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Energy Measurement and Optimization of Continuous
Gesture Recognition

Jens Emil Gydesen
Department of Computer Science

Aalborg University
9220 Aalborg Øst, Denmark

Abstract

Energy consumption of software is becoming increasingly important as wearables, such
as fitness trackers and other small battery-powered devices, are becoming a large part
of our lives. These devices are typically controlled by a low-power CPU and powered
by a small battery, and are thus very resource constrained. This thesis proposes a
simple yet accurate method for developers to measure the energy consumption of their
software. We demonstrate this method by implementing two continuous gesture recog-
nition algorithms, and measuring their energy consumption. Furthermore we propose
optimizations for these algorithms and gain up to 22 % energy reduction with no loss of
accuracy, and up to 92.36 % energy reduction with 11 % loss of accuracy.

1 Introduction

Gesture based control, i.e. controlling devices through gestures, is becoming increasingly
relevant, as more wearable devices are being developed and used [5]. Gesture recognition
is already widely used today in pedometers, fitness and sleep trackers, as well as a range
of smartphone, tablet and smartwatch applications. With smart homes also trending
[4], we may see a increasing use of controlling your home with gestures by performing
gestures using a wearable. These gestures are typically based on accelerometer, and
sometimes gyroscope, sensor data, measured from the sensors in the wearable device.
The sensors found in wearable devices today are typically three dimensional (3D), i.e.
they gather data from the x , y and z axes.

Numerous solutions for (2D and 3D) gesture recognition [38, 39, 19, 14] and contin-
uous gesture recognition [27, 42, 22] have been proposed, but only few [28, 40, 10] take
energy as a resource constraint into account. These solutions typically try to optimize
the accuracy of their gesture recognition algorithms, but as the devices doing the gesture
recognition are often battery powered (e.g . smartphones, wearables or other embedded
devices), recognizing the gesture may drain the battery needlessly.

Optimizing energy consumption of software running on battery powered devices can
be very useful. Benini et al . [3] have found that source code optimization can reduce
the energy consumption of up to 90 % and Šimunić et al . [32] likewise found up to
77 % energy reduction. The reason why we choose to measure and optimize for energy
consumption, rather than runtime, is that for battery powered devices, battery life is
a bigger concern than the runtime performance of the software. This is especially true
for wearables such as fitness trackers, where there is a minimal interaction with the
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software running, and thus less need for fast computations as they happen in the back-
ground. While reducing runtime typically also reduces energy consumption, measuring
runtime does not take energy consumption of e.g . the DRAM into account, and runtime
optimization techniques which utilizes DRAM for reduced runtime, may result in less
energy consumption optimization, i.e. reducing runtime by 20 % does not necessarily
mean 20 % energy reduction. Lastly, measuring energy consumption makes it possible
to calculate the effect on the battery life of the device.
We setup the following research question:

How can we accurately measure the energy consumption of software, and
measure the differences between optimized and unoptimized algorithms?

While answering this, we will answer the following subquestions:

1. Which methods for measuring energy consumption exists?
2. Which of these methods are simple to use, and how accurate are their measure-

ments?
3. Can we measure the effect of optimizing continuous gesture recognition algorithms?
4. Which algorithmic or architectural features contribute to the energy savings, e.g .

fewer cache-misses, CPU instructions, etc.?

By answering these, we propose a simple method for measuring the energy consump-
tion of the gesture recognition algorithms on battery powered devices. This method is
directed at developers who want to measure energy consumption of their software. We
implement and analyze two continuous gesture recognition algorithms, and present mod-
ifications to the algorithms which reduce their energy consumption. We evaluate the
energy consumption optimization by measuring the energy consumption before and after
the modification, while also comparing the accuracy and the aforementioned features.

The main contributions of this thesis is thus our proposed energy measurement
method, and an analysis of which features are the main contributors to the energy
consumption of the implemented gesture recognizers.

The remainder of this thesis is organized as follows. Section 2 describes related
work to energy measurement methods and energy-optimized gesture recognition. As
we cannot go into detail with all of the gesture recognition algorithms, we will present
a pipeline of how continuous gesture recognition is performed, and briefly analyze and
compare two gesture recognition algorithms in Section 3. We introduce energy opti-
mization techniques and practices in Section 4, and present our method for measuring
energy consumption in Section 5. We present the results of measuring the energy con-
sumption and optimizing the algorithms in Section 6, and analyze which architectural
or algorithmic features that contribute to the energy savings. We conclude the thesis
and discuss the results, the method and further work in Section 7.

2 Related Work

Energy measurement and estimation for software has been researched extensively in the
last two decades. Several different approaches have been used, each with advantages
and disadvantages. These approaches can be divided into external energy measure-
ments, i.e. energy measurements using external tools and sensors, and internal energy
measurements, i.e. energy measurements using internal tools and sensors.
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2.1 External Energy Measurements

The most common approach we found was instruction level analysis, which measures
the energy of each instruction, and then uses these measurements to estimate the energy
consumption. The reason why this is just an estimate, and not an accurate measure-
ment, is that instructions e.g . consume different amounts of energy depending on which
registers are being used and the data types being used etc. [26, 20].

This method requires external testing hardware (such as power meters) connected to
the measured device. Many previous projects [33, 21, 26, 25, 13, 17, 10] have used this
approach, where [21] managed to get up to 97.5 % accuracy compared to measurements
from the external hardware tools. These approaches share the same method:

1. Use hardware measurement tools, such as power meters, to measure the average
energy consumption of each instruction.

2. Use the result of the measurements to calculate the energy consumption of a
program, by analyzing the instructions executed when running the program and
summing the energy consumption of each instruction.

We will not go into details of each of the projects’ equations for estimating the energy
consumption, as they are mostly similar.

While this method can be accurate, and easy to use once the energy consumption
of each instruction has been measured, instruction level energy consumption is almost
impossible to calculate correctly, as the instructions’ energy consumption vary depend-
ing on e.g . if the values are floating point numbers, which registers are being used,
etc. [26, 20]. The downside of this method is that it requires measurements of the
instructions beforehand. These numbers are typically not published by processor man-
ufacturers like Intel, as it is a competition parameter. In order to perform this type of
energy consumption analysis, you will thus have to rely on third party data or perform
the measurements yourself, which is a long and expensive process. Furthermore, these
measurements will also be very hardware/architectural dependent.

Unless such measurements are available, the instruction level analysis is an unattrac-
tive choice for developers.

2.2 Internal Energy Measurements

A number of different tools or framework that rely on internal sensors, such as the
battery level and CPU cycle counter, have been proposed. These tools are easier to use
as they do not need extra hardware, but may be limited in accuracy compared to the
external measurements.

Alexander Bakker [1] has analyzed a number of different energy profilers for the
Android OS. The profilers in [1] are mostly Android applications that can be used to
measure the total energy consumption of an Android smartphone, or in some cases,
the energy consumption of an application. EACOF [8] is a framework that utilize the
battery level and CPU counters to determine the energy consumption of programs run
on Linux or Mac OS. It enables programmers to measure the energy consumption of their
software using an API. JouleUnit [37] is another framework that has can be integrated
into the Eclipse IDE, providing the programmer an easy way to measure the energy
consumption of his code. While these tools are easy to use, compared to the external
hardware methods, they do not disclose the accuracy of their methods, and may be
significantly less accurate. The tools which are based on the battery usage they also
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measure energy usage of e.g . the computer screen, making it harder to get accurate
application energy consumption.

Hähnel et al . [12] use the Running Average Power Limit (RAPL) sensors that are
built into Sandy Bridge or newer Intel processors. They found RAPL to be very ac-
curate compared to hardware measurements (only 1.13 % error rate on average), but
their results showed an offset they attribute to DRAM energy consumption not being
monitored in their tests, which were run on a CPU with a Sandy Bridge architecture. In
Haswell and never architectures, the RAPL interface now also supports DRAM energy
consumption. See Appendix E for a list of Intel CPU architectures that support RAPL.

2.3 Continuous Gesture Recognition Energy Optimization

We have only found three projects doing energy consumption optimization of continuous
gesture, or activity, recognition. Ghasemzadeh et al . [10] use instruction level analysis of
energy, and use the measurements to estimate the energy cost of classification features
in activity recognition. By doing so, they can prioritize the features, e.g . the accelerom-
eter on respectively the x, y, and z axes, which has low energy cost but yields high
accuracy, effectively being able to remove less important sensors from a sensor network.
Raffa et al . [28] does not perform any energy analysis, but utilize efficient algorithms
to reduce computational costs and thus energy costs. Their focus is on reducing the
data in the early stages of their 8 stages pipeline and offload the heavy computations
to a server. Yan et al . [40], like Raffa et al ., focus on reducing the data by adaptively
changing the sampling frequency on an Android smartphone. By reducing the sam-
pling frequency when possible, they reduce the total computational cost of recognizing
activities, reducing the energy costs by 45 % to 55 %.

