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ABSTRACT 

The research and implementation of an interactive music application 

prototype that maps human voice sequences, such as beatbox rhythms into 

drum samples, is documented in this master thesis project. In addition to the 

mapping and transformation of the human voice input, a continuation system 

that predicts and generates new patterns according to the same style as the 

input is implemented.   
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CHAPTER 1: INTRODUCTION 

The human voice can be considered as an immensely expressive musical 

instrument. It allows even a non-musically trained person to easily produce 

musical sounds by exploiting the features of the vocal tract. This project 

attempts to utilize the qualities of the human voice by creating an application 

that maps percussive patterns (beabox) to actual drum sounds. In addition to 

the mapping of the beatbox sequences to synthetic drums, a sequence 

prediction and generation technique was implemented, inspired by (Pachet, 

2003). The system analyses the incoming beatbox signal and attempts to 

generate a new sequences in the same style as the input. Although the 

current implementation is focused mainly on percussive patterns, future 

plans are to enable the application to work with humming and whistling, 

making it a complete sonic sketchpad for music production.  

TimbreID, a timbre classification library for Pure Data (PD), a real-time 

graphical programming language was used for extracting features of the 

beatbox rhythms and training of synthesized drum samples. Additionally a 

Variable Length Markov Model (VMM) package for Python was used for 

predicting and generating new patterns in the same style of the input patterns 

of the user.  
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CHAPTER 2: BACKGROUND 

In this section an investigation on the role of the human mouth in music 

applications and Music Information Retrieval (MIR) systems is presented, 

along with all the necessary background information for the employment of 

this project, as well as past work and state of the art applications in the 

relevant fields. Topics include some of the most popular methods for Timbre 

Analysis and Sound Classification, Onset Detection, Sequence Prediction 

and continuation as well as a brief description of the Open Sound 

Control(OSC) protocol, which is vital for communicating between different 

software platforms.  

 

2.1 The Human Voice as a Musical Instrument 

  

Using the human voice in a musical way is not only limited to singing or 

whistling. Beatboxing is a prime example, where the mouth is used in order 

to imitate musical sounds such as percussion, but not only limited to. 

Although there is not a lot of academic research on the topic, (Stowell, 2010) 

attempts to document in depth some of the most important beatbox 

characteristics but also specific techniques that are used from beatbox artists. 
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Beatboxing is prominently connected to hip-hop culture and its roots date 

back to the early 1980s, where drum machines made their first appearance in 

the music production world.  

2.2 Past Work   

In this section various projects that use the human mouth for the creation of 

sound generating or machine learning applications will be presented. Janer 

(Janer, 2005) created a voice driven synthesizer in Pure Data, where the 

human voice controls Frequency Modulation (FM) synthesizer parameters. 

Hazan (Hazan, 2005) developed a real time voice driven drum generator 

using the BillaBoop VST Core plug-in Sinyor et al (Sinyor, 2005) developed 

a beatbox classifier (kick drum, open hat, closed hat and two types of snare 

drum) using the Autonomous Classification Engine (ACE). Stockwell et al 

(Stowell D. a., 2010) developed a beatbox dataset in addition to their 

beatbox classifier.  

 

2.3 Feature Extraction Techniques  
 

On this section some of the standard techniques for extracting features from 

audio speech signals will be described. Some of these techniques are 

generally used in speech recognition systems but also in percussive timbre 
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identification applications. While looking at a waveform in the time domain 

can provide useful information about time and amplitude, when it comes to 

extracting information for classification we want to be able to decrease the 

number of features and extract the most important ones (Shrawankar, 2013).  A 

summary and brief description will be given for some of these feature 

extraction methods, although emphasis will be given on the Mel Frequency 

Cepstrum Coefficients (MFCC), as this is the method that was practically 

tested and used on the implementation of this project. Furthermore, several 

studies found MFCC to give superior results to the Linear Predictive Coding 

(LPC) and Linear Predictive Cepstral Coefficients (Gulzar, 2014), (Dave, 

2013), (Mehta, 2013). 

