
Aalborg University

Master Thesis

Java Smart Card Security

Automated Implementation of Fault Attack Countermeasures

Group members:

Dennis Jakobsen

Erik Sidelmann Jensen

Supervisors:

René Rydhof Hansen

Mads Christian Olesen

Department of Computer Science

Software 10th semester

Address: Selma Lagerlöfs Vej 300

9220 Aalborg Øst

Phone no.: 99 40 99 40

Fax no.: 99 40 97 98

Homepage: http://www.cs.aau.dk

Project title:

Automated Implementation of
Fault Attack Countermeasures

Subject:
Java Smart Card Security

Project period:
1. Feb 2016 - 31. May 2016

Group name:
des108f16

Supervisors:
René Rydhof Hansen

Mads Christian Olesen
Group members:

Dennis Jakobsen

Erik Sidelmann Jensen

Copies: 0
Pages: 108
Appendices: 1 & 1 Attachment
Finished: 31. May 2016

Abstract:

With fault attacks on smart cards be-
ing a method of performing unautho-
rized transactions with credit cards,
various research papers have proposed
software implemented countermeasures
against these attacks. The aim of this
report is to investigate the details re-
quired to implement a tool for auto-
matically inserting countermeasures into
smart card applets, specifically Java
Card applets. The tool developed imple-
ments branch duplication and call graph
integrity based on various analyses and
a call graph provided with the used
bytecode optimization framework called
Soot. The aim of the tool is to easen the
development process of a Java Card ap-
plet developer that needs to secure the
applet. The report outlines the consider-
ations that was made during the devel-
opment of the tool as well as identifies
situations where the tool has its short-
comings along with a proposal to a solu-
tion of the shortcomming.

The material in this report is freely and publicly available, publication with source ref-
erence is only allowed with the authors’ permission.

http://www.cs.aau.dk

Preface

This report is the result of a master thesis in software engineering at Aalborg University.

The aim of the report is to provide an automated tool for implementing fault attack
countermeasures at bytecode level for Java Card Applets. References are listed with
numbers and not by the author’s name(s), e.g. [23]. Furthermore, whenever writing
“we”, it refers to the project group and its members.

We would like to thank our supervisors for their guidance during the writing of this
report.

v

Summary

In the light of fault attacks on smart cards and the proposed countermeasures men-
tioned in various research papers, the aim of this project is to automate the imple-
mentation of these countermeasures in bytecode. Specifically, a tool is implemented
that, given a Java Card applet class file, can insert call graph integrity and implement
branch duplication in the applet.

For branch duplication the tool can handle if statements, lookupswitch, as well as
tableswitch at bytecode level. Each branch is duplicated by repeating the bytecodes
in relation to the branching instruction, whether that being recalculating the value of
a variable again or performing a mehtod call again. The tool handles situations where
a method call is impure, i.e. it cannot safely be repeated because it may change the
state of the program because of side-effects. Furthermore, the tool handles the sitation
where it cannot statically be determined which instructions are required to recalculate
the variable needed in the condition of the branching instruction. The situation occur
when a variable can obtain two or more different values depending on which execution
flow is followed at run-time.

For call graph integrity the tool uses a call graph to determine which methods are called.
The tool handles polymorphism by grouping all methods in the same hierarchy chain
that are overrides and assigning all methods in the group the same unique identifiers
that are used to check against when control changes from one method to another.

The tool is implemented using the Soot framework. The framework provides interme-
diate representations suitable for analysis and rewriting, as the framework originally
was designed as an optimization framework for Java. Because of the difficulties implied
by the operand stack used in bytecode, the bytecode is transformed into an interme-
diate representation. The transformation of the Java Card applet is performed on
the stackless three address intermediate representation called Jimple, after which the
framework transforms the Jimple code back into bytecode. A definition-use and use-
definition chain is created in order to determine which Jimple statements to repeat for
the duplicated branch. This analysis along with a purity analysis is provided with Soot
and used in the transformation for the branch duplication.

The report gives implementation details for creating a tool to automatically insert
branch duplication and call graph integrity into a Java Card applet. Furthermore, the
report outlines the considerations that need to be taken when developing such tool.
Experiments on a few sample applets have been conducted to better understand the
impact of the inserted countermeasures in terms of program size, memory usage, and
running time.

vii

Contents

1 Introduction 1
1.1 Problem Statement . 2

2 Preliminaries 3

3 Fault Attack Countermeasures 5
3.1 Branch Duplication . 5
3.2 Call Graph Integrity . 9

4 Tools 11
4.1 Soot . 11
4.2 Other Tools . 23
4.3 Choosing Soot . 24

5 Implementation 25
5.1 Java Card Specification . 26
5.2 Running Our Tool . 27
5.3 Java Card Purity Analysis . 27
5.4 Call Graph Integrity . 28
5.5 Duplicator . 30
5.6 Java Card Class Initializer . 35
5.7 Java Card Integer Support . 35
5.8 Applied Optimizations . 36
5.9 Shortcuts . 37

6 Testing 41
6.1 Test . 41
6.2 Experiments & Metrics . 43

7 Discussion 47
7.1 Conclusion . 48

Bibliography 51

A TransitApplet 55

ix

CHAPTER 1
Introduction

Today payment transactions are performed using credit cards, also known as smart
cards, provided by the customers bank. The smart cards typically follow a well known
protocol called EMV with over 730 million cards in circulation[18]. A transaction is
completed with a method called “Chip and PIN” where the customer enters a PIN
to authorize the payment. The security of such protocol is important to ensure that
criminals cannot perform illegal transactions. However, an attack on credit cards has
been revealed; a so called man-in-the-middle attack allowing the attacker to trick the
credit card into thinking that no PIN was entered while the credit card terminal thinks
that a correct PIN was entered, although any PIN would do[18]. What happens is
that the credit card falls back to another method called “Chip and signature” when no
PIN is entered thus assuming that a signature is given instead. Whereas the terminal
thinks that the credit card has authorized the entered PIN. Normally the customer is
protected against credit card fraud, but the bank in this case recognizes the transaction
as “Verified by PIN” and thus accuse the customer of revealing the PIN, although the
attacker never knew the right PIN[18]. The equipment for performing such an attack
can be hidden in a backpack leaving the cashier with no suspicion.

The attack shows that security is important whether it being in the protocol itself
as in this case or in the authentication directly on the card. Once an attacker gains
authorization he or she is able to withdraw money from the victims account.

There are several possible ways an attacker might gain insight in the smart card im-
plementation and explore vulnerabilities. One such way is to reverse engineer the
architecture and tamper with memory addresses to alter the program execution. Such
an attack is called a fault attack because you introduce a fault in the data causing
the program to execute differently. If an attacker knows exactly where to alter the
memory to skip execution or otherwise gain authorization he or she is able to authorize
payments.

It is difficult to obtain public information about vulnerabilities on smart cards, such
as the man-in-the-middle attack described above, because it can be hard to detect the
attack when the system acts normally. Another reason is that it is in the manufacturers
interest to keep vulnerabilities a secret.

This was the case a few years back when Volkswagen prevented researchers from pub-

1

1.1. PROBLEM STATEMENT INTRODUCTION

lishing an article on how insecure a lot of their cars with keyless ignition were[23]. The
researchers were able to retrieve the transponder secret key from the car keys, allowing
them to copy or emulate the keys and thereby start the cars without the original key.
The flaw was revealed to the manufacturer of the keys in February 2012 where they
were given nine month to fix the issue. In May 2013 the flaw was revealed to Volk-
swagen before attempting to publish it at the USENIX conference. This was, however,
prevented by Volkswagen as they filed a lawsuit. First after two years and alterations
to the publication they were allowed to publish it.

In order to hamper the attacker of learning where to tamper with the chip, counter-
measures can be inserted into the code to detect if an attacker is tampering with the
execution. If this is the case, the countermeasure will react by executing error handling
code that might lock the smart card for further execution and thus further reverse en-
gineering of the code. These countermeasures are called fault attack countermeasures.

Implementing such countermeasures at source code level may render them useless be-
cause of compiler optimizations, and implementing them at a lower level may be trou-
blesome for the developer. Fault attack countermeasures that can be implemented with
software can be automatically implemented as such countermeasures are designed to
generally fit all applications. Automatically implementing countermeasures into a Java
Card applet ease the development process by replacing the hard labour of implement-
ing the countermeasures by hand. The subject of this master thesis is to develop such
automated tool to implement fault attack countermeasures.

1.1 Problem Statement

Given the above-mentioned problems and goals the problem statement for this project
is as follows:

• What is required to automatically insert countermeasures in a Java Card applet?

• What has to be considered when implementing branch duplication and call graph
integrity?

• How much of the process can be automated?

2

CHAPTER 2
Preliminaries

We briefly mention a number of technologies and terms that we use throughout the
report.

Java Card
A Java Card is a small embedded system often used for credit cards or access
cards. The cards are powered by external equipment, e.g., by inserting the card
into a card reader or by wireless power transfer, and communication happens
through the Application Protocol Data Unit (APDU) protocol. The cards typ-
ically have very limited resources in terms of both memory and computation
power. As for memory a card typically has 16 kB of EEPROM (non-volatile
mutable memory), 32-48 kB ROM (non-volatile immutable memory), and 1.2 kB
RAM (volatile mutable memory)[1, JCVM Section 2.1]. The system is running
a variation of the Java Virtual Machine (JVM), namely the Java Card Virtual
Machine (JCVM). This virtual machine is mostly a subset of the Java Virtual
Machine. It typically does not include types such as integers, floating points,
or strings. Also certain concepts like multithreading[1, JCVM Section 3.3], just
in time compilation[30], and garbage collection is not included in the JCVM[1,
JCVM Section 3.3]. The JCVM is, like the JVM, responsible for running the ap-
plets containing Java bytecode. Objects created in the applets are stored in the
EEPROM which means that, without garbage collection, the memory is never
freed again. Because of this, it is considered good practice to allocate all objects
during the install phase of the applet. In this way they are allocated only once.

APDU
Application Protocol Data Unit is the protocol used to communicate between card
readers and the Java Card applet on the card[1, API Page 46]. There are two
different types of APDU’s, command APDU and response APDU. A command is
sent to the card and a response is sent back to the card reader[1, API Page 43].

Java Bytecode
Java bytecode, or just bytecode hereafter, is a low level stack based language
which is executed by the JVM and JCVM. It is generated by e.g. the Java
compiler. It consists of a number of instructions which is executed one by one.

3

PRELIMINARIES

Definition-use/use-definition chain
A definition-use chain is a data structure used to find uses of a specific definition
while a use-definition chain does the opposite[16]. The chains can for example be
used to find the possible values of a variable at a given point.

Fault attack
Fault attack in general is an attack on some electronic device causing a wrong
result[5]. A fault attack is an external attack where e.g., the voltage of the card
is tampered with or a strong laser is pointed at the device. These attacks may
lead to errors in the execution of the software on the device, or it may break the
device in which case no further exploitation is possible. If the attack introduces a
fault in the system without breaking the device, this fault may be a transient or
a permanent fault. When attacking a smart card the attack can target different
parts of the card memory, e.g., the stack, heap, or program code. The next step
for the attacker is to be able to take advantage of the faults, e.g. to execute parts
of the program that should not be executed under normal circumstances.

CAP File
A CAP file is a container file containing information about a package. The
CAP file is a standalone file that contains all information needed to install the
applet on Java Card, including information about the constant pool, classes, and
methods[19].

4

CHAPTER 3
Fault Attack Countermeasures

In the light of the attack mentioned in Chapter 1 and the identified possibility of fault
attacks on smart cards, this chapter introduces two fault attack countermeasures that
is the focus for the automated tool. The countermeasures are branch duplication which
can be found in Section 3.1 and call graph integrity in Section 3.2. Our assumption is
that an attacker is able to set a specific value in memory, but only one fault for each
execution of the program. Furthermore, we assume that fault attacks only affect the
operand stack and the program counter.

3.1 Branch Duplication

Branch duplication is a type of countermeasure which attempts to counter attacks on
the operand stack where a stack value has been changed by an attacker or attacks
on the program counter where instructions are skipped. Branch duplication works by
duplicating instructions used to produce values on the stack used by the branching
instruction. This type of countermeasure can be used when you have a branch, e.g.,
if, while, or switch. The considerations you have to make when applying this
countermeasure is described in Section 3.1.1.

An example of branch duplication can be seen in Listing 3.2.

1 // If statement without duplication
2 int cond = authorize();
3 if (cond == OK) {
4 // Some sensitive code
5 }

Listing 3.1: An example of Java source code before rewriting.

5

3.1. BRANCH DUPLICATION FAULT ATTACK COUNTERMEASURES

1 // If statement with duplication
2 int cond = authorize();
3 if (cond == OK) {
4 cond = authorize();
5 if (cond != OK) {
6 // Error handling, condition has changed
7 } else {
8 // Some sensitive code
9 }

10 }

Listing 3.2: An example of Java source code after rewriting.

In Listing 3.2, which is the rewritten version of Listing 3.1, it can be seen that the
variable that is part of the condition in the if statement is rewritten inside the first
if statement, and then the condition is checked again in the nested if statement. If
an attacker manage to change the values on the stack so the true branch is executed
instead of the false branch, this type of countermeasure can prevent the attacker from
gaining any benefit from his attack. The extra check makes sure that this attack is
detected and that the appropriate actions are taken.

As can be seen in Listing 3.2, the nested if statement is inverted compared to the
original statement. This is a deliberate choice, since this helps protect against attacks
that makes the card skip an instruction or change an existing instruction to NOP (no
operation)[20, Slide 66 and 74-75]. If this happens for the duplicated if instruction,
the error handling code is executed.

The example in Listing 3.1 and Listing 3.2 is written in a high-level programming
language. This has the potential drawback that the compiler might optimize away the
extra code, if it finds that the code does not do anything meaningful. A better option
is to make the changes at a lower level, e.g. bytecode where the potential optimizations
already have taken place. Listing 3.3 and Listing 3.4 illustrates duplication at bytecode
level.

0: aload_0
1: invokevirtual #1 // authorize()
4: sipush 1234 // OK value
6: if_icmpne 20
... // Sensitive code
20: ... // Outside sensitive code

Listing 3.3: An example of bytecode before rewriting. Roughly equivalent to
Listing 3.1.

6

3.1. BRANCH DUPLICATION FAULT ATTACK COUNTERMEASURES

0: aload_0
1: invokevirtual #1 // authorize()
4: sipush 1234 // OK value
6: if_icmpne 31
9: aload_0
10: invokevirtual #1 // authorize()
13: sipush 1234 // OK value
15: if_icmpeq 20
... // Error handling
20: ... // Sensitive code
31: ... // Outside sensitive code

Listing 3.4: An example of bytecode after rewriting. Roughly equivalent to
Listing 3.2.

As mentioned above some considerations have to be made when implementing branch
duplication which will be listed in the following section.

3.1.1 Considerations

Automating the implementation of branch duplication is not always as straight forward
as duplicating the instructions required to calculate the branching condition again.
There are situations where duplication either cause a false result, undesirable memory
usage, or cause the whole program to end up in a wrong state.
Consider the following situations:

Method invocation
When an if statement depends on a method invocation, the branch duplication
needs to consider whether it is safe to perform the calculation again i.e. it is
safe to perform the method invocation again. If the method is not side-effect
free invoking it again may cause the program to end up in an undesired state
as variables outside the method may be changed, possibly in an uncontrollable
way. Another consideration to make before duplicating a method invocation is
whether new objects or arrays are instantiated and stored on the heap. This
causes problems as there is no garbage collector available on Java Card and thus
invoking the method again leaves twice as many objects and/or arrays on the
heap. Although this can happen, it is considered bad practice to allocate objects
other than in the install method which is only called once. If the method does
not return the same value for every invocation the method is not safe either.

Writes to EEPROM
Every persistent data used on Java Card is stored in EEPROM. EEPROM flash
memory writes is about 10,000 times slower than writing to RAM[29]. When
rewriting a program this fact is worth considering as a rewritten program poten-
tially can have twice as many writes to EEPROM as the original program thus
impacting the running time of the program. An example of data types stored in
EEPROM are objects and persistent arrays.

7

3.1. BRANCH DUPLICATION FAULT ATTACK COUNTERMEASURES

Loop constructs
All loop constructs are created at bytecode-level using if statements. If the
condition of the loop is dependent on a variable that changes for every loop cycle
we cannot simply perform the calculation of this variable again as this would
overwrite the value and cause an endless loop. An example of such loop could
be while (i < array.length) where i is incremented by one for every loop
cycle. In this case the branch duplication cannot perform the calculation of i
again as it would effectively set the variable to its original value, typically 0.

Overwrites of variables
Variable x is calculated based on variable y and z. Right before an if statement
with the condition x >= y the variable y is overwritten. In this situation we
cannot just perform the calculation of variable x as one of the original values
used to calculate x is no longer available. The importance in this scenario is to
keep the original values used to calculate x such that the duplicated if statement
uses the right values.

Branch dependent condition
Variable x can obtain two different values dependent on a condition, later in
the program execution variable x is used in another branch condition. Which
instructions should be duplicated to recreate the value of x for the duplicated
branch condition? To elaborate, consider the example where an if statement
has the condition x >= y and that in a prior switch statement the variable
x is set differently based on some other switch condition var1, see example in
Listing 3.5. In this case, the required bytecode for checking the condition x >=
y again is dependent on which branch was taken in the switch statement. This
may or may not be determinable at compile time and thus extra considerations
are required to rewrite the program.

1 int var1 = getValue();
2 int x, y = 4;
3 switch (var1) {
4 case 20:
5 x = 3;
6 break;
7 case 50:
8 x = 4;
9 break;

10 default:
11 x = 1;
12 }
13 if (x >= y) {
14 // duplicate code to calculate y and x again
15 if (x < y) {
16 // Error handling
17 } else {
18 // Some sensitive code
19 }
20 }

Listing 3.5: Example of branch dependent condition.

8

3.2. CALL GRAPH INTEGRITY FAULT ATTACK COUNTERMEASURES

3.2 Call Graph Integrity

Call graph integrity is a countermeasure against attacks on the control flow of the
program execution w.r.t. method invocation. An attacker might attack the program
counter to jump over an invoke instruction to change the control flow. The attacker
may also attack the return address and thereby alter the program flow.

Call graph integrity ensures that the control flow follows the at-compile-time deter-
minable call graph by inserting checks that ensures that a method has been called
from one of the allowed methods and by checking that control returns from the right
method. This can be done by assigning each method a unique identifier where for every
call to a method the unique identifier is assigned to a global variable before the invoke
and checked by the callee method that the control indeed came from one of the allowed
caller methods. The same check can be done after the callee return, that control indeed
came from the callee.

1 public void caller() {
2 callee();
3 }

5 public void callee() {
6 // code
7 }

Listing 3.6: Simple caller-callee
example.

1 // id: 1
2 public void caller() {
3 identifier = 1;
4 callee();
5 if (identifier != 2) {
6 // error handling
7 }
8 }

10 // id: 2
11 public void callee() {
12 if (identifier != 1) {
13 // error handling
14 }
15 // code
16 identifier = 2;
17 }

Listing 3.7: Implementation of CGI
for Listing 3.6.

A simple example without the countermeasure can be seen in Listing 3.6 and one with
the countermeasure in Listing 3.7. A global variable identifier is assigned the ID
of the caller right before calling callee(), which then checks that this identifier
has been assigned the correct value. Before callee() returns the identifier is
assigned to the callee ID and checked again at line 5.

As was the case for branch duplication, there are also considerations to take when
implementing call graph integrity.

9

3.2. CALL GRAPH INTEGRITY FAULT ATTACK COUNTERMEASURES

3.2.1 Considerations

One important aspect of implementing call graph integrity is to consider polymorphism
where multiple different implementations of the same method may return to the caller.
In such situation you can assign a unique ID to each of the methods and check for every
possible identifier value, or you can assign a single identifier for all overrides of a method
and only check for one value. Being on Java Card with limited memory a solution that
takes up as little space as possible is desirable. Because it takes three bytecodes to
check a possible identifier value, a getstatic to fetch the global identifier variable,
a push or const to compare with a constant value, and lastly an ifcmp to do the
comparison, keeping the number of comparisons at a minimum is desired.

Taking the memory footprint into account another solution exists that assigns two
identifiers to each method; the first is checked against at method entry and the second
is assigned at method exit. This approach can be seen in Listing 3.8. Comparing the
two approaches in Listing 3.8 and Listing 3.9 w.r.t. memory footprint the approach in
Listing 3.8 has a smaller footprint because the number of comparisons at method entry
cannot exceed one, whereas in Listing 3.9 the number of comparisons is equal to the
number of different methods calling the method as can be seen in line 3.

1 // ID1 1234 and ID2 4321
2 public void callee() {
3 // Check ID == 1234
4 // Code
5 // Set ID = 4321
6 }

8 public void caller1() {
9 // Set ID = 1234

10 callee();
11 // Check ID == 4321
12 }

14 public void caller2() {
15 // Set ID = 1234
16 callee();
17 // Check ID == 4321
18 }

Listing 3.8: Call graph integrity with
two identifiers per method.

1 // ID 3
2 public void callee() {
3 // Check ID == 1 || ID == 2
4 // Code
5 // Set ID = 3
6 }
7 // ID 1
8 public void caller1() {
9 // Set ID = 1

10 callee();
11 // Check ID == 3
12 }
13 // ID 2
14 public void caller2() {
15 // Set ID = 2
16 callee();
17 // Check ID == 3
18 }

Listing 3.9: Call graph integrity as
described in Section 3.2.

10

CHAPTER 4
Tools

In this chapter we describe the candidate tools for automatically implementing branch
duplication and call graph integrity. The chosen tool for this project, Soot, is described
in detail, whereas other tools is only described briefly. At last the rationale for choosing
Soot is given.

4.1 Soot

Soot is a bytecode optimization framework implemented in Java consisting of three
main intermediate representations; Baf, Jimple, and Grimp [25]. The framework pro-
vides conversions between each intermediate representation as well as an API for ma-
nipulation. An overview of which conversions exists in Soot can be seen in Figure F4-1.
The figure illustrates that Soot accepts a compiled bytecode file (.class), after which
optimizations are available at every intermediate representation. From Jimple, there
are two different options of obtaining bytecode again, either via Grimp or via Baf.
Each of these options have their advantages and disadvantages which is further de-
scribed in Section 4.1.2.5 A description of the intermediate representations is given in
Section 4.1.2, and a description of the available optimizations at the different represen-
tations is given in Section 4.1.3.

Later Soot has been extended with another intermediate representation Shimple, which
is the Single Static Assignment (SSA) variation of Jimple [11]. SSA means that each
variable is assigned exactly once enforcing different versions of the same variable indi-
cated with a # e.g. variable#2.

4.1.1 Packs & Phases

Soot is divdided into packs and phases, where each pack consists of phases. Every
.class file is passed through the jb pack, which does the conversion from bytecode
via Baf to Jimple, see Section 4.1.2.4 for further description of this conversion. The
jb pack (Jimple Body) is applied to every method body of the .class file. If Soot’s
whole-program mode is enabled, this Jimple Body is passed through cg, wjtp, wjop,
and wjap. Figure F4-2 is an example of the flow through packs with whole-program

11

4.1. SOOT TOOLS

.java

.class

Baf

Grimp Jimple

javac

Optimizations

Optimizations
Optimizations

Figure F4-1: Illustration of conversions between intermediate representations. Re-
drawn and updated from [25].

mode enabled. The first of these packs is the call graph pack which generates a call
graph for the whole program. For the rest of the packs the naming convention is as
follows: w for whole-program, j for Jimple, t, o, a for transformation, optimization,
and annotation, respectively, and p for pack. The last two packs in the flow (bb
and tag) are responsible for converting the Jimple code back into Baf (which is later
converted into bytecode) and for aggregating tags to gain uniqueness among them.

jb

jb

jb

jb

cg wjtp wjapwjop

jop

jop

jop

jop

jap

jap

jap

jap

jtp

jtp

jtp

jtp

bb

bb

bb

bb

tag

tag

tag

tag

Figure F4-2: A Jimple Body’s flow through different packs. Redrawn from [12].

An example of a flow through the Jimple packs can be seen in Figure F4-2. Similar
packs for the other intermediate representations exists named after the same naming
convention, e.g. stp for Shimple Tranformation Pack. An example of the different
phases available in a pack can be seen in Listing 4.1.

12

4.1. SOOT TOOLS

jop Jimple optimization pack (intraprocedural)
jop.cse Common subexpression eliminator
jop.bcm Busy code motion: unaggressive partial

redundancy elimination
jop.lcm Lazy code motion: aggressive partial

redundancy elimination
jop.cp Copy propagator
jop.cpf Constant propagator and folder
jop.cbf Conditional branch folder
jop.dae Dead assignment eliminator
jop.nce Null Check Eliminator
jop.uce1 Unreachable code eliminator, pass 1
jop.ubf1 Unconditional branch folder, pass 1
jop.uce2 Unreachable code eliminator, pass 2
jop.ubf2 Unconditional branch folder, pass 2
jop.ule Unused local eliminator

Listing 4.1: List of available phases in the jop pack.

Each of the transformation, optimization, and annotation packs can be enabled and
disabled, and each of the phases in these packs can also be enabled and disabled.
This allows the end-user to gain control of which phases are run on the code. This is
useful when you do not want the optimization framework to optimize away intentionally
redundant code.

In order to know which intermediate representation is best suited for the transformation
needed to implement the countermeasures described in Chapter 3, a closer look at the
intermediate representation is needed.

4.1.2 Intermediate Representations

As mentioned in Section 4.1 Soot operates on three main intermediate languages, Baf,
Jimple, and Grimp. Different languages is used as they each have different capabilities
in terms of optimization and analysis. Optimizing directly on bytecode gives rise to a
number of issues. Some of the issues are related to the stack based nature of bytecode,
as well as the large number of bytecodes.