3 Continuous Gesture Recognition

Continuous Gesture Recognition is the process of segmenting a continuous data stream,
and performing gesture recognition on the segments. The solutions for continuous ges-
ture recognition, consist of number of different stages, thus creating a pipeline for the
data processing. For example the pipeline used by Raffa et al . [28], consists of 8 stages:
(1) Sensors capture, (2) low pass filtering, (3) Gesture segmentation, (4) Early Template
Matching, (5) Normalization, (6) Feature Extraction, (7) HMM + Garbage model and
(8) Late Template Matching, where they use a hidden Markov Model (HMM) based
gesture recognizer.

3.1 Continuous Gesture Recognition Pipeline

Inspired by [28], we propose a simplified pipeline for gesture recognition with the follow-
ing 5 stages: (1) data gathering, (2) filtering, (3) segmentation, (4) normalization (5)
recognition. We use this simplified pipeline so that we can better describe the process
without going into details of specific algorithms, but also so that we can more easily
distinguish between the segmentation and the gesture recognition algorithm stages of
the pipeline.
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3.1.1 (1) Data Gathering

The data for continuous gesture recognition is a continuous data stream
D = {datat | t ∈ N}, generated by e.g . an accelerometer.

3.1.2 (2) Filtering

Filtering helps reduce noise in the data, e.g . from hand trembling. There exists a
range of different filtering algorithms. One such filtering algorithm, used by [28], is the
Exponential Moving Average (EMA), which uses the average of the previous x data
samples to smooth the data stream. This stage is not strictly necessary, but can help
increase the accuracy, as we show in Section 6.

3.1.3 (3) Segmentation

Like filtering, the segmentation can be done using a variety of different methods. A
common method is to use thresholds, where you have e.g . a high and a low threshold.
The data can easily be segmented using this:

1. When a data sample at time t, datat , is above the high threshold, it indicates that
a gesture is here

2. We use the low threshold to find the start and end of the gesture:

� The start is the earliest point datat−n before time t, below the low threshold
� The end is the first point datat+m after time t, below the low threshold

The problem with this simple method is that if just one data sample is below the low
threshold, the start/end is selected. The segmentation method proposed by [28] uses 3
thresholds:

1. A high threshold HFtS

2. A low forward threshold HFtF

3. A low backward threshold HFtB

The HF prefix of the thresholds is short for Hand Force. Beside the thresholds, the
algorithm also enforces a temporal constraint Tt (e.g . 200 ms). The algorithm proposed
by [28] transforms the 3D accelerometer data stream to a 1D data stream by calculating
the hand force as

HF = |(
√
x2 + y2+2 − gravity | (1)

where x, y, and z are the accelerometer data values for each sample, and gravity =
9.80665 is a constant. This segmentation works much like as previously described, but
with more thresholds and the temporal constraint it works as follows:

1. When a data sample at time t, datat , is above the high threshold, HFtS , it indicates
that a gesture is here

2. We use the weak thresholds, HFtB and HFtf , and the temporal constraint, Tt, to
find the start and end of the gesture:

� The start is the latest point datat−n before time t, where this and the earlier
data points within duration Tt are below HFtB

� The end is the first point datat−n after time t, where this and the later data
points within duration Tt are below HFtF

An illustration of how the thresholds are used to find the start and end can be seen by
Figure 1. For more details on how the segmentation algorithm works, see [28].
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Figure 1: The segmentation algorithm with a temporal threshold of 200 ms. Figure is inspired by
Figure 2 in [28].

3.1.4 (4) Normalization

The normalization is part of the gesture recognition. Normalization can be used to
ensure that the gesture segments share the same lengths to properly compare them.
The length of a gesture segment is the number of data samples contained in the segment
and varies depending on the duration of the gesture.

Besides normalizing the lengths, the minimum and maximum values of the gesture
segments can also be rescaled to the same maximum and minimum value. This stage
is not strictly necessary, depending on the gesture recognition algorithm, but can help
increase the accuracy, as we show in Section 6.

3.1.5 (5) Recognition

This stage performs the gesture recognition. As mentioned, there are numerous algo-
rithms to do this stage. In the following section we will describe two such algorithms
and the general idea of gesture recognition.

3.2 Gesture Recognition

This section provides insight to which techniques for gesture recognition exists and how
well they perform. The results of this section, will be the base for choosing which
algorithms to measure energy on and to optimize for better energy consumption.

As mentioned, a number of solutions for gesture recognition on accelerometer (and
gyroscope) sensor data already exists. Niezen and Hancke [24] evaluate three different
techniques for gesture recognition. They analyze gesture recognizers based on a hidden
Markov model (HMM) [36], an artificial neural network (ANN) [34] and a dynamic time
warping (DTW) technique [29]. Some of their findings are summarized in Table 1.

Technique Accuracy Execution time

HMM (4 states) 66.25 % 2.8 ms + 10.5 ms
HMM (8 states) 96.25 % 2.8 ms + 12.2 ms
ANN 90.00 % 1.8 ms + 23.02 ms
DTW 96.25 % 8.31 ms

Table 1: Accuracy and execution time results from [24]. The HMMs and the ANN have additional
execution time because they require preprocessing time in addition to recognition time.
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The results from Table 1 shows that DTW is a good candidate for an energy efficient
gesture recognizer. Our hypothesis for this is that lower execution times will mean lower
energy consumption, based on the reasoning that each method will utilize the CPU and
memory equally for the same time period, and lower time periods should result in lower
energy consumption.

However, while the DTW technique has the best performance by this evaluation,
a paper by Webbrock et al . [38] introduces a simple gesture recognizer called the $1
Recognizer. They compare $1 with DTW and find that $1 performs roughly 80 times
faster than DTW, with the same or higher accuracy. This does, however, not mean that
the simple, fast and yet accurate $1 recognizer is the best for the job.

Herold and Stahovich [14] present a performance optimized version of the $1 rec-
ognizer, called the 1¢ recognizer. They evaluate the 1¢ recognizer to perform up to 80
times faster than the $1, at the cost of just 1.5 % accuracy.

This analysis has shown that while methods from machine learning (e.g . HMM,
ANN), can provide high accuracy, they can also be expensive to run. We decide to
implement and evaluate a DTW based gesture recognizer and the 1¢ gesture recognizer,
and will in the following sections describe both of these algorithms. We have decided on
these algorithms as they are both easy to implement, but also because DTW is a widely
used technique and 1¢ is a very optimized gesture recognizer. By implementing these
two gesture recognizers, we can compare them and show how 1¢ performs compared to
DTW in terms of energy consumption.

3.2.1 1¢ Recognizer

The 1¢ recognizer [14] is a simple gesture recognizer, based on the $1 gesture recognizer.
We have chosen to evaluate this recognizer as the authors claims that is very accurate
and, more importantly, very fast, thus suited for battery-powered or low power devices.
The algorithm can be described as:

1. Resample gesture segments to a fixed size N , using piecewise linear interpolation
2. Transform the 3D gesture segments to 1D segments, by calculating the distance

between the centroid and each of the 3D data points
3. Z-normalize the transformed 1D data
4. Calculate the distance between the input trace and all of the traces in the ges-

ture library, using the Euclidean distance, and return the gesture with the lowest
distance

The time complexity of the 1¢ gesture recognizer is O(m× n), where m is the number
of traces in the library, and n is the length of the longest gesture segment.

The traces in the gesture library have also, when inserted, been resampled and
transformed. For the complete pseudocode, see Appendix C or [14].

The algorithm described in [14] is designed for 2D data, where we have 3D data from
the 3D accelerometer. To support this, we make a few changes to the pseudocode, but
fortunately the algorithm is easy to extend to 3D, which is another advantage compared
to the $1 on which it is based, as the $1 is not easily modified for 3D.

3.2.2 Dynamic Time Warping (DTW)

The Dynamic Time Warping (DTW) algorithm [29] compares two time series, even if
they are of different lengths. As mentioned in Section 3, DTW is much slower than the

7



1¢ recognizer, but it is also simpler to implement. Due to this, there have already been
a lot of optimizations and approximations to the DTW algorithm [16, 30], but we have
chosen to implement the original unoptimized algorithm.