Listed below are some of the most popular feature extraction techniques that 

are used in speech recognition and music modelling (Shrawankar, 2013): 

• Linear Predictive Analysis (LPC) 

• Linear Predictive Cepstral Coefficients  

• Mel-Frequency Cepstral Coefficents (MFCC) 

• Perceptual Linear Predictive Coefficients (PLP) 

• Power Spectral Analysis (FFT) 
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• Relative Spectra Filtering of Log Domain Coefficients (RASTA) 

 

Linear Predictive Coding (LPC) 

Linear Predictive Coding (LPC), is one of the most dominant techniques for 

analyzing speech, mostly due to its ability to encode speech at low bit rate. 

LPC is modeled after human speech and is produced by utilizing a filter 

model that emulates the characteristics of the human tract. By minimizing 

the sum of the squared differences between an original speech signal and the 

estimated signal, a number of predictor coefficients can be produced. It is 

possible to estimate these coefficients by using a frame of approximately 20 

milliseconds (Shrawankar, 2013). Some of the parameters used for 

evaluating performance include Bit Rates, Overall Delay of the System, 

Computational Complexity and Objective Performance Evaluation 

(Shrawankar, 2013).   

Linear Predictive Cepstral Coefficients (LPCC) 

Another popular approach for parameter estimation is the Linear Predictive 

Cepstral Coefficients technique. The concept behind this technique involves 

the prediction of one speech sample at a current time, as a linear 
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combination of past samples (Gulzar, 2014). A first order high pass filter is 

used on the input signal for pre-emphasizing, since there is more energy 

concentrated in the low frequencies. Furthermore, a hamming window is 

preferred, due to its very low side lobe characteristics. The final stage of the 

LPC algorithm is Cepstral analysis (Gulzar, 2014), a concept which will be 

thoroughly described in the next paragraph. 

 

Figure 1 -  LPCC Algorithm 

 

Cepstrum and the Mel Scale 

Before going through the explanation of the Mel-Frequency Cepstrum 

Coefficients (MFCC) , a brief description will be given on the concepts of 

Cepstrum and Mel scale, since they are critical for understanding MFCC and 

BFCC. 

Cepstrum  
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The term Cepstrum was coined by its inventors Bogert, Healy and Tukey in 

1963. The cepstrum can be described as the spectrum of a logarithmic 

spectrum. Although the original intention for it was to be used for 

determining seismic signals, it can be used for detecting any periodic 

structure (Randall, 1981). Initially it was first defined as the power spectrum 

of the logarithmic, however it was later changed to the inverse Fourrier 

transform of the log power spectrum, after the introduction of the Fast 

Fourrier Transform (FFT) (Randall R. B., 2012). An important benefit of 

this change of definition is the fact that it is easier to change from a function 

of frequency to a function of time by using the inverse transform (Randall R. 

B., 2012). 

The cepstrum can be defined as: 

                                  

Figure 2 - Cepstrum Definition 

 

Mel Scale 

In1937 Stevens, Volkmann and Newman performed a series of experiments 

for measuring pitch. Their research revealed that humans perceive pitch 
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linearly below 1 kHz and logarithmic above (Stevens, 1937). The pitch of 

pure tones can be subjectively defined and for each tone a subjective pitch 

can be measured on the “Mel Scale”. A 1 kHz tone, 40 dB above the human 

hearing threshold corresponds to 1000 mels (Imai, 1983) 

 
 
  

          
          Figure 3 - Mel Scale 
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Mel-Frequency Cepstrum Coefficients (MFCC) 

MFCC are amongst the most popular features for speech recognition and 

music modeling and processing (Logan, 2000). They are considered to be 

short-term spectral based features and are based on the human ear “filter” 

characteristics (Hasan, 2004). The process begins by separating the input 

signal into smaller frames, using a Hamming window. A spectral feature 

vector is then generated for each frame (Logan, 2000). The logarithm of the 

amplitude spectrum is then retained, by taking the Discrete Fourrier 

Transform (DFT).  A series of overlapping triangular bandpass filters are 

used, spaced according to the mel scale (Brent, 2009). Finally, the Discrete 

Cosine Transform (DCT) is taken of the log filterbank.  We only keep 

approximately 13 cepstral features for each of the frames (Logan, 2000).  