The bytecode instructions can be split into two groups, expressions and actions[27].
Expressions is instructions that add, remove, and manipulate values on the operand
stack, and actions being store, put and invoke instructions; instructions that produce
a side effect.

Knowing which expressions that influences the outcome of an action and how they do
it, is not straight forward when analyzing bytecode. Since different order of instructions
may result in the same outcome, and because all expressions does not necessarily have
to be right before the action, you potentially have to analyze all instructions preceding
the action. An example of two different orders of bytecode that produce the same result
can be seen in Listing 4.2 and Listing 4.3.

13

4.1. SOOT TOOLS

1 iconst_1
2 bipush 14
3 iadd
4 bipush 20
5 imul
6 istore_1

Listing 4.2: One possible order of
instructions in bytecode.

1 bipush 20
2 iconst_1
3 bipush 14
4 iadd
5 imul
6 istore_1

Listing 4.3: Another order producing
same result as Listing 4.2.

Even though the example in Listing 4.2 and Listing 4.3 are different, they both store
the result of (1 + 14) × 20 in local variable 1. It is even possible, because of the stack
based system, to have intermingled instructions in between the expressions used by the
istore 1 action. In order to know which expressions that influence the outcome of
an action, you have to construct an expression tree.

If more control of the generated bytecode is needed, Baf is a possibility. Baf is used when
creating Jimple from bytecode and is also one of the alternatives when translating back
to bytecode, with Grimp being the other alternative. Both Baf and Grimp is described
below, together with Jimple which is the main intermediate representation in Soot.

When creating your own analysis or rewriting, the intermediate language you should
use depends not only on what is to be analyzed or what to rewrite, but also at what
stage you want to do it. Often Jimple will be the langauge to use, but if you for example
need to rewrite something just before bytecode is created, you might want to consider
using Baf or Grimp, depending on which language is used to create the bytecode.

4.1.2.1 Baf

Baf is a stack based intermediate representation which is simpler and more readable
than regular bytecode. It is used by analyses and optimizations which have to be
performed on stack code, e.g., in the production of Jimple code and peephole optimiza-
tions. The number of instructions is heavily reduced compared to bytecode. There are
only about 60 Baf instructions while there are roughly 200 bytecodes. Even with this
heavily reduced number of instructions, Baf is still able to represent all the bytecodes.
This is possible because Baf has eliminated all the type specific instructions found in
bytecode, e.g., iload and fload, as well as the shorthand single byte instructions,
e.g., iload 0 and iload 1. All these have been replace by a load.t local instruc-
tion, where t specifies the type, e.g., load.i and load.l, and local specifies which
local variable to load.

An example of Baf code can be seen in Listing 4.5 which is the Baf equivalent of the
bytecode example in Listing 4.4.

14

4.1. SOOT TOOLS

1 public short secureMethod1(short);
2 Code:
3 0: aload_0
4 1: iload_1
5 2: invokevirtual #4 // Method secureMethod2:(S)S
6 5: istore_1
7 6: iload_1
8 7: sipush 12456
9 10: if_icmpge 20

10 13: iload_1
11 14: sipush 4000
12 17: iadd
13 18: i2s
14 19: ireturn
15 20: iload_1
16 21: sipush 4000
17 24: isub
18 25: i2s
19 26: ireturn

Listing 4.4: An example of a method in bytecode.

1 public short secureMethod1(short)
2 {
3 word r0, s0;
4 r0 := @this: dk.aau.cs.test.TestMethods;
5 s0 := @parameter0: short;
6 load.r r0;
7 load.s s0;
8 virtualinvoke <dk.aau.cs.test.TestMethods: short secureMethod2(short)>;
9 store.s s0;

10 load.s s0;
11 push 12456;
12 ifcmpge.s label0;
13 load.s s0;
14 push 4000;
15 add.s;
16 i2s;
17 return.s;
18 label0:
19 load.s s0;
20 push 4000;
21 sub.s;
22 i2s;
23 return.s;
24 }

Listing 4.5: An example of Baf intermediate representation of the method in
Listing 4.4.

Comparing the two code samples in Listing 4.4 and Listing 4.5 we see a couple of
differences. First at line 3 in Listing 4.5 there are explicit declarations of local variables.
word denotes that both variables are allocated 32 bits, where r0 is a reference variable
and s0 is a short variable. Their value is explicitly assigned in the next two lines.
The second notable difference is that there is no constant pool in Baf, which means
that content from the constant pool is instead explicitly written out, which can be seen

15

4.1. SOOT TOOLS

in line 8 in Listing 4.5. The last notable difference is that Baf does not reference jumps
by index but by labels, e.g. label0:.

4.1.2.2 Jimple

Jimple is the primary intermediate language in Soot. It is a typed 3-address code
representation of the Baf intermediate language. 3-address code is a way of writing
code such that each expression has at most 3 operands. The 3 operands are often
combined with an assignment and a binary operator, e.g. a1 = a2 + a3. An example
of a how the calculation in Listing 4.2 is written in Jimple:

i1 = 1 + 14

i2 = i1 × 20

Where Baf has about 60 different instructions, Jimple only has about 20. The sim-
plicity of this representation makes it ideal for writing analyses and optimizations.
Another feature of Jimple, is that the stack is replaced by additional local variables
and references to stack locations is instead replaces by references to local variables.
This makes Jimple the intermediate representation in Soot where most of the analyses
and optimizations takes place.

An example of Jimple code can be seen in Listing 4.6 which is the equivalent of the
Baf code in Listing 4.5.

1 public short secureMethod1(short)
2 {
3 dk.aau.cs.test.TestMethods r0;
4 short s0, s1, $s3, $s5;
5 int $i2, $i4;

7 r0 := @this: dk.aau.cs.test.TestMethods;
8 s0 := @parameter0: short;
9 s1 = virtualinvoke r0.<dk.aau.cs.test.TestMethods: short secureMethod2(short)>(s0

);
10 if s1 >= 12456 goto label0;

12 $i2 = s1 + 4000;
13 $s3 = (short) $i2;
14 return $s3;

16 label0:
17 $i4 = s1 - 4000;
18 $s5 = (short) $i4;
19 return $s5;
20 }

Listing 4.6: An example of Jimple intermediate representation of the method in
Listing 4.5.

On line 3-5 in Listing 4.6 you can see that all variables are typed. These declarations
as well as those at line 7-8 have to be declared at the beginning of each method. As

16

4.1. SOOT TOOLS

in Baf, class and method names are written explicitly when called. Since Jimple is
stackless, stack values are instead represented as local variables starting with $, while
variables without are representing otherwise local variables.

4.1.2.3 Grimp

Grimp is an easier to read version of Jimple. It is not on 3-address form, which allows
for more compact and closer to Java source representation. It does, however, still
hold the property of a 3-address representation that a statement only allows one side-
effect. This form allows for tree constructions which help in code generation. Grimp
is therefore one of the intermediate representations, along with Baf, that can be the
intermediate representation used to generate bytecode.

1 public short secureMethod1(short)
2 {
3 dk.aau.cs.test.TestMethods r0;
4 short s0, s1;

6 r0 := @this;
7 s0 := @parameter0;
8 s1 = r0.secureMethod2(s0);
9 if s1 >= 12456 goto label0;

11 return (short) (s1 + 4000);

13 label0:
14 return (short) (s1 - 4000);
15 }

Listing 4.7: An example of Grimp intermediate representation of the method in
Listing 4.4.

As can be seen in Listing 4.7 it is shorter than the Jimple example in Listing 4.6.
Primarily because Grimp is not on 3-address code representation. Method calls are
also shortened in Grimp, where only the name of the method, and not the class is
written.

4.1.2.4 Transforming Bytecode to Jimple

Converting bytecode into Jimple is a 5 step process, as illustrated in Figure F4-3. These
steps are necessary because bytecode is untyped stack code while Jimple is typed 3-
address code.

.class file Baf
Verbose
untyped
Jimple

Verbose
untyped split

Jimple

Verbose typed
split Jimple

Analyzable
Jimple

Figure F4-3: Steps for turning bytecode into Jimple.

17

4.1. SOOT TOOLS

The first step in this process is to turn the bytecode into Baf. This is mostly a straight-
forward process since most bytecode instructions have an equivalent Baf instruction.
Only two instructions require special care, namely dup and dup2. This is because the
stack in Baf is typed whereas in bytecode it is not. When pushing a long or double
value to the stack in bytecode, the value uses 64 bit, which means that it is split into
two 32 bit values, whereas on the stack in Baf it is just one value. dup in Baf duplicates
one value, and dup2 two values. This means that dup2 may potentially duplicate 128
bit, where it only duplicates 64 bit in bytecode. To convert these two instructions
is it necessary to compute an abstract stack interpretation where the content on the
stack after each instruction is determined in order to know what type of value is to be
duplicated.

The next step in the conversion is to convert each Baf instruction into a Jimple in-
struction. First the stack height is computed after each Baf instruction. This is used
to determine the number of local variables needed in Jimple to store all stack values.
This can be computed by a simple traversal of the program. When the height is known
a variable can be created for each local variable in Baf, as well as one for each stack
position. These variables are named lx where 0 ≤ x < numberOfLocals for locals,
and $stacky where 0 ≤ y < stackHeight for stack variables. Lastly the Baf instruc-
tions are converted to Jimple instructions and local and stack values are mapped to
the aforementioned Jimple locals.

Next Jimple locals are split according to webs, computed by traversing use-definition
and definition-use chains, such that each web has its own local variable. A web is a
subset of the uses and definitions of a local variable. These webs are self-contained
which means that the local for each web can safely be renamed without breaking other
parts of the code. Generally this means that for each overwrite of a variable in another
web, a new variable is assigned instead of overwriting the previous one, and uses of this
value uses the new variable. All Jimple locals are split, both local variables and stack
variables. This split will therefore often increase the number of Jimple locals, some of
which may later be optimized away. An example of how locals are split can be seen in
Listing 4.9. The following listings is a direct copy from [27].

18

4.1. SOOT TOOLS

1 public int runningExample()
2 {
3 unknown l0, $stack0, l2,
4 l3, $stack1, l1, $stack2;
5 l0 := @this: Type;
6 $stack0 = 0;
7 l2 = $stack0;
8 $stack0 = l0;
9 $stack0 = $stack0.condition;

10 if $stack0 == 0 goto label0;
11 $stack0 = 5;
12 l3 = $stack0;
13 $stack0 = new B;
14 $stack1 = $stack0;
15 specialinvoke
16 $stack1.<init>();
17 l1 = $stack0;
18 $stack0 = l2;
19 $stack1 = l3;
20 l3 = l3 + 1;
21 $stack0 = $stack0 + $stack1;
22 l2 = $stack0;
23 goto label1;
24 ...
25 }

Listing 4.8: A Jimple code
sample before splitting local and stack
variables. Taken from [27].

1 public int runningExample()
2 {
3 unknown l0, $stack0, l2, l3, $stack1

, l1, $stack2, $stack0#2,
4 $stack0#3, $stack0#4, $stack0#5,

$stack0#6, $stack1#2,
5 l3#2, $stack0#7, $stack0#8, l3#3,

$stack0#9, $stack1#3,
6 $stack0#10, $stack0#11, $stack1#4,

$stack0#12;
7 l0 := @this: Test;
8 $stack0 = 0;
9 l2 = $stack0;

10 $stack0#2 = l0;
11 $stack0#3 = $stack0#2.condition;
12 if $stack0#3 == 0 goto label0;
13 $stack0#4 = 5;
14 l3 = $stack0#4;
15 $stack0#5 = new B;
16 $stack1 = $stack0#5;
17 specialinvoke $stack1.<init>();
18 l1 = $stack0#5;
19 $stack0#6 = l2;
20 $stack1#2 = l3;
21 l3#2 = l3 + 1;
22 $stack0#7 = $stack0#6 + $stack1#2;
23 l2 = $stack0#7;
24 goto label1;
25 ...
26 }

Listing 4.9: Example after splitting
Listing 4.8. Taken from [27].

In Listing 4.8 there are 4 local variables and 3 stack variables. After splitting the
variables, in Listing 4.9, we end up with 6 local variables and 17 stack variables. We
see that $stack0 is split into 12 different variables. It is expected that the first stack
position, $stack0, is to be split the most since this position is generally used the
most.

This splitting makes typing easier, which is the next step in the process. The typing
performed by Soot is done using an efficient multi-stage static typing algorithm. Ac-
cording to experiments this polynomial time multi-stage algorithm can type 99.8% of
the methods using only stage 1 out of 3[10]. A typed example can be seen in Listing 4.10
which is the typed equivalent of Listing 4.9.

The last phase is a clean up phase where some redundant code may be removed. By
using copy propagation, back copy propagation, and constant propagation it may be
possible to remove some of the added locals from the splitting phase. The final code
after propagation can be seen in Listing 4.11.

19

4.1. SOOT TOOLS

1 public int runningExample()
2 {
3 Test l0, $stack0#2;
4 int $stack0, l2, l3, $stack0#3,

$stack0#4, $stack0#6,
5 $stack1#2, l3#2, $stack0#7, $stack0

#11, $stack1#4,
6 $stack0#12;
7 B $stack1, $stack0#5;
8 A l1, $stack0#10;
9 java.lang.String $stack2, $stack0#8,

l3#3;
10 C $stack0#9, $stack1#3;
11 l0 := @this;
12 $stack0 = 0;
13 l2 = $stack0;
14 $stack0#2 = l0;
15 $stack0#3 = $stack0#2.condition;
16 if $stack0#3 == 0 goto label0;
17 $stack0#4 = 5;
18 l3 = $stack0#4;
19 $stack0#5 = new B;
20 $stack1 = $stack0#5;
21 specialinvoke $stack1.<init>();
22 l1 = $stack0#5;
23 $stack0#6 = l2;
24 $stack1#2 = l3;
25 l3#2 = l3 + 1;
26 $stack0#7 = $stack0#6 + $stack1#2;
27 l2 = $stack0#7;
28 goto label1;
29 ...
30 }

Listing 4.10: Example Jimple code
after typing and before propagating
constants and copies. Taken from [27].

1 public int runningExample()
2 {
3 Test l0;
4 int l2, l3, $stack0#3, l3#2,
5 $stack0#11, $stack0#12;
6 A l1;
7 B $stack0#5;
8 java.lang.String l3#3;
9 C $stack0#9;

10 l0 := @this;
11 l2 = 0;
12 $stack0#3 = l0.condition;
13 if $stack0#3 == 0 goto label0;
14 l3 = 5;
15 $stack0#5 = new B;
16 specialinvoke $stack0#5.<init>();
17 l1 = $stack0#5;
18 l3#2 = l3 + 1;
19 l2 = l2 + l3;
20 goto label1;
21 ...
22 }

Listing 4.11: Example Jimple code
after propagating constants and copies.
Taken from [27].

4.1.2.5 Transforming Jimple to Bytecode

Soot provides two solutions to transform the Jimple code back to bytecode. One is by
turning Jimple into Grimp, and then into bytecode. The other is by going through Baf
instead of Grimp.

In the first approach, through Grimp, Soot attempts to generate Grimp code that
resembles the original tree representation of the code, and then produce the bytecode
by traversing the tree. In order to do so, two algorithms have to be applied. The first
one is expression aggregation. Since Grimp is not on 3-address form like Jimple, it
allows for more operands. The expression aggregation attempts to move all relevant
operands to the right hand side of the assignment, e.g. l0 = 2 * 5; l1 = l0 + 4; in
Jimple will be l0 = 2 * 5 + 4 in Grimp. This is, however, not always possible since
Grimp only allows for one side effect per expression. When multiple side effects are
encountered for the same assignment Soot splits the assignment into more assignments

20

4.1. SOOT TOOLS

but this causes inefficient bytecode compared to the Java compiler. This is attempted to
be mitigated by performing peephole optimizations on the code. However, this does not
always resolve the problem. The second algorithm is constructor folding. Since Grimp
features a newinvoke expression that combines the Jimple new and specialinvoke
expressions, these expressions are collapsed into the newinvoke expression which then
allows for further expression aggregation. The motivation for aggregating expressions
is because larger expressions is better when generating bytecode[27]. Finally the tree
is traversed and bytecode is produced.

The other approach, which goes via Baf, creates naive bytecode and then attempts
to optimize upon it, whereas the Grimp approach attempts to make efficient bytecode
directly. This transformation is split into four steps. The first step is to convert the
Jimple code directly into Baf code. This produces inefficient Baf code, since Jimple
is not a stack based language, so all temporary values in Jimple are stored in locals
in Baf instead of on the stack. This means that more local variables are used, and
redundant store and load instructions are used. These are to be optimized away in
the second step. A few cases cover most of the redundancy. The first case is where a
load is followed directly after a store on the same local, and that the value is not
used afterwards. In this case both instructions can be removed. Another case is when
a store is followed directly by two load on the same local. This case can be replaced
by a dup instruction. A third case requires a little more care. This case is when a
load does not directly follow the store instruction, i.e. a sequence of interleaving
instructions exists. To determine if these store and load instructions can be removed
the net stack height variation (nshv) and minimum stack height variation (mshv)[26]
is calculated for the interleaving sequence. Nshv is the stack height difference after
executing the sequence while the mshv is calculated while executing the sequence of
instructions. If a sequence of instructions both have a nshv and a mshv of 0, then
the load and store instructions can safely be removed. This happens for example
if the interleaving instructions have nothing to do with the following instructions, i.e.
everything pushed to the stack is also popped from the stack in the interleaving part.
If this is not the case, then reordering of the instructions is attempted, which may
permit the removal of the instructions. The third step in converting to bytecode is
packing local variables. This has the purpose of reusing local variables when they are
no longer in use, instead of naively introduce a new local variable for each value. The
last step is to convert the Baf code into bytecode. First the maximum stack height is
calculated for each method, since this is required by the Java Virtual Machine. This is
done by a simple traversal of the Baf code. Then every Baf instruction is converted to
the equivalent bytecode instruction and Baf local variables is mapped to local variables
in bytecode.

4.1.3 Optimizations

As mentioned previously in Section 4.1.1 Soot is divided into packs and phases, where
one pack for each intermediate representation contains optimization phases on that
representation. To get a better understanding of which optimizations are applied to
a program through the optimization framework the same flow through packs as in

21

4.1. SOOT TOOLS

Figure F4-2 is used.

Assuming that Soot is running in whole-program mode and that the optimization packs
are enabled, the optimizing packs applied are wjop and jop. The available phases can
be seen in Listing 4.1 for jop and Listing 4.12 for wjop. By default, Soot does not
run in whole-program mode and neither of the optimizing packs are enabled, thus using
Soot as is does not cause any optimization.

wjop Whole-jimple optimization pack
wjop.smb Static method binder: Devirtualizes

monomorphic calls
wjop.si Static inliner: inlines monomorphic calls

Listing 4.12: List of available phases in wjop pack.

Although the optimizing packs are not enabled by default, enabling them does not nec-
essarily enable all the optimizations available. Each phase in a pack can also be enabled
or disabled and does also have a default value. Enabling both wjop and jop applies
these optimizations by default: jop.cp Copy Propagator, jop.cpf Jimple Constant
Propagator and Folder, jop.cbf Conditional Branch Folder, jop.dae Dead Assign-
ment Eliminator, jop.uce1 Unreachable Code Eliminator 1, jop.ubf1 Unconditional
Branch Folder 1, jop.uce2 Unreachable Code Eliminator 2, jop.ubf2 Unconditional
Branch Folder 2, jop.ule Unused Local Eliminator, and wjop.si Static Inliner[13].

There is no difference in the jop.uce1 and jop.uce2 phases. It simply means that
the code is passes through this phase again. It is possible to enable and disable phases
and thus gives the end-user full control of which optimizations are performed on the
program. For example one might want to disable some of the eliminator phases if the
purpose is to create such program with redundancy.

4.1.4 Available Analyses

Soot supports a number of analyses out of the box. For our project we need a call graph
as well as the definition-use/use-definition chains. We also use the purity analysis to
gain knowledge about the purity of methods, see Section 5.5.

• Call-graph construction.

• Points-to analysis.

• Definition-use/use-definition chains.

• Template-driven Intra-procedural data-flow analysis.

• Template-driven Inter-procedural data-flow analysis, in combination with heros.

• Taint analysis in combination with FlowDroid.

• Purity analysis.

22

4.2. OTHER TOOLS TOOLS

4.2 Other Tools

In this section we describe the other candidates for implementing a tool to automat-
ically insert branch duplication and call graph integrity. In order to do so we need
to find definitions and uses of a variable to determine which instructions to duplicate
to calculate the condition of an if statement again in the branch duplication coun-
termeasure. Furthermore we need a call graph to implement the call graph integrity
countermeasure. Operating directly on bytecode introduces some challenges that is
not present in an intermediate representation on, for instance, three-address form. A
challenge would be to find out which instructions are related as these may be located
far from each other in the bytecode[21]. In other words, once a value is pushed onto
the stack it does not necessarily have to be popped as soon as possible. Therefore we
primarily focus on tools where a more convenient stackless representation is available
and even better where a definition-use analysis is provided. In the following we describe
Sawja which has a suitable intermediate representation for static analysis. Another al-
ternative is Wala[9]. WALA is a tool used for static and dynamic analysis of bytecode.
According to their tutorial WALA only supports limited code transformation [8]. It
uses an intermediate representation but this representation is immutable and does not
provide any code generation which is a problem for our project. Furthermore, accord-
ing to our supervisor the learning curve is very steep[14]. Therefore, this tool is not
considered for this project. Other tools discovered does not provide an intermediate
representation and operates directly on bytecode. Among these are ASM[7], BCEL[6],
and SERP[28]. These tools are not described or considered further as the workload
required for performing the necessary analysis is too high.

4.2.1 Sawja - Static Analysis Workshop for Java

Sawja consists of two parts, one for providing a high level representation of bytecode,
and one for operating on this high level representation. The first part is called Javalib
and can be used as a stand-alone library, whereas Sawja itself is dependent on the
high level representation provided in Javalib. The reason for making Javalib available
as an independent library is that the process of parsing bytecode into a high level
representation is a common task for all analysis and thus is available for other analysis
tools to use[15].

Sawja provides two stackless intermediate representations called JBir and A3Bir which
is the 3-address representation of JBir [15]. There are also SSA forms of these repre-
sentations called JBirSSA and A3BirSSA[3].

A focus point in the development of Sawja was performance w.r.t. running time and
memory footprint.

The target of Sawja is static analysis tools and thus a reverse transformation from
intermediate representation back to bytecode is not available. This means that there
is no current possibility of rewriting the .class file. In [15] the authors state that they
would like to facilitate transfer of annotation from source to intermediate representation

23

4.3. CHOOSING SOOT TOOLS

and back, with the results of the analysis. But in its current state the output format
of the analysis is HTML or through an Eclipse plugin.

According to [3] Sawja supports the following analyses:

• Class Reachability Analysis.

• Rapid Type Analysis.

• Live variable analysis.

• Reachable definitions analysis.

• Available expressions analysis.

• Reachable Methods analysis.

4.3 Choosing Soot

We have chosen to implement the automated tool using Soot as framework for several
reasons:

• Soot is a mature framework that started out as an optimizing framework in 1999,
but has later been used by researchers and practitioners to analyse, instrument,
optimize, and visualize Java applications.

• Soot provides the analyses needed to implement the countermeasures described
in Chapter 3.

• Soot operates on suitable intermediate representations that enables easier analysis
and rewriting.

• Soot is originally designed for optimization and thus suits the process of rewriting
applications well.

Sawja does also provide suitable intermediate representations, but does not provide
functionality to output to a bytecode class file again. Sawja is originally designed to
perform analysis on bytecode and visualize the result in e.g. HTML. Therefore Sawja
is not as good a candidate as Soot.

24

CHAPTER 5
Implementation

Soot works as a stand-alone tool divided into packs and phases as described in Sec-
tion 4.1.1. To extend Soot with custom analyses you have to add your own phase to
a pack. This is done by adding a Transformer, either a BodyTransformer or a
SceneTransformer, where the former only applies for intra-procedural analysis and
the latter applies for inter-procedural analysis. The phases visited during execution of
the tool can be seen in Figure F5-1.

jb cg wjap jtp jop bb tag

Purity
Analysis

Duplicator
Copy

Propagator

Constant
Propagator
and Folder

Dead
Assignment
Eliminator

Unused
Local

Eliminator

Java Card
Purity

Analysis

wjtp

Call Graph
Integrity

Java Card
Class

Initializer

Java Card
Integer
Support

Figure F5-1: The applied phases in the rewriting tool. The bold marked phases are
the added phases.

The first phase, jb, is necessary to transform bytecode into Jimple as described in
Section 4.1.2.4. In order to perform a purity analysis to determine whether a method
is pure or impure, we enable Soots whole-program mode which enables the cg that
creates a call graph required to perform whole program analyses. As can be seen the
purity analysis is located in the wjap pack determining the purity of each method in
the call graph. The provided implementation of a purity analysis is based on [22] in
which the definition of a pure method is given as:

25

5.1. JAVA CARD SPECIFICATION IMPLEMENTATION

A method is pure if it does not mutate any location that exists in the program
state right before method invocation[22].