For two time series X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}, the distance
between X and Y can be computed based on dynamic programming using this formula:

DTW (X,Y ) = D(n,m) (2)

where

D(i, j) = d(xi, yj) + min


D(i, j − 1)
D(i− 1, j)
D(i− 1, j − 1)

 (3)

and where d(xi, yj) is a distance function such as Euclidean distance.
We use DTW as a gesture recognizer by comparing the input gesture trace with

each gesture trace in the library, exactly like the 1¢ gesture recognizer. Thus the time
complexity of the DTW gesture recognizer is O(m × n2), where m is the number of
traces in the library, and n is the length of the longest gesture segment.

3.2.3 1¢ and DTW Comparison

Table 2 shows an accuracy and execution time comparison of DTW and 1¢. The execu-
tion time is the average time used to recognize a single gesture, in a gesture library with
100 traces, i.e. 100 comparisons are performed. The execution time and accuracy are
from our implementations. The gesture set and implementation details are described in
Section 6.

Technique Accuracy Execution time

DTW 89 % 189.4 ms
1¢ 92 % 0.17 ms

Table 2: Accuracy and execution time comparison of 1¢ and DTW

4 Energy Optimization

The primary goal of software optimization is to improve the performance, typically
runtime, of the program. By reducing runtime we can also reducing energy consumption
as shown by [3]. Optimizing for energy, or runtime, can be done in different ways and
at different abstraction levels.

4.1 Optimization Abstraction Levels

We define and describe the following three abstraction levels for software optimization:

1. Frequency and voltage scaling
2. Compiler, language and hardware specific
3. Algorithmic

Optimizations on these levels are not mutually exclusive, and optimizations on each
level can and should be combined for the best results. However, due to the scope of this
thesis, we will only focus on one of these.
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4.1.1 Frequency and Voltage Scaling

Frequency and voltage scaling is the lowest abstraction level of optimization as this
includes changing how the hardware performs.

By scaling the frequency and/or voltage of a CPU, we change the computational
power of the CPU, but also the energy per instruction. The dynamic power consumption
P of a CPU is approximately

P = ACV 2F (4)

where A is the activity factor, i.e. the fraction of the circuit that is switching (typically
1
2), C is the capacitance, V is the voltage and F is the clock frequency [35, p. 184]. The
power, and thus the energy per instructions, grows quadratics in terms of voltage.

In theory this means that the lower power, and thus frequency, the CPU uses, the
less energy per instruction is consumed. However research by De Vogeleer et al . [6]
shows that there exists a Energy/Frequency Convexity Rule, which means that if you
plot the energy per instruction, you would see a convex curve rather than a quadratic
curve. In other words, there exists a optimal CPU frequency with regards to energy per
instruction, where lower frequencies results in higher energy per instruction. See [6] for
an analysis of this.

Scheduling can then be used to schedule applications to run with the optimal CPU
frequency and thus reduce the energy consumption. Yuan and Nahrstedt did this and
achieved up to 72 % energy reduction [41].

4.1.2 Compiler, Language and Hardware Specific

The next level of optimization is exploiting compiler and/or language features.
Examples of this are [3, 32] who obtain up to 90 % and 77 % energy reduction by

rewriting code pieces. One such example mentioned by [3] is to use inlined functions to
avoid the function call overheads, where [3] found 16.89 % energy savings by rewriting
Listing 1 to Listing 2.

int square(int x){

return x * x;

}

Listing 1

#define square(x) (x*x)

Listing 2

While effective, these types of optimizations are based on how algorithms are im-
plemented, and may depend heavily on certain programming languages or compilers,
as well as the code being optimized. For more examples of how e.g . C code can be
optimized, see [15].

It is also possible to optimize the runtime of a program by knowing and exploiting
e.g . the cache size. One such example is loop blocking (which is just one of many loop
optimizations), where additional loops are created to improve locality and cache reuse.
Listing 3 shows an example of this.

Another specific hardware optimization is using the Streaming SIMD extensions
(SSE) instruction set, which uses the XMM registers. By using SSE, you can perform
the same instruction, e.g . addition, to multiple data, as fast as a single instruction to a
single data. As the XMM registers are 128 bit, you can thus increase perform four-fold
if your data is 32 bit.
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//Original code:

for i = 1 to n do

for j = 1 to n do

a[i; j] = b[j; i];

end for

end for

// Loop blocked code:

for ii = 1 to n by B do

for jj = 1 to n by B do

for i = ii to min(ii + B - 1; n) do

for j = jj to min(jj + B - 1; n) do

a[i; j] = b[j; i];

end for

end for

end for

end for

Listing 3: Loop blocking where B2 elements fits in L1 cache. Example from [18]

4.1.3 Algorithmic

The highest abstraction level of optimizations happens at the algorithmic level. Often
when algorithms are optimized, they are optimized with regards to their complexity,
denoted by e.g . the big-O notation.

However when we are optimizing for energy consumption, we need to consider the
actual run time as two algorithms with the same big-O complexity may have very differ-
ent energy consumptions. One example of an algorithmic optimization, where the big-O
complexity stays the same, is the optimization [14] (1¢) did the the $1 gesture recog-
nizer from [38], where they, among other things, removed the rotation (an expensive
operation), and reduced the runtime by a factor 80.

The advantage of optimizing at this level compared to the others, is that the opti-
mizations are general and not dependent on certain hardware, compilers or languages.
We will thus focus on optimizing the algorithms of continuous gesture recognizers.

Some of the optimization we perform can considered begin at either algorithmic
or compiler/language level. We do, for example, want to pay some attention to cer-
tain operations that are commonly expensive to perform across multiple programming
language, compiler or even processor architecture (e.g . ARM, Intel x86, etc.), such as
computing square root.

4.2 Optimization Techniques

We utilize the following 5 optimization techniques:

1. Avoid expensive operations
2. Perform mathematical reductions
3. Utilize approximations
4. Reduce the amount of data
5. Change data types

4.2.1 Expensive Operations

Certain operations are computationally expensive to perform on the CPU, almost re-
gardless of the architecture, and are thus more time consuming. Based on a series of
tests, Agnor Fog has compiled a table (see [9]) of the performance of different instruc-
tions several Intel, AMD and VIA CPUs.
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Two very common operations found in the gesture recognition algorithms are division
(IDIV) and square root (FSQRT). As Table 3 shows, these operations are much more
expensive than e.g . ADD and IMUL. The operations should not necessarily be avoided,
but it should be kept in mind that they are expensive to perform, keeping the use of
them to a minimum could improve performance.

Instruction Latency Reciprocal throughput

ADD/SUB 1 0.25
FADD/FSUB 3 1
IMUL 3 1
IDIV 22-29 6
FSQRT 10-23 4-9

Table 3: Example instructions and their latency and throughput on a Intel Haswell CPU using
32-bit registers (where relevant). The unit in both columns is core clock cycles. See [9] for full
table.

4.2.2 Mathematical Reduction

Mathematical reduction at a algorithm level is another way to reduce the computational
cost of an algorithm. An example is the Exponential Moving Average (EMA) filter used
by [28]:

St = α×Xt + (1− α)× St−1 (5)

Where St is the value of the EMA at time t, α is a constant coefficient between 0 and
1, and Xt is the value to filter.

To calculate St we thus have to perform 2 multiplications, 1 addition and 1 subtrac-
tion. We can rewrite Equation (5) as Equation (6):

St = St−1 + α ∗ (Xt − St−1) (6)

By doing so, we eliminate one multiplication of the equation, which, as shown by Table 3,
can have a decent effect on the computational cost. Unfortunately [9] does not include
measurement for floating point multiplication (FIMUL), so we cannot calculate the actual
savings in core clock cycles, but based on Table 3 and the integer multiplication, we
can remove 3 out of 8 cycles to a total of 5 cycles, effectively reducing the latency of
Equation (5) by 37.5 %. Since Equation (5) is performed for each data sample, the
savings are significant.

4.2.3 Approximations

A lot of performance increase can come from approximations, but typically with a side
effect, such as loss of accuracy. Approximations should only be used if the loss of ac-
curacy is acceptable, and where the execution time is excessive. One example of an
approximation that we tested and showed a 12.96 % performance increase was approxi-
mating the instantaneous Hand Force (HF) of [28]. We can write an approximation to

HF = |
√
x2 + y2+2 − gravity | (7)

as
HF = |x2 + y2 + z2 − gravity2| (8)
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While Equation (8) does not give the same result as Equation (7), the result works
as an approximation for segmentation as can be seen in Figure 2. The thresholds for the
optimized equation (Equation (8)) need to be modified to capture the same information,
but as we will show in Section 6, it is possible to use this approximation.
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eq. (8)

Figure 2: Hand force for drawing a square with Equations (7) and (8).

