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This article studies the problem of route planning for electric vehicles (EVs)
in a road network. Route planning is often performed with interest in the fastest
path. However, some constraints for computing the fastest path for an EV are
different from the constraints involved in route planning for conventional vehi-
cles. For example, recharging of an EV is more time consuming than refueling
a conventional vehicle. Furthermore, the pricing for recharging EVs follows
different standards than the pricing for conventional vehicles.

This article suggests an approach to balance travel time with price for EV
route planning. This is done by taking a user-specified preference function for
travel time and price as input, while taking charging and recuperation into
account. The path, which, according to the preference function, is the most
optimal, is returned. The work presented in this article is an extension of our
previous work, which considered almost the same problem. Even though the
problems are slightly different, the solution is reused in this article.

Two different query algorithms are proposed, along with the previous solu-
tion, to solve the problem of returning the optimal path according to a preference
function. The first query algorithm presented makes no use of precomputation
and serves as a baseline. The second query algorithm uses a precomputation
technique to speed up the queries. All three query algorithms uses the principles
of Dijkstra’s algorithm, which is modified to compute the optimal path given
a preference function. Additionally, we propose two optimization techniques to
speed up the queries, namely optimal sub-structure and A* search.

At last, we perform experiments on real world data to evaluate the proposed
algorithms in terms of the precomputed graph sizes and running time of the
query algorithms. The experiments show that the proposed query algorithms
are practical in terms of running time for smaller graphs. Additionally, the
query algorithms, which make use of preprocessing, is magnitudes faster than
the baseline query algorithm, which does not make use of preprocessing.
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PREFACE

This paper extends previous work described in [1] by the
same authors. In some sections of this article, material
from [1] has been reused or paraphrased. The relevant sec-
tions in this article are listed here:

The abstract has been paraphrased from [1].

In Section the sections Section [3.1.1] Section [3.1.2]
Section d Section [3.1.4| have been reused from [1].

In Section [3.2] the following definitions have been reused
or paraphrased from [1]: Definition |1, Definition |2} Defini-
tion [3] Definition [4 Definition [B] Definition [6] Definition [7}
Definition

In Section 5} Section [5.1] paraphrases material from [1].

The acknowledgements also paraphrases material from |[1].

ABSTRACT

This article studies the problem of route planning for electric
vehicles (EVs) in a road network. Route planning is often
performed with interest in the fastest path. However, some
constraints for computing the fastest path for an EV are
different from the constraints involved in route planning for
conventional vehicles. For example, recharging of an EV is
more time consuming than refueling a conventional vehicle.
Furthermore, the pricing for recharging EVs follows different
standards than the pricing for conventional vehicles.

This article suggests an approach to balance travel time
with price for EV route planning. This is done by taking a
user-specified preference function for travel time and price as
input, while taking charging and recuperation into account.
The path, which, according to the preference function, is
the most optimal, is returned. The work presented in this
article is an extension of our previous work, which considered
almost the same problem. Even though the problems are
slightly different, the solution is reused in this article.

Two different query algorithms are proposed, along with
the previous solution, to solve the problem of returning the
optimal path according to a preference function. The first
query algorithm presented makes no use of precomputation
and serves as a baseline. The second query algorithm uses a
precomputation technique to speed up the queries. All three
query algorithms use the principles of Dijkstra’s algorithm,
which is modified to compute the optimal path given a pref-
erence function. Additionally, we propose two optimization
techniques to speed up the queries, namely optimal sub-
structure and A* search.

At last, we perform experiments on real world data to
evaluate the proposed algorithms in terms of the precom-
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puted graph sizes and running time of the query algorithms.
The experiments show that the proposed query algorithms
are practical in terms of running time for smaller graphs.
Additionally, the query algorithms, which make use of pre-
processing, is magnitudes faster than the baseline query al-
gorithm, which does not make use of preprocessing.

1. INTRODUCTION

Electric vehicles (EVs) are becoming increasingly popu-
lar as a means of transportation due to its advantages over
the alternative; fossil fueled vehicles. An example of the
advantages of EVs is its independence of fossil fuels, and
compared to fossil fueled vehicles, the fuel efficiency is mag-
nitudes better. The cruising range of early EV models was
limited, which required careful planning with focus on en-
ergy efficient routes, especially because charging stations
were sparsely located. Therefore, algorithms making use
of speed-up techniques were introduced to compute energy
efficient routes. Some of these did not consider charging
stations, as there was no guarantee of being able to reach a
charging station with a fully charged battery. The use of an
auxiliary graph consisting of charging stations exclusively
was one of the speed-up techniques that were introduced.

In more recent models, the cruising range of EVs is com-
parable to fossil-fueled vehicles. As an effect of this, eco-
friendly or energy-efficient routes are of less importance as
EVs are already eco-friendly compared to fossil-fueled vehi-
cles. Instead, the focus might be to reach the destination as
fast as possible or as cheap as possible. Also, the network
of charging stations has become more dense, enhancing the
chances of being able to reach a charging station. There-
fore, newer research within the domain of route planning for
EVs consider visiting charging stations. However, charging
stations have different charging rates and prices. The route
planning problem becomes harder, as the charging rate af-
fects the travel time, and the price of charging affects the
total price of the route.

As an effect of longer cruising range and more charging
stations, previous speed-up techniques, such as auxiliary
graphs, becomes less efficient as more vertices (charging sta-
tions) are introduced to the auxiliary graph. Also, the num-
ber of edges between charging stations increases because of
increased cruising range, i.e. being able to reach more charg-
ing stations.

The experiments from our previous article [1] shows that
the auxiliary graph of Germany’s motorways was of signif-
icantly larger compared to the actual graph of Germany’s
motorways. The main reason for the auxiliary graph be-



ing that size, was because of the problem investigated. The
problem was to find Pareto-optimal paths that minimized
total travel time and price, i.e. several edges could exist
between two charging stations, as long as the edge weights
did not dominate each other. Also, the cruising range of the
newer EVs allowed the possibility of reaching more charging
stations compared to older EVs. This made the auxiliary
graph more interconnected and dense.

The running time experiments for query answering showed
that EVs with a large cruising range made the algorithm
impractical for two reasons. The first reason being that all
Pareto-optimal paths had to be found and returned, which
takes more time compared to only finding one path. Also,
the auxiliary graph was significantly larger in size, compared
to the original graph, meaning that it was not that much
of a speed-up in the end, being the second reason for slow
running times.

Therefore, this article considers efficient bi-criterion route
planning for EVs, where the goal is to find one route, which
is the best according to a user-defined preference function.
The preference function contains d preference parameters
«a;, where d is the number of costs and «; is the prefer-
ence parameter for cost i. The conditions for the preference
parameters are as follows: 0 < «; < 1 and Zle a; = 1.
To compute the preference cost of a path using a prefer-
ence function, the sum of each cost in the path is multiplied
with the according preference parameter. The path with the
smallest preference cost is returned as it is the most optimal
path according to that preference function. E.g. two paths
with bi-criteria costs; p1 = (5,5) and p2 = (6,2). Given
preference function o = (0.5,0.5), the preference cost for
p1is (5% 0.5) + (5% 0.5) = 5 and the preference cost for
p2 is (6 % 0.5) + (2 * 0.5) = 4, hence p» is preferred given
that preference function. Given another preference function
a = (1,0), the preference cost for p1 is (5% 1)+ (5%0) =5
and the preference cost for ps is (6 % 1) 4+ (2 % 0) = 6, hence
p1 is preferred given that preference function.

As the edge count of the auxiliary graph from the previous
solution is very high, we investigate two other route plan-
ning techniques, which aims to reduce the number of edges
in the query graph. The first makes use of no preprocessing
techniques and is inspired by Dijkstra’s algorithm. The sec-
ond technique is a preprocessing technique, which makes use
of elements from the customizable route planning approach.

We propose two algorithms and a modification to the al-
gorithm from our previous solution described in [I]. The
two new algorithms are a baseline algorithm and a more
time-efficient algorithm, which makes use of a precomputed
partitioned graph. The previous solution is also more time-
efficient than the baseline approach, and makes use of a pre-
computed auxiliary graph. Both algorithms utilizing pre-
computation lies within the personalization framework. Ex-
periments performed on the algorithms show that the algo-
rithms are practical for smaller graphs. Furthermore, the
experiments show that the two algorithms making use of
precomputation are magnitudes faster than the baseline al-
gorithm.

This article is structured as follows. Section [2] describes
related work applicable for this area of research. Section
[3] describes the prelimininaries, including the assumptions
we will make throughout the article along with definitions
related to the problem. The problem statement is also pre-
sented in Section [3] In Section [4] the algorithms used to

solve the problem, are described. This includes a basic algo-
rithm, which does not use preprocessing, along with a more
time-efficient algorithm, which uses preprocessing. Also, a
description of the modifications needed for our previous so-
lution from [1] is given in Section Experiments on the
algorithms are presented in Section [5] which also describes
the speed-up techniques used. Finally, a conclusion of the
article is given in Section [f} while Section [7] discusses the
article and future work.

2. RELATED WORK

The section describes new related work in the area of route
planning for EVs. Also, preprocessing techniques that may
improve the running time of route planning algorithms for
EVs are described.

2.1 Shortest Feasible Paths with Charging
Stops for Battery Electric Vehicles

In 2|, Baum et al. solves the bi-criteria pathfinding prob-
lem of minimizing the total travel time and time spent on
charging at charging stations. The weights of the edges are
driving time and energy consumption, where energy con-
sumption can be negative due to recuperation. To respect
battery constraints, i.e. that the state of charge is always
non-negative and is always less than or equal to the battery
capacity, a consumption profile is defined, which determines
the minimum and maximum state of charge that is required
to traverse a path. If the path is not feasible, i.e. the path
violates the battery constraints, the consumption profile re-
turns infinity.

Charging stations with different charging rates are also
modeled in the solution under the assumption that some
charging functions exist. It is possible to leave a charging
station at any point, if the combined travel time to the tar-
get becomes slower because of further charging at the charg-
ing station. This allows for an infinite amount of different
charging configurations, where all configurations result in
different paths. To avoid this, a label is kept for each ver-
tex. The label is a 4-tuple, which represents all trade-offs
between the state of charge gained and the time spent on
charging, for the last visited charging station.

The label for a vertex v stores the total travel time from
source vertex to v. Also, the state of charge of the latest
visited charging station wu is stored. The third element of
the tuple is the last visited charging station u. By using this
labeling approach, there is no fixed state of charge associated
with a vertex, as it depends on how much is charged at wu.
Therefore, the consumption profile is used for the sub-path
from u to v and stored as the fourth element of the label.

When a new charging station is visited, the consump-
tion profile is evaluated by fixing the charging time at wu.
Thereby, the total time and state of charge can be deter-
mined and updated at the new charging station’s label. How-
ever, the same problem about infinite charging configura-
tions exists, resulting in an infinite amount of labels. It is
proven by the authors that only a small finite number n
of charging configurations is necessary to represent all non-
dominated paths; resulting in n labels at the newly visited
charging station.

To speed up the queries, A* search and contraction hi-
erarchies are considered. The average running time for the
query algorithm, which combines A* search and contraction
hierarchies is approximately 86 seconds for the road network



of Europe using a Peugeot iOn with a fictive battery of 85
kWh to simulate newer models of Tesla. Also, heuristics
are considered to minimize the running time. The general
idea is to keep only one label at each visited vertex. Which
label to keep is determined by the heuristic, i.e. the path
which has the highest state of charge or lowest travel time,
which decreased the running time with a factor of 1.8 and
3.2 respectively.

Baum et al. provide a non-trivial model and solution to
the problem of computing bi-criteria paths. Some of the
concepts, which are used in [2], are also used in this article.
Some of these include the Dijkstra-like expansion, the usage
of two different sets of settled and unsettled labels at each
vertex and dominance checks with breakpoints.

Because the problem is NP-hard, assumptions to make the
problem easier has to be made. In [2], the amount of energy
to charge at the last visited charging station is decided when
a new charging station or the target vertex is reached by the
use of a consumption profile. In this article, the amount of
energy to charge, at the last visited charging station, is the
amount of energy that is needed in order to reach the next
charging station or target vertex.

The two criteria in [2], i.e. total travel time and time spent
on charging, is not working against each other as the time
spent on charging is a part of the total travel time. There-
fore, the problem assessed in this article of finding a path
that minimizes the total travel time and price is a different
challenge since the two criteria work against each other as
argued in Section [3.3]

2.2 Customizable Route Planning

In [3], Delling et al. consider the problem of computing a
multi-criteria shortest path from a starting point to a desti-
nation point. This problem has been studied extensively and
Dijkstra’s algorithm is a well-known solution for this prob-
lem. However, on larger road networks, Dijkstra’s algorithm
has a running time of several seconds. Therefore, preprocess-
ing techniques have been introduced to minimize the query
answering time with a trade-off of a longer preprocessing
phase and larger space-consumption. Several preprocessing
techniques like hub labeling and contraction hierarchies are
very efficient wrt. query answering time.

