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Synopsis:

Tra�c accidents involving pedestrians are

a very serious matter as it has one of

the highest risks to end with fatalities.

Therefore, a program is needed to help

detect pedestrians in a tra�c scenario. In

addition the system will be designed to be

able to handle the most common occlusion

problem, which is the lower part of the

body and is therefore designed as an upper

body detector.

The proposed upper body detector in this

project is a CNN based system with three

CNNs in a cascade. This is done in order to

not only have a good performance, but also

a system which is computationally lighter

than a single deep CNN for possible real life

scenario use. The cascade consist �rstly of

a very shallow CNN followed by a not as

shallow CNN and lastly a deeper CNN for

�nal predictions.

After the conducted experiments, it is

shown that the performance of this upper

body detector does not perform as well as

a full-sized pedestrian detector. This was

expected as the upper body is a subset of

the full-sized pedestrian, but the results

are bad enough to not be usable in a

real life scenario. For that to happen

further research on this topic is needed

for improving on the feature extraction of

upper bodies.

Simon Mark Thomsen





Preface

This report is written by group 15gr943/16gr1043 on 9th/10th semester at the department

of electronic systems at Aalborg University in cooperation with Professor Robert Laganière

at University of Ottawa, Canada. A thank you will be directed to Professor Laganière for

hosting a stay at his laboratory (VIVA Lab) during this project.

Prior knowledge of basic machine learning is required to reading this report.

Reading Guide

There will through this report appear references to other peoples work, which will be

summarised in a list at the end of the report. These references will be presented with the

last name of the author(s) and the year of the work as [Last name, year]. The references

are placed to give the reader a better sense of what the given reference covers. If the

reference is placed in the text the reference covers the speci�c statement [In, 2016]. If it

is placed at the end of a paragraph it covers the whole paragraph, or if it is placed after

a paragraph it covers multiple paragraphs to a full section. [End, 2016]

[After, 2016]

Figures and tables are numbered according to which chapter they are in, e.g. the �rst

�gure in chapter 4 will have the number 4.1 and the second will be 4.2 and so on. The

descriptive text for �gures and tables will be found underneath the given �gure or table.

Abbreviations

CNN Convolutional Neural Network

Conv Convolutional

ETH Eidgenössische Technische Hochschule (Federal Institute of Technology)

FC Fully Connected

FP False Positive

FPS Frames Per Second

FPPI False Positives Per Image

HOG Histogram of Orientated Gradients

LBP Local Binary Patterns

LDCF locally decorrelated channel features

MR Miss Rate

NN Neural Network

Pool Pooling

ReLU Recti�ed Linear Unit

SVM Support Vector Machine

TP True Positive

VGA Video Graphics Array
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Introduction 1
According to Danmarks Statistik [2016], in the last 24 years the number of private cars

owned has increased to 1.5 times the amount, as shown in Figure 1.1. This translates

to an increase of more than 32.000 more cars each year. As well as this increase in the

number of cars, the amount of tra�c at busy highways and bridges has also increased

1.5 times, in just 20 years [Danmarks Statistik, 2014b]. This leads to the conclusion that

Danes show a tendency of driving their cars more than previously. With this increase in

car usage comes an increased risk of accidents.

Figure 1.1. The number of owned cars in Denmark per annum in thousands [Danmarks Statistik,
2016]

1.1 Problem

Even though the number of tra�c accidents in Denmark, has the previous years, mainly

been falling in number there is still a substantial number of accidents which end in injuries

or even death each year (See Figure 1.2 on the next page). Especially pedestrians are at

high risk when involved in a tra�c accident. Along with vans and motorcycles, pedestrians

have one of the highest risks of a tra�c related accident leading to death. Approximately

one in 12 accidents involving pedestrians is fatal for the pedestrian. [Danmarks Statistik,

2014a]
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1. Introduction

Figure 1.2. Number of people killed in road tra�c accidents in Denmark per annum [Danmarks
Statistik, 2014a]

A way to reduce the number of tra�c related accidents, is to design a system for cars which

assists the driver by increasing awareness of surrounding pedestrian, bicycles, mopeds, and

motorcycles, whilst driving.

There has been a lot of research in the pedestrian detection �eld of computer vision, but

in order to perform well in real life scenarios, the detector has to be robust against all

kinds of poses, occlusion, and rotation.

1.2 Objectives

As of the discussion in the previous section, it has been chosen in this report to present a

pedestrian detector specialised in detecting only the upper body, instead of doing full-sized

pedestrian detection as previous works (explained in the next chapter on page 3). This

is done to overcome any segmentation there might be of the legs of any pedestrians. The

reason behind choosing to only focus on segmentation of the lower body of pedestrians,

is that statistics from the Caltech pedestrian dataset shows, approximately 70% of all

occlusions of pedestrians is on the lower part of the body Dollár et al. [2012].

1.2.1 Delimitation

The work in this project will be focused on designing a pedestrian detector (i.e. upright

standing or walking people) and not a person detector.

1.2.2 Problem Statement

The following problem statement has been set and will be the foundation for the design

of the following work.

How is it possible to design a system for pedestrian detection,

which achieves good performance,

as well as handles segmentation of pedestrians' lower body?
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Previous Works 2
In this chapter, work previously done by other researchers will be described to give the

reader an idea of the research this project builds on. This includes recent works on di�erent

detectors, like pedestrian and face detectors.

There are many ways to do pedestrian detection. Both using classical features, convolution

and neural networks. The work by Yang et al. [2015b] uses classical features, and shows a

way to use prior knowledge of pedestrians in order to improve performance. Traditionally,

Haar-like features are used as a speci�c �lter for a speci�c channel, and does not take

into account any cross channel features or symmetric aspects of pedestrians, there might

be. This work proposes a way to combine Haar features with symmetry and cross-channel

features, to improve performance.

Symmetric features are computed by calculating the di�erence between the two rectangular

�lter responses positioned symmetrically around an axis in a subregion of the pedestrian

(See the subregion in Figure 2.1 (c)). The cross-channel features are calculated the same

way, however, instead of the rectangles being positioned symmetrically around an axis

they have the same position and size, but in a di�erent channel. In Figure 2.1 (b) it is

possible to see the top symmetrical (top) and cross-channel (bottom) features. In this

work feature extraction is done by histogram of orientated gradients (HOG), LUV, local

binary patterns (LBP), and locally decorrelated channel features (LDCF), followed by the

described feature pooling and classi�ed by a decision forest.

