeType = text/xml
18 encoding = UTF-8
19 schema = http://schemas.opengis.net/gml/2.1.2/feature.xsd
20 </Default>
21 </ComplexData>

Listing 3.18: Defining the startpoint parameter.

Completely analogues to the start point parameter, the end point parameter is specified
from line 22 through 33 in listing 3.19.

22 [endpoint]
23 Title = Input endpoint
24 Abstract = Input endpoint in GML format.
25 minOccurs = 1
26 maxOccurs = 1
27 <ComplexData>
28 <Default>
29 mimeType = text/xml
30 encoding = UTF-8
31 schema = http://schemas.opengis.net/gml/2.1.2/feature.xsd
32 </Default>
33 </ComplexData>

Listing 3.19: Defining the endpoint parameter.

The last input of the service is the height parameter, which is defined in listing 3.20 on
line 34 through 45. as opposed to the start and end point parameters, the heigh parameter
can occur either 0 or 1 time as a default value of 200 centimetres is defined (see listing
3.20 line 37-38 and line 41-44). The container LiteralData using integers as data type
is used for the height parameter as the precision of the underlying DEM being used is
capped at centimetres (see section 3.2.2).
Listing 3.21 shows the specification of the line of sight process output. Like the start and
end point parameters, the output data is a ComplexData container, which in this case is
set to the json format (line 51 through 56).
When accessing the data from the Python code later, the label [result] defined in line 48
will also be the the key in a key/value pair, where the output json data will be the value.
The next section will deal with how the connection is made between the ZOO-Project
WPS and the PostgreSQL database using the supported Python language.

52

34 [height]
35 Title = Input height
36 Abstract = Input height in centimeters.
37 minOccurs = 0
38 maxOccurs = 1
39 <LiteralData>
40 DataType = int
41 <Default>
42 value = 200
43 uom = centimeters
44 </Default>
45 </LiteralData>

Listing 3.20: Defining the height parameter.

47 <DataOutputs>
48 [result]
49 Title = geojson points
50 Abstract = Line of Sight output in GeoJSON format.
51 <ComplexData>
52 <Default>
53 mimeType = application/json
54 encoding = UTF-8
55 </Default>
56 </ComplexData>
57 </DataOutputs>

Listing 3.21: Defining the result data output.

3.6 Python Scripting

To comply with the interaction methodology of the ZOO-Project WPS framework a
Python function that fulfils a specific set of requirements has to be created that reference
back to the . zcfg input and output definitions. In section 2.7.1 on page 21 I describe the
Python terminology used below.
Accessing the data model from the . zcfg requires importing the zoo Python module (line
3 in listing 3.22), using the module allows us to access the data using the previously
mentioned key/value pairs in the form of a Python dictionary (see section 2.7.1 on page
22).
The input parameters and result output are handled through a small piece of Python
code that handles the inputs and passes them to the previously defined sql function (see
section 3.4). The Python code also handles the output from the PostgreSQL database so
that it is parse-able by the ZOO-Kernel. Listing 3.22 shows the limited amount of Python
code, which will be described below.

3.6.1 Connecting to DB with Psycopg2

Accessing the database from within Python requires an interface driver, which is provided
using the Psycopg2 module that is imported on line 2 in listing 3.22. Using the function

53

1 import geojson
2 import psycopg2
3 import zoo
4

5 #DATABASE CONNECTIONS
6 conn = psycopg2.connect("dbname=jonaspedersen user=jonaspedersen host=localhost

password=logger")↪→
7 cur = conn.cursor()
8

9 def ExtractlineofsightGML(conf,inputs,outputs):
10 cur.execute("""select los(ST_GeomFromGML(%(start)s),ST_GeomFromGML(%(end)s),%(z)s) as

json;"""↪→
11 , {’start’:inputs["startpoint"]["value"],’end’:inputs["endpoint"]["value"],
12 ’z’:inputs["height"]["value"]})
13 outputgeojson = geojson.dumps(cur.fetchall())
14 outputs["result"]["value"] = outputgeojson
15 conn.close()
16 return zoo.SERVICE_SUCCEEDED

Listing 3.22: Wrapping the PostgreSQL function in a thin Python wrapper.

connect from the connections class, a connection is made to the database on line 6 using
the credentials set up when originally initialising the database (see section 3.1.4 on page
34).
Within the connection object a cursor is initialised on line 7. The cursor class method
execute is then used on line 10-11 to execute the sql code in the database, substituting
the input parameters with the values from the ZOO-Kernel dictionary.
Assigning the user generated values to Psycopg2 parameter place holders is done using
the syntax ’place holder name’: dictionary name["input identifier "]["value"] to define
the place holder name and access the specific input value.
Like accessing the user defined inputs is a case of requesting the value of a specific key of
the ZOO-Kernel generated dictionary, accessing the output of the function is completely
analogues but instead of retrieving a input value, the result of the sql query is assigned
as a value in the ZOO-Kernel dictionary.
As seen in line 13 of listing 3.22, the ZOO-Kernel generated dictionary holding the output
is called outputs and the return result is assigned to the key "value" nested under the
"result" key.