Whenever metrics in the road network changes, the pre-
processing phase needs to be recomputed before queries can
be run. The disadvantage of the previous preprocessing tech-
niques are long preprocessing times, e.g. if metric changes
happen frequently, the preprocessing techniques are not vi-
able in real-time systems and are not a speed-up compared
to Dijksta’s algorithm. Therefore, the focus is to speed-up
the preprocessing time under the assumption that metric
changes happen to make preprocessing viable in real time
systems.

The solution to the problem is called Customizable Route
Planning (CRP) and has three activites; construction of a
metric independent overlay, customize metrics and query an-
swering.

2.2.1 Metric-independent overlay

The goal for the metric-independent overlay activity is to
partition the original graph and construct an overlay graph
which consists of boundary vertices and overlay edges. Two
types of overlay edges exist, namely boundary edges and
shortcut edges. However, in order not to confuse the termi-
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Figure 1: Example of a road network with bi-criteria
costs

Figure 2: Example of a partitioned graph using Fig-
ure [1] as input. v1, v2 and v3 are vertices of cell;. v3,
v4 and v5 are vertices of cells

nology used in this article, boundary vertices and boundary
edges will be referred to as border vertices and border edges,
respectively, since these are two different names covering the
exact same vertices and edges.

To construct the partitioned graph, the original graph is
divided into cells, such that each vertex in the graph is con-
tained in exactly one cell.

A border vertex is added to the overlay graph if a vertex
has an edge in the partitioned graph, which links to a vertex
from a different cell. The edge, which connects the two bor-
der vertices, is added as a border edge to the overlay graph.
Shortcut edges are added in the overlay graph between all
pair of border vertices within the same cell. This activity
is called metric-independent because it considers only the
topology of the original graph, where changes happen infre-
quently. Therefore, Delling et al. argues that this activity
is not of big concern wrt. optimization of space and time
because it is precomputable and executed frequently.

An example of an input graph for partitioning the graph
and constructing an overlay graph can be seen in Figure |1}
where an edge represents two distinct costs. Keep in mind,
the costs does not matter at this stage, only the topology.
The output of this stage can be seen in Figure and Figure
[Bl Vertices v1,v2, and v3 are part of celly while vertices
v4,v5, and v6 are part of cell,. Where v2 and v3 are border
vertices of cell;, v4 and v5 are border vertices of cellz. The
edges between v2 and v4, and v3 and v5 are border edges
as they connect two vertices from different cells. The edges
between v2 and v3, and v4 and v5 are shortcut edges as they
connect two vertices from the same cell.

2.2.2 Metric customization

The goal of the metric customization activity is to up-
date the edge costs of the partitioned graph and the overlay
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Figure 3: Example of an overlay graph using Figure
as input. v2 and v3 are border vertices of cell,. v4
and v5 are border vertices of cell,. The red edges
between v2 and v3, v4 and v5 are shortcut edges,
while the black edges between v2 and v4, v3 and v5
are border edges

Figure 4: Example of a customized partitioned
graph with bi-criteria costs using preference param-
eters a = (0.5,0.5)

graph, if metric changes has happened, for instance a dif-
ferent set of metric preferences. This activity affects the
running time, as it depends on the preference parameters,
which are given at query time by the user.

First, the edges of the partitioned graph are updated us-
ing the cost function, which makes use of the preference pa-
rameters. Afterwards, the overlay edges are updated. The
border edges are customized with the same edge cost as the
edge from the partitioned graph. The shortcut edges are
customized with the sum of the shortest path cost between
the border vertices in the partitioned graph.

Because metrics or preferences to metrics can potentially
change for each query, this activity might be executed for
each query. However, all the heavy computation is done in
the metric-independent overlay activity. Therefore, this ac-
tivity is fast (only a few seconds on continental sized road
networks) compared to the metric-independent overlay ac-
tivity.

An example of metric customization for the graph shown
in Figure [l] is seen in Figure @ Each edge in the parti-
tioned graph is customized by multiplying the cost of the
edge with the preference parameters, which in this case is
a = (0.5,0.5). E.g. the edge from v4 to v5 has a cost of
(9,1). Therefore, the customized cost is (9%0.5)+ (1x0.5) =
5.

Afterwards, the overlay graph needs to be customized with
costs. The customized costs from Figure E| are propagated
directly to the border edges as shown in Figure[§] The costs
for the shortcut edges are propagated with the preference

Figure 5: Example of a customized overlay graph
propagating the customized edge values for the bor-
der edges and shortest path values for the shortcut
edges from Figure [4]

cost of the shortest path between the border vertices. E.g.
the shortcut edge from v4 to v5 in Figure [4] is a shortcut
from v4 to t and from ¢t to v5 resulting in a preference cost
of 4.

2.2.3 Query answering

The input to the query answering activity is a partitioned
graph, an overlay graph, preference parameters, along with
source and target vertices. The goal is to find the opti-
mal path, according to the preference parameters, from the
source to the target. If the preference parameters changed
since the last query, the metric customization phase has to
be run again.

Otherwise, the query algorithm is a simple Dijksta’s algo-
rithm with a small modification in order to handle the over-
lay graph. If the source and target vertices are not border
vertices and assigned to different cells, the query algorithm
starts in the partitioned graph, but limited to the cell where
the source vertex is located.

When a border vertex is dequeued from the cell where the
source vertex is located, only overlay edges of the overlay
graph are considered. When a border vertex, which is not
located in the same cell as source and target vertices, is de-
queued, only edges from the overlay graph are considered.
When a border vertex is dequeued from the cell where the
target vertex is located, overlay edges of the overlay graph
and edges in the partitioned graph leading to a vertex of
the same cell as where the target is located, are considered.
When a non-border vertex from the cell where the target
vertex is located, is dequeued, only edges from the parti-
tioned graph leading to a vertex of the same cell as where
the target is located, are considered, until target is found.
It is possible to have multiple overlay layers, but the query
algorithm behaves similarly.

The example makes use of Figure ] and Figure [f] where
the query is from vertex s to vertex ¢ using preference pa-
rameters o = (0.5,0.5). Vertex s is enqueued and dequeued
immediately. Then, v2 and v3 are enqueued and s is closed.
The algorithm dequeues v3 (as it has lower preference cost
than v2) and notices that v3 is a border vertex. The outgo-
ing overlay edges lead to v2 and v5. The cost of the path
leading to v2 is not better than what is already stored at
v2 and is not updated. v5 is enqueued as it has not been
visited before.

Now, v2 is dequeued; the explanation is skipped as this
process is similar to what was just explained when v3 was de-



queued. Therefore, v5 is dequeued by the algorithm. Since
v5 is a border vertex of the cell where t is located, the algo-
rithm considers both overlay edges of the overlay graph and
edges from the partitioned graph leading to vertices located
in the same cell as t. The overlay edges lead to v3 and v4,
but the cost of the paths are greater than what is already
stored and is not enqueued. The outgoing edges of the par-
titioned graph lead to v4 and ¢. The cost of the path to v4
is greater than what is already stored and is not updated.
t is enqueued as it has not been visited before. Now, ¢ is
dequeued (since it has the lowest cost in the queue) and the
algorithm terminates.

2.2.4 Discussion

CRP is an interesting approach as it is fast in answering
queries for dynamic metrics. Also, CRP shares similar fea-
tures compared to the solution from [1] in the sense that an
overlay graph is created, which consists of only some ver-
tices, from the original graph, where shortcut edges connect
the overlay vertices. Obviously, this approach is not directly
applicable to the problem of route planning for EVs, because
of the constraints of EVs, i.e. modeling charging stations,
such that the EV can charge when running out of energy.

2.3 Customization vs. Personalization

In [|4], Funke et al. argues that if the preference pa-
rameters change for each query, CRP has to run the cus-
tomization phase for each query, which results in almost the
same running time as a plain Dijkstra. Therefore, Funke et
al. propose a framework called personalization, to speed-up
query answering time compared to a plain Dijkstra.

The customized framework, which CRP belongs to, con-
sists of two phases; a preprocessing phase and a query phase.
The preprocessing phase has one activity; construction of
the metric-independent overlay. The query phase has two
activities; metric customization and query answering. Like-
wise, the personalized framework consist of similar phases.
However, the preprocessing phase has two activities; con-
struction of the metric-independent overlay and assigning
cost vectors. The query phase has one activity; query an-
swering. Funke et al. shows how to convert existing cus-
tomized approaches, i.e. customized contraction hierarchies
and CRP to personalized approaches, i.e. personalized con-
traction hierarchies and personalized route planning.

The construction of the metric-independent overlay of the
personalized framework is the exact same process, as in the
customized framework.

The second activity is the main difference of the two frame-
works. The customized framework assigns the single-valued
best cost according to the metric preferences for each overlay
edge, where the metric preferences is given at query time.
The personalized framework assigns several cost vectors for
each overlay edge, one for each simple path in the parti-
tioned graph that lead from the source to the target vertex
of the overlay edge. As this activity does not depend on any
metric preferences, this activity is precomputable.

The output of a personalized overlay graph is shown in
Figure[f]using the road network from Figure[l] The shortcut
edge in Figure [f] from v4 to v5 has two cost vectors because
two paths (limited to the cell) from v4 to v5 exist in Figure
The direct path from v4 to v5 has a cost of (9, 1), resulting
in a cost vector of (9,1). The second path passing trough v6
has a total cost of (1,3) + (1,3) = (2,6) resulting in a cost

Figure 6: Example of a personalized overlay graph
propagating the weights directly for border edges
and shortest path weights for the shortcut edges
from Figure

vector of (2,6).

The query answering activity for the customized frame-
work is simple, as it only has to consider one cost for each
overlay edge. When an overlay edge is relaxed in the per-
sonalized framework, the query algorithm has to apply the
preference parameters to all cost vectors, to determine which
cost vector is best. E.g. the shortcut edge from v4 to v5 in
Figure[6] has two cost vectors i.e. ¢1 = (9,1) and ¢z = (2,6).
Given preference parameters o = (0.5,0.5), the optimal path
can be determined by multiplying the cost vector with the
preference parameters. In this example, the preference cost
of the paths evaluate to: c¢1*a = 5 and co*a = 4. Therefore,
c2 would be chosen based on the given preference parame-
ters.

The number of cost vectors on an overlay edge affects the
running time of the query algorithm. Therefore, Funke et
al. expands the second activity with pruning techniques to
remove cost vectors that will never be part of the optimal
solution. This lowers the amount of cost vectors that needs
to be considered at query time. By applying the pruning
techniques on Figure [6] the cost vectors (5,5) attached to
the edge from v2 to v3 could be pruned as that path never
would be preferred over the other path which has a cost
vector (1,1).

2.3.1 Discussion

It is obvious that advantages and disadvantages are exist-
ing wrt. the customization and personalization frameworks.
Therefore, choosing one of the frameworks is dependent on
which domain the application is applied. E.g. choosing the
customization framework in a domain where the application
is used by lots of users would not be a good choice, as there is
a potential of a change in the preference parameters for each
query. When the preference parameters change, the metric
customization activity has to be executed again, which takes
additional time in order to answer the query. Instead, the
personalization would be a good choice as it handles differ-
ent preference parameters without adding additional time
to the query answering time.

On the other hand, if the domain consists only of a single
user, i.e. the preference parameters rarely change, the met-
ric customization activity in the customization framework is
skipped. Also, at most, only one overlay edge exists for each
pair of overlay vertices in the overlay graph, which ensures
fast query answering times compared to the personalization
framework. In the personalization framework, several over-



lay edges can exist and no advantage wrt. query time can
be taken given consecutive queries with same preference pa-
rameters. Therefore, the customization framework would
be a good choice for fast query answering times in such a
domain.

3. PRELIMINARIES

This section describes the assumptions made in this arti-
cle. Furthermore, definitions of concepts needed to solve the
problem are presented along with the problem statement.

3.1 Assumptions

This section describes the assumptions, which will be used
to either simplify the problem or reflect a realistic use of the
solution.

3.1.1 Speed Assumption

One assumption we will make, is that one always drives at
the speed limit of the current road. This will, in our opinion,
please more to the users of electric vehicles as they would
not be forced to drive a lot slower than the rest of the road
users.

This results in a less complex problem, as the speed at
which to drive on an edge is predefined. This makes it pos-
sible to calculate e.g. energy consumption. This assumption
is also seen in [5] and [6].