 

 
Figure 4 - MFCC Band Pass Filters 
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                 Figure 5 - MFCC Features 

P 
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erceptual Linear Prediction (PLP) 

Perceptual Linear Prediction (PLP) shares similarities with the LPC method 

as it is based on the short-term spectrum of speech. It was created by 

Hermansky in 1990 with the intention of describing psychophysics of the 

human hearing and its main difference fom LPC is the modification of the 

short-term spectrum of speech (Shrawankar, 2013) .  

Power Spectral Analysis 

Power Spectral Analysis (FFT) is one of the most popular methods for the 

analysis of speech signals. In this technique the frequency content of a 

speech signal is analyzed by the power spectrum. The Discrete Fourier 

Transform (DFT) is first computed for the obtaining the frequency 

information of the signal (Shrawankar, 2013). 

Relative Spectra Filtering (RASTA) 

Relative Spectra Filtering (RASTA) works by using band pass filtering on 

the feature coefficients in the log domain. It can be used as a compensation 

for linear channel distortions that appears in the log spectrum. The high pass 

section of the band pass filter can minimize the possible noise that appears in 

the convolution process (Shrawankar, 2013).  



 **************2 

 

2.4 Onset Detection  
 

In this section the concept of Onset Detection will be explained as well as 

critical functions an algorithms of the process.  Onset detection of musical 

signals is critical step when analyzing music and want to examine rhythm 

and tempo structure. In essence we are looking for the start point of an 

event, the “transient” of an audio signal. Bello et al, (Bello, 2005) describe 

the transient as “A sudden burst of energy, a change in the short-time 

spectrum of the signal or in the statistical properties.” Before going through 

further details on the subject it is important to define three key concepts, the 

transients, onsets and attacks.  

Three Principal Onset Detection definitions (Bello, 2005): 

Attack: 

The attack of a musical note is the fragment of a musical note where the 

amplitude of the envelope starts to increase. 

Transient: 
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The transient of a musical note is the part between the excitation and the 

fading out of the note and is formally defined as: “Short intervals during 

which the signal evolves quickly in some nontrivial or relatively 

unpredictable way (Bello, 2005). 

Onset: 

The starting point of the onset is right after the transient. There is an overlap 

between the two. 

Onset Detection algorithms can be categorized into a detection function or a 

peak picking stage (Duxbury, 2003). Detection function makes the discovery 

of onset transients easier by converting a signal to a function. The Peak 

picking stage refers to the localization of the detection function that is 

corresponding the onset transients (Duxbury, 2003). 
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Figure 6 - Attack, Transient and Onset, Bello et al 

 

 
 

2.5 Sequence Prediction and Generation  

The use of machine learning algorithms for music composition is a rather 

popular practice (Dubnov, 2003). Machine learning algorithms can be used 

for modeling stylistic features of certain music compositions but also for 

predicting new music patterns from a given input score. It is a challenging 

process that can provide interesting results. Pachet (Pachet, 2003) uses a 
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Variable Length Markov Model for the “Continuator”, an interactive 

application that analyses a player’s input pattern of a MIDI keyboard and 

generates new sequences as soon as the player stops playing. Marchini 

(Marchini, 2010) also makes use of VLMMs for generating percussion 

sequences from a given example. Nayebi (Nayebi), exploits Long Short 

Term Memory Recurrent Neural Networks to compose music by using as an 

input a database of 20 sound files of various genres. In the next sections two 

of the main methods for predicting and generating new musical sequences 

that were investigated will be presented.  

2.5.1 Markov Models  
A Markov chain is a stochastic process that can predict a new event by 

considering only its past steps. A simple Markov process is demonstrated in 

Figure 7. If our current state is B, there is a 10% probability that our next 

state is still going to be in B, 50% probability that our next state is going to 

be A and 40% probability that our next state is going to be C. A first order 

Markov chain depends only the last step of a sequence, while an order-d will 

look at the length of d in order to predict a future event (Pachet F. &., 2011): 

 

P(si|s1,··· ,si−1) = P(si|si−d,··· ,si−1)  
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A great amount of thought has to be given while choosing a Markov order. 