Figure 2.1. (a) Heat maps of the top 100 of all, symmetrical, and cross-channel features from
left to right respectively (b) Top 10 symmetrical (top), and cross-channel (bottom)
features (c) The subregions of a pedestrian [Yang et al., 2015b]
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2. Previous Works

Another way to use HOG with supple-

mentary features, is to include depth, as

done by González et al. [2015]. They

incorporate depth by using LIDAR in-

formation to construct a dense depth

map from a point cloud, and use this

map along with HOG and LBP for fea-

ture extraction. Classi�cation is done by

splitting pedestrians into 4 orientations

(90 degrees each) in order to have sep-

arate models for the pedestrian's front,

left, right, and back side. The orienta-

tions are then further spilt into smaller

patches in order to have part speci�c

models for occlusion handling, which

then is classi�ed by using a decision for-

est. Each note in a tree represents one

of the smaller patches and is individually

classi�ed by a support vector machine

(SVM) trained for the speci�c patch.

Their full pipeline can be seen in Fig-

ure 2.2.

Figure 2.2. The pipeline proposed by

González et al. [2015] using

RGB and LIDAR informa-

tion

Zhang et al. [2015] also looks at pedestrian using HOG and Haar-like features, but instead

of coming up with supplementary features, they explore what impact the choice of feature

bank has on performance. They present a pedestrian detector using solely HOG and LUV

for low-level features extraction. From these feature maps, feature pooling is done by

sum-pooling with a set of rectangular regions to construct feature vectors. This set of

rectangular regions is taken from other previous works and �ltered into a set of the best

performing �lters. For classi�cation they use a decision forest, trained with Adaboost,

and the full pipeline of their system can be seen in Figure 2.3.

Figure 2.3. The pipeline of Filtered
Channel Features pedestrian
detector [Zhang et al., 2015]

Figure 2.4. Examples of �lters from
Filtered Channel Features
[Zhang et al., 2015]

Their work successfully links the previously used independent �lter banks together in a

uni�ed system by doing intensive testing of combination of these �lter banks, as well as

testing di�erent sizes of �lter banks to �nd the optimal one. See Figure 2.4 for example

of said �lter banks.
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Benenson et al. [2012] take a di�erent approach to contribute to pedestrian detection.

Rather than trying to improve performance, they instead they look at ways to increase

the speed of state-of-the-art detectors using HOG and LUV features. During their tests,

they �nd that roughly half the computation time is spent on image resizing and generation

of integral images, and that the other half is spent on computing feature responses and

classi�cation scores. To circumvent this wasted time on resizing images, they present a

way to use di�erent sized models (one for each scale). However, this dramatically increases

training time, because each model needs to be trained individually for its speci�c scale.

To solve this they propose a way to, instead of training N models, train N
K , and then at

test time transform these trained models into approximations of models, for all the needed

scales. To see the comparison between the di�erent approaches see Figure 2.5.

Figure 2.5. A comparison between the di�erent approaches discussed i Benenson et al. [2012]

Furthermore, they use an approach called stixel world modelling, which uses depth

information to be able to approximate �sticks above the ground�. This allows them to

reduce the search space for their model to this smaller region of the image, and thereby

gain an increase in speed. This stixel world modelling can be seen on Figure 2.6, as well

as detection examples.

Figure 2.6. The stixel world modelling can be seen in the image as the blue and green lines
encapsulating the region of interest, and detections as red boxes [Benenson et al.,
2012]

Instead of using HOG for low-level feature extraction, it is also possible to use

convolutional �lters, which is done by Yang et al. [2015a]. In their work they take the

�rst convolutional layers from a pre-trained convolutional neural network (CNN) and uses

these for feature extraction. Then they use a decision forest by taking the single pixel

values outputted from the convolutional �lters as features for the trees. The convolutional

layer model they use can be seen in Figure 2.7 on the next page.

Another way of designing a pedestrian detector is to use CNNs for both feature extraction

and classi�cation. CNNs come in many shapes and sizes like the proposal from Angelova

et al. [2015], which contains multiple architectures. They have proposed a pedestrian

detector as a cascade classi�er based on AlexNet [Krizhevsky et al., 2012]. Because of
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2. Previous Works

Input
224x224

D3

Conv
3x3 S1
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Conv
3x3 S1
D128 P1

Pool
2x2 S2

Conv
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Conv
3x3 S1
D256 P1

Pool
2x2 S2

Conv
3x3 S1
D512 P1

Conv
3x3 S1
D512 P1

Conv
3x3 S1
D512 P1

Pool
2x2 S2

Figure 2.7. The convolutional layers used for feature extraction done by Yang et al. [2015a]

AlexNet's big size and computational complexity, this network is very slow. To make up

for this, this work used it at the end of a cascade to speed up the detection speed of the

otherwise slow deep CNN to real-time, as a lot of patches get rejected in the early stages.

Their network is a three staged cascade, consisting of three networks, from which, the two

last are CNNs. The �rst network is very fast Adaboost approach, using HOG, LUV, and

decision trees. This �rst network is originally created as a full pedestrian detector, but in

order to keep a good recall after �rst network, Angelova et al. [2015] reduced the amount

of stages in the cascade to only 10% of the original number.

After this fast proposal network, they feed the output into the �rst medium seized CNN

(The second network in the cascade), which can be seen on the top of Figure 2.8, to further

reduce the amount of windows. This is followed by the AlexNet inspired last CNN, which

is a deep network for the �nal classi�cation and can be seen on the bottom of Figure 2.8.

Figure 2.8. The second (top) and third (bottom) network in the Angelova et al. [2015] cascade

Instead of striding towards real-time application, Tian et al. [2015] work to improve

performance by including semantics task in their CNN. Their proposal to improve

pedestrian detection is to handle the problem of using a single binary classi�er for all

pedestrians, and instead jointly optimise pedestrian detection with semantic tasks. This

is done by assigning attributes to both the pedestrians and the scene. Examples of these

attributes are 'backpack', 'gender', and 'dark-trousers' for pedestrians and 'vehicle' and

'tree' for the background (See Figure 2.9 on the next page for (a) data generation and

(b) network structure). This increases the network's ability to handle these complex

pedestrian variations, because it does not need features that cover the full variance of

pedestrians in one.

Like this approach, Li et al. [2015] used a similar approach, though instead of splitting

pedestrians by attributes, their work presents a way to handle features of pedestrians being

dramatically changed from high resolution to low resolution. To di�erentiate between low

and high resolution pedestrians, a small-sized and a large-sized sub-network is integrated

into the network, as seen in Figure 2.10 on the facing page.

Their network consists of shared convolutional layers for early feature extraction. After
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Figure 2.9. The pipeline from Tian et al. [2015] showing (a) the data generation for for training
the detector and (b) the full structure for their network

Figure 2.10. The pipeline from Li et al. [2015] showing the network and the gate function to
adjust the weights for each sub-network

that, the output is fed into two sub-networks, which each computes class scores and

bounding box prediction. The class scores and bounding box predictions are then weighted

according to a gate function, looking at the height of the candidate window to output a

�nal prediction.

