
Discount method for programming language evaluation

Svetomir Kurtev and Tommy Aagaard Christensen

1 February - 28 June

Date Svetomir Kurtev

Date Tommy Aagaard Christensen





Department of Computer Science
Computer Science
Selma Lagerlöfs Vej 300
Telephone 99 40 99 40
Telefax 99 40 97 98
http://cs.aau.dk

Title:

Discount method for programming lan-
guage evaluation

Project period:
1 February - 28 June

Project group:
dpt108f16

Participants:
Svetomir Kurtev
Tommy Aagaard Christensen

Supervisor:
Bent Thomsen

Pages: 92

Appendices: 6

Copies: 0

Finished: 13 June, 2016

Abstract:

In methods for programming language design
evaluation there is a gap between small inter-
nal methods and large scale surveys and stud-
ies. A similar gap in HCI has been filled by the
discount usability evaluation method. In this
report, the discount usability methods applica-
bility on programming languages was exam-
ined, and it was found usable but better suited
for compiler and IDE evaluation over language
design evaluation. To create a method to fill
the gap, a modified version of the usability
method, where the IDE and compiler was re-
moved, was tested.

The content of this report is publicly available, publication with source reference is only allowed with authors’ permission.

http://cs.aau.dk




Preface

The following report was written by Svetomir Kurtev and Tommy Aagaard Christensen in accor-
dance with the conclusion of the tenth and final semester of the Computer Science Master Program
at Aalborg University.

We would like to thank Bent Thomsen for the help and guidance he provided us with throughout the
development of the project.

i





Contents

Preface i

1 Introduction 1

1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Initial questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I Problem Analysis 3

2 Previous work 4

3 Related Work 5

4 Existing evaluation methods 8

4.1 Performance benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Usability Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Case & User studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4 Quantitative experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.5 Language-to-language comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.6 Discount usability evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.7 Instant Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II Usability Evaluation Experiment 14

5 Challenges 15

6 Experiment Setup 16

6.1 C# Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



6.2 C# Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.3 F# Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.4 F# Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Discussion 20

III Evaluation Method 21

8 Introduction 22

9 Experiment Design 23

9.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.3 Interview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10 Experiment Setup 26

10.1 Participants sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11 Experiment Experiences 28

11.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11.2 Sample Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11.3 Interview Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

12 Results 30

12.1 Pilot Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

12.2 Problems categorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

12.3 Comparison with Quorum’s evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

12.4 Interview Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

12.5 Interview Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

13 Discussion 38

13.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

13.2 Tasks & Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



IV Conclusion 41

14 Conclusion 42

15 Method procedure 44

16 Future works 46

V Bibliography 48

Bibliography 49

VI Appendices 55

A List of Abbreviations 56

B Task Sheet 57

C Sample Sheet 59

D Interview Questions 62

E Interview notes 63

E.1 Participant #1 (Pilot Test) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

E.2 Participant #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

E.3 Participant #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

E.4 Participant #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

E.5 Participant #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

E.6 Participant #6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

E.7 Participant #7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

E.8 Participant #8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

F Participant code 69

F.1 Participant #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

F.2 Participant #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

F.3 Participant #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

F.4 Participant #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



F.5 Participant #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

F.6 Participant #6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

F.7 Participant #7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

F.8 Participant #8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



vii



Chapter 1

Introduction

Computer programming has increasing relevance to today’s advancement of technologies. Therefore,

existing and established programming languages are constantly improved and new ones are created to

meet that demand. The languages which are considered most suitable for introductory programming, are

being adopted by educational institutions as part of their computer science curriculum e.g. Java, Python

and more recently, Scratch [1]. Similarly, some languages are considered arguably better than others

in their intended purpose in the software industry. However, formal evaluation methods for assessing

programming languages are very few and limited in their use and most evidence gathered to support

such claims are anecdotal in nature [2].

In recent years, however, the scientific community has tried to fix this. In particular, the focus of the

PLATEU conferences is the scientific evaluation of languages. The basic observation is that language

use and preference is highly dependant on the person, which indicates that there is no method that can

tell the quality of the language based solely on the language. This has lead to user-based evaluation being

the norm for programming languages. Commonly, the scientific community has taken to use methods

from social sciences, which usually requires a studying a large number of subjects [3] [4] [5] [6]. The

underlying idea is that the more people used, the less likely the result would suffer from bias, and

therefore the study will be more scientific.

However, his method has the problem of being expensive. It is difficult to gather a large enough group of

people to create a truly quantitative test of a language, especially if the test is based on observation rather

than questionnaires. Typically this means a language designer cannot do these tests before the language

is already finished and has gained widespread use. This leads to language designers either still omitting

any evaluation of their language, or using more qualitative and lightweight approaches to evaluate their

language.

In the field of Human-Computer Interaction (HCI) there has been a similar problem with usability eval-

uation methods [7]. Traditional usability studies often require many subjects and studying the use of

the program over a long period of time. This made them prohibitively costly for companies both in

resources spent and time-to-market, which prompted the development of a discount usability evaluation

1



method [8]. The discount usability evaluation method is a method designed to be a lightweight, quali-

tative evaluation method for the usability of a product. We are considering its viability as an evaluation

method for programming languages.

1.1 Problem formulation

During our investigation, we concluded that there is gap between internal language analysis and the

big and bulky industry programming evaluation methods [4] [5] [6], which leaves language designers

without a flexible, low-cost and efficient solution to test on new programming languages. We want

to have a method for evaluating programming languages, which is lightweight enough to be used by

language designers, both for improving the language, and supporting claims about the language. The

discount usability method is a method that is lightweight enough to be used by small groups of system

designers and seems like it could be applicable in that regard. Ideally, we would use that as a starting

stage for devising our own lightweight evaluation method which could be used in different stages of

programming language design. This leads us to the following initial questions:

1.1.1 Initial questions

• Are the evaluation techniques from HCI applicable to programming languages evaluation?

– What does the usability of programming languages say about programming language de-

sign?

• Can the discount usability method be used for programming language evaluation?

– What are the potential shortcomings of the method for evaluating programming languages?

– How can such shortcomings be addressed?

2



Part I

Problem Analysis

3



Chapter 2

Previous work

In our previous work [9], we explored how computational thinking becomes a necessary skill in every-

day life and how introductory programming has been adopted by several countries (such as UK, USA,

Denmark, Germany and others) as a part of their primary school curriculum. A big part of this process

involves the choice of a suitable programming language and environment, and given the multitude of

choices available, there has not been a well established way of selecting the right choice. Furthermore,

there exist different approaches to programming (visual-based vs. text-based), each with their own

strengths and weaknesses, which makes that choice even harder. In order to get a better understanding

of how this choice could be made easier, we analysed three popular programming languages used in a

educational setting - Java (BlueJ), Scratch (Scratch) and Racket (DrRacket), each supporting a different

programming paradigm. The analysis was done mainly relying on a set of evaluation criteria, heavily

inspired by Sebesta’s evaluation criteria [10], on a set of programming tasks in the form of games. Al-

though this approach gave us some pointers towards how effective and suitable each of tested languages

are, the evaluation was rather subjective and did not possess the needed scientific rigour and empirical

data appertaining for such a method. This however prompted us to look into how techniques from social

sciences [11] could be used to gather the necessary data, in particular the discount usability evaluation

method by A.Monk [8].

4



Chapter 3

Related Work

Programming languages have been used for many years, but there still has not been established a robust

and efficient way to asses and evaluate them. However, plenty of research has been done on the topic

and specific papers address that to a different degree as it will be shown in this chapter.

M. Farooq et al. 2014 [12] wrote a paper introducing an evaluation framework which provides a compar-

ative analysis of widely used first programming languages (FPLs), or namely languages which are used

as a first language for teaching introductory programming. The framework is based on technical and

environmental features and it is used for testing the suitability of existing imperative and object oriented

languages as appropriate FPLs. In order to support their framework, they have devised a customizable

scoring function for computing a suitability score for a given language which helps quantify and rank

languages based on the given criterion. Lastly, they evaluated the most widely used FPLs by computing

their suitability scores. The novelty in their work stems from the definition of the evaluation parameters

as well as the related characteristics for evaluating each parameter.

K. Parker et al. 2006 [13] note that the process of selecting a programming language for introductory

courses is informal and it lacks structure and replicability. In order to address that, a more structured

approach is proposed, which enables a more detailed evaluation of the selection process. The paper

presents an exhaustive list of selection criteria, where each criterion is assigned weights in order to de-

termine its relative importance in the selection process. This is tested by scoring different programming

languages according to said criteria. The proposed approach is verified by an informal pilot study to

assess the completeness of the criteria and gather enough feedback on the process itself. Given the

dynamic nature of programming paradigms and languages, the authors acknowledge that the selection

criteria and process can be revised.

Stefik & Siebert [14] have conducted an empirical study comparing how accurately novices in pro-

gramming can write programs by the use of three different programming languages - Quorum, Perl and

Randomo. Quorum is an evidence-based programming language, developed by them with the use of

survey methods and usability tests, Perl is an already established language and Randomo, as the name

suggests, is a language with a randomly generated syntax and whose keywords and symbols were picked

5



from the ASCII table, making it a Placebo language. The results from the empirical study showed that

Quorum had significantly higher accuracy among the novice participants compared to Perl and Ran-

domo, both of which had very similar accuracy rates. The authors contribute the higher percentage of

Quorum to its very careful use of evidence while designing the language. However, they admit that the

results might be skewed given the small test group, and repeatedly conducting the experiment might

yield entirely different results.

The interest in visual programming languages has been steadily increasing for the past few decades as

graphic support in both software and hardware becomes more and more prominent. J. Kiper et al. [15]

1997, present a method of evaluating visual programming languages by a set of evaluation criteria. The

basis of their work is influenced by the taxonomy provided by Singh and Chignell [16] which divides

visual computing in three key areas - programming computers, end-user interaction with computers and

visualization. This set of five criteria - visual nature, functionality, ease of comprehension, paradigm

support and scalability try to constitute the philosophy of a "complete" visual programming language.

Each criteria on its own is supported by a set of metrics. This evaluation method not only allows

assessment of an individual visual programming language but also the comparison of elements of a

set of languages.

Using HCI to assist the design of programming languages is not a new idea. John F. Pane et al. [17] have

used HCI principles in the design of their language called HANDS. They used research from Psychology

of Programming (PoP), Empirical Studies of Programmers (ESP) and related fields, summarised in

"Usability Issues in the Design of Novice Programming Systems" [18], to guide their language design

decisions. Then they conducted a user study on HANDS and a version of HANDS with three features

omitted (queries, aggregate operations, and the high visibility of data) to evaluate these three features.

The study was conducted on 23 fifth-grade children where, of the children who made it through the

tutorial, 9 were in the HANDS group and 9 were in the limited HANDS group. In this study, the

children in the HANDS group performed significantly better, solving a total of 19 tasks across the group

in contrast with the limited HANDS group’s one solved task.

Raymond P.L. Buse et al. [19] conducted a study on 3110 papers in software engineering research in

order to analyse statistics on their usage of user studies. They found that, in general, the number of

user studies in software engineering papers have been increasing in the last years. Also, for prestigious

conferences (ones with a low paper acceptance rate) the percentage of papers with user evaluations was

higher. They did not find a correlation between user evaluation and citation count outside the papers

with a high citation count. This is interesting for us since it shows an increasing interest in including

user evaluation, which we are looking for a cheaper way of doing. The paper also found that a user

evaluation with 1-5 participants performed equal to or better than using more participants, in terms

of average citation count. This is particularly interesting for us since it shows that using a discount

evaluation method over a heavier one does not impact the citation count (and thus the perceived impact)

of a paper.

Daniel P. Delorey et al. [20] conducted a large scale user study, in a different way, by doing statisti-

cal analysis on 9,999 open source projects hosted on SourceForge.net. The goal of their study was to

6



examine whether programming languages have an effect on programmer productivity. They found that

programming languages do indeed affect productivity, which is a great motivator to improve program-

ming languages. However, they note that this study is insufficient to prove the correlation, partially

because they use lines of code to measure programmer productivity, and this might not be an accurate

metric. This kind of study does, however, allow one to gather and analyse a very large dataset to prove

one’s claims, but it is impossible to do before large repositories of projects in a language have been

written. This is unlikely to be true, unless the language already has widespread use, so it is not a good

way to measure performance of a new language.

7



Chapter 4

Existing evaluation methods

Programming language designers and researchers have been involved in the process of evaluating pro-

gramming languages and their constructs since the very beginning, dating back to 1950s and 1960s, with

the inclusion of languages such as Autocode, COBOL and Lisp [21]. The process of coming up with a

programming language on the concept level is rarely under scientific rigour, and it usually involves what-

ever means the designers have at their disposal. As for the actual implementation of a language, being

a constitute of its individual parts (such as lexer, parser, virtual machine etc.), there are certain guide-

lines and established methods one can follow, which does not usually leave a lot of room for deviation.

However, things are different when programming languages are being evaluated since the community

has different opinions of how this is done. Different programming languages have different design deci-

sions and intended purposes, while each adheres to one or more programming paradigms. This, in turn,

means that the same criterion might have a varying weight if put as the basis of an evaluation of two

distinct languages. Researchers have partially agreed on a list of evaluation criteria and several means of

validation. R.W. Sebesta [10] classifies the most important ones as Readibility, Writeability, Reliability

and Cost, which are in turn influenced by different characteristics (e.g. Simplicity, Data types, Syntax

design etc.)

This chapter will describe some of these means of validation, and how they can be applicable to our

work.

4.1 Performance benchmarks

Parallel programming languages are mainly used in real life applications where speed and efficiency are

key factors. In order to evaluate the effectiveness of such languages, performance benchmarks have been

developed. S. Nanz et al. [22] describe an experiment where four different parallel programming lan-

guages (Chapel, Cilk, Go and Threading Building Blocks (TBB)) are used to implement sequential and

parallel versions of six performance benchmarks, taking into account factors such as source code size,

coding time, execution time and speedup. The benchmarks made use of a partial set of the Cowichan

8



problems [23] since "reusing a tried and tested set has the benefit that estimates for the implementation

complexity exist and that problem selection bias can be avoided by the experimenter." as stated by Nanz

et al. [22]. Additionally, H.-W. Loidl et al. [24] present in their work a detailed performance measure-

ments on three fundamentally different parallel functional languages: PMLS, a system for implicitly

parallel execution of ML programs; GPH, a mainly implicit parallel extension of Haskell; and Eden, a

more explicit parallel extension of Haskell designed for both distributed and parallel execution. All three

systems are tested on a widely available parallel architecture - a Beowulf cluster of low-cost worksta-

tions. The benchmarks made use of three algorithms: a matrix multiplication algorithm, an exact linear

system solver and a ray-tracer.

Since we do not consider performance as a criteria we wish to evaluate on, we do not consider such

benchmarks applicable to our work.

4.2 Usability Frameworks

Treating programming languages as if they were user interfaces is not something new, and addressing

their usability has been one of the topics studied in the field of Human-Computer Interaction (HCI) for

quite some time. "The Psychology of Computer Programming" by Gerald Weinberg [25] is one of the

earliest works on the psychological aspect of computer programming, which dates back to 1971. Thomas

Green and M. Petre [26] came up with the Cognitive Dimensions framework, under which, programming

languages are considered as interactive systems, and are evaluated based on a set of dimensions such as

closeness of mapping, consistency, hidden dependencies, viscosity (which is resistance to local change)

and others. The framework has been tested on Prolog by Allan Blackwell [27], some visual programming

languages [28] [29] [26] and an early version of C# by Steven Clarke [30]. Brad Myers et al. [31] have

worked on the evaluation of programming systems and identifying common usability and design issues

of novice programming systems. The goal of this was to, get a better understanding of how language

designers can make use of HCI methods in their work. This culminated in a 10-year project called

Natural programming, which has the goal of bringing programming "closer to the way people think."

