
AALBORG UNIVERSITY

A Generative Voice Driven Percussion
Application

Master Thesis

By

Iakovos Vogiatzoglou

Department of Media Technology

for the degree of
Master in Sound and Music Computing

Master Thesis Supervisor:

Hendrik Purwins
Department of Architecture, Design and Media Technology

Aalborg University, Copenhagen

Date
27/05/2016

 **************2

ABSTRACT

The research and implementation of an interactive music application

prototype that maps human voice sequences, such as beatbox rhythms into

drum samples, is documented in this master thesis project. In addition to the

mapping and transformation of the human voice input, a continuation system

that predicts and generates new patterns according to the same style as the

input is implemented.

 **************2

TABLE OF CONTENTS

Chapter Page

ABSTRACT .. 1	
TABLE OF CONTENTS .. 2	
FIGURES .. Error! Bookmark not defined.	
CHAPTER 1: INTRODUCTION ... 5	
CHAPTER 2: BACKGROUND ... 7	

2.1 The Human Voice as a Musical Instrument .. 7	
2.2 Past Work .. 8	
2.3 Feature Extraction Techniques .. 8	
2.4 Onset Detection ... 17	
2.5 Sequence Prediction and Generation ... 19	
2.5.1 Markov Models .. 20	
2.6 Open Sound Control Protocol ... 23	

CHAPTER 3: IMPLEMENTATION .. 24	
3.1 Pure Data Implementation ... 25	
3.2 Implementation in Python ... 31	

CHAPTER 4: EVALUATION .. 33	
CHAPTER 5: CONCLUSION AND FUTURE WORK .. 36	
ACKNOWLEDGMENTS ... 37	
BIBLIOGRAPHY ... 39	

 **************2

Figure 1 - LPCC Algorithm ... 11	
Figure 2 - Cepstrum Definition ... 12	
Figure 3 - Mel Scale .. 13	
Figure 4 - MFCC Band Pass Filters .. 14	
Figure 5 - MFCC Features .. 15	
Figure 6 - Attack, Transient and Onset, Bello et al ... 19	
Figure 7 - A Markov Chain Example .. 21	
Figure 8 - A Hidden Markov Model example ... 22	
Figure 9 - Flow Diagram ... 24	
Figure 10 - Bark~, one of the onset detection objects ... 26	
Figure 11 - The Bfcc~ object .. 26	
Figure 12 – OSC Client .. 28	
Figure 13 - The synthetic drums that get triggered from timbreID 29	
Figure 14 - OSC Server ... 29	
Figure 15 - Tap Tempo .. 30	
Figure 16 - Gate mechanism for the OSC server .. 31	

 **************2

 **************2

CHAPTER 1: INTRODUCTION

The human voice can be considered as an immensely expressive musical

instrument. It allows even a non-musically trained person to easily produce

musical sounds by exploiting the features of the vocal tract. This project

attempts to utilize the qualities of the human voice by creating an application

that maps percussive patterns (beabox) to actual drum sounds. In addition to

the mapping of the beatbox sequences to synthetic drums, a sequence

prediction and generation technique was implemented, inspired by (Pachet,

2003). The system analyses the incoming beatbox signal and attempts to

generate a new sequences in the same style as the input. Although the

current implementation is focused mainly on percussive patterns, future

plans are to enable the application to work with humming and whistling,

making it a complete sonic sketchpad for music production.

TimbreID, a timbre classification library for Pure Data (PD), a real-time

graphical programming language was used for extracting features of the

beatbox rhythms and training of synthesized drum samples. Additionally a

Variable Length Markov Model (VMM) package for Python was used for

predicting and generating new patterns in the same style of the input patterns

of the user.

 **************2

 **************2

CHAPTER 2: BACKGROUND

In this section an investigation on the role of the human mouth in music

applications and Music Information Retrieval (MIR) systems is presented,

along with all the necessary background information for the employment of

this project, as well as past work and state of the art applications in the

relevant fields. Topics include some of the most popular methods for Timbre

Analysis and Sound Classification, Onset Detection, Sequence Prediction

and continuation as well as a brief description of the Open Sound

Control(OSC) protocol, which is vital for communicating between different

software platforms.

2.1 The Human Voice as a Musical Instrument

Using the human voice in a musical way is not only limited to singing or

whistling. Beatboxing is a prime example, where the mouth is used in order

to imitate musical sounds such as percussion, but not only limited to.