A di�erent approach to pedestrian detection is used by Ouyang and Wang [2013]. Here

a joint deep learning approach is taken. This is done by making a network which

jointly learns feature extraction, part deformation handling, occlusion handling, and

classi�cation. Their network can be seen in Figure 2.11 on the next page.

Part detection is done after a global feature extraction, which is a standard convolutional

layer. But since di�erent parts of pedestrians have di�erent sizes, variable sized �lters are

used for each part. The parts are put into three levels with level one being for small parts,

level two for medium parts, and level three for large parts. Each part in level two and

three consist of a combination of parts from a lower level. The total number of parts ends

up at 20 and can be seen in Figure 2.12 on the following page.

7



2. Previous Works

Figure 2.11. The pipeline proposed in Ouyang and Wang [2013] showing the di�erent layers

Figure 2.12. The parts used in Ouyang
and Wang [2013] at its re-
spective level

Figure 2.13. The model for visibility rea-
soning and detection la-
bel estimation [Ouyang and
Wang, 2013]

A deformation layer is then added to individually calculate part scores from the prior part

detection maps by comparing it with learn deformation maps for each part. The part

scores are then given to a visibility reasoning layer, which forwards scores of lower level

parts to the higher level parts, of which they are a part of, to output a �nal class score as

seen on Figure 2.13.

For the purpose of looking into architectures, which are not pedestrian detectors to attain

knowledge of other fast CNN structures the work from Lit et al. [2015], which resembles

Angelova et al. [2015] cascade structure, is looked at. They have proposed a cascade of

CNNs for face detection. This is again done in order to have a high performance by using

CNNs and still keep the network computationally light, by using them in a cascade by

quickly rejecting background regions, which are easily classi�ed as background by shallow

classi�ers. The more challenging background patches will then be evaluated in the later

and deeper CNNs at the end of the cascade. The cascade's classi�cation networks can be

8



seen in Figure 2.14.

Figure 2.14. The classi�cation networks proposed in Lit et al. [2015]

In addition to the classi�cation CNNs the paper also proposes to use CNN for calibration

of the detection windows, to get a more precise detection, which can be seen in Figure 2.15.

This is done by training the CNN with 45 classes, which each represent a scaling and/or

a translation of the ground truth detection window, and thereby be able to predict the

correct position of a detection window.

Figure 2.15. The calibrations networks proposed by Lit et al. [2015]

As seen in Figure 2.14 and 2.15, this paper's cascade consist of three CNNs for classi�cation

and three CNNs for calibration. The structure of the cascade is that a classi�cation

network is followed by a calibration network so that the input to the next deeper

classi�cation network is more precisely placed detections, and can be seen in Figure 2.16

on the next page.
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Figure 2.16. The full pipeline from Lit et al. [2015]

10



Theory 3
In this chapter CNNs and ways to optimise a CNN during training, which improves speed

and performance will be described to give an idea of the contribution of these schemes.

3.1 Convolutional Neural Network

CNNs is a specialized neural network (NN). The reason not to use a regular NN is because

NN does not scale well. E.g. take an image with a size of 3x32x32 (3 colour channels, 32

pixels wide, 32 pixels high) A neuron in a NN would have 3 · 32 · 32 = 3072 weights. For

an image with the size 3x256x256 a neuron would have 3 · 256 · 256 = 196, 608 weights.

This number then needs to be multiplied with the number of neurons, which will lead to

over�tting.

CNNs take advantage of the fact that the input consists of an image and by knowing that

the neurons are arranged in three dimensions (width, height and depth) and by making

the neurons in each layer connect only to a small region of the layer before it. Though

this is not enough to reduce the amount of parameters to a reasonable level. One way

to dramatically reduce the number of parameters is by making the assumption, that if

one patch's feature is useful to compute at the spatial position (x1,y1), then it should

also be useful to compute in a di�erent position (x2,y2). This means that all the neurons

that share the same depth use the same �lter and this greatly reduces the number of

parameters.

3.1.1 Layer Types

Traditional CNNs consist of a handful of di�erent layers which each have a speci�c role

within the network. Each of these layers will be described in the following section.

Input Layer

The input layer is the �rst layer usually containing an image with raw pixel values, e.g. a

greyscale or RGB image.

11



3. Theory

Convolutional Layer

Following the input layer are a number of convolutional layers which computes the output

neurons from their receptive �eld1 in the previous layer, with a set of learnable �lters,

that will activate when they see speci�c types of features. These �lters are stacked along

the depth dimension to form the output volume.

The convolutional layers have three hyperparameters, which control the size of the output

volume: depth, stride, and zero-padding.

Depth is the number of neurons in the convolutional layer that connects to the same

region of the input volume.

Stride is how much each �lter is moved in the previous layer between each neuron in

the current layer. Low strides leads to heavily overlapping receptive �elds.

Zero-padding is to pad the input volume with zeros on the border to preserve the

spatial size of the input.

The �t of a convolutional layer can be calculated by (3.1)

fit =
W − F + 2P

S
+ 1 (3.1)

W Input volume size

F Receptive �eld size

P Zero-padding

S Strides

If the �t is not an integer, then the kernel does not ��t� across the input volume in a

symmetric way. This means that some pixels might be skipped because that are positioned

outside of what �the �t allows�.

Example:

� Image size: 227x227x3

� Receptive �eld size: 11

� Strides: 4

� Zero-padding: 0

� Convolutional layer depth: 96

227 − 11 + 2 · 0

4
+ 1 = 55 (3.2)

As seen from (3.2) the �t of the convolutional layer will be 55 output neurons.

Activation Function Layer

The activation function layers purpose is to apply an elementwise activation function on

the output from a convolutional layer. Usually activation functions are a type of non-linear

function which could be tanh(x) or max(0, x).
1The receptive �eld of a neuron is the local region to which it is connected

12



3.2. Training CNNs

Pooling Layer

A pooling layer is placed after convolutional layers, which performs a downsampling

operation along the spatial dimensions (width, height), and is typically implemented as

max-pooling, but could be average-pooling or other pooling schemes. The reason for using

a pooling layer, is to reduce the number of parameters, and the complexity by reducing

the amount of neurons. It is common to use a pooling layer with a kernel size of 2x2 and

with a stride of 2.

Fully Connected Layer

After all the convolutional and pooling, the layers fully connected layers are located. Their

purpose is to compute the class scores for the input image and work as a traditional NN.