In Figure F5-1 the phases implemented in this project are highlighted with a thicker
line. As can be seen we implemented a phase to the wjap pack called Java Card
Purity Analysis that corrects the result from the Purity Analysis to take into account
issues arisen because of a potentially lacking garbage collector on Java Card. This
is further described in Section 5.3. Furthermore, we implemented a whole-program
transformation phase called Call Graph Integrity which is responsible for implementing
the call graph integrity countermeasure using the call graph generated by the cg pack.
This phase is further described in Section 5.4. Then we have the Duplicator which is
responsible for transforming the body of a method to implement branch duplication.
This phase is further described in Section 5.5. Lastly we have added a couple of phases
to the Baf Body Creation (bb) pack which fixes some issues related to the differences
between Java and Java Card. We add them to this pack since it is the last intermediate
representation phase, which means that a later translation will not disturb our changes.
These are described in Section 5.6 and Section 5.7.

Notice that the order of applying the wjtp, wjop, wjap has been altered such that
the annotation pack is applied before the transformation pack. This reorder is done
because the call graph integrity phase otherwise would render the purity analysis invalid
as writes to a static variable is inserted into every method in the call graph, resulting
in these methods being impure.

Besides implementing branch duplication on Jimple code, we enable the Jimple opti-
mization pack to eliminate unnecessary load and store bytecode instructions gen-
erated by the transformation from unoptimized Jimple code to bytecode. The applied
optimizations are further described in Section 5.8.

The last two packs, bb and tag, are enabled by default and applies the default phases
necessary to transform Jimple code to bytecode as described in Section 4.1.2.5.

Java Card exists in different version with different capabilities. In order to develop the
tool against one specification we make this choice in the following section.

5.1 Java Card Specification

For this project we focus on Java Card 2, since this version is the most limited version,
which is still widely used. There exists a new version, version 3, which have some
new capabilities, e.g. a volatile heap, while still being compatible with version 2[2].
The instruction set for Java Card is a subset of the full Java instruction set, which
means that we do not focus on instructions that does not exists in Java Card, e.g.
monitorenter. This decision also influence how we handle object creation, since Java
Card does not necessarily use garbage collection[1, JCVM Section 3.3]. We therefore
do not duplicate objects, even if the object is part of a condition. If our focus was on
Java Card 3, the extra volatile heap would allow us to duplicate some objects, since

26

5.2. RUNNING OUR TOOL IMPLEMENTATION

they would be removed when the power source is removed. By targeting the older Java
Card 2 it allows us to rewrite applets for both version.

5.2 Running Our Tool

Our tool is provided in a .jar file taking as input .class files to automatically
implement the countermeasures in. A folder called sootOutput is created containing
the rewritten files. Running the program from the class path root could look like this,

java -jar RewritingTool.jar dk.aau.cs.ClassA

where the class file to rewrite is ClassA and is located in subdirectory dk/aau/cs/.
The secured class file is located in sootOutput/dk/aau/cs/. Which countermeasure
to apply should be specified through annotating the methods in source code. One
important annotation is to mark at least one entry-point in the program, typically the
process method. Without this entry-point call graph integrity will not be applied.
Examples of annotating methods can be seen in Listing 5.1 and Listing 5.2, where entry
points are annotated with the @EntryPoint annotation and methods to implement
the branch duplication countermeasure in is annotated with @DuplicateBranches.

1 @DuplicateBranches
2 public short methodWithBranches() {
3 ...
4 }

Listing 5.1: Annotating method for
applying branch duplication.

1 @EntryPoint
2 public void process(APDU command) {
3 ...
4 }

Listing 5.2: Annotating the entry-
point for the call graph.

The next sections will cover our added phases as seen in Figure F5-1.

5.3 Java Card Purity Analysis

This analysis is added to the wjap pack, which is short for Whole Jimple Annotation
Pack. The purpose of this pack is not to change the body of a Jimple body, but rather
annotate methods and statements that may be used in later analyses. This analysis
is necessary because the default purity analysis does not mark methods that create
objects as impure. For the purpose of Java Card we consider this to be wrong, because
allocated objects are not freed by the virtual machine.

Listing 5.3 shows the pseudo-code for our Java Card purity analysis. Our analysis takes
advantage of the purity analysis that is run before our analysis. This means that we can
skip all methods that is already marked as impure, since our analysis does not change
that result. If method calls are chained and one of the calls is changed to impure, all
previous methods in the chain are marked as impure as well.

27

5.4. CALL GRAPH INTEGRITY IMPLEMENTATION

1 For each entry point ep
2 Skip to next ep if current ep is marked as impure
3 Else call checkPurity with ep

5 checkPurity:
6 Check if ep contains new, newarray, or multinewarray instructions, and if so, mark ep

as impure
7 For each method call out of ep, t, call checkPurity recursively on t
8 If t is marked as impure, mark caller as impure as well

Listing 5.3: Pseudo-code for Java Card purity analysis.

For this analysis we have to be aware of the <clinit> initialization method. The call
graph shows a possible call to <clinit> for all methods using static variables. This
method is marked as impure, since it writes to static variables, but this should not
mark all methods reading from static variables as impure.

5.4 Call Graph Integrity

As seen in Figure F5-1 we have added a call graph integrity countermeasure to the
wjtp (whole Jimple transformation pack) pack. This countermeasure attempts to
ensure that the right method is called by an invoke instructions, as well as ensuring
that the program returns from the right method. This phase can be disabled by leaving
out the @EntryPoint annotation or by passing the command line option:

-p wjtp.CallGraphIntegrity enabled:false

We only apply the countermeasure for methods that we can actually rewrite. We do
this by getting a list of methods that is within the classes supplied as input to the
tool. The tool works by assigning two IDs to each rewritable method group. A method
group of a given method is the method itself as well as all methods that it overwrites
or is overwritten by. This is necessary in order to handle polymorphism. If a method
is not overwriting a method and it is not overwritten by any method, it is the only
method in its group. The first that happens in this phase is the creation of a new class,
called CGII, which has one static field, identifier. This field is used to store the
ID of the method being called or returned from. At the beginning of each method, if
it is not an entry point, we check that identifier is set to the methods first ID. We
do not create any checks at the beginning of entry methods, since identifier may
not be set at this point. Next, for each invoke statement in the body of a method, we
check if the target is a rewritable method. If this is the case, we assign identifier
to the target method’s first ID, and after the invoke, we check if identifier is now
the target method’s second ID. If it is not the target a jump to the endless loop at
the end of the method is performed. This works because we set identifier to the
methods second ID before each return instruction. This is illustrated in Listing 5.4
which roughly correspond to the Java code in Listing 5.5. Finally we add a goto loop

28

5.4. CALL GRAPH INTEGRITY IMPLEMENTATION

at the very end of the method that is used to perform an endless loop if a wrong path
has been taken. The whole implementation is shown as pseudo code in Listing 5.6.

For this countermeasure we only use a single static variable; the one found in the CGII
class. This is enough since Java Card does not support multithreading, so we do not
risk race conditions. It has the benefit of being an effective solution in terms of memory
usage.

The call graph for our call graph integrity is generated using class hierarchy analysis.
Another solution available in Soot is one they call Spark. We decided to use Soot’s
built-in class hierarchy analysis solution since we was unable to get a call graph from
Spark when working on only a single class. For most Java Card applets there will
probably be at least two classes, but since the call graph generated from both solutions
seems to fit our needs we decided to go for the solution that worked on a single class
as well.

// Method ID1 = 1, ID2 = 2
public int entryMethod() {

0: ...
5: iconst_3
// #1: CGII.identifier
6: putstatic #1
9: aload_0
// #2: methodInClass()
10: invokevirtual #2
13: iconst_4
14: getstatic #1
17: if_icmpne 36
...
30: iconst_2
31: putstatic #1
34: iconst_0
35: ireturn
36: goto 36

}

// Method ID1 = 3, ID2 = 4
public void methodInClass() {

0: getstatic #1
3: iconst_3
4: if_icmpne 25
...
20: iconst_4
21: putstatic #1
24: return
25: goto 25

}

Listing 5.4: The assignment and
check flow for call graph integrity.
Roughly correspond to Listing 5.5.

1 // Method ID1 = 1, ID2 = 2
2 @EntryPoint
3 public int entryMethod() {
4 ...
5 CGII.identifier = 3;
6 methodInClass();
7 if (CGII.identifier != 4) {
8 // Some error handling
9 }

10 ...
11 CGI.identifier = 2;
12 return 0;
13 }

15 // Method ID1 = 3, ID2 = 4
16 public void methodInClass() {
17 if (CGII.identifier != 3) {
18 // Some error handling
19 }
20 ...
21 CGII.identifier = 4;
22 return 0;
23 }

Listing 5.5: Assignment and check in
Java.

29

5.5. DUPLICATOR IMPLEMENTATION

1 Generate CGII class and add public static identifier to it
2 Get compilable methods cm
3 Assign unique IDs, mid1 and mid2, to each method in cm, where overwritten methods get

the same IDs as the overwriting method
4 For each method m in cm
5 Find edges out of m, m.out
6 If m is not entry point
7 Create check for mid1 at the beginning of the method
8 For each method out in m.out
9 If out is in cm

10 For each invoke in method out
11 If target of invoke is in cm
12 Create assignment of identifier to mid1 of invoke before invoke
13 Create check of identifier equals mid2 of invoke after invoke
14 Create assignment of identifier to mid2 of m before each return
15 Add kill statement to the end of m

Listing 5.6: Pseudo-code for call graph integrity.

5.5 Duplicator

The Duplicator phase implements the abstract method internalTransform(Body
body, String s, Map map) which is invoked for every method in the .class
file(s). The parameters given are a Body which is the method body containing Jimple
statements, a string containing the phase name (“jtp.Duplicator”), and a Map from
string to string defining the phase options such as for example “enabled:true”. This
phase can be disabled by passing the command line option:

-p jtp.Duplicator enabled:false

The Duplicator does not duplicate branches in every method despite the internal-
Transform method being invoked for every method. A special annotation has to exist
for that method, which should be inserted by the programmer at source code level, see
Listing 5.1. Furthermore, the extra check is only inserted into the if branch, not the
else branch.

In Listing 5.7 the steps required to implement branch duplication for a single method’s
body is given.

1 Given a Body b:
2 For each if statement i in b:
3 Recursively find the set of statements dup involved in is condition
4 Duplicate dup right after i
5 Duplicate i with inverted condition right after dup with branch to sensitive code
6 Insert goto after duplicated i with a target to kill
7 Insert a goto statement kill to itself at the end of b

Listing 5.7: Pseudo-code for branch duplication of if statements.

30

5.5. DUPLICATOR IMPLEMENTATION

In Listing 5.7 we search through the method body for if statements. Because the
intermediate language that we are transforming is Jimple which is in three address
form, the if statement contains exactly two operands and is given on the form:

if op1 BINOP op2 branch

Where branch is the instruction to branch to if the condition is true. In order to find
the list of instructions to duplicate, dup, we conduct a definition-use analysis and find
recursively the definitions of the two operands, meaning that if a variable b is used as
the first operand and the definition of b is b = x + y we also include the definitions of
x and y. The combined list of instructions to duplicate for both operands are inserted
right after the if statement. Another if statement is inserted after these duplicated
statements with an inverted condition compared to the original if statement but in
this case if the condition is true we branch to the sensitive code. Otherwise, if false we
branch to the endless loop.

An example of an implementation of branch duplication at bytecode level for a simple
method body can be seen in Listing 5.8 and Listing 5.9. On the left the original
bytecode for the method body is shown, and on the right the branch duplication has
been inserted. Note the goto statement is inserted at the end as instruction 42 in
Listing 5.9, which results in an endless loop. This instruction is jumped to from the
inserted goto statement at instruction 20. In the example the instructions necessary
to duplicate the if statement are instruction 13 and 14 in Listing 5.9.

public dk.aau.cs.test.ClassA();
Code:
0: aload_0
1: invokespecial #1 // Object."<init>":()V
4: aload_0
5: invokevirtual #2 // getInput:()I
8: istore_1
9: iload_1
10: ifge 24
13: getstatic #3 // PrintStream;
16: ldc #4 // String Error
18: invokevirtual #5 // println:(String;)V
21: goto 31
24: getstatic #3 // PrintStream;
27: iload_1
28: invokevirtual #6 // println:(I)V
31: return

Listing 5.8: A simple method with a single if
statement.

public dk.aau.cs.test.ClassA();
Code:
0: aload_0
1: invokespecial #21 // Object."<init>":()V
4: aload_0
5: invokevirtual #8 // getInput:()I
8: istore_1
9: iload_1
10: ifge 34
13: aload_0
14: invokevirtual #8 // getInput:()I
17: iflt 23
20: goto 42
23: getstatic #13 // PrintStream;
26: ldc #31 // String Error
28: invokevirtual #24 // println:(String;)V
31: goto 38
34: getstatic #13 // PrintStream;
37: iload_1
38: invokevirtual #7 // println:(I)V
41: return
42: goto 42 // kill

Listing 5.9: Implementation of branch duplication
in a simple method. The bold font bytecodes are the
inserted bytecodes.

31

5.5. DUPLICATOR IMPLEMENTATION

5.5.1 Switch statements

if statements are not the only conditional branching instruction that needs to be
secured. switch statements also branch on some condition. The straight forward
approach for implementing branch duplication for switch statements can be seen in
Listing 5.10.

1 Given a switch statement s:
2 Recursively find the set of statements dup involved in ss condition
3 For each branch, ignoring the default branch:
4 Insert dup after each branch (case)
5 Insert if statement right after dup: if switchValue != CaseConstant goto kill

Listing 5.10: Pseudo-code for implementing branch duplication for switch
statements.

Besides the steps in Listing 5.10 there are some post-processing steps to take as well,
where the lookup table has to be updated to point to the first of the newly inserted
statements instead. The steps in Listing 5.10 does not handle the specific situation
when one switch case fall through to another case. In such situation we need to either
consider each possible value in the cases fallen through as illustrated in below,

if (switchValue != caseConstant1 && switchValue != caseConstant2 ...)

or, simply avoid inserting the branch duplication for switch cases that can be fallen
through to. In Section 5.9.2 we argue why we have chosen not to insert checks in cases
which might be reached because of fallthrough.

5.5.2 Branch Dependent Condition

As described in Section 3.1.1 handling if statements where the condition involves a
variable that obtain different values dependent on a prior control flow, see Listing 3.5,
requires an extra effort to implement correctly. There is always the possibility to detect
such situation and simply avoid duplicating the if statement to ensure a correct result.
If the same approach as in Listing 5.7 was taken the result would be wrong as there
is no way of determining the value of x at compile time and thus the computation
of x cannot be duplicated. Simply reading the same variable again would not provide
security in the case where the attacker has altered the value of x permanently rendering
a double read useless.

Instead, we have chosen to introduce another variable, x’, for each operand of the
if statement that can be determined to have multiple definitions. Then for every
assignment of that variable in different non-overlapping scopes, we perform the calcu-
lations and assignment again to x’. The duplicated if statement then uses the prime
variables instead.

An example of such implementation can be seen in Listing 5.11 and Listing 5.12, where

32

5.5. DUPLICATOR IMPLEMENTATION

on the left the original bytecode is shown, and on the right the branch duplication is
implemented.

public dk.aau.cs.test.ClassA();
Code:
0: aload_0
1: invokespecial #1 // Object."<init>":()V
4: aload_0
5: invokespecial #2 // getValue:()I
8: istore_1
9: iconst_4
10: istore_3
11: iload_1
12: lookupswitch { // 2

20: 40
50: 45

default: 50
}

40: iconst_3
41: istore_2
42: goto 52
45: iconst_4
46: istore_2
47: goto 52
50: iconst_1
51: istore_2
52: iload_2
53: iload_3
54: if_icmplt 68
57: getstatic #3 // PrintStream;
60: ldc #4 // String Good
62: invokevirtual #5 // println:(String;)V
65: goto 76
68: getstatic #3 // PrintStream;
71: ldc #6 // String Error
73: invokevirtual #5 // println:(String;)V
76: return

Listing 5.11: An example of branch dependent
condition of if statement.

public dk.aau.cs.test.ClassA();
Code:

0: aload_0
1: invokespecial #19 // Object."<init>":()V
4: aload_0
5: invokespecial #18 // getValue:()I
8: lookupswitch { // 2

20: 36
50: 52

default: 68
}

36: aload_0
37: invokespecial #18 // getValue:()I
40: bipush 20
42: if_icmpne 102
45: iconst_3
46: istore_0
47: iconst_3
48: istore_1
49: goto 72
52: aload_0
53: invokespecial #18 // getValue:()I
56: bipush 50
58: if_icmpne 102
61: iconst_4
62: istore_0
63: iconst_4
64: istore_1
65: goto 72
68: iconst_1
69: istore_0
70: iconst_1
71: istore_1
72: iload_0
73: iconst_4
74: if_icmplt 96
77: iload_1
78: iconst_4
79: if_icmpge 85
82: goto 105
85: getstatic #11 // PrintStream;
88: ldc #21 // String Good
90: invokevirtual #25 // println:(String;)V
93: goto 101
96: getstatic #11 // PrintStream;
99: ldc #30 // String Error
101: invokevirtual #25 // println:(String;)V
104: return
105: goto 102 // kill

Listing 5.12: Implementation of additional
variable for branch dependent conditions in if
statement.

In Listing 5.12 the bold font bytecodes are the extra inserted variable assignments and
the duplicated if statement using that extra variable. It can be seen that the store

33

5.5. DUPLICATOR IMPLEMENTATION

instructions at line 48, 64, and 71 stores the value in another local than the original
store instructions at line 46, 62, and 69, and that the new local is being loaded for
the duplicated if instruction at line 77.

5.5.3 Duplicator versus Call Graph Integrity

As the Call Graph Integrity phase is run before the Duplicator phase, the inserted check
after each method call should not be duplicated by the Duplicator phase. The normal
behaviour of the Duplicator is to duplicate the instructions needed to calculate the
operands of an if statement, but in the case of the call graph integrity check this would
be wrong. Consider the simple example in Listing 5.13, where someCall() assigns the
static variable CGII.identifier = 2 right before returning. The Duplicator does
not recognize the method call as a dependency of the operands of the if statement,
and if it were to duplicate the if statement it would only include the assignment of
CGII.identifier right before the method call and thus in effect do the comparison
1 != 2 as can be seen Listing 5.14.

1 CGII.identifier = 1;
2 someCall();
3 if (CGII.identifier == 2) {
4 // normal execution
5 } else {
6 // error handling
7 }

Listing 5.13: Simple call graph
integrity implementation.

1 CGII.identifier = 1;
2 someCall();
3 if (CGII.identifier == 2) {
4 CGII.identifier = 1;
5 if (CGII.identifier != 2) {
6 // error handling
7 } else {
8 // normal execution
9 }

10 } else {
11 // error handling
12 }

Listing 5.14: Straight-forward
duplication of if statement. Bear in
mind that when decompiling bytecode
the conditions are inverted.

The situation is handled by looking for a tag, set by the Call Graph Integrity phase,
indicating that the if statement should not be duplicated.

Another similar situation is when a method call is part of the condition and the Du-
plicator can duplicate the call, which is determined by the purity analysis. In such
situation the necessary call graph integrity checks normally inserted by the Call Graph
Integrity phase would not be inserted as the Duplicator does not know the identifiers of
the invoked method. This is handled by letting the Call Graph Integrity phase decorate
the invoke statement with the two identifiers, such that the Duplicator phase is able
to insert the necessary checks.

34

5.6. JAVA CARD CLASS INITIALIZER IMPLEMENTATION

5.6 Java Card Class Initializer

We encountered a problem in the way Soot initialize static arrays. According to
the specification [1, JCVM Section 2.2.4.6], the <clinit> method is limited to the
following instructions: iconst [m1,0-5], [b|s]ipush, ldc[w], aconst null,
newarray, dup, [b|i|s]astore, putstatic, and return. Since the use of locals
is allowed for normal Java applications, Soot uses these instructions, e.g., aload and
astore. Our phase fixes this issue by removing astore instructions and replacing
aload instructions with dup instructions.

An example of how Soot writes the method can be seen in Listing 5.15 and the result
after this phase in Listing 5.16.

1 static {};
2 flags: ACC_STATIC
3 Code:
4 stack=3, locals=1, args_size=0
5 0: bipush 11
6 2: newarray byte
7 4: astore_0
8 5: aload_0
9 6: iconst_0

10 7: bipush -96
11 9: bastore
12 10: aload_0
13 11: iconst_1
14 12: iconst_0
15 13: bastore
16 ...
17 53: aload_0
18 54: bipush 10
19 56: iconst_1
20 57: bastore
21 58: aload_0
22 59: putstatic #23
23 62: return

Listing 5.15: An example of a
<clinit> method written by Soot.

1 static {};
2 flags: ACC_STATIC

4 Code:
5 stack=4, locals=1, args_size=0
6 0: bipush 11
7 2: newarray byte
8 4: dup
9 5: iconst_0

10 6: bipush -96
11 8: bastore
12 9: dup
13 10: iconst_1
14 11: iconst_0
15 12: bastore
16 ...
17 52: dup
18 53: bipush 10
19 55: iconst_1
20 56: bastore
21 57: putstatic #23
22 60: return

Listing 5.16: An example of a
<clinit> method written by Soot and
corrected by this phase.

We implement this by finding astore instructions and all following aload instructions
associated with the astore instruction. Then we remove the astore instructions and
replaces all the aload instructions by a dup instruction, except for the last load, which
is instead removed. In this way we avoid using both astore and aload instructions
while still having the same result.

5.7 Java Card Integer Support

In this phase we ensure that no local variables are stored as integers. The problem is
that Soot sometimes stores a local integer. Given the fact that the integer type

35

5.8. APPLIED OPTIMIZATIONS IMPLEMENTATION

on Java Card is optional confer [1, JCVM Section 2.2.3.1] the developer can pass a
commandline option to disable this conversion if the use of integer types is deliberate.
The commandline option is:

-p bb.JavaCardIntegerSupport enabled:false

We eliminate integers by iterating through each Baf instruction, looking for store
and load instructions. For each of these instructions we check if the type of the
instruction is integer, and if that is the case, we convert it to a short type instead.

An example of such a case can be seen in Listing 5.17.

1 ...
2 // Value of someVar depend on non-

duplicable calculation
3 if (someVar % 2 == 0) {
4 ..
5 }

Listing 5.17: Faulty code when
duplicated.

1 ...
2 // Value of someVar depend on non-

duplicable calculation
3 short someVar2 = (short)(someVar % 2);
4 if (someVar2 == 0) {
5 ..
6 }

Listing 5.18: Correct code when
duplicated.

The problem in Listing 5.17 is that when the calculation of someVar cannot be dupli-
cated, but the value should still be used in the duplicated if statement, the value will
be stored in a local variable. Since modulo instruction, irem, leaves an integer on
the operand stack, Soot will store the value as integer and load the stored value for the
duplicated if statement. This may result in problems on Java Card since it does not
generally support integers. Even though this could be solved by the programmer by
storing the calculation in a short variable, as seen in Listing 5.18, we decided that
this way of programming should not be considered wrong in combination with our tool.

5.8 Applied Optimizations

In order to produce efficient bytecode from Jimple code, we enable some of the built-in
optimization phases. The enabled phases in the jop pack can be seen in Figure F5-1
as Copy Propagator, Constant Propagator and Folder, Dead Assignment Eliminator,
and Unused Local Eliminator. The phases called Unconditional Branch Folder and
Unreachable Code Eliminator has been disabled as these phases removes the inserted
kill statement at the end of the method body. Removing unused variables and dead
assignments does not harm the implemented countermeasure. For the Duplicator the
duplicated statements are not used in any other way than the original code, and thus
if the code did not contain unused local variables or dead assignments before, the
rewritten code does not contain any of them. For call graph integrity the only added
local is checkIdentifier which cannot be unused. The Copy Propagator phase

36

5.9. SHORTCUTS IMPLEMENTATION

does cascading copy propagation which replaces copies of a variable with the direct
access to that variable where possible, e.g. x = y; z = 42 + x; would be replaced
with z = 42 + y;. The Constant Propagator and Folder evaluates expressions that
on compile-time can be determined to be constants, e.g. x = 3 * 4; would be written
as x = 12;.

Without applying the Copy Propagator phase we encountered unnecessary use of load-
and store-bytecodes when generating bytecode from Jimple. A pattern consisting of
three consecutive bytecodes: load 1, store 1, load 1, makes no sense because it
would have the same effect as a single load 1. Applying the above optimizing phases
on Jimple eliminated such bytecode pattern and further reduced the size of the program.

In the bb pack we have disabled the Local Packer phase. This is because Java Card
does not allow for locals to change types during a method. The Local Packer will
attempt to minimize the number of locals used in a method by reusing locals when
they are no longer used, potentially changing the type of the local.

5.9 Shortcuts

While making this tool a number of shortcuts have been taken. In this section we will
describe these shortcuts as well as what problems it might cause.

5.9.1 Side Effect on Fields

When we encounter an if statement whose condition is depending on an instance
or class variable, we do not create a new object for the duplication. We rather use
the same field and attempt to redo the calculations needed for the field. In certain
situations we are, however, unable to effectively calculate the correct result. Take the
example in Listing 5.19.

37

5.9. SHORTCUTS IMPLEMENTATION

1 public void someMethod() {
2 instanceVar1 = 5;
3 someOtherMethod();
4 if (instanceVar1 > 5) {
5 ...
6 }
7 }

9 public void someOtherMethod() {
10 instanceVar1 = 10;
11 }

Listing 5.19: Example where
duplication will calculate the wrong
result.

1 public void someMethod() {
2 instanceVar1 = 5;
3 someOtherMethod();
4 if (instanceVar1 > 5) {
5 instanceVar1 = 5;
6 if (instanceVar1 <= 5) {
7 // Error handling
8 } else {
9 ...

10 }
11 }
12 }

14 public void someOtherMethod() {
15 instanceVar1 = 10;
16 }

Listing 5.20: Incorrectly duplicated
method.