3.7 Connecting the Dots and Running the Web Processing
Service

Previously the methodology section has dealt with the description and creation of the
different pieces that the ZOO-Service consists of and relies on. Putting the puzzle together
is then a matter of moving the files into the right folders.
The zoo_loader.cgi, which is the CGI program that connects to the ZOO-Kernel and
the associated configuration file main.cfg along with the lineofsightGML.py and its as-
sociated configuration file ExtractlineofsightGML.zcfg, are all moved into the directory

54

/usr/lib/cgi−bin, where all CGI programs that are executed through the Apache server
also resides.
Now the line of sight service is accessible from the browser when calling the zoo_loader.cgi
in combination with the identifier, and either the parameter inputs and an Execute request
or combined with the DescribeProcess request.
The results returned when calling the WPS and the individual process is discussed in the
next chapter.

55

Chapter 4

Results and Discussion

In the following chapter a discussion on; the structure and capabilities of the line of sight
WPS produced, the output of the line of sight WPS and the usability of the line of sight
service as a housing tax variable will be initiated.

4.1 WPS output

In chapter 3 I described how to set up a WPS in the ZOO-Project framework and create
a line of sight process that can be called, executed and return results through the service.
Below I will describe how this functionality is presented to the user.
The WPS implemented here reacts to the three commands described in section 2.3:

• GetCapabilities

• DescribeProcess

• Execute

Figure 4.1 shows the overall physical structure of the WPS, its dependencies and how the
user input flows to from the client to the WPS using the REST framework as described
in section 2.2.2 on page 6 for each of the three commands. The figure can be used for
reference in the description of the framework below.
In listing 4.1 a GetCapabilities request URL with a a REST KVP payload is shown. This
command is sent to the WPS when a description of the capabilities of the WPS server is
requested by the client.

http://45.32.186.126/cgi-bin/zoo_loader.cgi?
Service=WPS&Request=GetCapabilities&Version=1.0.0↪→

Listing 4.1: GetCapabilities command sent to the WPS.

As described in section 2.2.1 (2.2.3) a mandatory request return is required of the WPS
framework to a GetCapabilities request. This request will return the overall information

56

Figure 4.1: The physical structure and interdependencies of the WPS process.

on the WPS parsed from the main.cfg file, including Title, Abstract, ServiceProvider
and all supported Operations (GetCapabilities, DescribeProcess and Execute) and the
Identifier , Title and Abstract parsed from the . zcgf file from each available process. All
parameters are parsed and returned as a well formed XML response.
In listing 4.2 a DescribeProcess request is shown for the line of sight process
(Identifier =ExtractlineofsightGML), which is sent to the WPS using the same method
as the GetCapabilities.

http://45.32.186.126/cgi-bin/zoo_loader.cgi? Service=WPS&Request=DescribeProcess&
Identifier=ExtractlineofsightGML&version=1.0.0↪→

Listing 4.2: DescribeProcess command sent to the WPS.

When receiving the DescribeProcess for the line of sight process, the WPS parses the
information in the ExtractlineofsightGML.zcfg file and sends a XML document back the
client containing the information.
Just like the DescribeProcess and GetCapabilities, the Execute command delivers its
payload using a REST formatted KVP over http to the WPS server. A URL containing
the payload can be seen in listing 4.3, which beyond the KVP’s that are included in the
GetCapabilities and DescribeProcess also contains an example of input parameters under

57

the key DataInputs. Here each input is represented with their individual Identifiers
and are separated by ;. Both the startpoint and endpoint parameters are input as GML
points (see section 2.8.5), the height is input as integers in centimetres (see section 3.2.2,
where the data type and units are transformed), and the sampling resolution is also input
as an integer.

http://45.32.186.126/cgi-bin/zoo_loader.cgi? Service=WPS&Request=Execute&
Identifier=ExtractlineofsightGML& DataInputs=startpoint=<gml:Point>
<gml:coordinates>711330,6197923</gml:coordinates></gml:Point>;
endpoint=<gml:Point>
<gml:coordinates>711370,6198970</gml:coordinates></gml:Point>;
height=400;resolution=1&Version=1.0.0&

↪→
↪→
↪→
↪→
↪→

Listing 4.3: Execute command sent to the WPS.