A relatively low order can fail to imitate a desired sequence while a high 

order could possibly copy the whole sequence (Dubnov, 2003).  A 

substantial drawback of Markov Models is lack of ability to emulate a 

pattern on a large scale (Pachet, 2003), although this is not an issue on this 

project since we are mainly interested in generating new pattern for a short 

period of time, and not emulating the whole structure of a musical piece.   

 

Figure 7 - A Markov Chain Example 
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Hidden Markov Models 

Hidden Markov Models (HMM) are much more expressive than the simple 

Markov chains. As the name suggests, the states in HMMs are hidden, 

although we are able to calculate the probability on which state sequence 

resulted in the observations.  By looking at a stock market example in Figure 

8, we can see that we are no longer able to tell from which were we have 

moved to the next state, thus the states are hidden (Blunsom, 2004).    

 

Figure 8 - A Hidden Markov Model example 
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Variable Length Markov Models  

Variable Length Markov Models consider chains of varying orders and in 

some cases can prove to be more useful than HMMs since they are easier to 

work with than HMMs (Pachet F. &., 2011). The transition probabilities can 

be estimated by measuring how many times the states appear.  

 

2.6 Open Sound Control Protocol  

Open Sound Control (OSC) is a protocol for communicating between 

different platforms, and was developed by Wright and Freed in 1997 (Freed, 

2009). It can be thought of as the successor of the MIDI (Musical Instrument 

Digital Interface) protocol. OSC uses an open ended URL style name and 

allows sending a single message to numerous receivers (Freed, 2009).  
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CHAPTER 3: IMPLEMENTATION 

 

The implementation process is divided into two sections, the Timbre 

Analysis and Classification in Pure Data and the Variable Length Markov 

Chain sequence prediction in Python.  

                      

Figure 9 - Flow Diagram 
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3.1 Pure Data Implementation  
 

The main tool that was used for the feature extraction and classification was 

the TimbreID Pure Data library by William Brent (Brent, A timbre analysis 

and classification toolkit for pure data, 2010) The first step of the process 

was the selection of the feature extraction object. The decision of using the 

bfcc~ was taken after a test comparison between the mfcc~ and the bcc~ 

objects. Bfcc~ appeared to provide slightly better results for the purpose of 

this project. A bfcc~ object was created with a window size of 1024 and a 

normalized Bark-spacing of 0.5. The bfcc~ object needs to be triggered 

using the “bang” object in order to output the BFCC features. A subpatch 

that includes bark~, one of the onset detection objects that were used on this 

project is connected to the inlet of the bfcc~. It is used for triggering the 

bfcc~. Bark~ is delayed by ½ of the analysis period that takes to fill the 

window(default).  Connected to the subpatch that contains bark~, is the 

readf~ object, which is used for playing back the sound files of the training 

and testing. 
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Figure 10 - Bark~, one of the onset detection objects 
 

A list (split) object is connected on the outlet of the bfcc~ object. The list 

takes as an argument the number 12 in order to send 12 of the BFCC 

features to the timbreID classification object. 

 

Figure 11 - The Bfcc~ object 
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A list (split) object is connected on the outlet of the bfcc~ object. The list 

takes as an argument the number 12 in order to send 12 of the BFCC 

features to the timbreID classification object. 

TimbreID 

On the selection of number of clusters the default number of clusters was 

kept (12) even though it is a large number, when using only three sounds. As 

with the majority of the objects in the timbreID library, the default values 

that were used appeared to work exceptionally well, once the appropriate 

sounds for training the trimbreID classifier were found. Additionally the 

Euclidan distance was chosen as opposed to Manhattan and Pearson 

Correlation Coefficient. Out of the left outlet of the timbreID object, the 

values that correspond to the trained drum sounds are outputted. They go 

through two different paths. One of them connected to the OSC objects, 

where they are packed and sent to Python. The other path of the outlet of the 

timbreID is responsible for triggering the synthetic drums. They first go 

through the spigot object, which acts as a gate and makes sure that they 

values trigger the synthetic drums only when the id toggle button is switched 

on. This way the drums are not triggered when the training process is 

happening. 
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Values that correspond to drums:  

          Kick drum         Snare drum              Hi hat 

               0 - 4                5 - 9           10 - 14  

 

                                           

Figure 12 – OSC  Client 

 

 

When the values from the timbreID pass through the spigot gate object, go 

through the route objects. The route object makes sure the right drums get 
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triggered. For example if the number that exits the timbreID object is 

between 0 and 4, the route objects will trigger the kick drum.  