Although there is not a lot of academic research on the topic, (Stowell, 2010)

attempts to document in depth some of the most important beatbox

characteristics but also specific techniques that are used from beatbox artists.

 **************2

Beatboxing is prominently connected to hip-hop culture and its roots date

back to the early 1980s, where drum machines made their first appearance in

the music production world.

2.2 Past Work

In this section various projects that use the human mouth for the creation of

sound generating or machine learning applications will be presented. Janer

(Janer, 2005) created a voice driven synthesizer in Pure Data, where the

human voice controls Frequency Modulation (FM) synthesizer parameters.

Hazan (Hazan, 2005) developed a real time voice driven drum generator

using the BillaBoop VST Core plug-in Sinyor et al (Sinyor, 2005) developed

a beatbox classifier (kick drum, open hat, closed hat and two types of snare

drum) using the Autonomous Classification Engine (ACE). Stockwell et al

(Stowell D. a., 2010) developed a beatbox dataset in addition to their

beatbox classifier.

2.3 Feature Extraction Techniques

On this section some of the standard techniques for extracting features from

audio speech signals will be described. Some of these techniques are

generally used in speech recognition systems but also in percussive timbre

 **************2

identification applications. While looking at a waveform in the time domain

can provide useful information about time and amplitude, when it comes to

extracting information for classification we want to be able to decrease the

number of features and extract the most important ones (Shrawankar, 2013). A

summary and brief description will be given for some of these feature

extraction methods, although emphasis will be given on the Mel Frequency

Cepstrum Coefficients (MFCC), as this is the method that was practically

tested and used on the implementation of this project. Furthermore, several

studies found MFCC to give superior results to the Linear Predictive Coding

(LPC) and Linear Predictive Cepstral Coefficients (Gulzar, 2014), (Dave,

2013), (Mehta, 2013).

Listed below are some of the most popular feature extraction techniques that

are used in speech recognition and music modelling (Shrawankar, 2013):

• Linear Predictive Analysis (LPC)

• Linear Predictive Cepstral Coefficients

• Mel-Frequency Cepstral Coefficents (MFCC)

• Perceptual Linear Predictive Coefficients (PLP)

• Power Spectral Analysis (FFT)

 **************2

• Relative Spectra Filtering of Log Domain Coefficients (RASTA)

Linear Predictive Coding (LPC)

Linear Predictive Coding (LPC), is one of the most dominant techniques for

analyzing speech, mostly due to its ability to encode speech at low bit rate.

LPC is modeled after human speech and is produced by utilizing a filter

model that emulates the characteristics of the human tract. By minimizing

the sum of the squared differences between an original speech signal and the

estimated signal, a number of predictor coefficients can be produced. It is

possible to estimate these coefficients by using a frame of approximately 20

milliseconds (Shrawankar, 2013). Some of the parameters used for

evaluating performance include Bit Rates, Overall Delay of the System,

Computational Complexity and Objective Performance Evaluation

(Shrawankar, 2013).

Linear Predictive Cepstral Coefficients (LPCC)

Another popular approach for parameter estimation is the Linear Predictive

Cepstral Coefficients technique. The concept behind this technique involves

the prediction of one speech sample at a current time, as a linear

 **************2

combination of past samples (Gulzar, 2014). A first order high pass filter is

used on the input signal for pre-emphasizing, since there is more energy

concentrated in the low frequencies. Furthermore, a hamming window is

preferred, due to its very low side lobe characteristics. The final stage of the

LPC algorithm is Cepstral analysis (Gulzar, 2014), a concept which will be

thoroughly described in the next paragraph.

Figure 1 - LPCC Algorithm

Cepstrum and the Mel Scale

Before going through the explanation of the Mel-Frequency Cepstrum

Coefficients (MFCC) , a brief description will be given on the concepts of

Cepstrum and Mel scale, since they are critical for understanding MFCC and

BFCC.

Cepstrum

 **************2

The term Cepstrum was coined by its inventors Bogert, Healy and Tukey in

1963. The cepstrum can be described as the spectrum of a logarithmic

spectrum. Although the original intention for it was to be used for

determining seismic signals, it can be used for detecting any periodic

structure (Randall, 1981). Initially it was first defined as the power spectrum

of the logarithmic, however it was later changed to the inverse Fourrier

transform of the log power spectrum, after the introduction of the Fast

Fourrier Transform (FFT) (Randall R. B., 2012). An important benefit of

this change of definition is the fact that it is easier to change from a function

of frequency to a function of time by using the inverse transform (Randall R.