[Karpathy]

3.2 Training CNNs

Training CNNs is done the same way as a traditional NN. To do this, a loss function will

be needed, which could be de�ned by the negative log likelihood criterion as seen in (3.3).

[Karpathy]

Li = Σ
j
yij log(σ(fj)) + (1 − yij) log(1 − σ(fj)) (3.3)

Li Loss for the ith data

j Class index

yij Labels for the data (1 for positive, 0 for negative)

fj Score vector

Minimised this loss function is desired to make the network as good as possible. This can

be done by using stochastic gradient descent which for a N parameter problem is de�ned

as in (3.4). [Ruder, 2016]

θn = θn − α
d

dθn
L(θ0, . . . , θN ) (3.4)

θj The jth parameter for optimisation

α Learning rate

L(θ0, θ1) Cost function dependent on θ0 and θ1

Furthermore there are many ways to improve upon the training some of which will be

described in the following sections.

3.2.1 Dropout

Dropout [Srivastava et al., 2014] is a training scheme aimed to prevent networks from

over�tting. It is a common problem that large CNNs over�t because of lack of variance in

13



3. Theory

training data. This makes the network adapt too much to the training data which leads

to a fall in testing accuracy because the network becomes too specialised to the speci�c

training data.

Because large CNNs are slow it is not ideal to use multiple di�erent networks and average

their results in the end, which is why dropout is presented. Dropout works by randomly

dropping units (Ignoring them as by setting their output value to zero as seen in Figure

3.1 and 3.2) in the fully connected layers of networks. This makes the network seem

�thinner� and because of the dropping of random units and creates a high number of these

�thinner� networks with units combined multiple ways. It is then simulating having a lot

of small networks which during testing time is combined to one big, unthinned, network

(i.e. model averaging).

Figure 3.1. Fully connected layer without
dropout

Figure 3.2. Fully connected layer with
50% dropout

3.2.2 Random Dropout

Random dropout [Fukui et al., 2015] is an addition to dropout which works in the same way

as dropout but instead of having a �xed dropout percentage (usually 50%) the dropout

percentage changes from epoch to epoch. For example it could be set to vary between 30

and 70% which can be seen in Figure 3.3 and 3.4.

Figure 3.3. Fully connected layer without
random dropout, 30 to 70%,
at epoch n (33% dropout)

Figure 3.4. Fully connected layer without
random dropout, 30 to 70%,
at epoch n+1 (66% dropout)

14



3.2. Training CNNs

3.2.3 Recti�ed Linear Unit Layer

Recti�ed linear unit layer (ReLU-layer) does according to Krizhevsky et al. [2012] improve

the training speed of CNNs by several times compared to hyperbolic tangent. ReLU-layers

are calculated like (3.5) and is illustrated in Figure 3.5.

f(x) = max(0, x) (3.5)

Figure 3.5. ReLU activation function

3.2.4 Positive and Negative Data Ratio

Because it is common to have many times more negative than positive data when training,

the training batches can become very skewed in terms of the ratio between positive and

negative data. For example if batches containing 128 patches are used and the ratio

between positive and negative data is 1:100 respectively, each batch will only contain

about two positive images with a uniform sampling. This will drastically reduce the

detectors ability to distinguish positives from negatives. It is therefore advantageous to

have a �xed ratio between positives and negatives of at least one positive for every three

negatives. [Farfade et al., 2015]
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Design 4
This chapter will �rstly contain a description of the chosen baseline detector followed by a

discussion of how to adapt this detector to upper bodies. Lastly there will be a description

of the design of this project's proposed network for upper body detection, based on the

state-of-the-art in full sized body pedestrian detection and other works with fast deep

networks.

4.1 Baseline

Since this upper body detector should be used instead of a full sized pedestrian detector,

Angelova et al. [2015], as described in section 2 on page 5, is the main reference network

and is reimplemented here to be used for performance comparing.

4.1.1 Cascade and Network Structures

As stated previously Angelova et al. [2015] consists of a cascade with three networks. The

�rst network in the cascade is a reduced version of the network by Benenson et al. [2012]

described in section 2 on page 4. Usually the network contains a 2000 stage decision forest

but as stated in the original paper this number is reduced to 200 to keep a good recall at

this point in the cascade.

The second network in the cascade is a small CNN which can be seen in Figure 4.1. The

third and last network in the network is a deep CNN which has a Alexnet [Krizhevsky

et al., 2012] like structure, and can be seen in Figure 4.2.

Input
16x16
D3

Conv
5x5 S2
D32 P2

Pool
K3x3 S2

P1

Conv
1x1 S1
D32

FC
D512

FC
D2

Figure 4.1. The second network in the Angelova et al. [2015] cascade
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Pool
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Conv
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Pool
K2x2 S2

P0

Conv
3x3

D128 P1

Conv
3x3

D128 P1

Conv
3x3

D256 P1

Pool
K3x3 S2

P1

FC
D4096

FC
D4096

FC
D2

Figure 4.2. The third and last network in the Angelova et al. [2015] cascade
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4.1.2 Results

The results of the reimplemented baseline detector can be seen in Figure 4.3. It is seen

that the performance of this implementation does not perform up to standards with the

original works. This is likely due to improper training and not using the pre-trained

networks which is mentioned in the original works to improve performance.

Figure 4.3. Performance of the baseline detector for full sized pedestrians tested on INRIA
dataset

In order to really see the how upper bodies' performance is compared to full sized

pedestrians detection a baseline detector should reimplemented with state of the art

performance. Since this is not the case, the results of this work should only be taken

as comparison between the curves which is assumed to have the same relationship at a

better performance level.

4.2 Upper Body Adaptation

As stated above it is chosen to base the proposed upper body detector on the work in

Angelova et al. [2015] and in addition to that, base it on the network proposed by Lit et al.

[2015] (See section 2 on page 8), a pedestrian detector and a face detector, respectively,

both with CNN cascades. The reasons behind this is that both of these network runs in

real-time with state-of-the-art performance.

In order to adapt Angelova et al. [2015] to �nd upper bodies, some of the papers' principles

must be changed in order to make it �t the new problem. One of the problems is that the

detection boxes does no longer have the same ratio. State-of-the-art pedestrian detectors

use aspect ratios anywhere from 0.34 to 0.5 [Dollár et al., 2012], a detector for upper

bodies has to be even higher, speci�cally in this project the aspect ratio for upper body

detection is set to 0.8 i.e. four wide to �ve high.

4.2.1 Adaptation Changes

Since of the scope of this project, the �rst Adaboost network is not changed to detect

upper bodies, but used as a full-sized pedestrian detector feeding the output to an upper

body classi�er for some of the test found in chapter 6 on page 29. Furthermore, a new
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4.3. Proposed Network

network is proposed, which is described in section 4.3. This network is a combination of

two paper mentioned in section 4.2 on the facing page.

