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Abstract

Tangible widgets have been used in the context of touch-based games for children, where widgets

represent game avatars that players control with the widget. Due to a lack of prior research in this

field, this thesis investigates problems based on an initial study where children play the game Disney

AppMATes, which uses a scrolling camera. In this game, players control a virtual car using a widget.

In the initial study, it was found that children had a desire to drive on roads. However, roads were

often difficult to drive on because of the view of the scrolling camera. This thesis proposes a range of

solutions to the problems found in the initial study, but focuses on the above-mentioned problem for

which a solution called Road Focus was designed. Through an experiment with 64 participants in ages

5-7, it was found that Road Focus is a significant improvement to the solution used in AppMATes.
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Chapter 1

Introduction

The concept of merging the real world with the virtual world has been of interest for researchers

as early as the mid-1990’s [FIB95]. Tangible user interfaces are broadly concerned with giv-

ing physical form to digital information. Manipulation of these physical objects are used to

interactively engage with computational systems [Ull02].

In essence, it’s the idea of blending physical and virtual artifacts. Researchers have used many

different terms to discuss this area, such as graspable user interfaces [FIB95], natural user

interfaces [WW11], tangible user interfaces [Ish07, BCL12], mimetic interfaces [Juu10] and

tangible widgets [BFTK14]. [HB06] use tangible interaction as an umbrella term. For this

project, we will use the terms tangible interactions and tangible widgets

According to [HB06], in relation to tangible interactions, most frameworks take a structural

approach that systematically map out an abstract design space, but they seldom address the

human interaction experience. However, it is widely agreed that by moving human-computer

interaction from the virtuality of the screen into the physicality of the real world, the design

space is significantly extended and thus enables new and rich forms of interaction [HSU04].

Tangible interactions have in recent years been used in the context of console and tablet games

with commercial products such as Skylanders, Disney AppMATes, LEGO App Brick and Fab-

ulous Beasts. Although the target group for such products primiarly consists of children, many

studies have been conducted on adults [BFTK14, BFTK15, KWRE11, BCL12]. Furthermore,

these studies focus on the affordance differences between using physical widgets on a touch
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screen and using fingers on a touch screen. To our knowledge, there are no studies that focus

on solving the actual problems that occur in current games that use tangible widgets.

For instance, [BFTK14] compare controlling a tablet game with finger touch to controlling it

with tangible widgets. They found that participants preferred using tangible widgets due to

ease of control for most interactions in the game. However, they also found that the widget

could occlude parts of the screen. Although they mention that it would be interesting to

test tangible widgets on children because of their similarity to regular toys, none of the test

participants in the study were children.

When exploring the different tangible widget games commercially available, we found that

AppMATes was the only example where the game world is bigger than what can physically be

displayed on the screen, which resulted in it using a scrolling camera. We find scrolling cameras

interesting and relevant, since they provide more freedom to design virtual worlds bigger than

what can fit on a physical screen. Based on a few internal tests, we found a group of interaction

problems with AppMates, which will be described later. Furthermore, using a scrolling camera

in a tangible widget game has, to our knowledge, not been explored in previous studies.

In order to further investigate the problems found in AppMATes, we conducted initial tests

with children playing the game. These will be described in the next chapter.
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Chapter 2

Initial Observations of Children using

AppMATes

Disney AppMATes is based on the Disney/Pixar movie Cars 2 (see Figure 2.1). In the game,

the player can freely drive around in a top-down view and take on different missions. The game

starts in free roaming, and stays so for the better part of the game, but also has specific tasks

such as collecting objects, racing other cars and playing minigames. The game allows for two

ways to play: with a physical widget, which represents a car, or with touch (with a virtual

representation of the widget controlled with two fingers). For this project, we mainly focus on

the free-roaming interactions where a widget is involved. Through this report we use the words

widget, physical widget and physical car interchangeably.

Figure 2.1: Tangible widgets are used to play Disney AppMATes [Hyb13].

Players control the in-game camera in AppMATes by placing the widget on the screen while

8



touching its conductive parts on the front and side windows. As long as the widget touches the

screen and the fingers touch the windows, the player, and thereby the virtual camera, moves

forward. The movement of the game camera is dependent on the widget’s orientation and the

car’s acceleration. Moving the widget has no influence on the game camera, but is used to

move around freely inside the boundaries of the screen and interact with objects.

In order to understand how children naturally interact with widget-based games in the style

of AppMATes, we conducted an informal test with a group of children. The objective was

to discover potential issues and pitfalls that could be used as a starting point for further

investigation.

2.0.1 Procedure

We let seven children with an average age of 6.4 years (SD = 2.2) and five adults play Disney

AppMATes. All sessions were video recorded for further analysis. The children and their

parents were approached at a local library, whereas the adults consisted of students from various

departments.

Our testing approach was inspired by [DR04, DM02]. They found that, without prompting

the children, it is not guaranteed that the they will actually speak at all. Therefore, we used

intervention and talk-aloud methods to make the children give feedback on their experience.

The talk-aloud approach aims to let the children talk about what they are doing and not

so much what they are thinking (as in think-aloud). We further used it to find out if they

understood what they were doing and what the game expected of them.

Each play session lasted 8-15 minutes. The players were asked to drive around freely for the

majority of the time. When the facilitator deemed that they understood the game to a satisfying

degree, the participants were prompted to try out different aspects of the game, e.g., by asking

them to drive to a specific location or complete an in-game task. The facilitator also asked

them to experiment with the tangible widget, such as lifting it, moving it faster and replacing

it with another widget.
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2.0.2 Common Issues Found

During these tests, we found that both children and adults had difficulties with several aspects

of navigation. In parts of the game where they wanted to drive faster, they pushed the widget

forward, resulting in them eventually pushing the physical car to the very edge of the physical

screen, effectively making it difficult to see what was coming in front of or next to them in the

virtual world. This often caused them to collide with objects in the environment which they

otherwise would have avoided. Even when they seemed to realize pushing the car didn’t make

it go faster, both groups still kept doing it.

We also found that when players rotated the car, they often lost their grip of the widget and

accidentally let go of its conductive parts. This caused the widget to lose connection and the

car would stop, thereby frustrating the players. Furthermore, rotating the car caused problems

with the physical limitations of their hand: their hand and arm occluded the screen, and

awkward positions forced them to temporarily let go of the widget.

As the game tries to map the widget directly to the car in terms of size, in scenarios where the

car is driving quickly, the camera can’t zoom out and show what’s coming ahead, resulting in

players having difficulties reacting to obstacles.

A large part of the players in both groups had a desire to follow the in-game roads. Sometimes,

while driving alongside the edge of the screen, they would end up driving a bit skewed towards

the center of the screen compared to the road. This meant they would drive slightly away from

the road, making it gradually less visible. In the end, this would force them off the road. Some

players kept driving off-road, while others lifted the car, thought for a bit, before putting the

car back down next to the road and driving back up on it. In both cases, it seemed to annoy

the players.

Likewise, we saw several times where what seemed like their mental model of the in-game

universe appeared to keep them from doing certain actions. Every player, even the most

energetic, tried to avoid collisions, even though the virtual in-game collision does close to

nothing. However, when the game showed an arrow to indicate where to go, they drove directly

in the direction it was pointing and completely ignored any potential collisions.

On the same note, they almost never lifted the car and placed it somewhere else on the screen
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than where they initially picked it up. And if they did, it was always close to where they lifted

it, and never on top of a wall or obstacle. This became a problem in two instances:

1) To enter a menu, players had to drive to the corresponding spot in the world. When the

menu opened, the widget would occlude it, which generally made the participants remove the

widget from the screen. Nevertheless, when they exited the menu, they would place the car

back into the spot from where they had just lifted it, meaning they would open the menu again.

For some participants, this even happened repeatedly and caused a great deal of confusion.

2) If participants ended up at the edge of the game world, where they couldn’t travel any further,

the game expected them to turn the widget around and drive back. Sometimes they would

have so little “wiggle room” between the edge of the screen and the edge of the game world,

that they had a hard time placing the widget. However, this was only their own perception, as

they could easily just put it directly on, or beyond, the edge of the game world and drive back.

Each participant was shown that lifting and moving the widget did nothing, yet the problems

kept occurring. The game itself even prompted the player to place the widget back on the

middle of the screen when pushing it off the edge (see Figure 2.2). However, we noticed that

many participants simply ignored this.