The problem in this case is that the side effect of the method someOtherMethod()
is to change the value of instanceVar1 which will not be reflected when we per-
form the duplication as seen in Listing 5.20, since we do not know that the call to
someOtherMethod() changes the value of instanceVar1. We have identified two
potential solutions for this problem. The first is to look at all the instructions between
the declaration of the variable and the if statement, whose condition uses the variable,
to see if any impure method call takes place. If such a call is found the recalculation
of the variable will be skipped and the existing variable will instead be loaded onto the
stack, and used by the second if statement. This solution will work, but some safe
recalculations will probably be skipped if the method that is called does not result in
a change in the used fields. A better solution is to recursively check the method calls
between the declaration and if statement, to see which fields are changed. In this way
it can be determined if it is safe to recalculate the value.

5.9.2 Switch Fallthrough

Currently we do not create any checks in a case of a switch statement if we detect
that it is possible that execution can fall through from the previous case. If we were
to do so, we would need to know which cases it can fall through, as well as which
values the condition should have for those cases. We should then create a check for
each possible value, for each case in the switch. A simple switch with 5 cases and a
default case, with fallthrough from case 1 to 3 can be seen in Listing 5.21 and a secured
version in Listing 5.22.

38

5.9. SHORTCUTS IMPLEMENTATION

1 public void someMethod(short var1) {
2 switch(var1) {
3 case 1:
4 ...
5 case 2:
6 ...
7 case 3:
8 ...
9 break;

10 case 4:
11 ...
12 break;
13 case 5:
14 ...
15 break;
16 default:
17 ...
18 }
19 }

Listing 5.21: Example of switch
statement with 5 cases and default
case.

1 public void someMethod(short var1) {
2 switch(var1) {
3 case 1:
4 if (var1 != 1) {
5 // Error handling
6 }
7 ...
8 case 2:
9 if (var1 != 1 && var1 != 2) {

10 // Error handling
11 }
12 ...
13 case 3:
14 if (var1 != 1 && var1 != 2 &&

var1 != 3) {
15 // Error handling
16 }
17 ...
18 break;
19 case 4:
20 if (var1 != 4) {
21 // Error handling
22 }
23 ...
24 break;
25 case 5:
26 if (var1 != 5) {
27 // Error handling
28 }
29 ...
30 break;
31 default:
32 ...
33 }
34 }

Listing 5.22: Condition check for
fallthrough.

On bytecode level the secured version will have an additional 8 if statements, one
for each check. Furthermore, according to [24] is it bad practice to omit the break
or return statement at the end of each case, and thereby allowing the flow to fall
through to the next case. Because of the potentially large code size overhead, as well
as the recommendation to end all cases with a break or return statement, we have
decided not to implement these checks. This means that cases which can be reached
because of fallthrough are not secured.

39

5.9. SHORTCUTS IMPLEMENTATION

40

CHAPTER 6
Testing

In this chapter we describe how testing of the rewriting tool is conducted as well as
which errors were found and corrected because of the test. Furthermore this chapter
describes which experiments we have done.

6.1 Test

In order to test that our tool produces the correct output a number of tests are con-
ducted. We test that for a certain input, we get the same output from the original
method and the rewritten method. We do this by creating a number of test methods,
each testing different cases in order to cover different constructions of bytecode, e.g.,
if statements, while loops, and switch statements. Each method takes a short
as input and returns a short as output. We then run each test method 32768 times
where the input for each call is the numbers from 0 to 32767. The same number is used
as input for both the original method and the rewritten method, this means that for a
correctly rewritten program, we will see the same output from both methods. We refer
to this as our output comparing test.

We also test that our tool produces the same output each time. We do this by manually
checking the rewritten class file for errors in the program on bytecode-level. If the class
is deemed correct we create a copy of it and uses it as the reference class. Whenever we
rewrite a new class we run the tests, which then compares the newly created class with
the reference class. Because of the call graph integrity the hashes of both classes cannot
be compared. This is because the IDs assigned to each method during the call graph
integrity phase may change from rewrite to rewrite. We therefore parse the reference
class into Jimple. Then for each method we compare the number of instructions.
If there are the same number of instructions we compare the toString() of each
instruction. For this to work we replace all class names and numbers by x in the
toString() output. This is necessary since the IDs will be different, and the class
name of the reference class is different from the class being tested. By replacing all
numbers we lose accuracy in the test, but we deem this to be acceptable since the
overall structure is still tested. If we do not change the way we rewrite the class or
the structure of the class we are rewriting, we expect to get the same structure for

41

6.1. TEST TESTING

each rewrite. We refer to this as our rewrite-monitor as it monitors the rewritten
program and fails when a difference in the rewriting occurs. This process is illustrated
in Figure F6-1. When the test fails a diff-tool can be used to see the difference between
the Current Accepted Class and the Newly Rewritten Class (after javap command).

Newly Rewritten
Class

Current Accepted
Class

Load into Soot

Same number of
instructions

Yes

Fail

No

Replace numbers
and class names

Compare toString()
for all instructions

All instructions
is the same?

No

Pass

Yes

Figure F6-1: Flowchart describing the process of the rewrite-monitor test.

6.1.1 Test Results

As a result of output comparing test an error was revealed showing that we did not
handle switch statements with fallthrough correctly. The tool inserted duplicated
branches for each switch statement case, but in the case of fallthrough every subse-
quent duplicated branch would fail, as the original case value would be wrong. When
the duplicated branch condition is not met, the program end in an error state, which
in this case is an endless loop. Therefore our tests would never finish when containing
switch statements with fallthrough.

We also discovered that, because of restructuring the implementation of the rewrit-

42

6.2. EXPERIMENTS & METRICS TESTING

ing tool, the look-up tables of a switch statement was not updated correctly in the
rewritten code. This error revealed it self through the output comparing test as the
execution of the rewritten would have a different control flow.

Another issue we discovered using our rewrite-monitor was that the purity analysis that
is implemented as part of the Soot library did not render methods creating objects or
persistent arrays on the heap as impure. This is not incorrect by the Java language
specification because the JVM implements a garbage collector to free such memory
again. This is not the case for the JCVM which specification does not state that
at garbage collector should be implemented and as such we are not guaranteed that
objects and persistent arrays are collected as garbage.

6.2 Experiments & Metrics

Besides testing that our tool rewrites correctly and that our test run without errors,
we are able to test our tool against a Java Card applet by generating and verifying a
CAP file. The Java Card SDK provide tools for converting class files into a CAP file
and for verifying that the CAP file is consistent w.r.t. the Java Card Virtual Machine
specification and that it is consistent with a context of a Java Card enabled device[4].

Our experiment in this regard is to take as a basis a sample Java Card Applet, convert it
into a CAP file and then verify that CAP file. Next step is to use the tool to implement
countermeasures in the same applet and do the process over again to verify that it is
still consistent.

Furthermore we gather metrics about the applet in that we count the number of certain
instructions before and after implementing the countermeasures. The metrics gathered
are the number of writes to EEPROM (i.e. the number of putstatic and putfield
instructions), the size of the class file in bytes, the number of invoke instructions, that is
invokespecial, invokevirtual, invokeinterface, and invokestatic, and
lastly the number of load and store instructions.

The difference in each of these metrics tell us indirectly something about the perfor-
mance of the applet whether that being memory footprint or running time.

Load and store instructions operate on memory located in RAM and only poses minor
impact on the running time of the applet. For every invokevirtual, invokespe-
cial, and invokeinterface instruction a method is resolved at runtime by the
JCVM by looking an index up in the constant pool while, among other checks, also
performing a firewall check that the method is allowed invocation from the current
context. This indicates that the instructions are expensive w.r.t. running time because
there are runtime lookups in tables depending on the type of reference.

The instruction invokestatic is less expensive w.r.t. running time because there
are less checks at runtime[1, JCVM Section 7.5.56]. For instance there is no firewall
checking for static invocation, only a lookup in the constant pool.

Counting the number of writes to EEPROM both tells us something about the lifespan

43

6.2. EXPERIMENTS & METRICS TESTING

of the Java Card, because EEPROM has a limited number of writes, but also something
about the running time as writing to EEPROM is around 10,000 times slower than
writes to RAM[29].

Lastly, the size of the .class file before and after tells us something about the storage
usage and may indicate whether there is space for the applet.

6.2.1 Results

Taking an excerpt of the sample applets provided with the Java Card SDK version
2.2.2, we have done our experiments on sigMsgRecApplet, transitApplet, Ac-
countAccessor, ConnectionManager, and SamplePasswdBioApppet. Each of
the applets has been converted to a .cap file with the provided converter tool, after
which the .cap files has been verified by the provided verifycap tool.

sigMsg-

RecApplet

transit-

Applet

Account-

Accessor

Connection-

Manager

SamplePasswd-

BioApplet

orig. rewrit. orig. rewrit. orig. rewrit. orig. rewrit. orig. rewrit.

CAP verified X X X X X X X X X X

EEPROM writes 11 14 21 45 8 10 2 8 2 4

Size in bytes 4716 4844 8042 9723 3650 3745 3796 4076 2444 2483

Invokevirtuals 15 15 26 30 9 10 8 9 12 13

Invokestatics 10 10 52 52 13 13 19 21 4 4

Invokeinterfaces 12 14 3 3 0 0 0 0 2 3

Invokespecials 5 5 18 18 4 4 12 12 2 2

Loads 100 118 263 362 85 112 67 94 38 48

Stores 150 150 51 60 31 32 19 19 19 18

Table T6-1: Table of metrics gathered for Java Card applets both before and after
implementing countermeasures.

Table T6-1 show metrics gathered for each of the sample applets before (orig.) and after
(rewrit.) applying the rewriting tool. The transitApplet is of particular interest
since it requires almost one hundred more loads and more than doubles the writes to
EEPROM. Furthermore the size has increased by approximately 20 %. Examining
further the produced bytecode of the rewriting tool, see Listing A.3, we see that a
write to the static CGI identifier variable is inserted 24 times, which explains the
extra writes to EEPROM. Furthermore, a total of 68 branching instructions have been
duplicated, which explains the high number of loads because every duplicated branching
instruction implies two or more instructions to either perform the calculation of the
condition variables again or simply load them.

44

6.2. EXPERIMENTS & METRICS TESTING

Whether the implied overhead of the implemented countermeasures are acceptable can
only be the judgement of the applet developer. In the example of transitApplet, if
the running time of the applet is an issue the developer might decide not to implement
the call graph integrity countermeasure to reduce the time consuming EEPROM writes.

45

6.2. EXPERIMENTS & METRICS TESTING

46

CHAPTER 7
Discussion

While developing this product a number of problems have been encountered which is
worth discussing. Early in the development we encountered a problem with the purity
analysis when working on ArrayList. If this was used in a program, the purity
analysis would take a very long time to finish. On our developing computers it took
more than 3 hours, before finally crashing due to OutOfMemoryError. At first this
was considered a problem, but after a bit of research it was concluded that ArrayList
is not part of Java Card, and therefore not a problem relevant for our tool.

During testing of the tool we encountered a serious problem. We were unable to con-
vert a lot of applets after rewriting them, because of type errors. We learned that
the converter requires that the class files contain debug information, specifically the
LocalVariableTable attribute is needed which tells the type of the local variables
in each method. We concluded that the version of Soot we used, version 2.5.0, was
unable to add this information to the rewritten class files, which meant that we were
unable to convert a lot of applets after rewriting the class files. We decided to use the
newer version, version 2.6.0, which unfortunately, as of writing, is still under develop-
ment. This version uses ASM[7] to create the bytecode, instead of Jasmin[17], which
is able to write the LocalVariableTable attribute. It does, however, also mean
that it was not completely bug-free. For a few applets the definition-use analysis ended
up in an endless loop, which meant that we were unable to rewrite these applets. We
decided that this problem did not outweigh the problem with the missing LocalVari-
ableTable. Both because we only encountered the endless loop in a single applet,
while the missing table caused problems for more applets, but also because of a hope
that the problem with the analysis will be resolved when Soot 2.6.0 is released in a
final version.

Another problem we encountered when converting rewritten applets was that we got
type errors for local variables. We localized this to be because of the “Local Packer”
optimization in the Baf body creation pack. This optimization intends to reduce the
number of local variables used by a method by reusing locals when they are no longer
used. This means that the type of a local memory slot may change throughout a
method. Soot is intended for Java where this is not a problem, but for Java Card this
is a problem. Therefore we disabled this optimization which meant that the applets
after rewriting may have used a few more locals than before rewriting. This was not

47

7.1. CONCLUSION DISCUSSION

an optimal solution, but necessary to make the rewritten applets work on Java Card.

We generally had a few problems because of Soot’s focus on the Java specification,
rather than the Java Card specification. Some of these problems could be solved by
enabling or disabling phases in the framework. Other problems required that we added
extra phases to the Baf body creation pack, as mentioned in Section 5.6 and Section 5.7.

Some Java Card applets used Remote Method Invocation (RMI), which gave problems
for our call graph integrity countermeasure. Soot was unable to detect which methods
were called when RMI was used. This meant that we were unable to implement the call
graph integrity countermeasure for those applets. We decided that in the time frame
of this project, our time would be better spent elsewhere.

We decided for our call graph integrity to use a static field in a separate class to store
the expected ID when calling methods. This solution could be improved by using a
transient array instead. In this way the read and write speed would be improved,
because the value would be stored in RAM instead of the EEPROM. In order for this
to work, we would have to call the makeTransientShortArray() method from the
Java Card API. This should happen in the install method of the applet in order to
only create the array once.

For this project we focused on Java Card 2, since this version was widely used. There
exists a new version, version 3, which has some new capabilities, e.g. a volatile heap,
while still being compatible with version 2[2]. This decision also influenced how we
handled object creation, since Java Card does not necessarily use garbage collection[1,
JCVM Section 3.3]. We therefore did not duplicate objects, even if the object was part
of a condition. If our focus was on Java Card 3, the extra volatile heap would allow
us to duplicate some objects, since they would be removed when the power source was
removed.

7.1 Conclusion

In Section 1.1 we list a number of questions we would like to be answered throughout
this project.

The first question is:

What is required to automatically insert countermeasures in a Java Card
applet?

Because of our choice to work on class files a way of reading, manipulating, and writing
bytecode is necessary. Furthermore, a number of analyses are needed to get the nec-
essary information to properly insert the countermeasures. For our project we needed
a call graph, definition-use and use-definition chains, and a purity analysis. The call
graph is needed for our call graph integrity in order to know the intra-procedural con-
trol flow of the applet. The chains are used by our branch duplication to know which
variables we should duplicate to perform the needed calculations. Finally the purity
analysis is used to decide whether we can safely duplicate calls to a method.

48

7.1. CONCLUSION DISCUSSION

The second question is:

What has to be considered when implementing branch duplication and call
graph integrity?

We learned during the project that for especially branch duplication there are a lot of
cases to take into account. Generally it is important to think about when you may
end up overwriting a value in the duplication that will cause the program to break.
This is for example the case for loops, if the loop condition is part of a nested branch.
Then the needed calculations may not be feasible since it may cause an endless loop.
The considerations we have made for branch duplication can be read in Section 3.1.1.
For call graph integrity there is an important consideration to make, namely how to
handle polymorphism. Another consideration is that since Java Card is very limited
on resources, the solution should not use too much memory or be too computationally
expensive. Our consideration for call graph integrity can be found in Section 3.2.1.

The last question is:

How much of the process can be automated?

For branch duplication the whole process can be automated. Without any intervention
from the developer the process can be applied to all methods in a class. If, however,
only some methods should be processed, or even only some of the statements in a
method should be processed, it might be necessary for the developer to help the tool in
deciding which statements should be duplicated. This can for example be done using
a special naming convention or annotation for the methods that should be processed.
Generally it can be hard to automatically determine the sensitivity of a piece of code.

49

7.1. CONCLUSION DISCUSSION

50

Bibliography

[1] Mar 2006. URL http://www.oracle.com/technetwork/java/
javacard/specs-138637.html.

[2] Sep 2011. URL http://www.oracle.com/technetwork/java/javacard/
specs-jsp-136430.html.

[3] Jul 2015. URL http://javalib.gforge.inria.fr/doc/sawja-api/
sawja-1.5.1-doc/api/index.html.

[4] May 2016. URL https://docs.oracle.com/javacard/3.0.5/guide/
verifying cap files.htm.

[5] Olivier Benot. Encyclopedia of Cryptography and Security, chapter Fault Attack,
pages 452–453. Springer US, Boston, MA, 2011. ISBN 978-1-4419-5906-5. doi:
10.1007/978-1-4419-5906-5 505. URL http://dx.doi.org/10.1007/978-
1-4419-5906-5 505.

[6] Apache Commons. Bcel. https://commons.apache.org/proper/
commons-bcel/, Marts 2016. visited: 23. Marts 2016.

[7] OW2 Consortium. Asm. http://asm.ow2.org/, Marts 2016. visited: 23.
Marts 2016.

[8] Julian Dolby and Manu Sridharan. Static and Dynamic Program Analysis Using
WALA. 2010. URL http://wala.sourceforge.net/files/PLDI WALA
Tutorial.pdf.

[9] Julian Dolby, Manu Sridharan, and Stephen Fink. T.j. watson libraries for analysis
(wala). URL http://wala.sourceforge.net/.

[10] Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. Static Analysis:
7th International Symposium, SAS 2000, Santa Barbara, CA, USA, June 29 - July
1, 2000. Proceedings, chapter Efficient Inference of Static Types for Java Bytecode,
pages 199–219. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000. ISBN 978-3-
540-45099-3. doi: 10.1007/978-3-540-45099-3 11. URL http://dx.doi.org/
10.1007/978-3-540-45099-3 11.

[11] Sable Research Group. Soot - a framework for analyzing and transforming java and
android applications. http://sable.github.io/soot/, Marts 2016. visited:
16. Marts 2016.

[12] Sable Research Group. Packs and phases in soot. https://github.com/

51

http://www.oracle.com/technetwork/java/javacard/specs-138637.html
http://www.oracle.com/technetwork/java/javacard/specs-138637.html
http://www.oracle.com/technetwork/java/javacard/specs-jsp-136430.html
http://www.oracle.com/technetwork/java/javacard/specs-jsp-136430.html
http://javalib.gforge.inria.fr/doc/sawja-api/sawja-1.5.1-doc/api/index.html
http://javalib.gforge.inria.fr/doc/sawja-api/sawja-1.5.1-doc/api/index.html
https://docs.oracle.com/javacard/3.0.5/guide/verifying_cap_files.htm
https://docs.oracle.com/javacard/3.0.5/guide/verifying_cap_files.htm
http://dx.doi.org/10.1007/978-1-4419-5906-5_505
http://dx.doi.org/10.1007/978-1-4419-5906-5_505
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
http://asm.ow2.org/
http://wala.sourceforge.net/files/PLDI_WALA_Tutorial.pdf
http://wala.sourceforge.net/files/PLDI_WALA_Tutorial.pdf
http://wala.sourceforge.net/
http://dx.doi.org/10.1007/978-3-540-45099-3_11
http://dx.doi.org/10.1007/978-3-540-45099-3_11
http://sable.github.io/soot/
https://github.com/Sable/soot/wiki/Packs-and-phases-in-Soot
https://github.com/Sable/soot/wiki/Packs-and-phases-in-Soot
https://github.com/Sable/soot/wiki/Packs-and-phases-in-Soot

BIBLIOGRAPHY BIBLIOGRAPHY

Sable/soot/wiki/Packs-and-phases-in-Soot, Marts 2016. visited: 17.
Marts 2016.

[13] Sable Research Group. Soot command-line options. https://ssebuild.
cased.de/nightly/soot/doc/soot options.htm, Marts 2016. visited:
23. Marts 2016.

[14] René Rydhof Hansen. personal communication.

[15] Laurent Hubert, Nicolas Barré, Frédéric Besson, Delphine Demange, Thomas P.
Jensen, Vincent Monfort, David Pichardie, and Tiphaine Turpin. Sawja: Static
analysis workshop for java. CoRR, abs/1007.3353, 2010. URL http://arxiv.
org/abs/1007.3353.

[16] Chien-Hung Liu, D. C. Kung, and Pei Hsia. Object-based data flow testing of web
applications. In Quality Software, 2000. Proceedings. First Asia-Pacific Confer-
ence on, pages 7–16, 2000. doi: 10.1109/APAQ.2000.883773.

[17] Jonathan Meyer. Jasmin home page, Oct 2004. URL http://jasmin.
sourceforge.net/.

[18] S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond. Chip and pin is broken. In
2010 IEEE Symposium on Security and Privacy, pages 433–446, May 2010. doi:
10.1109/SP.2010.33.

[19] Ed Ort. Developing a java card applet, Aug 2001. URL http:
//www.oracle.com/technetwork/java/embedded/javacard/
documentation/applet-136808.html.

[20] Eric Poll. Embedded software security, July 2015. URL https://www.cs.ru.
nl/E.Poll/talks/ISSIPS erik poll.pdf.

[21] Ando Saabas and Tarmo Uustalu. Type systems for optimizing stack-based code.
Electronic Notes in Theoretical Computer Science, 2007. URL http://set.ee/
publications/bytecode07.pdf.

[22] Alexandru Salcianu and Martin Rinard. A combined pointer and purity analysis
for java programs. CSAIL Technical Reports July 1, 2003, 2004. URL http:
//hdl.handle.net/1721.1/30470.

[23] Darlene Storm. Hack to steal cars with keyless ignition: Volkswagen spent 2 years
hiding flaw, Aug 2015. URL http://www.computerworld.com/article/
2971826/cybercrime-hacking/hack-to-steal-cars-with-
keyless-ignition-volkswagen-spent-2-years-hiding-flaw.html.

[24] David Svoboda. Msc17-c. finish every set of statements associated
with a case label with a break statement, Feb 2016. URL https:
//www.securecoding.cert.org/confluence/display/c/MSC17-
C.+Finish+every+set+of+statements+associated+with+a+case+
label+with+a+break+statement.

[25] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

52

https://github.com/Sable/soot/wiki/Packs-and-phases-in-Soot
https://github.com/Sable/soot/wiki/Packs-and-phases-in-Soot
https://github.com/Sable/soot/wiki/Packs-and-phases-in-Soot
https://ssebuild.cased.de/nightly/soot/doc/soot_options.htm
https://ssebuild.cased.de/nightly/soot/doc/soot_options.htm
http://arxiv.org/abs/1007.3353
http://arxiv.org/abs/1007.3353
http://jasmin.sourceforge.net/
http://jasmin.sourceforge.net/
http://www.oracle.com/technetwork/java/embedded/javacard/documentation/applet-136808.html
http://www.oracle.com/technetwork/java/embedded/javacard/documentation/applet-136808.html
http://www.oracle.com/technetwork/java/embedded/javacard/documentation/applet-136808.html
https://www.cs.ru.nl/E.Poll/talks/ISSIPS_erik_poll.pdf
https://www.cs.ru.nl/E.Poll/talks/ISSIPS_erik_poll.pdf
http://set.ee/publications/bytecode07.pdf
http://set.ee/publications/bytecode07.pdf
http://hdl.handle.net/1721.1/30470
http://hdl.handle.net/1721.1/30470
http://www.computerworld.com/article/2971826/cybercrime-hacking/hack-to-steal-cars-with-keyless-ignition-volkswagen-spent-2-years-hiding-flaw.html
http://www.computerworld.com/article/2971826/cybercrime-hacking/hack-to-steal-cars-with-keyless-ignition-volkswagen-spent-2-years-hiding-flaw.html
http://www.computerworld.com/article/2971826/cybercrime-hacking/hack-to-steal-cars-with-keyless-ignition-volkswagen-spent-2-years-hiding-flaw.html
https://www.securecoding.cert.org/confluence/display/c/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement
https://www.securecoding.cert.org/confluence/display/c/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement
https://www.securecoding.cert.org/confluence/display/c/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement
https://www.securecoding.cert.org/confluence/display/c/MSC17-C.+Finish+every+set+of+statements+associated+with+a+case+label+with+a+break+statement

BIBLIOGRAPHY BIBLIOGRAPHY

Vijay Sundaresan. Soot - a java bytecode optimization framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Col-
laborative Research, CASCON ’99, pages 13–. IBM Press, 1999. URL http:
//dl.acm.org/citation.cfm?id=781995.782008.

[26] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. Compiler Construction: 9th International Con-
ference, CC 2000 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2000 Berlin, Germany, March 25 – April
2, 2000 Proceedings, chapter Optimizing Java Bytecode Using the Soot Frame-
work: Is It Feasible?, pages 18–34. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2000. ISBN 978-3-540-46423-5. doi: 10.1007/3-540-46423-9 2. URL
http://dx.doi.org/10.1007/3-540-46423-9 2.

[27] Raja Vallée-Rai. Soot: A java bytecode optimization framework, October 2000.

[28] Abe White. Serp - overview. http://serp.sourceforge.net/, Marts 2016.
visited: 23. Marts 2016.

[29] Kenneth Cox Wolfgang Rankl. Smart Card Applications: Design models for using
and programming smart cards, chapter Implementation Patterns, page 124. Wiley,
2007. ISBN 978-0-470-05882-4.

[30] M. Zilli, W. Raschke, R. Weiss, J. Loinig, and C. Steger. A high performance java
card virtual machine interpreter based on an application specific instruction-set
processor. In Digital System Design (DSD), 2014 17th Euromicro Conference on,
pages 270–278, Aug 2014. doi: 10.1109/DSD.2014.47.

53

http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008
http://dx.doi.org/10.1007/3-540-46423-9_2
http://serp.sourceforge.net/

BIBLIOGRAPHY BIBLIOGRAPHY

54

APPENDIX A
TransitApplet

In the following a complete sample applet is given first in source code, then in bytecode
as produced by the javap tool provided with the Java SDK excluding the constant
pool, and lastly a bytecode output of the applet with both call graph integrity and
branch duplication implemented.