4.2.4 Data Reduction

The size of the data have a direct effect on the performance, as each data point is used
as input to several of the functions in the gesture recognition algorithms. Effectively,
by reducing the number of data points by e.g . 50 %, we reduce the computational cost
by 50 %. To reduce the size of the data we typically have to perform some additional
computations. One such example is Equation (7) where we turn each 3D accelerometer
data sample into a 1D data point, thus reducing the size of the data to one-third of
the original size. Data reduction also reduces the memory required, assuming that the
original data is not stored.

4.2.5 Data Types

Data types are found in most programming languages. Examples of data types are
float, integer, char, short and double. The reason why we mention data types, is
that the data types can have an effect on the performance of the program (both memory
and runtime). A common way to optimize the code regarding to memory consumption,
is to use the minimum needed size for the task, e.g . short (2 bytes) compared to integer
(4) in the C programming language. However, as pointed out by [15], data types that
does not fit in a word (typical 32 or 64 bits on never processors), may have a negative
impact on the runtime, as the CPU may need to convert these to and from the word
size.

Furthermore, as shown by Table 3, operations involving floating point number types,
e.g . float and double, are often more expensive to perform that they fixed number
(integer) counterparts.

5 Energy Measurement

In Section 2 we mentioned a number of methods and tools for measuring energy of a
program.
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We have tried and tested some of the internal energy measurement tools mentioned:

1. EACOF: Difficult to understand how to use it and required 3 executables to run.
Rejected due to complexity and lack of documentation on how to use it.

2. JouleUnit: Only possible to use through Java with a workbench for the Eclipse
IDE, and contains little to no documentation. Rejected due to Java constraint.

3. PowerTutor, Intel Performance Monitor, Dr Power (Android applications): Out-
dated applications for Android with limited accuracy; not possible to log the mea-
surements to a file; on. Rejected due to not being developer friendly.

4. RAPL: Easy to use and developer friendly, but limited to newer Intel CPUs.

We decided not to try any of the external hardware tools, as these require extra time
and money investments.

We have decided to use the Running Average Power Limit (RAPL) interface to
measure energy consumption.

5.1 Running Average Power Limit (RAPL)

The RAPL interface was created to work with the Intel Turbo Boost technology, where it
would provide energy and power information about the CPU, DRAM and other uncore
devices. The RAPL interface consists the following domains:

� Package, which in turn consists of the following two domains:

– PP0 (Core Devices)
– PP1 (Uncore Devices)

� DRAM (only available on Haswell and newer processors)

Core devices are the processors components involved in executing instructions, such as
the processor core and the caches. Uncore devices are devices close to the CPU but is
not part of the chipset, such as e.g . GPUs. We will use measurements from the PP0
(CPU) and DRAM domains.

The accuracy of RAPL have been analyzed in [23, 12, 7], where they show RAPL to
be very accurate, but unfortunately they do not provide any numbers. The analysis in
[12] mentioned an inaccuracy in the form of an offset which they attributed to RAPL
not measuring DRAM, but when this was accounted for they reach a average error
rate of only 1.12 %. However, as mentioned, newer chips (Haswell and newer) are also
able to measure the energy of DRAM. See Appendix E for a list of support Intel CPU
architectures.

The disadvantage of using RAPL is that it is only available on newer Intel CPUs,
where most wearables, i.e. devices intended for the our energy optimization, typically
have an ARM processor, which do not, to our knowledge, contain any interface such
as RAPL. Thus the energy measurement method chosen in this thesis, cannot provide
actual measurements on ARM-based wearables, but may still be useful for measuring
optimizations of algorithms.

On Linux the RAPL measurements can be read in the following three ways:

� Reading files in the /sys/class/powercap/intel-rapl directory
� Using the perf or papi tools (requires root/sudo)
� Reading from the Model Specific Registers (MSRs) (requires root/sudo)
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The disadvantage of using perf or papi is that they will read the energy during the en-
tire runtime of the process, and is thus not possible to read energy between specific code
pieces. Furthermore, the RAPL values are only updates once every 1 ms. We found the
easiest way to read RAPL on Linux was to read the files in /sys/class/powercap/intel-rapl.
To read the energy consumed by a piece of code, we read this value at the beginning
and the end of the code we want to measure, and then compare the two values. The
unit read from this file is microjoule (µJ).

For Mac OS the only way we found to read RAPL was to read it directly from the
MSRs or by using perf. Windows does not (yet) support RAPL.

6 Evaluation

We evaluate and optimize different algorithms in this section, using the optimization
techniques presented in Section 4 and the energy measurement method presented in
Section 5.

6.1 Evaluated Algorithms

We have chosen to implement, evaluate and optimize the following algorithms:

1. The segmentation algorithm from [28]. We do not implement the HMM gesture
recognizer from that paper, because from Section 3 we see that HMMs perform
worse than DTW (and thus 1¢) and typically are more time consuming to imple-
ment. We chose to implement this particular segmentation algorithm because it
is claimed to be optimized and be energy efficient.

2. The 1¢ recognizer from [14]. We chose to implement this particular gesture recogni-
tion algorithm because it is highly optimized, and we thought it would be interested
to see if we could optimize it even further.

3. A gesture recognizer using the DTW algorithm. This algorithm is, unlike the other
two, not optimized. We chose to implement DTW because it is widely used and
easy to implement, but also so that we could examine which architectural features
that differs from 1¢ and DTW.

6.2 Implementation

We implemented the three algorithms ourselves in C and compiled with gcc 5.3.0 with no
compiler optimization (-O0). We did this to ensure that the algorithms was implemented
as efficiently as possible prior to our optimizations, as well as sharing the same quality
of code. Noteworthy implementation details:

� Avoided using expensive standard library function such as pow(a,2) where possi-
ble. Instead we calculate e.g . pow(a,2) as a * a (more than twice as fast).

� Only used 32 bit data types where possible, i.e. float and int.
� DTW has been implemented as iterative rather than recursive to improve perfor-

mance

6.3 Gesture Set

We have tested the optimizations on the gestures shown in Figure 3. Since some of them
are hard to illustrate on paper, short descriptions the gestures can be found in Table 4.
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Figure 3: Gesture set. Green dot indicates starting point, where the red square indicates the end.

ID Name Description

1 Triangle A triangle
2 Square A square
3 Circle A circle
4 Infinity An infinity (∞) symbol
5 Loop A loop from left to right
6 Knock Knock three times
7 Throw Back Move hand from right hip over left shoulder in a throwing motion
8 Lasso Move hand from right hip up over right shoulder and perform a lasso motion
9 X A cross (X)
10 Roll Slowly rotate the arm 180 degrees, and then back again

Table 4: Gesture Descriptions for gestures in Figure 3

This gesture set draws inspiration from some of the gestures found in the gesture
recognition algorithms analyzed, and is based on being fast and easy to do in 3D. The
gestures from e.g . the 1¢ paper are hard to do in 3D, but easy to do on paper/tablet in
2D.

Furthermore, some of the 3D gestures found in other papers, are inversed or rotated
duplicates of other gestures in the same gesture set. These gestures will not cause a
problem for e.g . DTW, but since 1¢ gesture library is based on the distances to the
centroid of the gesture, the same gesture reversed or rotated will result in the same
centroid, and thus the same 1D gesture trace in the library, which makes it impossible
to use these as unique gestures.

6.4 Setup

We perform the tests on a laptop with a Intel i7-5500U CPU, with 2 (4 with hyper-
threading) cores running at 2.4 GHz, a 128 kB level 1 cache, a 512 kB level 2 cache
and a 4096 kB level 3 cache. This CPU is based on the Broadwell architecture, and
allows us to fully use the RAPL interface with DRAM measurements as described by
Section 5. Furthermore the laptop was equipped with 16 GB of RAM and a 256 GB
Samsung MZ7LN256 SSD. The laptop is running 64 bit Arch Linux with Linux kernel
4.5.1.

The device we use for testing outperforms typical wearable or embedded devices
substantially, especially the cache size differs a lot from what is typically found in these
devices. However, the number of instructions executed should be similar to running the
programs on a less powerful device, even if it has a CPU with an ARM architecture.