Many participants felt they didn’t know what they were supposed to do in the game and only

coincidentally encountered activities. We assume this was largely because the participants

couldn’t see very far and therefore had no apparent goal to pursue. The game features a pop-

up map, which every participant could successfully read and understand, but when asked to

drive to a specific spot shown on the map, they had to open the map several times during

their travels to find it. Again, we assume this is because they couldn’t see very far and would

therefore miss out on visual cues in the game world.

When asked about how to accelerate or decelerate, most participants didn’t know how to control

it. This was a trick question, since it isn’t possible to control the acceleration in AppMATes,

aside from lifting the widget (but then the car isn’t technically present in the world anymore).

Some assumed they had to either press the car down harder or push it closer to the edge of

the screen in the direction they wanted it to go. Participants tested it out and realized it did

nothing. In the same regard, we asked them how to stop the car, to which everyone just let go

of the widget and assumed this meant the car had stopped. The fact is, the widget isn’t being

tracked anymore, which means letting go of the widget is the same as lifting it.
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Figure 2.2: If the player moves the widget too close to the screen edge (indicated by two white
squares in the bottom), AppMATes shows a prompt to move it back to the center.

2.0.3 Main Issues Found in AppMATes

For this project, we primarily focus on one found during the initial observations with the

AppMATes game. The defining aspect of widget-based games is the interaction between the

physical and virtual world. As described above, several participants had problems with contin-

uously pushing the physical widget to the physical boundaries of the iPad screen. This was a

major problem, since it prevents them from seeing what is located in front of them or to their

side (because the screen physically cannot display more of the virtual world) and also what

is behind them (because their arm obscures the screen). Furthermore, they need to somehow

consciously re-position the widget in the center of the screen. We decided that the goal of this

project would be to design interaction methods that motivates the children to not position the

widget close to the screen edges. Even Disney seems to acknowledge the problem, as shown in

Figure 2.3.
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Figure 2.3: One of the help menus in AppMATes describes how to hold and place the tangible
widget.
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Chapter 3

Background

In this chapter, we explore areas related to the problems found in the initial observations of

children playing AppMATes. This chapter investigates a potential age group to test our design

with; important aspects of tangible interactions; travel in virtual environments; and virtual

cameras in relation to digital games.

3.1 Choosing an Age Group

To specify the age group to focus on when designing and testing potential solutions, we have

used knowledge gained from the initial tests, as well as research within this area. This will be

described in the following.

Critical transformations occur in the early years of childhood. Even small age differences can

have an impact on the child’s social, sensory-motor and cognitive skills [FB06]. Therefore, it is

important to find an appropriate age group. The recommended age for AppMATes is 4 years

and up 1.

There are different theories on child development stages. Milestones define recognised patterns

of development that children are generally expected to follow (obviously, there will be individual

differences from child to child). One of these is Piaget’s theory about cognitive development

[Hou08]. He proposed that children go through a series of stages in their development in order

to obtain logical, analytical and scientific thinking. Piaget proposed four development stages:

1http://www.amazon.com/Spin-Master-20051780-AppMATes-McQueen/dp/B005GJSRAK/ref=sr_1_1?ie=

UTF8&qid=1461070218&sr=8-1&keywords=appmates
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• The sensory-motor stage (0-2-year olds)

• The preoperational stage (2-7-year olds)

• The concrete operations stage (7-11-year olds)

• The formal operations stage (11-16-year olds)

In the following, the first and last stages will not be described, since we have deemed them

outside the age group for a game like AppMATes.

Preoperational children are characterized as being egocentric, meaning they see the world from

their own perspective and have a hard time experiencing it from someone else’s point of view.

They also tend to only be able to concentrate on one characteristic of an object at a time.

This is important when using interfaces that require navigation: generally, navigation through

hierarchies should be avoided for this age group [Hou08].

Children in the concrete operations stage tend to be better at appreciating someone else’s

perspective. Likewise, they are able to understand hierarchies, which enables them to use a

greater variety of technologies [Hou08].

Younger children have a hard time playing games with rules, even if assisted by adults. However,

by the age of 4, children begin to be able to play small games with simple rules that depend

on chance but not skill or strategy [FB06]. At age 6 or 7, games should still remain simple and

straightforward with only a few rules and not requiring too much skill. When children reach the

concrete operations stage at age 7 or 8, they become more capable of formulating and carrying

out plans, meaning they can enjoy a wider range of games with more sophisticated rules and

themes [FB06].

According to Piaget, most games can be classified into one of four groups (note that he was

talking about non-digital games). These correspond well to the four development stages men-

tioned above: games of practice (age 0-2), symbolic games (age 2-7), rule-governed games (age

7-11) and games of construction (age 11-16) [FB06].

Looking at exploration tasks, where children manipulated objects without being able to see

them, Piaget and Inhelder identified three stages [Pow99]. These are as follows:

• Stage 1: Child engages passively and randomly (3-4 year olds)

• Stage 2: Child is more active in the exploration, but not always systematic (4-6 year olds)
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• Stage 3: Child explores following a systematic, general plan (6-7 year olds)

Based on our initial tests with AppMATes with children aged 3-10, it was clear that children

at age 3-4 were too young to understand the game. They lacked a general sense of direction

and purpose. On the other hand, it was evident that children aged 9-10 quickly became bored

by the game; it was just too simple for them (many noted that their younger siblings might

like it, but that they themselves were too old for a game like this). Taking inspiration from

the theories above, we have chosen the age group of years 5-7. Children these ages seemed to

be engaged in the game world in an active way, which means they want to explore it. They

also understand games with simple rules. It is important that they have reached the state

where they can understand symbolic games, i.e., being able to use objects that can represent

something else than its original function. Even though tangible widgets often strive to look

like what they symbolize (e.g., a car), the child needs to understand that the widget also is a

representation of the player avatar.

3.2 Tangible Interactions

In the following subsections, we will focus on important aspects of tangible interactions and

relate them to AppMATes.

3.2.1 Physical Affordances and Cognitive Load

According to [FIB95], the affordances of physical artifacts are inherently richer than the affor-

dances of virtual artifacts. When talking about graspable user interfaces, key advantages are

mentioned, such as facilitating more direct interactions that make use of keen spatial reasoning

skills.

Similarly, [Che03, Nor13] state that the affordances of real-life physical objects help users to

construct coherent mental models [Cou15]. These models, however, aren’t necessarily appli-

cable to the virtual world. Therefore, it is key that designers understand the affordances and

interactions of both to ensure that they do not cause confusion to the user [Cou15]. The user

might understand the software constraints and feedback, but it may impose a small cognitive

load. Using a physical input device — a tangible widget — with physical constraints matching

(or coming close to) the virtual constraints can remove this load [HPGK94].
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In the case of the AppMATes game, the player can move the widget around the screen, but the

implied benefit of this is that the player actually speeds up or slows down the car. The problem

here is that the camera does not follow this logic, and therefore the player ends up pushing the

widget to the edge of screen and is unable to see what lies ahead.

3.2.2 Coherence Continuum

[KBNR03] introduce the concept degrees of coherence as a means of distinguishing between

different types of tangible user interfaces. The framework consists of the concept of links

between the physical and digital objects. How closely they are linked together is described by

a set of underlying properties. It is proposed that the relationship between physical and digital

objects can be rated along a coherence continuum (see Figure 3.1). Each level represents

the extent to which the linked physical and digital object might be the same thing. For

example, whether the physical and digital objects are seen as one common object that exists

both physically and digitally, or if they are perceived to be separate but temporarily interlinked

objects. The weakest levels in this continuum are deemed to be computational artifacts that

operate as general-purpose tools. The strongest levels are proxy projections, which encompass a

relationship where the digital artifact is seen as a direct representation of some of the properties

of the physical object.

With AppMATes, we perceive the physical car as being closely related to the virtual car. This

became increasingly apparent when test participants let go of the physical car and thought the

virtual car had stopped, when in fact the virtual car doesn’t even exist when the physical car

isn’t touched by the user’s fingers.

Figure 3.1: [KBNR03] proposed a framework to describe the relation between physical and
digital objects.

[HTP+97] found that users perform better when the input device has a generic shape, in contrast

to if the device replicates the shape of the virtual object that is being controlled. However,

[BKLJP04], who use the term physical prop for input devices that replicate virtual objects,
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state that such devices might be beneficial when the application focuses on aspects such as

speed of learning, sense of immersion or user enjoyment.

We are mainly interested in using the widgets as entertainment for children, so the focus will

be on making the game as intuitive and engaging as possible. Precision and task performance

are thus less important for this project.

With Disney AppMATes, it seems like the goal is to reach the right side of the continuum, i.e.,

to make a close link between the physical car and the virtual car. For this project, we have

decided to follow the same goal to let players feel like they are controlling an avatar, which in

this case is Lightning McQueen from the movie Cars.