When receiving an Execute command The WPS framework interacts with the Post-
greSQL/PostGIS database through the lineofsightGML.py processing service programmed
in Python, and the associated configuration script stored in a . zcfg file.
The Python code calls the database end executes a SQL statement containing the custom
PL/pgsql function. This function in turn queries the contents of the table containing the
raster.
The custom function los () described in section 3.4 takes as input two point geometries
asides from the height and resolution. The PostGIS compliant geometries are created
from the clients GML input by the embedding the function ST_GeomFromGML function,
which converts GML to PostGIS compliant geometries into the SELECT statement used
in the Python process called from the WPS. A line string is created from the endpoint
and startpoint and this is compared to the index on the raster to retrieve only raster
tiles that intersect the line.
The custom function then evaluates the visibility along the line, by calling build-in
functions and operators and lastly return a record containing a GeoJSON FeatureCollection
(see section 2.8.4).
This GeoJSON object is returned to the Python code, where it is inserted as a value
under the dictionary key ["los"] (see listing 3.22), to be parsed by the WPS into XML
After the REST payload has been sent from client to server and the processing has been
done, the XML is returned to the client by the WPS via the Apache web server.
The output can now be consumed by the client in any way desired, e.g. as input into a
Leaflet or Open Layers web map.

4.2 Evaluating Line of Sight Result

In the following section an evaluation of a result of a line of sight calculation will be
presented using:

• orthoimagery

• The original DEM

58

• A photo from the perspective of the original viewpoint

• A 3D model

The line of sight calculation was done from the point 712422, 6192236 (start point) where
294 cm was added to the surface height and to the point 712189, 6192692 (end point)
both points specified in EPSG 25832 coordinates. The sampling of the underlying DEM
was done at 1 meter intervals.

4.2.1 Evaluate Line of Sight Result Against Orthoimagery

To evaluate the credibility of the line of sight calculation, ortho imagery is a valuable
comparison reference. The ability of the human mind to interpret a true colour ortho
photo to estimate heights and the relationship between these heights to establish which
features are visible from where is an immediate function of the human minds ability to
contextualise information on the typical height and extent of feature types. This can be
exemplified by the interpretation one would make of a flat field intersected by a line of
trees. Here the human mind would interpret that standing on one side of the trees, one
would not be able to see the field on the other side, as the height of the trees block the
view of the much lower field on the other side.
The product ortofoto sommer 2012 WMTS from kortforsyningen.dk was chosen as
reference among other ortho imagery products as it had the least amount of shadows and
an acceptable contrast level.

59

Figure 4.2: The line of sight result overlaid orthoimagery.

From the ortho imagery displayed in figure 4.2 it can be observed that the start point
is just inside a small collection of trees with a cultivated field in front. The field is
characterised by sets of furrows that lie perpendicular to the line of sight along with a set
of furrows that run parallel to the line of sight (see figure 4.6 containing a photo taken
from the start point towards the end point for clarification).
The line of sight then reaches a few trees and afterwards a collection of what appears to
be farm house structures. This is followed by a small cluster of trees followed by what
seems to be a small garden and then a small forest. Finally the forest is intersected by
what seems to be a grass patch and ending in the forest.
The visibility on the line of sight as returned using the WPS shows visible sample points
as green and non-visible as red. The field just in front of the start point has a high
number of visible points and not until meeting the farm structure in the form of a hedge
is visibility hampered considerably. Inside farm a small tree is visible followed by the
front of the first farm structure roof and the second farm roof ridge followed by a few
points of visibility of the small cluster of trees just after the farm. lastly a single point of
the larger forest structure after the farm is visible.
It should be noted that the ortho imagery (figure 4.2) and the on-site photo (figure 4.6)
both show a structure orthogonal to the first farm structure with a white gable facing
towards the start point. This structure is not represented in the DEM, which introduces
an error into the visibility calculation.

60

The structures on the line of sight after the low lying field in front of the start point that
are marked visible are primarily features that are associated with a somewhat higher
elevation than neutral terrain.

4.2.2 Evaluate Line of Sight Result Against Original DEM

The DEM raster lies beneath all calculations of visibility in this thesis. In figure 4.3 the
line of sight result is shown overlaid the DEM raster to be able to evaluate the influence
of elevation to the line of sight calculation.

Figure 4.3: The line of sight result overlaid the original DEM.

The raster is coloured according to pixel value, with deep blue as the lowest values and
bright red as the highest (3910 - 6040 cm). Excluding feature hight (trees, buildings and
hedges) the start point of the line of sight calculation is located at a high point in the
terrain, with the terrain sloping downward in the sight direction.
The location of the start point combined with the added 294 centimetres of height at the
start point explains the high visibility of the field at the beginning of the line of sight. Is
is not immediately obvious why there are some points along the line that are not visible,
but this could be the result of very local sudden slope changes downward.

61

Figure 4.4: Slope calculation based on the DEM.

This theory is supported by looking at a very local slope calculation based on the DEM
(figure 4.4). Here it can be seen that invisible points lies mostly just after a furrow which
induces a much steeper slope than normally.
The line of sight meets the farm structure at a small hedge like structure, which effectively
stops visibility of the surface until a tree is visible a few meters further along.
The remaining points of visibility are very much explained in section 4.2.1 on orthoimagery.