B., 2012).

The cepstrum can be defined as:

Figure 2 - Cepstrum Definition

Mel Scale

In1937 Stevens, Volkmann and Newman performed a series of experiments

for measuring pitch. Their research revealed that humans perceive pitch

 **************2

linearly below 1 kHz and logarithmic above (Stevens, 1937). The pitch of

pure tones can be subjectively defined and for each tone a subjective pitch

can be measured on the “Mel Scale”. A 1 kHz tone, 40 dB above the human

hearing threshold corresponds to 1000 mels (Imai, 1983)

 Figure 3 - Mel Scale

 **************2

Mel-Frequency Cepstrum Coefficients (MFCC)

MFCC are amongst the most popular features for speech recognition and

music modeling and processing (Logan, 2000). They are considered to be

short-term spectral based features and are based on the human ear “filter”

characteristics (Hasan, 2004). The process begins by separating the input

signal into smaller frames, using a Hamming window. A spectral feature

vector is then generated for each frame (Logan, 2000). The logarithm of the

amplitude spectrum is then retained, by taking the Discrete Fourrier

Transform (DFT). A series of overlapping triangular bandpass filters are

used, spaced according to the mel scale (Brent, 2009). Finally, the Discrete

Cosine Transform (DCT) is taken of the log filterbank. We only keep

approximately 13 cepstral features for each of the frames (Logan, 2000).

Figure 4 - MFCC Band Pass Filters

 **************2

 Figure 5 - MFCC Features

P

 **************2

erceptual Linear Prediction (PLP)

Perceptual Linear Prediction (PLP) shares similarities with the LPC method

as it is based on the short-term spectrum of speech. It was created by

Hermansky in 1990 with the intention of describing psychophysics of the

human hearing and its main difference fom LPC is the modification of the

short-term spectrum of speech (Shrawankar, 2013) .

Power Spectral Analysis

Power Spectral Analysis (FFT) is one of the most popular methods for the

analysis of speech signals. In this technique the frequency content of a

speech signal is analyzed by the power spectrum. The Discrete Fourier

Transform (DFT) is first computed for the obtaining the frequency

information of the signal (Shrawankar, 2013).

Relative Spectra Filtering (RASTA)

Relative Spectra Filtering (RASTA) works by using band pass filtering on

the feature coefficients in the log domain. It can be used as a compensation

for linear channel distortions that appears in the log spectrum. The high pass

section of the band pass filter can minimize the possible noise that appears in

the convolution process (Shrawankar, 2013).

 **************2

2.4 Onset Detection

In this section the concept of Onset Detection will be explained as well as

critical functions an algorithms of the process. Onset detection of musical

signals is critical step when analyzing music and want to examine rhythm

and tempo structure. In essence we are looking for the start point of an

event, the “transient” of an audio signal. Bello et al, (Bello, 2005) describe

the transient as “A sudden burst of energy, a change in the short-time

spectrum of the signal or in the statistical properties.” Before going through

further details on the subject it is important to define three key concepts, the

transients, onsets and attacks.

Three Principal Onset Detection definitions (Bello, 2005):

Attack:

The attack of a musical note is the fragment of a musical note where the

amplitude of the envelope starts to increase.

Transient:

 **************2

The transient of a musical note is the part between the excitation and the

fading out of the note and is formally defined as: “Short intervals during

which the signal evolves quickly in some nontrivial or relatively

unpredictable way (Bello, 2005).

Onset:

The starting point of the onset is right after the transient. There is an overlap

between the two.

Onset Detection algorithms can be categorized into a detection function or a

peak picking stage (Duxbury, 2003). Detection function makes the discovery

of onset transients easier by converting a signal to a function. The Peak

picking stage refers to the localization of the detection function that is

corresponding the onset transients (Duxbury, 2003).

 **************2

Figure 6 - Attack, Transient and Onset, Bello et al

2.5 Sequence Prediction and Generation

The use of machine learning algorithms for music composition is a rather

popular practice (Dubnov, 2003). Machine learning algorithms can be used

for modeling stylistic features of certain music compositions but also for

predicting new music patterns from a given input score. It is a challenging

process that can provide interesting results. Pachet (Pachet, 2003) uses a

 **************2

Variable Length Markov Model for the “Continuator”, an interactive

application that analyses a player’s input pattern of a MIDI keyboard and

generates new sequences as soon as the player stops playing. Marchini

(Marchini, 2010) also makes use of VLMMs for generating percussion

sequences from a given example. Nayebi (Nayebi), exploits Long Short

Term Memory Recurrent Neural Networks to compose music by using as an

input a database of 20 sound files of various genres. In the next sections two

of the main methods for predicting and generating new musical sequences

that were investigated will be presented.