To reduce noise in the measurements, we perform the following steps on the laptop:
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1. Disable Intel Turbo Boost and heat management (both throttles the CPU) in the
BIOS settings, such that we have a constant CPU frequency (2.4 GHz)

2. Kill and stop any unnecessary process and service, including desktop environment
and network

3. Empty the cache between each iteration

Listing 4 shows pseudocode describing how we use RAPL to measure the energy
consumption of code pieces.

1 main(){

2 <some code>

3 start = read_energy();

4 <code to measure>

5 end = read_energy();

6 energy_used = end - start;

7 <some code>

8 }

9

10 read_energy(){

11 cpu_energy = read("/sys/class/powercap/intel-rapl:0:0/energy_uj");

12 dram_energy = read("/sys/class/powercap/intel-rapl:0:2/energy_uj");

13 return cpu_energy + dram_energy;

14 }

Listing 4: Pseudocode for measuring energy using RAPL. The numbers in the file path indicates
which CPU (in this case CPU 0) and domain to read. RAPL domains are: Core devices (CPU,
caches, etc.) = 0, uncore devices = 1, DRAM = 2.

The data used for the measurements are generated using an Android application,
which collects accelerometer data from a Motorola Moto X (2nd generation), running
Android OS 6.0 (API level 23). The accelerometer data is collected as floating point
numbers (as defined by Java) by the accelerometer in the Android SensorManager.

The training training, i.e. the data for the gesture library, consists of 10 training
traces for each of the 10 gestures in the gesture set from Section 6.3, giving a total of 100
traces in the library. The average number of samples per gesture is 207, the maximum
is 302 (a “Square” gesture) and the minimum is 159 (a “Roll” gesture). The data is
saved on the laptop’s SSD, so that the laptop can read and process it.

The input data used for the test is generated in a similar manner. We generate
10, 1 min long input traces with 10 randomly chosen gestures performed in that time.
These 10 input traces are then aggregated in a single 10 min input trace, and saved on
the laptop’s drive. However since the laptop used for these tests can process this 10 min
trace in a few milliseconds, and the RAPL energy measurements are only updated once
every 1 ms, we aggregate the 10 min trace 10 times to create a 100 min trace, and thus
increase the processing time to get more accuracy results. For future reference, we will
call the 10 min trace the short trace and call the 100 min trace the long trace.

The input data is collected by only one person and is done while this person was
standing still and performing gestures roughly once every 6 s (10 gestures in 1 min).

For all the energy consumption measurements we subtract the background energy
of the CPU, i.e. the energy consumption of the CPU in an idle state. This is done
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by measuring the idle energy consumption over 1 min, and then subtract the appropri-
ate amount depending on how must time was spend by the segmentation and gesture
recognitions.

6.5 Segmentation Optimization Methods and Results

We have chosen to use the segmentation algorithm from [28]. The segmentation algo-
rithm perform two expensive operations: applying a filter to the data and computing
the hand force. We set the coefficient of the EMA filtering algorithm α = 0.2 and the
temporal threshold to be 200 ms. The weak and strong thresholds will vary depending
on the optimization being done. We perform three unique optimizations to the seg-
mentation algorithm: Optimize the filter, change the hand force, and remove the filter
entirely.

The algorithm applies an Exponential Moving Average (EMA) filter to the data to
reduce the noise from subtle hand movements. The filter equation reported in [28] is:

St = α×Xt + (1− α)× St−1 (9)

Where St is the value of the EMA at time t, α is a constant coefficient between 0 and
1, and Xt is the value to filter. We perform a mathematical reduction optimization (see
Section 4) to this equation and get this equivalent, but cheaper, equation:

St = St−1 + α× (Xt − St−1) (10)

The segmentation is performed on a 1D data steam, rather than the 3D from the
accelerometer, by computing the hand force of the accelerometer data. The hand force
equation from [28] is

HF = |
√
x2 + y2+2 − gravity | (11)

where gravity is a constant = 9.80665. We optimize this calculation by computing an
approximation:

HF = |x2 + y2 + z2 − gravity2| (12)

The removal of square root decreases the runtime of this function, and thus the
energy used. To compensate for this change, we also change the the gravity to be
squared. However, since this is a constant, there is no additional computations to this
change.

The last optimization, i.e. the removal of the filtering, is a more drastic change.
However, in our implementation, the gesture recognizers use the raw 3D data, and the
filtered data is thus only used for the hand force function, and thus the segmentation.
We could filter the 3D data used by the 1¢ recognizer, but this will add, and not reduce,
the runtime of the algorithm. This input trace for this is the aforementioned long trace.

As Table 5 shows, we can achieve large savings by changing the hand force and
removing the filter. Changing the filter is a easy optimization with no side-effects,
whereas optimization (2) and (3) requires finding new correct thresholds. Notice that
the accuracy changes depending on the optimization technique. The reason for this is
the thresholds used by the segmentation algorithm, which needs to be fine tuned. It
is our belief that the loss, or increase, in accuracy from these optimizations, can be
changed if more time is put into choosing the right thresholds for this segmentation
algorithm, as the segments sent to the gesture recognizers are affected by this.
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ID Method Accuracy Energy Saved

0 Baseline 92 201.78 mJ N/A
1 Change filter 92 193.51 mJ 4.10 %
2 Change hand force 93 175.63 mJ 12.96 %
3 Remove filter 83 103.69 mJ 48.61 %
4 1 and 2 93 173.60 mJ 13.97 %
5 1 and 3 85 96.53 mJ 52.16 %

Table 5: Segmentation algorithm optimizations on the long trace. The accuracy is from using
the 1¢ recognizer.

6.6 1¢ Optimization Method and Results

We set the number of data points of the resampled array N = 124, as we empirically
found this to give the highest accuracy, while still being as low as possible. The algo-
rithms performance depends on this number, but as it is very data dependent, we will
not try to find the optimal N .

The most expensive operations in this algorithm are the distance functions which
used the Euclidean distance (also known as the L2 distance). The algorithm uses two
distance functions: One for calculating the distance between two 3D points, and one for
the distance between two 1D points.

6.6.1 Distance Function Optimization

To optimize and thus reduce the energy used by the distance functions, we implemented
and tested a few alternatives. As mentioned, there are two functions that calculate the
Euclidean distance: One for calculating the distance between two 3D points, and one
for the distance between two 1D points. Because the functions have different input and
different purpose, we cannot apply all of the optimization techniques to each function.
We have tested using the following distance functions:

1. Euclidean distance (also known as L2, used as baseline)
2. Squared Euclidean distance (omit computing the square root)
3. Octagonal Boundary (distance approximation for 2D, modified to work with 3D)

[2]
4. Taxicab distance (also known as L1)

See Appendix B for the definitions of these distance functions.
The results of these optimization can be seen in Table 6. The input trace for 1¢ is

the long trace. As the table shows, it is possible to save up to 4.73 % energy by doing a
simple approximation. However, most of the optimizations shown here also lowers the
accuracy.

6.6.2 No Normalization

One way to avoid expensive operations is to remove them where possible, as shown by
Table 5 where removing the filter, reduced the energy cost with loss of accuracy. In the
same manner, we try to omit the normalization that is performed before the recognition.
By doing so we get a energy consumption of 1148.39 mJ (1.05 % saved), but an accuracy
reduction to 89 %. The ID of this method is 14.
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ID Method Accuracy Energy Saved (%)

0 Baseline 92 % 1160.52 mJ N/A
6 3D Octagonal 90 % 1161.53 mJ −0.09 %
7 3D Taxicab 82 % 1124.51 mJ 3.10 %
8 1D Squared Euclidean 92 % 1150.12 mJ 0.90 %
9 1D Taxicab 88 % 1105.64 mJ 4.73 %
10 6 and 8 90 % 1157.48 mJ 0.26 %
11 6 and 9 89 % 1110.79 mJ 4.29 %
12 7 and 8 82 % 1116.48 mJ 3.79 %
13 7 and 9 76 % 1103.00 mJ 4.96 %

Table 6: Optimization results for distance functions with the long trace. The first row is the
baseline the results are compared to.

6.6.3 Data Reduction

The previous section used approximations to reduce energy use. This section describes
the result of performing data reduction optimization.

In 1¢ when we try to recognize a gesture, we compare it with every gesture trace
in the gesture library. If we reduce the number of gestures in the library, we can very
effectively reduce the energy consumption. In our library we have 10 training traces
for each of the 10 unique gestures, giving a total of 100 traces in the library. Instead
of using these 10 training traces for each unique gesture, we compute a new average
gesture trace for each of the unique gestures. This can easily be done since all the test
traces have the same length (due to the resampling). Each data point in the average
gesture trace is computed as the average data point across the 10 training traces.