The second network for the upper body adapted cascade can be seen in Figure 4.4 which

includes changes in the input layer's size and the pooling layer's padding to make up for

the �rst change. For the third network the only change is the input layer's size and can

be seen in Figure 4.5.

Input
13x16
D3

Conv
5x5 S2
D32 P2

Pool
K3x3 S2
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FC
D512

FC
D2

Figure 4.4. The second network in the upper body adapted cascade
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3x3
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3x3
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Pool
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Figure 4.5. The third and last network in the upper body adapted cascade

4.3 Proposed Network

In the following sections, some possible solutions for replacing the �rst network in Angelova

et al. [2015] are presented based on the paper Lit et al. [2015] to give an idea of the thought

process behind the made choices.

The �rst network in the cascade from Lit et al. [2015] is a tiny 12x12 network which can

be seen in Figure 4.6. It is wanted to keep one of the sides at 12 pixels or 16 pixel as

in the original implementations. This makes the probable resolutions able to be 10x12,

12x15, 13x16, or 16x20.

Input
12x12
D3

Conv
3x3 S1
D16 P1

Pool
K3x3 S2

P1

FC
D16

FC
D2

Figure 4.6. First network in the Lit et al. [2015] cascade

It is chosen to use 12 and 16 as the longest end which leaves 10x12 and 13x16. Both of

these sizes will be tested to compare performance, before a choice between them, is made.

However, by using the resolutions 10x12 and 13x16, several problems arise, such as the

pulling layer, as you can not take the half of 13 pixels. Therefore, some of the proposed

networks to replace the �rst in the cascade are presented in the next sections, to show

some of the problems and to give a basic idea of how to solve them.

4.3.1 Version One

For input size 10x12 nothing needs to be changed as seen below.

Input

10x12

D3

Conv

3x3 S1

D16 P1

Pool

K3x3 S2

P1

FC

D16

FC

D2
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4.3.2 Version Two

For input size 13x16 the pooling layer's padding needed to be changed to be 0x1 and can

be seen below.

Input

13x16

D3

Conv

3x3 S1

D16 P1

Pool

K3x3 S2

P0x1

FC

D16

FC

D2

4.3.3 Version Three

As seen in the Angelova et al. [2015], the second network has a stride of two for the

proposed convolutional layer and should be tested to see if it increase performance. This

also makes the padding for the pooling layer to be 0x1 as seen below.

Input

10x12

D3

Conv

3x3 S2

D16 P1

Pool

K3x3 S2

P0x1
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D16

FC

D2

4.3.4 Version Four

The 3x3 kernel in the convolutional layer can be replaced by a 5x5 kernel with 2x2 padding,

which can be seen below.

Input

10x12

D3

Conv

5x5 S1

D16 P2

Pool

K3x3 S2

P1

FC

D16

FC

D2

4.3.5 Depth

The depth of the convolutional and fully connected layers are in all of the above proposals

set to 16, as in the original paper, but could be changed to an arbitrary number, and are

not necessarily the same, as it is seen in the tested network shown in the next chapter.
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Implementation 5
From these few explained �rst networks, all of the tested networks for upper body

adaptation will be shown in this chapter, but �rstly, the data collection for training the

networks, will be described.

5.1 Data

This section will contain information about all the data used in this project. Firstly, a

section about the data collection, followed by a description of how the dataset's data is

augmented to �t the current problem, and lastly how the data used.

5.1.1 Data Collection

Data for training and testing of the network will be extracted from multiple datasets.

Namely a self created, INRIA, and ETH dataset properties of which will be described

brie�y.

Self-created Dataset

This is a pedestrian dataset, created by VIVA Lab, made up only of images from

surveillance cameras inside food chain stores from a top view angle. In this dataset many

of the annotated pedestrians have occluded legs which �ts with the need of a upper body

detector. The dataset contains 6,500 images with 2,300 bounding boxes. An example

from this dataset can be seen in Figure 5.1 on the following page.

INRIA Dataset

The INRIA dataset is a pedestrian dataset containing still images with di�erent resolutions

taken at many di�erent locations. Annotations are only put on upright people with a

height of more than 100 pixels. The size of the training examples from this dataset is 1237

pedestrians and an image from the dataset can be seen in Figure 5.2 on the next page.

[Dalal and Triggs, 2005]

ETH Dataset

ETH is a pedestrian dataset of stereo video, taken from a car, with a resolution of 640x480

and a frame rate of 13-14 FPS. The annotations for this dataset is put on pedestrians with
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5. Implementation

Figure 5.1. An example image from the
self created dataset

Figure 5.2. An example image from the
INRIA dataset [Dalal and
Triggs, 2005]

a minimum height of about 48 pixel, but for testing bounding boxes with a height lower

than 60 pixels have been removed. ETH have 4,500 with 17,800 bounding boxes and an

example image from the dataset can be seen in Figure 5.3. [Ess et al., 2008]

Figure 5.3. An image taken from the ETH dataset[Ess et al., 2008]

5.1.2 Dataset Augmentation

All of these dataset contain full-sized pedestrians, except the self-created one. Because of

this di�erence in the project's pedestrians detection and traditional pedestrian detection

(i.e. upper body against full body), the datasets had to be modi�ed to �t the problem.

The �rst measure for converting the data, is to �t the bounding boxes to only cover the

upper body of the pedestrians. Due to the way the width of bounding boxes for walking

pedestrian oscillates from frame to frame, it is chosen to use the height of pedestrians to

�nd the upper body part, as it changes more gradually [Dollár et al., 2012]. Getting the

upper body from the height of a pedestrian is done by cutting it in half and then changing

the width to get the desired aspect ratio of 4:5.
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5.2. The First Network Proposal

5.1.3 Dataset Usage

The acquired upper bodies are then slit into multiple sets of data serving di�erent purposes

which will be presented in the following sections.

Training Set

The training data is cropped images of upper bodies and background to use for training

the networks. The positive data consist of images from a subset of the positive training

data from INRIA, a subset from the self-created data, and all the positive data from ETH.

The same positive data is used for all the networks, and the negative data is randomly

sampled patches from images of background, when used for training of the �rst network.

For the second network, negative patches are mined from background images by taking

hard examples (false positives) from the previous network. The images used for mining

negative image are from INRIA training set and the Pascal dataset [Everingham et al.].

Validation Set

A set of data is used for testing during training to make it possible to follow the

performance of the training on a separate set. This is done in order to know when the

network performance starts converging, to keep an eye out for over�tting, and if so do

early stopping. This set is also pre-cropped images, and is a small subset of the self-created

dataset, ETH dataset and the negative patches.