62

4.2.3 Evaluate Line of Sight Result Against 3D Model and On-Sight
Photography

Below an on-site photo from the vantage point of the line of sight start point will be
compared to a 3D view from the same perspective with the intent of referencing the two
images as to determine the credibility of the line of sight calculation by overlaying it on
the 3D on-site perspective.

Figure 4.5: Measuring the height of photo lense at the line of sight start point

Although the on-site photo was sought taken from the exact position and height of the
start point the lack of a dedicated GPS system introduces some uncertainty. Instead
the location was estimated from maps onto the physical landscape to a certainty of
approximately 2 meters and the height above the surface was measured with a measuring

63

stick (see figure 4.5) and was also the subject of some human introduced measurement
error.
The software used to create the 3D model of the DEM overlaid with the orthoimagery1,
did not allow for fine adjustment of the perspective and no numeric input of parameters
like height. This results in some uncertainty in the exact location and height of the 3D
view.

Figure 4.6: Photo taken at the start point of the line of sight calculation

The on-site photo shown in figure 4.6 has its strength at shorter distances before the view
hits the complexity of multiple horizons layered after each other. It clearly shows the
directionality of the furrows, the two large trees that the line of sight goes between (as
a result of the season, one of them has very few leaves), the low hedge that delineates
the farm house structures from the field and a white gable of one of the structures. Also
visible, although not very clear, is a roof with its ridge marked with a red arrow in.
All features that are further away are hard to distinguish from each other, but seems to
form a horizon dominated by treetops, likely formed by the small cluster of threes after
the farm structures and the following forest as presented in section 4.2.1.
The equivalent 3D view without (figure 4.7) and with (figure 4.8) the line of sight overlaid,
do not show the white gable (see section ?? for discussion on the presence of this structure
in ortho imagery and DEM). But like the on-sight photo it shows the roof of one of the
farm structures, with the ridge again marked by a red arrow.
This is followed by a complex cluster of trees analogue to the arrangement in the on-site
photo (figure 4.6). Although the effect of curvature at distances around 600 meters such
as in this case are small, the effect is that the further away from the start point the higher
points will be relative to the value used in the line of sight calculation.

1Qgis2threejs

64

Figure 4.7: 3D View at the start point looking towards end point

Between the two representations there is clear feature to feature equivalence although the
differences in resolution and extent of the 3D scene, results in some clear differences in
the presentation. The similarity is close enough though that an overlay of the line of sight
result can yield an indication of the success rate of the calculation, which is interpreted
as being very reliable.
In figure 4.8 the 3D perspective emulating the perspective of the line of sight the is shown
overlaid with the line of sight result. There are only green points visible bar for one red
point. This red point lies at the top of a tree trunk and could possibly be a result of a
human error in adjusting the view or a result of the missing correction for earth curvature
effect in the 3D view. That only points classified as green are showing at the perspective
of the start point is a strong circumstantial evidence that the calculation creates a reliable
result.
When superimposing the 3D view that includes the line of sight calculation shown in
figure 4.8 onto the original photo taken on the site shown in figure 4.6 it can be seen that
the two close horizons line up with good precision (see figure 4.9) (The far of horizon is
not included in the 3D view as only a 3D scene for the bounding box of the line of sight
calculation is generated).
Looking a the points representing the line of sight they again correlate very precisely to
the photo taken on the site reinforcing the line of sight calculation result.

65

Figure 4.8: 3D view at the start point overlaid with line of sight result

Figure 4.9: Original photo from the point of view of the line of sight calculation start
point, superimposed onto the 3D view including the line of sight result.

66

4.3 Performance Evaluation

As stated in the problem statement in section 1.2, a comparison of the performance of
the line of sight PL/pgSQL process running in the ZOO-Project framework2 against the
equivalent WPS’s from Sweco and Septima3 was an objective of the thesis.
Below I will compare the speed of execution for the three related services by timing the
period from sending the Execute request until the XML response is returned. The timing
was done within the Safari browser using the Safari Web Inspector, which allows to time
individual network events when accessing a web site.
This means that it is not the timing of when the result is drawn on a map (as this is
not yet implemented in the ZOO-Project WPS), but the timing of when the raw data is
returned. This methodology should alleviate effect of the overhead of the graphical user
interface of the two other interfaces.
For consistency all timings were done from a computer with ethernet connection at
Sweco and all measurements was done three times, with the average being used for the
evaluation.

4.3.1 How do the Three Solutions Compare in Speed of Execution?

The three line of sight services all perform similarly at the 500 meter distance returning a
result within what is perceptible by humans. Measuring the time shows that the Sweco
service is clearly the fastest at this distance, returning a result in 240 ms where the
Septima measures at 485 ms and the ZOO-Project service is the slowest at 525 ms (see
table 4.1).