3.1.2 Charge Assumption

We will also make the assumption, that when one charges
at a charging station, one only charges the amount of energy
required to reach the next charging station or target loca-
tion. This can, however, result in a more expensive path, as
one could possibly have charged more at a cheaper charg-
ing station in exchange for charging less at a more expensive
charging station. Furthermore, it can result in a slower path,
for similar reasons.

The reason for this assumption is that the problem be-
comes less complex; we do not have to consider at which
charging stations it would be most optimal to charge.

3.1.3 Charging Price Assumption

In addition to charging stations, we assume that there
exists a charging price function cp, which outputs the price
of charging a certain amount of energy at a charging station.
The function is assumed to be increasingly monotonic, such
that charging more energy will never result in a lower price.

3.1.4 Charging Time Assumption

We also assume there exists a charging time function ct,
which outputs the time it takes to charge a certain amount
of energy at a charging station. The function is assumed
to be increasingly monotonic, such that spending more time
charging never results in a lesser charged battery. Also, the
charging rate drops, when the battery is closer to being fully
charged, to avoid battery damage. Therefore, ct is concave
down increasing, such that a battery that is closer to a full
charge can never be charged faster than a battery with lower
battery charge, for the same charging time function.

3.2 Definitions

This section presents definitions of the concepts needed
to understand and solve the problem of bi-criterion route
planning for EVs.

Definition 1. Let a directed graph G = (V, E) consist of a
finite set of vertices V', connected by a finite set of directed
edges E.

Definition 2. Let a vertex v = (long, lat, ele, CSrate,
CSown) consist of a pair of coordinates representing the lo-
cation of the vertex in the real world, where long denotes
longitude and lat denotes latitude, along with ele denoting
the elevation of the verter above sea level. In the case where
the vertex represents a charging station, let CSrqte denote
the highest available charging rate, and CSown denote the
owner of the charging station.

A vertex in the graph can represent two different cases.
The first case is that the vertex is simply a point at the end
of a road, or connecting two or more roads, and the fields
CSrate and CS,upn are not available. In the second case,
the vertex represents a charging station, where an EV can
regain charge at the cost of time. The ratio between charge
and time is denoted CSrqte-

Definition 3. Let an electric vehicle EV = (b, SoC, CSsup)
consist of a battery with a battery capacity denoted b and the
current state of charge be denoted SoC, such that0 < SoC <
b. Let CSsup be a set containing subscriptions to charging
station owners.

Definition 4. Let a charging price function cp(CS sub, Courr,
Creq, V) given the EV’s CSgsyup, output the price for charg-
ing creq kWh of energy at the charging station v, when Ceyrr
kWh of energy has already been charged.

Let a charging time function ct(b, SoCe, creq, v) output
the charging time for charging creq kWh of energy at the
charging station v, given a battery capacity b, the SoC when
v was reached SoC, and ceyrr, such that SoC. = SoC, +

Ceurr-

The total price of charging at v is seen in Equation .
The function to find the price of charging one kWh is de-
noted CSp(CSown, CSsup) and takes as parameter v.CSown
and information on subscriptions from the EV.

Some charging station owners charge a constant price per
charging station visit, no matter how much is charged. This
is denoted as a function called pcharge, Which is dependent
of the charging station owner and the subscription to the
given charging station.

The functions ct and cp are used in the algorithms, which
use backward planning wrt. charging. Therefore, cp needs
to handle incremental charging, such that the charging fee
is not added each time the algorithm decides to charge more
at the charging station.

As seen in Equation , the charging rate is treated in
three different ways, which is dependent of SoC.. Charging
in the interval from 0 — 80 % of the battery capacity is a lin-
ear process and no penalty is added. A 20 % penalty of the
charging rate is added, when charging in the interval from
80 — 90 % of the battery capacity. Charging in the inter-
val from 90 — 100 % of the battery capacity adds a charging
rate penalty of approximately 43 %. Equation is inspired
by Ziindorf’s charging function from [5], but is formatted
such that it fits the needs of this problem. Ziindorf’s charg-
ing function outputs the amount of energy charged given a
charging time, which is the opposite of the function ct.

Definition 5. Let a directed edge e = (vy, v, dt, ec) con-
nect vertex vy to ve. Let the weight dt be a floating point



describing the time it takes to drive the distance between
vy and ve and the weight ec be a floating point describing
the energy consumed by driving the distance between vy and
vt in a specific EV. The weights of an edge are denoted as
w(e) = (dt, ec).

An edge in the graph represents a road in the real world
road network. The weight ec is specific to an EV, chosen
when creating the graph G. The cost of an edge is a pair
of floating points representing total travel time and price,
defined as c(e) = (tt, price), where tt = dt + ct(b, SoCs., ec,
v) and price = cp(CSsub, Courr,€c,v). Variable v denotes
the last visited charging station. Note that the cost c(e) is
(dt, 0) when no charging station has been visited.

Definition 6. Let a path p = (V, E) consist of a finite se-

quence of vertices V' connected by a finite sequence of edges

E. The weight of p is a pair of floating points representing

driving time and total consumed energy, defined as w(p) =

(dt, ec) = > w(e). The cost of a path is defined as c¢(p) =
eck

(tt, price) = > c(e)

ecE

Definition 7. For a path p = {{v1,v2,..., v},

{€v1,v2s s €up_10i}}, the set of charging stations present
in the path CS = {cs1,csz, ..., csn} where CS C p.V and an
EV ev with an initial state of charge ev.SoC, the state of
charge at a vertex v; € p, where 1 < j < k, is defined as:

ev-50CA., = {Zz.gng —w(e ).ec loftl]Le;wlise
. vj—1 vj—1,v5)-€Cs
3)
ev.S0CAy; + ecu; vy, if v; = csn
ev.50CDy; = ¢ ev.S0CAy; + eCujes,41, i Vj = csi (4)
ev.SoCAvj , otherwise

where ev.SoCAUj and ev.SoC’va is the state of charge
when arriving at and departing from a vertex v; and ecy, v,
is the sum of the energy consumption of the edges between
a charging station v, and a vertex vy.

Definition 8. Let a path p = {{vs, ..., v¢}, {€vs,00415 o
€v,_ 1,0 )} be feasible for an EV ev with mazimum battery
capacity ev.b iff:

{Vwep|0<ev.S0CA, <ev.bNO < ev.SoCD, < ev.b} (5)

Cp( OSsuln Ccurr, Creq, U) = {

Creq
v.CSrate ’

CSp(U~CSowny CS.sub) * Creq +pcha7'ge(U-CSown7 CSsub) if ceurr =0
CSp(v.CSown, CSsub) * Creq

3.3 Problem Statement

Transportation is most often preferred to happen as fast
as possible, while still being as cheap as possible. The ar-
guments for both would be that one would have time and
money to spend on other activities. However, these two cri-
teria often work against each other, as the fastest route is
often the most expensive, and vice versa. In relation to elec-
tric vehicles, a vehicle consumes more energy, the faster one
drives, and thereby becomes more expensive. We aim to to
find a fast and cheap path between two points for electric
vehicles. We will do this by finding the optimal path from a
source to a target, where the dimensions are the total travel
time, including recharging at charging stations, and the cost
of the path in terms of payment for charging en route, by
taking user preferences wrt. travel time and price into ac-
count. The user preferences are given at query time and
may change for each query. This makes it possible for peo-
ple to personalize the path found, such that the path suits
them the most, be it fast or cheap. To accommodate longer
routes, we will consider recuperation as well as charging at
charging stations. The problem we will solve can be formu-
lated as follows:

For a predefined directed graph G = (V, E), where V is a
set of vertices and F is a set of edges, an electric vehicle ewv,
and a set of charging stations CS C V, given a source and
target vertex s,t € V, and a preference function ooz, ap)
where 0 < a¢,ap < 1 and a; + ap = 1, the problem is to:

e Compute a feasible path p for ev where ¢(p) * (s, ap)
is lowest of all feasible paths from s to t.

Furthermore, we will investigate different methods of solv-
ing the problem in order to measure if one method outper-
forms other methods in terms of query answering time.

First, a query algorithm, which makes use of no precom-
putation, is investigated. The reason of using no precompu-
tation is because most precomputation techniques require
some preprocessing at query time. For instance, source and
target vertices have to be connected to the auxiliary graph
in |7], which affects the running time of the query algorithm.
By avoiding this preprocessing state the query algorithm is
executed directly on G, in the expectation of fast query an-
swering times or at least a benchmark.

Afterwards, the feasibility of using an auxiliary graph,
similar to what Storandt proposed in [7], is investigated.
The purpose of using an auxiliary graph is to speed up the
queries by reducing the size of the graph.

At last, we investigate a second precomputation method,
which purpose is to construct a partitioned graph by adopt-

(1)

otherwise

if SoC; + creq < bx0.8.

6x0.8-90Ce 4 ¢t (b,b* 0.8, —(b* 0.8 — S0C. — Creq),v), if SoC. < b*0.8.

v.CSrate
Creq

v.CSrate* s’

ct(b, SoCec, Creq,v) =

if SoC. + Creq < b*0.9. (2)

2x0.9-50Cc 4 ¢t(b,b* 0.9, —(b* 0.9 — S0C. — Creq),v), if SoCe < b*0.9.

’U-Csrate*g
Creq

v.CSrate* s’

if b*x0.9 < SoC..



ing elements from [3]. Again, the aim is to reduce the search
space and also limiting the interconnection of edges between
vertices in the partitioned graph.

4. ALGORITHMS

This section describes the algorithms suggested for solving
the problem of bi-criterion route planning for EVs. First
off, a basic approach is presented in Section In this
section, many of the concepts used for solving the problem
will be described. Afterwards, the choice of framework for
the solutions, which makes use of preprocessing, is made.
The basic approach is used as a baseline in Section4.3] where
a more efficient algorithm will be described. At last, the
modifications needed for the solution from [1], to be able to
solve the problem of this article, is presented in Section@

4.1 GQueryAlgorithm

This section explains the GQueryAlgorithm seen in Algo-
rithm The algorithm is designed to solve the problem
described in Section [3:3] without any form of preprocessing
by using the same expansion technique as Dijkstra’s algo-
rithm. The algorithm is label-correcting because it keeps a
two-dimensional skyline of paths, where the dimensions are
the preference cost and the reach wrt. battery constraints.
When a path visits a charging station, the algorithm decides
how much should be charged at that charging station, when
either the target vertex is found or when another charging
station is visited, i.e. the charge assumption described in
Section It performs queries directly on the graph G
defined in Definition The algorithm takes as input the
graph G, an electric vehicle ev, the source and target ver-
tices s and t, and a preference function a. The output of the
algorithm is the cost of the best path from s to t according
to the preference function. First, the data structures are
explained, followed by the algorithm itself.

4.1.1 Data structures

As seen on line 2 of Algorithm [I] the algorithm uses a
queue @ and six different temporary variables. An overview
of the variables can be seen in Table [} The queue @ is a
min-heap used to track which vertex is next in the iterations
of the algorithm. Variable u is the current vertex that is
being processed. The temporary variables is explained later
in this section.

A vertex in the graph contains two sets, settled and unsett-
led, holding paths from the source vertex to that vertex,
similar to [2]. The set settled is an unordered list of already
expanded paths. The set unsettled is a min-heap, sorted
by the path with lowest preference cost, containing paths,
which has yet to be expanded. When a vertex is dequeued,
each path in unsettled is checked for dominance against the
paths in settled. If the path is not dominated, it is removed
from unsettled, added to settled and expanded. If the path
is dominated by any path in settled, it is skipped. Since the
algorithm is label-correcting, a vertex may be visited several
times. If only one set was used to store paths at a vertex,
the same path could potentially be expanded several times,
which is unnecessary.

Paths are added to unsettled by the vertex member func-
tion addLabel. A label corresponds to a path reaching the
vertex, i.e. several labels can exist at a given vertex. The
function addLabel returns a boolean depending on whether
the new path added to unsettled has a lower cost than the

first label in unsettled, i.e. the label with the lowest cost in
unsettled. If addLabel returns true, the vertex of the label
is enqueued in Q. Obviously, the label with lowest prefer-
ence cost is always preferred at the target vertex, i.e. the
first label in unsettled. However, on an intermediate vertex
of the path from source to target, the label with the lowest
preference cost, may run out of energy before the target is
reached. Another label with a higher preference cost, but
less energy consumed, may be able to reach the target and
therefore be preferred over the label with lowest preference
cost at an intermediate vertex of the path. Therefore, all la-
bels in unsettled have to be expanded. The order of which
labels are picked at first is important, as expansion of dom-
inated labels should be avoided.