1 /*
2 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
3 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
4 */

6 package com.sun.javacard.samples.transit;

8 import javacard.framework.APDU;
9 import javacard.framework.Applet;

10 import javacard.framework.ISO7816;
11 import javacard.framework.ISOException;
12 import javacard.framework.JCSystem;
13 import javacard.framework.OwnerPIN;
14 import javacard.framework.Util;
15 import javacard.security.DESKey;
16 import javacard.security.KeyBuilder;
17 import javacard.security.RandomData;
18 import javacard.security.Signature;
19 import javacardx.crypto.Cipher;

21 /**
22 * This applet implements the on-card part of a transit system solution. The
23 * on-card applet and the off-card applications (transit terminal and POS
24 * terminal) use a mutual authentication scheme based on a dynamically generated
25 * DES session key to ensure data integrity and origin authentication during a
26 * session.
27 *
28 * When interacting with a POS terminal, the account maintained on the card can
29 * be credited or queried for the current balance.
30 *
31 * When interacting with a transit terminal, the transit system entry and the
32 * exit events are checked for consistency and processed - the account
33 * maintained on the card is debited upon proper exit from the transit system.
34 *
35 * Design notes:
36 * - This sample transit applet does not account for any admin or self-admin use

cases such as
37 * resetting the card of a transit system user when it is in an inconsistent transit
38 * state. Such an inconsistent state can, for example, result from the user jumping

the gates when

55

TRANSITAPPLET

39 * the turnstile is out of order...
40 * - This sample transit applet does not account for any system-wide transactional
41 * operations. For example, during a credit operation, if the user removes his card
42 * just after the balance has been updated but before the APDU response gets to
43 * the terminal, the account on the card will remain credited but the terminal will
44 * only be able to detect an IO error b/w the card and the card reader.
45 * - The constants defined for this class should have been shared through
46 * an additional class or interface with the terminal code
47 * (see com.sun.javacard.clientsamples.transit.Constants).
48 * - This applet could be refactored so that the mutual authentication code
49 * be moved in a base abstract class and the transit system specific behavior be
50 * implemented in a subclass of this base class. This refactoring would facilitate
51 * the reuse of the mutual authentication scheme in other application domain.
52 */
53 public class TransitApplet extends Applet {

55 // Codes of INS byte in the command APDU header

57 /**
58 * INS value for ISO 7816-4 VERIFY command
59 */
60 final static byte VERIFY = (byte) 0x20;

62 /**
63 * INS value for INITIALIZE_SESSION command
64 */
65 final static byte INITIALIZE_SESSION = (byte) 0x30;

67 /**
68 * INS value for PROCESS_REQUEST command
69 */
70 final static byte PROCESS_REQUEST = (byte) 0x40;

72 // Tags for TLV records in PROCESS_REQUEST C-APDU

74 /**
75 * TLV Tag for PROCESS_ENTRY request
76 */
77 final static byte PROCESS_ENTRY = (byte) 0xC1;

79 /**
80 * TLV Tag for PROCESS_EXIT request
81 */
82 final static byte PROCESS_EXIT = (byte) 0xC2;

84 /**
85 * TLV Tag for CREDIT request
86 */
87 final static byte CREDIT = (byte) 0xC3;

89 /**
90 * TLV Tag for GET_BALANCE request
91 */
92 final static byte GET_BALANCE = (byte) 0xC4;

94 // Offsets of TLV components in PROCESS_REQUEST C-APDU [CLA, INS, P1, P2, LC
95 // T L V...]

97 /**
98 * TLV tag offset
99 */

100 final static short TLV_TAG_OFFSET = ISO7816.OFFSET_CDATA;

102 /**
103 * TLV length offset

56

TRANSITAPPLET

104 */
105 final static short TLV_LENGTH_OFFSET = TLV_TAG_OFFSET + 1;

107 /**
108 * TLV value offset
109 */
110 final static short TLV_VALUE_OFFSET = TLV_LENGTH_OFFSET + 1;

112 /**
113 * Maximum allowed balance
114 */
115 final static short MAX_BALANCE = (short) 500;

117 /**
118 * Minimum balance to start transit
119 */
120 final static short MIN_TRANSIT_BALANCE = (short) 10;

122 /**
123 * Maximum amount to be credited
124 */
125 final static short MAX_CREDIT_AMOUNT = (short) 100;

127 /**
128 * Maximum number of incorrect tries before the PIN is blocked
129 */
130 final static byte MAX_PIN_TRIES = (byte) 0x03;

132 /**
133 * Maximum PIN size
134 */
135 final static byte MAX_PIN_SIZE = (byte) 0x08;

137 /**
138 * SW bytes for PIN verification failure
139 */
140 final static short SW_VERIFICATION_FAILED = 0x6300;

142 /**
143 * SW bytes for PIN validation required
144 */
145 final static short SW_PIN_VERIFICATION_REQUIRED = 0x6301;

147 /**
148 * SW bytes for invalid credit amount (amount > MAX_CREDIT_AMOUNT or amount <
149 * 0)
150 */
151 final static short SW_INVALID_TRANSACTION_AMOUNT = 0x6A83;

153 /**
154 * SW bytes for maximum balance exceeded
155 */
156 final static short SW_EXCEED_MAXIMUM_BALANCE = 0x6A84;

158 /**
159 * SW bytes for negative balance reached
160 */
161 final static short SW_NEGATIVE_BALANCE = 0x6A85;

163 /**
164 * SW bytes for wrong signature condition
165 */
166 final static short SW_WRONG_SIGNATURE = (short) 0x9105;

168 /**

57

TRANSITAPPLET

169 * SW bytes for minimum transit balance not met
170 */
171 final static short SW_MIN_TRANSIT_BALANCE = (short) 0x9106;

173 /**
174 * SW bytes for invalid transit state
175 */
176 final static short SW_INVALID_TRANSIT_STATE = (short) 0x9107;

178 /**
179 * SW bytes for success, used in MAC
180 */
181 final static short SW_SUCCESS = (short) 0x9000;

183 /**
184 * Unique ID length
185 */
186 final static short UID_LENGTH = (short) 8;

188 /**
189 * DES key length in bytes
190 */
191 final static short LENGTH_DES_BYTE = (short) (KeyBuilder.LENGTH_DES / 8);

193 /**
194 * Host and card challenge length (note: (2 * CHALLENGE_LENGTH) * 8 ==
195 * KeyBuilder.LENGTH_DES
196 */
197 final static short CHALLENGE_LENGTH = (short) 4;

199 /**
200 * MAC length as generated by Signature.ALG_DES_MAC8_ISO9797_M2
201 */
202 final static short MAC_LENGTH = (short) 8;

204 /**
205 * Unique ID
206 */
207 private byte[] uid;

209 // Signature/key objects

211 /**
212 * Cipher used to encrypt - using the static DES key - the derivation data
213 * to form the session key
214 */
215 private Cipher cipher;

217 /**
218 * DES static key, shared b/w host and card
219 */
220 private DESKey staticKey;

222 /**
223 * 4-bytes Card challenge
224 */
225 private byte[] cardChallenge; // Transient

227 /**
228 * 8-bytes key derivation data, generated from the host challenge and the
229 * card challenge
230 */
231 private byte[] keyDerivationData; // Transient

233 /**

58

TRANSITAPPLET

234 * 8-bytes session key data, generated from the derivation data
235 */
236 private byte[] sessionKeyData; // Transient

238 /**
239 * DES session key, generated from the derivation data
240 */
241 private DESKey sessionKey; // Transient key

243 /**
244 * Indicates whether or not to use transient session key - for performance
245 * measurement only
246 */
247 private boolean useTransientKey = true;

249 /**
250 * Signature initialized with the DES key and used to verify incoming
251 * messages and to sign outgoing messages
252 */
253 private Signature signature;

255 /**
256 * Random data generator, used to generate the card challenge
257 */
258 private RandomData random;

260 /**
261 * The user PIN
262 */
263 private OwnerPIN pin;

265 /**
266 * The balance
267 */
268 private short balance = (short) 0;

270 /**
271 * The entry ststion id, set to (-1) when not in transit
272 */
273 private short entryStationId = (short) -1;

275 /**
276 * A correlation id that may be used by the backend system to correlate
277 * entry and exit events
278 */
279 private byte correlationId = (byte) 0;

281 /**
282 * Creates a new Transit applet instance.
283 *
284 * @param bArray
285 * The array containing installation parameters
286 * @param bOffset
287 * The starting offset in bArray
288 * @param bLength
289 * The length in bytes of the parameter data in bArray
290 */
291 protected TransitApplet(byte[] bArray, short bOffset, byte bLength) {

293 // Create static DES key
294 staticKey = (DESKey) KeyBuilder.buildKey(KeyBuilder.TYPE_DES,
295 KeyBuilder.LENGTH_DES, false);

297 // Create cipher
298 cipher = Cipher.getInstance(Cipher.ALG_DES_CBC_ISO9797_M2, false);

59

TRANSITAPPLET

300 // Create card challenge transient buffer
301 cardChallenge = JCSystem.makeTransientByteArray(CHALLENGE_LENGTH,
302 JCSystem.CLEAR_ON_DESELECT);

304 // Create key derivation data transient buffer
305 keyDerivationData = JCSystem.makeTransientByteArray(
306 (short) (2 * CHALLENGE_LENGTH), JCSystem.CLEAR_ON_DESELECT);

308 // Create session key data transient buffer
309 sessionKeyData = JCSystem.makeTransientByteArray(
310 (short) (2 * keyDerivationData.length),
311 JCSystem.CLEAR_ON_DESELECT);
312 // XXX: Allocates more than actual key to contain the complete
313 // encrypted key derivation data

315 // Create signature
316 signature = Signature.getInstance(Signature.ALG_DES_MAC8_ISO9797_M2,
317 false);

319 byte aidLen = bArray[bOffset]; // aid length
320 if (aidLen == (byte) 0) {
321 register();
322 } else {
323 register(bArray, (short) (bOffset + 1), aidLen);
324 }

326 // Ignore control info
327 bOffset = (short) (bOffset + aidLen + 1);
328 byte infoLen = bArray[bOffset]; // control info length
329 bOffset = (short) (bOffset + infoLen + 1);

331 byte paramLen = bArray[bOffset++]; // applet parameters length

333 // Retrieve UID, static key data and the PIN initialization values from
334 // installation parameters

336 if (paramLen <= (LENGTH_DES_BYTE + UID_LENGTH)
337 || paramLen > (LENGTH_DES_BYTE + UID_LENGTH + MAX_PIN_SIZE)) {
338 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
339 }

341 // Retrieve the UID
342 uid = new byte[UID_LENGTH];
343 Util.arrayCopy(bArray, bOffset, uid, (short) 0, UID_LENGTH);
344 bOffset += UID_LENGTH;

346 // Retrieve the static key data
347 staticKey.setKey(fixParity(bArray, bOffset, LENGTH_DES_BYTE), bOffset);
348 bOffset += LENGTH_DES_BYTE;

350 // Retrieve the flag indicating whether or not to use a transient key
351 useTransientKey = (bArray[bOffset] != (byte) 0);
352 bOffset++;

354 // Retrieve the PIN
355 pin = new OwnerPIN(MAX_PIN_TRIES, MAX_PIN_SIZE);
356 pin.update(bArray, bOffset,
357 (byte) (paramLen - UID_LENGTH - LENGTH_DES_BYTE - 1));

359 // Create transient DES session key
360 if (useTransientKey) {
361 sessionKey = (DESKey) KeyBuilder.buildKey(
362 KeyBuilder.TYPE_DES_TRANSIENT_DESELECT, KeyBuilder.LENGTH_DES,
363 false);

60

TRANSITAPPLET

364 } else {
365 sessionKey = (DESKey) KeyBuilder.buildKey(
366 KeyBuilder.TYPE_DES, KeyBuilder.LENGTH_DES,
367 false);
368 }

370 // Create and initialize the ramdom data generator with the UID (seed)
371 random = RandomData.getInstance(RandomData.ALG_PSEUDO_RANDOM);
372 random.setSeed(uid, (short) 0, UID_LENGTH);

374 // Initialize the cipher with the static key
375 cipher.init(staticKey, Cipher.MODE_ENCRYPT);

377 }

379 public static void install(byte[] bArray, short bOffset, byte bLength) {
380 // Create a Transit applet instance
381 new TransitApplet(bArray, bOffset, bLength);
382 }

384 public boolean select() {
385 // The applet declines to be selected
386 // if the PIN is blocked.
387 if (pin.getTriesRemaining() == 0) {
388 return false;
389 }
390 return true;
391 }

393 public void deselect() {
394 // Reset the PIN value
395 pin.reset();
396 if (!useTransientKey) {
397 sessionKey.clearKey();
398 }
399 }

401 public void process(APDU apdu) {

403 // C-APDU: [CLA, INS, P1, P2, LC, ...]

405 byte[] buffer = apdu.getBuffer();

407 // Dispatch C-APDU for processing
408 if (!apdu.isISOInterindustryCLA()) {
409 switch (buffer[ISO7816.OFFSET_INS]) {
410 case INITIALIZE_SESSION:
411 initializeSession(apdu);
412 return;
413 case PROCESS_REQUEST:
414 processRequest(apdu);
415 return;
416 default:
417 ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);
418 }
419 } else {
420 if (buffer[ISO7816.OFFSET_INS] == (byte)(0xA4)) {
421 return;
422 } else if (buffer[ISO7816.OFFSET_INS] == VERIFY) {
423 verify(apdu);
424 } else {
425 ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);
426 }
427 }
428 }

61

TRANSITAPPLET

430 /**
431 * Initializes a CAD/card interaction session. This is the first step of
432 * mutual authentication. A new card challenge is generated and used along
433 * with the passed-in host challenge to generate the derivation data from
434 * which a new session key is derived. The card challenge is appended to the
435 * response message. The response message is signed using the newly
436 * generated session key then sent back. Note that mutual authentication is
437 * subsequently completed upon succesful verification of the signature of
438 * the first request received.
439 *
440 * @param apdu
441 * The APDU
442 */
443 private void initializeSession(APDU apdu) {

445 // C-APDU: [CLA, INS, P1, P2, LC, [4-bytes Host Challenge]]

447 byte[] buffer = apdu.getBuffer();

449 if ((buffer[ISO7816.OFFSET_P1] != 0)
450 || (buffer[ISO7816.OFFSET_P2] != 0)) {
451 ISOException.throwIt(ISO7816.SW_INCORRECT_P1P2);
452 }

454 byte numBytes = buffer[ISO7816.OFFSET_LC];

456 byte count = (byte) apdu.setIncomingAndReceive();

458 if (numBytes != CHALLENGE_LENGTH || count != CHALLENGE_LENGTH) {
459 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
460 }

462 // Generate card challenge
463 generateCardChallenge();

465 // Generate key derivation data from host challenge and card challenge
466 generateKeyDerivationData(buffer);

468 // Generate session key from derivation data
469 generateSessionKey();

471 // R-APDU: [[4-bytes Card Challenge], [2-bytes Status Word], [8-bytes
472 // MAC]]

474 short offset = 0;

476 // Append card challenge to response message
477 offset = Util.arrayCopyNonAtomic(cardChallenge, (short) 0, buffer,
478 offset, CHALLENGE_LENGTH);

480 // Append status word to response message
481 offset = Util.setShort(buffer, offset, SW_SUCCESS);

483 // Sign response message and append MAC to response message
484 offset = generateMAC(buffer, offset);

486 // Send R-APDU
487 apdu.setOutgoingAndSend((short) 0, offset);
488 }

490 /**
491 * Processes an incoming request. The request message signature is verified,
492 * then it is dispatched to the relevant handling method. The response
493 * message is then signed and sent back.

62

TRANSITAPPLET

494 *
495 * @param apdu
496 * The APDU
497 */
498 private void processRequest(APDU apdu) {

500 // C-APDU: [CLA, INS, P1, P2, LC, [Request Message], [8-bytes MAC]]
501 // Request Message: [T, L, [V...]]

503 byte[] buffer = apdu.getBuffer();

505 if ((buffer[ISO7816.OFFSET_P1] != 0)
506 || (buffer[ISO7816.OFFSET_P2] != 0)) {
507 ISOException.throwIt(ISO7816.SW_INCORRECT_P1P2);
508 }

510 byte numBytes = buffer[ISO7816.OFFSET_LC];

512 byte count = (byte) apdu.setIncomingAndReceive();

514 if (numBytes != count) {
515 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
516 }

518 // Check request message signature
519 if (!checkMAC(buffer)) {
520 ISOException.throwIt(SW_WRONG_SIGNATURE);
521 }

523 if ((numBytes - MAC_LENGTH) != (buffer[TLV_LENGTH_OFFSET] + 2)) {
524 ISOException.throwIt(ISO7816.SW_WRONG_DATA);
525 }

527 // R-APDU: [[Response Message], [2-bytes Status Word], [8-bytes MAC]]

529 short offset = 0;

531 // Dispatch request message for processing
532 switch (buffer[TLV_TAG_OFFSET]) {
533 case PROCESS_ENTRY:
534 offset = processEntry(buffer, TLV_VALUE_OFFSET,
535 buffer[TLV_LENGTH_OFFSET]);
536 break;
537 case PROCESS_EXIT:
538 offset = processExit(buffer, TLV_VALUE_OFFSET,
539 buffer[TLV_LENGTH_OFFSET]);
540 break;
541 case CREDIT:
542 offset = credit(buffer, TLV_VALUE_OFFSET, buffer[TLV_LENGTH_OFFSET]);
543 break;
544 case GET_BALANCE:
545 offset = getBalance(buffer, TLV_VALUE_OFFSET,
546 buffer[TLV_LENGTH_OFFSET]);
547 break;
548 default:
549 ISOException.throwIt(ISO7816.SW_FUNC_NOT_SUPPORTED);
550 }

552 // Append status word to response message
553 offset = Util.setShort(buffer, offset, SW_SUCCESS);

555 // Sign response message and append MAC to response message
556 offset = generateMAC(buffer, offset);

558 // Send R-APDU

63

TRANSITAPPLET

559 apdu.setOutgoingAndSend((short) 0, offset);
560 }

562 /**
563 * Verifies the PIN.
564 *
565 * @param apdu
566 * The APDU
567 */
568 private void verify(APDU apdu) {

570 byte[] buffer = apdu.getBuffer();

572 byte numBytes = buffer[ISO7816.OFFSET_LC];

574 byte count = (byte) apdu.setIncomingAndReceive();

576 if (numBytes != count) {
577 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
578 }

580 // Verify PIN
581 if (pin.check(buffer, ISO7816.OFFSET_CDATA, numBytes) == false) {
582 ISOException.throwIt(SW_VERIFICATION_FAILED);
583 }
584 }

586 /**
587 * Generates a new random card challenge.
588 *
589 */
590 private void generateCardChallenge() {
591 // Generate random card challenge
592 random.generateData(cardChallenge, (short) 0, CHALLENGE_LENGTH);
593 }

595 /**
596 * Generates the session key derivation data from the passed-in host
597 * challenge and the card challenge.
598 *
599 * @param buffer
600 * The APDU buffer
601 */
602 private void generateKeyDerivationData(byte[] buffer) {
603 byte numBytes = buffer[ISO7816.OFFSET_LC];

605 if (numBytes < CHALLENGE_LENGTH) {
606 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
607 }

609 // Derivation data: [[8-bytes host challenge], [8-bytes card challenge]]

611 // Append host challenge (from buffer) to derivation data
612 Util.arrayCopy(buffer, ISO7816.OFFSET_CDATA, keyDerivationData,
613 (short) 0, CHALLENGE_LENGTH);
614 // Append card challenge to derivation data
615 Util.arrayCopy(cardChallenge, (short) 0, keyDerivationData,
616 CHALLENGE_LENGTH, CHALLENGE_LENGTH);
617 }

619 /**
620 * Generates a new DES session key from the derivation data.
621 *
622 */
623 private void generateSessionKey() {

64

TRANSITAPPLET

624 cipher.doFinal(keyDerivationData, (short) 0, (short) keyDerivationData.length
,

625 sessionKeyData, (short) 0);
626 // Generate new session key from encrypted derivation data
627 sessionKey.setKey(fixParity(sessionKeyData, (short) 0, (short) sessionKeyData

.length /*LENGTH_DES_BYTE*/), (short) 0);
628 }

630 /**
631 * Checks the request message signature.
632 *
633 * @param buffer
634 * The APDU buffer
635 * @return true if the message signature is correct; false otherwise
636 */
637 private boolean checkMAC(byte[] buffer) {
638 byte numBytes = buffer[ISO7816.OFFSET_LC];

640 if (numBytes <= MAC_LENGTH) {
641 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
642 }

644 // Initialize signature with current session key for verification
645 signature.init(sessionKey, Signature.MODE_VERIFY);
646 // Verify request message signature
647 return signature.verify(buffer, ISO7816.OFFSET_CDATA,
648 (short) (numBytes - MAC_LENGTH), buffer,
649 (short) (ISO7816.OFFSET_CDATA + numBytes - MAC_LENGTH),
650 MAC_LENGTH);
651 }

653 /**
654 * Generates the response message MAC: generates the MAC and appends the MAC
655 * to the response message.
656 *
657 * @param buffer
658 * The APDU buffer
659 * @param offset
660 * The offset of the MAC in the buffer
661 * @return The resulting length of the response message
662 */
663 private short generateMAC(byte[] buffer, short offset) {
664 // Initialize signature with current session key for signing
665 signature.init(sessionKey, Signature.MODE_SIGN);
666 // Sign response message and append the MAC to the response message
667 short sigLength = signature.sign(buffer, (short) 0, offset, buffer,
668 offset);
669 return (short) (offset + sigLength);
670 }

672 /**
673 * Processes a transit entry event. The passed-in entry station ID is
674 * recorded and the correlation ID is incremented. The UID and the
675 * correlation ID are returned in the response message.
676 *
677 * Request Message: [2-bytes Entry Station ID]
678 *
679 * Response Message: [[2-bytes UID], [2-bytes Correlation ID]]
680 *
681 * @param buffer
682 * The APDU buffer
683 * @param messageOffset
684 * The offset of the request message content in the APDU buffer
685 * @param messageLength
686 * The length of the request message content.

65

TRANSITAPPLET

687 * @return The offset at which content can be appended to the response
688 * message
689 */
690 private short processEntry(byte[] buffer, short messageOffset,
691 short messageLength) {

693 // Request Message: [2-bytes Entry Station ID]

695 if (messageLength != 2) {
696 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
697 }

699 // Check minimum balance
700 if (balance < MIN_TRANSIT_BALANCE) {
701 ISOException.throwIt(SW_MIN_TRANSIT_BALANCE);
702 }

704 // Check consistent transit state: should not currently be in transit
705 if (entryStationId >= 0) {
706 ISOException.throwIt(SW_INVALID_TRANSIT_STATE);
707 }

709 JCSystem.beginTransaction();

711 // Get/assign entry station ID from request message
712 entryStationId = Util.getShort(buffer, messageOffset);

714 // Increment correlation ID
715 correlationId++;

717 JCSystem.commitTransaction();

719 // Response Message: [[8-bytes UID], [2-bytes Correlation ID]]

721 short offset = 0;

723 // Append UID to response message
724 offset = Util.arrayCopy(uid, (short) 0, buffer, offset, UID_LENGTH);

726 // Append correlation ID to response message
727 offset = Util.setShort(buffer, offset, correlationId);

729 return offset;
730 }

732 /**
733 * Processes a transit exit event. The passed-in transit fee is debited from
734 * the account. The UID and the correlation ID are returned in the response
735 * message.
736 *
737 * Request Message: [1-byte Transit Fee]
738 *
739 * Response Message: [[2-bytes UID], [2-bytes Correlation ID]]
740 *
741 * @param buffer
742 * The APDU buffer
743 * @param messageOffset
744 * The offset of the request message content in the APDU buffer
745 * @param messageLength
746 * The length of the request message content.
747 * @return The offset at which content can be appended to the response
748 * message
749 */
750 private short processExit(byte[] buffer, short messageOffset,
751 short messageLength) {

66

TRANSITAPPLET

753 // Request Message: [1-byte Transit Fee]

755 if (messageLength != 1) {
756 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
757 }

759 // Check minimum balance
760 if (balance < MIN_TRANSIT_BALANCE) {
761 ISOException.throwIt(SW_MIN_TRANSIT_BALANCE);
762 }

764 // Check consistent transit state: should be currently in transit
765 if (entryStationId < 0) {
766 ISOException.throwIt(SW_INVALID_TRANSIT_STATE);
767 }

769 // Get transit fee from request message
770 byte transitFee = buffer[messageOffset];

772 // Check potential negative balance
773 if (balance < transitFee) {
774 ISOException.throwIt(SW_NEGATIVE_BALANCE);
775 }

777 JCSystem.beginTransaction();

779 // Debit transit fee
780 balance -= transitFee;

782 // Reset entry station ID
783 entryStationId = -1;

785 JCSystem.commitTransaction();

787 // Response Message: [[8-bytes UID], [2-bytes Correlation ID]]

789 short offset = 0;

791 // Append UID to response message
792 offset = Util.arrayCopy(uid, (short) 0, buffer, offset, UID_LENGTH);

794 // Append correlation ID to response message
795 offset = Util.setShort(buffer, offset, correlationId);

797 return offset;
798 }

800 /**
801 * Credits the account of the passed-in amount.
802 *
803 * Request Message: [1-byte Credit Amount]
804 *
805 * Response Message: []
806 *
807 * @param buffer
808 * The APDU buffer
809 * @param messageOffset
810 * The offset of the request message content in the APDU buffer
811 * @param messageLength
812 * The length of the request message content.
813 * @return The offset at which content can be appended to the response
814 * message
815 */
816 private short credit(byte[] buffer, short messageOffset, short messageLength) {

67

TRANSITAPPLET

818 // Check access authorization
819 if (!pin.isValidated()) {
820 ISOException.throwIt(SW_PIN_VERIFICATION_REQUIRED);
821 }

823 // Request Message: [1-byte Credit Amount]

825 if (messageLength != 1) {
826 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
827 }

829 // Get credit amount from request message
830 byte creditAmount = buffer[messageOffset];

832 // Check credit amount
833 if ((creditAmount > MAX_CREDIT_AMOUNT) || (creditAmount < 0)) {
834 ISOException.throwIt(SW_INVALID_TRANSACTION_AMOUNT);
835 }

837 // Check the new balance
838 if ((short) (balance + creditAmount) > MAX_BALANCE) {
839 ISOException.throwIt(SW_EXCEED_MAXIMUM_BALANCE);
840 }

842 // Credit the amount
843 balance += creditAmount;

845 // Response Message: []

847 return 0;
848 }

850 /**
851 * Gets/returns the balance.
852 *
853 * Request Message: []
854 *
855 * Response Message: [2-bytes Balance]
856 *
857 * @param buffer
858 * The APDU buffer
859 * @param messageOffset
860 * The offset of the request message content in the APDU buffer
861 * @param messageLength
862 * The length of the request message content.
863 * @return The offset at which content can be appended to the response
864 * message
865 */
866 private short getBalance(byte[] buffer, short messageOffset,
867 short messageLength) {

869 // Check access authorization
870 if (!pin.isValidated()) {
871 ISOException.throwIt(SW_PIN_VERIFICATION_REQUIRED);
872 }

874 // Request Message: []

876 if (messageLength != 0) {
877 ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
878 }

880 // Response Message: [2-bytes Balance]

68

TRANSITAPPLET

882 short offset = 0;

884 // Append balance to response message
885 offset = Util.setShort(buffer, offset, balance);

887 return offset;
888 }

890 /**
891 * Fixes the parity on DES key data.
892 *
893 * @param buffer
894 * The buffer containing the DES key data
895 * @param offset
896 * The offset of the DES key data in the buffer
897 * @param length
898 * The length of the DES key data
899 * @return The passed-in buffer with the DES key data parity fixed
900 */
901 private byte[] fixParity(byte[] buffer, short offset, short length) {
902 for (byte i = 0; i < length; i++) {
903 short parity = 0;
904 buffer[(short) (offset + i)] &= 0xFE;
905 for (byte j = 1; j < 8; j++) {
906 if ((buffer[(short) (offset + i)] & (byte) (1 << j)) != 0) {
907 parity++;
908 }
909 }
910 if ((parity % 2) == 0) {
911 buffer[(short) (offset + i)] |= 1;
912 }
913 }
914 return buffer;
915 }
916 }

Listing A.1: Source code of the TransitApplet.