This resulted in new programming languages and environments [32].

More often than not, modern implementations of programming languages are closely tied to a specific

IDE (Integrated Development Environment) which makes it very hard to treat the language as a disjoint

entity. When trying to evaluate a programming language, is it fair to evaluate the language itself or

the language and the IDE? Farooq and Zirkler [33] have proposed an evaluation method for application

programming interfaces (APIs), which relies on peer reviews and is mostly centered around the APIs

rather than the programming languages. Leonel Diaz [34] had a different approach to the problem by

identifying two different dimensions of evaluation for programming languages and their environments:

The IDE-to-Program user interface and the Language-to-Machine user interface. The first one treats the

IDE as a user interface to the program, not the language, which in turn allows elaboration on how the

interface can be evaluated. In the second dimension, the language is seen as the user interface to the

hardware resources of the machine.

9



Usability frameworks fall into the discipline of HCI, therefore we consider this an area of interest for

our work.

4.3 Case & User studies

Other approaches make use of case studies and user studies which might range from being informal to

being controlled empirical experiments. Such controlled experiments [35] [22] [36] [37] ask group(s)

of human participants to solve programming tasks with varying difficulty in different languages in con-

trolled environments. The results from such controlled experiments provide valuable data on how pro-

gramming languages could be evaluated, as well as what impact certain features of a programming

language, like syntax and typing, might have. One drawback to that approach is that the variety and

number of tasks solved could be limiting. This is in contrast to real-world programming where code

bases grow constantly and change over many development iterations. For this reason, empirical studies

have been conducted on code repositories (e.g. Github [38]) analysing large quantities of code, written

by many experienced developers over long periods of time. This provides valuable feedback on defect

proneness and code evolution, but it is not as focused as programming assignments since there is a great

disparity between projects and the categories they encompass. Nanz [39] conducted a comparative study

of 8 programming languages in Rosetta Code, each representing a major programming paradigm, serv-

ing as a middle ground between small programming assignments and big software projects. A total of

7087 solutions have been analysed as a part of a quantitative statistical analysis corresponding to 745

different tasks, taking into account programming features such as conciseness, running time, memory

usage and error proneness.

Case and user studies involve controlled empirical experiments. Therefore we consider them an area of

interest for our project.

4.4 Quantitative experiments

Another approach of conducting experiments in programming language research and evaluation is to

rely on quantitative data rather than qualitative data. In such experiments a hypothesis is either proved

or disproved, by executing a statistical analysis on the results, usually filtering out external factors in the

process. The scope in such quantitative experiments could vary in the number of participants taking part

- ranging from tens (comparative experiment on Quorum, Perl and Randomo by Stefik & Siebert [14])

to tens of thousands (quantitative study on a very large data set from GitHub by Ray & Posnett [40]).

Additionally, the nature of the experiment could warrant to use of two different groups, tested under

different conditions, where the results are analysed for significant differences between the two groups.

Examples of such could be the completion of a set of programming tasks, each group using a different

programming language to solve them or simply having the same exact programming setup for both

groups, but having different prior knowledge. Stefik and Hanenberg have conducted few such empirical

10



experiments [41] [42] researching the impact of static and dynamic type systems and programming

language syntax. Also, Stefik and Hanenberg address something called "the programming language

wars" evident in the programming language community [43]. They elaborate on language divergence

(too many different programming languages) and what the impact of each programming language on the

community is. A common belief is that one programming language could solve the problem by being

better than all the rest. The authors strongly disagree with this belief since problem domains and the

people involved vary, which makes the creation of a single perfect language a myth. They believe that

language designers duplicate effort by repeatedly trying designs which have already been tried by others,

since design decisions are rarely backed by scientific evidence. They stress the importance of designing

languages based on evidence and teaching empirical methods to programming language students.

Given our limited access to participants and our goal of a method using few participants, we will not

consider quantitative experiments in our work.

4.5 Language-to-language comparisons

Another evaluation approach, which differs to the ones described earlier, is the direct comparison be-

tween a set of programming languages. Although it does not have the same degree of scientific rigour

compared to the other approaches, it can still pretty accurately identify the strong and the weak points

inherent to a particular language. Plenty of research have been conducted on that topic, dating back to

the early eighties and involving a plethora of languages (such as C, C++, Pascal, Fortran, Ada 95, C# and

Java). Feuer and Gehani [44], made a comparison in 1982 of C and Pascal and argued what would be a

good basis for such comparison. This involved the design philosophies of the two languages, followed

by a simple program, written in each, and comparison of the features present in the two languages. Ulti-

mately, they wanted to test the suitability of each of the languages in different problem domains. Pascal

was also included in a study along Ada 95, by Murtagh and Hamilton [45], for deciding on language

for an introductory computer science class. The selection involved testing particular language features

against course objectives, resulting in Ada 95 being selected as the appropriate successor to Pascal. An

earlier version of Ada was tested against C++ by Tang [46] in order to show contrasts and commonal-

ities of the two languages. In later stages, direct comparisons have been made of Java against C and

Fortran [47], as well as more notably C# and Java [48].

4.6 Discount usability evaluation method

When we refer to the discount evaluation method, we mean the cooperative evaluation created by An-

drew Monk et al., 1993 [8]. Table 4.1 from Designing Interactive Systems [49] outlines the steps from

the method.

The method is focused on finding the more impactful usability problems over finding a lot of them, and

has thus proven to be both lightweight and useful. In particular, the Nielsen Norman Group [50] shows

11



(a) table part 1

(b) table part 2

Figure 4.1: combined caption

12



that you only need about 5 test subjects to get clear feedback on your system. Jakob Nielsen argues that

instead of expending huge budget and time, the best results could be achieved by conducting multiple

smaller tests. In their experiments across a large number of projects, one test subject managed to find

roughly 31% of the the existing usability problems. Every subsequent user contributes to the curve by

identifying new problems, but that also includes problems already found by the previous user. Techni-

cally, after a certain point, adding additional users contribute less and less to the overall identification of

problems, having essentially diminishing returns. The curve presented by the author shows that 15 test

users are needed to identify all the usability problems. However, since the goal usually is to improve the

design rather than document its weaknesses, they recommend conducting 3 smaller tests with 5 users

each rather than one experiment with all 15 users.

4.7 Instant Data Analysis

After conducting a usability study, the data needs to be analysed and formulated into a list of usability

problems. There are multiple ways of doing this, but the one we will be highlighting is the Instant Data

Analysis (IDA) [7] method. The IDA method works by identifying a list of problems, that participants

encountered during the test, from the observers’ memories and observations. This is opposed to the

Video Data Analysis (VDA) method, where the videos of the tests are rigorously examined to identify

the usability problems. The problems are then sorted into three categories: cosmetic, serious and critical.

Cosmetic problems briefly slowed down the participant but were quickly overcome.

Serious problems stumped the participant for longer time, but were eventually overcome.

Critical problems the participant could not overcome without assistance from the facilitator.

This prioritisation then usually becomes a great assistance in determining which problems are the most

important to fix.

The IDA method is a good analysis method for our purposes because it is lightweight. Compared to the

VDA method, the IDA method saves a lot of time avoiding the rigorous analysis of the video footage.

As shown in the paper [7], they spent 4 man-hours with the IDA method as opposed to 40 man-hours

with the VDA method. Furthermore, the time to result is greatly reduced since the method uses these

man-hours in a joint discussion, causing the real time spent to be around 1-2 hours. As for the results,

in the IDA paper [7] the IDA method found 85% of the same critical problems as the VDA method and

found roughly the same amount of problems total (41 for IDA versus 46 for VDA). This makes the IDA

method a great method for our purposes since the potential loss in problem accuracy is significantly

lower than the time saved.

13



Part II

Usability Evaluation Experiment

14



Chapter 5

Challenges

Conducting empirical studies in order to prove the validity of a hypothesis usually involves a certain

amount of human resources. For studies and experiments with a qualitative nature, this number is in the

tens or hundreds, and for ones with a quantitative nature - in the thousands. Gathering data, even from

a small number of people, is a daunting task and takes considerable resources and time. Additionally,

the problem arises of trying to have a participants sample with diverse backgrounds (age, occupation,

experience etc.) in order to address a wider population, which adds an additional layer of complexity.

Although the qualitative nature of our experiment does not require a large number of participants to show

viable results, we still had difficulties in gathering the necessary number of participants. Some reasons

for this might be that people do not find a good enough incentive to take part in such experiment, or

they simply find the process intimidating, time consuming or not important. We found that approaching

people directly rather than through electronic means (email, forums, on-line conversations) yielded a

higher chance of them wanting to take part as participants.

15



Chapter 6

Experiment Setup

In order to get an understanding of how applicable the discount usability method is for evaluating pro-

gramming languages, we decided to use it on two distinct programming languages. These two languages

represent two different paradigms, where C# is relevant for object-orientation and F# for functional pro-

gramming. The Instant Data Analysis (IDA) method [7] was used for evaluating the data.

The usability evaluation was conducted in the usability lab of Aalborg University [51], in test room 1.

The Experiment entailed the participant being positioned at a desk with a mouse, keyboard and a screen.

On the screen, Visual Studio Community 2015 was open with a project in the current language being

tested. The participant was then given an hour to try and solve specific task(s) in the language, while

under the supervision of a facilitator sitting next to him/her. The facilitator’s job was primarily to keep

the participant talking about what they where thinking, and secondarily to assist if the participant got

stuck or encountered issues with the test. Meanwhile, an observer would take notes from an adjacent ob-

servation room. The control room was used for this. A camera would record the particpant’s interaction

with the keyboard and mouse, while the screen was recorded using an output splitter, and the sounds

was recorded using a microphone.

6.1 C# Tasks

Designing the task for C# had several topics in consideration such as object-orientation, use of class

hierarchy, working with extended methods and inherited properties, which were all considered as very

important in representing the philosophy of the language.

The task was designed for subjects who already had experience with C# and know about object-oriented

programming. The wording was intentionally left vague by design and specifically avoided directly

mentioning programming constructs, in order to avoid biasing the solution in a particular direction, as

well as more accurately show how the language was used. The task itself entailed the following:

16



Task Sheet

Create a system for managing stats and interactions between RPG characters with different classes. Each

character has:

• a name

• a character class

• a stat that represent their hit points

• one or more stats that represents offensive prowess

• one or more stats that represents defensive prowess

• optional class specific stats

• the ability to attack another character, which reduces their hit points by value related to the differ-

ence in character1’s offense and character2’s defense

• optional the ability to perform class specific skills

Here are some examples of characters:

Name George Bob John
Class None Mage Medic
HP 200 100 200
Offense 50 60 20
Defense 30 10 60
Other stats mana = 100
Abilities Attack Attack Attack

Fireball = more damage but costs mana Mending = increases HP of target
character

Create the system for these RPG characters with some character classes, some characters in this system

and some code showing some interactions.

Now we discover that we also want a way to refresh characters to their original hit points, as well as

preventing healing beyond this point. To do this we need to also store a maximum hit points value for

each character as well as a method for restoring a characters resources. Some class specific resources

might also need this to allow them to be replenished as well.

17



6.2 C# Results

In our experiments on C# we got two subjects. This is less than the desired minimum of five test

subjects for a usability test. However, this is not considered a significant problem since the focus of the

experiments is more on the method itself rather than on the results of it. The results of the experiment

are evaluated using the IDA method, and therefore focused on a discussion based on the observations

made. The results of the discussion could be seen on Table 6.1.

Most of these issues were only experienced by one of the subjects, and usually reflected their experience.

The 4th semester student was the one experiencing the serious issue due to not having had much need

for inheritance in any of his previous projects. On contrast, he did not have any difficulties remembering

keywords due to recent use of the language. This is in contrast with the 10th semester student, who had

more experience using inheritance but had not used C# as recently and therefore had difficulties regard-

ing specific keywords. Neither of them invoked the auto generator for getters and setters and instead

chose to make the variables public instead. They did, however, both express knowledge that this was not

ideal and that it was done due to laziness and the small scope of the project.

Critical Serious Cosmetic

Inheritance: the subject expe-
rienced difficulties identifying
when inheritance could be use-
ful

Could not invoke the auto gener-
ator for getters and setters

Difficulties remembering the
keyword for declaring a method
override-able (Virtual)

Troubles remembering the spe-
cial syntax for invoking the base
constructor

Table 6.1: The results of the C# experiment

6.3 F# Tasks

Similarly to how the C# experiment was conducted, the F# one involved a specific task addressing

some key concepts from functional programming such as recursion, working with immutable data and

functions. The task itself involves finding a path from a starting position to a goal position on a 2-

dimensional tile-based world. The full task description as follows is:

18



Task Sheet

Create a path-finding function for a robot from an initial position to a goal position.

The world is a 2D world represented by coordinates with a defined maximum size (e.g. 20, 20) The

position of the goal and the robot are represented by coordinates that fit in the world.

Given that the robot and goal positions are known, write a function which returns a path from the robot

position to the goal position. The path could be represented as a list of moves of the type "up", "down",

"left" or "right" each representing the robot moving one in that direction

Write some code to set up a scenario to test your function.

Now write a path-finding function where the robot does not have access to the goal position but only to

a function that says whether the current position is the goal or not.

6.4 F# Results

The F# task was completed by only one test subject which is not nearly enough for the minimum of five

test subjects in order to conduct a viable usability test. Although the results are insufficient, they might

raise some interesting points about the usage of the language and what concepts people find difficult to

work with. The results were again evaluated by using the IDA method and they can be seen on Table 6.2

Critical Serious Cosmetic

The subject had difficulties with
implementing tail recursion

The subject had difficulties with
pattern matching

Some basic syntax did not allow
the subject to continue with the
experiment without the interven-
tion from the facilitator

Table 6.2: The results of the F# experiment

The participant was familiar with F#, but did not have a lot of experience working with the language.

Furthermore the participant had reported having difficulties thinking in the functional programming

patterns. The problems encountered reflect this inexperience. All of the difficulties were encountered

early in the test and were mostly about remembering how the language worked. These are considered

critical because the facilitator stepped in to help the participant. However, after the initial difficulties the

participant started to grasp the language, and solved the later tasks on his own. This showed us that when

trying to program in a language one has little or no experience in, knowing the syntax of the language is

a major hurdle.

19



Chapter 7

Discussion

Although we were light on participants for the usability test, doing the test still gave us some insight into

evaluating language design. In particular we discovered that the Integrated Development Environment

(IDE) had a great influence on the usability of the language. It would often greatly assist in reminding

the user of various keywords and constructs, like reminding a participant of the virtual keyword being

the keyword for allowing method overloading, which means a lot of potential problems was fixed by it.

This matches some observations made by Faldborg and Nielsen [52] and Pedersen and Faldborg [53],

where they observed the participants’ difficulties in differentiating the IDE from the language. There has

been support for the discount usability method being good for testing the usability of the full package

of the language and IDE like has been done by the developers of Pocket Code [54]. However, these

observations lead us to believe that the method is less suited for evaluating language design. Another

discovery was the difficulty of coding in a language one is not strongly familiar with even with the help

of the IDE. The IDE only helps if it can guess what you are trying to do, which would require the user

to already have an idea of how the code should look.