Testing Set

The testing set is a set of full images used for testing performance such as precision, recall

and false positives per image and optimisation of thresholds. This set is the all the positive

images from INRIA testing.

This concludes the description of the data mining and handling thereof which will be used

for training of all the networks proposed in the upcoming sections.

5.2 The First Network Proposal

The purpose of the �rst network, is to reduce the amount of detection windows for the

later networks, but it is also important that it keeps a high recall rate so as not to reject

too many positive detection windows at this stage.

Firstly 12-network structures, which are networks where the input image's height, is 12

pixels, will be described, and secondly the 16-network structures, which have a height of

16 pixels, will be described. The testing of these networks will all be found in chapter 6

on page 29.

In this chapter every time the Google network is mentioned it is a reimplemented version

of it its second network in the cascade, but adjusted to detect upper bodies, described in

section 2 on page 5 (Note that it is not the �rst network).
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5.2.1 12-Network Structures

This is a list of all the tested structures with an input image size of 10 by 12 pixels

(10 in width and 12 in height), except for the Google network implementation, which

is shown here for comparison reasons between 12- and 16-networks. This is to give an

understanding of the di�erences in the structures of the networks, when inspecting the

following performance graphs and tables. In Table 5.1 is a list of abbreviations used in

the following sections.

Abbreviation Description

Conv Convolutional layer

D Layer depth

FC Fully connected layer

Input Input layer

K Kernel size

P Padding amount

Pool Pooling layer

S Stride size

Table 5.1. Abbreviation list for network structures

(1) 16x3x3 > FC16

Input

10x12

D3

Conv

3x3

D16 P1x1

Pool

K3x3 S2

P1x1

FC

D16

FC

D2

(2) 16x3x3 > FC64

Input

10x12

D3

Conv

3x3

D16 P1x1

Pool

K3x3 S2

P1x1

FC

D64

FC

D2

(3) 32x3x3 > FC32

Input

10x12

D3

Conv

3x3

D32 P1x1

Pool

K3x3 S2

P1x1

FC

D32

FC

D2

(4) 32x5x5 > FC32

Input

10x12

D3

Conv

5x5

D32 P2x2

Pool

K3x3 S2

P1x1

FC

D32

FC

D2

(5) 32x5x5 > FC512

Input

10x12

D3

Conv

5x5

D32 P2x2

Pool

K3x3 S2

P1x1

FC

D512

FC

D2
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5.2. The First Network Proposal

(6) 16x3x3 > 16x1x1 > FC16

Input

10x12

D3

Conv

K3x3

D16 P2x2

Pool

K3x3 S2

P1x1

Conv

K1x1

D16

FC

D16

FC

D2

(7) 32x3x2 > 32x1x1 > FC32

Input

10x12

D3

Conv

K3x3

D32 P2x2

Pool

K3x3 S2

P1x1

Conv

K1x1

D32

FC

D32

FC

D2

(8) 32x3x2 > 32x1x1 > FC512

Input

10x12

D3

Conv

K3x3

D32 P2x2

Pool

K3x3 S2

P1x1

Conv

K1x1

D32

FC

D512

FC

D2

(9) 32x5x5 > 32x1x1 > 512

Input

10x12

D3

Conv

K5x5

D32 P2x2

Pool

K3x3 S2

P1x1

Conv

K1x1

D32

FC

D512

FC

D2

(10) 32x5x5s2 > p3x3s2p1x0 > 32x1x1 > FC512

Input

10x12

D3

Conv

K5x5 S2

D32 P2x2

Pool

K3x3 S2

P1x0

Conv

K1x1

D32

FC

D512

FC

D2

(11) 16x5x5s2 > p3x3s2p1x0 > FC16

Input

10x12

D3

Conv

5x5 S2

D16 P2x2

Pool

K3x3 S2

P1x0

FC

D16

FC

D2

(12) 32x5x5s2 > p3x3s2p1x0 > FC32

Input

10x12

D3

Conv

5x5 S2

D32 P2x2

Pool

K3x3 S2

P1x0

FC

D32

FC

D2

(13) 16x5x5s2 > 16x1x1 > FC16

Input

10x12

D3

Conv

K5x5 S2

D16 P2x2

Pool

K3x3 S2

P1x1

Conv

K1x1 S1

D16

FC

D16

FC

D2
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(14) 16x5x5s2 > FC16

Input

10x12

D3

Conv

5x5 S2

D16 P2x2

Pool

K3x3 S2

P1x1

FC

D16

FC

D2

(15) 32x5x5s2 > FC32

Input

10x12

D3

Conv

5x5 S2

D32 P2x2

Pool

K3x3 S2

P1x1

FC

D32

FC

D2

(16) 16x3x3s2 > FC16

Input

10x12

D3

Conv

K3x3 S2

D16 P1x1

Pool

K3x3 S2

P1x1

FC

D16

FC

D2

(17) 16x3x3s2 > p3x3s2p1x0 > FC16

Input

10x12

D3

Conv

K3x3 S2

D16 P1x1

Pool

K3x3 S2

P1x0

FC

D16

FC

D2

Google

Input

13x16

D3

Conv

K5x5 S2

D32 P2x2

Pool

K3x3 S2

P1x1

Conv

K1x1 S1

D32

FC

D512

FC

D2

5.2.2 16-Network Structures

As the structures of the 12-networks shown earlier, here is the 16-network structures, which

are shown to identify their di�erences. The next chapter will present the performance

graphs and the complexity table to be able to compare them.

A list of abbreviations can be seen in Table 5.1 on page 24.

(1) 16x3x3s2 > FC16

Input

13x16

D3

Conv

K3x3 S2

D16 P1x1

Pool

K3x3 S2

P1x1

FC

D16

FC

D2

(2) 16x5x5s2 > FC32

Input

13x16

D3

Conv

K3x3 S2

D16 P1x1

Pool

K3x3 S2

P1x1

FC

D32

FC

D2
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5.2. The First Network Proposal