1 Compiled from "TransitApplet.java"
2 public class com.sun.javacard.samples.transit.TransitApplet extends javacard.

framework.Applet {
3 static final byte VERIFY;

5 static final byte INITIALIZE_SESSION;

7 static final byte PROCESS_REQUEST;

9 static final byte PROCESS_ENTRY;

11 static final byte PROCESS_EXIT;

13 static final byte CREDIT;

15 static final byte GET_BALANCE;

17 static final short TLV_TAG_OFFSET;

19 static final short TLV_LENGTH_OFFSET;

21 static final short TLV_VALUE_OFFSET;

23 static final short MAX_BALANCE;

69

TRANSITAPPLET

25 static final short MIN_TRANSIT_BALANCE;

27 static final short MAX_CREDIT_AMOUNT;

29 static final byte MAX_PIN_TRIES;

31 static final byte MAX_PIN_SIZE;

33 static final short SW_VERIFICATION_FAILED;

35 static final short SW_PIN_VERIFICATION_REQUIRED;

37 static final short SW_INVALID_TRANSACTION_AMOUNT;

39 static final short SW_EXCEED_MAXIMUM_BALANCE;

41 static final short SW_NEGATIVE_BALANCE;

43 static final short SW_WRONG_SIGNATURE;

45 static final short SW_MIN_TRANSIT_BALANCE;

47 static final short SW_INVALID_TRANSIT_STATE;

49 static final short SW_SUCCESS;

51 static final short UID_LENGTH;

53 static final short LENGTH_DES_BYTE;

55 static final short CHALLENGE_LENGTH;

57 static final short MAC_LENGTH;

59 private byte[] uid;

61 private javacardx.crypto.Cipher cipher;

63 private javacard.security.DESKey staticKey;

65 private byte[] cardChallenge;

67 private byte[] keyDerivationData;

69 private byte[] sessionKeyData;

71 private javacard.security.DESKey sessionKey;

73 private boolean useTransientKey;

75 private javacard.security.Signature signature;

77 private javacard.security.RandomData random;

79 private javacard.framework.OwnerPIN pin;

81 private short balance;

83 private short entryStationId;

85 private byte correlationId;

87 protected com.sun.javacard.samples.transit.TransitApplet(byte[], short, byte);
88 Code:
89 0: aload_0

70

TRANSITAPPLET

90 1: invokespecial #1 // Method javacard/framework/Applet."<
init>":()V

91 4: aload_0
92 5: iconst_1
93 6: putfield #2 // Field useTransientKey:Z
94 9: aload_0
95 10: iconst_0
96 11: putfield #3 // Field balance:S
97 14: aload_0
98 15: iconst_m1
99 16: putfield #4 // Field entryStationId:S

100 19: aload_0
101 20: iconst_0
102 21: putfield #5 // Field correlationId:B
103 24: aload_0
104 25: iconst_3
105 26: bipush 64
106 28: iconst_0
107 29: invokestatic #6 // Method javacard/security/KeyBuilder.

buildKey:(BSZ)Ljavacard/security/Key;
108 32: checkcast #7 // class javacard/security/DESKey
109 35: putfield #8 // Field staticKey:Ljavacard/security/

DESKey;
110 38: aload_0
111 39: iconst_3
112 40: iconst_0
113 41: invokestatic #9 // Method javacardx/crypto/Cipher.

getInstance:(BZ)Ljavacardx/crypto/Cipher;
114 44: putfield #10 // Field cipher:Ljavacardx/crypto/Cipher;
115 47: aload_0
116 48: iconst_4
117 49: iconst_2
118 50: invokestatic #11 // Method javacard/framework/JCSystem.

makeTransientByteArray:(SB)[B
119 53: putfield #12 // Field cardChallenge:[B
120 56: aload_0
121 57: bipush 8
122 59: iconst_2
123 60: invokestatic #11 // Method javacard/framework/JCSystem.

makeTransientByteArray:(SB)[B
124 63: putfield #13 // Field keyDerivationData:[B
125 66: aload_0
126 67: iconst_2
127 68: aload_0
128 69: getfield #13 // Field keyDerivationData:[B
129 72: arraylength
130 73: imul
131 74: i2s
132 75: iconst_2
133 76: invokestatic #11 // Method javacard/framework/JCSystem.

makeTransientByteArray:(SB)[B
134 79: putfield #14 // Field sessionKeyData:[B
135 82: aload_0
136 83: bipush 6
137 85: iconst_0
138 86: invokestatic #15 // Method javacard/security/Signature.

getInstance:(BZ)Ljavacard/security/Signature;
139 89: putfield #16 // Field signature:Ljavacard/security/

Signature;
140 92: aload_1
141 93: iload_2
142 94: baload
143 95: istore 4
144 97: iload 4
145 99: ifne 109

71

TRANSITAPPLET

146 102: aload_0
147 103: invokevirtual #17 // Method register:()V
148 106: goto 120
149 109: aload_0
150 110: aload_1
151 111: iload_2
152 112: iconst_1
153 113: iadd
154 114: i2s
155 115: iload 4
156 117: invokevirtual #18 // Method register:([BSB)V
157 120: iload_2
158 121: iload 4
159 123: iadd
160 124: iconst_1
161 125: iadd
162 126: i2s
163 127: istore_2
164 128: aload_1
165 129: iload_2
166 130: baload
167 131: istore 5
168 133: iload_2
169 134: iload 5
170 136: iadd
171 137: iconst_1
172 138: iadd
173 139: i2s
174 140: istore_2
175 141: aload_1
176 142: iload_2
177 143: iload_2
178 144: iconst_1
179 145: iadd
180 146: i2s
181 147: istore_2
182 148: baload
183 149: istore 6
184 151: iload 6
185 153: bipush 16
186 155: if_icmple 165
187 158: iload 6
188 160: bipush 24
189 162: if_icmple 171
190 165: sipush 26368
191 168: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
192 171: aload_0
193 172: bipush 8
194 174: newarray byte
195 176: putfield #20 // Field uid:[B
196 179: aload_1
197 180: iload_2
198 181: aload_0
199 182: getfield #20 // Field uid:[B
200 185: iconst_0
201 186: bipush 8
202 188: invokestatic #21 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
203 191: pop
204 192: iload_2
205 193: bipush 8
206 195: iadd
207 196: i2s
208 197: istore_2

72

TRANSITAPPLET

209 198: aload_0
210 199: getfield #8 // Field staticKey:Ljavacard/security/

DESKey;
211 202: aload_0
212 203: aload_1
213 204: iload_2
214 205: bipush 8
215 207: invokespecial #22 // Method fixParity:([BSS)[B
216 210: iload_2
217 211: invokeinterface #23, 3 // InterfaceMethod javacard/security/

DESKey.setKey:([BS)V
218 216: iload_2
219 217: bipush 8
220 219: iadd
221 220: i2s
222 221: istore_2
223 222: aload_0
224 223: aload_1
225 224: iload_2
226 225: baload
227 226: ifeq 233
228 229: iconst_1
229 230: goto 234
230 233: iconst_0
231 234: putfield #2 // Field useTransientKey:Z
232 237: iload_2
233 238: iconst_1
234 239: iadd
235 240: i2s
236 241: istore_2
237 242: aload_0
238 243: new #24 // class javacard/framework/OwnerPIN
239 246: dup
240 247: iconst_3
241 248: bipush 8
242 250: invokespecial #25 // Method javacard/framework/OwnerPIN."<

init>":(BB)V
243 253: putfield #26 // Field pin:Ljavacard/framework/

OwnerPIN;
244 256: aload_0
245 257: getfield #26 // Field pin:Ljavacard/framework/

OwnerPIN;
246 260: aload_1
247 261: iload_2
248 262: iload 6
249 264: bipush 8
250 266: isub
251 267: bipush 8
252 269: isub
253 270: iconst_1
254 271: isub
255 272: i2b
256 273: invokevirtual #27 // Method javacard/framework/OwnerPIN.

update:([BSB)V
257 276: aload_0
258 277: getfield #2 // Field useTransientKey:Z
259 280: ifeq 300
260 283: aload_0
261 284: iconst_2
262 285: bipush 64
263 287: iconst_0
264 288: invokestatic #6 // Method javacard/security/KeyBuilder.

buildKey:(BSZ)Ljavacard/security/Key;
265 291: checkcast #7 // class javacard/security/DESKey

73

TRANSITAPPLET

266 294: putfield #28 // Field sessionKey:Ljavacard/security/
DESKey;

267 297: goto 314
268 300: aload_0
269 301: iconst_3
270 302: bipush 64
271 304: iconst_0
272 305: invokestatic #6 // Method javacard/security/KeyBuilder.

buildKey:(BSZ)Ljavacard/security/Key;
273 308: checkcast #7 // class javacard/security/DESKey
274 311: putfield #28 // Field sessionKey:Ljavacard/security/

DESKey;
275 314: aload_0
276 315: iconst_1
277 316: invokestatic #29 // Method javacard/security/RandomData.

getInstance:(B)Ljavacard/security/RandomData;
278 319: putfield #30 // Field random:Ljavacard/security/

RandomData;
279 322: aload_0
280 323: getfield #30 // Field random:Ljavacard/security/

RandomData;
281 326: aload_0
282 327: getfield #20 // Field uid:[B
283 330: iconst_0
284 331: bipush 8
285 333: invokevirtual #31 // Method javacard/security/RandomData.

setSeed:([BSS)V
286 336: aload_0
287 337: getfield #10 // Field cipher:Ljavacardx/crypto/Cipher;
288 340: aload_0
289 341: getfield #8 // Field staticKey:Ljavacard/security/

DESKey;
290 344: iconst_2
291 345: invokevirtual #32 // Method javacardx/crypto/Cipher.init:(

Ljavacard/security/Key;B)V
292 348: return

294 public static void install(byte[], short, byte);
295 Code:
296 0: new #33 // class com/sun/javacard/samples/transit

/TransitApplet
297 3: dup
298 4: aload_0
299 5: iload_1
300 6: iload_2
301 7: invokespecial #34 // Method "<init>":([BSB)V
302 10: pop
303 11: return

305 public boolean select();
306 Code:
307 0: aload_0
308 1: getfield #26 // Field pin:Ljavacard/framework/

OwnerPIN;
309 4: invokevirtual #35 // Method javacard/framework/OwnerPIN.

getTriesRemaining:()B
310 7: ifne 12
311 10: iconst_0
312 11: ireturn
313 12: iconst_1
314 13: ireturn

316 public void deselect();
317 Code:
318 0: aload_0

74

TRANSITAPPLET

319 1: getfield #26 // Field pin:Ljavacard/framework/
OwnerPIN;

320 4: invokevirtual #36 // Method javacard/framework/OwnerPIN.
reset:()V

321 7: aload_0
322 8: getfield #2 // Field useTransientKey:Z
323 11: ifne 23
324 14: aload_0
325 15: getfield #28 // Field sessionKey:Ljavacard/security/

DESKey;
326 18: invokeinterface #37, 1 // InterfaceMethod javacard/security/

DESKey.clearKey:()V
327 23: return

329 public void process(javacard.framework.APDU);
330 Code:
331 0: aload_1
332 1: invokevirtual #38 // Method javacard/framework/APDU.

getBuffer:()[B
333 4: astore_2
334 5: aload_1
335 6: invokevirtual #39 // Method javacard/framework/APDU.

isISOInterindustryCLA:()Z
336 9: ifne 61
337 12: aload_2
338 13: iconst_1
339 14: baload
340 15: lookupswitch { // 2

342 48: 40

344 64: 46
345 default: 52
346 }
347 40: aload_0
348 41: aload_1
349 42: invokespecial #40 // Method initializeSession:(Ljavacard/

framework/APDU;)V
350 45: return
351 46: aload_0
352 47: aload_1
353 48: invokespecial #41 // Method processRequest:(Ljavacard/

framework/APDU;)V
354 51: return
355 52: sipush 27904
356 55: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
357 58: goto 92
358 61: aload_2
359 62: iconst_1
360 63: baload
361 64: bipush -92
362 66: if_icmpne 70
363 69: return
364 70: aload_2
365 71: iconst_1
366 72: baload
367 73: bipush 32
368 75: if_icmpne 86
369 78: aload_0
370 79: aload_1
371 80: invokespecial #42 // Method verify:(Ljavacard/framework/

APDU;)V
372 83: goto 92
373 86: sipush 27904

75

TRANSITAPPLET

374 89: invokestatic #19 // Method javacard/framework/ISOException
.throwIt:(S)V

375 92: return

377 private void initializeSession(javacard.framework.APDU);
378 Code:
379 0: aload_1
380 1: invokevirtual #38 // Method javacard/framework/APDU.

getBuffer:()[B
381 4: astore_2
382 5: aload_2
383 6: iconst_2
384 7: baload
385 8: ifne 17
386 11: aload_2
387 12: iconst_3
388 13: baload
389 14: ifeq 23
390 17: sipush 27270
391 20: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
392 23: aload_2
393 24: iconst_4
394 25: baload
395 26: istore_3
396 27: aload_1
397 28: invokevirtual #43 // Method javacard/framework/APDU.

setIncomingAndReceive:()S
398 31: i2b
399 32: istore 4
400 34: iload_3
401 35: iconst_4
402 36: if_icmpne 45
403 39: iload 4
404 41: iconst_4
405 42: if_icmpeq 51
406 45: sipush 26368
407 48: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
408 51: aload_0
409 52: invokespecial #44 // Method generateCardChallenge:()V
410 55: aload_0
411 56: aload_2
412 57: invokespecial #45 // Method generateKeyDerivationData:([B)V
413 60: aload_0
414 61: invokespecial #46 // Method generateSessionKey:()V
415 64: iconst_0
416 65: istore 5
417 67: aload_0
418 68: getfield #12 // Field cardChallenge:[B
419 71: iconst_0
420 72: aload_2
421 73: iload 5
422 75: iconst_4
423 76: invokestatic #47 // Method javacard/framework/Util.

arrayCopyNonAtomic:([BS[BSS)S
424 79: istore 5
425 81: aload_2
426 82: iload 5
427 84: sipush -28672
428 87: invokestatic #48 // Method javacard/framework/Util.

setShort:([BSS)S
429 90: istore 5
430 92: aload_0
431 93: aload_2

76

TRANSITAPPLET

432 94: iload 5
433 96: invokespecial #49 // Method generateMAC:([BS)S
434 99: istore 5
435 101: aload_1
436 102: iconst_0
437 103: iload 5
438 105: invokevirtual #50 // Method javacard/framework/APDU.

setOutgoingAndSend:(SS)V
439 108: return

441 private void processRequest(javacard.framework.APDU);
442 Code:
443 0: aload_1
444 1: invokevirtual #38 // Method javacard/framework/APDU.

getBuffer:()[B
445 4: astore_2
446 5: aload_2
447 6: iconst_2
448 7: baload
449 8: ifne 17
450 11: aload_2
451 12: iconst_3
452 13: baload
453 14: ifeq 23
454 17: sipush 27270
455 20: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
456 23: aload_2
457 24: iconst_4
458 25: baload
459 26: istore_3
460 27: aload_1
461 28: invokevirtual #43 // Method javacard/framework/APDU.

setIncomingAndReceive:()S
462 31: i2b
463 32: istore 4
464 34: iload_3
465 35: iload 4
466 37: if_icmpeq 46
467 40: sipush 26368
468 43: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
469 46: aload_0
470 47: aload_2
471 48: invokespecial #51 // Method checkMAC:([B)Z
472 51: ifne 60
473 54: sipush -28411
474 57: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
475 60: iload_3
476 61: bipush 8
477 63: isub
478 64: aload_2
479 65: bipush 6
480 67: baload
481 68: iconst_2
482 69: iadd
483 70: if_icmpeq 79
484 73: sipush 27264
485 76: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
486 79: iconst_0
487 80: istore 5
488 82: aload_2
489 83: iconst_5

77

TRANSITAPPLET

490 84: baload
491 85: tableswitch { // -63 to -60

493 -63: 116

495 -62: 133

497 -61: 150

499 -60: 167
500 default: 184
501 }
502 116: aload_0
503 117: aload_2
504 118: bipush 7
505 120: aload_2
506 121: bipush 6
507 123: baload
508 124: i2s
509 125: invokespecial #52 // Method processEntry:([BSS)S
510 128: istore 5
511 130: goto 190
512 133: aload_0
513 134: aload_2
514 135: bipush 7
515 137: aload_2
516 138: bipush 6
517 140: baload
518 141: i2s
519 142: invokespecial #53 // Method processExit:([BSS)S
520 145: istore 5
521 147: goto 190
522 150: aload_0
523 151: aload_2
524 152: bipush 7
525 154: aload_2
526 155: bipush 6
527 157: baload
528 158: i2s
529 159: invokespecial #54 // Method credit:([BSS)S
530 162: istore 5
531 164: goto 190
532 167: aload_0
533 168: aload_2
534 169: bipush 7
535 171: aload_2
536 172: bipush 6
537 174: baload
538 175: i2s
539 176: invokespecial #55 // Method getBalance:([BSS)S
540 179: istore 5
541 181: goto 190
542 184: sipush 27265
543 187: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
544 190: aload_2
545 191: iload 5
546 193: sipush -28672
547 196: invokestatic #48 // Method javacard/framework/Util.

setShort:([BSS)S
548 199: istore 5
549 201: aload_0
550 202: aload_2
551 203: iload 5
552 205: invokespecial #49 // Method generateMAC:([BS)S

78

TRANSITAPPLET

553 208: istore 5
554 210: aload_1
555 211: iconst_0
556 212: iload 5
557 214: invokevirtual #50 // Method javacard/framework/APDU.

setOutgoingAndSend:(SS)V
558 217: return

560 private void verify(javacard.framework.APDU);
561 Code:
562 0: aload_1
563 1: invokevirtual #38 // Method javacard/framework/APDU.

getBuffer:()[B
564 4: astore_2
565 5: aload_2
566 6: iconst_4
567 7: baload
568 8: istore_3
569 9: aload_1
570 10: invokevirtual #43 // Method javacard/framework/APDU.

setIncomingAndReceive:()S
571 13: i2b
572 14: istore 4
573 16: iload_3
574 17: iload 4
575 19: if_icmpeq 28
576 22: sipush 26368
577 25: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
578 28: aload_0
579 29: getfield #26 // Field pin:Ljavacard/framework/

OwnerPIN;
580 32: aload_2
581 33: iconst_5
582 34: iload_3
583 35: invokevirtual #56 // Method javacard/framework/OwnerPIN.

check:([BSB)Z
584 38: ifne 47
585 41: sipush 25344
586 44: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
587 47: return

589 private void generateCardChallenge();
590 Code:
591 0: aload_0
592 1: getfield #30 // Field random:Ljavacard/security/

RandomData;
593 4: aload_0
594 5: getfield #12 // Field cardChallenge:[B
595 8: iconst_0
596 9: iconst_4
597 10: invokevirtual #57 // Method javacard/security/RandomData.

generateData:([BSS)V
598 13: return

600 private void generateKeyDerivationData(byte[]);
601 Code:
602 0: aload_1
603 1: iconst_4
604 2: baload
605 3: istore_2
606 4: iload_2
607 5: iconst_4
608 6: if_icmpge 15

79

TRANSITAPPLET

609 9: sipush 26368
610 12: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
611 15: aload_1
612 16: iconst_5
613 17: aload_0
614 18: getfield #13 // Field keyDerivationData:[B
615 21: iconst_0
616 22: iconst_4
617 23: invokestatic #21 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
618 26: pop
619 27: aload_0
620 28: getfield #12 // Field cardChallenge:[B
621 31: iconst_0
622 32: aload_0
623 33: getfield #13 // Field keyDerivationData:[B
624 36: iconst_4
625 37: iconst_4
626 38: invokestatic #21 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
627 41: pop
628 42: return

630 private void generateSessionKey();
631 Code:
632 0: aload_0
633 1: getfield #10 // Field cipher:Ljavacardx/crypto/Cipher;
634 4: aload_0
635 5: getfield #13 // Field keyDerivationData:[B
636 8: iconst_0
637 9: aload_0
638 10: getfield #13 // Field keyDerivationData:[B
639 13: arraylength
640 14: i2s
641 15: aload_0
642 16: getfield #14 // Field sessionKeyData:[B
643 19: iconst_0
644 20: invokevirtual #58 // Method javacardx/crypto/Cipher.doFinal

:([BSS[BS)S
645 23: pop
646 24: aload_0
647 25: getfield #28 // Field sessionKey:Ljavacard/security/

DESKey;
648 28: aload_0
649 29: aload_0
650 30: getfield #14 // Field sessionKeyData:[B
651 33: iconst_0
652 34: aload_0
653 35: getfield #14 // Field sessionKeyData:[B
654 38: arraylength
655 39: i2s
656 40: invokespecial #22 // Method fixParity:([BSS)[B
657 43: iconst_0
658 44: invokeinterface #23, 3 // InterfaceMethod javacard/security/

DESKey.setKey:([BS)V
659 49: return

661 private boolean checkMAC(byte[]);
662 Code:
663 0: aload_1
664 1: iconst_4
665 2: baload
666 3: istore_2
667 4: iload_2

80

TRANSITAPPLET

668 5: bipush 8
669 7: if_icmpgt 16
670 10: sipush 26368
671 13: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
672 16: aload_0
673 17: getfield #16 // Field signature:Ljavacard/security/

Signature;
674 20: aload_0
675 21: getfield #28 // Field sessionKey:Ljavacard/security/

DESKey;
676 24: iconst_2
677 25: invokevirtual #59 // Method javacard/security/Signature.

init:(Ljavacard/security/Key;B)V
678 28: aload_0
679 29: getfield #16 // Field signature:Ljavacard/security/

Signature;
680 32: aload_1
681 33: iconst_5
682 34: iload_2
683 35: bipush 8
684 37: isub
685 38: i2s
686 39: aload_1
687 40: iconst_5
688 41: iload_2
689 42: iadd
690 43: bipush 8
691 45: isub
692 46: i2s
693 47: bipush 8
694 49: invokevirtual #60 // Method javacard/security/Signature.

verify:([BSS[BSS)Z
695 52: ireturn

697 private short generateMAC(byte[], short);
698 Code:
699 0: aload_0
700 1: getfield #16 // Field signature:Ljavacard/security/

Signature;
701 4: aload_0
702 5: getfield #28 // Field sessionKey:Ljavacard/security/

DESKey;
703 8: iconst_1
704 9: invokevirtual #59 // Method javacard/security/Signature.

init:(Ljavacard/security/Key;B)V
705 12: aload_0
706 13: getfield #16 // Field signature:Ljavacard/security/

Signature;
707 16: aload_1
708 17: iconst_0
709 18: iload_2
710 19: aload_1
711 20: iload_2
712 21: invokevirtual #61 // Method javacard/security/Signature.

sign:([BSS[BS)S
713 24: istore_3
714 25: iload_2
715 26: iload_3
716 27: iadd
717 28: i2s
718 29: ireturn

720 private short processEntry(byte[], short, short);
721 Code:

