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Summary

In May 2011 the Economic Interest Group discovered that smart cards stolen in France
were being used for transactions in Belgium. It turned out a group of criminals had
managed to bypass the PIN verification on the cards and could use them for purchas-
ing items, which they would later sell on the black market. Since smart cards are a
widespread technology, for example in credit cards, abuse of them poses serious risks
to both the banking industry, but also to consumers.

This report presents fault injections on the Java Card platform. It is based on previous
work formalising a subset of Java Card bytecode and fault models. The architecture of
the Java Card platform is presented and how persistent and transient faults can affect it.

An approach to automatic conversion of Java bytecode to UPPAAL models is also
detailed. In extension, approaches for automatic modelling of a variety of fault in-
jection attacks are described. Several known fault injection countermeasures are also
presented, accompanied by a solution to automate model based safety analysis of Java
Card programs, by inserting attacks into code modified with countermeasures, and
modelling them in the modelling tool UPPAAL.

The solution uses the tool Sawja to provide a convenient representation of Java byte-
code, which makes bytecode more readable. The tool is able to produce call graphs of
programs, which can be used for automation of countermeasures. Improvements to the
solution are also offered to allow future work, including suggestions for the first steps
in automating implementation of control flow and control graph integrity countermea-
sures, which could be used to create a solution that can compare countermeasures’
abilities to protect against fault injections.

A series of experiments are also conducted in an attempt to compare countermea-
sures’ protection level against two selected code bases. In extension, we explore the
viability of our experiment approach used to compare countermeasures.
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Preface

This report is the result of a Master Thesis software engineering project at Aalborg
University.

The aim of the report is to present a tool for converting Java bytecode into UPPAAL
models, which in turn can be used to compare how vulnerable different programs are
to fault injections, formalised by fault models. References are listed with numbers and
not by the author’s name(s), e.g. [23]. Furthermore, whenever writing “we”, it refers
to the project group and its members.

We would like to thank our supervisors for their guidance during the writing of this
report.
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CHAPTER 1
Introduction

In May 2011 Economic Interest Group noticed that smart cards stolen in France were
being used in Belgium [5]. It turned out a group of criminals, aided by an engineer,
managed to perform a man-in-the middle attack on the credit cards by placing a chip
on top of the original chip. The attack bypassed PIN verification by intercepting com-
munication between a credit card terminal and the original chip. As a consequence, a
transaction would be approved whether the correct PIN was entered on the terminal
or not. The gang is estimated to have caused damages below e 600,000. They sold
items purchased with the stolen cards on the black market, and managed to exploit
over 7,000 transactions before being apprehended. As criminals are finding ever more
sophisticated ways to exploit computer systems we rely on, on a daily basis, it is im-
portant to always stay ahead.

Smart cards are found in many places today, everywhere from phone SIM cards in
phones, access cards and credit cards. The first wide spread use was French pay phone
cards in 1983 [10, p. 366]. This report aims to investigate the security risks of fault
injections aimed at Java Card, specifically attacks relying on random bit flips. We have
built a tool for constructing UPPAAL [2] models from Java bytecode, which allows us to
simulate random bit flips and countermeasures. The foundation of the model building
is based on our previous work [4] with the TinyJCL language, found in Appendix B.1.

In this report we will assess three selected attack countermeasures: code duplication,
call graph integrity and control flow integrity, which are expected to improve the secu-
rity of Java Card bytecode.
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CHAPTER 2
Faults

We consider two general categories of faults that can occur to a Java Card: persistent
and transient faults. The main difference between these is that the persistent faults
will affect the program every run, while the transient faults will only be present for
a limited amount of time. Faults can occur when hardware is exposed to radiation
sources, e.g. infrared light, laser, heat or cosmic radiation from space. Persistent faults
in a piece of hardware, such as system, can occur in several ways, such as as a directed
fault injection, e.g. a laser beam, targeting a persistent part of memory, such as the
EEPROM of a Java Card. This could cause a bit flip in a value that is persistent
across power-ups, and thus cause a persistent fault since the wrong value will always
be used. If one wishes to create a persistent fault, precision is important, both to strike
a persistent part of memory, but also to affect the correct value.

Transient faults do not cause permanent damage to the hardware. They can cause
a temporary bit flip, resulting in a corrupted value, changed control flow causing un-
intended behaviour, or a crash of the hardware. The altered behaviour will disappear
and the fault injection will have to be performed again, if the effect is to be reproduced.
Nonetheless, both persistent and transient faults can have fatal consequences, if they
strike at the right time and the right place, e.g. for an attacker trying to change a
program’s control flow and thus execute a sensitive piece of code.

The two categories of fault injection are thus sensitive to two variables, time and place,
to different degrees. For example, an attacker who is trying to alter a constant in a
program on a chipped access card, is able to work on the card in private surroundings.
He can remove the protective layer on the chip and induce a persistent error on the
card. Since the card is offline, the timing of the fault injection does not matter because
he can only affect static values on the chip. The fault will still be present when the
card is powered on at a later time.

On the other hand, an attacker who wants to change transient properties such as
program flow dependent on a non-constant value, is very dependent on both timing
and precision of his attack. He has to affect the correct place in memory at just the
right time in the program’s execution to alter the program flow. Table T2-1 illustrates
the dependencies of persistent and transient fault injections.
It is important to note that when attacking the chip offline, the attacker only has access
to persistently stored values. When attacking the card in online mode, the attacker also
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2.1. JAVA CARD FAULTS

Persistent Transient

Timing X

Precision X X

Table T2-1: Table showing dependencies of induced faults.

has access to run-time related values, such as user input values stored on the operand
stack.

It is also interesting to note that an attacker performing a fault injection on the chip
while it is offline, has to leave the card in an uncorrupted state, since it will not boot
up correctly if e.g. the select method, described in Section 2.1.1, of a Java Card was hit
by the fault injection, thus corrupting it. This is another reason precision is important.
When performing a fault injection on a card which is online, the attacker can strike
both persistent values and run-time values. The attacker additionally does not have to
leave the card in an uncorrupted state as he would have to when injecting a fault on
an offline card. The reason is that the attacker might only need to flip a particular bit
in e.g. a response APDU packet, see Section 2.1.1, or an operand stack value, to trick
a card terminal into accepting a transaction. After the card has sent the manipulated
packet, the attacker does not care whether the card crashes since the purpose of the
attack has been served.

The time at which a bit flip is performed, matters in terms of how much of the system
can be affected, e.g. at run-time versus when a card is powered off. Logically, a greater
attack surface equals a greater probability of affecting a piece of memory that will cause
a desirable outcome for an attacker. An example could be a method which is only runs
once compared to a method which might be called ten times. Assuming methods of
similar size and memory usage, the second method would have a probability ten times
the that of the method which is only called once, to be hit by a bit flip. It should be
noted that even if a method has a greater probability of being hit by a bit flip, it is
not guaranteed that there is a greater chance that the bit flip will bring the card into
a situation compromising security. This depends on the nature of the method.

2.1 Java Card

A Java Card is a smart card which are characterised by being a small embedded circuit
which can process and store small amounts of information. The card does not have a
power supply and does not work without a terminal to supply it with power. A well-
known use of smart cards is to embed them in plastic cards and use them as e.g. credit
cards. They have three types of memory: RAM, ROM and EEPROM. Information
such as temporary variables can be stored in RAM and altered, but disappear after the
chip is powered down. ROM memory cannot be altered and persists across power-ups
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2.1. JAVA CARD FAULTS

and downs. On a Java Card this is used to store the Java Card Virtual Machine.
The EEPROM is persistent across power-ups and downs but information stored in it
can be altered, and on a Java Card it is can be used to store third party applets and
information used by the virtual machine.

The programs that run on a Java Card are called applets and a card can have multiple
installed. They communicate with a terminal through Application Protocol Data Unit
packets, described in Section 2.1.1. A credit card applet can for example inform a credit
card terminal that an entered pin code is incorrect by sending it a packet, allowing a
terminal to block a transaction.

2.1.1 Java Card Architecture

Applets installed on a Java Card run in the Java Card Virtual machine (JCVM) on the
smart card. The hardware is limited and as a result, it is necessary that the JCVM is
small in size. Most cards have 1.2kB of RAM, 32− 48kB ROM and 16kB EEPROM[9,
Sec. 2.1]. To save resources, only a limited number of data types are supported, such
as short and optionally integers while others such as string and double are not. If
string and double were to be supported, code for performing string manipulation
and floating point arithmetic would have to be included, which would take up valuable
space.

The Java Card does not have its own power supply and applets must be protected
from tears - an unexpected loss of power when a card is removed from a terminal.
To handle this a transaction mechanism is provided, which allows a region of code to
be atomically executed. If a tear occurs while an applet is executing in this region,
operations performed by it are rolled back. This is useful in cases such as a credit card
withdrawal process. If a card tear occurs after an internal balance counter is decre-
mented, but before the withdrawal is registered, someone could potentially purchase
items without actually paying. If the payment specific code region was protected by
the transaction mechanism, the tear would have no effect.

The JCVM runs on top of the operating system, as illustrated in Figure F2-1, and
supports a dialect of Java bytecode. On top of the JCVM, there is a final layer on top
of which applets reside. The layer contains vendor and industry extensions, such as
functionality used in the banking industry.

The JCVM offers features not found in Java virtual machines, such as a firewall sepa-
rating the applets’ memory. Since multiple applets reside side by side on the Java Card,
it is vital to protect each applet’s memory from other applets. If this was not the case,
another applet could freely access and alter the memory of another applet, affecting
its behaviour. If an applet needs an object from another, it can implement a shareable
interface to expose selected objects. If the request is granted, the JCVM will perform
a context switch, and the applet in which the object is residing will run the requested
operation on the object. After the operation completes, the result is returned to the
requesting applet.
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OS, Native functions

Java Card Virtual Machine

Vendor / Industry Extensions

Applet Applet Applet

Figure F2-1: The Java Card architectural layers.