3.2.3 Expectations

An input device might change multiple quantities (e.g., x, y, size) [HPGK94]. The user’s

perception of the interdependencies and relationships between these quantities should mirror

those of the input device. For instance, users found a 3D tracker more efficient for changing

(x, y, size), because the quantities felt closely related, whilst a mouse felt more efficient for

changing (x, y, greyscale).

Players are unable to control the acceleration of the car in the AppMATes game, but during the

initial test it was observed that they initially believed this can be controlled through the widget

somehow, either by pushing it forward or pressing it down. This lead us to believe that players

categorize acceleration together with rotation and translation. Thus, it would be interesting to

see how to implement acceleration control through the widget — or if acceleration can actually

be separated from the widget, through for example a a GUI button.

3.2.4 Clutching

[HPGK94] mentions that most spatial interfaces incorporate some type ofclutching mechanism,

e.g., a button that tells the system when to track the input device. The car-shaped widget from

AppMATes consists of two clutches: (1) whether it touches the touchscreen and (2) whether

the user is touching the conductive parts of the widget. Both need to be true for the widget to

be tracked.
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From our initial testing, the two clutches should result in different, separate feedback, according

to the expectations of the participants. Participants understood that when they didn’t touch the

widget, the car wouldn’t drive, but thought it was still being tracked. For potential solutions,

it would therefore be relevant to investigate how to minimize these clutching issues.

3.3 Travel in Virtual Environments

As the main problems we found with AppMATes are related to travel, it is relevant to investigate

travel in virtual environments. Much research in this field is specific to applications with six

degrees of freedom, such as in virtual reality. Therefore, we only focus on the more general

research that we believe fit our specific context.

[Bla11] state that one of the most common and fundamental interaction tasks in 3D interfaces

is travel. They define travel in the virtual world as actions that allow the user to control

the position and orientation of the viewpoint through, for instance, translation, rotation, and

velocity control. They also define travel as the motor component of navigation, while wayfinding

is the cognitive component of navigation, which focuses more on the planning and decision-

making about where to go. Since the problems we found in AppMATes are primarily concerned

with positioning the viewpoint, this project focuses on travel and not wayfinding.

[BKLJP04] state that travel is often used in combination with primary tasks, such as picking

up treasures, fighting enemies, or obtaining critical information. Thus, users should not need to

think about how to turn left or move forward, as this might distract them from their primary

tasks. The authors state that this increases the need for usability in travel techniques.

[BKLJP04] present three different types of travel tasks: exploration, search and maneuvering.

In exploration tasks, the user has no explicit goal, and the main purpose of travelling is to

gain information about the space, including the objects and locations that exist within it.

Exploration is therefore typically done in the beginning of an interaction with an environment.

The authors state that interaction techniques that support exploration should allow continuous

and direct control of the viewpoint movement. Furthermore, interaction techniques for this

task should have little cognitive load, so the user can focus on learning about the world. Search

tasks are similar to exploration tasks with the difference that the user has a specific goal in

the form of a target location. Here, people can either make use of naive search, where they

are unaware of the position of the target or the path to it, or primed search, where they have
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knowledge of the target position beforehand. Maneuvering is a subtask of travel that takes

place in a local area where precise movements are essential. Here, it is important that the

viewpoint can be positioned precisely according to the task that needs to be performed. If not,

this might result in users failing to perform the task and becoming frustrated.

In AppMATes, all three types of travel tasks are primarily used as travel tasks. When players

start the game, they can explore by driving around in the world. They can also get search-

based tasks, where they are asked to find certain objects in the world, using an arrow that

indicates the destination. Players can also collect points represented by wheel caps. Children

had a tendency to search for these as soon as they found out that they existed (naive search).

Furthermore, players could enter a race against other cars, where the focus was on maneuvering.

However, most of the time was spent with exploration and naive search tasks. Therefore, these

tasks are also the focus for potential solutions.

To facilitate the completion of the above-mentioned travel tasks, we need travel and interaction

techniques that fit these tasks. Since the context is videogames, it is relevant to investigate how

travel interaction techniques are used in other games. As mentioned before, travel concerns

the control of the virtual viewpoint. The following section investigates how virtual cameras are

used in games.

3.4 Cameras in Games

As videogames become more complex, they tend to include bigger and bigger worlds. Unlike

arcade games that typically display just a single screen, games today have the possibility to show

virtual worlds that are bigger than what can be displayed on one physical screen. Depending

on the game genre, this can be achieved in various ways.

[Ker15] offers an overview of camera systems used throughout the history of digital scrolling

games (commonly referred to as 2D or 2.5D games). Since there is a lack of a vocabulary within

the field of videogame cameras, he decided to make his own terminology in order to create a

foundation that can be used by game designers. More specifically, he describes scrolling or

panning cameras. These refer to any attempt to display a virtual scene that is larger than

what fits on the screen in which players can’t move in the z-axis.

Depending on how the game is designed, the typical goal is to show the player what is located

20



further ahead. By using a scrolling camera, the game designer has control over what the camera

shows and how it should move. A common solution is to have the camera lock on to the player

(referred to as position-locking). This means that the player is always in a fixed position on

the screen. In games with position-locking, the players’ screen position is often locked to the

side of the screen opposite the direction they are travelling (referred to as static-forward-focus).

This way, players can see what is coming ahead and ignore what is behind them. In games

where the player can travel both left and right, position-locking is often implemented using

dual-forward-focus, in which the camera has two separate lock-on positions, depending on the

orientation of the player.

In some cases, the designer might want to give players the possibility of moving their avatar

without moving the camera. Lacking any forward-focusing, this is simply an invisible bounding

box on the screen, referred to as camera window. As long as the players move inside the

bounding box, the camera doesn’t move. When crossing the boundaries, the camera goes into

position-locking.

When the camera moves, it needs to move with a certain speed. With position-locking, if the

camera speed is instantaneous, the camera is always completely fixed on the player. If paired

with, for example, dual-forward-focus, the camera would jump between the camera positions.

Here, it would make more sense to either move the camera to the other position at a fixed speed,

or, for example, make the transition dependent on the character’s movement in that direction.

Likewise, lerp-smoothing could be implemented where the speed of the camera decreases the

closer it gets to its destination. For an alternative smooth transition, it’s worth looking at

physics-smoothing where the lerping is also dependent on the camera’s current velocity, resulting

in a camera that both accelerates and decelerates. Lerp-smoothing and physics-smoothing both

result in good-looking, smooth motion of the camera, but are thereby less responsive and not

necessarily good choices in highly intensive games.

[Ker15] also pinpoints three main challenges when working with scrolling cameras:

• Attention: what the player needs to see (driven by the game designer)

• Interaction: what the player wants to see (driven by the player)

• Comfort: how to reconcile these needs smoothly and comfortable (driven by the systems

reacting to the player)
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In relation to AppMATes, the main problem is that players often are unable see what is in front

of and next to them. Furthermore, there were cases where players weren’t able to see the road

they were driving on due to the camera being placed poorly. Therefore, in many cases players

cannot see what they want and need to see, and they can’t easily make it better, which means

the problem is related to all three challenges.

3.5 Summary

Throughout the different sections in this chapter, we have found knowledge that can support

the design of our future solutions.

The target group for this project has been chosen to be children between the ages 5 and 7.

Since AppMATes is based on the feeling of controlling a toy car, where there is a strong link

between the physical and virtual, the same relationship between the physical and virtual should

be present in our solution. In other words, the aesthetics of feeling like controlling a car should

persist [HLZ04]. To encourage this as much as possible, we will use the same tangible widget

(the Disney AppMATes car) in our solution. Furthermore, our solution should be tested in a

free-roaming environment that imitates the one used in AppMATes with primary travel tasks

that focus on exploration and search. The main purpose of this solution is to solve the problem

of players not being able to see what is located in front of and next to the widget due to it

being too close to screen edges. Other problems described in this chapter, such as clutching and

maneuvering the widget, will be investigated as well. Finally, this solution needs to support

the feeling of controlling a car. This means that the interaction technique must make sense in

the context of a car.
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Chapter 4

Design and Implementation

We chose to build our application from scratch in the Unity game engine. Besides designing and

implementing new camera techniques, we had to implement a basic system to read touch points

and identify the widget. We will describe our implementation in the following. Furthermore,

we also describe each of our interaction techniques. These were designed based on knowledge

gained from Chapter 3, mainly by taking inspiration from the initial observations of children

playing AppMATes. The goal of our tests was to find the best solution to counter the problems

we found with the AppMATes interaction technique. In the end, we will pick the best of our

designs and conduct a more thorough test with it against AppMATes. Throughout the project,

we used the 2015 model of the 12.9” iPad Pro, which has a resolution of 2732x2048 px (264

DPI). Figure 4.1 shows the AppMATes widget on the iPad Pro.