81

TRANSITAPPLET

722 0: iload_3
723 1: iconst_2
724 2: if_icmpeq 11
725 5: sipush 26368
726 8: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
727 11: aload_0
728 12: getfield #3 // Field balance:S
729 15: bipush 10
730 17: if_icmpge 26
731 20: sipush -28410
732 23: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
733 26: aload_0
734 27: getfield #4 // Field entryStationId:S
735 30: iflt 39
736 33: sipush -28409
737 36: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
738 39: invokestatic #62 // Method javacard/framework/JCSystem.

beginTransaction:()V
739 42: aload_0
740 43: aload_1
741 44: iload_2
742 45: invokestatic #63 // Method javacard/framework/Util.

getShort:([BS)S
743 48: putfield #4 // Field entryStationId:S
744 51: aload_0
745 52: dup
746 53: getfield #5 // Field correlationId:B
747 56: iconst_1
748 57: iadd
749 58: i2b
750 59: putfield #5 // Field correlationId:B
751 62: invokestatic #64 // Method javacard/framework/JCSystem.

commitTransaction:()V
752 65: iconst_0
753 66: istore 4
754 68: aload_0
755 69: getfield #20 // Field uid:[B
756 72: iconst_0
757 73: aload_1
758 74: iload 4
759 76: bipush 8
760 78: invokestatic #21 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
761 81: istore 4
762 83: aload_1
763 84: iload 4
764 86: aload_0
765 87: getfield #5 // Field correlationId:B
766 90: i2s
767 91: invokestatic #48 // Method javacard/framework/Util.

setShort:([BSS)S
768 94: istore 4
769 96: iload 4
770 98: ireturn

772 private short processExit(byte[], short, short);
773 Code:
774 0: iload_3
775 1: iconst_1
776 2: if_icmpeq 11
777 5: sipush 26368

82

TRANSITAPPLET

778 8: invokestatic #19 // Method javacard/framework/ISOException
.throwIt:(S)V

779 11: aload_0
780 12: getfield #3 // Field balance:S
781 15: bipush 10
782 17: if_icmpge 26
783 20: sipush -28410
784 23: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
785 26: aload_0
786 27: getfield #4 // Field entryStationId:S
787 30: ifge 39
788 33: sipush -28409
789 36: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
790 39: aload_1
791 40: iload_2
792 41: baload
793 42: istore 4
794 44: aload_0
795 45: getfield #3 // Field balance:S
796 48: iload 4
797 50: if_icmpge 59
798 53: sipush 27269
799 56: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
800 59: invokestatic #62 // Method javacard/framework/JCSystem.

beginTransaction:()V
801 62: aload_0
802 63: dup
803 64: getfield #3 // Field balance:S
804 67: iload 4
805 69: isub
806 70: i2s
807 71: putfield #3 // Field balance:S
808 74: aload_0
809 75: iconst_m1
810 76: putfield #4 // Field entryStationId:S
811 79: invokestatic #64 // Method javacard/framework/JCSystem.

commitTransaction:()V
812 82: iconst_0
813 83: istore 5
814 85: aload_0
815 86: getfield #20 // Field uid:[B
816 89: iconst_0
817 90: aload_1
818 91: iload 5
819 93: bipush 8
820 95: invokestatic #21 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
821 98: istore 5
822 100: aload_1
823 101: iload 5
824 103: aload_0
825 104: getfield #5 // Field correlationId:B
826 107: i2s
827 108: invokestatic #48 // Method javacard/framework/Util.

setShort:([BSS)S
828 111: istore 5
829 113: iload 5
830 115: ireturn

832 private short credit(byte[], short, short);
833 Code:
834 0: aload_0

83

TRANSITAPPLET

835 1: getfield #26 // Field pin:Ljavacard/framework/
OwnerPIN;

836 4: invokevirtual #65 // Method javacard/framework/OwnerPIN.
isValidated:()Z

837 7: ifne 16
838 10: sipush 25345
839 13: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
840 16: iload_3
841 17: iconst_1
842 18: if_icmpeq 27
843 21: sipush 26368
844 24: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
845 27: aload_1
846 28: iload_2
847 29: baload
848 30: istore 4
849 32: iload 4
850 34: bipush 100
851 36: if_icmpgt 44
852 39: iload 4
853 41: ifge 50
854 44: sipush 27267
855 47: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
856 50: aload_0
857 51: getfield #3 // Field balance:S
858 54: iload 4
859 56: iadd
860 57: i2s
861 58: sipush 500
862 61: if_icmple 70
863 64: sipush 27268
864 67: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
865 70: aload_0
866 71: dup
867 72: getfield #3 // Field balance:S
868 75: iload 4
869 77: iadd
870 78: i2s
871 79: putfield #3 // Field balance:S
872 82: iconst_0
873 83: ireturn

875 private short getBalance(byte[], short, short);
876 Code:
877 0: aload_0
878 1: getfield #26 // Field pin:Ljavacard/framework/

OwnerPIN;
879 4: invokevirtual #65 // Method javacard/framework/OwnerPIN.

isValidated:()Z
880 7: ifne 16
881 10: sipush 25345
882 13: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
883 16: iload_3
884 17: ifeq 26
885 20: sipush 26368
886 23: invokestatic #19 // Method javacard/framework/ISOException

.throwIt:(S)V
887 26: iconst_0
888 27: istore 4
889 29: aload_1

84

TRANSITAPPLET

890 30: iload 4
891 32: aload_0
892 33: getfield #3 // Field balance:S
893 36: invokestatic #48 // Method javacard/framework/Util.

setShort:([BSS)S
894 39: istore 4
895 41: iload 4
896 43: ireturn

898 private byte[] fixParity(byte[], short, short);
899 Code:
900 0: iconst_0
901 1: istore 4
902 3: iload 4
903 5: iload_3
904 6: if_icmpge 98
905 9: iconst_0
906 10: istore 5
907 12: aload_1
908 13: iload_2
909 14: iload 4
910 16: iadd
911 17: i2s
912 18: dup2
913 19: baload
914 20: sipush 254
915 23: iand
916 24: i2b
917 25: bastore
918 26: iconst_1
919 27: istore 6
920 29: iload 6
921 31: bipush 8
922 33: if_icmpge 69
923 36: aload_1
924 37: iload_2
925 38: iload 4
926 40: iadd
927 41: i2s
928 42: baload
929 43: iconst_1
930 44: iload 6
931 46: ishl
932 47: i2b
933 48: iand
934 49: ifeq 59
935 52: iload 5
936 54: iconst_1
937 55: iadd
938 56: i2s
939 57: istore 5
940 59: iload 6
941 61: iconst_1
942 62: iadd
943 63: i2b
944 64: istore 6
945 66: goto 29
946 69: iload 5
947 71: iconst_2
948 72: irem
949 73: ifne 88
950 76: aload_1
951 77: iload_2
952 78: iload 4
953 80: iadd

85

TRANSITAPPLET

954 81: i2s
955 82: dup2
956 83: baload
957 84: iconst_1
958 85: ior
959 86: i2b
960 87: bastore
961 88: iload 4
962 90: iconst_1
963 91: iadd
964 92: i2b
965 93: istore 4
966 95: goto 3
967 98: aload_1
968 99: areturn
969 }

Listing A.2: Bytecode of the TransitApplet without implemented countermeasures.

1 Compiled from "TransitApplet.java"
2 public class com.sun.javacard.samples.transit.TransitApplet extends javacard.

framework.Applet {
3 static final byte VERIFY;

5 static final byte INITIALIZE_SESSION;

7 static final byte PROCESS_REQUEST;

9 static final byte PROCESS_ENTRY;

11 static final byte PROCESS_EXIT;

13 static final byte CREDIT;

15 static final byte GET_BALANCE;

17 static final short TLV_TAG_OFFSET;

19 static final short TLV_LENGTH_OFFSET;

21 static final short TLV_VALUE_OFFSET;

23 static final short MAX_BALANCE;

25 static final short MIN_TRANSIT_BALANCE;

27 static final short MAX_CREDIT_AMOUNT;

29 static final byte MAX_PIN_TRIES;

31 static final byte MAX_PIN_SIZE;

33 static final short SW_VERIFICATION_FAILED;

35 static final short SW_PIN_VERIFICATION_REQUIRED;

37 static final short SW_INVALID_TRANSACTION_AMOUNT;

39 static final short SW_EXCEED_MAXIMUM_BALANCE;

41 static final short SW_NEGATIVE_BALANCE;

43 static final short SW_WRONG_SIGNATURE;

86

TRANSITAPPLET

45 static final short SW_MIN_TRANSIT_BALANCE;

47 static final short SW_INVALID_TRANSIT_STATE;

49 static final short SW_SUCCESS;

51 static final short UID_LENGTH;

53 static final short LENGTH_DES_BYTE;

55 static final short CHALLENGE_LENGTH;

57 static final short MAC_LENGTH;

59 private byte[] uid;

61 private javacardx.crypto.Cipher cipher;

63 private javacard.security.DESKey staticKey;

65 private byte[] cardChallenge;

67 private byte[] keyDerivationData;

69 private byte[] sessionKeyData;

71 private javacard.security.DESKey sessionKey;

73 private boolean useTransientKey;

75 private javacard.security.Signature signature;

77 private javacard.security.RandomData random;

79 private javacard.framework.OwnerPIN pin;

81 private short balance;

83 private short entryStationId;

85 private byte correlationId;

87 protected com.sun.javacard.samples.transit.TransitApplet(byte[], short, byte);
88 Code:
89 0: aload_0
90 1: invokespecial #86 // Method javacard/framework/Applet."<

init>":()V
91 4: aload_0
92 5: iconst_1
93 6: putfield #88 // Field useTransientKey:Z
94 9: aload_0
95 10: iconst_0
96 11: putfield #90 // Field balance:S
97 14: aload_0
98 15: iconst_m1
99 16: putfield #92 // Field entryStationId:S

100 19: aload_0
101 20: iconst_0
102 21: putfield #94 // Field correlationId:B
103 24: aload_0
104 25: iconst_3
105 26: bipush 64
106 28: iconst_0

87

TRANSITAPPLET

107 29: invokestatic #100 // Method javacard/security/KeyBuilder.
buildKey:(BSZ)Ljavacard/security/Key;

108 32: checkcast #102 // class javacard/security/DESKey
109 35: putfield #104 // Field staticKey:Ljavacard/security/

DESKey;
110 38: aload_0
111 39: iconst_3
112 40: iconst_0
113 41: invokestatic #110 // Method javacardx/crypto/Cipher.

getInstance:(BZ)Ljavacardx/crypto/Cipher;
114 44: putfield #112 // Field cipher:Ljavacardx/crypto/Cipher;
115 47: aload_0
116 48: iconst_4
117 49: iconst_2
118 50: invokestatic #118 // Method javacard/framework/JCSystem.

makeTransientByteArray:(SB)[B
119 53: putfield #120 // Field cardChallenge:[B
120 56: aload_0
121 57: bipush 8
122 59: iconst_2
123 60: invokestatic #118 // Method javacard/framework/JCSystem.

makeTransientByteArray:(SB)[B
124 63: putfield #122 // Field keyDerivationData:[B
125 66: aload_0
126 67: iconst_2
127 68: aload_0
128 69: getfield #122 // Field keyDerivationData:[B
129 72: arraylength
130 73: imul
131 74: i2s
132 75: iconst_2
133 76: invokestatic #118 // Method javacard/framework/JCSystem.

makeTransientByteArray:(SB)[B
134 79: putfield #124 // Field sessionKeyData:[B
135 82: aload_0
136 83: bipush 6
137 85: iconst_0
138 86: invokestatic #129 // Method javacard/security/Signature.

getInstance:(BZ)Ljavacard/security/Signature;
139 89: putfield #131 // Field signature:Ljavacard/security/

Signature;
140 92: aload_1
141 93: iload_2
142 94: baload
143 95: istore 4
144 97: iload 4
145 99: ifne 122
146 102: aload_1
147 103: iload_2
148 104: baload
149 105: istore 4
150 107: iload 4
151 109: ifeq 115
152 112: goto 432
153 115: aload_0
154 116: invokevirtual #134 // Method register:()V
155 119: goto 133
156 122: aload_0
157 123: aload_1
158 124: iload_2
159 125: iconst_1
160 126: iadd
161 127: i2s
162 128: iload 4
163 130: invokevirtual #136 // Method register:([BSB)V

88

TRANSITAPPLET

164 133: aload_1
165 134: iload_2
166 135: iload 4
167 137: iadd
168 138: iconst_1
169 139: iadd
170 140: i2s
171 141: istore 7
172 143: iload 7
173 145: baload
174 146: iload 7
175 148: iadd
176 149: iconst_1
177 150: iadd
178 151: i2s
179 152: istore 8
180 154: iload 8
181 156: iconst_1
182 157: iadd
183 158: i2s
184 159: istore 9
185 161: aload_1
186 162: iload 8
187 164: baload
188 165: istore 5
189 167: iload 5
190 169: bipush 16
191 171: if_icmple 213
192 174: aload_1
193 175: iload 8
194 177: baload
195 178: istore 5
196 180: iload 5
197 182: bipush 16
198 184: if_icmpgt 190
199 187: goto 432
200 190: iload 5
201 192: bipush 24
202 194: if_icmple 219
203 197: aload_1
204 198: iload 8
205 200: baload
206 201: istore 5
207 203: iload 5
208 205: bipush 24
209 207: if_icmpgt 213
210 210: goto 432
211 213: sipush 26368
212 216: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
213 219: aload_0
214 220: bipush 8
215 222: newarray byte
216 224: putfield #144 // Field uid:[B
217 227: aload_1
218 228: iload 9
219 230: aload_0
220 231: getfield #144 // Field uid:[B
221 234: iconst_0
222 235: bipush 8
223 237: invokestatic #150 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
224 240: pop
225 241: iload 9
226 243: bipush 8

89

TRANSITAPPLET

227 245: iadd
228 246: i2s
229 247: istore 10
230 249: aload_0
231 250: getfield #104 // Field staticKey:Ljavacard/security/

DESKey;
232 253: aload_0
233 254: aload_1
234 255: iload 10
235 257: bipush 8
236 259: invokespecial #154 // Method fixParity:([BSS)[B
237 262: iload 10
238 264: invokeinterface #158, 3 // InterfaceMethod javacard/security/

DESKey.setKey:([BS)V
239 269: iload 10
240 271: bipush 8
241 273: iadd
242 274: i2s
243 275: istore 11
244 277: aload_1
245 278: iload 11
246 280: baload
247 281: ifeq 300
248 284: aload_1
249 285: iload 11
250 287: baload
251 288: ifne 294
252 291: goto 432
253 294: iconst_1
254 295: istore 12
255 297: goto 303
256 300: iconst_0
257 301: istore 12
258 303: aload_0
259 304: iload 12
260 306: putfield #88 // Field useTransientKey:Z
261 309: aload_0
262 310: new #160 // class javacard/framework/OwnerPIN
263 313: dup
264 314: iconst_3
265 315: bipush 8
266 317: invokespecial #163 // Method javacard/framework/OwnerPIN."<

init>":(BB)V
267 320: putfield #165 // Field pin:Ljavacard/framework/

OwnerPIN;
268 323: aload_0
269 324: getfield #165 // Field pin:Ljavacard/framework/

OwnerPIN;
270 327: aload_1
271 328: iload 11
272 330: iconst_1
273 331: iadd
274 332: i2s
275 333: iload 5
276 335: bipush 8
277 337: isub
278 338: bipush 8
279 340: isub
280 341: iconst_1
281 342: isub
282 343: i2b
283 344: invokevirtual #168 // Method javacard/framework/OwnerPIN.

update:([BSB)V
284 347: aload_0
285 348: getfield #88 // Field useTransientKey:Z

90

TRANSITAPPLET

286 351: istore 6
287 353: iload 6
288 355: ifeq 383
289 358: iload 6
290 360: ifne 366
291 363: goto 432
292 366: aload_0
293 367: iconst_2
294 368: bipush 64
295 370: iconst_0
296 371: invokestatic #100 // Method javacard/security/KeyBuilder.

buildKey:(BSZ)Ljavacard/security/Key;
297 374: checkcast #102 // class javacard/security/DESKey
298 377: putfield #170 // Field sessionKey:Ljavacard/security/

DESKey;
299 380: goto 397
300 383: aload_0
301 384: iconst_3
302 385: bipush 64
303 387: iconst_0
304 388: invokestatic #100 // Method javacard/security/KeyBuilder.

buildKey:(BSZ)Ljavacard/security/Key;
305 391: checkcast #102 // class javacard/security/DESKey
306 394: putfield #170 // Field sessionKey:Ljavacard/security/

DESKey;
307 397: aload_0
308 398: iconst_1
309 399: invokestatic #175 // Method javacard/security/RandomData.

getInstance:(B)Ljavacard/security/RandomData;
310 402: putfield #177 // Field random:Ljavacard/security/

RandomData;
311 405: aload_0
312 406: getfield #177 // Field random:Ljavacard/security/

RandomData;
313 409: aload_0
314 410: getfield #144 // Field uid:[B
315 413: iconst_0
316 414: bipush 8
317 416: invokevirtual #181 // Method javacard/security/RandomData.

setSeed:([BSS)V
318 419: aload_0
319 420: getfield #112 // Field cipher:Ljavacardx/crypto/Cipher;
320 423: aload_0
321 424: getfield #104 // Field staticKey:Ljavacard/security/

DESKey;
322 427: iconst_2
323 428: invokevirtual #185 // Method javacardx/crypto/Cipher.init:(

Ljavacard/security/Key;B)V
324 431: return
325 432: goto 432

327 private boolean checkMAC(byte[]);
328 Code:
329 0: bipush 11
330 2: getstatic #207 // Field tool/generated/CGII.identifier:S
331 5: if_icmpne 79
332 8: aload_1
333 9: iconst_4
334 10: baload
335 11: istore_2
336 12: iload_2
337 13: bipush 8
338 15: if_icmpgt 37
339 18: aload_1
340 19: iconst_4

91

TRANSITAPPLET

341 20: baload
342 21: istore_2
343 22: iload_2
344 23: bipush 8
345 25: if_icmple 31
346 28: goto 79
347 31: sipush 26368
348 34: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
349 37: aload_0
350 38: getfield #131 // Field signature:Ljavacard/security/

Signature;
351 41: aload_0
352 42: getfield #170 // Field sessionKey:Ljavacard/security/

DESKey;
353 45: iconst_2
354 46: invokevirtual #208 // Method javacard/security/Signature.

init:(Ljavacard/security/Key;B)V
355 49: aload_0
356 50: getfield #131 // Field signature:Ljavacard/security/

Signature;
357 53: aload_1
358 54: iconst_5
359 55: iload_2
360 56: bipush 8
361 58: isub
362 59: i2s
363 60: aload_1
364 61: iconst_5
365 62: iload_2
366 63: iadd
367 64: bipush 8
368 66: isub
369 67: i2s
370 68: bipush 8
371 70: invokevirtual #212 // Method javacard/security/Signature.

verify:([BSS[BSS)Z
372 73: bipush 12
373 75: putstatic #207 // Field tool/generated/CGII.identifier:S
374 78: ireturn
375 79: goto 79

377 private short credit(byte[], short, short);
378 Code:
379 0: bipush 19
380 2: getstatic #207 // Field tool/generated/CGII.identifier:S
381 5: if_icmpne 170
382 8: aload_0
383 9: getfield #165 // Field pin:Ljavacard/framework/

OwnerPIN;
384 12: astore 5
385 14: aload 5
386 16: invokevirtual #218 // Method javacard/framework/OwnerPIN.

isValidated:()Z
387 19: ifne 39
388 22: aload 5
389 24: invokevirtual #218 // Method javacard/framework/OwnerPIN.

isValidated:()Z
390 27: ifeq 33
391 30: goto 170
392 33: sipush 25345
393 36: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
394 39: iload_3
395 40: iconst_1

92

TRANSITAPPLET

396 41: if_icmpeq 58
397 44: iload_3
398 45: iconst_1
399 46: if_icmpne 52
400 49: goto 170
401 52: sipush 26368
402 55: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
403 58: aload_1
404 59: iload_2
405 60: baload
406 61: istore 4
407 63: iload 4
408 65: bipush 100
409 67: if_icmpgt 103
410 70: aload_1
411 71: iload_2
412 72: baload
413 73: istore 4
414 75: iload 4
415 77: bipush 100
416 79: if_icmple 85
417 82: goto 170
418 85: iload 4
419 87: ifge 109
420 90: aload_1
421 91: iload_2
422 92: baload
423 93: istore 4
424 95: iload 4
425 97: iflt 103
426 100: goto 170
427 103: sipush 27267
428 106: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
429 109: aload_0
430 110: getfield #90 // Field balance:S
431 113: iload 4
432 115: iadd
433 116: i2s
434 117: sipush 500
435 120: if_icmple 151
436 123: aload_1
437 124: iload_2
438 125: baload
439 126: istore 4
440 128: aload_0
441 129: getfield #90 // Field balance:S
442 132: iload 4
443 134: iadd
444 135: i2s
445 136: sipush 500
446 139: if_icmpgt 145
447 142: goto 170
448 145: sipush 27268
449 148: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
450 151: aload_0
451 152: aload_0
452 153: getfield #90 // Field balance:S
453 156: iload 4
454 158: iadd
455 159: i2s
456 160: putfield #90 // Field balance:S
457 163: bipush 20

93

TRANSITAPPLET

458 165: putstatic #207 // Field tool/generated/CGII.identifier:S
459 168: iconst_0
460 169: ireturn
461 170: goto 170

463 public void deselect();
464 Code:
465 0: aload_0
466 1: getfield #165 // Field pin:Ljavacard/framework/

OwnerPIN;
467 4: invokevirtual #226 // Method javacard/framework/OwnerPIN.

reset:()V
468 7: aload_0
469 8: getfield #88 // Field useTransientKey:Z
470 11: ifne 33
471 14: aload_0
472 15: getfield #88 // Field useTransientKey:Z
473 18: ifeq 24
474 21: goto 34
475 24: aload_0
476 25: getfield #170 // Field sessionKey:Ljavacard/security/

DESKey;
477 28: invokeinterface #229, 1 // InterfaceMethod javacard/security/

DESKey.clearKey:()V
478 33: return
479 34: goto 34

481 private byte[] fixParity(byte[], short, short);
482 Code:
483 0: bipush 9
484 2: getstatic #207 // Field tool/generated/CGII.identifier:S
485 5: if_icmpne 180
486 8: iconst_0
487 9: istore 10
488 11: iload 10
489 13: iload_3
490 14: if_icmpge 173
491 17: iload 10
492 19: iload_3
493 20: if_icmplt 26
494 23: goto 180
495 26: iconst_0
496 27: istore 11
497 29: aload_1
498 30: aload_1
499 31: iload_2
500 32: iload 10
501 34: iadd
502 35: i2s
503 36: istore 4
504 38: iload 4
505 40: baload
506 41: sipush 254
507 44: iand
508 45: i2b
509 46: istore 5
510 48: iload 4
511 50: iload 5
512 52: bastore
513 53: iconst_1
514 54: istore 12
515 56: iload 12
516 58: bipush 8
517 60: if_icmpge 122
518 63: iload 12

94

TRANSITAPPLET

519 65: bipush 8
520 67: if_icmplt 73
521 70: goto 180
522 73: aload_1
523 74: iload_2
524 75: iload 10
525 77: iadd
526 78: i2s
527 79: baload
528 80: iconst_1
529 81: iload 12
530 83: ishl
531 84: i2b
532 85: iand
533 86: istore 9
534 88: iload 9
535 90: ifeq 112
536 93: iload 9
537 95: ifne 101
538 98: goto 180
539 101: iload 11
540 103: iconst_1
541 104: iadd
542 105: dup
543 106: i2s
544 107: istore 11
545 109: i2s
546 110: istore 13
547 112: iload 12
548 114: iconst_1
549 115: iadd
550 116: i2b
551 117: istore 12
552 119: goto 56
553 122: iload 11
554 124: iconst_2
555 125: irem
556 126: istore 6
557 128: iload 6
558 130: ifne 163
559 133: iload 6
560 135: ifeq 141
561 138: goto 180
562 141: aload_1
563 142: aload_1
564 143: iload_2
565 144: iload 10
566 146: iadd
567 147: i2s
568 148: istore 7
569 150: iload 7
570 152: baload
571 153: iconst_1
572 154: ior
573 155: nop
574 156: istore 8
575 158: iload 7
576 160: iload 8
577 162: bastore
578 163: iload 10
579 165: iconst_1
580 166: iadd
581 167: i2b
582 168: istore 10
583 170: goto 11

95

TRANSITAPPLET

584 173: bipush 10
585 175: putstatic #207 // Field tool/generated/CGII.identifier:S
586 178: aload_1
587 179: areturn
588 180: goto 180

590 private void generateCardChallenge();
591 Code:
592 0: iconst_3
593 1: getstatic #207 // Field tool/generated/CGII.identifier:S
594 4: if_icmpne 25
595 7: aload_0
596 8: getfield #177 // Field random:Ljavacard/security/

RandomData;
597 11: aload_0
598 12: getfield #120 // Field cardChallenge:[B
599 15: iconst_0
600 16: iconst_4
601 17: invokevirtual #241 // Method javacard/security/RandomData.

generateData:([BSS)V
602 20: iconst_4
603 21: putstatic #207 // Field tool/generated/CGII.identifier:S
604 24: return
605 25: goto 25