2.5.1 Markov Models
A Markov chain is a stochastic process that can predict a new event by

considering only its past steps. A simple Markov process is demonstrated in

Figure 7. If our current state is B, there is a 10% probability that our next

state is still going to be in B, 50% probability that our next state is going to

be A and 40% probability that our next state is going to be C. A first order

Markov chain depends only the last step of a sequence, while an order-d will

look at the length of d in order to predict a future event (Pachet F. &., 2011):

P(si|s1,··· ,si−1) = P(si|si−d,··· ,si−1)

 **************2

A great amount of thought has to be given while choosing a Markov order.

A relatively low order can fail to imitate a desired sequence while a high

order could possibly copy the whole sequence (Dubnov, 2003). A

substantial drawback of Markov Models is lack of ability to emulate a

pattern on a large scale (Pachet, 2003), although this is not an issue on this

project since we are mainly interested in generating new pattern for a short

period of time, and not emulating the whole structure of a musical piece.

Figure 7 - A Markov Chain Example

 **************2

Hidden Markov Models

Hidden Markov Models (HMM) are much more expressive than the simple

Markov chains. As the name suggests, the states in HMMs are hidden,

although we are able to calculate the probability on which state sequence

resulted in the observations. By looking at a stock market example in Figure

8, we can see that we are no longer able to tell from which were we have

moved to the next state, thus the states are hidden (Blunsom, 2004).

Figure 8 - A Hidden Markov Model example

 **************2

Variable Length Markov Models

Variable Length Markov Models consider chains of varying orders and in

some cases can prove to be more useful than HMMs since they are easier to

work with than HMMs (Pachet F. &., 2011). The transition probabilities can

be estimated by measuring how many times the states appear.

2.6 Open Sound Control Protocol

Open Sound Control (OSC) is a protocol for communicating between

different platforms, and was developed by Wright and Freed in 1997 (Freed,

2009). It can be thought of as the successor of the MIDI (Musical Instrument

Digital Interface) protocol. OSC uses an open ended URL style name and

allows sending a single message to numerous receivers (Freed, 2009).

 **************2

CHAPTER 3: IMPLEMENTATION

The implementation process is divided into two sections, the Timbre

Analysis and Classification in Pure Data and the Variable Length Markov

Chain sequence prediction in Python.

Figure 9 - Flow Diagram

 **************2

3.1 Pure Data Implementation

The main tool that was used for the feature extraction and classification was

the TimbreID Pure Data library by William Brent (Brent, A timbre analysis

and classification toolkit for pure data, 2010) The first step of the process

was the selection of the feature extraction object. The decision of using the

bfcc~ was taken after a test comparison between the mfcc~ and the bcc~

objects. Bfcc~ appeared to provide slightly better results for the purpose of

this project. A bfcc~ object was created with a window size of 1024 and a

normalized Bark-spacing of 0.5. The bfcc~ object needs to be triggered

using the “bang” object in order to output the BFCC features. A subpatch

that includes bark~, one of the onset detection objects that were used on this

project is connected to the inlet of the bfcc~. It is used for triggering the

bfcc~. Bark~ is delayed by ½ of the analysis period that takes to fill the

window(default). Connected to the subpatch that contains bark~, is the

readf~ object, which is used for playing back the sound files of the training

and testing.

 **************2

Figure 10 - Bark~, one of the onset detection objects

A list (split) object is connected on the outlet of the bfcc~ object. The list

takes as an argument the number 12 in order to send 12 of the BFCC

features to the timbreID classification object.

Figure 11 - The Bfcc~ object

 **************2

A list (split) object is connected on the outlet of the bfcc~ object. The list

takes as an argument the number 12 in order to send 12 of the BFCC

features to the timbreID classification object.