20



Part III

Evaluation Method

21



Chapter 8

Introduction

For our method we want to focus on evaluating the language design of a programming language. Fol-

lowing our previous observations on the IDE’s impact on the result, the next step would be to remove

the IDE from the test. Since the idea is to focus on how well the language fits with how one want to

code regardless of any tools, we also want to avoid using a compiler or other specialized tools for the

language. What this means for the method is that the test can be done in any text-editor or indeed on

physical paper. This has the added bonus of it being possible to do the test before a compiler has been

created for the language.

Another thing our previous test showed was the high difficulty of suddenly programming in a language

where the rules are not well known to the user. Since a large portion of the intended use of this method

is on new programming languages, this is also an important concern for the method. Our idea for

addressing this is to, along with the task sheet, add a sample sheet, which would contain examples of

code written in the language with an explanation of the functionality of the code.

To test our method, we used it on a language that was unlikely for our participants to be familiar with.

The language we used was the language Quorum [55].

22



Chapter 9

Experiment Design

In this chapter the design considerations and decisions will be described, including tasks, samples and

interview questions.

9.1 Tasks

The concept of programming is essentially devising a mental plan for solving a particular problem, and

transforming that into a workable solution by making use of some programming language. The solu-

tion to a problem might vary for different implementations since different paradigms have different ap-

proaches, but usually the essence of said solution does not change. Devising a set of programming tasks

which are not targeted at a specific language implementation is a daunting task, since many paradigms

have to be taken into account at the same time. Additionally, the tasks have to be interesting and en-

gaging enough so that the participants can focus on the solution. As described previously in section 6.1,

for our usability experiment we devised one big task with several subtasks for the C# part, each as a

prerequisite for the next one. It followed the theme of a role playing game and it mainly revolved around

the use of inheritance. The second task, addressing F# in section 6.3, was still modelled as a game and

it revolved around a robot finding a goal in a world of tiles, essentially relying on the use of recursion

as a concept. Although we did not count time as an important factor for both our experiments, we still

had to put a specific time constraints on how long a participant can work on the tasks. The main reason

for that is our aim is process-oriented rather than result-oriented, which make it easier for programming

language designers in the future to replicate our experiments.

Based on the feedback from the participants, we got a better estimate of how much time each task takes

for its completion and how relevant it is in the given context. Furthermore, this served as a stepping stone

towards gaining a better understanding of how to design tasks with more general context i.e. being solv-

able in more than one programming paradigm. The design behind our task sheet was mainly influenced

by the use of Quorum as our experiment language, but that could easily be used by language designers

as a template for devising their own tasks, tailored towards a specific language of choice. Additionally,

the scope of each of the tasks can be used as a guideline, giving a more controllable and predictable time

23



frame (all of the tasks together amount for approximately 1 hour).

For our evaluation method, we devised several smaller tasks, each addressing different features and

constructs of the selected language - in this case Quorum. We drew heavy inspiration for some of the

tasks from Codekata [56] since some of the katas were simple to understand yet conveyed the essence of

a particular feature, present in the tested language. Although each task had an intended purpose with a

clear goal, their design allows more than one possible solution which gave the participants the freedom

to experiment with the language.

• The first task had the intended purpose of testing arithmetic expressions and the use of data types.

• The second task had the purpose of testing containers in the language (such as arrays) and control

structures. It also tested responsible code modification since there was a certain degree of intended

repetitiveness in the subtasks which warranted careful reusing of code segments .

• The third task was for testing the concept of classes and inheritance. The design of this task was

inspired by the task used in the C# section of our usability experiment in section 6.1.

• The final task was testing operations on strings, including the exercise of in-build actions specifi-

cally useful for splitting text segments.

The final task sheet can be found in Appendix B.

9.2 Samples

The idea behind the sample sheet was to provide examples of code that the participant could use to learn

what was necessary from the language in order to solve the tasks. Working samples of code were used

since it tends to give a more wholesome picture of how the code should look, without resorting to de-

tailed description of how everything works. The samples often included smaller details, not specifically

relevant for what was explained at the time in order to cut down on the number of samples needed. An

example of this is the Paws() method in the classes sample being used to demonstrate returning values

from methods. The constructors in Quorum were omitted from the samples as they are optional and their

functionality does not support using parameters which is what most of our participants would consider

the purpose of constructors. The sample sheet can be found in Appendix C.

9.3 Interview

In the context of qualitative research, the interview is considered the most widely employed method.

There are two main types of interviews associated with qualitative research - the structured interview

and the semi-structured interview [11]. Qualitative interviewing is generally very different from in-

terviewing in quantitative research in the methods being employed. The qualitative approach is much

24



less structured, focusing on formulation of research ideas rather than maximizing the validity of mea-

surement of important concepts. Additionally, the discussion is tailored towards the interviewee’s point

of view more than than that of the researcher’s and deviation in the responses is actually encouraged

since it provides a degree of flexibility and thus, the possibility of rich and detailed answers. As already

mentioned, the qualitative interview process can have two approaches. In the unstructured approach the

interviewer uses just a simple aide as prompts to where the conversation should lead. The interviewee

is allowed to respond in a free manner and there could be a follow-up on interesting points. On the

other hand, the semi-structured approach warrants the interviewer to have a list of questions, addressing

specific topics, working as an interview guide, but still leaving a certain degree of leeway in how the

interviewee responds. Still, it is not mandatory to follow the guide as it is and questions do not have to

have a specific order in being asked.

Initially, for our usability evaluation experiment we made use of the first approach where rather than

specific questions, we had an open discussion with the participants. The discussion started with address-

ing some general areas of interest (task completion, inheritance, information hiding etc.) and continued

from there based on the responses from the participants and the direction they headed in. We had the

intention to follow up with the same approach for the experiment involving our evaluation method as

well, but based on the feedback from the pilot test, we decided to try a more structured approach. There-

fore, as a part of the interview, we created a small questionnaire with several questions addressing the

overall experience of the experiment. These questions were not meant to replace the open discussion

but rather serve as a baseline for the direction of the discussion and to ensure some specific areas were

covered in the discussion. Questions #1, #2 and #3 were about the language and primarily served to

get the participants own thoughts about it. While there were some potential overlap in these questions,

they could help some people talk more, and they helped categorise the feedback. Question #4 focused

on getting feedback about our task and sample sheet. Question #5 asked about the experience of coding

without a compiler since it is the biggest change for our method. Appendix D lists all the questions

while the answers from the participants in the form of notes could be found in Appendix E.

25



Chapter 10

Experiment Setup

Quorum is an evidence-based language for novices that uses results from experiments to decide on

language design decisions. Since our participants were computer science and software students who

are all experienced programmers, we expected there would be some errors from this targeting mismatch

for us to analyse. As we are still focusing on the problems encountered during the process rather than

the resulting code, we decided to record the experiments. To make recording easier we decided to

use a text-editor on a computer. The text-editor we used was Notepad++ [57]. Notepad++ has some

features to assist programming, most notably an auto-completer which uses words already written in

the text as suggestions. However, since these features are language-agnostic and the auto-completer

would only prevent false positives from minor typos and not language misunderstandings, this was

deemed acceptable. Since we wanted to allow for a more flexible schedule for participants, to increase

participant attendance, we decided not to use the usability lab. Instead, the tests were conducted using

the laptop in the canteen of Cassiopeia. To record the screen Microsoft Game DVR was used. Due to

the poor quality of the inbuilt laptop microphones, a smartphone was used to record the audio.

The process had two parts: For the first part the participant was given a task sheet and a sample sheet,

and asked write programs that could complete the tasks on the task sheet. The participant was told

not to worry too much about the code being written correctly since it would not be compiled, but to

still try to get as close as they could. During the test the participant could freely ask the facilitator

for assistance, though the facilitator preferred to answer by referencing the sample sheet if possible.

The facilitator would also occasionally act as a surrogate compiler by telling the subject about some

identified errors.The first part would take about an hour. For the second part the subject would be

interviewed about the language and the test. There was an interview sheet with some questions to be

answered during the interview, but other than that the interviews were more informal talks. During this

part the subject would usually be made aware of most of the otherwise unmentioned errors, to be able to

provide a more informed discussion.

26



10.1 Participants sample

All the participants taking part in the usability evaluation and the evaluation method were experienced

programmers. They all had very similar age and occupation - Computer science students from the 4th

semester and up, with programming experience in C and C# as well as other programming languages (

e.g. Java, F#, Python, Pascal).

We had six participants taking part in the main experiment, who are numbered participant #3 to partic-

ipant #8. Participant #1 was the pilot test participant we used to improve our setup before the first test.

Participant #2 has been omitted from all the direct evaluation results as he was not an experienced pro-

grammer and therefore does not fit the target group of the experiment. We have kept his data, however,

as it shows some interesting pointers for problems encountered by novice programmers.

27



Chapter 11

Experiment Experiences

In this chapter the observations and experiences made during the process of conducting the experiments

will be described.

11.1 Tasks

Apart from the pilot test, we found the tasks to strike a good balance between difficulty and relative

time it takes to solve them. Although we did not consider time as a sensitive factor for the experiment,

we still wanted to stay in a certain time frame amounting to around one hour. All of the participants,

except one, managed to finish the tasks around this time frame. Additionally, they found the tasks

challenging enough and good at conveying their intended purpose - using specific constructs from the

target programming language.

11.2 Sample Sheet

When first reviewing the sample sheet, most participants on skimmed the code samples instead of read-

ing it thoroughly. The sample sheet would then be used as reference, which the participant would look

in when they were in doubt about something. The participant could easily spend a considerable amount

of time, shuffling through the three sample sheets looking for the code example that demonstrated what

they were looking for. This was often alleviated by the participant simply asking the facilitator their

questions instead, at which point the facilitator could point out where the code would be in the sample

sheet. Occasionally the specific question would not be in the sample sheet, in which case the facilitator

would usually answer depending on their knowledge of Quorum. Usually these questions were about

features not present in Quorum.

28



11.3 Interview Questions

Initially, the interview questions did not even have a written form. This changed after a few iterations

since we thought that writing the questions down rather than just verbal pointers will give us a more

structured approach and it was easier to keep track off during the interview process. For this reason,

rather than focusing on specific points, we tried to keep their number to a minimum and encapsulate

a given interview direction with each, which the participants can share their thoughts on freely. Al-

though they had a certain degree of freedom in their answers, common similarities and points were still

addressed.

29



Chapter 12

Results

This Chapter will highlight the results from the evaluation method. Initially, we conducted a pilot test

with one participant in order to test the overall setup of the experiment and get some pointers of what

areas could be further improved. Similarly to how the results were evaluated in Chapter 6, we made use

of the IDA method [7] to categorize the problems we identified based on their importance and severity.

Furthermore, we compared our results with the exiting findings about the evaluation of Quorum in order

to prove the validity of our method.

12.1 Pilot Test

The pilot test was conducted on a single participant which served the purpose of giving us some feedback

on how we can improve the test setup. One of the bigger things was that the coding part of the test took

two hours rather than the one hour we had intended despite skipping one of the tasks. Following the

pilot test we made several changes to our setup:

• Task 1 in the task sheet was largely rewritten to have more concrete examples and to try and focus

on the simpler calculations. This was due to our participant spending a lot of time working on

constructs for a larger shopping system, instead of focusing on the arithmetic core of the task we

had intended.

• Task 2 was shortened from 5 subtasks to three subtasks due to the repetitive nature of the subtasks

and to cut down on time spent.

• The participant skipped task 3 due to its similarity with task 2. This caused us to swap the position

of task 3 with task 4. This was also helped by the observation that getting data about classes in

Quorum was deemed more important than operations on strings.

• In the discussion the access modifiers for methods and properties in classes was brought up which

caused us to realise this was not discussed in the sample sheet. Some description and examples of

access modifiers for classes was then added to the end of the sample sheet.

30



• When conducting the interview, we realised that the interview lacked direction. This caused us to

create the interview questions to provide a guideline for things to discuss.

12.2 Problems categorisation

The premise of the experiment is to try to divide the IDE from the language which does not warrant

using a compiler. However, since this means the system cannot give any feedback, The participant

would not spend time on problems, which means the usual rules for categorisation, used in the IDA

method, can not apply. For this reason, we would try to reason where each problem should be, and

would it make a difference if a compiler had been used instead. The general guidelines we have used for

this categorisation are:

Cosmetic problems are typos and small keyword and character differences that can easily be fixed by

replacing the wrong part.

Serious problems are structural errors that usually impacts how the code is structured, but is usually

small enough that it can be fixed with a few changes.

Critical problems are fundamental misunderstandings of how the language structures code and large

structural errors that would require a revision of the algorithm.

Critical problems

1. Not using the end keyword at all - this would affect the overall validity of the program because

the scoping rules in Quorum are defined in conjunction with the end keyword. This shows a

fundamental misunderstanding of how scoping works in the language

2. The lack of constructors with parameters in Quorum - Quorum does not support constructors

with parameters which might be problematic for the participants, having experience with other

languages where this feature is common. It both causes the participants to invoke syntax in the

class that is not supported, and have difficulties instantiating classes. Since this is a significant

difference in how the code should be structured, it is considered critical.

3. Misunderstanding the effect of Sort() on arrays of objects - The inbuilt sorting function for

arrays does not have access to the properties of the objects and therefore does not sort them by

any of those. This would have the consequence of code, written with the assumption that it works,

be most likely wrong, which means recovery would require a full rewrite of the algorithm. This

makes the problem critical. It is possible that with the use of a compiler the participant would

discover and recover much easier, which could mean the problem would potentially be considered

serious.

Serious problems

31



Critical Serious Cosmetic

Not using the end keyword at all Not using the end keyword to
end the scope of if-statements

Using colon (:) instead of dot
(.)

The lack of constructors with pa-
rameters in Quorum

Forgetting to increment the iter-
ator in a repeat while loop

The lack of aggregate operators
in Quorum (e.g.+=)

Misunderstanding the effect of
Sort() on arrays of classes

The lack of common looping
constructs (for-loops or foreach
loops)

Using conditional AND and OR
as && and || instead of and and
or keywords, as defined in Quo-
rum

Forgetting to import a library for
containers (array)

Using the float instead of
number keyword

Not using elseif to avoid hav-
ing to close an additional scope

Using string instead of the
text keyword

Not resetting inner loop iterator
between loops

Writing output instead of
return as the keyword for a
return statement

Using == in conditional state-
ments instead of =

Using int instead of integer

Using bool instead of boolean

Typos in library importing

Mistyping integer as
integar

Accidentally used 0 instead of O
in variable name

Mistyped the is keyword as ia

Forgot to add the repeat key-
word

Table 12.1: The table of identified problems categorised by severity

1. Not using the end keyword to end the scope of if-statements - Although this problem looks

similar to the first problem defined in Critical problems, the difference is that it is more likely

to be an overlook than a misunderstanding of the scoping rules in Quorum. Also single-line if-

statements might be present in other languages and not in Quorum.

2. Forgetting to increment the iterator in a repeat while loop - This could be considered an

oversight on the participant’s part, attributed to how the repeat-while construct works in Quorum,

compared to how usually for-loops are used, and therefore it was not critical. However, it is still

32



considered a serious problem because of the impact it has on the structural correctness of the code.

3. The lack of common looping constructs (for-loops or foreach loops) - This is considered a

serious problem for few reasons. Firstly, it warrants the use of the repeat-while construct as a

part of Quorum, which might not be so intuitive for people coming with backgrounds in other

languages, where these constructs are present. Secondly, this might compound to the previous

problem described in this section which would have a high impact on the validity of the written

program.