Line of sight, meters 500 2000 5000
ZOO-Project WPS 525 603 566
Sweco 240 637 1470
Septima 485 1325 2900
PL/pgSQL function 347 1300 3100
Size of ZOO responce 69 KB 271 KB 540 KB

Table 4.1: The response time in milliseconds for each service at different distances queried.

When the distance of the line of sight goes up to 2000 meters, the time to return a result
increases for all services, with the ZOO-Project service returning a result in 603 ms, Sweco
in 637 ms and Septima in 1325 ms.
Lastly the 5000 meters distance for the line of sight shows that the ZOO-Project service
returns a result in 566 ms, the Sweco service in 1470 ms and the Septima service in 2900
ms.

2GetCapabilities of ZOO-Project WPS http://45.32.186.126/cgi-bin/zoo_loader.cgi?Service=
WPS&Request=GetCapabilities&Version=1.0.0

3http://labs.septima.dk/

67

http://45.32.186.126/cgi-bin/zoo_loader.cgi?Service=WPS&Request=GetCapabilities&Version=1.0.0
http://45.32.186.126/cgi-bin/zoo_loader.cgi?Service=WPS&Request=GetCapabilities&Version=1.0.0
http://labs.septima.dk/

While both the Sweco and Septima service scale in a linear and predictable manner along
with the distance calculated, the ZOO-Project service however seems to hover around
500-600 ms no matter what distance is calculated.

Figure 4.10: Chart showing the relative speed of each line of sight service at different
distances.

This discrepancy can be best observed in in figure 4.10 where the Sweco (orange) and
Septima (gray) service scale in a similar way, whereas the ZOO-Project service (light
blue) is not influenced by the greater distance and subsequently larger size of the return
payload (green).
Because of these discrepancies between the ZOO-Project service, the size of the payload
and the other services the results of the ZOO-Project service is somewhat untrustworthy.
To investigate this further a test of the PL/pgSQL function running in the database was
included.
The results of this additional test show that when running the PL/pgSQL function, the
results scale close to linearly (yellow line in figure4.10) resulting in the slowest measurement
result and very close to the result for the Septima service.
The explanation to these discrepancies are not clear, but can be the result of how the
response result is measured in the Safari Web Inspector.
Although the results measured for the ZOO-Project service were somewhat uncredible,
the result of the PL/pgSQL function can give an indication of the speed of the WPS,
showing that the performance lies close to the Septima service, but is the slowest.

68

4.4 Usability of Line of Sight as a Parameter in Housing
Tax

After creating the line of sight service, establishing its functionality and precision I will
now turn to the possible utility of a line of sight WPS process in a housing tax valuation
model.
As noted in the section 2.9 on page 30 a possible new and more objective model for housing
and property tax could very well end up using geo data to standardise the valuation
model. With parameters like distance to coast line, rail-roads, motorways, forest and
several others influencing the valuation, incorporating the visibility of these objects would
make for an even more realistic model.
There could be different implementation strategies for incorporating a line of sight to the
geographical features. If using the WPS created for this thesis, inputs should be provided
for the startpoint, endpoint and the height above the startpoint. These inputs could be
provided from a separate WPS, which should return the geometry the address in question
as startpoint, locate the nearest point on the nearest feature of interest as endpoint and
the maximum allowed building height from the areas local plan as height.
This solution would require a separate WPS accessing data from the
Danish Address Register (data served from AWS4), access to geographical data
on the features in question, most of which are available from the GeoDanmark dataset
(Fællesoffentligt Geografisk Administrationsgrundlag 2014), and finally access to a register
of local plans from the Danish Business Authority5.
By pulling together data from all these independent sources an automated model can be
developed as shown in figure 4.11.
The model shown in figure 4.11 shows how the line of sight WPS would be included in a
functional workflow to return visibility of geodata features. In this case the user would
input just an address and a geodata feature type to determine visibility to.
The address would be georeferenced using data from Danmarks Adresseregister returning
a geometry. This geometry would be sent to the line of sight WPS as startpoint input.
It would also be sent to the GeoDanmark WPS where the nearest feature of the requested
feature type would be located and the point on the feature with the shortest distance to
the address would be returned to the line of sight WPS as the endpoint input.
And lastly to a PlanSystemDK WPS where the maximum allowed building height for the
address would be retrieved from the local plan that contain the address.
The robustness of using the visibility of just one point would be questionable. To counter
this, instead of establishing the line of sight to just one point, the features (often polygons
and line strings) could be subdivided into smaller line strings, from which the nearest
could be located and subsequently reduced to points at a defined interval. Establishing
line of sights to each of the points would result in a more realistic valuation.
By implementing the line of sight calculation as a module in a wider modular strategy of
exposing processing abilities through separate WPS systems, the usability of a line of

4http://aws.dk
5https://erhvervsstyrelsen.dk/plansystemdk

69

http://aws.dk
https://erhvervsstyrelsen.dk/plansystemdk

Figure 4.11: Example of interconnected WPS to create a repeatable workflow for visibility
calculations from addresses to geodata features.

sight WPS is greatly increased.
The modular approach, if responsibility was delegated along with the modules, would also
encourage independent development and maintenance to create individually optimised
modules. The different versions of the processing modules would be reachable by using
the introduced in section 2.3 on page 11, such that the repeatability for each calculation
would be preserved.
Creating the actual geospatial calculations within the database would allow both; a simple
way of logging all actions by user (see section 2.8.1 on page 27) to acknowledge the expert
hearings focus on accountability (P. E. Jensen et al. 2014) and an effective way of storing
results.