The label or path added by the member function addLabel
is of type vLabel. An overview of the variables needed to cre-
ate a vLabel can be seen in Table[2] A vLabel consists of eight
different values: lastCSId, cost, SoC, time, price, CSSoC,
charge and reservedSoC'. Variable lastCSId is the ID of the
last visited charging station, i.e. the charging station where
the vehicle has the possibility of charging in order to proceed
along the path. Variable cost is the preference cost of the
path, while time and price is the amount of time and the
price for reaching the vertex, including charging. Variable
SoC is the state of charge of the vehicle at the vertex, where
the label is stored. CSSoC is the state of charge when ar-
riving at the last visited charging station. Keeping track of
this value ensures the correct state of charge is used, when
charging at the last visited charging station. The variable
charge denotes how much has already been charged at the
last visited charging station. Variable reservedSoC' denotes
how much battery capacity that is reserved for recuperation
along the path since the last visited charging station. Vari-
able reservedSoC' is equal to SoC — charge of the label, if
that value is greater than reservedSoC' of the label from the
previous vertex. Remember, charge is the amount of energy
that has already been charged in order to reach the latest
vertex in the path. Therefore, the battery capacity that was
occupied in the battery from charge can be used for recu-
peration. An example of this is if SoC = 0, charge = 7,
reservedSoC = 0 and 4 kWh is recuperated when traversing
an edge. The new labels SoC will then become 0 + 4 = 4.
reservedSoC will remain unchanged because the 4 kWh that
is recuperated can be stored in the battery that was previ-
ously occupied from charging, i.e. SoC —charge =4—7 < 0.
Assume that 5 kWh is recuperated on an edge immedi-
ately afterwards, then the new labels SoC will then become
445 =9. Because SoC — charge =9 —7 =2 > 0, the bat-
tery capacity that was occupied in the battery from charge is
not enough to hold the recuperated energy. Therefore, addi-
tional battery capacity has to be reserved, i.e. reservedSoC
on this label is set to 2.

The sum of charge and reservedSoC' ensures that the bat-
tery constraints are not violated. For example, if the bat-
tery capacity of the ev is 50 kWh, charge is 20 kWh, and
reservedSoC' is 25 kWh, it is not preferable to additionally
charge more than 5 kWh. The reason for this is that some-
where along the path, energy is recuperated and this re-
cuperated energy would be wasted, if more than 5 kWh is
charged, because SoC at that point would equal the battery
capacity. Therefore, the condition: charge+ reservedSoC <
ev.b has to hold.

The variables altCost, tSoC, tTime, tPrice, tCharge and



Variable Description
Q Heap
u Current vertex

altCost

Preference cost of the path from vertex s to e.v:, where e is the relaxed edge from u

tSoC The state of charge after traversing the relaxed edge

tTime Total time spent charging and traversing the edges from s to e.v:, where e is the relaxed edge from u
tPrice Total price for charging from s to e.v;, where e is the relaxed edge from u
tCharge Total amount of energy charged at last visited charging station
tReservedSoC | The amount of energy that is reserved for recuperation in the battery from last visited charging station
to e.v, where e is the relaxed edge from u
Table 1: Variables used by Algorithm
unsettled of vertex s and addLabel returns true since it is
the label with lowest preference cost in unsettled. Therefore,
s is enqueued to the priority queue along with the preference
vLabel = (1,1,0,2,0,0,0,0) cost of the vLabel.
vLabel = (~1,0,2,0,0,0,0,2) wLabel = (1,5,0,6,2,0,2,0) Afterwards, Yertex s is dequeued from the priority queue
2,2) 2,2) and each label in unsettled of s are examined. The vLabel
s g - is currently located in unsettled and has to be checked for

Figure 7: Example of vLabel at three different ver-
tices given preference function o = (0.5,0.5). Charg-
ing time and charging price are assumed to be 1:1
wrt. the energy spend.

tReservedSoC, seen in Table [I] are floating points used by
the algorithm for storing temporary values. The tempo-
rary values are used for the construction of a vLabel at the
reached vertex, when an edge is relaxed. Variable altCost
is the preference cost of the path, which is used to check
whether the current path is better than any of the paths
stored in the visited vertex according to the preference func-
tion. Variable tSoC holds the SoC after traversing an edge,
and is negative if more energy is required to traverse the
edge, than what is already in the battery. Variables tTime
and tPrice holds the total travel time the total price, respec-
tively, from source to the current visited vertex. The vari-
able tCharge holds the total amount of energy to be charged
at the last visited charging station in order to traverse the
current edge. Finally, tReservedSoC holds the amount of
energy that is reserved in the battery for recuperation.

4.1.2 Example of vLabel

The intuition of how the vLabel in the GQueryAlgorithm
works, is illustrated in Figure [{] The figure represents a
graph with the vertices source s, charging station ¢l and
target t. The weight of the edges are driving time and energy
consumption, respectively. For simplicity, the time spent on
charging equals the energy spent in this example. Similarly,
the price spent on charging equals the energy spent. In this
example, the preference function is a = (0.5, 0.5).

Initially, the member function of vertex s is called as fol-
lows:
s.addLabel(—1,0,2,0,0,0,0,2). The first parameter is —1
since no charging station has been visited yet. The third
parameter denotes an initial SoC of 2 kWh of energy. The
last parameter denotes the reserved capacity in the battery,
ie. SoC — charge = 2 —0 = 2. The vLabel is added to

dominance against all the labels in settled. However, settled
is empty, therefore, the vLabel is removed from unsettled,
added to settled and expanded. Now, all outgoing edges are
relaxed. Vertex s only has one outgoing edge that leads to
the charging station cl. Notice that cl is reachable with the
current state of charge. Therefore, the member function of
vertex cl is called as follows:
cl.addLabel(1,1,0,2,0,0,0,0). The first parameter is the ID
of ¢l because cl is a charging station and the second param-
eter is the preference cost: (2%0.5) 4 (0%0.5) = 1. The third
parameter is 0, since the state of charge was spent to reach
cl, and the fourth parameter is 2, because two time units are
spent on reaching cl. The sixth and eighth parameter is set
0 as the state of charge is 0, when the charging station was
reached. The vLabel is added to unsettled of vertex cl and
addLabel returns true since it is the label with lowest pref-
erence cost in unsettled. Therefore, cl is enqueued to the
priority queue along with the preference cost of the vLabel.

Afterwards, vertex cl is dequeued from the priority queue
and each label in wunsettled for ¢l are examined. Since
settled for cl is empty, the vLabel in unsettled for cl is
removed from wunsettled, added to settled and expanded.
Vertex cl has only one outgoing edge leading to the target
vertex t. Vertex t is not reachable with the current state of
charge from cl because all of the energy was spent to reach
cl. Fortunately, a charging station has been visited, i.e. cl,
and 2 units of energy are to be charged at cl. Therefore,
the member function of vertex t is called as follows:
t.addLabel(1,5,0,6,2,0,2,0), where the second parameter is
the total preference cost from s to ¢: 14(4%0.5)4(2%0.5) = 5.
The fourth parameter is the total time spent on charging and
driving: 242+ 2 = 6. The fifth parameter is the total price
spent on charging: 2. The seventh parameter is the amount
of energy, which has to be charged at the recently visited
charging station cl: 2. Since reservedSoC of the previous
vLabel, from cl, is 0, the eighth parameter is set to 0, as
0 — 2 = —2 is not greater than 0. The vLabel is added to
unsettled of vertex t and addLabel returns true since it is the
label with lowest preference cost in unsettled. Therefore, ¢
is enqueued to the priority queue along with the preference
cost of the vLabel.

Afterwards, vertex t is dequeued from the priority queue



Variable Description Property
lastCSId ID of last visited charging station. if no CS visited: lastCSId = —1
otherwise: ID of last visited CS
cost Preference cost of the path from vertex s to e.vs, cost > 0
where e is the relaxed edge.
SoC State of charge after traversing the relaxed edge. SoC >0
time Total time spent on charging and driving along the edges from time > 0
s to e.vy, where e is the relaxed edge
price Total price of charging from s to e.v:, where e is the relaxed edge price > 0
CSSoC State of charge when arriving at the last visited charging station. CSSoC >0
charge Total amount of energy charged at last visited charging station. charge > 0
reservedSoC | The amount of energy that is reserved for recuperation in the battery | reservedSoC > 0
from last visited charging station to e.v;, where e is the relaxed edge.

Table 2: Variables used to create a vLabel

and the algorithm returns the first label in unsettled of ver-
tex t, i.e. the label with the lowest preference cost.

4.1.3 Optimal Sub-Structure

To make the algorithm more time efficient, a technique to
prune labels, which are never part of an optimal solution,
needs to be used. As stated earlier, each vertex keeps a set
of unsettled labels. A label should only be settled, if it is
not dominated, i.e. may be be part of an optimal solution.

To determine whether a label is dominated, the preference
cost and energy consumed is checked against the labels in
the set of settled vertices. At first glance, this would seem
to be sufficient in order to guarantee correctness and time
efficiency.

Given an example of three vLabels: 11 = (1,5,0,5,5,0,3,
1), Io = (2,4,0,4,4,0,4,0) and I5 = (2,6,0,6,6,0,6,0) at
the same vertex. The preference parameters are: o = (0.5,
0.5) for this example. The preference cost, cost, for li, la
and I3 are 5, 4 and 6, respectively. The energy consumed,
charge—+reservedSoC, for l1, l2 and I3 are 3+1 =4,44+0=4
and 640 = 6, respectively. Following the concept of optimal
sub-structure, labels ;1 and I3 would be dominated because
l2 has a lower or equal preference cost and energy consumed.
However, the last visited charging station that /; made use
of is different from l2. For this example, the target vertex is
reachable for the labels, but 5 kWh needs to be charged and
it takes 5 time units to reach target, charging included. The
charging station /1 made use of has a charging fee of 5% and
0% for every kWh charged. The charging station lo made
use of has a charging fee of 0$ and 1$ each kWh charged.
Expanding [> to the target vertex would result in following
vLabel: 1oy = (2,9,0,9,9,0,9,0), since 1$ has to be paid for
each of the 5 kWh charged. Assume that label [; was not
pruned. The expansion of [1 to the target vertex would re-
sult in following vLabel: 1,; = (1,7.5,0,10,5,0,8,1), since
the 5% charging fee has already been paid as charging had
already occurred. Label l1; would be preferred over l2; at the
target vertex. This example focused only on dominance wrt.
the charging price, however, similar examples can be made
with charging time, and also the combination of price and
charging time. Therefore, checking dominance with prefer-
ence cost and energy consumed at the current state alone
does not guarantee correctness.

The solution, which guarantees correctness and time effi-
ciency, is to check dominance in two dimensions, i.e. pref-
erence cost and energy consumed, not only at the current
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state, but also if the label was expanded further, i.e. more
energy consumed. Infinitely many charging configurations
for future labels exist and to check all of them is inefficient
and impossible. However, it is sufficient to check dominance
for a limited number of future labels, called breakpoints.
Since the charging time function ct is concave and piecewise
linear with a charging penalty at 80 %, 90 % and 100 % SoC,
the first three future labels are when the label has only 20
%, 10 % and 0 % left to charge at the last visited charging
station.

In Figure [8] a visualization of the breakpoints given two
vLabels are shown, where both labels are stored at the same
vertex u. The battery capacity is 50 kWh for this example.
The first label has a reach of 50 kWh, i.e. it can use an
additional 50 kWh of energy, be it from charging or energy
residing in the battery, and its last visited charging station
has a charging rate of 7 kW. The second label has a reach
of 35 kWh, i.e. 15 kWh has already been charged, and its
last visited charging station has a charging rate of 12 kW.
Currently, the first label has a faster time than the second
label because the second label has spent time on charging 15
kWh to reach the current vertex. Therefore, the first label
is not dominated wrt. total travel time. Obviously, the
second label has a worse time compared to the first label
currently. However, at the second label’s first breakpoint,
the dominance wrt. total travel time changes. Therefore,
the second label is not dominated wrt. total travel time.