4. Forgetting to import a library for containers (array) - Containers in Quorum, and specifically

arrays, have to imported first before being used. This is considered a serious problem since it

might have a high impact on the validity of the program.

5. Not using elseif to avoid having to close an additional scope - This problem is serious be-

cause it shows a lack of understanding the finer points of scoping in an if-else chain. This is

problematic since else if is also a valid syntax, but carries unintended consequences.

6. Not resetting inner loop iterator between loops - Similarly to serious problem 2, this could be

considered an oversight on the participant’s end due to previous experience with other program-

ming languages.

Cosmetic problems

1. Using colon (:) instead of dot (.) - This is considered a cosmetic problem since does not affect

the structure of the program being only an exchange of a single character. It could be said that

most of the participants had a programming bias given their background in other programming

languages where the dot notation is common.

2. The lack of aggregate operators in Quorum (e.g.+=) - This is considered a cosmetic problem

since it does not affect the correctness of the program but it is rather a matter of convenience for

the participants.

3. Using conditional AND and OR as && and || instead of and and or keywords, as defined in
Quorum - This problem is considered cosmetic because the participants did not use the correct

keywords in the context but had the proper intentions to do so. This could be attributed to the

simple matter of not properly reading the sample sheet to find the proper keywords and using the

ones they know from other languages instead.

4. Using the float instead of number keyword - This is considered a cosmetic problem because

it does not have a big impact on the program’s correctness but rather is using a naming convention

from other programming languages

5. Using string instead of the text keyword - this is the same as with the previous cosmetic

problem

33



6. Writing output instead of return as the keyword for a return statement - This is cos-

metic because it is mostly a result of our sample sheet using output often, while the participants

were more commonly expected to write code returning something and had a familiarity with the

return keyword from other languages.

7. Using == in conditional statements instead of = - Similarly to previous cosmetic problems,

the main reason behind this problem is that most of the participants had experience with other

programming languages where the == notation is common and in turn had a particular bias against

using the = notation.

8. Using int instead of integer - same as with cosmetic problem 4

9. Using bool instead of boolean - same as with cosmetic problem 4

10. Typos in library importing - This is a simple case of having small typos when writing the import

code. Easily fixed and a cosmetic problem.

11. Mistyping integer as integar - this is a cosmetic problem since it is a simple typing mistake

and it does not have any impact on the validity of the program.

12. Accidentally used 0 instead of O in variable name - Again another small typo and therefore

cosmetic.

13. Mistyped the is keyword as ia - similar to cosmetic problem 12

14. Forgot to add the repeat keyword - This problem is considered cosmetic since it does not have

a significant impact on the correctness of the program.

12.3 Comparison with Quorum’s evidence

In their empirical experiments, Stefik and Gellenbeck [58] gathered many statistically significant results

regarding keyword choices. Given that they try to primarily address visually impaired people and novice

programmers, selecting the most intuitive words seems like a logical choice. For one of their experiments

[58], they divided the participants in two groups - novices and experienced programmers to find out if

there is a significant discrepancy in the results between the two groups. Every keyword choice was

ranked in two tables by mean value and standard deviation. Since we conducted our experiment with

people having programming experience, we are primarily interested in the results of the second group.

For the purpose of our evaluation method, we will not mention every single word choice they rated but

rather the ones which are coinciding with the problems we identified from the IDA evaluation in section

12.2. Additionally, we would also relate two of the empirical studies from Stefik and Siebert [37] and

their findings about keyword choices. This would help us to make a comparison between the authors

findings and the results from our evaluation, essentially giving an additional degree of credibility to the

method if similarities are found.

34



• In the results for the concepts of AND, OR and XOR, Stefik and Gellenbeck [58] found that for

the AND concept, using && and and performed quite well. Their results showed that these words

are actually popular and thus intuitive to use. As for the logical OR concept, the or keyword

was placed first, being significantly better the the second highest one - the || operator, which is

present in many popular programming languages. Last but not least, the XOR logical operator,

the or was rated highest which can be attributed to the fact that the participants did not know how

to call an operation which "took a behavior when one condition was true but not both".

• Stefik and Gellenbeck [58] settled on using a single equals (=) sign for assignment statements

and for testing equality since that is what they thought would make most sense. Although this

might be true for the novice group (single equals (=) sign was ranked highest), the experienced

programmers group did not even rate the single equals in the top 3, rating the double equals (==)

as highest instead. This was not verified until one of the later empirical studies by Stefik and

Siebert [37].

• For the concept of "Taking a behaviour" the authors considered several word choices such as

function, action and method. The novices ranked the action word the highest, while the

experienced programmers - operation, followed by action, method and function. How-

ever, the authors admit that this particular results should be further investigated, since the partic-

ipants might have understood the description of the concept as something other than completely

capturing the idea of a function.

• Quorum makes use of the keyword repeat over for, while or cycle (see Sanchez and Flores

[59]) following a study which shows that repeat represents the concept of iteration significantly

better than the the aforementioned words [58].

Based on the results from Stefik and Siebert [37], the programmers group found == to be intuitive as

the boolean equals operator, which matches our observation of the participants often using == instead

of = notation. For many of our other problems where our participants used the wrong syntax, Stefik and

Siebert [37] did have comparable results were both the wrong and the correct syntax was found intuitive

by their programmers group. These are:

• Dot (.) versus colon (:)

• using an aggregate operator (x += 1) versus an arithmetic operator (x = x + 1)

• && versus and for logical AND

• || versus or for logical OR

• data types wording (float versus number, string versus text and bool versus boolean)

It is possible that a lot of these cases were the result of a participant just glancing over the sample

sheet, instead of having a more thorough look at the syntax on the sample sheet. Since the constructs

35



looked intuitive, they did not notice or remember that it was different and thus just used the syntax they

were used to from other programming languages. Interestingly, our results about the looping constructs

contradicts the results from [37]. Our participants often lamented the lack of a for or foreach loop

and had a lot of errors in using the iterator for the while loop. This is in contrast to the papers results

where their programmers did not find for among the most intuitive and found foreach among the

least intuitive keywords for looping. However, the results are not directly contradictory as the paper’s

questions about intuitiveness was focused on the syntax, while our participants problems were more

about lacking the functionality of a looping construct with inbuilt iterator handling. A more direct

contradiction is that our participants often found the repeat keyword unnecessary, despite the paper

listing it as one of the most intuitive keywords for looping. This could be a side effect of us only

demonstrating the repeat while loop in our sample sheet, since that loop looks exactly like the while

loop they are used to but with an extra keyword in front.

A lot of our results were unsurprising. Quorum is a language that uses evidence about programming

to design a language that is intuitive for novices. Since our participants were experienced programmers

though, it would be expected that a lot of the errors encountered would be related to this mismatch.

Especially the critical error with lacking constructors with parameters, showed a large mismatch in

what an experienced programmer expected from a class compared to what was proven to be more user-

friendly [60]. Likewise the lack of a for- or foreach loop and the resulting iterator handling problems

experienced by our participants, showed that they had a habit of handling the iterator in the looping

construct. This functionality, however, could make the construct less practical for novices, as they

might get a better understanding of the same functionality by writing the statements separately. More

surprisingly we had a participant who never used the end keyword. In the discussion he explained this

was because he thought indentation was used to control scope. He felt that since indentation is a good

practice that all programmers should use anyway, it would make sense to make the language use and

enforce this. This would be especially true for a beginner language, as the beginners are those who need

to learn to use indentation. This again showed that experienced programmers were likely to draw from

their previous experiences rather than thoroughly examine the sample sheet.

12.4 Interview Results

During the interview we collected feedback addressing various key points such as the usability of pro-

gramming languages (in particular Quorum), programming without the help of a compiler or an IDE,

impressions of how effective some constructs are and how they can be improved. The most common

observations among the participants were:

The use of Quorum as a programming language - the majority of the participants (#3, #4, #5 and #8)

found Quorum easy to use and understand. Additionally, some compared it and found it similar

to other languages such as C, C#, Pascal and Python and generally less verbose than standard OO

languages they had experience with (e.g. C#,Java).

36



Managing scoping rules by the use of the end keyword instead of brackets - Generally, most of the

participants found the use of the end keyword for defining scopes very confusing. Participants

#4 and #6 preferred the use of brackets, similar to OO languages they were familiar with (e.g.

Java and C#), while participants #7 and #8 preferred indentation similar to languages like Python.

Participant #7 further suggested to extend the end construct to begin-end, similar to Pascal, which

he believes would make the language more user-friendly for novices.

Quorum uses the colon (:) notation instead of dot(.) - Given their prior experience with program-

ming languages, where the dot (.) notation is common, participants #4, #6 and #7 found it con-

fusing to use the colon (:) notation instead. This confusion was further reinforced by the fact that

the dot notation is still used when importing libraries.

The lack of common control statements was confusing - The lack of common control statements (such

as for or for-each loops) in Quorum seemed like a hurdle for the participants, and consequently

they found it not so intuitive to use the repeat while construct as a substitute of that. This is ev-

ident by the fact that some of them completely forgot to include repeat in the loop’s signature

(participant #3) or found it unnecessary altogether (participant #7).

12.5 Interview Suggestions

During the interview we collected several suggestions as to what could be done to improve the experi-

ment. These suggestions have been described here.

Providing a skeleton for the task solutions One of the suggestions was to add some code on the code

sheet that would show the skeleton of the expected solution. The participant would then only

have to worry about filling in the code for the functionality rather than how the solution should be

structured.

Adding a cheat sheet to the sample sheet Another suggestion was to add an extra sheet to the sample

sheet, that would contain just a list of all the keywords and constructs, to have a single page to

look at when looking for a specific thing.

Using separate pages for each task A third suggestion was to have each task on a separate page, which

would allow addition of some samples specific to that task on the page. In essence by having a

smaller subset of the samples for each task, the amount of sample code to look through at any time

would be reduced.

37



Chapter 13

Discussion

The results from Chapter 12 address some potential problems when working with a language such as

Quorum. This section will elaborate on how that can be extended to other programming languages and

how our method could be used in a customized manner.

Comparing our results with Quorum’s evidence has shown that our method gets comparable results

to other methods, but with a significantly lower amount of participants. Most of Quorum’s evidence

about experienced programmers has, however, been focused on just the syntax. This means that most

of the comparable data lies in our cosmetic errors, which are usually the least interesting problems

from a usability standpoint. The more serious problems tend to either contradict or not be addressed

by Quorum’s evidence, though in most cases, this is a result of the mismatch in target group between

novice and experienced programmers. One noticeable problem we encountered in the execution of our

test was participants freezing at the very beginning. They were unsure how to start as they could not

figure out what format of the solution they should use. For most of the participants this was not a big

hurdle, as they would either just pick one way of doing it or consult the facilitator. However, for some

participants, having a discussion while programming was unnatural. One way to prevent this could be

to have some pre-written code that the participant should instead fill out. It does however sacrifice some

of the potential data about the language that a more free-form task can give.

After conducting both of our experiments, a very interesting observation can be made that an Integrated

Development Environment (IDE), when used in conjunction with a programming language, contributes

primarily to resolving cosmetic problems and mistakes associated strictly with the syntax of the given

language. However, An IDE does not contribute that much to the facilitation process if the user gets

"stuck", a state attributed to the critical problems from the IDA evaluation. Additionally, we noticed

that even if people are experienced with a specific paradigm (participant #2 from the usability evaluation

in regards to C#), they can still get into a position where they cannot continue with the experiment,

given that they have to solve a task in a paradigm, different from what they are familiar with (participant

#2’ experience with the F# task). Further observations from the evaluation method showed that when

people familiar with a specific paradigm (imperative, object-oriented) have to make use of an unfamil-

iar language, supporting such paradigm (Quorum is both imperative and object-oriented), they tend to

38



disregard the syntax of the new language in place of a language they are familiar with. In the case with

Quorum, most of the participants (#1, #3, #4, #5, #6, #7 and #8) made use of syntax native to languages

such as Java and C#, supporting the same paradigms as Quorum.

13.1 Threats to validity

Conducting the experiment had some informal and qualitative conditions, which makes the validity face

some threats. This section will describe the most prevalent of such threats.

• Participant sample - Although we collected some qualitative results, the experiment did not have

a good representation of the general populace. The participant sample involved a small group,

with very similar educational backgrounds, occupation, age and geological location as mentioned

in section 10.1. The involvement of a bigger and more diverse group might skew the results in a

different direction.

• Facilitating the participants - Since we did neither use a compiler nor an IDE for the experiment,

the facilitator had to help on several occasions and the participants refered to him rather than the

sample sheet.

13.2 Tasks & Samples

It is difficult to create good tasks, as we have experienced in our experiments. Firstly, we had to deter-

mine which parts of the language we wanted to test. For our C# test it was object-oriented programming,

for our F# test it was recursive functions and for our quorum test it was arithmetic operations, opera-

tions on containers, objects and classes and operations on strings. Then we tried to build a scenario that

would give us tasks that exercise that decision. The specific scenario was not too important, but having

one helps convey the task, and gives some ideas for examples and names, which eases some unintended

creative burden on the participant. Next we had to decide how to formulate the tasks. Here we ran into

the problem of how strictly one wants the process to be. For our first tests on C# and F# we intentionally

kept the tasks vague to ensure we would not corrupt the data. However, this allowed the significant

variance in task completion we had between our two participants. It is possible this could have been

avoided if we had more strictly defined tasks. Although, that would also have caused us to lose the data

we got about the intuitiveness of using inheritance. For our test on Quorum, we used more smaller tasks

in several different scenarios, instead of one big scenario as in the previous tests. This meant we had to

have a more strict formulation of the tasks. Otherwise, there was a higher risk of any tasks taking up

all the time as it was interpreted to be larger or more complex than intended, which we discovered in

our pilot test. However, even with a stricter formulation, we ran into participants overcomplicating tasks

by interpreting them in a larger scope of the scenario than we had intended. At the same time, we also

encountered some participants not being able to start on the first task as they simply did not know where

39



to start on a blank piece of paper. One way to make the formulation even stricter, without dictating what

to write, could be to provide the skeleton of the solution we expect. This might also fix the issue with

the blank page paralysis, as it gives the participant a starting point to work from. It does, of course, lose

the data about how the participant would structure the solution, as we would have done so for them.

Similar problems was found when trying to define a sample sheet. Obviously, we wanted to at least have

examples demonstrating the minimum of functionality we expected to be necessary to solve our tasks.

However, only using the bare minimum limited the data we could gather, as the participant would be

pushed into using one particular functionality where another might also have been used. An example of

this could be that in our sample sheet we only included the repeat while loop, which means we would

not be able to get any data about the repeat times or repeat until loops. To avoid this problem it would be

an option to include examples of more functionality than what is strictly needed, to give the participants

more freedom in choosing their constructs. Although, this would require a larger sample sheet, which

would likely be another problem. Our participants would often only skim through the sample sheet, and

some directly expressed that it felt cumbersome to shuffle through three pages to find the example they

were looking for. Increasing the size of the sample sheet would likely only exacerbate this problem.

To fix this problem, one of our participants suggested adding a "cheat sheet" to the samples that would

have all the functionality summarised on a single page. Creating such a "cheat sheet" would, however,

present a challenge of its own, as it can be difficult to convey all the functionality on a single page. Also

a lot of our participant expressed appreciation at the use of working samples in our sample sheet, since

it gave them a more complete image of how the code should look. From this, we believe it is more

important to focus on the bigger sheet, but if you can create a "cheat sheet" it could be a worthwhile

addition.