(3) 16x5x5s2 > FC16

Input

13x16

D3

Conv

K5x5 S2

D16 P2x2

Pool

K3x3 S2

P1x1

FC

D16

FC

D2

(4) 16x5x5s2 > FC32

Input

13x16

D3

Conv

K5x5 S2

D16 P2x2

Pool

K3x3 S2

P1x1

FC

D32

FC

D2

(5) 16x3x3s2 > 16x1x1 > FC16

Input

13x16

D3

Conv

K3x3 S2

D16 P1x1

Pool

K3x3 S2

P1x1

Conv

K1x1 S1

D16

FC

D16

FC

D2

(6) 16x5x5s2 > 16x1x1 > FC16

Input

13x16

D3

Conv

K5x5 S2

D16 P2x2

Pool

K3x3 S2

P1x1

Conv

K1x1 S1

D16

FC

D16

FC

D2

(7) 16x3x3s2 > 16x1x1 > FC512

Input

13x16

D3

Conv

K3x3 S2

D16 P1x1

Pool

K3x3 S2

P1x1

Conv

K1x1 S1

D16

FC

D512

FC

D2

(8) 16x3x3s2 > 16x3x3 > FC16

Input

13x16

D3

Conv

K3x3 S2

D16 P2x2

Pool

K3x3 S2

P1x1

Conv

K3x3 S1

D16 P1x1

FC

D16

FC

D2

(9) 16x3x3 > FC64

Input

13x16

D3

Conv

3x3

D16 P1

Pool

K3x3 S2

P1

FC

D64

FC

D2

(10) 16x3x3 > FC32

Input

13x16

D3

Conv

3x3

D16 P1

Pool

K3x3 S2

P1

FC

D32

FC

D2
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(11) 16x3x3 > FC16

Input

13x16

D3

Conv

3x3

D16 P1

Pool

K3x3 S2

P1

FC

D16

FC

D2

Google

Input

13x16

D3

Conv

K5x5 S2

D32 P2x2

Pool

K3x3 S2

P1x1

Conv

K1x1 S1

D32

FC

D512

FC

D2

This concludes all the di�erent 12- and 16-network structures, which will be tested in the

following chapter to replace the �rst proposal network from the baseline detector.
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Results 6
In this chapter the results of all the proposed networks from the previous chapter will be

presented, which will conclude in a �nal decision for a �rst network to use in this work's

proposed cascade. Finally the performance of the full cascade will be shown and compared

to state-of-the-art.

6.1 12-Network Results

Here, the �rst part of the results of the proposed networks, will be presented. Namely the

12-networks.

6.1.1 12-Network Performance

In order to check network performance, a number of graphs are generated showing

important attributes for the �rst network. These attributes are miss rate, false positives

per image, and survived detections windows.

Miss rate as a function of false positives per image is shown on Figure 6.1 on the next

page.

It should be noted, that for Figure 6.1 on the following page, the total number of false

positives for the Google network, when all detections windows are accepted, is higher than

the 12-networks, and therefore, the relation between this network and the others in this

graph might not be of any use. By analysing this graph, a trend can be seen, that deeper

networks have a higher number of false positives. This could be because the resolution

of the image is very small, and therefore, the deeper networks are more over�tted than

shallower networks. This is not true for all of the networks, as network 10 has one of the

best performances.

Figure 6.2 on the next page shows the relation between miss rate and the threshold of the

networks, which at this stage should be very low, because the network will not be able to

pick up true detections again. A zoomed graph is shown in Figure 6.3 on page 31. The

graphs again show worse performance of deeper networks, except a few, which performs

above average (e.g. network 8). It is also seen, that most networks with a stride of two in

the convolutional layer do not perform as well as with stride of one.

In Figure 6.4 on page 31, it is seen how many detection windows, which get rejected, as
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Figure 6.1. Miss rate versus average false positives per image

Figure 6.2. Miss rate versus threshold

a function of the threshold of the networks. This is important to know, because the more

windows that pass the network means more windows have to be processed by the later,

more computationally heavy networks. A zoomed graph of this is shown in Figure 6.5 on

page 32. It should be noted from this graph, that the performance resembles the reverse

performance from the miss rate against threshold test. Understandingly, networks with a

stride of two in the convolutional layer have about a quarter of the survived windows of

the ones with a stride of one.

A combination of the two previous described graphs is seen in Figure 6.6 on page 32. It

shows the survived windows as a function of miss rate, which is a good way to analyse

the performance of one of the earlier networks, as these are the two parameters which
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Figure 6.3. Miss rate versus threshold with zoom

Figure 6.4. Survived windows af the network versus threshold

should be minimal at this point in a cascade. Figure 6.7 on page 33 shows the same �gure

with zoom. From these graphs, it can be seen that the big reduction in survived windows

of the networks with a stride of two makes them outperform the other networks. The

best performing network here is a deeper network (network 10), followed by a handful of

shallow ones and the google network. The deeper network, is presumably in the top alone,

as a deeper network, because it is the only one with a stride of two.

6.1.2 12-Network Complexity

The complexity of the 12-networks can be seen in Table 6.1 on page 33. This table shows

the networks with numbers, which corresponds with the number paired with their name
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Figure 6.5. Survived windows af the network versus threshold with zoom

Figure 6.6. Survived windows af the network versus miss rate

when they were presented. The columns show the number of weights, biases, the total

number of weights and biases, and the time it takes running the network on the CPU

(see CPU speci�cations on page vi) for each of the networks. The time is calculated by

taking 10,000 measurements of the time it takes to forward a single image through the

network, and then averaging all the results. Figure 6.8 on page 34 shows the time it takes

to forward an image through the network as a function of number of parameters in that

network.
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Figure 6.7. Survived windows af the network versus miss rate with zoom

Net Weights Bias Total Time [µs]

1 11216 34 11250 70.5

2 43568 82 43650 91.4

3 43936 66 44002 100.1

4 45472 66 45538 107.9

5 691552 546 692098 651.8

6 11472 50 11522 73.0

7 44960 98 45058 114.8

8 691040 578 691618 657.7

9 692576 578 693154 673.2

10 151904 578 152482 195.4

11 3536 34 3570 48.5

12 11680 66 11746 60.9

13 4560 50 4610 57.7

14 4304 34 4338 50.0

15 14752 66 14818 64.0

16 3536 34 3570 45.3

17 2768 34 2802 43.9

Google 332128 578 332706 366.4

Table 6.1. The complexity of all the tested 12-networks and the Google network

6.1.3 12-Network Discussion

In summary, it is seen in Figure 6.1 on page 30, that the di�erent networks do not have a

huge di�erence in performance when looking at miss rate against false positives per image.

However, by looking at 6.2 on page 30, there is a signi�cant di�erence, especially at higher

thresholds. Furthermore, it should be noted, that the order of the networks, when looking

at miss rate, is about the same as the reverse order, when looking at the survived detection

windows. From Figure 6.7, it is possible to see the top performing networks in terms of
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Figure 6.8. Number of parameters versus the computational time for the 12-network

reduction of windows and miss rate, which is network 10, 13, and 16.

From Table 6.1 on the preceding page, it is seen that the size of the fully connected layer

is worse at increasing numbers of parameters, and it is also seen that using strides of two

reduces the amount of parameters in the network, which happens because the output size

before the fully connected is smaller.