An example, focusing on how to find the breakpoints, is
now given, where the two labels I3 and Il from the first
example in this subsection are used. To check whether I;
is dominated by [, the preference cost of the current la-
bel I; has to be checked against l», which is 5 > 4, i.e.
dominated. Now, the breakpoints for the future labels have
to be computed. For this example, the battery capacity
is 50 kWh. To determine how much should be charged
to reach the first breakpoint at 80 % for l1, the currently
occupied battery capacity of 1, charge and reservedSoC,
is subtracted from the 80 % of the battery capacity, i.e.
toCharge;; = 40—3—1 = 36. To get the reach, i.e. how much
energy can be spent, the SoC for [, is added to toCharge;;
such that reachBreakpoint;; = 36 + 0. Now, the future label
for l2 has to be computed. To determine how much to charge
in order to reach the same breakpoint as l;, the SoC that
l2 has needs to be subtracted from reachBreakpoint,,, i.e.
toCharge;, = 36 —0 = 36. Then, the time it takes to charge
36 kWh added with the price of charging 36 kWh, including
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Figure 8: Breakpoints for the charging time function
given two labels with different last visited charging
stations

the preference function, is added to the current preference
cost, i.e. futureCost;; = 36%0.54+5%0.54+5 = 24.5. Similar is
done for label I3, i.e. futureCost,, = 36%0.5436%0.5+4 = 40.
Since 24.5 < 40, label [; is not dominated by label l2 and
the dominance checking can stop because [1 may be part of
an optimal solution later.

If label I; was dominated by label Il for the breakpoint
at 80 %, the breakpoints for 90 % and 100 % SoC should
also be checked. If [; was still dominated after checking the
breakpoints for 90 % and 100 % SoC for I, three additional
dominance checks is done, examining the breakpoints of Ia
for 80 %, 90 % and 100 % SoC. If l; was dominated in these
seven dominance checks, the label could be pruned.

For this example, the preference cost is the only thing
that has been focused on. As stated earlier, energy con-
sumed should also be used when checking for dominance.
Fortunately, it is incorporated directly in the breakpoints as
shown in Figure |8} Examining the breakpoint at 80 % SoC
for the first label requires 40 kWh to be charged. The second
label has a reach of only 35 kWh and would have to break
the battery constraints to reach the breakpoint. Because the
battery constraints have to be respected, the charging time
function of the second label returns co at that breakpoint.
For that reason the second label is dominated by the first
label at that breakpoint.

The six future breakpoints are based on the charging time
function ct, but that includes only time. The price function
can be checked by only two future breakpoints because it is
linear; 100 % SoC for the first label and 100 % for the second
label. Fortunately, those breakpoints are already included
in the six future breakpoints and do not have to be checked
once again. An example of three labels with different last
visited charging station, which have different pricing, can
be seen in Figure [J] The figure proves that it is sufficient
to check for dominance at the current labels and the 100 %
SoC' breakpoint.

The theory about future dominance checks and break-
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Figure 9: Breakpoints for the charging price func-
tion given three labels with different last visited
charging stations

points is inspired by the work of [2].

4.1.4 Algorithm

The query algorithm can be seen in Algorithm The
algorithm works in two loops within a while loop, which
continues until the heap is empty. One loop iterates all the
unsettled labels stored at the dequeued vertex, while the in-
ner loop iterates all outgoing edges of the vertex. A label
is expanded only if it is not dominated by any other label
in the set of settled labels of the vertex. Intermediate val-
ues keeping track of costs and energy consumption are then
calculated for each expanded label and the label is moved
from the set unsettled to the set settled. Remaining or recu-
perated energy is also taken into account here. At last, the
new label is calculated and added to the the set of unsettled
labels of the target vertex. If the label has the lowest pref-
erence cost of all unsettled labels at the target vertex, the
vertex is enqueued to the heap.

On line 14-15 in Algorithm [T} the dominance check, de-
scribed in Section [4.1.3] is performed for the first label in
unsettled against all the labels that already have been set-
tled. The label is discarded if the label is dominated by one
of the labels in settled. Otherwise, if the label is not domi-
nated, the label has to be expanded and moved to settled.

On the lines 16-33 in Algorithm [I} the cost of driving
along the edge is added to the total cost of the expanded
path. First, the SoC is updated along with how much charg-
ing is required at the previous charging station to reach the
next vertex. Then, a check is performed to ensure the bat-
tery constraints are satisfied; it should not be possible to
charge more energy than the battery can store. After this
check, the time and price, including charging if necessary,
for driving to the next vertex, is computed by the functions
ct and cp, respectively. ct and cp are defined in Definition [
Charging function ct takes as parameters the battery capac-
ity, the sum of the already charged energy, the SoC when
the charging station was encountered, the amount to charge



and the charging station to charge at. Charging function cp
takes as parameters the subscriptions of the ev, the amount
of already charged energy, the amount to charge, and the
charging station to charge at.

On the lines 34-50 in Algorithm [T} the new vLabel is com-
puted. If the label has a lower preference cost than the
labels stored in the wunsettled set of the vertex, the vertex
is enqueued to the heap. First off, the preference cost and
the SoC for the vLabel is computed. The check for is done
to carry over excess energy, while avoiding carrying over en-
ergy to be recharged. Excess energy could come from either
an initial SoC or from recuperating energy along the edge.
Then, a new vLabel is added to the set of unsettled labels,
but the label is dependent on whether the next vertex is a
charging station or not. If the next vertex is a charging sta-
tion, the last visited charging station is set to be the next
vertex itself. This ensures that charging is performed on this
charging station, when the path gets further expanded. For
the last three parameters, SoCToUse and 0 are used. This
tells future iterations what the SoC was when the expanded
path arrived at the charging station, i.e. the amount of re-
served energy, and that it has not charged at it yet, hence
the value of 0. If the next vertex is not a charging station,
the information about the last visited charging station is
carried over to the new vLabel.

On the lines 37 and 42, an estimate for reaching the tar-
get vertex can be added to the cost of reaching the vertex,
enabling A * search. This orders the vertex in the heap after
an estimate of the cost of reaching the target vertex follow-
ing this path. As long as the estimate is admissible, i.e. an
underestimate of the true cost, A* search guarantees to find
the path with lowest preference cost.

The algorithm terminates if @) is empty or the target ver-
tex is dequeued from the heap, whereas the label with lowest
preference cost in the target vertex’s set of unsettled labels
is returned, as seen on line 8-9 in Algorithm [T}

4.2 Choice of Framework

In Section [2:3] the two frameworks, personalization and
customization, were described. This section describes how
the solution proposed in this article relates to these frame-
works and how it will affect the solution.

The problem statement in Section|3.3|states that the prob-
lem to be solved is to compute a feasible path for an EV
with the lowest possible cost given a preference function.
Following the arguments of Funke et al. in [4], which were
summarized in Section the problem assessed in this ar-
ticle is more likely to be solved in an efficient manner using
the personalization framework rather than the customiza-
tion framework. This follows from the possibility that the
user preferences changes for each query, and the fact that the
metric customization activity of the query phase in the cus-
tomization framework would have to be performed at query
time, every time the parameters of the preference function
are changed. For the same case, the preprocessing of the
personalization framework assigns cost vectors to the edges,
making the query phase independent of the changes to the
parameters of the preference function and therefore more
time efficient on query time.

For the reasons mentioned above, the solution described
in this paper will be contained within the personalization
framework.
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4.3 PartitionAlgorithm

This section introduces another solution, based on the
concepts from PRP described in Section 2:3] to solve the
problem described in Section The personalization frame-
work is reflected in this solution. Therefore, the algorithm is
split in two phases, i.e. preprocessing and query answering.
The goal of the preprocessing phase is to partition the graph
into cells and construct an overlay graph. The goal of the
query answering phase is to run queries on the output data
from the preprocessing phase. Since the problem concerns
EVs, the activities in the two phases have to be extended to
accommodate the problem about charging.

4.3.1 Preprocessing

This section explains the preprocessing phase for the Par-
titionAlgorithm. The preprocessing phase takes as input the
graph G and outputs a partitioned graph G, separated into
cells and an overlay graph G,. Each cell is a contiguous col-
lection of vertices. Each vertex in the graph is a member of
one single cell. The preprocessing phase is further separated
into two activities; the partitioning and weight assignment.

Metric-independent Overlay

The input for the metric-independent overlay is the graph G
defined in Definition[I] The goal is to construct a partitioned
graph G, and an overlay graph G, similarly to PRP.

First, G is partitioned into cells such that each vertex is
assigned to exactly one cell. The goal of the partition is to
have a minimum number of border edges. An example of
G can be seen in Figure [I] The output of this step is the
partitioned graph G,. An example of G, can be seen in
Figure [2}

Afterwards, the overlay graph is constructed, where each
border edge, i.e. an edge connecting two border vertices
from different cells, in G, is added to the set of overlay edges
in G,. An example of G, can be seen in Figure The border
vertices, which are connected by the border edges in G, are
added to the set of overlay vertices in G,. Compared to
CRP and PRP, this is, up until this point, exactly the same.

To accommodate for long distance trips, each charging
station vertex from G is added to the set of overlay vertices
in G,, meaning that the union of border and charging sta-
tion vertices are the overlay vertices. Additionally, shortcut
edges between each pair of overlay vertices within the same
cell are added to the set of overlay edges in G,.

Weight assignment

The input for the activity of assigning weights to the edges
is Gp and G,. The goal is to assign a weight to each edge of
G)p and each overlay edge of G,.

First, the edges of G, gets the weight from the edges of
G directly assigned, meaning that the weight of the edges in
G)p is measured in driving time and energy consumption.

Afterwards, the border edges in GG, are assigned the same
weight as in G, meaning that the weight of the overlay edges
in G, is measured in driving time and energy consumption.
For each shortcut edge in G,, an internal edge is constructed
for each non-dominated path wrt. driving time and energy
consumption, restricted to the cell, from the source vertex
to the target vertex of the shortcut edge. The weight of the
internal edge is the weight of the path.



Algorithm 1 GQUERYALGORITHM

Require: G, ev, s, t, a

1: function GQUERYALGORITHM(G, ev, s, t, o)

Q, u, altCost, tSoC, tTime, tPrice, tCharge, tReservedSoC
Q<+ 0

Q.enqueue(s,0) > Enqueue source vertex to heap

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

47:
48:
49:
50:
51:
52:
53:
54:

s.addLabel(—1,0,0,0,0,ev.50C, 0, ev.S0C)

> Add initial label to source vertex

while not Q.empty() do
u  Q.dequeue()

then

if u=

t then > Return best path if target is reached

return u.unsettled.dequeue()

end if
while

not u.unsettled.empty() do

bl < u.unsettled.dequeue()

for

all edges e € G.E where e.vy = u do > Iterate over all edges for all vLabels
if 1bl. Dominated ByAny(u.settled) then continue end if > Optimal Sub-Structure
u.settled.add(lbl)

tSoC <« [bl.S0C — e.ec > New SoC

if tSoC > ev.b then tSoC <+ ev.b end if
tCharge < lbl.charge

if tSoC < 0 then tCharge < tCharge — tSoC end if > Sum of how much to charge at last CS
tReservedSoC < tSoC — tCharge

if tReservedSoC < lbl.reservedSoC then tReservedSoC <« lbl.reservedSoC end if

if (tCharge + tReservedSoC) > ev.b then continue end if > Skip if next vertex is out of range
if (tCharge > 0) A lbl.lastCSId = —1 then continue end if

tTime < lbl.time + e.dt

tPrice < lbl.price

> Only recuperate up to battery capacity

if [bl.lastCSId > 0 then > CS encountered
if e.ec > 0 then > Energy required to traverse the edge
if tSoC < 0 then > Not enough energy in battery
tTime < tTime + ct(ev.b, Ibl.charge + 1bl.CSSoC, —tSoC, Ibl.lastCSId) > Charge
tPrice < tPrice + cp(ev.sub, Ibl.charge, —tSoC, Ibl.lastCSId)
end if
end if
end if
altCost < tTime * oy + tPrice * oy > New Label
if tSoC > 0 then > Carry over excess energy
SoCToUse < tSoC
else
SoCToUse < 0
end if
if evs. kW > 0 then > CS encountered

if e.vs.addLabel(e.vi.id, altCost, SoCToUse, tTime, tPrice, SoCToUse, 0, SoCToUse) then
altCost < altCost + h(e.ve, t,ev).t * ap + h(e.ve, t, ev).p * ayp
Q.enqueue(e.ve, altCost)
end if
else > Use old CS
if e.vs.addLabel(1bl.lastCSId, altCost, SoCToUse, tTime, tPrice, lbl. CSSoC, tCharge, tReservedSoC')

altCost < altCost + h(e.ve, t,ev).t * ar + h(e.ve, t,ev).p * ap
Q.enqueue(e.v, altCost)
end if
end if

end for

end w

hile

end while
return null > Queue empty, no path for target found
55: end function
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4.3.2  PartitionQueryAlgorithm

The query answering activity, referred to as Partition-
QueryAlgorithm, takes as input the partitioned graph G,
and the corresponding overlay graph G,, an electric vehicle
ev, as well as a source vertex s € G, and a target vertex
t € Gp.

Edge Relaxation

The PartitionQueryAlgorithm is similar to the GQueryAlgo-
rithm, described in Section [£.I} as the computations, when
an edge is relaxed, are exactly the same.