Another thing to consider when creating a task sheet is the order of your examples relative to the order

of the tasks. Some of our participants expected the samples in the sample sheet to follow the tasks in

order of relevance. This occasionally gave a few errors, like for example the problem where a participant

used output instead of return, was a result of output being demonstrated in the early examples while

return was not demonstrated until the late examples. The participant had not seen the return example

before doing the first task, and upon seeing the output keyword just assumed that was it. Being more

mindful of ordering our examples could possibly have avoided this problem, but there might be a risk of

it biasing the participants. Especially if one is going for demonstrating an excess of functionality, there

is a risk that whichever alternative is shown first, would be the preferred alternative due to this bias. One

last thing to note is that in our sample sheet one of the examples is a solution to one of the subtasks.

While this could be an interesting way to test the participants attention to the sample sheet, it is probably

best to avoid this in order to avoid biasing the solution to that task.

40



Part IV

Conclusion

41



Chapter 14

Conclusion

Initially, we identified in our problem formulation (section 1.1) that there is a gap in programming

language evaluation between internal language analysis and the big industrial evaluation methods. In

that regard, as well as a follow-up of our previous work (Chapter 2), we wanted to explore whether HCI

techniques could be applicable for the evaluation of programming languages.

In Chapter 4, we briefly described existing evaluation methods for programming languages and how

they differ, along with their strengths and weaknesses, which helped us get a better understanding of

the design of such methods. In the context of HCI techniques, we have examined the usefulness of the

discount usability method ( Chapter 6) the IDA method (Section 4.7) for data analysis on C# and F#.

In this examination we found that the discount usability method can be used to evaluate programming

languages, but has some shortcomings. The programming language’s IDE has a large effect on the

results, often providing significant assistance which effectively eliminates many of the errors which

might otherwise get caught in the language. Based on the results, we believe that the discount usability

method is good for testing a compiler and an IDE, but is less well suited for examining language design.

To create a method better suited for evaluating language design, we conducted an adapted usability

experiment where we specifically avoided the use of an IDE or a compiler (Chapter 8). An added

advantage of such a method is that it does not require the creation of any tools for the language before

the language design can be tested, making it a low-cost and efficient solution. For this experiment, we

used the evidence-based language called Quorum, as it was less likely for our participant group to be

familiar with it, yet it is in a programming paradigm they were familiar with.

During the analysis process we had to alter the criteria used for categorising the problems from the

IDA method - from time spent on a problem to severity of fixing the problem. This was due to the

discovery that since the system does not have a way of giving meaningful feedback to the participant,

the participants would not encounter problems nor spend time fixing them.

Comparing the resulting data from the method with Quorum’s evidence showed us that most of the

data was comparable though not strictly in agreement. However, Quorum’s data was mostly centered

around syntax choice and therefore was mostly only related to the cosmetic problems, which are the

42



least interesting problems to consider. The data suggests that our method will be better suited for getting

some of the deeper problems with a programming language when compared to the syntax questionnaires

used as evidence for Quorum.

43



Chapter 15

Method procedure

This chapter serves as a guideline of how the full method could used for conducting an experiment. In

summary, the steps of applying the method to a language are as following:

1. Create tasks These tasks are specific to the language, and should explore key features of the

language. A useful tool to design tasks can be to create some scenarios you would expect a user

to use your language in and what that user would need to do solve their task.

2. Create a sample sheet Based on the tasks, you now have a better idea of what a participant would

need to know to solve those tasks. Keeping the sample sheet short or having a clear indexing of

the samples can help participants browse the sample sheet. Having working code samples can

help give a better understanding of the overall structure of code in the language.

3. Estimate the task length Taking time of how fast you can solve the tasks will give an idea of how

long the experiment will take per participant. Do note that the participants will likely take longer

to solve the tasks since they have to get acquainted with the language first. It can be okay to have

more tasks than what you expect a participant to be able to solve, but the later tasks would need to

explore less important features, and the participant needs to be made aware of not being expected

to solve all of them.

4. Prepare setup The specifics of the setup can vary from a full blown usability lab to pen and

paper. The advantage of a flexible setup, like pen and paper or a laptop with a text-editor, is the

convenience it allows for potential participants. Often the experiment will be recorded to better

review the process of solving the tasks, in which case the necessary utilities for this needs to be

prepared.

(optional) Conduct a pilot test A pilot test can let you discover and fix any problems in your tasks, sample

sheet, task estimate and setup before conducting the experiment on the full number of participants.

It does, however, require an additional participant and time.

5. Gather participants The golden rule for number of participants is five. More than that and

most of the encountered problems are ones you already have observed, though the repetition can

44



reinforce observations. Less than that and you tend to have several problems left undiscovered,

though some data is generally still better than none.

6. Start the experiment Make sure to tell the participant that it is the language being tested and not

them, to alleviate some unnecessary nervousness.

7. Keep the participant talking Try to make the participant talk about what they are thinking about

solving the task at hand. During this time the facilitator may answer any questions the participant

have about the language. The facilitator should try to avoid talking about how to solve the tasks,

but it may be necessary if the participant need help getting started (or stopped in cases of over-

complicating tasks). The facilitator will confirm when a task is done, because the system won’t

give that kind of feedback.

8. Interview the participant After the test, have a brief interview with the participant where you

can discuss the language, tasks etc. It can be useful to have some questions pre-written or create

a questionnaire if there are many participants.

9. Analyse data After all the tests have been conducted, use the data to identify a list of problems

encountered during the test. You can then categorise the problems using the following guidelines:

Cosmetic problems are typos and small keyword and character differences that can easily be

fixed by replacing the wrong part.

Serious problems are structural errors that usually impacts how the code is structured, but is

usually small enough that it can be fixed with a few changes.

Critical problems are fundamental misunderstandings of how the language structures code and

large structural errors that would require a revision of the algorithm.

Following this categorisation you will now have a prioritized list of things to improve on the

language.

45



Chapter 16

Future works

The results from the evaluation method show that this is a viable way of evaluating a programming

language in a low-cost setup. However, there are still plenty of opportunities which can be taken into

consideration for improving the method. This chapter provides a discussion of the most promising things

that can be done in the future.

One of the things that could be done would be to conduct the usability experiment on Quorum, still with

experienced programmers, using the Sodbeans environment. This would give a more direct comparison

of the differences in the data gotten from using the usability experiment method versus our method.

Of course, simply conducting our method on more languages, and ideally by the language designers of

these languages, would also give a lot of data about the method. One way to facilitate this could be

to spread the method to the 4th semester students in the engineering faculty (SW, DAT, IT) at Aalborg

University. Since these student have to design a language as part of their semester project, and could use

the data to argument for their language design decisions, it would be an opportune way of testing the

method in a low-risk environment.

While our method is good for finding problems in a programming language, it is less well suited to be

used to compare the quality of programming languages. It could be interesting to look at creating a

method designed for that purpose, as such comparisons commonly are of interest to language designers

looking to promote their language over existing ones. One way of creating such a method from our

method, could be to create a set of generalised tasks that would be applicable on all programming

languages, which would give a solid common ground for the comparison. It might however be literally

impossible to create such a task set, as programming languages can be quite varied and some might not

have any common ground. Specialised languages tend to omit a lot of features of a general-purpose

language, and even within more general-purpose languages there can be huge differences (for example

when switching programming paradigm) that would make a general task set impossible. A more likely

way to use our method would be to compare languages for a specific application area, as it is possible to

create tasks that are common in that area and apply the same task to several languages for comparison.

Ideally, conducting empirical experiments relies on the use of a very diverse test group - participants with

46



a different age, occupation and geological location in order to get a sufficient variance in the results. In

our case, the participants were mostly in the same age group (20-25), had very similar occupation (4th

to 8th Semester students in an engineering degree - CS, DAT, SW) and had a very similar geological

location (North Jutland, within the Aalborg area). This certainly leaves a room for improvement, where

conducting the experiment with a more diverse test group might yield different results.

Given the qualitative nature of the IDA method and the minimum number of participants needed for a

viable experiment, we did not need a significant amount of participants for drawing adequate results.

However, it could be interesting to see how the evaluation method would fare in a quantitative setup,

involving hundreds or thousands of participants. We leave this as something to be considered in the

future since testing on such as group at this point is beyond the scope of this project.

Another thing worth exploring is using our method on novices. Using experienced programmers makes

it easier to convey how to program in a language, as they already know how to program, and it makes

sense when programmers are the target group for the language. It does, however, mean that the data tend

to be biased towards the languages the programmers already know. Using novices avoids this bias and

is obviously useful for languages designed for them. Although, it present a challenge for our method, as

novices are less familiar with the act of programming and are more prone to feel lost. One example of

this is participant #2 who we have otherwise omitted from the results since he was not an experienced

programmer. In this test the participant was completely unable to write anything before the facilitator

stepped in, and essentially dictated exactly what should be written for the first subtask. After this, the

participant was, however, capable of solving the second and third subtask on his own. This shows that it

is definitely not impossible to test on novices, but it probably requires some additional thought put into

the task and sample sheet. Conducting the experiment on novices would give us a better idea of what

kind of alterations the experiment setup would need to facilitate those experiments.

Based on the previous point, a good thing to do would be to design and conduct the experiment with

a pre-made skeleton set up for the tasks, like we mentioned in Section 13.2. This would give us a

much better idea about how that affects the experiment, and would allow us to better gauge how well

it prevents the freezing issue it was designed to combat. If we were to conduct the experiment on

novices, this would also be a likely addition to that test, as we believe they are the most likely to need

the additional guidance.

47



Part V

Bibliography

48



Bibliography

[1] S. Davies, J. A. Palack-Wahl, and K. Anewalt, “A snapshot of current practices in teaching the

introductory programming sequence,” SIGCSE ’11 Proceedings of the 42nd ACM technical sym-

posium on Computer science education, pp. 625–630, 2011. 1

[2] S. Markstrum, “Staking claims: a history of programming language design claims and evidence: a

positional work in progress,” PLATEAU ’10 Evaluation and Usability of Programming Languages

and Tools, no. 7, 2010. 1

[3] L. A. Meyerovich and A. S. Rabkin, “Socio-plt: principles for programming language adoption,”

Onward! 2012 Proceedings of the ACM international symposium on New ideas, new paradigms,

and reflections on programming and software, no. 4, pp. 39–54, 2012. 1

[4] R. Garlick and E. C. Cankaya, “Using alice in cs1: a quantitative experiment,” ITiCSE ’10 Pro-

ceedings of the fifteenth annual conference on Innovation and technology in computer science

education, no. 36, pp. 165–168, 2010. 1, 1.1

[5] D. Weintrop and U. Wilensky, “To block or not to block, that is the question: students’ perceptions

of blocks-based programming,” IDC ’15 Proceedings of the 14th International Conference on

Interaction Design and Children, no. 21, pp. 199–208, 2015. 1, 1.1

[6] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, “From scratch to “real” programming,” ACM

Transactions on Computing Education (TOCE) TOCE Homepage archive Volume 14 Issue 4,

February 2015, no. 25, p. 15, 2015. 1, 1.1

[7] J. Kjeldskov, M. B. Skov, and J. Stage, “Instant data analysis: conducting usability evaluations

in a day,” Proceedings of the third Nordic conference on Human-computer interaction, no. 37,

pp. 233–240, 2004. 1, 4.7, 6, 12

[8] A. Monk, L. Davenport, J. Haber, and P. Wright, Improving your human-computer interface: A

practical technique. Prentice Hall, 1 ed., 1993. 1, 2, 4.6

[9] J. M. B. Christiansen, H. V. Geertsen, S. Kurtev, and T. A. Christensen, “Comparative analysis of

educational programming languages and environments,” p. 72, 2015. 2

[10] R. W. Sebesta, Concepts of Programming Languages. University of Colorado at Colorado Springs:

Pearson, tenth ed., 2012. 2, 4

49



[11] A. Bryman, Social Research Methods. Oxford University Press, 4th ed., 2012. 2, 9.3

[12] M. S. Farooq, S. A. Khan, F. Ahmad, S. Islam, and A. Abid, “An evaluation framework and com-

parative analysis of the widely used first programming languages,” February 24th 2014. 3

[13] K. R. Parker, J. T. Chao, T. A. Ottaway, and J. Chang, “A formal language selection process for

introductory programming courses,” ICER 2006 Proceedings of the second international workshop

on Computing education research, no. 2, pp. 73–84, 2006. 3

[14] A. Stefik, S. Siebert, M. Stefik, and K. Slattery, “An empirical comparison of the accuracy rates of

novices using the quorum, perl, and randomo programming languages,” PLATEAU 2011 Proceed-

ings of the 3rd ACM SIGPLAN workshop on Evaluation and usability of programming languages

and tools, pp. 3–8, 2011. 3, 4.4

[15] J. D. Kiper, E. Howard, and R. C. Ames, “Criteria for evaluation of visual programming lan-

guages,” Journal of Visual Languages and Computing, vol. 8, pp. 175–192, 1997. 3

[16] G. Singh and M. H. Chignell, Components of the visual computer - a review of relevant technolo-

gies. University of Tokyo, Tokyo, Japan: Springer-Verlag New York, 1992. 3

[17] J. F. Pane, B. A. Myers, and L. B. Miller, “Using hci techniques to design a more usable program-

ming system,” Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages

and Environments (HCC’02), 2002. 3

[18] J. F. Pane and B. A. Myers, “Usability issues in the design of novice programming systems,”

Carnegie Mellon University, Pittsburgh, PA, School of Computer Science Technical Report CMU-

CS-96-132, 1996. 3

[19] R. P. L. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers of user evaluation in software

engineering research,” OOPSLA ’11 Proceedings of the 2011 ACM international conference on

Object oriented programming systems languages and applications, pp. 643–656, 2011. 3

[20] D. P. Delorey, C. D. Knutson, and S. Chun, “Do programming languages affect productivity?

a case study using data from open source projects,” Emerging Trends in FLOSS Research and

Development, 2007. FLOSS ’07. First International Workshop on, p. 8, 2007. 3

[21] C. Hope, “What was the first computer programming language?.” http://www.

computerhope.com/issues/ch001621.htm, 2016. Used: 01/05/16. 4

[22] S. Nanz, S. West, K. S. da Silveira, and B. Meyer, “Benchmarking usability and performance of

multicore languages,” 2013 ACM/IEEE International Symposium on Empirical Software Engineer-

ing and Measurement (ESEM), pp. 183–192, 2013. 4.1, 4.3

[23] G. V. Wilson and R. B. Irvin, “Assessing and comparing the usability of parallel programming

systems,” Technical Report CSRI-321, p. 40, 1995. 4.1

50

http://www.computerhope.com/issues/ch001621.htm
http://www.computerhope.com/issues/ch001621.htm


[24] H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen, G. Michael-

son, R. Pena, S. Priebe, A. Rebon, and P. Trinder, “Comparing parallel functional languages: Pro-

gramming and performance,” vol. Volume 16 Issue 3, pp. 203–251, 2003. 4.1

[25] G. M. Weinberg, The Psychology of Computer Programming - Silver Anniversary Edition. Univer-

sity of Colorado at Colorado Springs: Dorset House, silver anniversary ed., 1998. 4.2

[26] T. R. Green and M. Petre, “Usability analysis of visual programming environments A cognitive

dimensions framework,” Journal of Visual Languages & Computing, pp. 131–174, 1996. 4.2

[27] A. Blackwell, “Cognitive dimensions of tangible programming languages,” Proceedings of the

First Joint Conference of EASE, pp. 391–405, 2003. 4.2

[28] T. R. G. Green, “Instructions and descriptions some cognitive aspects of programming and similar

activities,” Proceedings of Working Conference on Advanced Visual Interfaces (AVI 2000), pp. 21–

28, 2000. 4.2

[29] T. R. G. A. Blackwell, “Cognitive dimensions of information artefacts a tutorial,” 1998. 4.2

[30] S. Clarke, “Evaluating a new programming language,” PPIG 13, pp. 275–289, 2001. 4.2

[31] B. A. Myers, A. Ko, S. Y. Park, J. Stylos, T. D. LaToza, and J. Beaton, “More natural end-user

software engineering,” WEUSE IV?08, 2008. 4.2

[32] B. A. Myers, J. F. Pane, and A. Ko, “Natural programming languages and environments,” Com-

munications of the ACM - End-user development: tools that empower users to create their own

software solutions, pp. 47–52, 2004. 4.2

[33] U. Farooq and D. Zirkler, “Api peer reviews A method for evaluating usability of application

programming interfaces,” 2010. 4.2

[34] L. V. M. Diaz, “Programming languages as user interfaces,” Proceedings of the 3rd Mexican Work-

shop on Human Computer Interaction, 2010. 4.2

[35] S. Hanenberg, “Criteria for evaluation of visual programming languages,” OOPSLA ’10 Proceed-

ings of the ACM international conference on Object oriented programming systems languages and

applications, pp. 22–35, 2010. 4.3

[36] L. Prechelt, “An empirical comparison of c, c++, java, perl, python, rexx, and tcl,” IEEE Computer,

pp. 1–8, 2000. 4.3

[37] A. Stefik and S. Siebert, “An empirical investigation into programming language syntax,” ACM

Transactions on Computing Education (TOCE), vol. 13, 2013. 4.3, 12.3

[38] T. Preston-Werner, C. Wanstrath, and P. Hyett, “Github.” https://github.com/, 2016. Used:

19/05/16. 4.3

51

https://github.com/


[39] S. Nanz and C. A. Furia, “A comparative study of programming languages in rosetta code,” ICSE

’15 Proceedings of the 37th International Conference on Software Engineering - Volume 1, 2015.