The Install Method

The install method creates an instance of the Applet subclass [9, API p. 65]. De-
pending on the application of the card, this method is called once in a card’s life time,
from either the manufacturer’s or card distributor’s side, after which applet installation
on the card is disabled. Examples of such cards are SIM cards, since it could pose a se-
curity risk to allow other applets, than those intended to be on the card, to be installed.

The install method should perform all necessary initialisations and must perform a
call to the register method. If the call is not performed successfully, or an exception
is thrown before the call, the installation is not considered successful. If the installation
fails, the Java Card runtime environment performs the necessary clean up actions when
control is returned to it. After a successful installation, the applet can be selected with
the select APDU command.

The Select Method

The select method is used inform the applet that it has been selected [9, API p. 68].
If initialisation, e.g. instantiation of objects on the heap, is required before processing
APDUs, it should be done in this method. Select returns true to indicate success and
it is ready to process the APDU.

APDU Packets

Communication between a smart card and a terminal is done via packets called Appli-
cation Protocol Data Units (APDU). There are two types of communication packets:
command and response. The structure of the packets can be seen in Table T2-2 and
Table T2-3, respectively.

The command APDU has four mandatory header bytes (CLA, INS, P1, P2), some
optional command data. Lc encodes the length of the command data, and Le encodes
the maximum number of bytes expected in the response APDU. The response APDU
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has optional response data followed by two mandatory status bytes (SW1, SW2) indi-
cating the status of the command request sent to the card, e.g. success.

CLA INS P1 - P2 Lc Command Data Le

Table T2-2: The structure of a command APDU.

Response Data SW1 - SW2

Table T2-3: The structure of a response APDU.

Communication is always initiated by the terminal by sending a command APDU - the
Java Card may or may not reply to the command with a response APDU. Figure F2-2
illustrates that a command APDU packet is sent from a terminal to it. The command
packet is then processed and a response might be sent from the card to the terminal.

Terminal Smart Card

command APDU

response APDU

Figure F2-2: Communication between a terminal and a Java Card via command and
response APDUs. Figure from [4, p. 4].

2.2 Countermeasures

Countermeasures can be implemented to protect applets against fault injections. Though
they add security, they also increase the size of the applet source and degrade per-
formance, resulting longer run time. In the following, common countermeasures are
presented along with a consideration on how to increase effectiveness of the Field of
Bit countermeasure.

2.2.1 Code Duplication

As described by [8] is a countermeasure which protects against corruption of data used
for branching at execution time, such as local variables. It offers protection against
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changes in a program’s control flow, by duplicating instructions which are used to re-
trieve values, that affect branching.

An example could be a program, as seen in Listing 2.1, which loads two values from
local variables, program counter (pc) 1-2, pushes them onto the operand stack and
compares them. If the two values are the same, a jump is performed to a code region
with sensitive code (pc 8-9), which approves a transaction on a credit card. Now,
assume that a bit flip has occurred in a condition variable in pc 2. Before the flip,
the rejection code would have been executed, but after the flip acceptTransaction

is executed. When code duplication is implemented, as in Listing 2.2, redundant in-
structions are inserted. In pc 8-9, the values of the local variables are loaded again and
pushed onto the operand stack. Afterwards, the comparison is performed again, and
another jump is made to the sensitive code region in pc 15-16. It should be noted that
this particular duplication only protects against a single bit flip in the original portion
of the code. If a second bit flip occurs in the duplicated part of the code to affect the
jump, the program can still execute acceptTransaction, even though it should not.

...

1: LOAD 1;

2: LOAD 2;

3: IF_CMPEQ 8;

<rejection code>

8: PUSH 0;

9: INVOKEVIRTUAL 12; // acceptTransaction();

...

Listing 2.1: Original program without code duplication implemented. The code is
written in TinyJCL.

8
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...

1: LOAD 1;

2: LOAD 2;

3: IF_CMPEQ 8;

<rejection code>

8: LOAD 1;

9: LOAD 2;

10: IF_CMPEQ 15;

<bit flip detected code>

15: PUSH 0;

16: INVOKEVIRTUAL 12; // acceptTransaction();

...

Listing 2.2: Modified program with code duplication implemented. The code is
written in TinyJCL.

2.2.2 Call Graph Integrity

As described by [8], is a countermeasure which attempts to detect changes in the call
graph of a program, e.g. caused by a bit flip. The idea is to have a unique id set by
every caller before a call, which is checked by every callee to see if the call was made
from a legal caller. This also works the other way around from callee to caller, where
the the callee sets a unique id which is checked by the caller upon return.

In Listing 2.3, an example of the caller is shown. In pc 5 the unique caller id is
pushed onto the stack and in pc 7 it is loaded into a class variable containing the id
of the current caller. In pc 7 the method shown in Listing 2.4 is called. The caller id,
42, stored on the heap just before the method call, and the assigned id of the caller,
already stored in another variable in memory are pushed onto the stack in pc 1 and 3 of
2.4. They are then compared in pc 2, and if the stored value is equal to the value set by
the caller, the call graph integrity has been verified and the sensitive code beginning at
pc 15 is executed. Note that these examples do not show the callee setting a unique id
to be verified upon return to the caller. An example of this can be seen in Listing C.2

...

5: PUSH 42;

7: PUTSTATIC 2;

9: INVOKESPECIAL 42;

...

Listing 2.3: Caller with call graph integrity implemented. The code is written in
TinyJCL.
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1: GETSTATIC 2

3: PUSH 42;

5: IF_CMPEQ 15

8: <data corruption handling code>

// sensitive code region

15: ...

Listing 2.4: Callee with call graph integrity implemented. The code is written in
TinyJCL.

2.2.3 Control Flow Integrity

As described by [1], is a technique which allows a programmer to annotate code to
denote sensitive regions. The programmer then inserts flag variables which increment
a counter, as shown in Listing 2.5. It is also possible to insert verification points where
the counter is checked to verify the flag value, shown in Listing 2.6. The idea is that
if a change in the call graph occurs, e.g. a method call is skipped because of a fault in
the program counter, the flag will have the wrong value. A full implementation on the
code sample can be seen in Listing C.4.

0. GETSTATIC 3

3. PUSH 1

4. ADD

5. PUTSTATIC 3

...

Listing 2.5: Java code example of the control flow integrity countermeasure
incrementing the control flow flag.

...

4. LOAD 0

5. INVOKESPECIAL 32 // processVerifyPIN()

8. GETSTATIC 2

9. PUSH 5

13. IF_CMPEQ 25

<bit flip detected code>

25. RETURN

Listing 2.6: Java code example of the control flow integrity countermeasure checking
the control flow flag.
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2.2.4 Field of Bit

The Field of Bit countermeasure described by [11], detects changes in instructions from
executable to readable, and vice versa. It uses custom annotations to denote sensitive
code regions, which means that the JCVM must be modified for the countermeasure
to work. It can detect two changes:

• An increase in the number of operands for an instruction

• A decrease in the number of operands for an instruction

Off-card, a Java class file is processed and a Field of Bit (FoB) is created. It contains
information about program counter values and whether the data at that value are ex-
ecutable or readable. The FoB is saved as a custom component in the class file.

When a method is interpreted on-card, if a Field of Bit annotation is detected by
the JCVM, it checks the method’s byte array for inconsistencies with the FoB. For
example, if an instruction is being executed, its parameters are checked in relation to
the FoB at their respective locations. If one of the parameters were bit flipped from
being readable to being executable, it would cause a discrepancy, and an error would
be detected. In the same way, a bit flip causing an executable instruction to become
readable would also be caught.

The weakness of this countermeasure is that it cannot detect if an instruction is replace
by one with the same number of operands, e.g. ifeq a (one operand) replaced by goto

a (one operand). This is called an indistinguishable replacement, but [11, p. 54] states
that the probability of this in a Java Card application is 10%.

2.2.5 Instruction Differentiation

A single bit flip can change the instruction being executed, e.g. ifeq can be flipped to
ifne, iflt, ifgt and goto in the Java Card bytecode instruction set. As mentioned
in Field of Bit, this is particularly troublesome if the two instructions take the same
number of parameters and put the same number of elements back on the operand
stack. If this is the case, the operand stack will have the same number of elements on it
regardless of whether the original or the altered instruction is executed, and the same
number of parameters. It can therefore not be detected with e.g. a countermeasure
such as Field of Bit. This can partly be remedied by modifying the underlying binary
representations of the instructions in the Java Virtual Machine. This would work by
changing the representations in such a way, that as few as possible instructions with
the same number of parameters, and the same number of elements returned to the
operand stack, are different by one bit. When a single bit flip changes an instruction,
the chances that it is an undetectable change, in regards to required parameters and
elements put back on the operand stack by it, are smaller than before modifying the
representations.
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2.3 Program Analysis with Sawja

We use the tool Sawja (Static Analysis Workshop for JAva) [6] to analyse Java class
files, and to create a call graph. Information from the graph can then be used to
provide information for rewriting purposes, e.g. the call graph integrity countermea-
sure, described in Section 2.2. Due to the Java Card version of Sawja not being public
available, experiments are performed on Java code, but the principles remain the same.

Listing 2.7 shows Java code where two classes are present, A and B. B inherits A, and
both implement the method bar(). The implementation of the method that will be
called depends on the boolean value b. When the compiled class file of this code is pro-
cessed for a call graph by Sawja, the result is as Listing 2.8 shows. The numbers that
are listed just after the method calls, e.g. 40 are interesting, since they cluster method
call targets, which can not always be resolved statically. In our case, we can use this
to see which methods the call graph integrity countermeasure should be implemented
in. If a method is not called, Sawja does not include it in the call graph. In the case
with code where it is impossible to tell which method will be called at run-time as in
Listing 2.7, Sawja includes both, as in line 3 and 4.