When an edge e is relaxed, each vLabel uVLbl € e.vy.un-
settled is removed from e.vy.unsettled and checked for dom-
inance against each vLabel € e.vy.settled.

If wVLbl is not dominated, the temporary variables are
computed such that a new vLabel, vLbl, is created and vLbl
is enqueued to e.v;.unsettled. If vLbl has the lowest pref-
erence cost in e.v;.unsettled, vertex e.vy is enqueued to the
priority queue @ along with the preference cost of vLbl.

If vertex t is dequeued from @, the algorithm returns
t.unsettled.dequeue, i.e. the vLabel with lowest preference
cost stored at vertex ¢, and terminates.

Graph Maneuvering

The difference between the PartitionQueryAlgorithm and
the GQueryAlgorithm, is the graph maneuvering. The Par-
titionQueryAlgorithm takes the partitioned graph G, and
the corresponding overlay graph G, as input. Because two
graphs are used, careful maneuvering has to be done. Fortu-
nately, the graph maneuvering is similar to what is described
in Section 2241

Initially a vLabel is added to s.unsettled and s is enqueued
in Q. A listing of which edges are considered, when a vertex
is dequeued, depending on the properties of the vertex, is
defined as follows:

1. Non-border vertex from the same cell as ¢ is located;
edges of GG, are considered

2. Border vertex from the same cell as ¢ is located; edges
of G, and overlay edges of G, are considered

3. Border vertex not located in the same cell as s and t;
overlay edges of G, are considered

4. Border-vertex from the same cell as s is located; over-
lay edges of G, are considered

5. Non-border vertex from the same cell as s is located;
edges of G, are considered

The listing is prioritized such that if s is a border vertex,
then edges from G, are considered because a border vertex
in the cell where s is located has higher priority than a non-
border vertex in the cell where s is located. Another example
is if vertex s and vertex t are located in the same cell, then
edges are chosen based on item 1 or item 2, depending on
whether the dequeued vertex is a border vertex or not.

4.4 AGAlgorithm

This section summarizes the work presented in [1]. The
objective of the work described in the article is to introduce
an approach to answer route planning queries with a skyline
considering total travel time and charging price as the di-
mensions. Finally, a description of the modifications made
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to the solution in order to solve the problem is described in
this article.

The main contributions of the work are two algorithms.
The first algorithm is a preprocessing algorithm meant to
be executed only once before query time, and the second
algorithm is a query algorithm, which will be run for every
individual query at query time.

4.4.1 Preprocessing Algorithm

The preprocessing algorithm takes as input an electric ve-
hicle ev and the original graph G, representing a road net-
work, and creates an auxiliary graph AG, which at first
contains only the vertices from G, which represent charging
stations, e.g. vertices with a charging rate of more than 0
kW.

Next, edges are added to connect the vertices in AG. This
is done by running skyline route planning queries in G from
every charging station vertex to every other charging station
vertex. Only feasible paths following the constraints of ev
are considered, and no charging stops are allowed en route.

For every feasible path in the skyline between every pair
of charging station vertices, an edge representing the path is
inserted into AG with travel time and price as weights. This
means that upon computing AG, the reachability between
any pair of charging stations can be easily determined by
looking up if there is an edge connecting these two vertices.
If not, then the only possible way to travel between these
two charging stations, is to charge at a third intermediary
charging station.

4.4.2 AGQueryAlgorithm

The query algorithm takes as input both G and AG as
described in the previous paragraph, an electric vehicle ewv,
as well as a source vertex s € G and a target vertex t € G.
The first step of the algorithm is to connect s and t directly
to the vertices in AG. This is done by using a method similar
to the one previously described when computing AG.

s is connected by running a skyline route planning query
in G from s to every vertex present in AG, e.g. all charging
stations in G. Then, all the feasible paths found in the
skyline are added as edges to represent paths from s to each
charging station vertex.

For ¢, the approach is different. Since reachability must
be taken into account, and the current state of charge is
unknown, a backwards route planning query is made from
t to every charging station in G. However, since this is a
backwards search and it is unknown which charging station
a path will be connected to, charging price and rate is not
available. Therefore, the weights for the backwards query
are driving time and energy consumption instead. When
a charging station is reached, these values can be used to
compute the total travel time and price of the path.

Once both s and ¢ have been connected to AG, a modified
version of Dijkstra’s algorithm is executed from s to ¢, re-
turning a skyline of paths from s to ¢ with two dimensions,
namely total travel time and charging price.

A problem about this approach is when computing the
auxiliary edges between charging stations. To compute the
travel time of an auxiliary edge, the time spent charging the
energy needed to traverse the auxiliary edge is added to the
driving time of the edge. However, since this is done in the
preprocessing, the SoC at the source of the auxiliary edge
is unknown, and is therefore assumed to be 0. Since the



SoC at s is assumed to be the maximum battery capacity
of the EV, the time penalties in the charging time function
can be reached at an earlier point in time than computed by
the preprocessing. This means that the algorithm does not
guarantee the optimal solution.

4.4.3 Modifications

Experiments performed on the previous solution show that
it is practical for smaller graphs with smaller battery ca-
pacities for ev, however, for larger, yet realistic battery ca-
pacities, the solution becomes impractical, due to the high
number of edges generated in the precomputation, leading
to an almost fully connected auxiliary graph. Modifications
to the previous solution will be made, to be able to compare
it to the new solutions presented in Section and Section
B3

For this algorithm to work with preference functions, a
few modifications have to be made. First off, the preference
function has to be considered when connecting the source
and target vertices, s and t, to the auxiliary graph AG.
Instead of having skylines of paths connecting these two
vertices to the reachable charging stations in the auxiliary
graph, only a single path will connect the two vertices to
each of the reachable charging stations. This can be done as
a single cost can be calculated using the preference function
and only the path with the lowest preference cost is chosen.

Additionally, the preference function has to be consid-
ered when performing queries. When the skyline of outgoing
edges from a charging station is considered, only one of them
will be used, i.e. the edge with the lowest preference cost.
This is achieved by computing the preference cost for each
edge, using the preference function, and choosing the edge
with the lowest preference cost.

By using a preference function, the number of different
paths leading to a vertex from the source vertex s, is reduced
to one. This is the result of the preference function translat-
ing the edge weights into a single preference cost, making a
skyline impossible. The reason for not using the preference
function in the precomputation, is that the precomputation
is independent from the queries. As the preference function
is specific for each query, it is not available at the time of
precomputation. Because of this, the precomputation stays
unmodified.

S. EXPERIMENTS

In this section, experiments performed on the solutions
introduced in this article will be described. The main objec-
tive of the experiments is to determine how useful the pro-
posed solutions are in a realistic setting, mostly considering
running times. First, the experiment setup and input data
will be described. Next, the speed-up techniques using A*
search for the queries is described. Finally, the experiment
results are listed and analyzed.

The experiments have been performed on a Intel Core
i7-2600 processor clocked at 3.4 GHz with 8 GB of DDR3
RAM. The proposed solutions are implemented in C++ us-
ing Microsoft Visual Studio 2015 compilers for Windows 64-
bit, which supports most C++11 features, and some C++14
and C++17 featureeﬂ Additionally, features of the Boost

"https://msdn.microsoft.com/en-us/library/
hh567368 . aspx
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1.60.0 C++ libraryEI are used for the implementation. For
the queue implementation, a 3-ary heap has been used, since
preliminary experiments showed very little, yet measurable,
improvements in performance when using 3-ary heaps com-
pared to 2, 4, and 5-ary heaps as well as a Fibonacci heap
for the algorithms. The partitioning of vertices, as part of
the preprocessing for the PartitionAlgorithm, is done with
the help of the tool gpmetis, which is provided by George
Karypis of University of Minnesotaﬂ The objective of gp-
metis is to create a partitioning of a graph into a specified
number of cells, such that the number of border edges is
minimized.

The first experiment is a comparison of the size of com-
puted partitioned graphs for varying cell sizes, i.e. the num-
ber of vertices in each cell, as well as for two different EVs
with different battery capacities, referred to as EVs3 and
EVygo. The size of the graph is analyzed using the number
of vertices and the number of edges in the graph.

The second experiment performed is a comparison of the
running time of the query algorithms proposed in this paper
for both EVs3 and EVgg. The speed-up techniques devel-
oped for these algorithms will also be evaluated, since all
experiments will be performed with and without the speed-
up techniques applied.

5.1 Input Data

This section describes the data, which has been used for
the experiments in this paper. This includes the road net-
work, elevation data, charging station data and EV data.
It is also described how these different sources of data has
been combined into single data sets.

5.1.1 Road Network data

The experiments are performed on a graph converted from
OpenStreetMap (OSM) data, freely available from the Ge-
ofabrik Websittﬂ, which offers files containing OSM data
dumps of geographical regions, such as entire countries and
continents. The OSM data used for these experiments rep-
resents the motorways of Germany. A rendering of the data
can be seen in Figure [I[0] Roads in the OSM data have as-
sociated max speeds, which are used as the driving speed,
as described in Section [3.1.1] Roads with missing or unlim-
ited maximum speeds have been assigned a value of 130 kph.
The OSM data is converted to a road network consisting of
vertices and edges instead of nodes and ways.

5.1.2 Elevation data

The road network is combined with height data from the
Shuttle Radar Topography Mission (SRTM) version 4, which
is freely available from the CGIAR Consortium for Spatial
Informatiorﬂ

5.1.3 Charging station data

4,058 German charging stations are added to the road net-
work using data freely available from OpenChargeMap.orgEl
Charging price data has been manually collected for five

thtp ://www.boost.org/users/history/version_1_60_
0.html

Shttp://glaros.dtc.umn.edu/gkhome/metis/metis/
overview

“http://download.geofabrik.de/europe.html
Shttp://srtm.csi.cgiar.org/
Shttp://openchargemap.org/site/develop/api
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Figure 10: The road network of Germany used for
the experiments. The red dot marks the reference
vertex for the (z,y) coordinates used by the heuris-
tics.

common providers in the data set, since this is not included
in the data from OpenChargeMap.org. All charging sta-
tions, which are not owned by one of these providers with
known associated price data, are randomly replaced with one
of these providers, so that all charging stations have realis-
tic price data. The charging stations are added as vertices
and connected to the existing road network by adding edges
from and to the nearest vertex in the road network.

5.1.4 Graph generation

The road network is converted to a graph matching the
graph definition from Definition |1} This is done by identify-
ing the vertices which make up intersections or end-points
of roads in the road network and use these as vertices in the
new graph. Roads and their intermediate nodes in the road
network are then replaced by edges in the new graph, which
significantly reduces the number of vertices in the graph.
The weights of the edges is set to the distance of the cor-
responding road in the road network. Since the OSM data
does not provide distances on roads, the distance of a road
has to be calculated by computing the distance between the
road’s start and endpoints. However, latitude and longitude
coordinates are available for every vertex in the graph, so
the haversine formula is used for this purpose. This con-
version results in a graph consisting of 94,993 vertices and
107,457 edges.

The auxuliary graphs created using the preprocessing al-
gorithm described in Section [£:4.1] contains 4,058 vertices,
i.e. the number of charging stations, and 4,908,531 edges
for EVs3 and 9,074,999 edges for EV go.

5.1.5 EVdata

The electric vehicle data used for the experiments is based
on the Tesla Roadster, which has a battery capacity of 53
kWh. This vehicle is referred to as EV53. Additionally, an
imaginary EV with the same properties as the Tesla Road-
ster, but with a larger battery capacity of 90 kWh, is used as
well and is referred to as EVgg. This vehicle is used to sim-
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ulate the capacity of the newer Tesla Model S. The physical
properties of the Tesla Roadster used in the road network
have been retrieved from [8], [9], and [10].

5.2 Speed-up Techniques

This section describes the details of the speed-up tech-
niques used for these experiments. As mentioned in Section
and Section the query algorithms can receive a
speed-up by applying A* Search utilizing a heuristic. For
the heuristic to be admissible, the estimated cost can never
be an overestimate of the true cost. The heuristic is a func-
tion h which takes as input the current vertex u, the target
vertex vy and the EV ewv.

The cost of a path in this solution is the output of a cost
function of price and total travel time, which depends on
a preference function. Since both price and total travel
time are dependent on the distance between vertices, an ef-
ficient way of estimating the distance between two vertices
is needed. The obvious solution would be to use the lon-
gitude and latitude coordinates of the vertices to calculate
the distance in meters using the haversine formula. This
would guarantee that the heuristic is admissible. However,
the haversine formula consists of the trigonometric functions
sine, cosine and inverse tangent. Considering the number
of times the heuristic will have to compute these functions
during a query, the C++ trigonometric function implemen-
tation may not yield a performance gain, compared to run-
ning the query without any heuristics at all.