TimbreID

On the selection of number of clusters the default number of clusters was

kept (12) even though it is a large number, when using only three sounds. As

with the majority of the objects in the timbreID library, the default values

that were used appeared to work exceptionally well, once the appropriate

sounds for training the trimbreID classifier were found. Additionally the

Euclidan distance was chosen as opposed to Manhattan and Pearson

Correlation Coefficient. Out of the left outlet of the timbreID object, the

values that correspond to the trained drum sounds are outputted. They go

through two different paths. One of them connected to the OSC objects,

where they are packed and sent to Python. The other path of the outlet of the

timbreID is responsible for triggering the synthetic drums. They first go

through the spigot object, which acts as a gate and makes sure that they

values trigger the synthetic drums only when the id toggle button is switched

on. This way the drums are not triggered when the training process is

happening.

 **************2

Values that correspond to drums:

 Kick drum Snare drum Hi hat

 0 - 4 5 - 9 10 - 14

Figure 12 – OSC Client

When the values from the timbreID pass through the spigot gate object, go

through the route objects. The route object makes sure the right drums get

 **************2

triggered. For example if the number that exits the timbreID object is

between 0 and 4, the route objects will trigger the kick drum.

Figure 13 - The synthetic drums that get triggered from timbreID

Figure 14 - OSC Server

 **************2

Figure 15 - Tap Tempo

Additionally a small mechanism was created that would act as a gate for the

incoming OSC messages from Python. This mechanism was built so the

generated new sequence that comes through the OSC server from Python

doesn’t trigger the synthetic drums while the user is using the system. The

counter object was used for this purpose. The counter counts every bang it

receives from its left inlet, which is connected to the tap tempo mechanism.

 **************2

The moses object is also used for this purpose. Moses sends the numbers

that are smaller from its argument on the left outlet and numbers that are

bigger on its right outlet. The number seven was used, meaning that if the

counter doesn’t receive seven repeated bangs, the user is not using the

system anymore and the OSC values from Python can start triggering the

drums. Additionally wile the number of bangs is under seven the gate from

the OSC server will be constantly closed.

Figure 16 - Gate mechanism for the OSC server

3.2 Implementation in Python

The sequence prediction and generation was implemented in Python using a

VMMM package from (c0z3n). A new Chain object is created that contains

an empty chain. The addSequence method is used that takes as an argument

a list containing the sequences values that arrive from PD via OSC.

 **************2

Additionally the getSequence returns a sequence that is chosen from the

Chain() class. A for loop is used for printing out the generated sequence. A

global variable lista is created that will be storing all the incoming values

from PD. After it has been declared as a variable, lista is assigned as an

empty list. Inside the printing_handler function of the OSC package, the

append method is used on the list, and all the values from the OSC server are

now stored inside the lista list.

Most of the part of the code that is needed to run in real time is kept inside

an infinite while loop which is running from an Exception. The loop stops

only when the program is stopped. Inside this loop the sleep function with an

argument of one second makes sure the while loop is not going to crash the

computer. The lista list is mapped as a string so it can be used in the VMM

addSequence method. The generated sequence is stored in the out variable,

where it gets converted to an integer so it can be sent to PD via the OSC

client. The append and send methods are used for sending the sequences to

PD

 **************2

CHAPTER 4: EVALUATION

The evaluation of the system was performed using the ENST drum loops

(Gillet, 2006) and actual beatbox sequences. The bffc~ provided rather

impressive results, with most of the sounds being classified correctly, when

it was tested with the ENST drum loops. In some parts the open high hat was

not classified correctly, however only a closed high hat was used in the

training. In the case of an actual beatbox the performance was not that

impressive, and instead of a kick drum a snare was mapped instead in some

parts of an actual beatbox sequence.

On the table below, a comparison between the original and generated

sequences from the files 039_phrase_disco_simple_medium_sticks and

040_phrase_disco_simple_fast_sticks

K = Kick drum

S = Snare

H = Closed Hi hat

Original Generated Original Generated

 **************2

K K K K

H H H S

K K S K

H H K H

S K H S

H H S K

K H H H

H S K H

K H H H

H K S H

S K K K

H K H S

K K S H

 **************2

H S H H

S H K S

H S H S

K H S H

K S H K

H S K S

S H K K

H H S K

K H K S

H K H S

S S S S

H H H K

 **************2

CHAPTER 5: CONCLUSION AND FUTURE WORK

Overall a system that maps input beatbox sequences to synthetic drums as

well as a sequence continuation method were implemented. The

classification of the beatbox sequences provided satisfying results although

certain issues need to be addressed. Firstly, the tap tempo mechanism

doesn’t function properly since it is triggered by every onset that gets

detected from the onset detection object. Thus, a more sophisticated tempo

detection mechanism needs to be implemented. The incoming prediction

sequences that are generated fro the VMM are not mapped properly to the

route object. Moreover the rhythmic structure of the input sequence is not

preserved from generation of the new patterns coming from the VMM.