1 public void foo(boolean b){

2 (b ? new A() : new B()).bar();

3 }

Listing 2.7: Java sample.

1 void Sample.main(java.lang.String[]),22 -> void B.<init>()

2 void Sample.main(java.lang.String[]),12 -> void A.<init>()

3 void Sample.main(java.lang.String[]),40 -> short A.bar()

4 void Sample.main(java.lang.String[]),40 -> short B.bar()

Listing 2.8: Call graph generated by Sawja.

It is also able to pretty print the bytecode so that it becomes easier to read as in
Listing 2.9. The tool also inlines the constant pool, as is evident in pc 7, 9, 12, 14 and
16. For example in pc 7, new A would normally be new #id where the id would be a
method reference stored with identifier id in the constant pool. This inlining makes
for a more compact representation of the bytecode. Additionally, dead code does not
show up in Sawja’s output. Note that in the output, the target of a goto is expressed
in terms of a relative offset as seen in pc 11, and not a absolute program counter as
in regular Java bytecode. The instruction in line 11 will jump to the instruction at
program counter 21.
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public void foo ( bool 1 ) ;

Concrete Method

Not parsed

0. iload 1

1. ifeq 13

4. new A

7. dup

8. invokespecial void A.<init> ( )

A.<init>

11. goto 10

14. new B

17. dup

18. invokespecial void B.<init> ( )

B.<init>

21. invokevirtual short A.bar ( )

B.bar

A.bar

24. pop

25. return

Listing 2.9: Sawja sample. Note that the numbers on the inner left side are program
counter values.
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CHAPTER 3
UPPAAL and Formal Verification

In this chapter, the semantics of TinyJCL and the fault models considered, are briefly
described. The full language and fault model semantics can be seen in Appendix B, and
are taken in full from from [4]. We have made minor contributions to the semantics, thus
extending them. TinyJCL is a variation of the core Java Card bytecode language. By
core, it is meant that most of the instructions in the full Java Card bytecode language
can be built from the instructions in TinyJCL. The language was created to make it
easier to model, because of the fewer instructions. The instructions in TinyJCL and
fault models are briefly described in Section 3.1 and Section 3.1.3, respectively.

3.1 TinyJCL

TinyJCL is a small language based on Java Card bytecode. Just as Java Card, TinyJCL
is a stack based language with a heap. TinyJCL was created and formalised in [4], and
the semantics can be seen in Appendix B.1 It supports the majority of features of Java
bytecode such as classes and method invocation, which are shown in Appendix A. A
brief overview of the instructions can be seen in Section 3.1.

Program errors are not defined in TinyJCL, since it is assumed that if no legal rule is
defined, the virtual machine will exit, e.g. if the current instruction is resolved to be
LOAD i and the parameter i is not part of the domain for the Local function, represent-
ing local variables, e.g. there is no variable defined for i.

The original semantics did not capture the notion of private method calls and ex-
ceptions, TinyJCL is therefore expanded with rules for INVOKESPECIAL and THROW, to
support invocation of private methods and exceptions.
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Rule / Instruction Description

NOP No operation. Only increments the program counter.

PUSH v Pushes parameter v on top of the stack.

POP Removes and discards top element of the stack.

ADD Adds the two top elements of the stack and pushes the
result back onto the stack.

DUP Duplicates the top element of the stack and pushes it
onto the stack.

GOTO a Jumps to a certain address in the program.

IF CMPEQ a Compares the two top stack elements and performs a
conditional jump to a.

INVOKESTATIC mid Calls a static method.

INVOKEVIRTUAL mid Calls a virtual method.

RETURN Returns from a method. If the stack is non-empty the
top value is returned.

PUTSTATIC fid Writes the top value of the stack to a class variable on
the heap.

GETSTATIC fid Pushes a class variable from the heap onto the stack.

LOAD i Loads a local variable onto the stack.

STORE i Stores a value from the stack in a local variable.

PUTFIELD fid Stores a value from the top of the stack and stores it
in a field in an object.

GETFIELD fid Reads a field in an object and pushes it onto the stack.

NEW Creates an object on the heap and pushes a reference
to it onto the stack.

Table T3-1: Compact description of TinyJCL semantics. Note that stack refers to
the operand stack.

3.1.1 INVOKESPECIAL

INVOKESPECIAL is used to invoke private methods and constructors. Before the invoke,
the operand stack contains an object reference and arguments to pass to the invoked
method. These are consumed by the invoke. The reference is then stored in the lo-
cal variables followed by parameters. Additionally, a new stack frame with an empty
operand stack and a program counter set to 0, is added to the call stack.
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INVOKESPECIAL

inst(P,mid, pc) = INVOKESPECIAL mid′ CP (mid′) = pn

ops = (x0, . . . , xn, objr, p1, . . . , ppn) ops′ = (x0, . . . , xn)

loc′ = [0 7→ objr, 1 7→ p1, . . . , pn 7→ ppn])

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒

〈H, (CS, 〈mid, loc, ops′, pc〉, 〈mid′, loc′, ε, 0〉)〉

3.1.2 THROW

THROW describes when an exception is thrown. There are two cases handled, when the
catch block is found in the same stack frame as the throw, and when it is found in
another stack frame, e.g. its invoker. The exceptionLookup method handles these two
cases: If the catch is found in the current stack frame, the program counter is set to
the location of the exception handling code, the operand stack is cleared, the objr ref-
erence (for the exception object) is pushed back onto the stack and execution continues
as per the Java Card Virtual Machine v2.2 specification [9, JcvmSpec p. 151]. If no
appropriate handling block is found in the current stack frame, the frame is popped
and the stack frame of its invoker is reinstated and the exception rethrown.

CS = (CS′, 〈mid, loc, ops, pc〉) ops = (x0, . . . , xn, objr)

exceptionLookup(P,CS) ={
(CS′, 〈mid, loc, (objr), pc′〉 if exceptDef(P,mid, pc, objr) = pc′ 6=⊥
exceptionLookup(P,CS′) otherwise

THROW
inst(P,mid, pc) = THROW

CP,P ` 〈H,CS〉 ⇒ 〈H, exceptionLookup(P,CS)〉

3.1.3 Fault Models

We use fault models to formalise how fault injections affect our modelled execution. A
number of fault models describing how various bit flips can affect the execution were
also defined. A summary can be seen in Section 3.1.3 and the full definition can be
seen in Appendix B.3. Each rule defines how a single bit flip will affect the program
state. For multiple bit flips, a rule must be applied multiple times, but for the purpose
of this report we will only focus on single bit flips.
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Rule Description

DATA FAULT Describes a change in the operand stack, local
variables or the heap, caused by a bit flip.

PROGRAM FLOW FAULT Describes a change in the program flow or
method identifier due to a bit flip.

INSTRUCTION FAULT Describes a change from one instruction to an-
other, caused by a bit flip.

Table T3-2: Fault semantics with a short description. Note that stack refers to the
operand stack.

3.2 Property Verification

UPPAAL has its own query language used to verify properties of a model [2, p. 204].
The language is a simplified version of timed computation tree logic. UPPAAL’s query
language consists of state formulae and path formulae. The path formulae can be
categorised into three categories: reachability, safety and liveness. These are described
below, and they are summarised in Figure F3-1.

State formulae A state formula is an expression which can be evaluated for a state,
without looking at the mode, e.g. i ≥ 42. This formula asks whether it is true that i
is greater than or equal to 42 in a given state. State formulae also allow one to verify
whether a process is in a given location using an expression of the form P.l, where P

is a process and l is a location in the process.

A deadlock is described using a special state formula, deadlock, and is satisfied for all
states which deadlock.

Reachability properties express the notion that a state formula, ϕ, can possibly
be satisfied on some path, going from the initial location of the model. In UPPAAL
it is expressed as E<>ϕ. This could for example be used to verify whether a variable i

in the model, along some path going from the initial location will have the value 2 by
querying the model with E<>i == 2.

These types of properties are often verified as a part of a sanity check of a mod-
elled system [2, p. 205], e.g. that it is possible to reach the done location in a Java
Card program. Though this does not give any guarantee that the program will always
finish, it makes sense to make sure to check whether it possibly can.

Safety properties state that “something bad will never happen”. In other words,
every state in a model will invariantly satisfy ϕ. This is useful e.g. to check that a
bit flip can not cause a modelled program to end up in a location where e.g. incor-
rect credentials are authenticated and subsequently approved. Such an invariant safety
property is expressed in UPPAAL as A[]ϕ, where the state formula, ϕ, would express
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that the simulation of the model would never end up in the approved location when
the credentials are incorrect.

A variant of this safety property, is one that expresses that “something will possi-
bly never happen”, e.g. a bit flip might not cause a modelled program to end up in
a location where e.g. incorrect credentials are authenticated and approved. This is
expressed in UPPAAL as E[]ϕ, which states that there should exist a maximal path1,
where ϕ is always true.

Liveness properties state that “something will eventually happen”, e.g. verify that
the program will eventually reach the end location. It is expressed in UPPAAL as A<>ϕ,
and means that ϕ is eventually satisfied.

A variation of this liveness property, is the leads to property, written as ϕ  ψ. It
is expressed in a UPPAAL query as ϕ --> ψ, and means that if ϕ is satisfied, ψ will
eventually be satisfied, e.g. when Java Card transaction is begun, it will eventually
end2.

Figure F3-1: Illustration of the different property verification queries in UPPAAL.
Taken from [2, p. 8].