Instead, a more efficient way of calculating the distance
is used, where a precomputation assigns a point in a two-
dimensional coordinate system with (z,y) coordinates to
each vertex. The (z,y) coordinates of a vertex is com-
puted as follows: First, a reference vertex v, € G is cho-
sen, preferably in the center of the graph for the highest
accuracy. The coordinates of v, are set to (0,0). Then, for
each vertex u € G, the x coordinate is computed by us-
ing the haversine formula to compute the distance in meters
from the point (u.lat,v,.long) to the point (u.lat,u.long),
i.e. the distance between v, and wu, if the points had the
same latitude coordinate, but not the same longitude coor-
dinate. If v,.long > w.long, the distance stored in the z
coordinate of u must be multiplied with —1. Likewise, the y
coordinate is computed by maintaining the same longitude
coordinate while using the respective latitude coordinates of
v, and u. Finally, the (x,y) coordinates of vertices can be
used to estimate the distance between any two vertices us-
ing the euclidean distance formula. It should be noted that
the accuracy of this approach is worsened, as the graph used
covers a larger and larger geographical area. Likewise, this
approach does not guarantee that the heuristic is admissi-
ble, as it may overestimate the distance. The position of v,
used for these experiments can be seen in Figure [0}

With an efficient estimate of the distance d between any
two vertices in place, the estimated travel time ¢ between u
and v; can be computed by first computing the driving time
by dividing d with the maximum possible driving speed in
the graph, which in these experiments is 130 kph. Next, the
charging time is calculated by first calculating the energy
to be charged in order to drive d at 130 kph. This is done
by calculating the energy consumption from driving d and
then subtracting the current state of charge. The result is
then divided by the fastest charging rate in the graph. This
value is 120 kW in the data used for these experiments,



Cell size | # Cells | |G,.V| A [Ce. B Vo

2! 47,497 | 78,842 95,916 95,916
22 23,749 | 53,578 79,027 79,027
23 11,875 | 32,693 58,129 58,129
21 5,938 | 20,108 45,359 45,359
2° 2,969 | 13,467 41,077 41,077
26 1,485 | 9,943 42,481 42,481
27 743 | 7,880 49,305 49,305
28 372 | 6,523 66,822 66,822
29 186 | 5,589 99,247 99,247
210 93 | 4,940 188,876 188,876
211 47 | 4,700 450,111 450,139
212 24 | 4,375 | 1,182,330 | 1,184,179
213 12 | 4,355 | 2,717,322 | 2,875,611
oM 6| 4,162 | 6,565,115 | 7,308,411
215 3| 4,110 | 15,468,270 | 19,311,254

Table 3: The size of the computed overlay graph G,
for an increasing cell size in G,.

i.e. one hour of charging provides 120 kWh. The estimated
travel time will then be the driving time plus the charging
time. The reason for using the maximum driving speed and
maximum charging speed is that it is possible for the real
path to consist of only edges, where the driving speed is
130 kph, and only charging stations where the charging rate
is 120 kW. Battery constraints are not considered by this
function, as it is assumed charging stations is available en
route where needed. Again, it should be noted that this
might lead to an overestimate of the total travel time as the
distance to be traversed might be an overestimate.

The estimated price p between u and v is found by com-
puting the energy to be charged for driving d at the most
energy-efficient speed for ev, which for these experiments is
37.69 kph. This value is vehicle specific and is found by set-
ting the derivative of the energy consumption function equal
to zero and solving for speed between 0 kph and 130 kph.
The energy to be charged is calculated using the same ap-
proach as described for the travel time, but using the most
energy-efficient speed instead of the maximum speed. The
reason for using the most energy-efficient speed when esti-
mating price, is that the heuristic should return a price as
close to the price of the most energy-efficient path as possi-
ble, i.e. the most energy-efficient speed will yield the lowest
price, following the assumption in Section[3.1.3] Finally, the
cheapest possible price of charging the required additional
energy is returned as the estimated price of the path. Note
that this price depends on the subscriptions held by ev. As
with the total travel time, it should be noted that this might
lead to an overestimate of the price as the distance to be tra-
versed might be an overestimate.

5.3 Partitioned Graph Sizes

The objective of the first experiment is to explore, how
the size of the computed overlay graph G, changes for an
increasing average number of vertices in each cell of the com-
puted partitioned graph G,,. The average number of vertices
in each cell is referred to as cell size of G,. Furthermore,
the experiments are run for the two different EVs, EV 53 and
EVgo, described in Section [f.I.5] The preprocessing phase
described in Section is used to compute two graphs;
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Figure 11: Visualization of the size of the computed
overlay graph G,, for an increasing cell size in G,.

a partitioned graph G, and an overlay graph G,, from the
original graph G, described in Section This phase takes
up to 45 minutes for each cell size processed. The results
from this experiment will provide an input in the next ex-
periment, when evaluating the running time of the query
algorithm for an increasing cell size.

For this experiment, 15 different cell sizes are used, rang-
ing from the lowest sensible number of vertices in a cell, 2*,
to the highest sensible, 2!5. There is no relevance to increase
the cell size to more than 2'°, i.e. 32,768, since the resulting
G, will be increasingly close to the original graph, as the cell
size reaches the number of vertices in the original graph, i.e.
94,993. Also, the memory required to handle large cell sizes
with a high number of shortcuts, makes it impossible to im-
plement it on the hardware available for these experiments.
For a cell size of n in G, the resulting number of cells in G,
and G, can be described as [|G.V|/n].

The results of the experiment can be seen in Table [3| and
are visualized in Figure As seen in the table, the number
of vertices in the graphs is the same, no matter what EV is
used. This is because vertices are chosen regardless of range,
but rather from the topology in the graph.

It is notable that the number of vertices in G, decreases
as the cell size increases. This is due to the fact that a fewer
number of border edges is included in the partitioned graph,
as the cell size increases, resulting in fewer border vertices
as well. The number of vertices in the graph will never be
lower than the number of charging stations, i.e. 4,058, since
all charging stations are always part of G,, regardless of the
cell size and number of cells.

The resulting number of edges in GG, is more complex
to analyze, since both border edges and shortcut edges ex-
ist, and neither of these sets of edges are constant in size.
Furthermore, the number of edges changes with the EV, as
a longer range can result in more shortcuts being feasible.
This becomes clear in the table, where the number of edges
in G, remains the same for each cell size from 2! to 2'°.
From a cell size of 2!! and up, the number of edges vary de-
pending on the EV. This is due to a larger cell size resulting
in fewer partitions covering larger areas in the graph, which



EVs3 EVao
Speed-up * *
Algorithm None A None A
AGQuery 97 106 209 216
GQuery 26,789 | 11,133 5,679 | 1,129

Table 4: The results from the running times experi-
ments with AGQuery and GQuery. All times are in
ms.

EVss EVgo

; Speed-up None A* None A*
Cell size
2! 22,377 | 8,972 | 5,114 961
22 16,941 | 6,658 | 3,904 742
23 11,242 | 5,049 | 2,538 493
2t 6,625 | 2,700 | 1,678 327
2° 4831 | 1,770 | 1,426 264
26 3,545 | 1,290 | 1,122 227
27 2,504 999 856 206
28 1,921 744 633 162
29 1,473 535 460 122
210 1,355 509 491 148
211 1,639 653 646 193
212 2,440 995 | 1,155 398
213 5,253 | 2,244 | 2,743 713
o4 10,824 | 4,454 | 5,188 | 1,205
Q18 29,328 | 12,501 | 15,500 | 3,422

Table 5: The results from the running times exper-
iments with PQuery. All times are in ms.

means that a larger range for the EV yield more shortcut
edges in the graph. The number of border edges remain the
same regardless of the EV. For the lower range of cell sizes,
from 2% to 2°, the total number of edges decreases. This is
due to a decrease in the number of border edges. From a
cell size of 2° to 2!, the total number of edges increases.
This is caused by an increasing number of shortcut edges,
as fewer cells means more vertices are contained in each cell
and thereby the number of shortcuts in each cell increases
as well. It is notable that from a cell size of 2'° and up,
the number of edges in the partitioned graph G, is actually
higher than the number of edges in the original graph G,
which contains 107,457 edges.

In the range of cell sizes between 2* and 2°, the size of the
overlay graphs in terms of the combined number of vertices
and edges is the smallest. However, this can not determine
whether the efficiency of these overlay graphs is the best in
terms of running time. This will be answered in the second
experiment.

5.4 Efficiency of Algorithms

The purpose of the second experiment is to evaluate the
time-efficiency of the query algorithms proposed in this ar-
ticle. This includes the GQueryAlgorithm described in Sec-
tion [4.1.4] referred to as GQuery, the PartitionQueryAlgo-
rithm described in Section referred to as PQuery, and
the AGQueryAlgorithm described in Section [£:4.2] referred
to as AGQuery. All three algorithms will be queried the
same randomly generated 1,000 feasible source-target pairs
two times each for EV3 and EVgy. First with no speed-
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up techniques applied to the algorithm, and secondly with
the A* speed-up technique described in Section [5.2]included
as part of the algorithm. The speed-up technique might
result in sub-optimal paths. However, none of the queries
performed on the algorithm with the speed-up technique ap-
plied, returned a cost different from the cost returned by the
algorithm without the use of the speed-up technique, which
guarantees optimal results. This means that the probability
of computing a sub-optimal path using the speed-up tech-
nique is low. However, this may depend on the data used
to created the road network. For PQuery, the partitioned
and overlay graphs described in the previous experiment will
be used. The preference function o = (0.5,0.5) is used for
all experiments. Finally, the average running time of the
queries will be evaluated for each algorithm and EV.

The first results described are the results from AGQuery
and GQuery. This provides 8 results; four results for each
algorithm, namely the average running times without any
speed-up techniques applied and with the A* speed-up ap-
plied, and for both EVs3 and EVgg. The results seen in
Table [] clearly show, how AGQuery outperforms GQuery
in terms of running time for EFVs3. However, it should be
remembered that AGQuery does not guarantee an optimal
solution as described in Section Interestingly, A* does
not improve performance on AGQuery, while on GQuery,
the query answering time is more than halved when using
A*. The reason why the speed-up technique does not im-
prove the running time of AGQuery, could be because of
the problem of not being able to consider the current SoC
at charging station vertices in the preprocessing of the aux-
iliary graph, as described in Section [f:4:2] This might mean
that the time saved by the guiding of the speed-up tech-
nique does not make up for the time it takes to compute
the heuristic values. For EVgo, the query answering time is
improved much in GQuery, since less charging needs to be
considered by the algorithm, due to the longer range. How-
ever, for AGQuery, the query answering time is slower for
EVgo compared to EVs3. This is due to the high edge count
in the auxiliary graph, caused by the larger range. This sup-
ports the conclusion in [1] stating that the algorithm is less
efficient for larger ranges.

Secondly, the results from PQuery is described. This pro-
vides 56 results; 14 pairs of results from running the query
on the partitioned graphs with and without the speed-up
technique A* applied, for both EVs53 and EVgo. The re-
sults can be seen in Table[f] and are visualized in Figure [T2]
for EV 53 and Figure for EVgo. The graphs G, and G,
computed with a cell size of 2'° provides the best results
for EVs3, with an average running time of 1,355 ms with-
out the speed-up techniques applied, and 509 ms with the
A* speed-up technique applied. Interestingly, G, with a cell
size of 2'° contains more edges than the original graph G
used for GQuery, as described in the first experiment. For
EV g0, the cell size performing the best results is 2°, with an
average running time of 460 ms without the speed-up tech-
niques applied and 122 ms with the A* speed-up technique
applied.

Furthermore, for the best performing cell sizes used in the
experiments, PQuery outperforms GQuery in terms of run-
ning time. However, PQuery only outperforms AGQuery in
terms of running time with the A* speed-up applied to the
algorithm. As in the GQuery experiment, using A* improves
the efficiency of the algorithm significantly, since the average



30 | ]
= No speed-up
g Using A*
Q
% m
g 201 B
(]
e I
60
k=
£ 10 :
Z
20
) lhl hl
Ul L [ UHDUDDDDDDDDDUD paoul |
0

U B A
6 78 9101112131415
Cell size (27)

I B —
12345

Figure 12: Running times of PQuery for EVss.