70

Chapter 5

Conclusion

The implementation of a software stack capable of hosting a spatial analysis service
was done using the ZOO-Project WPS framework. The WPS framework handled the
communication to the actual analysis module using a REST framework. The analysis
itself was done within a PostgreSQL/PostGIS environment and output to GeoJSON
format. The result was then returned to the user encapsulated in a well formed XML
document.
The line of sight calculation was done by determining the angle created between the line
representing the start point and endpoint and the line stretching from the surface directly
below the start point and the endpoint, and finally relating this angle to the similarly
calculated angles for all other sampled points between the start point and currently
evaluated point.
To compensate for the curvature of the earth, the effect was subtracted from the elevations
sampled from the DEM at calculation time.
When comparing the performance of the line of sight WPS to both Sweco and Septima
solutions a muddy picture emerged, possibly because of problems with the measurement
methodology. The WPS created for this thesis came out as the fastest of all services,
when determining the line of sight for longer distances, even returning a response for both
2000 and 5000 meters, which took approximately the same time.
This result went very much against all other evidence and a test closer within the database
showed measured times close to the Septima solution.
Evaluating the precision of the line of sight calculation, comparing the output to both
on-sight photography, ortho imagery, the DEM data, slope calculations and a 3D model
showed a high degree of correlation between the calculation and real life, establishing the
line of sight calculation as a credible service.
The line of sight as a service was developed with the Danish Customs and Tax Adminis-
tration in mind, to be used when valuing property. As shown in section 4.4 the line of
sight WPS, as it is a standards based service, can be implemented in a larger network
of WPS’s to form an objective and repeatable workflow that, with very few and simple
user inputs, can return a line of sight to base the visibility parameter on in the valuation
process.

71

Bibliography

52◦ North GmbH (2016). 52◦ North - Initiative for Geospatial Open Source Software
GmbH. http://52north.org. Accessed: 2016-04-05.

Bang, Mads (2013). “Her er kritikken af ejendomsvurderingerne”. In: Altinget.
Bater, Christopher W and Nicholas C Coops (2009). “Evaluating error associated with

lidar-derived DEM interpolation”. In: Computers and Geosciences 35.2, pp. 289–300.
Beaulieu, Alan (2009). Learning SQL. "O’Reilly Media, Inc."
Butler, H, S Gillies, and T Schaub (2016). The GeoJSON Format. Internet Engineering

Task Force.
Charaniya, Amin P, Roberto Manduchi, and Suresh K Lodha (2004). “Supervised Para-

metric Classification of Aerial LiDAR Data”. In: CVPRW ’04: Proceedings of the 2004
Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’04)
Volume 3 - Volume 03. University of California, Santa Cruz. IEEE Computer Society.

Dar, Usama et al. (2015). “PostgreSQL Server Programming - Second Edition”. In: pp. 1–
508.

Date, C J (2015). SQL and Relational Theory. How to Write Accurate SQL Code. "O’Reilly
Media, Inc."

Dengsøe, Povl (2015). “Grundskyld får hammeren: Boligejerne stoler ikke på Skats
vurdering”. In: Berlingske Tidende.

Drachmann, Hans (2014). “Skattefolk har opfundet metode, som giver vidt forskellige
ejendomsvurderinger”. In: Politiken.

— (2016). “Skat afviser at ændre grundskyld på trods af underkendelse”. In: Politiken.
Drachmann, Hans and John Hansen (2016). “Skat gør stadig forskel på naboers ejen-

domsskat”. In: Politiken.
Evangelidis, Konstantinos et al. (2014). “Geospatial services in the Cloud”. In: Computers

and Geosciences 63.C, pp. 116–122.
Fællesoffentligt Geografisk Administrationsgrundlag (2014). Specifikation FOT 5.1 foren-

klet udgave.
Fenoy, Gérald, Nicolas Bozon, and Venkatesh Raghavan (2012). “ZOO-Project: the open

WPS platform”. In: Applied Geomatics 5.1, pp. 19–24.
Fisher, Peter F (1993). “Algorithm and implementation uncertainty in viewshed analysis”.