4.3

[40] B. Ray, D. Posnett, V. Filkov, and P. T. Devanbu, “A large scale study of programming languages

and code quality in github,” ACM FSE’14, 2014. 4.4

[41] S. Hanenberg, “An experiment about static and dynamic type systems doubts about the positive

impact of static type systems on development time,” OOPSLA/SPLASH’10, 2010. 4.4

[42] S. Hanenberg and S. Siebert, “An empirical investigation into programming language syntax,”

Transactions on Computer Education, 2013. 4.4

[43] A. Stefik and S. Hanenberg, “The programming language wars,” SPLASH - Systems, Programming,

and Applications, pp. 283–299, 2014. 4.4

[44] A. R. Feuer and N. H. Gehani, “Comparison of the programming languages c and pascal,” ACM

Computing Surveys (CSUR), pp. 73–92, 1982. 4.5

[45] J. L. Murtagh and J. A. H. Jr., “A comparison of ada and pascal in an introductory computer science

course,” SIGAda ’98 Proceedings of the 1998 annual ACM SIGAda international conference on

Ada, pp. 75–80, 1998. 4.5

[46] L. Tang, “A comparison of ada and c++,” TRI-Ada ’92 Proceedings of the conference on TRI-Ada

’92, pp. 338–349, 1992. 4.5

[47] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman, “Benchmarking java against c and fortran for

scientific applications,” JGI ’01 Proceedings of the 2001 joint ACM-ISCOPE conference on Java

Grande, pp. 97–105, 2001. 4.5

[48] S. S. Chandra and K. Chandra, “A comparison of java and c#,” Journal of Computing Sciences in

Colleges, pp. 238–254, 2005. 4.5

[49] D. Benyon, Designing Interactive Systems - A comprehensive guide to HCI and interaction design,

pp. 232–233. Pearson Education Limited, 2 ed., 2010. 4.6

[50] N. N. Group, “Why you only need to test with 5 users.” https://www.nngroup.com/

articles/why-you-only-need-to-test-with-5-users/. Used: 26/04/16. 4.6

[51] J. Kjeldskov, M. B. Skov, and J. Stage, “Hci lab technical report.” http://vbn.aau.dk/

en/publications/the-usability-laboratory-at-cassiopeia(47a9c780-

c9dc-11dd-a016-000ea68e967b).html, 2008. Used: 13/05/16. 6

[52] M. Faldborg and T. L. Nielsen, “Type systems and programmers A look at optional typing in

dart,” p. 77, 2015. 7

[53] L. C. Pedersen and M. Faldborg, “Designing larm: Programing with nothing but your voice,” 2014.

Used: 08/02/16. 7

52

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://vbn.aau.dk/en/publications/the-usability-laboratory-at-cassiopeia(47a9c780-c9dc-11dd-a016-000ea68e967b).html
http://vbn.aau.dk/en/publications/the-usability-laboratory-at-cassiopeia(47a9c780-c9dc-11dd-a016-000ea68e967b).html
http://vbn.aau.dk/en/publications/the-usability-laboratory-at-cassiopeia(47a9c780-c9dc-11dd-a016-000ea68e967b).html


[54] R. Koitz and W. Slany, “Empirical comparison of visual to hybrid formula manipulation in educa-

tional programming languages for teenagers,” PLATEAU ’14 Proceedings of the 5th Workshop on

Evaluation and Usability of Programming Languages and Tools, no. 3, pp. 21–30, 2014. 7

[55] A. Stefik, E. Pierzina, and K. Ritter, “Quorum’s home page.” http://www.

quorumlanguage.com, 2014-2016. Used: 11/05/16. 8

[56] D. Thomas, “Codekata.” http://codekata.com/. Used: 12/05/16. 9.1

[57] D. Ho, “Notepad++ home page.” http://notepad-plus-plus.org, 2016. Used:

11/05/16. 10

[58] A. Stefik and E. Gellenbeck, “Empirical studies on programming language stimuli,” Software Qual-

ity Journal, pp. 65–99, 2011. 12.3

[59] J. Sánchez and F. Aguayo, “Blind learners programming through audio,” CHI EA ’05 CHI ’05

Extended Abstracts on Human Factors in Computing Systems, pp. 1769–1772, 2005. 12.3

[60] J. Stylos and S. Clarke, “Usability implications of requiring parameters in objects’ constructors,”

ICSEInternational Conference on Software Engineering, pp. 529–539, 2007. 12.3

53

http://www.quorumlanguage.com
http://www.quorumlanguage.com
http://codekata.com/
http://notepad-plus-plus.org


54



Part VI

Appendices

55



Appendix A

List of Abbreviations

PLATEAU Evaluation and Usability of Programming Languages and Tools

HCI Human-Computer Interaction

UK United Kingdom

USA United States of America

FPL First Programming Language

TBB Threading Building Blocks

IDE Integrated Development Environment

API Application Programming Interface

IDA Instant Data Analysis

VDA Video Data Analysis

RPG Role-Playing Game

DVR Digital Video Recorder

OO Object-Oriented

56



Appendix B

Task Sheet

Task 1:

Imagine a simple supermarket billing system which can specify orders and calculate the total price of

ordered items. For the sake of simplicity, we work with oranges and bananas as our products. Oranges

cost 5$ per piece and bananas 4$ per piece, respectively. Create a system that:

• Can calculate the total price given a number of oranges and bananas bought.

• Adds a different price for buying a specific amount of an item

• Make triplets of oranges cost 10$ in total instead of 15$

• Make 5 bananas cost 10$ instead of 20$

• Adds a discount of 10% to the total price for regular customers

Task 2:

Imagine you have 2 football teams and each team has an equal amount of players. Each player has both

his first and last name written down as well as their age. Try to find the following things:

• 2 or more players with the same first or last name in the same team

• 2 or more players with the same first or last name across the two teams

• 2 or more players with the same first name and age in the same team

Task 3:

Imagine you have a simple Role playing game. You have a base character which can be specialized in

different classes such as Warrior, Mage etc. Every character has a certain amount of hitpoints and has

the ability to attack other characters.

• Create a system for characters who all have:

57



– Hit points and the ability to replenish them

– The ability to attack other characters

• Allow a character to have a specific class

• Add a specific unique resource to every class (Warriors get fury, Mages get mana)

• Add a special unique attack to every class (Warriors get “Execute”, Mages get “Fireball” etc.)

– These unique attacks spend the unique resource, respectively (e.g. Fireball costs 10 mana)

• Add the ability for every class to replenish their unique resource.

Task 4:

For some given text (for example your full name), write a procedure which:

• Prints the text in reverse order

• Prints the letters from the text in an alphabetical order

• Finds if there are duplicate letters in the text and if there are, list how many are duplicated (e.g.

“Tommy” will give the result of 1, while “Christensen” has 3)

58



Appendix C

Sample Sheet

General information & code examples
Quorum is an evidence-based programming language, designed from the outset to be easily understood

and picked up by beginners. One of the design decisions taken includes the full omit of brackets when

defining scopes. Keywords in the language make use of a more natural mapping to the real world, such

as "text" for strings, "number" for doubles and floats and "repeat" for loops. Conditional statements such

as if-statement are always ended with the keyword "end" which specifies the end of scope.

Data types

1 integer a = 5

2 number b = 10.2

3 text c = "John"

4 boolean d = true

Type conversion:

1 text someText = "5.7"

2

3 number someNumber = cast (number, someText)

Simple operation with arrays and conditional statements
The following code creates an array a with some randomly placed elements. It then sorts the array and

iterates through the array to create an output with all the elements.

1 use Libraries.Containers.Array

2 action Main

3 text unordered = "fdebaac"

4 Array<text> a = unordered:Split("")

5 a:Sort()

6 integer i = 0

59



7 text out = ""

8 repeat while i < a:GetSize()

9 out = out + a:Get(i) + ";"

10 i = i + 1

11 end

12 output out

13 end

Output is: a;a;b;c;d;e;f;

This is an example of an action using if- else statements

1 action checkIntervals(integer i)

2 if i < 10

3 output "it is less than 10"

4 elseif i = 10 or i > 10 and i <= 15

5 output "it is less than or equal to 15 but greater or equal to 10"

6 else

7 output "it is greater than 15"

8 end

9 end

Classes & Inheritance
To demonstrate classes and inheritance in quorum, we use the example of the animal family felidae and

a cat belonging to that family:

First the superclass felidae looks like this:

1 class felidae

2 text name = "Sebastian"

3

4 public action Paws() returns integer

5 return 4

6 end

7

8 action Purr()

9 output name + ": rhrhrhrhrhrhrhrhrhrhrhrh"

10 end

11 end

We then create the cat subclass like this:

1 class cat is felidae

2 action Meow

3 output parent:felidae:name + ": meow"

4 end

5 end

60



To show the code in action we then use a main action that looks like this:

1 action Main

2 cat sampleCat

3 sampleCat:Purr()

4 sampleCat:Meow()

5 output sampleCat:Paws()

6 end

Where we instantiate a cat and call both the action from the superclass and the subclass giving the output

of:

Sebastian: rhrhrhrhrhrhrhrhrhrhrhrh

Sebastian: meow

4

Worth noting is that we need to specify that the action Paws is public before we can call it from out-

side the class since it returns something (actions that does not return something are public by default).

Likewise, if we in main where to write something like:

1 output sampleCat:parent:felidae:name

In order to access the name property, it would give an error since the name is not public.

61



Appendix D

Interview Questions

1. What do you think about the language? Was it easy to learn?

2. Did you find some of the design odd?

3. How does Quorum relate to other languages you have experience in?

4. How did you find the tasks? Were they too challenging or too easy?

5. What do you think about coding without a compiler?

62



Appendix E

Interview notes

As previously mentioned, the interviews with the participants were recorded in order to preserve the nec-

essary feedback which helped in analysing the results. Instead of providing the entirely of the interviews

in the form of transcripts, we decided to condense the information in key points instead. This helped

us to analyse the data from the interviews much easier and find out how many occurrences of a given

problem there are across all the participants. Additionally, this section encapsulates the essential parts

of each interview and highlights what every participant had to say in terms of feedback, suggestions for

further improvements and encountered problems.

E.1 Participant #1 (Pilot Test)

• Thought that using colon (:) instead of dot (.) was weird, both because it goes against the norm

(the participant had experience with several languages which use the dot notation) and because

dot is easier to type.

• Thought that tasks are trivial to understand but take time to code

• Task 1 was too broad in the definition causing the task to be too large and time-consuming and the

participant to spend time on unintended things.

• Mentioned that although repetitive to a certain extend, task 2 was tricky and very good at convey-

ing that you have to pay attention when copying code. (*He actually fell into that trap and he did

not realise it up until the facilitator intervened and pointed that out.)

• Thought that tasks 2 and 4 were quite good in terms of their intended purposes while task 3

(operation on strings) was trivial and very similar to task 2.

• He found the samples of conditional use not being able to clearly convey the differences between

Quorum and other known languages he had experience in. In particular == vs. = and and vs &&

did not stand out.

63



• Thought that it was good that the sample sheet was split in categories to make it easier for the

facilitator to reference them when asked.