Figure 4.1: We used the 2015 12.9” iPad Pro for this project.
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4.1 Widget Implementation

The following chapter explains how we detected the widget by implementing an algorithm using

C# in Unity.

4.1.1 Disney AppMATes

On the underside of the Disney AppMATes widget are three detection points (see Figure 4.2).

Touching or holding these conductive surfaces and placing the widget on a touchscreen enables

the iPad to register the detection points of the widget as touch points. From these, we calculated

a screen position and orientation of the widget. The detection points on the AppMATes widgets

form a unique isosceles triangle for each AppMATes widget in the AppMATes series. We call

these points the front-, leftleg- and rightleg-point.

Figure 4.2: The underside of the AppMATes widget has three detection points (indicated with
green circles) as well as three lenses that are used to capture light from the screen and project
it out to simulate car headlights.

4.1.2 Measurements

To be able to detect the widget, we first needed to know its measurements. The algorithm

we developed needed the distances and angles between each detection point. Since the iPad is

not able to detect these measurements precisely, we needed to take into account how much the

tablet measurements would potentially deviate from the widget’s actual measurements.

Using Unity’s touch points, we measured the widget using the tablet and noted down the min-

imums and maximums for the lengths between the detection points (seen in Table 4.1). These

lengths were used to indicate an acceptable spectrum for identifying the widget. Furthermore,
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Shortest Longest Difference Mean
Front-to-Leg Length 1.96 2.28 0.32 2.12
Leg-to-Leg Length 1.09 1.37 0.28 1.23

Table 4.1: Lengths in centimeters between detection points on the widget measured using the
tablet. Shortest and longest show the extremes.

we measured the angle differences between the two leg angles and found the biggest difference

they could have was 13. We noted that as the angle confidence threshold.

4.1.3 Detection

To detect movement and orientation of the widget, the algorithm needs to detect the widget

in each update frame. Furthermore, because of the design of the AppMATes widget, the user

can accidentally tip the widget, thus losing connection to one or more of the detection points.

Therefore, the algorithm also needs to take into account scenarios in which the tablet can only

detect two of the detection points. The detection of the widget is separated into three phases:

1. Calculate a temporary point, if only two touch points can be seen.

2. Find all isosceles triangles.

3. Find the isosceles triangle that sufficiently matches the widget.

If the iPad registers more than two touch inputs, the algorithm tries to determine whether any

set of three touch points could be the widget. If there’s only two touch input, it checks for the

previous known triangle, if any.

To determine whether a triangle is an isosceles triangle, we check if two of the triangle’s three

angles are approximately the same, by comparing their absolute differences against the con-

fidence threshold of 13 degrees (see Section 4.1.2). For every pair of approximately-identical

angles, the corresponding triangle is copied to a list, and the two points flagged as the legs of

the triangle. This means it’s possible for up to three isosceles triangles to be copied from one

set of three touch points. If no isosceles triangles are found, the algorithm ends and no widget

is detected.

For each triangle found this way, we determine which ones look sufficiently like the triangle of

the widget. The distance between each pair of points is calculated and converted to centimeters,
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using the iPad’s DPI. If all the distances of the triangle fit inside the spectra (as described in

Table 4.1), the triangle is saved. If more than one triangle is saved this way, the triangle

with the smallest sum of absolute differences between its distances and the mean distances (as

described in Table 4.1) is chosen. If no triangle was saved doing this step, the algorithm ends

and no widget is detected.

From this triangle we calculate a screen position and an orientation. The screen position of

the widget is simply the mean position of the three touch inputs that constitute the triangle.

This point approximately corresponds to the center of the widget figurine. The orientation is

the direction vector from the widgets screen position to the frontpoint (see Figure 4.3). These

screen positions and orientations are what will be used to calculate the virtual representation of

the widget in the game. Furthermore, we flag which leg is the left and which is the right. This

information is needed in case the iPad loses connection to one of the touch inputs associated

with the widget.

Figure 4.3: Calculated position and orientation of the widget. Center point indicates the
position.

In the beginning of each update frame, if there are only two touch input registered, and we

found the widget in the previous frame, we check if the two points are considered the same as

two touch inputs previously associated with the widget.

Through the Unity API, each touch input is assigned a unique touch ID when registered. Across

frames, this means it’s possible to keep track of which touch inputs are new and which have

recently moved. Using these IDs, we can see whether the iPad has lost connection to a touch

point associated with the widget.
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From only two touch points, it’s possible to create a temporary third point to calculate a full

triangle. Because there are two possible positions for this calculated point, using the flags of

the two known touch points it’s possible to determine which of the two possible positions is the

correct one.

Unfortunately, the touch points sometimes get mixed up and seem to switch places. This is

most likely due to the close proximity of the touch points. This means tipping the widget or

pushing it slightly over the edge of the screen in some cases creates a wrong representation of

the widget. This results in the car being positioned and oriented incorrectly, as long as there’s

only two touch inputs. We determined this was preferable to completely losing connection to

the widget.

4.2 Interaction Techniques

Throughout the project, interaction techniques have been tested iteratively with qualitative

tests conducted in a similar fashion as the initial AppMATes test (see Chapter 2). 22 children

with an average age of 6.6 years (SD = 1.9) participated in these iterative tests. The children

were recruited at a local library. Furthermore, a few adults have been used for some smaller tests

for minor tweakings. A between-subjects design was used to avoid bias, as we experienced that

children were heavily influenced by the first interaction technique they experienced. Therefore,

each child tried only one interaction technique.

In the following subsections, we explain all of our designs. Each design is backed by an ex-

planatory illustration. Figure 4.4 shows a legend of the icons we use in these illustrations.

Figure 4.4: The following illustrations will make use of these icons.
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4.2.1 AppMATes (Our Implementation)

When we mention the AppMATes solution, we are referring to our implementation of the

camera controls found in the free-roaming sections of Disney AppMATes. As the project is not

a modification of the game, we had to imitate Disney’s solution as accurately as possible. In

AppMATes, the camera does not rotate, and its position is independent of the widgets screen

position. Instead, the virtual widget accelerates and moves the camera in the direction of the

orientation of the widget (see Figures 4.5 and 4.6). This control scheme was used as the basis for

every other proposed solution. Assume that all upcoming solutions build upon this foundation

unless stated otherwise.

Figure 4.5: AppMATes : (1) The game looks at the orientation of the widget, and (2) the
camera then accelerates in this direction.

When working on the AppMATes imitation, certain design restrictions became apparent. The

go-to solution of position-locking, as described in Section 3.4, is not directly applicable. As the

player can freely move the widget anywhere on the screen, the camera can no longer force the

f loat Acce l e r a t i on = 10 ;
f loat MaxSpeed = 15 ;
f loat Speed = 0 ;
. . .
Speed += Acce l e r a t i on ∗Time . deltaTime ;
Speed = Mathf . Min( Speed , MaxSpeed ) ;
Vector3 Ve loc i ty = carTransform . forward ∗ Speed ;
cameraTransform . p o s i t i o n += Ve loc i ty ∗ deltaTime ;

Figure 4.6: AppMATes calculation. Acceleration and MaxSpeed were tweaked until they felt
like the original AppMates game.
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player character to stay in a certain area of the screen. Likewise, applying any smoothing on

the camera movement influences the velocity of the player character. The AppMATes solution

avoids these complications by moving the camera according to the speed of the player character

and the widget’s orientation. By doing this, the widget’s position on the screen has no effect

on the camera movement.

4.2.2 Ground Dragging

This interaction technique comes close to the AppMATes solution, with the exception that the

camera can be further manipulated by dragging the widget. Dragging the widget on the screen

moves the camera in the opposite direction at the same speed, effectively making the car stay

in place in the virtual world. This can be used for “dragging the ground”, like one would drag

the map in, for example, Google Maps. Likewise, lifting and repositioning the widget avoids

this. This means players can use the widget to orient themselves. The idea is that by dragging

the widget, it is possible to move the camera around and explore the environment more (see

Figure 4.7). This interaction technique was also partly inspired by [BKLJP04], who proposed

a technique called Grabbing the Air, in which the user grabs and drags the viewpoint to a new

location.

Figure 4.7: Ground Dragging : (1) If the widget is not moved, it acts like AppMATes. (2) By
dragging the physical widget, (3) the camera is moved in the opposite direction at the same
speed. This keeps the virtual car in place in the virtual world.