In: International journal of geographical information systems 7.4, pp. 331–347.
— (2006). “Extending the Applicability of Viewsheds in Landscape Planning”. In: pp. 1–6.
Fu, Pinde and Jiulin Sun (2011). Web GIS. Principles and Applications. Esri Press.

72

http://52north.org

GDAL Development Team (2016). GDAL - Geospatial Data Abstraction Library, Version
1.11.2. Open Source Geospatial Foundation. url: %E2%80%8Bhttp://www.gdal.org.

Geodatastyrelsen (2015a). Danmarks Højdemodel, DHM/Overflade. Tech. rep. Geo-
datastyrelsen.

— (2015b). Danmarks Højdemodel, DHM/Punktsky. Tech. rep. Geodatastyrelsen.
Guo, Qinghua et al. (2010). “Effects of Topographic Variability and Lidar Sampling

Density on Several DEM Interpolation Methods”. In: Photogrammetric Engineering &
Remote Sensing 76.6, pp. 701–712.

Haines, Nathan (2015). Beginning Ubuntu for Windows and Mac Users. Apress.
Haverkort, Herman, Laura Toma, and Yi Zhuang (2009). “Computing visibility on terrains

in external memory”. In: Journal of Experimental Algorithmics (JEA) 13, p. 5.
Herman, Ted (2013). A Functional Start to Computing with Python. CRC Press.
Higham, Nicholas J (1996). Accuracy and Stability of Numerical Algorithms. Society for

Industrial and Applied Mathematics.
Jensen, John R (2007). Remote Sensing of the Environment: Pearson New International

Edition. An Earth Resource Perspective. Pearson Higher Ed.
Jensen, Peter Engberg et al. (2014). “Forbedring af ejendomsvurderingen ”. In:

pp. 1–248.
Klensin, J, T Hansen, and N Freed (2013). “Media Type Specifications and Registration

Procedures”. In:
Koukoulas, S and G A Blackburn (2005). “Mapping individual tree location, height and

species in broadleaved deciduous forest using airborne LIDAR and multi-spectral
remotely sensed data”. In: International Journal of Remote Sensing 26.3, pp. 431–455.

Marquez, Angel (2015). Postgis Essentials. Packt Publishing.
Matt Duckham, Michael F Goodchild and Michael F Worboys (2007). “FOUNDATIONS

OF GEOGRAPHIC INFORMATION SCIENCE”. In: pp. 1–252.
OGC (1999). OpenGISSimple Features Specification For SQL. Open GIS Consor-

tium.
— (2002). Open GIS Geography Markup Language (GML) Implementation Specification

Version 2.1.2. Open Geospatial Consortium.
— (2006). OpenGIS R© Web Map Server Implementation Specification. Open Geospatial

Consortium.
— (2008). OpenGIS R© Web Processing Service. 1.0.0. Open Geospatial Consortium.
— (2010a). OpenGIS Web Feature Service 2.0 Interface Standard. Open Geospatial

Consortium.
— (2010b). OpenGIS R©Web Map Tile Service Implementation Standard. Open Geospatial

Consortium.
— (2012). OGC R© WCS 2.0 Interface Standard- Core. Open Geospatial Consortium.
Open Source Geospatial Foundation (2016). GeoServer WPS. http://docs.geoserver.

org/2.8.x/en/user/extensions/wps/index.html. Accessed: 2016-04-05.
PyWPS (2016). PyWPS Project. http://pywps.org. Accessed: 2016-04-05.
Regina O Obe, Leo S Hsu (2015). “PostGIS in Action”. In: pp. 1–602.
Richardson, Leonard and Mike Amundsen (2013). RESTful Web APIs. O’Reilly Media.

73

%E2%80%8Bhttp://www.gdal.org
http://docs.geoserver.org/2.8.x/en/user/extensions/wps/index.html
http://docs.geoserver.org/2.8.x/en/user/extensions/wps/index.html
http://pywps.org

Rosenkranz, Brigitte Christine (2014). “Nye data til Danmarks Højdemodel ”. In: pp. 1–2.
Sebesta, Robert W (2015). Concepts of Programming Languages, Global Edition.
Skatteministeriet (2013a). “Bekendtgørelse af lov om vurdering af landets faste ejendomme”.

In: pp. 1–12.
— (2013b). Danskerne skal have et nyt og bedre ejendomsvurderingssystem. url: http:

//www.skm.dk/aktuelt/presse/pressemeddelelser/2013/oktober/danskerne-
skal-have-et-nyt-og-bedre-ejendomsvurderingssystem.

Steiniger, Stefan and Andrew J S Hunter (2011). Free and Open Source GIS Software for
Building a Spatial Data Infrastructure. Springer Berlin Heidelberg. Berlin, Heidelberg.

Stones, R and N Matthew (2006). Beginning databases with PostgreSQL: from novice to
professional.

Sullivan, Michael (2011). Algebra & Trigonometry. Enhanced with Graphing Utilities.
Addison-Wesley Longman.