E.2 Participant #2

• Thought that a lot of the notations were unintuitive because they differed from the mathematical

norm

• Found the keyword action confusing

• Thought that using loop would be easier than repeat

• It was difficult for him to devise the code needed for solving the tasks, although he found the

mathematics behind quite easy

• It was daunting to not have any fallback or assistance when trying to code and learn how to code

without a compiler

E.3 Participant #3

• Suggested that we should add specific values for task 3

• Wondered how to define return types of an action

• Quorum does not have parameterized constructors

• Suggested that we add how to get the size of an array with an in-build action

• Forgot to increment loop counters

• Forgot to add the repeat keyword

• Thought that Quorum has a limited number of looping constructs, but it is easy to learn, write and

understand

• Quorum is very terse

• Thought that output makes more sense than using print

• Thought that returns of an action seems intuitive

• Liked the is keyword for class inheritance

• Thought that Quorum is similar to C, with a different syntax (programmer-friendly C)

• Thought that the lack of parameterized constructors is not that limiting, but does not have enough

experience to say with a certainty

64



• Found the tasks not too challenging

• Thought that not using a compiler is not much of a hindrance

• Found the example sheet indispensable and very helpful

• Suggested that we could add more examples for loping constructs

E.4 Participant #4

• Found it strange to use words as a means of closing scopes instead of brackets as well as using

colons instead of dots

• Thought the languages is straightforward and easy to use

• Used a float instead of a number keyword, as well as string instead of text

• Forgot to add returns keyword at the end of an action

• Forgot to increment the counters on loops

• Had some problems with scoping by making use of the end keyword

• Found the tasks specific, understandable and clear

• Thought that . makes more sense than :

• Suggested that we add an example of method inheritance on the example sheet

• Suggested that we change the / on task 2 with an “or”

• Suggested that we add a sort action on the example sheet constructs

E.5 Participant #5

• Found Quorum is similar to C

• Quorum has similar design to other languages string instead of text

• Tended to over-complicate things and thus - over-engineer the tasks

• Made use of the example sheet quite frequently

• Coding without a compiler was unpleasant and felt like being in an exam, unable to get a feedback

from what’s being written down (Does not allow a great deal of experimentation)

• Had difficulties with the syntax of arrays - using the [] notation instead of the get(i) inbuilt

method

65



• Forgot to write the import for using arrays, as specified on the example sheet

• Found the tasks very good at conveying our intended purposes and easy to understand

• Found the amount of tasks good and reasonable

• Found Task 3 to be a bit tricky since you have to specifically think in terms of inheritance from

the start

• Found the example sheet informative and referred to it several times

E.6 Participant #6

• Quorum’s design seems a bit confusing

– Closing the scopes of If-statements with end

– Lack of parameterized constructors

– Lack of a for-loop

• Found the tasks very good and the example sheet - very concise

• Found coding without a compiler scary without “the safety net”

• Typed = instead of == for an inequality operator

• Thought it might be more intuitive to use a Get method directly compared to how it is being used

in the language

• Typed . instead of :

• Thought that ending classes with something different than the end keyword will make more sense

• Found closing the scope of if-statements with the end keyword confusing and said that brackets

would make it more readable (similarly to OO languages such as Java and C#)

• Found Quorum less verbose than other OO languages

• Forgot to increment the counter variable outside of a loop

• Although the participant over complicated the tasks based on the provided description, he found

them very good and efficient at what they try to convey

– Task 2 - the description of the task seems rather confusing, which made the participant to

over-engineer the solution

– Task 3 - doable

• Found the example sheet contains enough content in order to solve the tasks

• Had a few suggestions how to improve the overall look of the example sheet

66



E.7 Participant #7

• Found Quorum similar to Pascal and C#

• Liked certain parts of the language and disliked others

• Found the use of repeat unnecessary since it does not make sense in conjunction with the stan-

dard loop wording

• Noticed that you have to close a class/action with an end keyword

• Suggested that implicit type casting would be better for novices

• : used in different scenarios might be confusing

• Thought that the returns keyword can have a better placement in the action’s signature

• Noticed that you have to use a library for an array

• Said that the end keyword does not make much sense and rather see a begin-end scoping con-

struct, similar to Pascal and Python - only indentation

• Casting data types could be dangerous for novices

• Found the returns keyword’s placement not so intuitive

• Found the end keyword for if-statements not so adequate, can use indentation instead similar to

Python

• Found the tasks very good:

– Task 2’s challenge of reusing code is a good exercise

– Task 2 could have a 2 predefined lists with names

• Said that the task encompass a good portion of constructs

• Suggested we could add a setup for easier start with the tasks

• Suggested we give better titles on the examples sheet and better indexing when looking for things

• Coding without a compiler did not matter that much in his opinion

• Found it great that the facilitator could say if the task is done or not

• GetSize() and Add() in-build methods examples were missing

• Acknowledged that the code samples are highlighted and there are working examples

• Said that we should be consistent with the working titles

67



E.8 Participant #8

• Found Quorum intuitive to use, but limited in terms of available constructs

• Suggested that returns nothing would be intuitive

• Found the naming of keywords inconsistent (Arrays with capital A and everything else with small

letters)

• Found it confusing not to use indentation for scopes

• Found the lack of semicolons a very good thing

• Liked the is keyword for class inheritance

• Pointed out the lack of a continue construct for loops

• Would have liked more features from functional programming

• Suggested we could make the “or” and “and” statements bolded in task 2

• Noticed the lack of an aggregate += operator

• Quorum reminds him of OO languages and similar to Python

• Would have liked a summary of all the examples on the examples sheet

• Found the examples not so sufficient per task

• Suggested that we could highlight important parts on the task sheet

• Found the lack of a compiler while coding “dangerously scary”

• Over-engineered task 1

• Suggested that we could have an additional sheet with solutions to the tasks

• Separate each task on a separate paper so it is easier to navigate

68



Appendix F

Participant code

F.1 Participant #1

1 use Libraies.Container.Array

2 use public

3

4 action Main

5 Array<Cucumber> a

6 a:add(Cucumber c1)

7 a:add(Cucumber c2)

8 a:add(Cucumber c3)

9 a:add(Cucumber c4)

10 CalcTotal(a)

11 end

12

13

14 action CalcTotal(Array<Cucumber> arr)

15 number total = 0

16 integer i = 0

17 total = Cucumber.Price(arr.GetSize())

18 output "total = " + total

19

20 end

21

22 Class Cucumber

23 integer id

24 number price

25 number bulkPrice

26 integer bulkCount

27 number percentageDiscount

28 boolean bORp

29

69



30

31 public action Price(integer amount)

32 integer remains = mod amount

33 integer numdiscount = amount / bulkCount

34

35 number value

36 if bORp

37 value = remains* price + numdiscount * bulkPrice

38 else

39 value = 100 - percentageDiscount * price *amount

40 end

41

42 return value

43 end

44 end

45

46

47 //TASK2

48

49 Class Player

50 public text FN

51 public text LN

52 public integer age

53

54 action make (text first, text last, integer _age)

55 FN = first

56 LN = last

57 age = _age

58 end

59 end

60

61 action Main

62 Aray <Player> T1

63 Array <Player > T2

64

65 Player p1

66 Player p2

67 Player p3

68

69 Player p4

70 Player p5

71 Player p6

72

73 p1:make("a","b",10)

74 p2:make("a",zebra,1)

75 p3:make("gi", "joe", 65)

70



76

77 T1:add(p1)

78 T1:add(p2)

79 T1:add(p3)

80

81 p4:make("anotherguy","b",20)

82 p5:make("c","c",11)

83 p6:make("d","d",25)

84

85 T2:Add(p4)

86 T2:Add(p5)

87 T2:Add(p6)

88

89 public action FindFFNLNbetweenTeams returns integer

90 integer i = 0

91 integer j = 0

92 integer found = 0

93 repeat while i < T1:GetSize()

94 repeat while j < T2:GetSize()

95 if T2:Get(j):FN = T1:Get(i):FN

96 found = found +1

97 else if T2:Get(j):LN = T1:Get(i):LN

98 found = found +1

99 end

100 end

101 end

102 return found

103 end

104

105 public action FindFFNLNinTeam(Array<Player>) returns integer

106 integer i = 0

107 integer j = 0

108 integer found = 0

109 repeat while i < T:GetSize()

110 repeat while j < T:GetSize()

111 if T:Get(j):FN = T:Get(i):FN

112 found = found +1

113 else if T:Get(j):LN = T:Get(i):LN

114 found = found +1

115 end

116 end

117 end

118 return found

119 end

120

121 public action FindAgebetweenTeams returns integer

71



122 integer i = 0

123 integer j = 0

124 integer found = 0

125 repeat while i < T1:GetSize()

126 repeat while j < T2:GetSize()

127 if T2:Get(j):Age = T1:Get(i):Age

128 found = found +1

129 end

130 end

131 end

132 return found

133 end

134

135 public action FindAgeinTeam(Array<Player>) returns integer

136 integer i = 0

137 integer j = 0

138 integer found = 0

139 repeat while i < T:GetSize()

140 repeat while j < T:GetSize()

141 if T:Get(j):Age = T:Get(i):Age

142 found = found +1

143 end

144 end

145 end

146 return found

147 end

148

149

150 public action FindAgeinTeam(Array<Player>) returns integer

151 integer i = 0

152 integer j = 0

153 integer found = 0

154 repeat while i < T:GetSize()

155 repeat while j < T:GetSize()

156 if T:Get(j):Age = T:Get(i):Age and T:Get(j):FN = T:Get(i):FN

157 found = found +1

158 j = j+1

159 end

160 i = i+1;

161 end

162 end

163 return found

164 end

165

166 end

167

72



168

169 //TASK 4

170

171 Class Base

172

173 integer hp

174 integer dmg

175

176 action do()

177 end

178 action Attack(Base target )

179 target:takeDamage(dmg)

180 end

181

182 action takeDamage(integer damage)

183 hp = hp - damage

184 if hp >= 0

185 kill()

186 end

187 end

188

189 action replnishHP(integer amount)

190 hp = hp + amount

191 end

192

193 action kill ()

194 delete me

195 end

196

197 end

198

199 Class Warior ia Base

200 hp = 150

201 dmg = 10;

202 integer fury = 100

203

204 action do()

205 fury = fury +1

206 end

207

208 action strongAttack

209 if fury > 10

210 target:takeDamage(dmg+10)

211 fury = fury - 10

212 else

213 output "might knight whines like tiny baby men"

73



214 end

215 end

216 end

217

218 Class Mage is Base

219 hp = 70

220 damage = 12

221 integer mana

222

223 action do()

224 mana = mana +1

225 end

226

227

228 action heal (target)

229 if mana > dmg

230 target.replnishHP(dmg)

231 mana = mana - dmg

232 end

233 end

234

235 end

236

237 Action Main

238 for each base

239 do()

240 end

241 end

F.2 Participant #2

1 action gettotal (integer Oranges,integer Bananas,boolean isregular)

returns integer

2 integer total=0

3 total=total+Oranges*5+Bananas*4-5*Oranges/3-10*Bananas/5

4 if isregular = true

5 total=total*0.9

6 end

7 refurn total

8 end

9 output gettotal (3,5,true)

10

11 first name last name age team

74



F.3 Participant #3

1 class Test1

2 integer OrangePrice = 5

3 integer BananaPrice = 4

4

5 action TotalPrice(integer oranges, integer bananas)

6 Output oranges * Orangeprice + bananas * BananaPrice

7 end

8

9 action TotalPriceWithDiscount(integer oranges, integer bananas, boolean

regular)

10 number result = 0

11 repeat while oranges > 3

12 result = result + 10

13 oranges = oranges - 3

14 end

15 result = result + oranges * OrangePrice

16

17 repeat while bananas > 5

18 result = result + 10

19 bananas = bananas - 5

20 end

21 result = result + bananas * BananaPrice

22

23 if regular

24 Output result * 0.9

25 else

26 Output result

27 end

28 end

29 end

30

31 class Test2

32 Array<Player> Team1

33 Array<Player> Team2

34

35 action SameFirstLastNameSameTeam(Array<Player> team) returns boolean

36 integer i = 0

37 repeat while i < team.GetSize()

38 text firstName = team:Get(i):FirstName

39 text lastName = team:Get(i):LastName

40 integer j = 0

41 repeat while j < team.GetSize()

42 if not(j == i) and (firstName == team:Get(i):FirstName or lastName

== team:Get(i):LastName)

75



43 return true

44 end

45 end

46 end

47 return false

48 end

49

50 action SameFirstLastNameDifferentTeams() returns boolean

51 integer i = 0

52 repeat while i < Team1.GetSize()

53 text firstName = Team1:Get(i):FirstName

54 text lastName = Team1:Get(i):LastName

55 integer j = 0

56 repeat while j < Team2.GetSize()

57 if firstName == Team2:Get(i):FirstName or lastName ==

Team2:Get(i):LastName

58 return true

59 end

60 end

61 end

62 return false

63 end

64

65 action SameFirstLastNameSameTeam(Array<Player> team) returns boolean

66 integer i = 0

67 repeat while i < team.GetSize()

68 text firstName = team:Get(i):FirstName

69 integer age = team:Get(i):Age

70 integer j = 0

71 repeat while j < team.GetSize()

72 if not(j == i) and (firstName == team:Get(i):FirstName and age ==

team:Get(i):Age)

73 return true

74 end

75 end

76 end

77 return false

78 end

79 end

80

81 class Player

82 text FirstName

83 text LastName

84 integer Age

85 end

86

76



87 class Character

88 number Health

89

90 action ReplenishHealth(integer amount)

91 Health = Health + amount

92 end

93

94 action Attack(Character target)

95 target:Health = target:Health - 10

96 end

97 end

98

99 class Mage is Character

100 number Mana

101

102 action Fireball(Character target)

103 if Mana >= 10

104 Mana = Mana - 10

105 target:Health = target:Health - 20

106 end

107 end

108

109 action ReplenishMana(integer amoutn)

110 Mana = Mana + amount

111 end

112 end

113

114 class Warrior is Character

115 number Fury

116

117 action Execute(Character target)

118 if Fury >= 25

119 Fury = Fury - 25

120 if target:Health < 30

121 target:Health = 0

122 else

123 target:Health = Target:Health - 10

124 end

125 end

126 end

127

128 action ReplenishFury(integer amount)

129 Fury = Fury + amount

130 end

131 end

132

77



133 class Test4

134 text Text = "Rasmus Moeller Jensen"

135 Array<Text> a = Text:Split("")

136

137 action PrintReverse()

138 integer i = a:GetSize() - 1

139 text Result = ""

140 while i >= 0

141 Result = Result + a:Get(i)

142 i = i + 1

143 end

144 Output Result

145 end

146

147 action PrintAlphabetical()

148 Array<Text> b = a

149 b:Sort()

150 text Result = ""

151 integer i = 0

152 repeat while i < b:GetSize()

153 Result = Result + b:Get(i)

154 i = i + 1

155 end

156 Output Result

157 end

158

159 action FindDuplicates()

160 integer i = 0

161 integer j = 0

162 integer Result = 0

163 Array<Text> AlreadyTested

164

165 repeat while i < a:GetSize()

166 j = 0

167 repeat while j < a:GetSize()

168 if not(i == j) and not(a:Get(i) == " ") and not(a:Get(j) == " ")

and not(AlreadyTested:Contains(a:Get(i))) and a:Get(i) ==

a:Get(j)

169 Result = Result + 1

170 AlreadyTested:Add(a:Get(i))

171 end

172 j = j + 1

173 end

174 i = i + 1

175 end

176 Output Result

78



177 end

178 end

F.4 Participant #4

1 use Libraries.Containers.Array

2

3

4 action CalculatePrice(integar nBananas, number pBananas, integar nOranges,

number pOranges, boolean regular) returns number

5 number totalgroup = ((nBananas / 5) * 10) + ((nOranges / 3) * 10)

6 number rBananasPrice = (nBananas % 5) * 4

7 number rOrangesPrice = (nOranges % 3) * 5

8 number total = totalgroup + rBananasPrice + rOrangesPrice

9 if regular total = total * 0.9

10 return total

11 end

12

13 //each array entry is a string with name, second name

14 action FindSameFirstNames(Array<text> teamone, Array<text> teamtwo)

returns string

15 Array<text> SameNames;

16 integar i = 0

17 integar j = 0

18 repeat while i < teamone:GetSize()

19 repeat while j < teamtwo:GetSize()

20 string pAF = teamone.Get(i).Split(",").Get(0)

21 string pBF = teamtwo.Get(j).Split(",").Get(0)

22 string pAL = teamone.Get(i).Split(",").Get(1).Trim()

23 string pBL = teamtwo.Get(j).Split(",").Get(1).Trim()

24 if(pAL = pBL or pAF = pBF) return players.Get(i) + " : " +

players.Get(j)

25 i = i + 1

26 j = j + 1

27 end

28 end

29 end

30

31 //each array entry is a string with name, second name, age

32 action FindSameFirstNamesAndAge(Array<text> teamone) returns string

33 Array<text> SameNames;

34 integar i = 0

35 repeat while i < teamone:GetSize()

36 integar j = 0

79



37 repeat while j < teamone:GetSize()

38 string pAF = teamone.Get(i).Split(",").Get(0)

39 string pBF = teamone.Get(j).Split(",").Get(0)

40 integar pAA = cast (integar, teamone.Get(i).Split(",").Get(2))

41 integar pBA = cast (integar, teamone.Get(j).Split(",").Get(2))

42 if(pAF = pBF and pAA = pBA) return players.Get(i) + " : " +

players.Get(j)