Evaluation of ground dragging

Most of the children had a hard time understanding how to move around. They didn’t seem

to understand the dragging metaphor. Because of this, the children tended to place the car
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at the bottom of the screen without moving it around much. When moving the widget, some

children mentioned that it caused the game to look “weird”.

4.2.3 Flip-View

This technique was inspired by older games where it was technically challenging to have a

constantly-moving camera. The solution was to use a static screen that only changed if the

player character moved to the edges of the screen. If they did, everything would pause for a

brief moment while the camera either jumped or slowly panned to the side to reveal a new

location (or screen), hence the original term flip-screen. In essence, the world is divided into a

grid, which the camera flips between. An example of this is the original The Legend of Zelda

for the Nintendo Entertainment System. In Flip-view, when the player moves the widget across

predetermined boundaries close to the edge of the screen, the camera scrolls in that direction

for a fixed distance (see Figure 4.8). As long as the widget stays inside the boundaries, the

camera does not move; hence, the idea is that players can decide if they want to interact with

the objects currently shown on the screen, or if they want to move to a different location. A

related concept was proposed by [Bar00], who describes an interaction technique called Rock

’n Scroll. It uses a button to avoid unintentional scrolling, meaning that it has a clutching

mechanism. In flip-view, the act of moving the widget closer to the screen edge becomes a

clutching mechanism.

Figure 4.8: Flip-View : (1) When the widget is placed inside the boundaries, nothing happens.
(2) If the widget is pushed or placed outside the boundaries, (3) the camera scrolls in the
corresponding direction for a set amount of time.
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Evaluation of Flip-View

Compared to the other interaction techniques, the flip-view technique seemed to be slower and

less appealing for the children. In the beginning, it was quite confusing for them to understand

that they needed to place the widget close to the screen edges, but after a couple of tries

they seemed to grasp how it worked. That being said, it was clear that this method seemed

tedious and unrealistic. Having the car metaphor in mind, this way of moving made little sense

to the children. Furthermore, as opposed to the original usage of it in classical arcade games,

because of the physical widget still being at the edge of the screen after the scrolling, the virtual

widget would effectively have teleported into the new location. This kind of interaction would

have worked better if there was enough to do on a single screen, and if the widget resembled

an omnidirectional vehicle. However, one thing we noticed was that due to the interpolated

movement being a bit slow, children would often impatiently try to drag the widget forward

as if it made the car move faster. This dragging motion revealed a possibly more natural and

intuitive way of interacting with the widget, which inspired the acceleration dragging interaction

technique described further below.

4.2.4 Speed Relative to Screen Center

This interaction technique is based on the relative distance from the center of the screen,

meaning that the further away the widget is positioned from the center, the faster the car

drives, but still in the direction of the widget’s forward direction (see Figure 4.9). This concept

is closely related to an analogue stick on a game controller. Furthermore, this takes inspiration

from Section 3.4 and the lerp-smoothed position-locking, in which the camera is trying to catch

up to the player character. Unlike the other techniques, here it is possible to regulate the

virtual widget’s speed.

We implemented two versions of this: in the first version, the car stopped if the angle between

the forward direction of the widget and the direction vector from the center of the screen to

the widget exceeded 90 degrees. In the second version, the dot product of these two vectors,

clamped to [0-1], was used as an extra scalar on the speed. In both cases, this meant that if

the player placed the widget next to the center of the screen and pointed the widget towards

the center, the car wouldn’t move. The intention of this technique was to give the player more
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control over the speed of the car.

Figure 4.9: Speed Relative to Screen Center : (A1) The game looks at the distance from the
center of the screen to the widget, (A2) and then moves the widget with the corresponding speed
in the direction of the widget’s orientation. (B1) If the angle between the forward direction of
the widget and the vector from the screen center to the widget is above 90 degrees, (B2) the
virtual car does not move.

Evaluation of Speed Relative to Screen Center

Unfortunately, it motivated test participants to position the widget close to the screen edges in

the direction that they wanted to drive. E.g., to drive upwards quickly, one would position the

widget in the top of the screen. This downside was greater than partially solving the problem

of not being able to control the speed of the virtual widget. However, this gave inspiration to

a reverse version in which the car stops if the widget pointed away from the center. This can

be seen in the solution reverse speed relative to screen position.

4.2.5 Reverse Speed Relative to Screen Center

As with the standard version, speed is controlled by the widget’s proximity to the center of the

screen. But instead of stopping when pointing towards the center, the car stops when pointing

away from it. This means that if players want to go upwards, in addition to pointing the widget

upwards, they have to pull the widget downwards. The effect looks a little like projected-focus

described in Section 3.4, but in an inverse form; the player character moves forward because

the camera (relative to the player character) moves forward. The intention is that this lets

players naturally give themselves more visible space in front of them.
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Evaluation of Reverse Speed Relative to Screen Center

This reverse version only partly succeeded. When children seemed to be conscious about how

it worked, they could control the car and stayed away from the edge in the direction the widget

was facing. But as soon as they wanted to drive somewhere visible on the screen, or follow the

road, they forgot about it, moved the widget to where they wanted to go. They were confused

why the car stopped, even though they previously seemed to understand the concept. From

this we started seeing a pattern. Children (and adults) wanted to drive on roads and be able to

instantly move the widget to somewhere visible on the screen. This desire seemed to overwrite

any understanding they had of the control scheme introduced to them, and they intuitively

reverted to how AppMATes is controlled, even though they had never tried that solution and

it didn’t work with the current control scheme.

4.2.6 Acceleration Button

With the AppMATes solution, the majority of participants didn’t intuitively understand that

the two clutches (holding the conductive surfaces and placing the widget on the screen) didn’t

control separate parts. They thought that placing the widget on the screen meant the iPad

could track it, and that touching the conductive surface of the widget made it drive. This

could be seen when asking the participant to stop the car, to which they just let go of the

widget. We had seen with the original AppMATes game: that children could easily use the

horn while driving, by pressing a GUI button located in the lower left corner of the screen.

In an attempt to clearly separate the detection of the widget and the acceleration of the car,

we implemented an acceleration button at the bottom of the screen (see Figure 4.10). Holding

down this button made the car accelerate. The assumption was that this meant the two clutches

would be connected with detection of the widget only in a more obvious way, and players could

easily control the acceleration of the car.

Evaluation of Acceleration Button

Holding down a button to accelerate, separate from the widget, seemed to bring with it much

more cognitive load than anticipated. Children constantly forgot the button and would instinc-

tively lift the widget and let go of the acceleration button in high-pressure situations, instead

of just letting go of the acceleration button. When putting down the car on the screen, they
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Figure 4.10: Acceleration Button: (1) Placing the widget on the screen no longer makes it
drive. (2) Pressing the accelerate button makes the car accelerate and behave like AppMATes.

temporarily forgot about the acceleration button and got confused why the car wasn’t moving,

despite not having tried the AppMATes solution. From this we could conclude that we had to

be aware of multitasking.

4.2.7 Move-Rotation

A common problem we found with AppMATes was the constant need to turn the widget so

much that participants either grabbed the widget awkwardly, the iPad lost connection to the

widget, or participants had to temporarily let go of the widget to reposition their grasps. A

possible way to combat this was a way to rotate the camera, so they didn’t have to rotate the

widget as much.

Taking note from the problems with the acceleration button, the control of the camera rotation

needed to be implemented through the widget. We chose to control the rotation through the

horizontal alignment of the widget. The more horizontally-aligned the widget is, the more it

will rotate in the direction it is pointing (see Figure 4.11). Hence, if the widget points slightly

to the right, the camera rotates slightly clockwise.

Evaluation of Move-Rotation

Move-rotation had many of the same problems as AppMATes and only seemed to positively

impact the amount of times players had to excessively turn the widget. On the negative side,

players seemed to have a harder time orienting themselves and drove more aimlessly. However,

when driving on a curved road, these problems did not occur, and instead players seemed to
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Figure 4.11: Move-Rotation: (1) Rotating the widget, (2) makes the camera rotate accordingly,
as long as the widget is not vertically aligned.

have the same difficulties with staying and orienting the widget on the road as with AppMATes.

They had less difficulties holding the widget because of the decreased need for turning it as

much. This meant the iPad lost connection to the widget less often. In the original AppMATes

game, the creators ostensibly also saw this, as it seems their solution, when driving on a race

track, was a mix between turning the camera to face the same way as the car and having the

camera on rails, both in terms of position and orientation.