By reducing the size of the library tenfold the energy consumed is 273.04 mJ which
is a 76.47 % saving. However, this reduction also decreases the accuracy to 74 %. This
ID of this method is 15.

6.6.4 Early Termination

Rather than removing data from the library, we can also reduce the number of com-
parisons by terminating the comparisons when the distance reaches below a certain
threshold. When the distance between two gestures is lower than this threshold, we
consider it correct and do not compare the input gesture with the rest of the library. If
no gesture is below the threshold distance, it will still compare the input gesture with
the entire library.

This optimization results in a total energy consumption of 890.84 mJ which is a
23.24 % saving with no accuracy lost. By tweaking the threshold the energy reduction
can be improved, at the cost of accuracy. We decided that the best result would be to
set the threshold such that we do not lose any accuracy. The ID of this method is 16.

6.7 Dynamic Time Warping Optimization Methods and Results

To optimize DTW, we can use some of the same optimizations used for 1¢, but also use
the Squared Euclidean distance optimization for 3D segments here. Since DTW runs
significantly slower than 1¢, we use the short trace for DTW.
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ID Method Accuracy Energy

0 Baseline 89 % 133.29 J N/A
6 3D Octagonal 89 % 116.57 J 12.54 %
7 3D Taxicab: 87 % 110.31 J 17.24 %
15 Reduce library size 78 % 10.10 J 92.42 %
16 Early termination 89 % 128.62 J 3.51 %
17 3D Squared Euclidean 91 % 127.38 J 4.44 %

Table 7: Optimization results for DTW for the short trace. The first row is the baseline the
results are compared to. Note that, unlike 1¢, the unit here is Joule instead of millijoule.

It is interesting that changing the distance function to squared Euclidean (ID 17)
not only saves energy, but also increases the accuracy.

6.8 Optimization Summary

Table 8 shows a summary of the optimizations performed.

Segmentation

ID Accuracy Saved

0 92 % N/A
1 92 % 4.10 %
2 93 % 12.96 %
3 83 % 48.61 %
4 93 % 13.97 %
5 85 % 52.16 %

1¢ Gesture Recognition

ID Accuracy Saved

0 92 % N/A
6 90 % −0.09 %
7 82 % 3.10 %
8 92 % 0.90 %
9 88 % 4.73 %
10 90 % 0.26 %
11 89 % 4.29 %
12 82 % 3.79 %
13 76 % 4.96 %
14 89 % 1.05 %
15 74 % 76.47 %
16 92 % 23.24 %

DTW Gesture Recognition

ID Accuracy Saved

0 89 % N/A
6 89 % 12.54 %
7 87 % 17.24 %
15 78 % 92.42 %
16 89 % 3.51 %
17 91 % 4.44 %

Table 8: Summary of optimization results for the three algorithms.

The results from optimizing the segmentation algorithm show significant reduction
in energy consumption. We believe that the loss of accuracy is caused by sub-optimal
thresholds, which we believe can be tuned to improve the accuracy.

Surprisingly one optimization (6) performs slightly worse than the baseline for 1¢.
One reason for this is that octagonal distance function’s complexity grows exponentially
with regards to dimensions. The original octagonal distance function is fast approxi-
mation to 2D Euclidean distance, but our modified 3D implementation requires more
computation and is thus more expensive to perform. However since DTW shows a
12.54 % saving, we believe this is likely due to variance in the measurements.

The most promising optimization is the reduction in the size of the library and the
early termination. While our (naive) approach to the smaller library gives a significant
worse accuracy, we believe it is possible to get near the same energy reduction with less
loss of accuracy. The early termination can be modified for more energy reduction, with
a loss of accuracy, making it a flexible optimization.
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We have omitted various other optimizations due to too high loss of accuracy with
insignificant energy reductions, including but limited to: converting all numbers to
integers, changing the resample function, and using only one/two dimensions in stead
of three.

6.9 Effect on Battery Life

In this section we analyze how the optimizations found will affect the battery life of
wearables.

The Samsung Gear S2 (smartwatch) is one of the newer and more powerful wearables.
It has a 250 mA h lithium-ion polymer battery. To compare this to our measurements,
we need to convert this to Joules. The lithium-ion polymer battery have a nominal
cell voltage of either 3.3 V or 3.7 V. We have not been able to find the exact battery
specifications of this smartwatch, so we will assume 3.3 V. We can convert mA h to
Joule with the following formulas:

W h = mA h×V/1000 (13)

Joule = 3600×W h (14)

⇒ Joule = 3.6×mA h×V (15)

For the Gear S2 we get a battery capacity of 2970 J by using Equation (15).
The total energy consumption of the unoptimized segmentation algorithm, for 24 h

is 2905.63 mJ. The energy consumption of recognizing a single gesture with the unopti-
mized 1¢ is 1.16 mJ and 1332.90 mJ for the unoptimized DTW recognizer. If we assume
an extensive use of the gesture recognition with 100 recognitions per 24 h we get a total
energy consumption of 3.02 J with 1¢ and 136.20 J with DTW per day. It is important
to note that our measurements are from running the algorithms on a powerful laptop,
and thus the energy consumptions may be higher than it would be on a wearable such
as the Gear S2. For the Gear S2, the continuous gesture recognizer will thus consume
0.10 % to 4.59 % of the total battery every day, depending on the gesture recognizer.

For a powerful wearable such as the Gear S2, the energy consumption of such a
continuous gesture recognizer is not a big issue. However, if we compare it to a less
powerful wearable, such as the Jawbone UP3 fitness tracker, we get a different result.
The UP3 has a battery capacity of 451.44 J (38 mA h with 3.3 V). If the wearable was
running the continuous gesture recognizer, it would consume 0.67 % to 30.17 % of the
total energy capacity per day. If the only energy consumption of the UP3 was the
continuous gesture recognizer, it would be able to run for

� 149 days with the 1¢ gesture recognizer
� 3 days with the DTW gesture recognizer

Using the 1¢ recognizer, even when unoptimized, instead of the DTW recognizer would
result in 4503 % longer battery life.

6.9.1 Battery Measurement

To verify the results from the measurements performed with RAPL on a laptop, we
have implemented the algorithms on a Android smartphone, and measure the actual
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battery cost of running these algorithms. The smartphone we used is a Samsung Nexus
S (released in 2010) with Android OS 2.3 (Gingerbread), a 1 GHz single core Cortex-A8
CPU (ARMv7-A architecture), 512 MB DRAM and a 1500 mA h lithium-ion polymer
battery. We have chosen to implement it on this smartphone as it is comparable in
terms of performance with a wearable like the Samsung Gear S2 which has a 1 GHz dual
core Cortex-A7 CPU and 512 MB DRAM. The smartphone has prior to installing the
continuous gesture recognition application, been factory reset and is running in airplane
mode.

We have implemented the algorithms as a background service (IntentService) with
a PARTIAL WAKE LOCK which keeps the CPU alive while the screen is turned off. We
read a sample data from the long trace (see Section 6.4) every 10 ms, i.e. the same same
frequency as the data was recorded with. The running time is thus the same length as
the trace, i.e. 100 min for the long trace. We measure the battery level before and after
reading and doing continuous gesture recognition on the entire trace using the Android
PowerManager. Unfortunately there are two issues with this:

1. The battery level is a integer between 0 and 100 %. Is it not possible to get better
precision (i.e. 45.75 % rather than 45 %).

2. The battery consumption also includes the screen and other background services
which consume a noticeable amount of energy, thus reducing the accuracy of the
measurements.

To compensate for this we run this test with the long trace, such that the battery
usage is maximized. The accuracy of our measurements increases as the battery usage
increases, as we can only measure the battery level in integers. We also subtract the
energy used for reading the file by running without any segmentation or gesture recog-
nition. By reading the energy used by the application in the built-in battery monitor,
we can also estimate how many percentages of our measured battery use was actually
used by our application, and not the Android OS.

Predicted Measured

1¢ 0.67 % 0.70 %
DTW 30.17 % 39.13 %
Factor 45.03 55.9

Table 9: Comparison of the predicted and measured battery usage. The predicted battery usages
are based on RAPL measurements with 24 h of segmentation and 100 gesture recognitions on the
Jawbone UP3 wearable. The measured battery usages are based on measuring the actual battery
level on a Samsung Nexus S with the long trace (1000 gestures in 100 min).