43 j = j + 1

44 end

45 i = i + 10

46 end

47 end

48

49

50

51 class character

52 public integar hp = 100

53 public integar resourceAmount = 100

54

55 public action Attack(character defender, integar amount)

56 defender:hp = defender:hp - amount

57 end

58

59 public action Recover(integar amount)

60 hp = hp + amount

61 end

62

63 public action RecoverResource(integar amount)

64 resourceAmount = resourceAmount + amount

65 end

66 end

67

68 class mage is character

69

70 public string resourceName = Mana

71

72 public action Fireball(character defender, integar amount)

73 parent:character:Attack(defender,amount)

74 parent:character:resourceAmount = parent:character:resourceAmount - 10

75 end

76

77 end

78

79 class warrior is character

80

81 public string resourceName = Rage

80



82

83 public action Pummel(character defender, integar amount)

84 parent:character:Attack(defender,amount)

85 parent:character:resourceAmount = parent:character:resourceAmount - 20

86 end

87

88 end

89

90 class taxAccountant is character

91

92 public string resourceName = Money

93

94 public action ChargeWithTaxEvation(character defender, integar amount)

95 parent:character:Attack(defender,amount)

96 parent:character:resourceAmount = parent:character:resourceAmount - 50

97 end

98

99 end

100

101 public action ReverseText(text texttotreverse) returns text

102 text out = ""

103 Array<text> characters = texttotreverse:Split("")

104 integar count = character:GetSize() - 1

105 repeat while count >= 0

106 out = out + characters:Get(count)

107 count = count - 1

108 end

109 return out

110 end

111

112 public action SortCharacters(text string)

113 Array<Text> characters = string:Split(""):Sort()

114 integar count = character:GetSize()

115 integar i = 0

116 repeat while i < count

117 output characters:Get(i)

118 i = i + 1

119 end

120 end

121

122 public action FindDuplicates(text string) returns integar

123

124 Array<text> characters = string:Split("")

125 Array<text> foundChar

126

127 integar i = 0

81



128

129 repeat while i < characters:GetSize()

130 integar j = 0

131 repeat while j < characters:GetSize()

132 if characters:Get(i) = characters:Get(j)

133 integar k = 0

134 boolean found = false

135 repeat while k < foundChar:GetSize()

136 if characters:Get(i) = foundChar:Get(k)

137 found = true

138 end

139 if not found

140 foundChar:Add(characters:Get(i)

141

142 j = j + 1

143 end

144 i = i + 1

145 end

146

147 return foundChar:GetSize()

148 end

F.5 Participant #5

1 action Main

2 action calculateFruit(integer banana, integet orange) returns

integer

3 integer orangePrice = 5

4 integer bananaPrice = 4

5

6 return orange*orangePrice + banana*bananaPrice

7 end

8

9 action calculateFruit(integer banana, integet orange, boolean

regular) returns integer

10 integer orangePrice = 5

11 integer bananaPrice = 4

12

13 orangesDiscount = orange/3

14 orangeRemainder = orange mod 3

15 bananaDiscount = banana/5

16 bananaRemainder = banana mod 3

17

82



18 sum = orangeRemainder*orangePrice + orangesDiscount*10 +

bananaRemainder*bananaPrice + bananaDiscount*10

19

20 if regular

21 return sum-sum*0.1

22 else

23 return sum

24 end

25 end

26

27 // firstname,lastnam

28

29 // 0,firstname

30 // 1,lastnam

31 action findPlayers1(Array<text> team) returns Array<text>

32

33 integer i = 0

34 Array<Array<text>> players

35 repeat while i < team:GetSize()

36 Array<text> player = team:Get(i).Split(",")

37 players:Add(player)

38 i = i + 1

39 end

40

41 integer i = 0

42 integer j = 0

43 repeat while i < players:GetSize

44 repeat while j < players:GetSize

45 players:Get(i):Get(0) == players:Get(j):Get()

46

47

48

49 end

50

51 class Warrior is character

52

53 end

54

55 class Mage is character

56

57 end

58

59 class character

60 integer hitPoints

61 public action attack(character c)

62

83



63 character:decreaseHitpoint(200)

64 end

65

66 public decreaseHitpoint(integer amount)

67 hitPoints = hitPoints - amount

68 end

F.6 Participant #6

1 action main

2 integer sum = 0

3 Array <Product> prod = basket:Get()

4 integer count = 0

5 repeat while count<prod:GetSize()

6 sum = sum + prod:GetProd():GetPrise()

7 end

8

9 integer count2 = 0

10

11 repeate while count< prod:GetSize()

12 if (prod:GetProd == ’oranges’ )

13 integer numOfOrn = numOfOrn + 1

14 else

15 integer numOfBan = numOfBan + 1

16 end

17

18 integer tripOrn = numOfOrn / 3

19 integer discountprice = tripOrn * 10

20 integer normalprice = (numOfOrn - tripOrn) * 15

21 integer totalpriceOrn = discountprice + normalprice

22

23 integer fiveBan = numOfBan / 5

24

25 if basket:GetCustomer():IsRegular == true

26 discountprice = price * 0.9

27

28 end

29

30

31 Task 2

32

33 action Main

34

35 Array <Player> team1 = GetTeamPlayers()

84



36 Array <Player> team2 = GetTeamPlayers()

37 team1:Sort()

38 team2:Sort()

39

40

41 integer i = 0

42 repeat while i < team2:GetSize()

43 if team1:GetPlayer(i):GetPlayerFName() = team1:Get(i+1):GetPlayerFName

or team1:Get(i):GetPlayerLName() = team1:Get(i+1):GetPlayerLName

44 output ‘Same team : ’ + team1:Get(i):GetPlayerFName +

team1:Get(i+1).GetPlayerFName

45

46 else if team1:Get(i):GetPlayerFName() = team2:Get(i):GetPlayerFName or

team1:Get(i):GetPlayerLName() = team2:Get(i):GetPlayerLName

47 output "different teams :" + team1:Get(i):GetPlayerFName +

team1:Get(i+1).GetPlayerFName

48

49 else team1:GetPlayer(i):GetPlayerFName() =

team1:Get(i+1):GetPlayerFName or team1:Get(i):GetPlayerAge() =

team1:Get(i+1):GetPlayerAge

50

51 output ’Same team : ’ + team1:Get(i):GetPlayerFName +

team1:Get(i+1).GetPlayerFName + "Same age"

52 end

53 end

54 end

55

56 Task 3

57

58 class StartGame

59 action Main

60

61 end

62 end

63

64 class Hero

65 integer hitpoints = 100

66 integer replRate = 10

67

68 action replanishHealth()

69 output "Health has been replaneshed from " + hitpoints " to " +

hitpoints+replRate

70 end

71

72 action attack(Hero H)

73 end

85



74

75 action replRes

76 end

77 end

78

79 class Warrior is Hero

80 int fury = 100

81

82 action attack( Hero H)

83 integer attackp = hitpoints - 15

84 H:hitpoints = attackp

85 output H + " has been slayen for " + attackp

86 end

87

88 action spattack( Hero H)

89 integer attackp = hitpoints - 17

90 H:hitpoints = attackp

91 integer furyleft = fury - 10

92 fury = furyleft

93 output H + " has been slayen for " + attackp

94 end

95

96 action replRes

97 fury = fury+10

98 end

99

100 end

101

102 class Mage is Hero

103 int mana = 100

104

105 action attack( Hero H)

106 integer attackp = hitpoints - 12

107 H:hitpoints = attackp

108 output H + " has been slayen for " + attackp

109 end

110

111 action spattack( Hero H)

112 integer attackp = hitpoints - 15

113 H:hitpoints = attackp

114 integer manaleft = mana - 10

115 mana = manaleft

116 output H + " has been slayen for " + attackp

117 end

118

119 action replRes

86



120 mana = mana+10

121 end

122 end

123

124 end

F.7 Participant #7

1 //Task 1

2 action Main

3

4 output CalculateTotal(5, 5)

5 //test the method

6 end

7

8 action CalculateTotal(integer numberOfOranges, integer numberOfBananas,

boolean regular) returns number

9 integer banana = 4

10 integer orange = 5

11

12 number currenTotal = 0

13

14 currenTotal = (numberOfOranges mod 3) * orange + (numberOfOranges/3)*10

15 currenTotal = currenTotal + (numberOfBananas mod 5) * banana +

(numberOfBananas/5)*10

16

17 if regular

18 currenTotal = currenTotal*0.9

19 end

20

21 return currenTotal

22 end

23

24 //Task 2

25 use Libraries.Containers.Array

26 action Main

27 Array<player> team1

28 Array<player> team2

29

30

31 end

32

33 action SameTeamNames(Array<player> team) returns Array<player>

34 Array<player> returnArray

87



35 integer i = 0

36 integer j = 1

37

38 repeat while i < team:GetSize()

39 repeat while j < team:GetSize()

40 if team:Get(i):FirstName() = team:Get(j):FirstName() or

team:Get(i):LastName() = team:Get(j):LastName()

41 returnArray.Add(team:Get(i))

42 returnArray.Add(team:Get(j))

43 end

44 j = j+1

45 end

46 i = i + 1

47 j = i+1

48 end

49

50 return returnArray

51 end

52

53 action DiffTeamNames(Array<player> team1, Array<player> team2) return

Array<player>

54 Array<player> returnArray

55

56 integer i = 0

57 integer j = 0

58

59 repeat while i < team1:GetSize()

60 repeat while j < team2:GetSize()

61 if team1:Get(i):FirstName() = team2:Get(j):FirstName() or

team1:Get(i):LastName() = team2:Get(j):LastName()

62 returnArray.Add(team1:Get(i))

63 returnArray.Add(team2:Get(j))

64 end

65 j = j+1

66 end

67 i = i + 1

68 j = 0

69 end

70

71 return returnArray

72 end

73

74 action SameTeamAge(Array<player> team) returns Array<player>

75 Array<player> returnArray

76

77 integer i = 0

88



78 integer j = 1

79

80 repeat while i < team:GetSize()

81 repeat while j < team:GetSize()

82 if team:Get(i):FirstName() = team:Get(j):FirstName() and

team:Get(i):Age() = team:Get(j):Age()

83 returnArray.Add(team:Get(i))

84 returnArray.Add(team:Get(j))

85 end

86 j = j+1

87 end

88 i = i + 1

89 j = i+1

90 end

91

92 return returnArray

93 end

94

95 //Task 3

96

97

98 //Task 4

99 action Main

100 text t = "HenrikGeertsen"

101

102 integer i = t:GetSize()-1

103 text out = ""

104 repeat while i > 0

105 out = out + t:GetCharacter(i)

106 i = i - 1

107 end

108 output out

109

110 Array<text> a = t:Split("")

111 a:Sort()

112 i = 0

113 out = ""

114 repeat while i < a:GetSize()

115 out = out + a:Get(i)

116 i = i + 1

117 end

118 output out

119

120 i = 1

121 boolean found = false

122 integer duplicates = 0

89



123 repeat while i < a:GetSize()

124 if (a:Get(i) = a:Get(i-1))

125 found = true

126 else

127 if (found)

128 duplicates = duplicates + 1

129 end

130 found = false

131 end

132 end

133 output duplicates

134 end

F.8 Participant #8

1 use Librarises.Containers.Array

2

3 class fruit

4 number _price = 0;

5

6 public action RaisePrice(number newPrice)

7 me:price = newPrice

8

9 class banana is fruit

10 number _price = 4

11

12 class orange is fruit

13 number _price = 5

14

15 class bananas

16 Array<banana> _bananas

17 public action addBanana()

18 _bananas:add(banana)

19

20 class oranges

21 Array<orange> _oranges

22 public action addOrange()

23 _oranges:add(orange)

24

25 class calculator

26 public action isRegular(bool isRegular, number price) returns number

27 if isRegular = true

28 return price = price * 1.10

29

90



30

31

32 action Main

33 integer i = 0

34 number OTotal = 0

35 number BTotal = 0

36

37 oranges orangesLst

38 bananes bananasLst

39 calculator c

40

41 repeat while not(i = 10)

42 orangeLst:addOrange()

43 bananasLst:addBanana()

44

45 repeat while i < orangeLst:GetSize()

46 Ototal = OTotal + orangeLst:_oranges:Get(i):_price

47 if (i mod 3) == 0

48 0Total = 0Total - 5

49

50 regularPrice = c:isRegular(true, OTotal)

51 normal = c:isRegular(false, 0Total)

52

53 repeat while i < bananasLst:GetSize()

54 Ototal += bananasLst:_bananas:Get(i):_price

55 if (i mod 3) == 0

56 BTotal = BTotal - 10

57

58 repeat while i

59

60

61

62 action Main2

63 int nrPlayers = 11

64

65 Array<text> fullNames1

66 Array<text> fullNames2

67

68 fullNames1:add("martin, fruensgaard, 24")

69 fullNames2:add("Tommy, something, 23")

70

71 int i = 0, j = 0;

72 repeat while i < fullNames1:GetSize()

73 repeat while j < fullNames2:GetSize()

74 Array<text> name1 = fullNames1:Get(i):Split(",")

75 Array<text> name2 = fullNames2:Get(j):Split(",")

91



76

77 if(name1:Get(0) = name2:Get(0) or name1:Get(1) = name2:Get(1))

78 output "BINGo!<3 2 players: " + fullNames1(i) + " and "

fullNames2(j)

79

80

81 int i = 0, j = 0;

82 repeat while i < fullNames1:GetSize()

83 repeat while j < fullNames2:GetSize()

84 Array<text> name1 = fullNames1:Get(i):Split(",")

85 Array<text> name2 = fullNames1:Get(j):Split(",")

86

87 if not(name1 = name2)

88 if(name1:Get(0) = name2:Get(0) or name1:Get(1) = name2:Get(1))

89

90 int i = 0, j = 0;

91 repeat while i < fullNames1:GetSize()

92 repeat while j < fullNames2:GetSize()

93 Array<text> name1 = fullNames1:Get(i):Split(",")

94 Array<text> name2 = fullNames1:Get(j):Split(",")

95

96 if not(name1 = name2)

97 if(name1:Get(0) = name2:Get(0) and name1:Get(2) = name2:Get(2))

92


	Preface
	Introduction
	Problem formulation
	Initial questions


	I Problem Analysis
	Previous work
	Related Work
	Existing evaluation methods
	Performance benchmarks
	Usability Frameworks
	Case & User studies
	Quantitative experiments
	Language-to-language comparisons
	Discount usability evaluation method
	Instant Data Analysis


	II Usability Evaluation Experiment
	Challenges
	Experiment Setup
	C# Tasks
	C# Results
	F# Tasks
	F# Results

	Discussion

	III Evaluation Method
	Introduction
	Experiment Design
	Tasks
	Samples
	Interview

	Experiment Setup
	Participants sample

	Experiment Experiences
	Tasks
	Sample Sheet
	Interview Questions

	Results
	Pilot Test
	Problems categorisation
	Comparison with Quorum's evidence
	Interview Results
	Interview Suggestions

	Discussion
	Threats to validity
	Tasks & Samples


	IV Conclusion
	Conclusion
	Method procedure
	Future works

	V Bibliography
	Bibliography

	VI Appendices
	List of Abbreviations
	Task Sheet
	Sample Sheet
	Interview Questions
	Interview notes
	Participant #1 (Pilot Test)
	Participant #2
	Participant #3
	Participant #4
	Participant #5
	Participant #6
	Participant #7
	Participant #8

	Participant code
	Participant #1
	Participant #2
	Participant #3
	Participant #4
	Participant #5
	Participant #6
	Participant #7
	Participant #8