 **************2

ACKNOWLEDGMENTS

I would like to thank my supervisor Hendrik Purwins for his assistance,

support and supervision throughout this project.

 **************2

 **************2

BIBLIOGRAPHY1

Bello, J. P. (2005). A tutorial on onset detection in music signals. Speech
and Audio Processing, IEEE Transactions on, 13(5), 1035-1047.

Blunsom, P. (2004). Hidden markov models. Lecture notes, August, 15, 18-
19.

Brent, W. (2010). A timbre analysis and classification toolkit for pure data.
Ann Arbor, MI: Michigan Publishing, University of Michigan Library.

Brent, W. (2009). Perceptually based pitch scales in cepstral techniques for
percussive timbre identification (pp. 3-6). Ann Arbor, MI: Michigan
Publishing, University of Michigan Library.

Duxbury, C. B. (2003). Complex domain onset detection for musical signals.
In Proc. Digital Audio Effects Workshop (DAFx) (No. 1, pp. 6-9).

Dubnov, S. A. (2003). Using machine-learning methods for musical style
modeling. Computer, 36(10), 73-80.

Dave, N. (2013). Feature extraction methods LPC, PLP and MFCC in
speech recognition. International Journal for Advance Research in
Engineering and Technology.

Freed, A. &. (2009). Features and Future of Open Sound Control version
1.1 for NIME. In NIME (Vol. 4, No. 06, p. 2009).

 **************2

Gulzar, T. S. (2014). Comparative analysis of LPCC, MFCC and BFCC for
the recognition of Hindi words using artificial neural networks. International
Journal of Computer Applications.

Gillet, O. &. (2006). ENST-Drums: an extensive audio-visual database for
drum signals processing. In ISMIR (pp. 156-159).

Imai, S. (1983). Cepstral analysis synthesis on the mel frequency scale.
Acoustics, Speech, and Signal Processing, IEEE International Conference on
ICASSP'83. (Vol. 8, pp. 93-96). IEEE.

Hazan, A. (2005). Performing expressive rhythms with billaboop voice-
driven drum generator. In Proc. of the 8th Int. Conference on Digital Audio
Effects.

Hasan, M. R. (2004). Speaker identification using mel frequency cepstral
coefficients. variations, 1, 4.

Janer, J. (2005). Feature extraction for voice-driven synthesis. In Audio
Engineering Society Convention 118. Audio Engineering Society.

Logan, B. (2000). Mel Frequency Cepstral Coefficients for Music Modeling.
ISMIR.

Nayebi, A. &. GRUV: Algorithmic Music Generation using Recurrent
Neural Networks.

Marchini, M. (2010). Unsupervised generation of percussion sequences from
a sound example. Master's thesis.
Mehta, L. R. (2013). Comparative study of MFCC and LPC for Marathi
isolated word recognition system. Int J Adv Res Electr Electr Instrum Eng.

 **************2

Pachet, F. &. (2011). Markov constraints: steerable generation of Markov
sequences. Constraints. Constraints, 16(2), 148-172.

Pachet, F. (2003). The continuator: Musical interaction with style. Journal of
New Music Research, 32(3), 333-341.

Sinyor, E. R. (2005). Beatbox classification using ACE. In Proceedings of
the International Conference on Music Information Retrieval.

Shiffman, D. S. (2012). The nature of code. D. Shiffman.

Shrawankar, U. &. (2013). Techniques for feature extraction in speech
recognition system: A comparative study. arXiv preprint arXiv:1305.1145.

Stevens, S. S. (1937). A scale for the measurement of the psychological
magnitude pitch. The Journal of the Acoustical Society of America.

Stowell, D. a. (2010). Delayed decision-making in real-time beatbox
percussion classification. Journal of New Music Research 39.3 (2010): 203-
213.

Stowell, D. (2010). Making music through real-time voice timbre analysis:
machine learning and timbral control. Queen Mary, University of London.

Randall, R. B. (1981). Cepstrum Analysis, Technical Review. Brüel & Kjær.
Randall, R. B. (2012). New cepstral methods of signal preprocessing for
operational modal analysis. In Proc. Int. Conference on Noise and Vibration
Engineering (ISMA).

 **************2