Probability estimation UPPAAL SMC extends the capabilites of UPPAAL, in a
way that allows us to reason about a model in terms of not only ”yes” and ”no”,
but also the probability a model has of entering a certain state. An example could be
determining the probability a Java bytecode program model has of reaching a state of
termination. To allow this, UPPAAL SMC extends regular queries, described earlier,

1A maximal path, is a path that is either infinite or the last state has no outgoing edges that can
be traversed.

2A transaction in respect to Java Card, is a number of instructions which should be executed
atomically.
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to include probabilities. A probability query looks as follows:

Pr[bound] (ϕ)

where bound denotes a bound for a simulation run, within which a property, ϕ is to be
verified. A bound can be defined in three ways [3, p. 402]

• implicitly by time by specifying ≤M , where M is a positive integer.

• explicitly by cost with x ≤M where x is a specific clock.

• by number of discrete steps with # ≤M .

UPPAAL SMC will then calculate the probability of this query being true within x
runs and some confidence. The strength of probability queries is that in contrast to
verification queries, they can easily be scaled depending on the desired precision and
will give an answer, even on very large models.
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3.3 Program Modelling

When translating a program to a UPPAAL model, several approaches are possible,
depending on what is to be shown. One could for example represent a program merely
in terms of program flow, if a disruption of program flow is to be simulated, e.g an
error in the program counter. A memory corruption could be simulated by including
the data flow in the model. These are just a few examples and many representations
can be chosen. We have chosen the latter and model programs in terms of program
and data flow to simulate disruptions in the execution flow.

3.3.1 Program Conversion

The program conversion is based on TinyJCL semantics, most Java bytecode instruc-
tions can be translated directly to TinyJCL, but type information is lost. Because
TinyJCL has operational semantics defined, it eases the implementation of the simula-
tion, since each instruction is clearly defined.

A Java method is represented by a template and method invocation is done by chan-
nels. This representation restricts the possibilities of recursion, and additionally the
maximum memory usage must be known for allocation purposes. These limitations,
while very restrictive for general Java, are already considered good practice for Java
Card programming due the limited hardware, as discussed in Section 2.1. A program
instruction, such as ALOAD a and DUP are represented as UPPAAL locations, this im-
plies that a change in the program counter results in a change of location. In turn, this
means that when an instruction is executed, the change to the program configuration
Conf from Appendix B.1 occurs on the edge to the next location.

1 public class Sample{

2 public class Sample{

3 public static void main(String[] args) {

4 install();

5 foo(3);

6 }

8 public static int foo(int i){

9 return i != 0 ? 1 : 2;

10 }

11 }

12 }

Listing 3.1: Java code sample to be converted to a UPPAAL model.
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(a) Method call in main.

(b) the method foo.

Figure F3-2: Auto generated model of the foo method from Listing 3.1
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Simple Instructions

0. iload 0

1. ifeq 7

...

(a) Java Bytecode Sample.

(b) Generated model from Sample.

Figure F3-3: Java bytecode and corresponding UPPAAL model.

Figure F3-3 shows how two Java bytecode instructions are represented in UPPAAL.
On the left we see the Java bytecode. In the first line with pc 0, we have the iload 0

instruction. iload 0 pushes an integer from local variables at position zero on top of
the operand stack, and increments the operand stack pointer and program counter. In
UPPAAL the location pc0 iload 0 represents iload 0. The UPPAAL model is seen
in Figure F3-3b.

We have decided each non-library instruction to take 1 time unit, this is simulated
with the location invariant t <= 1 and guard t == 1 on the edge leading to the next
location. The guard is found below the location name, right of the edge and invari-
ant is to the left of the edge. In this sample we defined the execution time as 1 time unit.

In the update on the edge seen below the guard, we simulate the data flow by assigning
the value of the local variable, locs[0], to the element at the top of the operand stack,
os, represented by operand stack pointer, osp. osp is incremented as the operand stack
grows and the increment of the program counter is simulated by the edge itself.

Jumps and Branches

For the majority of instructions, the program counter is set to the next instruction
after execution. For a jump with goto a, however, the edge goes to the instruction
with the program counter corresponding to the value of a, as seen in Figure F3-2.

Conditionals such as if cmpeq a are modelled by a location having two outgoing edges,
see Figure F3-3, one to the next instruction and one to the location associated with the
current program counter plus offset a. On these edges, the guard is used to determine
which of the edges is to be traversed.

The Operand Stack, Local Variables and the Heap

To simulate the operand stack, we use an operand stack pointer to point to the next free
position in an array. Local variables and the heap are both represented as arrays in the
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UPPAAL model, but they do not use an explicit pointer to access them since access to
these are not necessarily performed in a top-down manner, as with the operand stack.

Method Calls

Method calls cover the following Java bytecode instructions: invokestatic for static
calls, invokespecial for class constructors and private calls, and invokevirtual for
virtual calls. To illustrate how these instructions are modelled, we use the Java code
sample in Listing 3.2.

1 public class Virtual{

2 public Aclass a;

3 public Aclass b;

5 public Virtual(){

6 a = new Aclass();

7 b = new Bclass();

8 int ia = a.foo() + a.bar();

9 int ib = b.foo() + b.bar();

10 }

11 }

Listing 3.2: Bclass extends Aclass, Aclass implements the methods foo and bar,
and Bclass overwrites foo.

The sample includes the bytecode instructions invokespecial and invokevirtual.
invokestatic is omitted as invokestatic and invokespecial are nearly identical,
the only difference is whether an object reference from the operand stack is passed as
a parameter to the callee. As such, all method calls can be divided into two categories,
virtual and static.

Static Methods

Static method calls, as shown in Figure F3-4a, are represented by three additions to
the model. These additions consist of locations and edges.

The first is a new location in the caller for every method call it performs. This makes it
possible to simulate parameter passing from the caller, as well as control transfer when
waiting for a callee to return control after a method call. The simulation of the caller
remains in this location until the callee returns control, after its simulation has fin-
ished. This control transfer is modelled with a synchronisation on the edge, going from
the new state in the caller and back to its original control flow, as seen in Figure F3-4b.

The second is an addition of one additional location in every template. The first,
initial location, Aclass, in Figure F3-4c, serves two purposes: it enables the control
transfer from the caller to itself by synchronisation, and simulates passing of arguments
into the method from the caller.
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The third is the edge from the return instruction, seen in Figure F3-4c. This is
one of the two edges pointing to the AClass initial location, and the other is for excep-
tions, which are covered in Section 3.3.1. For main, the edge goes to a Done location
instead of the initial location, where the simulation ends when it has finished. For other
templates, this is where control is transferred back to the caller, and the edge goes to
the initial location.

...

9. invokespecial void Aclass.<init> ( )

12. putfield Virtual.a : Aclass

...

(a) Invokespecial Bytecode generated by Sawja.

(b) Invokespecial Instruction. (c) Initial Location.

Figure F3-4: Java bytecode and corresponding UPPAAL model.

Virtual Methods

Virtual methods are similar to static methods in regards to representation in the
method template for caller and callee, but instead of handling control directly to callee
method templates, a template responsible for resolving the virtual call is inserted for
this purpose. Figure F3-5 is the resolver template generated for the code in Listing 3.2,
there is a total of three virtual methods in this sample and the resolver has a waiting
location for each.

Every class is mapped to an integer clID and an array, classHierarchy, represents
the class hierarchy of the program. The initial location Invoke waits for a synchroni-
sation, after which the location Resolver has an outgoing edge for every possibility, in
this sample that is five. There are essentially always three distinct possibilities

• There are no methods and no super where clID == 0.

• There is a method matching the class and method signature - in this case, call
the method.

• There are no methods but there is a super class, then assign clID = classHierarchy[clID]
and try again.

This is based onmethodLookup from the INVOKEVIRTUAL semantics in Appendix B.2.14.
The usage of template for resolving method calls have similar limitation as representing
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a template as a method, discussed in Section 3.3.1. It pose a problem when calling
virtual methods from within a virtual method, but it can be handling by instantiating
a instant of the lookup template for each virtual method, this however might scale
poorly.

Figure F3-5: Invokevirtual.

Exceptions

Exceptions are handled by try catch blocks which do not have a corresponding byte-
code instruction, instead they are defined at the end of a method as seen in Listing 3.3,
0, 8, 11 represent the corresponding program counters. When exceptions are thrown
by the athrow instruction, there are two outcomes, either there is some exception han-
dling covering the athrow defined in the current method, in which case the execution
continues from the catch start pc. If there is no exception handling covering the
athrow in the current method, the top stack frame will be popped and the process
exception rethrown in its caller. On Java Card an unhandled exception thrown by an
applet can be used to indicate an error such as no access.

The athrow location has an edge to a new location. The edge is required to set an
exception occurred flag before passing control back to the caller by synchronisation.
In Figure F3-2a the caller is shown, and if the exception occurred flag is set when
assuming control, it will follow the edge to, in this example, the initial instruction.
It is also possible for the athrow location to have an edge to a catch instruction,
depending on whether an appropriate exception definition exists.

....

try start: 0; try end: 8: catch start: 11; catched type: java.lang.Exception.

Listing 3.3: Invokespecial Bytecode generated by Sawja.
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3.3.2 Fault Modelling

We focus on three faults: program counter fault, data fault and static instruction fault
where program counter and data fault are considered transient, and static instruction
fault is considered persistent, as described in Chapter 2.

Program Counter Fault

To model a single bit flip occurring in the program’s execution, a special fault template
is introduced, illustrated in Figure F3-6. The template selects a random value between
0 and the maximum possible global clock value, which represents when in the program’s
execution a fault happens. The random value is assigned to a global variable in the
UPPAAL system.