607 private void generateKeyDerivationData(byte[]);
608 Code:
609 0: bipush 17
610 2: getstatic #207 // Field tool/generated/CGII.identifier:S
611 5: if_icmpne 64
612 8: aload_1
613 9: iconst_4
614 10: baload
615 11: iconst_4
616 12: if_icmpge 31
617 15: aload_1
618 16: iconst_4
619 17: baload
620 18: iconst_4
621 19: if_icmplt 25
622 22: goto 64
623 25: sipush 26368
624 28: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
625 31: aload_1
626 32: iconst_5
627 33: aload_0
628 34: getfield #122 // Field keyDerivationData:[B
629 37: iconst_0
630 38: iconst_4
631 39: invokestatic #150 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
632 42: pop
633 43: aload_0
634 44: getfield #120 // Field cardChallenge:[B
635 47: iconst_0
636 48: aload_0
637 49: getfield #122 // Field keyDerivationData:[B
638 52: iconst_4
639 53: iconst_4
640 54: invokestatic #150 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
641 57: pop
642 58: bipush 18
643 60: putstatic #207 // Field tool/generated/CGII.identifier:S

96

TRANSITAPPLET

644 63: return
645 64: goto 64

647 private short generateMAC(byte[], short);
648 Code:
649 0: bipush 23
650 2: getstatic #207 // Field tool/generated/CGII.identifier:S
651 5: if_icmpne 41
652 8: aload_0
653 9: getfield #131 // Field signature:Ljavacard/security/

Signature;
654 12: aload_0
655 13: getfield #170 // Field sessionKey:Ljavacard/security/

DESKey;
656 16: iconst_1
657 17: invokevirtual #208 // Method javacard/security/Signature.

init:(Ljavacard/security/Key;B)V
658 20: iload_2
659 21: aload_0
660 22: getfield #131 // Field signature:Ljavacard/security/

Signature;
661 25: aload_1
662 26: iconst_0
663 27: iload_2
664 28: aload_1
665 29: iload_2
666 30: invokevirtual #249 // Method javacard/security/Signature.

sign:([BSS[BS)S
667 33: iadd
668 34: i2s
669 35: bipush 24
670 37: putstatic #207 // Field tool/generated/CGII.identifier:S
671 40: ireturn
672 41: goto 41

674 private void generateSessionKey();
675 Code:
676 0: bipush 7
677 2: getstatic #207 // Field tool/generated/CGII.identifier:S
678 5: if_icmpne 80
679 8: aload_0
680 9: getfield #112 // Field cipher:Ljavacardx/crypto/Cipher;
681 12: aload_0
682 13: getfield #122 // Field keyDerivationData:[B
683 16: iconst_0
684 17: aload_0
685 18: getfield #122 // Field keyDerivationData:[B
686 21: arraylength
687 22: i2s
688 23: aload_0
689 24: getfield #124 // Field sessionKeyData:[B
690 27: iconst_0
691 28: invokevirtual #253 // Method javacardx/crypto/Cipher.doFinal

:([BSS[BS)S
692 31: pop
693 32: aload_0
694 33: getfield #170 // Field sessionKey:Ljavacard/security/

DESKey;
695 36: astore_1
696 37: aload_0
697 38: aload_0
698 39: getfield #124 // Field sessionKeyData:[B
699 42: iconst_0
700 43: aload_0
701 44: getfield #124 // Field sessionKeyData:[B

97

TRANSITAPPLET

702 47: arraylength
703 48: i2s
704 49: bipush 9
705 51: putstatic #207 // Field tool/generated/CGII.identifier:S
706 54: invokespecial #154 // Method fixParity:([BSS)[B
707 57: astore_2
708 58: getstatic #207 // Field tool/generated/CGII.identifier:S
709 61: bipush 10
710 63: if_icmpne 80
711 66: aload_1
712 67: aload_2
713 68: iconst_0
714 69: invokeinterface #158, 3 // InterfaceMethod javacard/security/

DESKey.setKey:([BS)V
715 74: bipush 8
716 76: putstatic #207 // Field tool/generated/CGII.identifier:S
717 79: return
718 80: goto 80

720 private short getBalance(byte[], short, short);
721 Code:
722 0: iconst_1
723 1: getstatic #207 // Field tool/generated/CGII.identifier:S
724 4: if_icmpne 69
725 7: aload_0
726 8: getfield #165 // Field pin:Ljavacard/framework/

OwnerPIN;
727 11: astore 4
728 13: aload 4
729 15: invokevirtual #218 // Method javacard/framework/OwnerPIN.

isValidated:()Z
730 18: ifne 38
731 21: aload 4
732 23: invokevirtual #218 // Method javacard/framework/OwnerPIN.

isValidated:()Z
733 26: ifeq 32
734 29: goto 69
735 32: sipush 25345
736 35: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
737 38: iload_3
738 39: ifeq 55
739 42: iload_3
740 43: ifne 49
741 46: goto 69
742 49: sipush 26368
743 52: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
744 55: aload_1
745 56: iconst_0
746 57: aload_0
747 58: getfield #90 // Field balance:S
748 61: invokestatic #259 // Method javacard/framework/Util.

setShort:([BSS)S
749 64: iconst_2
750 65: putstatic #207 // Field tool/generated/CGII.identifier:S
751 68: ireturn
752 69: goto 69

754 private void initializeSession(javacard.framework.APDU);
755 Code:
756 0: bipush 25
757 2: getstatic #207 // Field tool/generated/CGII.identifier:S
758 5: if_icmpne 184
759 8: aload_1

98

TRANSITAPPLET

760 9: invokevirtual #267 // Method javacard/framework/APDU.
getBuffer:()[B

761 12: astore_2
762 13: aload_2
763 14: iconst_2
764 15: baload
765 16: ifne 43
766 19: aload_2
767 20: iconst_2
768 21: baload
769 22: ifeq 28
770 25: goto 184
771 28: aload_2
772 29: iconst_3
773 30: baload
774 31: ifeq 49
775 34: aload_2
776 35: iconst_3
777 36: baload
778 37: ifne 43
779 40: goto 184
780 43: sipush 27270
781 46: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
782 49: aload_2
783 50: iconst_4
784 51: baload
785 52: aload_1
786 53: invokevirtual #271 // Method javacard/framework/APDU.

setIncomingAndReceive:()S
787 56: i2b
788 57: istore_3
789 58: iconst_4
790 59: if_icmpne 77
791 62: aload_2
792 63: iconst_4
793 64: baload
794 65: iconst_4
795 66: if_icmpeq 72
796 69: goto 184
797 72: iload_3
798 73: iconst_4
799 74: if_icmpeq 83
800 77: sipush 26368
801 80: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
802 83: iconst_3
803 84: putstatic #207 // Field tool/generated/CGII.identifier:S
804 87: aload_0
805 88: invokespecial #273 // Method generateCardChallenge:()V
806 91: getstatic #207 // Field tool/generated/CGII.identifier:S
807 94: iconst_4
808 95: if_icmpne 184
809 98: bipush 17
810 100: putstatic #207 // Field tool/generated/CGII.identifier:S
811 103: aload_0
812 104: aload_2
813 105: invokespecial #275 // Method generateKeyDerivationData:([B)V
814 108: getstatic #207 // Field tool/generated/CGII.identifier:S
815 111: bipush 18
816 113: if_icmpne 184
817 116: bipush 7
818 118: putstatic #207 // Field tool/generated/CGII.identifier:S
819 121: aload_0
820 122: invokespecial #277 // Method generateSessionKey:()V

99

TRANSITAPPLET

821 125: getstatic #207 // Field tool/generated/CGII.identifier:S
822 128: bipush 8
823 130: if_icmpne 184
824 133: aload_0
825 134: aload_2
826 135: aload_2
827 136: aload_0
828 137: getfield #120 // Field cardChallenge:[B
829 140: iconst_0
830 141: aload_2
831 142: iconst_0
832 143: iconst_4
833 144: invokestatic #280 // Method javacard/framework/Util.

arrayCopyNonAtomic:([BS[BSS)S
834 147: sipush -28672
835 150: invokestatic #259 // Method javacard/framework/Util.

setShort:([BSS)S
836 153: bipush 23
837 155: putstatic #207 // Field tool/generated/CGII.identifier:S
838 158: invokespecial #282 // Method generateMAC:([BS)S
839 161: istore 4
840 163: getstatic #207 // Field tool/generated/CGII.identifier:S
841 166: bipush 24
842 168: if_icmpne 184
843 171: aload_1
844 172: iconst_0
845 173: iload 4
846 175: invokevirtual #286 // Method javacard/framework/APDU.

setOutgoingAndSend:(SS)V
847 178: bipush 26
848 180: putstatic #207 // Field tool/generated/CGII.identifier:S
849 183: return
850 184: goto 184

852 public static void install(byte[], short, byte);
853 Code:
854 0: new #2 // class com/sun/javacard/samples/transit

/TransitApplet
855 3: aload_0
856 4: iload_1
857 5: iload_2
858 6: invokespecial #292 // Method "<init>":([BSB)V
859 9: return

861 public void process(javacard.framework.APDU);
862 Code:
863 0: aload_1
864 1: invokevirtual #267 // Method javacard/framework/APDU.

getBuffer:()[B
865 4: astore_2
866 5: aload_1
867 6: invokevirtual #296 // Method javacard/framework/APDU.

isISOInterindustryCLA:()Z
868 9: ifne 89
869 12: aload_1
870 13: invokevirtual #296 // Method javacard/framework/APDU.

isISOInterindustryCLA:()Z
871 16: ifeq 22
872 19: goto 143
873 22: aload_2
874 23: iconst_1
875 24: baload
876 25: lookupswitch { // 2

878 48: 52

100

TRANSITAPPLET

880 64: 66
881 default: 80
882 }
883 52: aload_2
884 53: iconst_1
885 54: baload
886 55: bipush 48
887 57: if_icmpne 143
888 60: aload_0
889 61: aload_1
890 62: invokespecial #298 // Method initializeSession:(Ljavacard/

framework/APDU;)V
891 65: return
892 66: aload_2
893 67: iconst_1
894 68: baload
895 69: bipush 64
896 71: if_icmpne 143
897 74: aload_0
898 75: aload_1
899 76: invokespecial #301 // Method processRequest:(Ljavacard/

framework/APDU;)V
900 79: return
901 80: sipush 27904
902 83: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
903 86: goto 142
904 89: aload_2
905 90: iconst_1
906 91: baload
907 92: bipush -92
908 94: if_icmpne 109
909 97: aload_2
910 98: iconst_1
911 99: baload
912 100: bipush -92
913 102: if_icmpeq 108
914 105: goto 143
915 108: return
916 109: aload_2
917 110: iconst_1
918 111: baload
919 112: bipush 32
920 114: if_icmpne 136
921 117: aload_2
922 118: iconst_1
923 119: baload
924 120: bipush 32
925 122: if_icmpeq 128
926 125: goto 143
927 128: aload_0
928 129: aload_1
929 130: invokespecial #303 // Method verify:(Ljavacard/framework/

APDU;)V
930 133: goto 142
931 136: sipush 27904
932 139: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
933 142: return
934 143: goto 143

936 private short processEntry(byte[], short, short);
937 Code:
938 0: iconst_5

101

TRANSITAPPLET

939 1: getstatic #207 // Field tool/generated/CGII.identifier:S
940 4: if_icmpne 129
941 7: iload_3
942 8: iconst_2
943 9: if_icmpeq 26
944 12: iload_3
945 13: iconst_2
946 14: if_icmpne 20
947 17: goto 129
948 20: sipush 26368
949 23: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
950 26: aload_0
951 27: getfield #90 // Field balance:S
952 30: bipush 10
953 32: if_icmpge 53
954 35: aload_0
955 36: getfield #90 // Field balance:S
956 39: bipush 10
957 41: if_icmplt 47
958 44: goto 129
959 47: sipush -28410
960 50: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
961 53: aload_0
962 54: getfield #92 // Field entryStationId:S
963 57: iflt 76
964 60: aload_0
965 61: getfield #92 // Field entryStationId:S
966 64: ifge 70
967 67: goto 129
968 70: sipush -28409
969 73: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
970 76: invokestatic #307 // Method javacard/framework/JCSystem.

beginTransaction:()V
971 79: aload_0
972 80: aload_1
973 81: iload_2
974 82: invokestatic #310 // Method javacard/framework/Util.

getShort:([BS)S
975 85: putfield #92 // Field entryStationId:S
976 88: aload_0
977 89: aload_0
978 90: getfield #94 // Field correlationId:B
979 93: iconst_1
980 94: iadd
981 95: i2b
982 96: putfield #94 // Field correlationId:B
983 99: invokestatic #313 // Method javacard/framework/JCSystem.

commitTransaction:()V
984 102: aload_1
985 103: aload_0
986 104: getfield #144 // Field uid:[B
987 107: iconst_0
988 108: aload_1
989 109: iconst_0
990 110: bipush 8
991 112: invokestatic #150 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
992 115: aload_0
993 116: getfield #94 // Field correlationId:B
994 119: i2s
995 120: invokestatic #259 // Method javacard/framework/Util.

setShort:([BSS)S

102

TRANSITAPPLET

996 123: bipush 6
997 125: putstatic #207 // Field tool/generated/CGII.identifier:S
998 128: ireturn
999 129: goto 129

1001 private short processExit(byte[], short, short);
1002 Code:
1003 0: bipush 13
1004 2: getstatic #207 // Field tool/generated/CGII.identifier:S
1005 5: if_icmpne 164
1006 8: iload_3
1007 9: iconst_1
1008 10: if_icmpeq 27
1009 13: iload_3
1010 14: iconst_1
1011 15: if_icmpne 21
1012 18: goto 164
1013 21: sipush 26368
1014 24: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1015 27: aload_0
1016 28: getfield #90 // Field balance:S
1017 31: bipush 10
1018 33: if_icmpge 54
1019 36: aload_0
1020 37: getfield #90 // Field balance:S
1021 40: bipush 10
1022 42: if_icmplt 48
1023 45: goto 164
1024 48: sipush -28410
1025 51: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1026 54: aload_0
1027 55: getfield #92 // Field entryStationId:S
1028 58: ifge 77
1029 61: aload_0
1030 62: getfield #92 // Field entryStationId:S
1031 65: iflt 71
1032 68: goto 164
1033 71: sipush -28409
1034 74: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1035 77: aload_1
1036 78: iload_2
1037 79: baload
1038 80: istore 4
1039 82: aload_0
1040 83: getfield #90 // Field balance:S
1041 86: iload 4
1042 88: if_icmpge 114
1043 91: aload_0
1044 92: getfield #90 // Field balance:S
1045 95: aload_1
1046 96: iload_2
1047 97: baload
1048 98: istore 4
1049 100: iload 4
1050 102: if_icmplt 108
1051 105: goto 164
1052 108: sipush 27269
1053 111: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1054 114: invokestatic #307 // Method javacard/framework/JCSystem.

beginTransaction:()V
1055 117: aload_0

103

TRANSITAPPLET

1056 118: aload_0
1057 119: getfield #90 // Field balance:S
1058 122: iload 4
1059 124: isub
1060 125: i2s
1061 126: putfield #90 // Field balance:S
1062 129: aload_0
1063 130: iconst_m1
1064 131: putfield #92 // Field entryStationId:S
1065 134: invokestatic #313 // Method javacard/framework/JCSystem.

commitTransaction:()V
1066 137: aload_1
1067 138: aload_0
1068 139: getfield #144 // Field uid:[B
1069 142: iconst_0
1070 143: aload_1
1071 144: iconst_0
1072 145: bipush 8
1073 147: invokestatic #150 // Method javacard/framework/Util.

arrayCopy:([BS[BSS)S
1074 150: aload_0
1075 151: getfield #94 // Field correlationId:B
1076 154: i2s
1077 155: invokestatic #259 // Method javacard/framework/Util.

setShort:([BSS)S
1078 158: bipush 14
1079 160: putstatic #207 // Field tool/generated/CGII.identifier:S
1080 163: ireturn
1081 164: goto 164

1083 private void processRequest(javacard.framework.APDU);
1084 Code:
1085 0: bipush 21
1086 2: getstatic #207 // Field tool/generated/CGII.identifier:S
1087 5: if_icmpne 385
1088 8: aload_1
1089 9: invokevirtual #267 // Method javacard/framework/APDU.

getBuffer:()[B
1090 12: astore_2
1091 13: aload_2
1092 14: iconst_2
1093 15: baload
1094 16: ifne 43
1095 19: aload_2
1096 20: iconst_2
1097 21: baload
1098 22: ifeq 28
1099 25: goto 385
1100 28: aload_2
1101 29: iconst_3
1102 30: baload
1103 31: ifeq 49
1104 34: aload_2
1105 35: iconst_3
1106 36: baload
1107 37: ifne 43
1108 40: goto 385
1109 43: sipush 27270
1110 46: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1111 49: aload_2
1112 50: iconst_4
1113 51: baload
1114 52: istore_3
1115 53: aload_1

104

TRANSITAPPLET

1116 54: invokevirtual #271 // Method javacard/framework/APDU.
setIncomingAndReceive:()S

1117 57: i2b
1118 58: istore 4
1119 60: iload_3
1120 61: iload 4
1121 63: if_icmpeq 85
1122 66: aload_2
1123 67: iconst_4
1124 68: baload
1125 69: istore_3
1126 70: iload_3
1127 71: iload 4
1128 73: if_icmpne 79
1129 76: goto 385
1130 79: sipush 26368
1131 82: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1132 85: bipush 11
1133 87: putstatic #207 // Field tool/generated/CGII.identifier:S
1134 90: aload_0
1135 91: aload_2
1136 92: invokespecial #316 // Method checkMAC:([B)Z
1137 95: istore 5
1138 97: getstatic #207 // Field tool/generated/CGII.identifier:S
1139 100: bipush 12
1140 102: if_icmpne 385
1141 105: iload 5
1142 107: ifne 116
1143 110: sipush -28411
1144 113: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1145 116: iload_3
1146 117: bipush 8
1147 119: isub
1148 120: aload_2
1149 121: bipush 6
1150 123: baload
1151 124: iconst_2
1152 125: iadd
1153 126: if_icmpeq 153
1154 129: aload_2
1155 130: iconst_4
1156 131: baload
1157 132: bipush 8
1158 134: isub
1159 135: aload_2
1160 136: bipush 6
1161 138: baload
1162 139: iconst_2
1163 140: iadd
1164 141: if_icmpne 147
1165 144: goto 385
1166 147: sipush 27264
1167 150: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1168 153: iconst_0
1169 154: istore 6
1170 156: aload_2
1171 157: iconst_5
1172 158: baload
1173 159: tableswitch { // -63 to -60

1175 -63: 188

105

TRANSITAPPLET

1177 -62: 225

1179 -61: 263

1181 -60: 301
1182 default: 337
1183 }
1184 188: aload_2
1185 189: iconst_5
1186 190: baload
1187 191: bipush -63
1188 193: if_icmpne 385
1189 196: aload_0
1190 197: aload_2
1191 198: bipush 7
1192 200: aload_2
1193 201: bipush 6
1194 203: baload
1195 204: i2s
1196 205: iconst_5
1197 206: putstatic #207 // Field tool/generated/CGII.identifier:S
1198 209: invokespecial #318 // Method processEntry:([BSS)S
1199 212: istore 6
1200 214: getstatic #207 // Field tool/generated/CGII.identifier:S
1201 217: bipush 6
1202 219: if_icmpne 385
1203 222: goto 343
1204 225: aload_2
1205 226: iconst_5
1206 227: baload
1207 228: bipush -62
1208 230: if_icmpne 385
1209 233: aload_0
1210 234: aload_2
1211 235: bipush 7
1212 237: aload_2
1213 238: bipush 6
1214 240: baload
1215 241: i2s
1216 242: bipush 13
1217 244: putstatic #207 // Field tool/generated/CGII.identifier:S
1218 247: invokespecial #320 // Method processExit:([BSS)S
1219 250: istore 6
1220 252: getstatic #207 // Field tool/generated/CGII.identifier:S
1221 255: bipush 14
1222 257: if_icmpne 385
1223 260: goto 343
1224 263: aload_2
1225 264: iconst_5
1226 265: baload
1227 266: bipush -61
1228 268: if_icmpne 385
1229 271: aload_0
1230 272: aload_2
1231 273: bipush 7
1232 275: aload_2
1233 276: bipush 6
1234 278: baload
1235 279: i2s
1236 280: bipush 19
1237 282: putstatic #207 // Field tool/generated/CGII.identifier:S
1238 285: invokespecial #322 // Method credit:([BSS)S
1239 288: istore 6
1240 290: getstatic #207 // Field tool/generated/CGII.identifier:S
1241 293: bipush 20

106

TRANSITAPPLET

1242 295: if_icmpne 385
1243 298: goto 343
1244 301: aload_2
1245 302: iconst_5
1246 303: baload
1247 304: bipush -60
1248 306: if_icmpne 385
1249 309: aload_0
1250 310: aload_2
1251 311: bipush 7
1252 313: aload_2
1253 314: bipush 6
1254 316: baload
1255 317: i2s
1256 318: iconst_1
1257 319: putstatic #207 // Field tool/generated/CGII.identifier:S
1258 322: invokespecial #324 // Method getBalance:([BSS)S
1259 325: istore 6
1260 327: getstatic #207 // Field tool/generated/CGII.identifier:S
1261 330: iconst_2
1262 331: if_icmpne 385
1263 334: goto 343
1264 337: sipush 27265
1265 340: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1266 343: aload_0
1267 344: aload_2
1268 345: aload_2
1269 346: iload 6
1270 348: sipush -28672
1271 351: invokestatic #259 // Method javacard/framework/Util.

setShort:([BSS)S
1272 354: bipush 23
1273 356: putstatic #207 // Field tool/generated/CGII.identifier:S
1274 359: invokespecial #282 // Method generateMAC:([BS)S
1275 362: istore 7
1276 364: getstatic #207 // Field tool/generated/CGII.identifier:S
1277 367: bipush 24
1278 369: if_icmpne 385
1279 372: aload_1
1280 373: iconst_0
1281 374: iload 7
1282 376: invokevirtual #286 // Method javacard/framework/APDU.

setOutgoingAndSend:(SS)V
1283 379: bipush 22
1284 381: putstatic #207 // Field tool/generated/CGII.identifier:S
1285 384: return
1286 385: goto 385

1288 public boolean select();
1289 Code:
1290 0: aload_0
1291 1: getfield #165 // Field pin:Ljavacard/framework/

OwnerPIN;
1292 4: astore_1
1293 5: aload_1
1294 6: invokevirtual #331 // Method javacard/framework/OwnerPIN.

getTriesRemaining:()B
1295 9: ifne 24
1296 12: aload_1
1297 13: invokevirtual #331 // Method javacard/framework/OwnerPIN.

getTriesRemaining:()B
1298 16: ifeq 22
1299 19: goto 26
1300 22: iconst_0

107

TRANSITAPPLET

1301 23: ireturn
1302 24: iconst_1
1303 25: ireturn
1304 26: goto 26

1306 private void verify(javacard.framework.APDU);
1307 Code:
1308 0: bipush 15
1309 2: getstatic #207 // Field tool/generated/CGII.identifier:S
1310 5: if_icmpne 74
1311 8: aload_1
1312 9: invokevirtual #267 // Method javacard/framework/APDU.

getBuffer:()[B
1313 12: astore_2
1314 13: aload_2
1315 14: iconst_4
1316 15: baload
1317 16: istore_3
1318 17: aload_1
1319 18: invokevirtual #271 // Method javacard/framework/APDU.

setIncomingAndReceive:()S
1320 21: i2b
1321 22: istore 4
1322 24: iload_3
1323 25: iload 4
1324 27: if_icmpeq 49
1325 30: aload_2
1326 31: iconst_4
1327 32: baload
1328 33: istore_3
1329 34: iload_3
1330 35: iload 4
1331 37: if_icmpne 43
1332 40: goto 74
1333 43: sipush 26368
1334 46: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1335 49: aload_0
1336 50: getfield #165 // Field pin:Ljavacard/framework/

OwnerPIN;
1337 53: aload_2
1338 54: iconst_5
1339 55: iload_3
1340 56: invokevirtual #336 // Method javacard/framework/OwnerPIN.

check:([BSB)Z
1341 59: ifne 68
1342 62: sipush 25344
1343 65: invokestatic #142 // Method javacard/framework/ISOException

.throwIt:(S)V
1344 68: bipush 16
1345 70: putstatic #207 // Field tool/generated/CGII.identifier:S
1346 73: return
1347 74: goto 74
1348 }

Listing A.3: Bytecode of the TransitApplet with implemented countermeasures.

108

	Titlepage
	Preface
	Contents
	1 Introduction
	1.1 Problem Statement

	2 Preliminaries
	3 Fault Attack Countermeasures
	3.1 Branch Duplication
	3.1.1 Considerations

	3.2 Call Graph Integrity
	3.2.1 Considerations

	4 Tools
	4.1 Soot
	4.1.1 Packs & Phases
	4.1.2 Intermediate Representations
	4.1.3 Optimizations
	4.1.4 Available Analyses

	4.2 Other Tools
	4.2.1 Sawja - Static Analysis Workshop for Java

	4.3 Choosing Soot

	5 Implementation
	5.1 Java Card Specification
	5.2 Running Our Tool
	5.3 Java Card Purity Analysis
	5.4 Call Graph Integrity
	5.5 Duplicator
	5.5.1 Switch statements
	5.5.2 Branch Dependent Condition
	5.5.3 Duplicator versus Call Graph Integrity

	5.6 Java Card Class Initializer
	5.7 Java Card Integer Support
	5.8 Applied Optimizations
	5.9 Shortcuts
	5.9.1 Side Effect on Fields
	5.9.2 Switch Fallthrough

	6 Testing
	6.1 Test
	6.1.1 Test Results

	6.2 Experiments & Metrics
	6.2.1 Results

	7 Discussion
	7.1 Conclusion

	Bibliography
	A TransitApplet