Table 9 shows the predicted and the measured battery usages on the Jawbone UP3
wearable and the Samsung Nexus S Android smartphone. The methods for measurement
are different, as the predicted results (from RAPL) is based on 24 h of segmentation with
100 gesture recognitions, and the measured results are from 100 min of segmentation
with 1000 gesture recognitions. The reason is that since the accuracy of measuring
using the battery level is low, we were not able to measure any battery usage from
the segmentation algorithm, and thus we were not able to find the battery usage of
24 h of segmentation on the smartphone. However, since the primary source of energy
consumption are the gesture recognizers, we believe these results still prove that the
energy consumption factor of the two algorithms are very alike.
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6.10 Comparative Analysis of Architectural Features

So far we have seen that DTW is much more expensive to run. In this section we
analyze why. To do this, we use the perf Linux utility which is capable of measuring
various performance counters such as cache misses, instructions, cycles, etc. We run
and measure the performance of 100 aggregated iterations DTW and 1¢ with the short
trace.

Figure 4 shows how the two gesture recognizers compare, sorted by difference in
percentage, where task-clock is the time used in ms. Appendix D contains the data
plotted in Figure 4. It should be noted that the use of perf adds a noticeable overhead
in terms of performance, and that most, if not all, numbers reported is in reality lower
than shown here.

0

2

4

6

8

·104

D
iff

er
en

ce
(%

)

L
1-d

cach
e-load

s

in
stru

ction
s

m
em

-stores

L
1-d

cach
e-stores

p
ow

er/en
ergy

-cores/

cp
u

-cy
cles

task
-clo

ck

p
ow

er/en
ergy

-ram
/

L
1-icach

e-load
-m

isses

L
L

C
-stores

L
1-d

cach
e-load

-m
isses

cach
e-referen

ces

p
age-fau

lts

L
L

C
-load

s

cach
e-m

isses

L
L

C
-load

-m
isses

L
L

C
-store-m

isses

100

104

108

1012

perf counters

C
ou

n
t

DTW
1¢

Diff(%)

Figure 4: Graph (left logarithmic axis) showing the difference (right axis) between running DTW
and 1¢ with 100 aggregated iterations on the short trace. The counters are sorted by the difference
of the counts.

From Figure 4 we can see that the biggest difference is in L1 data cache loads, but
also L1 data cache stores is one of the largest differences. This is to be expected as we
also see a lot more memory stores with DTW than 1¢, since DTW calculates an n×m
matrix for each gesture comparison, where n is the size of the input gesture and m is the
size of the library gesture currently being compared to. Beside the memory required for
this, the number of instructions in DTW also shows that this is computational expensive.

The features that contribute most to the difference between DTW and 1¢ is thus a
mix of instructions, memory and cache use.
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7 Conclusion

This section concludes this thesis. We answer our research questions and summarize our
results, and then discuss the results, the method and future work.

7.1 Results

We showed that it is possible to accurately measure the energy consumption using the
Intel Running Average Power Limit (RAPL) interface. To demonstrate how RAPL
can be used, we implemented and evaluated a segmentation algorithm and two gesture
recognition algorithms, and performed optimizations on an algorithmic level, not utiliz-
ing any CPU or programming language optimization techniques. The RAPL interface
is just one of several other methods for measuring energy consumption, but due to its
accuracy and simplicity, we conclude that this is the best method among the ones we
tested. We showed that it is possible to measure differences on pieces of code, making
it possible to easier measure the result of particular optimizations. By using RAPL we
showed that the 1¢ gesture recognizer significantly outperforms our DTW based gesture
recognizer in terms of energy consumption. We saw that a combination of instructions,
CPU cycles, memory stores, data cache stores and loads were the primary architectural
features that contributed most to the energy consumption of the evaluated algorithms.

We conclude that RAPL is a powerful tool for measuring energy consumption of
software – even for small code pieces. Our evaluations and analyses show that measure-
ments performed on a laptop with an Intel Broadwell architecture are comparable with
measurements done on a Android Smartphone with a ARMv7-A architecture.

7.2 Discussion and Validity of Results

In our tests with RAPL we used a powerful laptop and found that the results are close
to the measurements on the Android smartphone. While the results showed a noticeable
difference (factor 10), this may be due to inaccuracies of the method used to measure
battery usage on the smartphone – A method we have not been able to verify the
correctness of. This may also be because of the significantly different cache sizes of the
two devices used for measurement, as we saw that the difference between cache loads and
stores are one of the major differences between the two tested algorithms. Furthermore,
we were also not able to measure the energy consumption of the segmentation algorithm
on the smartphone (due to limited accuracy of reading the battery level).

The way we tested the algorithms was by saving an input trace on the SSD of the
laptop, read the file into memory, and then simulated the 10 min to 100 min trace as
fast as possible. This is clearly not how the continuous gesture recognizers would work
in a real situation. The implementation on the smartphone, however, is implemented as
a real background service which handles new data samples every 10 ms. The different
ways the two implementations work may also have affected the results.

We have not focused a lot on the accuracy of the algorithms, and thus not focused
much on validating it. The traces recorded were all recorded by the single person, and
some of the optimizing may have very different affects on accuracy. Furthermore only
100 unique gestures were recognized. The input traces were recorded while the person
was standing still. If the person had been moving around, or even doing some activities
such as walking while doing the gestures, the accuracy may have been reduced, and the
optimizations for the segmentation algorithms may have had different results.
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7.3 Discussion of Method

The tools and frameworks we have tried, aside from RAPL, are difficult to use, inaccurate
or limited to a certain language/environment. One significant problem with the RAPL
interface is the lack of supported platforms. Currently it is only available on Sandy
Bridge (or Haswell for DRAM support) Intel CPUs, which means that the CPUs must
be from Intel and newer than 2011 (or 2013 for DRAM support). This is especially a
problem as most wearable or embedded devices use CPUs based on an ARM architecture,
where the interface is not available. Furthermore, Microsoft Windows does not currently
support the interface either, which limits the RAPL interface to only a fraction of devices
being used today.

Lastly, even though RAPL is easy to use, it is not easy to isolate the energy con-
sumption of small pieces of code, as the measurements are CPU-wide. We used several
methods to isolate it, e.g . killing all unneeded processes, measuring and subtracting
background energy and running many iterations to get the average. From our measure-
ments we have seen a lot variance in the results even with our efforts to decrease it (see
Appendix A). It is easy to use RAPL, but it is hard to get accurate and isolated results.

7.4 Future Work

One of the biggest issues we experienced with measure energy using RAPL was isolating
the energy. It is not only hard to do, but it is also an inconvenience for developers.
However, if we could analyze and find a correlation between energy and e.g . instructions,
then it would be possible to isolate the energy consumption of specific processes, without
killing all other running processes. By using perf record it is possible to measure
and show events, e.g . instructions, by process. By doing so, it may be possible to
use event/performance counters from each process to estimate the energy consumption
of that process. This method is much like the instruction level analysis described in
Section 2, but where RAPL is used rather than external hardware tools.

It could be imagined that an interface like RAPL would be implemented in ARM
architectures, such that it is possible to measure energy consumption of devices with
ARM architectures.

Since gesture recognition is comparison between time series (in one or more dimen-
sions), it could be interesting to experiment with methods for indexing data sets, as the
gesture library is just such a data set. While such indexing techniques such as iSAX [31],
or the multidimensional HyperSAX [11], are intended for very large data sets (millions),
the concept of building and searching an index may prove to be faster than comparing
the input gesture with each gesture trace in the library.
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A Evaluation Results Statistics

Energy

Optimization Average Median Min Max Standard Deviation

0 201.78 mJ 198.52 mJ 187.92 mJ 221.85 mJ 8.64
1 193.51 mJ 194.49 mJ 185.34 mJ 203.26 mJ 3.05
2 175.63 mJ 176.74 mJ 167.41 mJ 179.41 mJ 3.11
3 103.69 mJ 101.45 mJ 92.15 mJ 124.32 mJ 4.56
4 173.6 mJ 176.72 mJ 167.49 mJ 180.17 mJ 4.38
5 96.53 mJ 94.02 mJ 89.67 mJ 117.19 mJ 5.02

Time

Optimization Average Median Min Max Standard Deviation

0 27.46 ms 27.51 ms 26.99 ms 29 ms 0.26
1 26.96 ms 27.05 ms 26.57 ms 27.49 ms 0.19
2 23.9 ms 23.97 ms 23.55 ms 24.09 ms 0.16
3 13.19 ms 13.28 ms 12.58 ms 13.56 ms 0.21
4 23.57 ms 23.63 ms 23.19 ms 24.53 ms 0.19
5 12.5 ms 12.59 ms 11.89 ms 13.2 ms 0.22