Every instruction in the Java bytecode is represented by a location, and has an as-
sociated program counter. There are edges from each location going to the locations
which can be reached if one bit is flipped in the program counter. These edges have
guards which check whether the time the fault is injected, corresponds to the global
clock at the time the model simulation is at that particular edge. If it is, the guard
will allow the edge to be traversed. There are no fault edges going back to the added
locations described in Section 3.3.1, since these are not a part of the original program
and therefore do not have an associated program counter.

Figure F3-6: The UPPAAL template which selects when to perform a bit flip in the
program counter

Data Faults

To model a data fault being injected into the operand stack, a special template selects
when a fault should be injected into the operand stack. This happens in the same way as
in the program counter fault described earlier, illustrated in Figure F3-6. The selected
value is between 0 and the maximum possible runtime of the program. Figure F3-7
shows a method getTriesRemaining, in which a bit flip in the operand stack occurs.
Edges going back to the locations pc0 iconst 2 and pc0 iconst 2 are where the faults
are introduced. These are added by the solution and are not a part of an unaltered
model of a program. The edges have a guard, faultT ime ≤ globalClock, determined
by the special template, which only allows a fault to happen if the program execution
has executed for a certain amount of time. The fault itself is introduced by the update
os[osPos]ˆ = 1 � osBitPos, which flips bit osBitPos of value at position osPos in
the operand stack. osBitPos is a random value between 0 and 7, which denotes which
bit should be flipp ed. osPos is a random value between 0 and the maximum size of
the operand stack. After a fault has been introduced, the variable faultTime is set to
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a value higher than the maximum value of the global clock, to ensure only one fault
happens per simulation.

Our approaches to modelling faults in the operand stack, heap and local variables
are similar and therefore only one of them is described.

Figure F3-7: The UPPAAL model af a method where a bit flip occurs in the operand
stack.

Instruction Fault

An instruction fault is not necessarily time-dependent, i.e. it does not rely on a clock as
the operand stack fault described earlier. This fault model can represent both persistent
and transient bit flips. The timing aspect of transient faults are modelled similar to
operand stack faults, but persistent instruction faults are modelled by first assigning
each edge of all templates a unique identifier. A special template then selects a random
value in the range of 0 and the greatest identifier in the modelled program. A fault will
only happen once since only one identifier is selected, and only when the simulation
reaches the instruction chosen by the fault template. This is enforced using guards
which compares the selected identifier with the current edge’s. During the generation
of the model, the solution has calculated all instructions, an instruction can be changed
to by a bit flip in their binary encoding. Additional edges are then inserted to perform
the actions of the altered instructions. For example, the ifeq instruction, which can
be bit flipped to goto, would cause an extra edge representing the ”yes” branch to
be created to the destination location of the original ”yes” branch. The new edge is
different from the two original edges by always being enabled, thus causing a simulation
to always perform a jump regardless of the result of the ifeq comparison.
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3.4 Proposed Solution

We propose a solution which can convert a Java class file into a UPPAAL SMC model,
modify the model to insert fault injection attacks and countermeasures, and assess the
effectiveness of these. The purpose of the conversion is to be able to provide guarantees
that the program has not become less secure with the implemented countermeasures.

The workflow stages of the solution are illustrated in Figure F3-8. The stages are
labelled with numbers 1-3. Their purposes are detailed in the following.

Stage 1 - 2 parses Java bytecode through the solution’s parser and generates a
UPPAAL SMC model. This code can be either unmodified code or code implemented
with countermeasures.

Stage 2 - 3 assesses the attacks performed and countermeasures implemented, to
evaluate vulnerability and countermeasure effectiveness.

1:
Java bytecode

parsing property verification2:
UPPAAL model

3:
Assessment

Figure F3-8: The workflow of the solution, from Java bytecode to UPPAAL SMC
model and assessment of the modelled program.
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CHAPTER 4
Experiments

In this chapter, experimental results are presented to investigate whether implementing
code duplication, call graph and call flow integrity countermeasures, see Section 2.2,
makes Java code more and not less secure. The experiments will be performed on
code with and without countermeasures, implemented on a custom code sample and a
mocked sample from the Java Card samples, found in Appendix C.

In order to determine whether the implemented countermeasures do indeed provide
improved protection against bit flips, compared to unprotected code, experiments are
needed. These are performed with the modelling tool UPPAAL, which is described in
Chapter 3.

4.1 Java Card Purse

The experiments are performed on a code sample from a selected part of the Java Card
samples seen in Listing C.1, where some parts, mainly variables and methods have been
mocked in cases where it was not necessary or possible to model the complete sample.

The code sample is responsible for validating the PIN code, and in our experiments we
will see how a bit flip can affect the validation. Experiments will be run according to
three criteria: No change, Crash and Attack. We define No change as when the asso-
ciated fault model never has any effect on the validation. Crash is defined as when the
program reaches an illegal state, e.g. a misaligned operand stack or an illegal program
counter. Attack is defined as when the validation is bypassed and the program remains
in a legal state. Below, the types of queries and their purpose used are listed:

• No change: A liveness query checks whether the program can terminate in the
correct state.

• Crash: A reachability query checks whether an error can occur.

• Attack: A reachability query checks whether the program can terminate suc-
cessfully when an attack has occurred.

• Probabilities: For each state formula, a probability query is also run.

We assume that a bit flip will occur within 80 time units of program start. Through
experiments, we discovered this number is greater than any of the individually modelled
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programs. Additionally, the models are created in such a way that each instruction
execution takes 1 time unit. This ensures a bitflip to occur within either one of the
program’s simulation runs, while the probability of affecting single instruction in any
of the modelled programs are the same. The bit flip may or may not have an effect,
depending on whether it occurs between program start and program end, or outside.

Results

The results in the table are listed in the following format in the extreme left column:
Code version+ (attack), where attack is optional.

Version No change No change % Crash Crash % Attack Attack %

Base True [0.990, 1] False [0, 0.01] False [0, 0.01]

Base + PC False [0.640, 0.650] True [0.342, 0.352] True [0.004, 0.014]

Base + OP False [0.990, 1] False [4,4e-5, 0.01] True [0, 0.01]

Base + H True [0.990, 1] False [0, 0.01] False [0, 0.01]

Base + L True [0.990, 1] False [0, 0.01] False [0, 0.01]

CD True [0.990, 1] False [0, 0.01] False [0, 0.01]

CD + PC False [0.653, 0.663] True [0.331, 0.341] True [0.003, 0.013]

CD + OP True [0.990, 1] False [0, 0.01] False [0, 0.01]

CGI True [0.990, 1] False [0, 0.01] False [0, 0.01]

CGI + PC False [0.277, 0.287] True [0.701, 0.711] True [0.012, 0.022]

CGI + OP False [0.990, 1] False [0, 0.01] True [0.01, 0.01]

CFI True [0.990, 1] False [0, 0.01] False [0,0.01]

CFI + PC False [0.504, 0.514] True [0.478, 0.488] True [0.005, 0.015]

CFI + OP False [0.990, 1] False [0, 0.01] True [0,0.01]

CFI2 True [0.990, 1] False [0, 0.01] False [0, 0.01]

CFI2 + PC False [0.558, 0.568] True [0.428, 0.438] True [0.004, 0.014]

CFI2 + OP False [0.990, 1] False [0, 0.01] True [2.266e-5, 0.01]

Table T4-1: Experiment results for Java Card Purse example. All experiment results
have a confidence of 0.995

We do not utilise values from the heap or local variables to determine program flow,
and as a result heap and local faults have no potential for attack. They are therefore
omitted from the following experiment conclusions and results table, except in the Base
version of the code sample. The base case for each countermeasure is provided to show
that the countermeasure does not change the program’s external behaviour.
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Base

In the Base case, where no fault was introduced, the progam ran as expected.

In the case of Base + PC, there is a change in the crash and attack probabilities.
The changes are likely due to two cases: When the operand stack becomes unaligned,
e.g. because the program counter is changed to an address containing an instruction
which consumes two stack elements, but the original instruction only consumes one.
Or when a bit flip changes the program counter to an invalid value.

The results for Base + OP show that an attack is possible, however the probabil-
ity simulation is not able to distinguish it from the Base case. This could be due to
the fact, that the simulation did not enconter a run where an attack was possible.

Code Duplication

For CD + PC we expected a change in the attack probability compared to Base + PC,
since the critical region of the code was offset, which might or might not have enabled
new paths to be taken. The non-significant change in the results may be because the
protected program happens to have the same amount of valid paths.

CD + OP successfully protects the code when it is subjected to a bit flip in the operand
stack, as seen in the attack column. We attribute this to the fact that code that uses
the operand stack, e.g. an ifeq instruction, is duplicated and therefore a flip in a value
used, is overwritten with a correct value.

Call Graph Integrity

CGI + PC shows a higher vulnerability with a fault in the program counter, compared
to the code duplication countermeasure. This is likely because the sensitive code re-
gion has become larger, as a result of additional instructions inserted to implement the
countermeasure, thus resulting in a larger attack surface.

As CGI + OP shows, a successful attack is possible, but it can not differentiated
from Base + OP, as the probability for a successful attack is very small.

Call Flow Integrity

Similar to CGI + PC, CFI + PC also has an increased crash probability, but without
an increased attack probability compared to Base. It was expected that CFI might
reduce the probability of a pc fault attack, as it introduces checks to confirm that im-
portant code has been run. We suspect the reason for this, is the structure of the code
as the flag is only checked once in the experiment, and bypassing this check is enough
for a run to be considered a successful attack.

33



4.2. INVOKE EXPERIMENTS

CFI + OP shows no differences compared to base + OP. As expected, control flow
integrity does not protect against errors in the operand stack.