. 157 No speed-up I
—g Using A*
Q
@
[}
e
ge)
60
k=
ERY |
S
~
6D
ol Ulln DHDUDUDDDDDDDDDDDUD pdOUl |

T T T T T T T T
6 78 9101112131415
Cell size (27)

I B B —
12345
Figure 13: Running times of PQuery for EVgg.

running time of the queries utilizing A* is less than half the
running time of the queries not utilizing the speed-up tech-
niques, for any of the cell sizes used on EV53. Furthermore,
the results from E'V gy show that the speed-up decreases the
running time of queries to around one fourth of the run-
ning time without applying the speed-up technique. This
could mean that the speed-up technique works even better
for longer-ranged EVs.

6. CONCLUSION

In this article, we have studied the problem of finding the
optimal bi-criterion path between two points in a graph, ac-
cording to a user-defined preference function. For the exper-
iments, we have used a graph of the motorways of Germany
and two EVs with different battery capacities. Experiments
with a basic approach, based on the expansion technique of
Dijkstra’s algorithm, showed that a path could be found with
an average query answering time of less than 12 seconds for
the EV with the smallest capacity, and less than 2 seconds
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for the EV with the larger battery capacity. Using the prin-
ciples explained in Section [£.3] the graph was partitioned
into cells, where each vertex is a member of only one cell.
This partitioned graph was used in further precomputation,
where the goal was to create an overlay graph of only border
and charging station vertices, reducing the size of the graph.
Modifying the basic algorithm, to be capable of navigating in
the overlay graph, yielded significantly faster query answer-
ing times, especially with an A* speed-up technique applied.
Query answering times for the algorithm were around half
a second for the EV with the smallest capacity and around
one tenth of a second for the EV with the larger battery
capacity. Finally, experiments with a modified version of
the solution from our previous article [1] showed an average
response time of approximately one tenth of a second as well
for the EV with the lowest range, and around one fifth of a
second for the longer ranged EV. This means that the run-
ning time of this algorithm increases for longer ranged EVs,
which was also described in [1].

All of the mentioned results are made with algorithms,
where an A* speed-up technique is applied. At its best, the
speed-up technique decreased the query running times to
around one fourth of the running time of the same algorithm
without the speed-up technique applied. The A* speed-up
technique applied to the algorithms does not guarantee the
optimal solution. However, the experiments show that the
probability of computing a sub-optimal path instead of the
optimal path is low in the used data, since it did not occur
in the 1,000 randomly generated source-target queries used
for the experiments.

It is worth noting that the solution from our previous
work is the fastest for the shorter ranged EV. However,
this solution requires precomputation that takes hours to
complete, whereas the precomputation of the PartitionAlgo-
rithm takes less than one hour in the worst case. Another no-
table difference between the PartitionQueryAlgorithm and
AGQueryAlgorithm, is the number of vertices and edges in
the two graphs needed. The experiment in Section [5.3|shows
that the number of edges actually decreases for most cell
sizes of the partitioned graph, compared to the 5 million
edges in the auxiliary graph for the EV with the smallest
range and 9 million edges for the EV with the largest range.
However, the number of vertices has increased compared to
the auxiliary graph. Additionally, the number of vertices
and edges in the partitioned graph for the cells, where the
source and target vertices are located, should also be added
to the total edge and vertex count. Obviously, this increases
the vertex count even more, but the edge count for most of
the partitions is still less than 5 and 9 million edges. Finally,
the AGQueryAlgorithm loses path optimality from the pre-
computation. This is due to the SoC not being known at the
time of precomputation, and the time penalty for charging
with a battery above 80 % charge may not be applied.

7. DISCUSSION

This section discusses some of the properties and choices
that have been made to solve the problem with the different
approaches.

The PartitionAlgorithm described in Section is in-
spired by the CRP and PRP approach introduced in 3] and
|4]. However, these approaches are not directly applicable to
the electric vehicle routing problem where charging stations
are modeled. The reason for this is that there is no guaran-



tee that all of the charging stations are in the overlay graph.
A charging station would only be added to the overlay graph
if it is a border vertex. If a partition of the original graph
does not have a single charging station as a border vertex, it
would only be possible to charge in the cells where the source
and target vertices are located, given that a charging station
vertex is located in the same cell. Therefore, the Partition-
Algorithm ensures that all charging stations are within the
overlay graph. This is done by adding shortcut edges to the
charging station from each border vertex of the cell where
the charging station is located.

Another aspect of CRP and PRP is to have a hierarchy
of overlay graphs, i.e. the multi-layered approach. The dis-
advantage about using a multi-layered approach with the
PartitionAlgorithm is that all charging stations have to be
in each overlay graph of the different layers. Therefore, we
are not sure whether it will provide a speed-up. However,
it is possible to implement the multi-layered approach using
the same concepts from the PartitionAlgorithm.

The AGAlgorithm described in Section is a modi-
fied version of the solution from [1]. In [1] the experiments
show a high level of interconnectivity of edges between the
charging stations in the auxiliary graph. This is because
the charging stations are reachable within the battery ca-
pacity of the electric vehicle. As a motivation to limit the
interconnectivity of edges between charging stations, we in-
troduced the PartitionAlgorithm. The theory was that the
number of edges would decrease by limiting the intercon-
nectivity of charging stations to each cell. By limiting the
number of edges, the number of vertices increased because
of the border vertices. Therefore, we have developed two ap-
proaches, i.e. PartitionAlgorithm and AGAlgorithm, which
has a trade off between decreasing the number of edges and
the number of vertices.

The running time experiments in Section show that
the AGQueryAlgorithm is at least a factor of 5 faster than
the PartitionQueryAlgorithm for the EV with smaller range.
However, the PartitionQueryAlgorithm is faster for the EV
with a larger range, compared to the AGQueryAlgorithm,
but only when the speed-up technique is applied. As stated
in Section[4:4:2] the AGQueryAlgorithm does not guarantee
the optimal solution. Therefore, the AGQueryAlgorithm
has an advantage over the GQueryAlgorithm and Parti-
tionQueryAlgorithm, wrt. running time, because it does
not guarantee the optimal solution. Also, the AGQueryAl-
gorithm has another advantage because it is label setting
compared to the GQueryAlgorithm and PartitionQueryAl-
gorithm, which are label correcting. The reason why the
AGQueryAlgorithm is label setting is because the consumed
energy is incorporated in the edges of the auxiliary graph,
i.e. if a charging station is reachable from another charg-
ing station an edge exist between the two of them. Also,
the total travel time and price is precomputable because the
last visited charging station is known. Therefore, the prefer-
ence cost is the only dimension that needs to be considered
at query time. The GQueryAlgorithm and the Partition-
QueryAlgorithm needs to keep track of the energy consumed
and the preference cost because the edges do not guarantee
feasibility like the edges of the auxiliary graph.

One might wonder, why the PartitionQueryAlgorithm does
not incorporate energy consumption like the auxiliary graph.
Actually, it is possible to precompute the price, total travel
time and incorporate energy consumption for the outgoing

shortcut edges from a charging station because the last vis-
ited charging station is known. However, this would not
guarantee the optimal solution for the same reason that the
AGQueryAlgorithm does not guarantee the optimal solu-
tion; the SoC at the time of charging is unknown and a
possible charging time penalty is not applied. Also, it is not
possible to precompute price, total travel time and incorpo-
rate energy consumption for the remaining edges, because
those depend on the last visited charging station, which is
not known before query time.

7.1 Future Work

We have studied the problem of finding the fastest and
cheapest path, in terms of total travel time and price, ac-
cording to a user-specified preference function and proposed
different solutions to solve the problem. However, more work
can be done to improve the solutions. Ideas of how to im-
prove the solutions is described in this section.

The speed assumption described in Section is a limi-
tation in the sense that the user has to drive the speed limit
of a road. In the real world, most people do not drive with
a speed equal to the speed limit. Some people drive faster
than the speed limit and some people drive slower. Future
work in terms of lifting this assumption could be to take a
variable denoting how fast to drive in relation to the speed
limit or allow the user to drive at any arbitrary speed.

The charge assumption described in Section [3.1.2] ensures
that charging stations and the target vertex is reached with
the minimal SoC. However, the cost of the path could be
better if optimization of how much to charge at each charg-
ing station was performed. An example of this could be a
path that makes use of two charging stations, where the first
visited charging station provides the cheapest and fastest
charging, but the EV can not reach the target from it. In
this case, more charging should be done at the first charg-
ing station and less charging should be done at the second
charging station.

The implementation of a multi-layered approach for the
PartitionAlgorithm, as mentioned in Section m is a possi-
ble improvement for the PartitionAlgorithm. However, each
layer needs to include all charging stations for the reason
described in Section [@

The AGQueryAlgorithm does not guarantee an optimal
solution as described in Section However, a solution to
make it guarantee an optimal solution would be to precom-
pute the driving time and energy consumption as weights
instead of price and total travel time. At query time, the
SoC, price and total travel time should be computed as the
GQueryAlgorithm and PartitionQueryAlgorithm does when
edges are relaxed. It may be a little slower compared to
the current solution, in terms of running time, because the
functions ¢p and ct have to be used to compute the total
travel time and price when an edge is relaxed. Also, the SoC
needs to be handled, similar to how SoC is managed in the
GQueryAlgorithm and PartitionQueryAlgorithm. Nonethe-
less, the algorithm would guarantee the optimal solution.

The heuristic function used in the A* Search is not admis-
sible because the method to compute the euclidean distance
can overestimate the true distance as described in Section
[B-2] Therefore, another method of computing the euclidean
distance, which always underestimates the distance and is
more time efficient than the haversine formula, is another
approach to make the heuristic of A* Search admissible.
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Summary

This article studies the problem of route planning for electric vehicles (EVs) in
a road network. Route planning is often performed with interest in the fastest
path. However, some constraints for computing the fastest path for an EV, are
different from the constraints involved in route planning for fossil fueled vehicles.
For example, recharging of an EV is more time consuming than refueling a fossil
fueled vehicle. Furthermore, the pricing for recharging EVs follows different
standards than the pricing for fossil fueled vehicles. Charging providers offer
various subscriptions, and determining the cheapest option may not be trivial.

Therefore, this article suggests an approach to balance travel time with price
for EV route planning. This is done by taking a user-specified preference func-
tion for travel time and price as input, while taking charging and recuperation
into account. The path, which, according to the preference function, is the most
optimal, is returned.

This article is an extension of our previous work, which considered almost the
same problem. The difference is that the solution in our previous work returns
all Pareto-optimal paths instead of the single optimal path. Even though the
problems are slightly different, the solution is reused in this article.

Two different query algorithms are proposed, along with the previous solu-
tion, AGQueryAlgorithm, to solve the problem of returning the optimal path ac-
cording to a preference function. The first query algorithm presented, G QueryAl-
gorithm, makes no use of precomputation and serves as a baseline algorithm.
The second query algorithm, PartitionQueryAlgorithm, uses a precomputation
technique to speed up the queries. All three query algorithms uses the principles
of Dijkstra’s algorithm, which is modified to compute the optimal path given a
preference function.

The PartitionQueryAlgorithm is an extension of the baseline algorithm, and
uses a partitioned graph, where vertices are partitioned into cells, such that
every vertex is contained in exactly one cell. Edges leading from one cell to
another cell are referred to as border edges, and these are added to an overlay
graph along with the source and target vertices of the border edges, referred to
as border vertices. Furthermore, the overlay graph contains all charging stations,
and these are connected to the border vertices of the cell in which the charging
station is contained using shortcut edges. The AGQueryAlgorithm works in an
auxiliary graph, and is a modification of the solution from our previous work,
such that it returns the single optimal path according to a preference function.
Unfortunately, this solution is not guaranteed to return the true cost of the
path because an assumption in the preprocessing is made such that whenever
a charging station is visited, the battery in the EV is empty. Otherwise, it is
not possible to precompute the price and travel time of the edges because the
energy in the battery is different, for each query, when visiting different charging
stations. Additionally, we propose two optimization techniques to speed up the
queries, namely optimal sub-structure and A* search.

At last, we perform experiments on real world data of Germany to evaluate
the proposed algorithms in terms of the precomputed graph sizes and running
time of the query algorithms. The experiments are performed on two different
EVs, one with a shorter range and one with a longer range.

The experiments show that the GQueryAlgorithm is the slowest algorithm.
This was an expected result, since GQueryAlgorithm is a baseline algorithm
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for comparison. AGQueryAlgorithm performs the best results for the shorter
ranged EV, however, for the longer ranged EV, the time-efficiency of the al-
gorithm decreases. The PartitionQueryAlgorithm shows acceptable results for
the shorter ranged EV, and performs the best results for the longer ranged EV.
This means that the PartitionQueryAlgorithm has an advantage in a time per-
spective, since the evolution of EVs is that the ranges are becoming longer and
longer. The experiments also show that the A* speed-up technique, at its best,
reduces the running time of queries to around one fourth of the running time of
the same algorithm without the speed-up technique applied.
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