4.2.8 Forward Edge Proximity

Taking inspiration from previous attempts with reverse speed relative to screen center, we still

wanted to discourage players from driving too close to the edge of the screen in the direction

the widget was facing. Forward edge proximity slows down the car when the widget approaches

the edge in its forward direction (see Figure 4.12). The intention with this approach is that

it’s slightly more forgiving than the reverse speed relative to screen center solution, since the

area where the car slows down is smaller. Therefore, forward edge proximity might be easier to

adapt to.

Evaluation of Forward Edge Proximity

The results were similar to those with reverse speed relative to screen center. When something

of interest appeared in participants’ field of view, or if they wanted to follow a road, they would

forget about the limitations of the solution, resulting in frustrating scenarios where the car

stopped or slowed down.

35



Figure 4.12: Forward Edge Proximity : (A1) If the car is placed far away from the forward
edge, (A2) it has a high max speed. (B1) Placing or pushing the widget closer to the forward
edge (B2) reduces the max speed of the car accordingly. Pushing it the closest possible to the
forward edge reduces the max speed to 0, making the car stop.

4.2.9 Acceleration Dragging

Inspired by children’s’ apparent predisposition to begin dragging frantically when the car wasn’t

accelerating quickly enough in the direction they wanted to go (as well as the results gathered

from the flip-view solution), we let players control the acceleration of the car through dragging

(see Figure 4.13). Imagine a pull-back toy car where you have to pull back or push forward

the car to make it speed off — except the acceleration would happen while dragging. We

implemented this in two ways: one in which you pull back the car and one in which you push

it forward. The intention with acceleration dragging was to give players a way to control the

speed of the car and see how this control scheme would affect their positioning of the widget on

the screen. We hoped players would quickly push or pull the widget and then lift and reposition

it where they wanted to drive from, preferably close to the center of the screen.

Evaluation of Acceleration Dragging

Pushing the widget forward to accelerate resulted in players slowly pushing the widget forward

(as opposed to the expected push, lift and repositioning) until it slowly hit the edge of the

screen and stopped. Many children had a hard time understanding the pull-back analogy when

pushing the car. However, the pull-back version had better results where players were forced

to move the widget backwards to move forwards (inverse). One child even mentioned that it

felt a bit like using a skateboard where you had to “kick” back a couple of times to get speed
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Figure 4.13: Acceleration Dragging : It works a bit like a pull-back toy. (1) Placing it on the
tablet does not make it move. (2) Dragging it backwards makes the camera accelerate forward.
(3) Lifting and repositioning let’s you move the car without affecting the speed. (4) Dragging
the widget back again applies more acceleration, until it hits max speed.

and then let the car drive for a few seconds before “kicking” it in motion again. That said, as

soon as they stopped dragging and let the car drive, they would still push it forward to the

edge they wanted to go. When they turned the car, they would often momentarily forget that

they needed to pull the widget back to accelerate and not forward, even though it was the only

version they had tried. Furthermore, children seemed to get exhausted with this solution.

4.2.10 Road Focus

A reoccurring problem through many of the proposed solutions was that children and adults

alike seemed to have a predisposition to want to always drive on the roads. Driving on the

roads often meant that the widget would end up in the corners of the screen or with its side

too close to the edge of the screen. This meant that participants often couldn’t see a road that

was turning off-screen, or that they couldn’t even turn down that road. When driving down

the side of the screen on a road, players would rarely align the car properly with the road. This

often resulted in the road slowly going off screen and thereby forcing the player off the road to

their frustration. We chose to try and exploit this apparent predisposition.

With road focus, if the car is driving on a road, the camera slowly drifts towards the car,

depending on how far away from the center of the screen the widget is (faster the further away

it is). The result is that if they drive on a road close to the side edge, the camera will slowly

bring the road closer to the center of the screen (see Figure 4.14). To avoid affecting the speed

of the car, the drifting is only applied along the horizontal axis of the virtual car. This will
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look like the car is drifting to the side a bit, but presumably so little that players won’t notice.

The assumption is that this solution will help keep the widget away from the edge of the screen

— especially the corners.

Figure 4.14: Road Focus : (1) When driving on a road alongside the side edge, (2) the camera
slowly drifts towards the virtual car, pulling the road towards the center. (3) The assumption
is that players themselves will reposition the widget on the road.

Evaluation of Road Focus

As intended, the solution brought the roads closer to the center of the screen. As we expected,

players would follow the road, and, in doing so, would not drive as close to the edges of the

screen as before. In opposition to earlier tests, participants tried the AppMATes solution first,

followed by road focus, to see how noticeable the solution is, since it is so close to the AppMATes

interaction technique. During road focus, when asked if they could feel any differences between

the two controls schemes, participants replied “no”, insinuating the help was invisible. We

could not definitively say at this point that road focus actually helped significantly in these

f loat MaxSpeed = 15 ;
f loat PushAmount = 1 .5 f ;
Vector3 newDir = widgetViewportPos i t ion − viewportCenter ;
newDir = cameraTransform . TransformDirect ion ( newDir ) ;
newDir = Vector3 . ProjectOnPlane ( newDir , Vector3 . up ) ;
newDir −= Vector3 . Pro j e c t ( newDir , carTransform . forward ) ;
newDir ∗= MaxSpeed ∗ deltaTime ∗ PushAmount ;
cameraTransform . p o s i t i o n += newDir ;

Figure 4.15: Road focus calculation. PushAmount was tweaked until it felt right at 1.5.
MaxSpeed was set while making the AppMATes solution.
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scenarios, but nonetheless it warranted further investigation.

4.2.11 Conclusion

The purpose of this project was to find a solution to, or mitigate problems with, the Disney

AppMATes control scheme and its camera controls. These problems ranged from players push-

ing the widget too close to the edge of the screen, to misinterpretations of the clutching of the

widget, to general problems holding and maneuvering the widget. Through an iterative design

process, we’ve implemented and tested nine different proposed solutions.

Through these solutions we have not been able to surpass the intuitiveness of the AppMATes

solution. In all cases, except road focus, move-rotation and acceleration dragging, children were

more naturally-inclined to engage with the game as if it was the AppMATes solution, than the

actual implemented solution, even though they had never tried AppMATes.

To combat the lack of acceleration and speed control, we tried (reverse) speed relative to screen

center, acceleration button and acceleration dragging. The multitasking expected with acceler-

ation button seemed to be too much for the children. From this we could conclude that any

future solutions we implement had to revolve purely around the widget. When children used

speed relative to screen center, they had a hard time grasping the concept. But even that

small bit of understanding was cast aside when they wanted to interact with objects on the

screen or follow the road. Acceleration dragging, as one participant noted, felt like “kicking”

a skateboard into motion. This would give them some control of the acceleration, but every

participant consistently accelerated to maximum speed. We deemed none of these proposed

solutions were good enough for further investigation into whether they could fix the problem

of a lack of acceleration control.

Ground dragging, reverse speed relative to screen center, forward edge proximity, acceleration

dragging and road focus each tried to tackle the problem with the players placing the widget too

close to the screen edges. Reverse speed relative to screen center and forward edge proximity

tried to discourage players by punishing them for driving too close to the edges. This only

caused frustration for the children. Ground dragging tried to make movement of the widget

not translate to movement in the game, in the hope it would discourage players from trying

to make the car go faster by pushing the widget forward; instead, it confused the participants.
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Acceleration dragging introduced a way to control the speed of the car, but it also forced players

to drag the widget backwards for the car to move forwards. Even though players understood

this dragging mechanism, it was still not as intuitive as the AppMATes solution. Post dragging,

the children still pushed the widget forward. With road focus, we stopped trying to solve this

particular proximity problem and instead started looking at the widget’s proximity to the edge

of the screen it was driving alongside. With road focus, we seemed to successfully exploit

players’ desire to drive on roads and keep them from driving alongside the edge of the screen,

while keeping the more intuitive AppMATes controls.

From these findings, we chose to further investigate road focus and test whether it made a

significant change in the widget’s proximity to the edges of the screen, and how else it might

impact the experience.

4.3 Final Design

During the iterative design process, in which we tried to find a suitable solution for one or

more of the discovered problems with AppMATes, we tried to tackle (1) the lack of acceleration

control, (2) losing your grasp on the widget and (3) driving too close to the edges of the screen.

From preliminary tests on each proposed solution, we arrived at the road focus solution.

Road focus was designed to try and mitigate the instances where players place the widget too

close to the screen edges. More specifically, road focus tries to stop the player from driving

alongside the edge of the screen, e.g., with the widget’s side up against the edge.