Call Flow Integrity 2

CFI2 is a modification of the CFI example seen in Listing C.4, which was our attempt
to reduce the attack probability, by reducing the number of instructions in the program
to minimise the attack surface.

As the results show in the case of CFI2 + PC, the modification is hard to separate
from the attack probability of CFI + PC, and it had no discernible effect. A positive
side effect, however, was a reduced crash probability, which is likely due to the fact
that the largest method in CFI2 has fewer instructions than in CFI, and thus a smaller
attack surface.

CFI2 + OP is similar to CFI + OP, but a very small amount of attacks were suc-
cessful in the simulation runs. This amount is neglible, however.

4.2 Invoke

The experiments are performed on the code sample from Listing 3.2, results can be seen
in Section 4.2. The code duplication countermeasure are omitted because the example
has no branches. The purpose of the sample is to include virtual and special invokes,
to be used in these experiments. Because of the invokes, heap and locals faults now
have an impact, and are therefore included in the result table.
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Results

Version No change No change % Crash Crash % Attack Attack %

Base True [0.990, 1] False [0, 0.01] False [0, 0.01]

Base + PC False [0.385, 0.395] True [0.607, 0.617] True [0.023, 0.032]

Base + OP False [0.961, 0.971] True [0.005, 0.015] True [0.013, 0.023]

Base + H False [0.912, 0.922] True [0.053, 0.063] True [0.004, 0.014]

Base + L False [0.966, 0.976] True [0.014, 0.024] True [0.004, 0.014]

CGI True [0.990, 1] False [0, 0.01] False [0, 0.01]

CGI + PC False [0.032, 0.042] True [0.859, 0.869] True [0.041, 0.051]

CGI + OP False [0.928, 0.938] True [0.005, 0.015] True [0.046, 0.056]

CGI + H False [0.821, 0.831] True [0,111 0.121] True [0.024, 0.034]

CGI + L False [0.937, 0.947] True [0.027, 0.0037] True [0.012, 0.022]

CFI True [0.990, 1] False [0, 0.01] False [0, 0.01]

CFI + PC False [0.147, 0.157] True [0.851, 0.861] True [0.007, 0.017]

CFI + OP False [0.938, 0.948] True [0.030, 0.040] True [0.016, 0.026]

CFI + H False [0.829, 0.839] True [0.131, 0.141] True [0.008, 0.018]

CFI + L False [0.964, 0.974] True [0.017, 0.27] True [0.01, 0.011]

Table T4-2: Experiment results for invoke example. All experiment results have a
confidence of 0.995

Base

In the base case, no fault was introduced and as a result, the program ran as expected.

In Base + PC, the crash probability appear high which is likely because of misaligned
program counter values.

The probability of crashes in Base + OP are present because the sample uses the
operand stack to a greater degree than the Java Card Purse results, thus causing a
larger attack surface. Results for Base + H and Base + L show detectable crash and
attack probabilities, because the sample uses the heap for objects and local variables
for storing calculation results.

Call Graph Integrity

Generally, the CGI countermeasure did not work well on the code sample, and the
probability of a successful attack appears to be greater than for the Base example. We
attribute this to the fact that the CGI code size was twice as big as the Base, and as
a consequence created a larger attack surface, while CFI added significantly less size
overhead.
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Call Flow Integrity

For CFI + PC, the attack percentage is lower than that of CGI + PC, which indicates
CFI is more effective at protecting against program counter faults. As a consequence,
the crash probability is higher since an exception is thrown every time CFI detects
a discrepancy in the call graph. Additionally, the extra instructions added by the
countermeasure, result in more possibilities for the program counter fault to strike, but
also increased possibility that the attack will cause an unaligned program counter value.

CFI + OP protects better against program counter faults than operand stack heap
and local faults, but neither differentiate themselves in a significant way.

4.2.1 Summary

It would seem that code duplication and control flow integrity protect the Java Card
purse sample code better than call graph integrity. This is because none of the faults
introduced alter the call graph itself, they only change the program flow from one path
to an already existing path.

A fault model we did not include is instruction parameter faults, such as flipping a
bit in the target address of a goto or method index in an invoke. This could cause a
change in the call graph. Additionally, if the examples had used virtual methods, there
would be a chance of calling a method based on the wrong class id, caused by a bit
flip. Call graph integrity would catch both of these cases.

In general, the CFI and CFI2 provide the best protection compared to the static size
overhead. The CGI countermeasure adds an overhead larger than both CD, CFI and
CFI2. CGI seemed to have little to no effect on the two code samples, which was due to
the fact that few of the faults modelled could affect a method call. Fault models where
we expect CGI to have a greater effect are bit flips in method identifier, see PFF M
Appendix B.3.2, bit flips in bytecode instruction parameters and bit flips during the
method invokation.

CD provided a reasonable amount of protection, and incurred little overhead com-
pared to Base. Table T4-3 shows a comparison of the static bytecode size compared to
Base.

Version CD CFI CFI2 CGI

Purse 1.25 1.55 1.45 3.07

Invoke - 1.48 - 1.98

Table T4-3: Relative bytecode size of each Base with implemented countermeasures,
compared to Base. Base is 1.0.

The small sample size of experiments we have performed, indicate that one has to be
careful about where countermeasures are implemented. Thoughtless implementation
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of countermeasures might not improve security of the code, and in the worst case make
the code less secure.
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CHAPTER 5
Conclusion

In this report an overview of the Java Card platform as well as attacks and counter-
measures, aimed at the platform is presented. The primary focus is on bit flips, and
how they can affect static and running behaviour of programs.

Our previous work [4] argued that it is difficult to measure and compare the effective-
ness of countermeasures. We have tried to offer a solution to this problem by providing
an automated approach for converting Java bytecode to UPPAAL SMC models, which
allows us to test properties of a model, in its query language. We present an approach
to model all major features of the Java bytecode language in UPPAAL. Our solution
has some limitations, however. For example, it does not allow recursive calls and flips
in method identifiers, which could be interesting to investigate in regards to counter-
measures, e.g. causing endless recursion. The logic in our model conversion is based
on TinyJCL semantics, which we have expanded upon with additional rules.

We have based our conversion on the Java static analysis tool Sawja’s native Java
bytecode representation. In extension, we have investigated its call graph generation
functionality, which is useful for automatic implementation of control flow based coun-
termeasures.

In our experiments, we used our tool to construct models based on two code sam-
ples, and four fault models. Three fault injection countermeasures were also modelled
for each code sample, and UPPAAL queries were then used to assess various proper-
ties of the models which has given us a basis for comparison of the countermeasures.
A proof of concept instruction fault model was also modelled in UPPAAL for a few
instructions, such as ifeq and goto.

We have shown that it is possible to automatically generate UPPAAL models of Java
programs, and use UPPAAL’s query language to verify security properties of the pro-
grams. Additionally, we have extended the models to include fault models, to evaluate
the programs’ vulnerabilities to fault attacks.
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5.1 Future Work

The fault models should be extended by adding new fault models, to enable better as-
sessment of countermeasures, for example control flow based countermeasures, such as
call graph integrity. In addition, an analysis could be made to determine each attack’s
probability of success, relative to the other’s, to aid in countermeasure selection. This
would allow us to compare the fault models in terms of attack difficulty, which could
be used in the selection of an appropriate countermeasure. Similarly, bit flips could
be excluded from methods only being run at the manufacturer or vendor, such as the
install method.

Additionally, further exploration of Sawja’s static analysis capabilities could prove
useful in assessing countermeasures. We have not created a fault model for bit flips
in the constant pool since Sawja’s bytecode representation hides the constant pool
implementation. Since the constant pool has potential for allowing attacks, it would
make sense to look into this.

More experimentation could be done to investigate which UPPAAL representation
is most appropriate. For example, a single template approach where an entire program
is modelled in one template, would simplify the implementation of invoke and bit flips
in the method identifier. The current modelling and their consequent experiments only
take single bit flips into account, this could be extended to include multiple bit flips,
as malicious attackers could utilise more than a single bit flip to attack an applet.
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TINYJCL SAMPLE MODEL

APPENDIX A
TinyJCL Sample Model

Figure A.1: Model of full TinyJCL
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TINYJCL SAMPLE MODEL

Figure A.2: Model of full TinyJCL
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TINYJCL SAMPLE MODEL

Figure A.3: Model of full TinyJCL
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APPENDIX B
Semantics

Minor corrections have been made to the RETURN, RETURN VOID and INVOKE VIRTUAL

rules by the authors of this report.

B.1 Semantics

In this chapter we describe and formalise the language TinyJCL, which contains a
variation of the core instructions of the Java Card bytecode language. In this context
the term core describes the basic set of instructions from which all other Java Card
instructions can be built. We created this language because it is easier to model the
fewer instructions in this language, rather than all the instructions in Java Card. The
full set of Java Card instructions can be built from combinations of the instructions
in TinyJCL. Furthermore, there exists no official formal semantics for the Java Card
language. The instructions of TinyJCL are defined as:

Instructions = {NOP, PUSH v, POP,

ADD, DUP, GOTO a,

IF CMPEQ a, INVOKESTATIC mid, RETURN,

PUTSTATIC fid, GETSTATIC fid, LOAD a,

STORE a, INVOKEVIRTUAL mid, PUTFIELD fid,

GETFIELD fid, NEW ci }

N is defined as the set of all natural numbers, including zero, and Z is defined as the
set of all integers. In the operational semantics we want to describe values as an integer
between a minimum value and a maximum value, V alues = {x|x ∈ Z∧ x ≥ INT MIN∧
x ≤ INT MAX}. In addition we want a notion of addresses which is used to refer to an
instruction in a method and mapping to the heap: Addresses = N. A program counter
is used to represent the current address ProgramCounters = PC = Addresses. In-
structions with parameters, such as PUSH v, increment the program counter with more
than one, since it uses more than one byte.