Table 10: Segmentation measurement statistics with long trace (100 min/1000 gestures

Energy

Optimization Average Median Min Max Standard Deviation

0 133.29 J 131.66 J 131.46 J 168.47 J 5.75
6 116.57 J 116.33 J 116.25 J 117.42 J 0.34
7 110.31 J 109.95 J 109.86 J 114.49 J 0.6
15 10.1 J 10.09 J 10.08 J 10.32 J 0.02
16 128.62 J 128.07 J 127.97 J 148.23 J 2.14
17 127.38 J 127.71 J 126.22 J 136.03 J 1.03

Time

Optimization Average Median Min Max Standard Deviation

0 18.32 s 18.14 s 18.12 s 23 s 0.79
6 16 s 16 s 15.98 s 16.02 s 0
7 15.13 s 15.12 s 15.1 s 15.6 s 0.05
15 1.39 s 1.39 s 1.39 s 1.39 s 0
16 17.69 s 17.65 s 17.65 s 20.27 s 0.27
17 17.52 s 17.51 s 17.49 s 18.54 s 0.1

Table 11: DTW Gesture Recognizer measurement statistics with short trace (10 min/100 ges-
tures)
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Energy

Optimization Average Median Min Max Standard Deviation

0 1,160.52 mJ 1,160.22 mJ 1,149.87 mJ 1,176.86 mJ 5.77
6 1,161.53 mJ 1,160.23 mJ 1,154.9 mJ 1,170.79 mJ 3.73
7 1,124.51 mJ 1,124.26 mJ 1,114.61 mJ 1,134.13 mJ 4.11
8 1,150.12 mJ 1,149.34 mJ 1,142.18 mJ 1,174.39 mJ 5.74
9 1,105.64 mJ 1,106.65 mJ 1,098.33 mJ 1,126.69 mJ 4.35
10 1,157.48 mJ 1,157.18 mJ 1,149.97 mJ 1,180.57 mJ 5.49
11 1,110.79 mJ 1,111.01 mJ 1,102.98 mJ 1,133.16 mJ 4.13
12 1,116.48 mJ 1,115.81 mJ 1,108.12 mJ 1,143.78 mJ 4.93
13 1,103 mJ 1,101.66 mJ 1,097.95 mJ 1,125.72 mJ 3.78
14 1,148.39 mJ 1,147.9 mJ 1,137.73 mJ 1,183.18 mJ 5.66
15 273.04 mJ 272.75 mJ 267.49 mJ 279.27 mJ 3.19
16 890.84 mJ 890.48 mJ 883.03 mJ 928.84 mJ 5.41

Time

Optimization Average Median Min Max Standard Deviation

0 158.4 ms 158.44 ms 157.91 ms 159.32 ms 0.25
6 159.31 ms 159.34 ms 158.72 ms 159.95 ms 0.23
7 153.41 ms 153.44 ms 152.69 ms 154.28 ms 0.27
8 157.79 ms 157.82 ms 156.89 ms 158.51 ms 0.29
9 148.57 ms 148.63 ms 148.04 ms 149.08 ms 0.24
10 158.76 ms 158.79 ms 158.17 ms 159.37 ms 0.26
11 148.81 ms 148.83 ms 148.33 ms 149.49 ms 0.24
12 152.96 ms 152.95 ms 152.01 ms 155.9 ms 0.4
13 147.27 ms 147.3 ms 146.76 ms 147.87 ms 0.22
14 156.49 ms 156.47 ms 155.95 ms 160.12 ms 0.44
15 38.17 ms 38.22 ms 37.71 ms 38.64 ms 0.19
16 122.5 ms 122.48 ms 121.95 ms 126.4 ms 0.46

Table 12: 1¢ Gesture Recognizer measurement statistics with long trace (100 min/1000 gestures)
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B Distance Functions

B.1 One Dimensional

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be two one dimensional data series
of length n. The distance between X and Y can be calculated using the following
equations:

Euclidean

Dist(X,Y ) =

√√√√ n∑
i=0

(xi − yi)2

Squared Euclidean

Dist(X,Y ) =

n∑
i=0

(xi − yi)2

Taxicab

Dist(X,Y ) =

n∑
i=0

|xi − yi|

B.2 Three Dimensional

Let
A = {(ax1 , ay1 , az1), (ax2 , ay2 , az2), . . . , (axn , ayn , azn)}

and
B = {(bx1 , by1 , bz1), (bx2 , by2 , bz2), . . . , (bxn , byn , bzn)}

be two three dimensional data series of length n. The distance between A and B can
be calculated using the following equations:

Euclidean

Dist(A,B) =

√√√√ n∑
i=0

(axi − bxi)
2 + (ayi − byi)2 + (azi − bzi)2

Squared Euclidean

Dist(A,B) =

n∑
i=0

(axi − bxi)
2 + (ayi − byi)2 + (azi − bzi)2

Taxicab

Dist(A,B) =

n∑
i=0

|axi − bxi |+ |ayi − byi |+ |azi − bzi |

Octogonal [2]

Dist(A,B) =
n∑

i=0

 441

1024
×min


|axi − bxi |
|ayi − byi |
|azi − bzi |

+
1007

1024
×max


|axi − bxi |
|ayi − byi |
|azi − bzi |


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C 1¢ Pseudocode

function RESAMPLE(points, n)
I ← PATH-LENGTH(points)/(n− 1)
D ← 0
newPoints ← points0
for all point pi for i ≥ 1 in points do

if D + d ≥ I then
qx ← pi−1x + ((I −D)/d)× (pix − pi−1x)
qy ← pi−1y + ((I −D)/d)× (piy − pi−1y )
APPEND(newPoints, q)
INSERT(points, i, q)
D ← 0

else
D ← D + d

end if
end for
return newPoints

end function

function PATH-LENGTH(A)
d← 0
for i from 1 to |A| step 1 do

d← d+ DISTANCE(Ai−1, Ai)
end for
return d

end function

function C-DISTANCE(points)
c← CENTROID(points)
for all point p in points do

d← DISTANCE(c, p)
APPEND(distances, d)

end for
return distances

end function

function Z-NORMALIZE(S)
µ← AVERAGE(S)
σ ← STANDARD-DEVIATION(S)
for all d in S do

z ← (d− µ)/σ
APPEND(z, dz)

end for
return dz

end function

function Recognize(S, Templates)
for all template T in Templates do

b←∞
d← L2(S, T )
if d < b then

b← d
T ∗ ← T

end if
end for
return T ∗

end function

function L2(S,T)
d← 0
for all si, ti for i ≥ 1 in S,T do

d← d+ (si − ti)2
end for
return d

end function

Listing 5: Pseudocode for the 1¢ gesture recognizer. Copied from [14].
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D Perf Counter Table

Difference (%) DTW Onecent Counter

85,293 4.11 · 1012 4.81 · 109 L1-dcache-loads
85,009 1.06 · 1013 1.25 · 1010 instructions
71,525 1.67 · 1012 2.33 · 109 mem-stores
70,804 1.67 · 1012 2.36 · 109 L1-dcache-stores
60,537 13,158.13 21.7 power/energy-cores/
58,982 4.51 · 1012 7.63 · 109 cpu-cycles
58,950 1.89 · 106 3,195.76 task-clock
49,510 3,909.25 7.88 power/energy-ram/
16,229 2.15 · 108 1.31 · 106 L1-icache-load-misses
8,141 7.77 · 108 9.43 · 106 LLC-stores
6,972 6.81 · 109 9.63 · 107 L1-dcache-load-misses
2,375 4.24 · 109 1.71 · 108 cache-references

834 62,132 6,654 page-faults
585 1.87 · 108 2.73 · 107 LLC-loads
3.99 1.72 · 108 1.66 · 108 cache-misses
0.84 2.56 · 107 2.53 · 107 LLC-load-misses

−12.17 3.85 · 105 4.38 · 105 LLC-store-misses

Table 13: Results from running perf on DTW and 1¢, and the difference between the results of
the two algorithms.

E Intel Architectures

Architecture Name Release Year RAPL Support

Bonnell 2008 No
Sandy Bridge 2011 Yes, but no DRAM
Ivy Bridge 2012 Yes, but no DRAM
Haswell 2013 Yes
Broadwell 2014 Yes
Skylake 2015 Yes

Table 14: List of newer and released (by June 2016) Intel microarchitectures
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