 

 

Figure 13 - The synthetic drums that get triggered from timbreID 
 
 
 

 
Figure 14 - OSC Server 
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Figure 15 - Tap Tempo 

    

 

Additionally a small mechanism was created that would act as a gate for the 

incoming OSC messages from Python. This mechanism was built so the 

generated new sequence that comes through the OSC server from Python 

doesn’t trigger the synthetic drums while the user is using the system. The 

counter object was used for this purpose. The counter counts every bang it 

receives from its left inlet, which is connected to the tap tempo mechanism. 
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The moses object is also used for this purpose. Moses sends the numbers 

that are smaller from its argument on the left outlet and numbers that are 

bigger on its right outlet. The number seven was used, meaning that if the 

counter doesn’t receive seven repeated bangs, the user is not using the 

system anymore and the OSC values from Python can start triggering the 

drums. Additionally wile the number of bangs is under seven the gate from 

the OSC server will be constantly closed.  

 

                                         
Figure 16 - Gate mechanism for the OSC server 

 

3.2 Implementation in Python 

The sequence prediction and generation was implemented in Python using a 

VMMM package from (c0z3n). A new Chain object is created that contains 

an empty chain. The addSequence method is used that takes as an argument 

a list containing the sequences values that arrive from PD via OSC. 
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Additionally the getSequence returns a sequence that is chosen from the 

Chain() class. A for loop is used for printing out the generated sequence. A 

global variable lista is created that will be storing all the incoming values 

from PD. After it has been declared as a variable, lista is assigned as an 

empty list. Inside the printing_handler function of the OSC package, the 

append method is used on the list, and all the values from the OSC server are 

now stored inside the lista list.  

Most of the part of the code that is needed to run in real time is kept inside 

an infinite while loop which is running from an Exception. The loop stops 

only when the program is stopped. Inside this loop the sleep function with an 

argument of one second makes sure the while loop is not going to crash the 

computer. The lista list is mapped as a string so it can be used in the VMM 

addSequence method. The generated sequence is stored in the out variable, 

where it gets converted to an integer so it can be sent to PD via the OSC 

client. The append and send methods are used for sending the sequences to 

PD 
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CHAPTER 4: EVALUATION 

The evaluation of the system was performed using the ENST drum loops 

(Gillet, 2006) and actual beatbox sequences. The bffc~ provided rather 

impressive results, with most of the sounds being classified correctly, when 

it was tested with the ENST drum loops. In some parts the open high hat was 

not classified correctly, however only a closed high hat was used in the 

training. In the case of an actual beatbox the performance was not that 

impressive, and instead of a kick drum a snare was mapped instead in some 

parts of an actual beatbox sequence.  

On the table below, a comparison between the original and generated 

sequences from the files 039_phrase_disco_simple_medium_sticks and 

040_phrase_disco_simple_fast_sticks 

K = Kick drum 

S = Snare 

H = Closed Hi hat 

 

Original Generated  Original Generated 
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K K  K K 

H H  H S 

K K  S K 

H H  K H 

S K  H S 

H H  S K 

K H  H H 

H S  K H 

K H  H H 

H K  S H 

S K  K K 

H K  H S 

K K  S H 
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H S  H H 

S H  K S 

H S  H S 

K H  S H 

K S  H K 

H S  K S 

S H  K K 

H H  S K 

K H  K S 

H K  H S 

S S  S S 

H H  H K 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

Overall a system that maps input beatbox sequences to synthetic drums as 

well as a sequence continuation method were implemented.  The 

classification of the beatbox sequences provided satisfying results although 

certain issues need to be addressed. Firstly, the tap tempo mechanism 

doesn’t function properly since it is triggered by every onset that gets 

detected from the onset detection object. Thus, a more sophisticated tempo 

detection mechanism needs to be implemented. The incoming prediction 

sequences that are generated fro the VMM are not mapped properly to the 

route object. Moreover the rhythmic structure of the input sequence is not 

preserved from generation of the new patterns coming from the VMM.  
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