The program is a sequence of instructions, we denote a program as P = (i0, . . . , ik)
where k is the number of instructions in the program. A program consist solely of
instructions P ∈ Programs and Programs = {x|x ∈ Instructions∗}. To access
instructions we introduce a function accepting a program, method identifier, and a
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program counter. It returns the instruction in the method of the program at the
program counter. The function is defined as:

inst = Programs×MethodID × PC → Instructions

MethodID = N
To describe a running program we use configurations. A configuration is a 4-tuple

consisting of a program, constant pool, heap and a call stack.

Conf = Program× ConstPool ×Heap× CallStack

Executing an instruction means moving from one configuration to another. We will
use ` to indicate no change in the elements left of `. For the semantic rules, no change
will occur in program and constant pool e.g.:

CP,P ` 〈H,CS〉 → 〈H ′, CS′〉

Where CP ∈ ConstPool, H,H ′ ∈ Heap, and CS,CS′ ∈ CallStack. We use a short-
hand dot notation to access elements of a tuple e.g. conf.Program where conf ∈ Conf ,
indicates the program used in the configuration conf .

The heap can be described as a function which takes a heap address and re-
turns either the address or value associated with that address Heap = Addresses →
(Addresses+ V alues)⊥. ⊥ represents an undefined value, and is included to describe
that Addresses can also map to undefined addresses/values in the heap.

The call stack is used to keep track of the current method scope, it is a sequence
of stack frames CallStack = StackFrames∗. A stack frame holds the method id, local
variables, operand stack and the program counter for the method.

StackFrame = MethodID × Locals×OpStack × PC
Local variables are represented by the function Locals = N → V alues⊥. The

operand stack is a sequence of values and addresses OpStack = (V alues+Addresses)∗.

To represent objects we need classes in our language. We represent classes as a
2-tuple with a possible super class and a function for resolving methods: Class =
Class⊥ × Methods. Class⊥ is the super class or ⊥ in the case of no super class
Methods is the set of all method identifiers implemented by the class. Object are
represented by a 2-tuple with the class and fields of the object:

Object = Class× Fields

Fields is a function for resolving the values of class variables:

Fields = FieldID 7→ (V alues+Addresses)

FieldID = N
Finally we make use of a constant pool to resolve static method ids, fields of static

classes and class definition when creating new objects:

CP = ConstPool = (MethodID → N)+(FieldID → Addresses)+(ClassIndex→ Class)

ClassIndex = N
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B.2 Instruction Semantics

In the following semantics we make use of these abbreviation:

H,H ′ ∈ Heap CS ∈ CallStack ops, ops′, ops′′ ∈ OpStack
mid,mid′,mid′′ ∈MethodID loc, loc′ ∈ Locals pc, pc′ ∈ PC

v ∈ V alues a, objr ∈ Addresses fid ∈ FieldID
obj, obj′ ∈ Object cl ∈ Class

B.2.1 NOP

The instruction has no other effect than incrementing the pc.

NOP
inst(P,mid, pc) = NOP

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops, pc+ 1〉)〉

B.2.2 PUSH

PUSH v is used to add the value from the parameter v onto the top of the operand
stack. Since the PUSH v instruction takes up two bytes due to the parameter, pc is
incremented by two.

PUSH

inst(P,mid, pc) = PUSH v

ops = (x0, . . . , xn) ops′ = (x0, . . . , xn, v)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops′, pc+ 2〉)〉

B.2.3 POP

This will remove and discard the top element of the operand stack.

POP

inst(P,mid, pc) = POP

ops = (x0, . . . , xn−1, xn) ops′ = (x0, . . . , xn−1)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops′, pc+ 1〉)〉

B.2.4 ADD

This instruction consumes the two top elements of the operand stack, adding them
together and pushes the result back onto the stack.

ADD

inst(P,mid, pc) = ADD v = xn−1 + xn

ops = (x0, x1, . . . , xn−2, xn−1, xn) ops′ = (x0 . . . xn−2, v)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops′, pc+ 1〉)〉
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B.2.5 DUP

DUP duplicates the top element of the operand stack, leaving two identical elements as
the two top elements of the operand stack.

DUP

inst(P,mid, pc) = DUP

ops = (x0, . . . , xn) ops′ = (x0, . . . , xn, xn)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops′, pc+ 1〉)〉

B.2.6 GOTO

GOTO a takes an address as parameter and performs a jump to the specified address.

GOTO
inst(P,mid, pc) = GOTO a pc′ = a

CP, P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops, pc′〉)〉

B.2.7 IF CMPEQ

This compares and consumes the two top elements of the operand stack. If they
are equal it will make a jump to the address given as a parameter, otherwise it will
increment pc by two.

inst(P,mid, pc) = IF CMPEQ a

pc′ =

{
a, if xn−1 = xn

pc+ 2, otherwise

IF CMPEQ
ops = (x0, . . . , xn−2, xn−1, xn) ops′ = (x0, . . . , xn−2)

CP,P ` 〈H, (CS, 〈mid, locals, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, locals, ops′, pc′〉)〉

B.2.8 INVOKE STATIC

INVOKESTATIC mid is used to call a static method. This involves adding a new stack
frame on the call stack. The parameters of the methods are stored in local variables of
that stack frame. These parameters are read from the operand stack. The number of
parameters, pn, are found in the constant pool.

INVOKESTATIC

inst(P,mid, pc) = INVOKESTATIC mid′ CP (mid′) = pn

ops = (x0, . . . , xn) ops′ = (x0, . . . , xn−pn)

loc′ = [0 7→ xn−pn, . . . , pn 7→ xn])

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒

〈H, (CS, 〈mid, loc, ops′, pc〉, 〈mid′, loc′, ε, 0〉)〉
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B.2.9 RETURN

RETURN is used when returning from a method. The result of a RETURN depends on
the state of the operand stack when called. If the operand stack is not empty the top
element will be the return value.

RETURN

inst(P,mid′, pc′) = RETURN ops = (x0, . . . , xn)

ops′ 6= ε ops′ = (x′0, . . . , x
′
n) ops′′ = (x0, . . . , xn, x

′
n)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉, 〈mid′, loc′, ops′, pc′〉)〉 ⇒

〈H, (CS, 〈mid, loc, ops′′, pc+ 3〉)〉

In following case, where the operand stack is empty, it will return without adding
an element to the previous frame’s operand stack.

RETURN VOID
inst(P,mid′, pc′) = RETURN ops′ = ε

CP, P ` 〈H, (CS, 〈mid, loc, ops, pc〉, 〈mid′, loc′, ops′, pc′〉)〉 ⇒

〈H, (CS, 〈mid, loc, ops, pc+ 3〉)〉

B.2.10 PUT STATIC

This is used to write a value to a class variable on the heap.

PUTSTATIC

inst(P,mid, pc) = PUTSTATIC fid

CP (fid) = a H ′ = H[a 7→ v]

ops = (x0, . . . , xn, v) ops′ = (x0, . . . , xn)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H ′, (CS, 〈mid, loc, ops′, pc+ 2〉)〉

B.2.11 GETSTATIC

This reads the value of a class variable on the heap.

GETSTATIC

inst(P,mid, pc) = GETSTATIC fid

CP (fid) = a H(a) = v v 6=⊥

ops = (x0, . . . , xn) ops′ = (x0, . . . , xn, v)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops′, pc+ 2〉)〉
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B.2.12 LOAD

LOAD i is used to load the value of a local variable onto the operand stack.

LOAD

inst(P,mid, pc) = LOAD i loc(i) = v v 6=⊥

ops = (x0 . . . xn) ops′ = (x0 . . . xn, v)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops′, pc+ 2〉)〉

B.2.13 STORE

This will store a new value in a local variable.

STORE

inst(P,mid, pc) = STORE i loc′ = loc[i 7→ xn]

ops = (x0, . . . , xn−1, xn) ops′ = (x0, . . . , xn−1)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc′, ops′, pc+ 2〉)〉

B.2.14 INVOKE VIRTUAL

INVOKEVIRTUAL is similar to INVOKESTATIC but in addition an object reference from the
operand stack is stored as the first local variable, and the method for the actual class
is resolved by a method lookup, inspired by [7]. For this we introduce two functions
signa, and methodLookup. signa = MethodID → Signature, where Signature is the
method’s signature e.g. name and parameters. And methodLookup used to lookup the
intended method identifier, either from the class itself or a super class, defined as:

methodLookup(mid, cl) =
⊥ if cl =⊥
mid′ if mid′ ∈ cl.Methods ∧ signa(mid′) = signa(mid)

methodLookup(mid, cl.Class) otherwise

INVOKEVIRTUAL

inst(P,mid, pc) = INVOKEVIRTUAL mid′ CP (mid′) = pn

ops = (x0, . . . , xn, objr, p1, . . . , ppn) ops′ = (x0, . . . , xn)

methodLookup(H(objr).Class,mid′) = mid′′ mid′′ 6=⊥

loc′ = [0 7→ objr, 1 7→ p1, . . . , pn 7→ ppn]

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒

〈H, (CS, 〈mid, loc, ops′, pc〉, 〈mid′′, loc′, ε, 0〉)〉
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B.2.15 PUT FIELD

PUTFIELD fid takes an object reference and a value from the top of the operand stack
and stores the value in a specific field in the object.

PUTFIELD

inst(P,mid, pc) = PUTFIELD fid H(objr) = obj

H ′ = H[objr 7→ obj′] obj′ = obj.F ields[fid 7→ v]

ops = (x0, . . . , xn, objr, v) ops′ = (x0, . . . , xn)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H ′, (CS, 〈mid, loc, ops′, pc+ 2〉)〉

B.2.16 GET FIELD

GETFIELD fid reads and consumes an object reference from the operand stack, and
reads the value of the specified field in the object which is then stored on the operand
stack.