Sumathi, S and S Esakkirajan (2007). Fundamentals of Relational Database Management
Systems. Vol. 47. Studies in Computational Intelligence. Berlin, Heidelberg: Springer
Science & Business Media.

The PostgreSQL Global Development Group (2016a). Feature Matrix. http://www.
postgresql.org/about/featurematrix/. Accessed: 2016-04-17.

— (2016b). PostGIS 2.2.0 Release. http://postgis.net/2015/10/07/postgis-2.2.0/.
Accessed: 2016-04-17.

The UbuntuGIS Team (2016). UbuntuGIS branches. https : / / launchpad . net /
~ubuntugis. Accessed: 2016-04-11.

Tsai, Chia-Che et al. (2016). “A study of modern Linux API usage and compatibility”. In:
the Eleventh European Conference. New York, New York, USA: ACM Press, pp. 1–16.

W3. Primitive Datatypes. url: http://www.w3.org/TR/xmlschema-2/#built-in-
primitive-datatypes.

Wehr, Aloysius and Uwe Lohr (1999). “Airborne laser scanning—an introduction and
overview”. In: ISPRS Journal of Photogrammetry and Remote Sensing 54.2, pp. 68–82.

Westra, Erik (2013). Python Geospatial Development, Second Edition. Packt Publishing
Ltd.

Young, Cynthia Y (2012). “Algebra and Trigonometry”. In: pp. 1–1441.
ZOO-Project team (2016). ZOO-Project WPS. http://www.zoo-project.org. Accessed:

2016-04-05.

74

http://www.skm.dk/aktuelt/presse/pressemeddelelser/2013/oktober/danskerne-skal-have-et-nyt-og-bedre-ejendomsvurderingssystem
http://www.skm.dk/aktuelt/presse/pressemeddelelser/2013/oktober/danskerne-skal-have-et-nyt-og-bedre-ejendomsvurderingssystem
http://www.skm.dk/aktuelt/presse/pressemeddelelser/2013/oktober/danskerne-skal-have-et-nyt-og-bedre-ejendomsvurderingssystem
http://www.postgresql.org/about/featurematrix/
http://www.postgresql.org/about/featurematrix/
http://postgis.net/2015/10/07/postgis-2.2.0/
https://launchpad.net/~ubuntugis
https://launchpad.net/~ubuntugis
http://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
http://www.w3.org/TR/xmlschema-2/#built-in-primitive-datatypes
http://www.zoo-project.org

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction and Problem Statement
	Introduction
	Problem Statement

	Theory
	Standards and Their Role in the Geospatial Community
	Web Processing Service
	OGC WPS Standard
	REST
	Key-Value Pairs Used and Data Returned
	OGC WPS Data Types

	ZOO-Project Framework
	Kernel
	Services

	Data
	Raster
	Sampling
	Line of Sight Using Points

	Digital Elevation Models
	Collecting Data
	Generating Point Cloud from Aircraft Mounted LiDAR System

	Trigonometry
	Calculating Visibility
	Compensation for Earth Curvature

	Languages Used and Evaluated
	Python - An Interpreted Language
	SQL - A Language to Query Structured Data
	PL/pgSQL

	Data Structure
	Relational Database Management System
	Indexes
	Common Table Expression
	GeoJSON
	GML

	Housing Tax

	Methodology
	Installing ZOO-Project WPS and Dependencies
	Dependencies
	Geospatial Data Abstraction Library
	GEOS
	PostgreSQL with PostGIS
	Installing the ZOO-Project Package

	Selection and Preparation of Data
	Selection of Area for Raster Coverage
	Preparation of Data
	Importing Data into PostgreSQL

	Working in PostgreSQL/PostGIS Environment
	Creating Indexes to Optimise Search Speed

	Creating Line of Sight PL/pgSQL function
	Establishing a Line String Representing the LoS
	Using PostGIS Functions to Access Raster Values
	Using PostGIS Functions to Calculate Earth Curvature Influence
	Adding a Z Value to the Points
	Using PostgreSQL Built-in Trigonometric Functions to Calculate Angles to Each Point
	PostgreSQL Window Function
	Converting PostgreSQL table to GeoJSON output
	Custom Functions in PostgreSQL

	Defining the Metadata for Inputs and Outputs
	The ZOO Configuration File (!.zcfg!)

	Python Scripting
	Connecting to DB with Psycopg2

	Connecting the Dots and Running the Web Processing Service

	Results and Discussion
	WPS output
	Evaluating Line of Sight Result
	Evaluate Line of Sight Result Against Orthoimagery
	Evaluate Line of Sight Result Against Original DEM
	Evaluate Line of Sight Result Against 3D Model and On-Sight Photography

	Performance Evaluation
	How do the Three Solutions Compare in Speed of Execution?

	Usability of Line of Sight as a Parameter in Housing Tax

	Conclusion
	Bibliography