For road focus to work, we needed roads for the game world. We created a city with a grid-

based road network (see Figure 4.16). In order to imitate the exploration tasks in AppMATes,

the city has been built as a free-roaming environment. Most blocks are filled with buildings

with the intention of making them look non-traversable, while some blocks infer the possibility

of traversal (like an opening in a cluster of trees). We didn’t want to explicitly tell participants

whether they are allowed to — or can — drive off the roads.

In order to imitate the game environment in AppMATes as much as possible, and at the same

time give the children a motivation to play the game, it was important to make the environment

interesting to explore. For this reason, we used 3D assets (e.g., buildings, cars, and trees) with a

colorful and cartoony artstyle. To encourage exploration, many of the city blocks have different,
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Figure 4.16: The city is structured in a grid-like network.

visually-distinguishable buildings, which ensure there is something new to look at when driving

around.

In order to give players a search task (see Section 3.3), and thereby give them a purpose for

driving around, we implemented an objective arrow similar to AppMATes (see Figure 4.17).

The idea was to guide players to different collectable objects. However, we noticed that children

had a tendency to completely ignore driving on the roads with this task. It seemed like the

pointing arrow completely removed their desire to drive in a realistic way, but instead they

just followed it blindly. Therefore, we decided to remove the arrow and place golden coins that

can be collected. This caused the children to drive around more naturally, while still having

something to search for.

Figure 4.17: Initially, the game included a collect mission with a pointing arrow.

To make the environment feel responsive, we implemented various feedback effects, such as

sounds when collecting coins and particle effects for driving on different surfaces. We also

made other cars honk when the player drove close to them. Based on iterative tests, it seemed
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like these effects were entertaining for the children. Furthermore, to encourage a joyful mood,

pleasant background music played during the game.

For the final design, we implemented four levels in the game (see Figure 4.18). The first of

these was a simple tutorial level, created to ensure that we got the most comparable results.

Here, test participants can get used to the controls. This level was a small enclosed area of

grass with a coin in each of the four corners.

Figure 4.18: Four levels were designed for the game.

The city is the main level where we want to compare the AppMATes solution to the Road

Focus solution. Additionally, we want to see if this affection for roads only applied for roads

specifically, or if we could somehow simulate the concept of a road, i.e., with a trail of coins.

We had already seen in our preliminary tests that it also applied to clearings in forests. In

these preliminary tests, children reacted positively to in-game coins, even though they had no

apparent purpose. So we created a level with a road-grid very much the same as in the city, but

made up of 184 coins instead (see Figure 4.19). The visuals were changed to a desert setting

to contrast the city, but with less apparent city blocks (to avoid making the space between the

blocks look like “invisible roads”). As in the city, this level encourages exploration and search

tasks by having visually-distinct areas as well as coins to gather. The assumption was that we

would see the same results in the off road desert level as in the city level.

Although the focus of this project is to make a solution to AppMATes for a free-roaming en-

vironment with exploration and searching tasks, we also wanted to see if Road Focus had a

measurable impact on a closed environment with maneuvering tasks (see Section 3.3). There-
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Figure 4.19: Desert world with trails of coins.

fore, we implemented a simple race track with curved roads and added other cars to it (see

Figure 4.20). To make the situation feel urgent, fast-paced music is playing, while an animated

stopwatch icon is shown in the top of the screen to induce the feeling of pressure. We had

previously seen with the AppMATes game that, especially in the race, players would push the

widget too much forward and would have a hard time following the road. The assumption was

that Road Focus would help players stay on the road.

Figure 4.20: The race track provides an incentive to drive quickly.
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Chapter 5

Experiment

This chapter describes how we tested and evaluated the Road Focus solution that we devel-

oped. We compare it against the default solution found in Disney AppMATes. We are mainly

interested in reducing the distance from the widget to the edges of the iPad screen. Specifically,

we have two types of edges: forward edges and side edges. These are illustrated in Figure 5.1.

Figure 5.1: (A1+A2) Edge in the forward direction of the widget. (B1+B2) Edges in the side
direction of the widget. Note that we only log the closest one of the two side edges.

5.1 Hypotheses

Based on the preliminary tests, we hypothesized that Road Focus will cause players to place

the tangible widget further away from the iPad screen edges. The following are the hypotheses

that we look into.

• HA1 Test participants’ average distance to the forward edges when using Road Focus
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is greater than when using AppMATes.

• HA2 Test participants’ average distance to the side edges when using Road Focus is

greater than when using AppMATes.

• HA3 Test participants’ frequency of getting 5 cm or closer to the forward edges when

using Road Focus is smaller than when using AppMATes.

• HA4 Test participants’ frequency of getting 5 cm or closer to the side edges when using

Road Focus is smaller than when using AppMATes.

• HA5 Test participants drive more on roads when using Road Focus than with AppMATes.

• HA6 Test participants have fewer occurrences where they drive off-center on a road while

being 5 cm or closer to edges of the screen when using Road Focus than when using

AppMATes.

5.2 Procedure & Levels

In order to compare our Road Focus solution with AppMATes, we implemented a game that,

to our best effort, resembles the interactions found in AppMATes. Each of the levels that were

created lasted for a specific time duration (except for the tutorial, where participants had to

collect four coins to continue). The city and off road levels lasted 120 seconds each, while the

race level lasted 90 seconds due to its simplicity. When the time ran out, the game would

proceed to the next level. Data is logged for all levels except for the tutorial. The order of the

levels was randomized. Each participant was randomly assigned an ID number. Based on this

number, participants played with either Road Focus or AppMATes.

5.3 Test Participants

In order to recruit test participants, we made contact with four Danish schools and one kinder-

garten. We created a colorful poster to provide information about the experiment (see Figure

5.3). In total, we were able to recruit 64 children (37 boys and 27 girls), with an average age

of 6.1 years (SD = 0.5). Children and their parents were notified beforehand and had to sign

a consent form to participate in the experiment.
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Figure 5.2: Participants tried all four levels. The order was randomly selected (except the
tutorial) to avoid potential bias. Note: the tutorial level has been scaled up for the sake of
clarity; in reality, it was about four times smaller than the other levels.

5.4 Test Setup

Test participants were placed at a table with an iPad Pro (see Figure 5.4). A facilitator sat

next to the test participant with a clear view of the iPad screen and the test participant. The

facilitator followed a short manuscript to provide instructions on how to play the game. A

notetaker sat behind the test participant (as far back as possible to minimize distractions),

while still being able to see what went on in the game. Two cameras recorded footage of the

test: one focusing on the iPad screen and the other on the children’s facial expressions.

5.4.1 Logged Data

While playing the game, various kinds of data were logged as comma-separated values. Data was

logged five times a second. Disregarding the tutorial level, this gave (120∗5)+(120∗5)+(90∗5) =

1650 number of samples per participant. The following data was logged:
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Figure 5.3: We went out to various schools with a colorful poster. We asked teachers to send
it to parents via their intranet as well.

Figure 5.4: The test setup at two different schools.
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• Participant ID.

• Time stamp (total seconds).

• Interaction style: AppMATes or Road Focus.

• Whether the tablet has detected the widget or not.

• Number of touch points (between 0 and 3).

• Current phase (tutorial, city, off road, race).

• Widget position X and Y in viewspace (between 0 and 1).

• If any road is currently visible on the screen (in the off road level, coins are used instead).

• If the player is currently driving on a road — and if so, what type of road (straight or

corner/intersection). In off road level, coins define an invisible road.

• Road orientation of the current road (horizontal or vertical).

• Distance to the middle of the road the player is currently driving on, if any.

• Angle between the car’s forward direction and the orientation of the road the player is

driving on, if any (i.e. between 0 and 90).

• Distance to the current forward screen edge in centimeters.

• Distance to the closest current side edge in centimeters.

• Current forward screen edge (up, right, down, left).

• Angle between the widget’s forward direction and a vector from the widget to the closest

corner of the screen

5.5 Results

In the following, we present our results from the 64 test participants. Based on the hypotheses

mentioned in Section 5.1, we wanted to examine if there are any significant differences between

AppMATes and Road Focus. We did this using Mann-Whitney U tests, which yielded a group

of p-values. These are displayed in Table 5.1.

5.5.1 Distance to Forward Edges and Side Edges (Centimeters)

We calculated the average distances to the forward and closest side edge for each test partici-

pant. The data was calculated as both an average for all of the phases, as well as each of the

individual phases. The median forward edge distance (all phases) for AppMATes was 8.35 cm

(M = 8.54, SD = 0.97) and 8.17 cm (M = 8.02, SD = 0.80) for Road Focus. The median side
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Table 5.1: P-values calculated by comparing AppMATes and Road Focus using a Mann-Whitney
U test with alpha = 0.05. Left-tailed = AppMATes > Road Focus ; right-tailed = Road Focus
> AppMATes.