GETFIELD

inst(P,mid, pc) = GETFIELD fid

obj = H(objr) v = obj.F ields(fid)

ops = (x0, . . . , xn, objr) ops′ = (x0, . . . , xn, v)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops′, pc+ 2〉)〉

B.2.17 NEW

NEW ci creates a new object on the heap as well as pushing an object reference to the
operand stack.

NEW

inst(P,mid, pc) = NEW ci CP (ci) = cl

obj = 〈cl, fields〉 fields ∈ Fields

H(objr) =⊥ H ′ = H[objr 7→ obj]

ops = (x0, . . . , xn) ops′ = (xo, . . . , xn, objr)

CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H ′, (CS, 〈mid, loc, ops′, pc+ 2〉)〉

B.3 Fault Semantics

We now introduce a fault model formalising the fault injections which can happen.
This serves the purpose of showing exactly how a certain fault affects the Java Card,
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whether it be a program flow change or a change in the memory.

To describe the fault semantics, we represent V alues and Addresses as bit strings.
We then use a Hamming distance of one, ≡1, to represent a bit flip, so a ≡1 b means a
differs from b with only one bit. It can also be stated as

∃x ∈ N : a ≡1 b⇒ a = b⊕ 2x

where ⊕ is the binary XOR operation. It can be expressed similarly with sequences

A ≡1 B ⇒ e 6= e′|A = (x0, . . . , xn−1, e, xn+1 . . . , xm)∧B = (x0, . . . , xn−1, e
′, xn+1 . . . , xm)

where n is the position of the differentiating element in the sequences A and B.

B.3.1 DATA FAULT

A data fault can occur three places: the operand stack, the local variables or the heap.
These faults are formalised in the DF OPS, DF LOC and DF HEAP rules respectively.

DF OPS

ops = (x0, . . . , xn, . . . , xm) ops′ = (x0, . . . , v, . . . , xm)

v ≡1 xn 0 ≤ n ≤ m
CP,P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops′, pc〉)〉

DF LOC
fid ∈ loc v = loc(fid) v′ ≡1 v

CP, P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc[fid 7→ v′], ops, pc〉)〉

DF HEAP
a ∈ H v = H(a) v′ ≡1 v

CP, P ` 〈H,CS〉 ⇒ 〈H[a 7→ v′], CS〉

B.3.2 PROGRAM FLOW FAULT

This fault causes a change in the program flow of the applet. There are two cases: In
the first case, either the fault changes the program counter, which has the consequence
of changing which instruction is to be executed next. But since we have defined the
program counter to only span locally within the method body, PFF PC only describes a
change in program flow within the method body. In the second case, PFF M describes
a fault which changes the method identifier, mid, of the method to be executed. The
fault described by PFF M will change the program flow to another method, outside of the
current stack frame, but at the same program counter value within the new method’s
stack frame.

PFF PC
pc′ ≡1 pc

CP, P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid, loc, ops, pc′〉)〉

PFF M
mid′ ≡1 mid

CP, P ` 〈H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈H, (CS, 〈mid′, loc, ops, pc〉)〉
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B.3.3 INSTRUCTION FAULT

This fault causes a change in an instruction, e.g. changing a ADD to a POP by changing
a single bit in the instruction.

INST F

inst(P,mid, pc) = I P ≡1 P
′

I, I ′ ∈ Instructions I ′ 6= I inst(P ′,mid, pc) = I ′

〈CP,P,H, (CS, 〈mid, loc, ops, pc〉)〉 ⇒ 〈CP,P ′, H, (CS, 〈mid, loc, ops, pc〉)〉

53



B.3. FAULT SEMANTICS SEMANTICS

54



APPENDIX C
Code Samples

1 public class Example{

2 public static void main(String[] args){

3 try{

4 Example hw = new Example();

5 }catch (Exception ex){

7 }

8 }

10 public Example() throws Exception{

11 processVerifyPIN();

12 }

14 private void processVerifyPIN() throws Exception{

15 int pinLength = 4;

16 int faultCode = 255;

17 int triesRemaining;

19 short count = setIncomingAndReceive(); // get expected data

21 if(count < pinLength) throw new Exception();

23 if(isInvalid() != false){

24 triesRemaining = getTriesRemaining();

25 throw new Exception();

26 }

27 }

30 private boolean isInvalid(){

31 return true;

32 }

34 private short setIncomingAndReceive(){

35 return 5;

36 }

38 private int getTriesRemaining(){
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39 return 2;

40 }

41 }

Listing C.1: Mocked Java example code from the Java Card samples
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1 public class ExampleCGI{

2 private static int callId;

4 public static void main(String[] args){

5 try{

6 callId = 1;

7 ExampleCGI hw = new ExampleCGI();

9 if(!(callId == 2))

10 {

11 throw new Exception();

12 }

14 }

15 catch (Exception ex){

17 }

18 }

20 public ExampleCGI() throws Exception{

21 if(callId != 1){

22 throw new Exception();

23 }

25 callId = 2;

27 processVerifyPIN();

29 if(callId != 3){

30 throw new Exception();

31 }

33 callId = 2;

34 }

36 private void processVerifyPIN() throws Exception{

37 if(callId != 2){

38 throw new Exception();

39 }

41 int pinLength = 4;

42 int faultCode = 255;

43 int triesRemaining;

45 callId = 3;

47 short count = setIncomingAndReceive(); // get expected data

49 if(callId != 4){

50 throw new Exception();

51 }
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53 if(count < pinLength) throw new Exception();

55 callId = 4;

57 if(isInvalid() != false){

58 if(callId != 5){

59 throw new Exception();

60 }

62 callId = 5;

63 triesRemaining = getTriesRemaining();

65 if(callId != 6){

66 throw new Exception();

67 }

69 throw new Exception();

70 }

72 callId = 2;

73 }

76 private boolean isInvalid() throws Exception{

77 if(callId != 4){

78 throw new Exception();

79 }

81 callId = 5;

83 return true;

84 }

86 private short setIncomingAndReceive() throws Exception{

87 if(callId != 3){

88 throw new Exception();

89 }

91 callId = 4;

92 return 5;

93 }

95 private int getTriesRemaining() throws Exception{

96 if(callId != 5){

97 throw new Exception();

98 }

100 callId = 6;

102 return 2;

103 }
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104 }

Listing C.2: Mocked Java example code from the Java Card samples with the call
graph integrity countermeasure implemented

1 Class Example

3 private bool isInvalid ();

4 Concrete Method

5 Parsed

7 Example.processVerifyPIN()

8 0. iconst 1

9 1. ireturn

11 public Example (); Concrete Method Parsed Example.main(java.lang.String

[])

12 0. aload 0

13 1. invokespecial void java.lang.Object.<init> ()

14 4. aload 0

15 5. invokespecial void Example.processVerifyPIN ()

16 8. return

18 private void processVerifyPIN (); Concrete Method Parsed Example.<init>()

19 0. iconst 4

20 1. istore 1

21 2. sipush 255

22 5. istore 2

23 6. aload 0

24 7. invokespecial short Example.setIncomingAndReceive ()

25 10. istore 4

26 12. iload 4

27 14. iload 1

28 15. ifcmpge 11

29 18. new java.lang.Exception

30 21. dup

31 22. invokespecial void java.lang.Exception.<init> ()

32 25. athrow

33 26. aload 0

34 27. invokespecial bool Example.isInvalid ()

35 30. ifeq 16

36 33. aload 0

37 34. invokespecial int Example.getTriesRemaining ()

38 37. istore 3

39 38. new java.lang.Exception

40 41. dup

41 42. invokespecial void java.lang.Exception.<init> ()

42 45. athrow

43 46. aload 0

44 47. invokespecial bool Example.isInvalid ()
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45 50. ifeq 4

46 53. goto -20

47 54. return

49 public static void main ( java.lang.String [] 0); Concrete Method Parsed

50 0. new Example

51 3. dup

52 4. invokespecial void Example.<init> ()

53 7. astore 1

54 8. goto 4

55 11. astore 1

56 12. return

58 try start: 0; try end: 8: catch start: 11; catched type: java.lang.Exception.

60 private int getTriesRemaining ();

61 Concrete Method

62 Parsed

64 Example.processVerifyPIN()

65 0. iconst 2

66 1. ireturn

68 private short setIncomingAndReceive (); Concrete Method Parsed Example.

processVerifyPIN()

69 0. iconst 5

70 1. ireturn

Listing C.3: Java bytecode example of the code duplication countermeasure

1 public class ExampleCFI{

2 private static int flag = 0;

4 public static void main(String[] args){

5 try{

6 ExampleCFI hw = new ExampleCFI();

7 }catch (Exception ex){

9 }

10 }

12 public ExampleCFI() throws Exception{

13 processVerifyPIN();

15 if(flag != 3){

16 throw new Exception();

17 }

18 }

20 private void processVerifyPIN() throws Exception{
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21 flag++;

23 int pinLength = 4;

24 int faultCode = 255;

25 int triesRemaining;

27 short count = setIncomingAndReceive(); // get expected data

29 if(count < pinLength) throw new Exception();

31 if(isInvalid() != false){

32 triesRemaining = getTriesRemaining();

33 throw new Exception();

34 }

35 }

38 private boolean isInvalid(){

39 flag++;

40 return true;

41 }

43 private short setIncomingAndReceive(){

44 flag++;

45 return 5;

46 }

48 private int getTriesRemaining(){

49 return 2;

50 }

53 }

Listing C.4: Java code example of the control flow integrity countermeasure. Line 21
is removed in CFI2 in experiments
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