Average Distance (right-tailed) All Phases City Off Road Race
P-values of Forward Edge 0.9472 0.9964 0.9964 0.9712

P-values of Side Edge 2.4947e-09 1.6286e-04 1.0590e-04 1.8060e-04

Crossing 5 cm Threshold (left-tailed) All Phases City Off Road Race
P-Values of Forward Edge 0.2102 0.8490 0.8616 0.6664

P-values of Side Edge 1.3569e-08 0.0155 0.0071 0.0031

Driving on Roads (right-tailed) All Phases City Off Road Race
P-values of Frequency 0.7719 0.3485 0.9059 0.0452

Off-Center Problems (left-tailed) All Phases City Off Road Race
P-values of Frequency N/A 0.0519 0.0191 N/A

edge distance (all phases) for AppMATes was 7.00 cm (M = 7.00, SD = 0.63) and 8.20 cm

(M = 8.20, SD = 0.54) for Road Focus. This data is shown as boxplots in Figures 5.5 and 5.6.

It turns out that there is no significant difference when it comes to the forward edge distances

(p > 0.05), meaning H01 cannot be rejected. However, looking at the side edge distances

(p < 0.05), we can reject H02. As the Road Focus method tries to align the current road

with the car’s horizontal direction, this makes sense. Because it does not take into account the

forward direction of the car, but only the horizontal directions, it only has a significant impact

on the side edge distances.

Figure 5.5: Boxplot showing the average distance to the forward edge — all phases (higher is
better).
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Figure 5.6: Boxplot showing the average distance to the side edge — all phases (higher is
better).

5.5.2 Side and Forward Edge Threshold of 5 Centimeters

We set a boundary threshold of 5 centimeters, meaning that if the widget was closer than 5 cm

to the edge, we logged and summed it for each participant. We deemed being closer than 5 cm

to the edge of the screen was problematic. Therefore, we wanted to see if Road Focus resulted

in fewer of these problems.

For the forward edge problems, the median sum of occurrences for AppMATes was 452 (M =

438.0, SD = 153.03), while for Road Focus it was 395 (M = 410.30, SD = 154.91). There

appears to be no significant differences, so we fail to reject H03. Looking at the side edge

problems, the median sum of occurrences for AppMATes was 492 (M = 505.67, SD = 140.87),

while for Road Focus it was 266 (M = 269.20, SD = 105.06) (or approx. 16% of the samples).

The p-values here show that there is a significant difference (p < 0.05), so we can reject H04.

This naturally follows the results mentioned in Section 5.5.1.

5.5.3 Time Spent Driving On Roads

We were interested in seeing if Road Focus made the participants drive more on the roads

than with AppMATes. For each test participant, we counted how often they were driving on

a road in each of the phases. It turns out that there is no significant difference in most of the

phases. Only in the race is there a significant difference (p < 0.05). In the racing phase, the
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Figure 5.7: Boxplot showing number of occurrences where distance to forward edge is below 5
cm - all phases (lower is better).

Figure 5.8: Boxplot showing number of occurrences where distance to side edge is below 5 cm
- all phases (lower is better)
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median frequency of driving on the road is 424.50 (M = 420.94, SD = 25.39) for AppMATes,

and 437.00 (M = 432.43, SD = 17.40) for Road Focus. Its corresponding boxplot is shown in

Figure 5.9. This means that we fail to reject H05 for all other phases than the race phase. We

believe that the reason for this difference in the race phase might be due to situations where

the road becomes difficult to follow with AppMATes. If a participant drives close to the the

road edges and screen edges, there is a possibility the camera will force the player off the road.

Instead of trying to get back on the road, many children “cheated” and drove to a different

part of the race track. Doing so meant that participants drove off the race track for a short

while, hence why they are are driving less on the road with AppMATes than Road Focus.

Figure 5.9: Boxplot showing the frequency of how often participants drove on the road in the
race phase (each race lasted 90 seconds = 450 samples in total).

5.5.4 Off-Center Road Problems

One problem that often occurred with AppMATes was that players drove close on the edge of

a road. If this happens while they were close to a side edge of the screen, it could make it

difficult to follow the road, since the road might drift further and further away from the visible

screen. To spot these issues, we looked at instances where players are 1) driving on a road,

2) driving more than 3 in-game meters from the center of the road (almost at the edge of the

road) and 3) driving within the 5 cm side edge threshold of the screen. These problems are

shown in Figures 5.10 and 5.11 (note: for practical reasons it was not possible to do this check

for the racing level). In the city phase, the median frequency of this problem happening was

5.00 (M = 6.65, SD = 6.46) for AppMATes and 3.00 (M = 4.19, SD = 3.89) for Road Focus.
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In the off road phase, the median frequency for AppMATes was 7.50 (M = 9.19, SD = 7.23)

and 4.50 (M = 5.44SD = 4.46) for Road Focus.

Looking at the p-values, we can see that there is a significant difference in the off road phase

(p < 0.05), while there is a near-significant difference for the city phase with Road Focus

(p = 0.0519). This means we can reject H06. This aligns with what we expected: that players

tend to drive less along the edges of the screen with road focus.

Figure 5.10: Boxplot showing problems with being off-center on a road and off-center of the
screen at the same time - city road phase (lower is better).

Figure 5.11: Boxplot showing problems with being off-center on a road and off-center of the
screen at the same time - off road phase (lower is better).
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Chapter 6

Discussion and Conclusion

Developing digital games with tangible widgets presents unique challenges, because both de-

signers and players have to think in two different “worlds”, namely the physical and the virtual.

Both include their own sorts of affordances and constraints. Looking at AppMATes, we saw

issues where children would push the widget too close to the screen edges. With this project,

we have iterated on many different interaction techniques to counter this problem. During our

evaluations, we found most of them to have drawbacks, either related to how intuitive they

were to use, or how much cognitive load they required from the children. We also learned that

the metaphor for the interaction technique is important. In this particular case, it was vital

that the widget felt like a car and that the controls mirrored this.

We can relate the fundamental dilemma in this project to the camera challenges described in

Section 3.4. We saw that children had a desire to drive on the roads, and we, as the designers,

were interested in them driving in the center of the screen. The challenge was to develop a

system that smoothly and comfortably met both of these needs. In the end, we decided to go

with a similar approach as AppMATes, but added a small tweak on top of it in the form of

Road Focus.

We can conclude that Road Focus was successful in what it was built for. Even though we can

see that participants didn’t drive more or less on the roads in the city, the participants drove less

alongside the screen edges. A problem that often occurred with the AppMATes solution was

that the participants found themselves alongside the edge of the screen on a road, from which

they were slowly driving off. This scenario has also been significantly decreased with Road
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Focus. The effect of this can, in particular, be seen in the race track level where participants

stayed significantly more on the road than with the AppMATes solution. However, it didn’t

help in decreasing the distance to the forward edge.

We learned that it is important to observe and look at how players naturally behave in a game.

Instead of forcing them into undesirable behaviours, we should strive towards utilizing their

natural ways of playing said game. In the case of them pushing the widget too close to the screen

edges, we could have prompted them with some kind of external GUI element to instruct them

to stop doing that. However, we instead chose to exploit their intrinsic motivation to follow the

roads. Road Focus doesn’t force, reward or punish players into driving further away from the

edge, but instead nudges them in an unobtrusive way that follows their natural predisposition.
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Chapter 7

Future Work

If we were to take this project further, there are several aspects we could look into. For example,

we could spend more time on analyzing the behaviours recorded in the video footage in both

the initial tests as well as the final test. Due to time constraints, we were unable to perform

an in-depth video analysis of all footage. This meant that we knew most about the symptom

(driving close to screen edges) and not so much the causes for this. It might be possible to get

a deeper understanding of why the children actually tend to drive so close to the edges. Also,

our initial tests consisted of about 20 participants across different ages. This meant that we

only had the chance to test each of nine interaction techniques with a few participants. Having

a larger sample size in the initial tests might have revealed useful information that could be

used for further designs. In our final tests, participants spent about five minutes each. We do

not know if the desire to drive along roads (as well as collecting coins) will persist over longer

play sessions, e.g., 10, 30 or 60 minutes.

If the children did indeed push the widget close to the edges in order to drive faster, we could

look into what would happen if we actually let them drive faster by doing this. Building on

this, we could investigate which desire is the most prevalent: driving fast or driving along roads.
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