From Figure 6.8, it can be seen that on a large scale the time it takes to forward an image

through the networks seems to correlate linearly with the number of parameters, though

more intermediate data points would be preferred before making that assumption. On

a small scale, the data points do not follow the line as well, but this could be because

of the variance in time the computer introduces when taking the measurements and the

optimisation of the calculations needed (i.e. amount and size of matrix multiplications).

6.2 16-Network Results

Now that all the results of the 12-network testing have been shown, the same performance

test of false positives, miss rate and survived windows will be presented for the 16-networks.

Not all the same networks from the previous section will be tested. Only a subset of the

better performing ones, because it is assumed that the relation of the networks does not

change all that much with this small increase in size.

6.2.1 16-Network Performance

Firstly in Figure 6.9 on the facing page the miss rate versus the average false positives per

image is seen. This graph shows, that what was a tiny decreasement in the 12-networks

increased to signi�cantly underperforming networks when the strides of the convolutional

layer is one. Other than that the performance only di�ers a little bit between the networks.

Figure 6.10 on the next page shows the miss rate versus the threshold of the networks,

and Figure 6.11 on page 36 shows a zoomed version of the same graph. Here it can be

seen, that the networks with a stride of one, outperforms the ones with a stride of two,

and that it is possible to group the networks in three �performance groups�, as there are

gaps between them.
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Figure 6.9. Miss rate versus average false positives per image

Figure 6.10. Miss rate versus threshold

The number of survived detection windows after the network versus the threshold of the

network, is seen in Figure 6.12 and Figure 6.13 on page 37 shows a zoomed version of this.

From these graphs, it is seen again, that increasing the stride to two, signi�cantly decrease

the number of survived windows, even more than for the 12-networks. The networks also

still cluster into groups, but not the same groups as in the miss rate case.

The �nal graph, showing survived windows versus miss rate of the 16-networks, can be

seen on Figure 6.14 on page 37 and 6.15 on page 38 for zoom. Here it is apparent, that

the networks with a stride of one in the convolutional layer performs worse because of

the high number of survived windows. Apart from that there is no distinct network type

which outperforms the rest, because both shallow and deeper networks are among the top
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Figure 6.11. Miss rate versus threshold with zoom

Figure 6.12. Survived windows of the network versus threshold

performing networks. The top performing network is network 1.

6.2.2 16-Network Complexity

In order to know the complexity of the 16-networks, a table like for the 12-networks is

presented and can be seen in Table 6.2 on page 38.

As for the 12-network, Figure 6.16 on page 38 shows the time it takes to forward in

image through the 16-network as a function of number of parameters in each network.

However for the 16-networks, there is not clear relation between the time and the number

of parameters.
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Figure 6.13. Survived windows of the network versus threshold with zoom

Figure 6.14. Survived windows of the network versus miss rate

6.2.3 16-network Discussion

By looking at Figure 6.11 on the facing page and 6.13, as for the 12-networks, the order of

the performance is reversed. But some networks stand out with good performances in miss

rate, but get a mediocre result in survived detection windows, or with good in survived

detection windows, but mediocre in miss rate, compared to the others 16-networks. These

networks can be seen better in Figure 6.15 on the following page, which shows the top

performing networks for the 16-network as network 1, 2, and 12.
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Figure 6.15. Survived windows of the network versus miss rate with zoom

Net Weights Bias Total Time [µs]

1 5584 34 5618 55.3

2 10736 50 10786 60.5

3 6352 34 62.1 62.1

4 11504 50 11554 67.8

5 5840 50 5890 64.5

6 6608 50 6658 71.3

7 165552 546 166098 213.4

8 7888 50 7938 71.5

9 82480 82 82562 226.7

10 41456 50 41506 216.3

11 20944 34 20978 205.4

Google 332128 578 332706 371.4

Table 6.2. The complexity of all the tested 16-networks

Figure 6.16. Number of parameters versus the computational time for the 16-networks
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6.2.4 First Network Discussion

As said previously, there are some things, which are important to take into account, when

choosing a �rst network. As seen from the graphs from the 12-networks and the 16-

networks, the general di�erence between the networks is that the 12-networks have higher

miss rate than the 16-networks, but they also reject more detection windows.

The time it takes to run a detection window through the 16-networks is about 23% slower

than it takes to run through a similar 12-network, for shallow networks, but it seems to be

exponentially increasing with more complex networks, as the most complex one is about

90% slower as a 16-network then a 12-network.

It is chosen, that a reduction in survived windows of more than 90% is wanted from the

network, as well as a miss rate lower than 5%. Therefore, it is also taken into account,

how stable the performance is within these limits (i.e. how big a part of the all threshold

is within this limit). As seen on Figure 6.7 on page 33 and Figure 6.15 on the facing page,

each point on the curves represent one percent point change in threshold.

It is chosen to use a 16-network, because the increase in recall is thought to make up for

the complexity increase, and the increase in number of detection windows. To get back on

these speed decreasements, a shallow 16-network will be chosen. This is to be in the low

end in number of detection windows and complexity, but at the expense of some accuracy.

Speci�cally the 16x3x3s2>FC16 network from section 5.2.2 on page 26.

6.3 First Network Comparison

Now that a new �rst proposal network has been chosen, it is compared in performance

with the old network, to see if it provides an increase or decrease in performance, which

can be seen in Figure 6.17 on the following page. From this graph, it can be seen that it

does not perform as well as the baseline's �rst network, but it is expected to have some

reduction in performance, as it is only looking at upper body, which is a subset of a full

body and there are less features to learn from. This has about 10 to 100 times more false

positives per image (FPPI) than the baseline.

6.4 Comparing Against State-of-the-Art

After this comparison of the �rst network in the cascades, the full cascade network is

tested and with the results shown in Figure 6.18 on the next page. It is compared with

Doppia [Benenson et al., 2012].

Examples of images from some of the detectors shown in Figure 6.18 on the following page

are seen in �gures from Figure 6.19 on page 41 to Figure 6.27 on page 42.

6.5 State-of-the-Art Discussion

As seen in Figure 6.18 on the next page, the results for upper body detection does not

perform as well as full-sized pedestrian detectors. The reason behind this could be, as

stated in the comparison of the �rst network in the cascade, that this detector only has
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Figure 6.17. A comparison between the performance of the baseline cascade's �rst network and
the new propose network

Figure 6.18. The results of the complete cascade done on the INRIA test dataset

the features for the upper bodies and not all from full-sized bodies, as upper bodies are a

sub-part of full-sized pedestrians.

From the images in Figure 6.19 on the facing page to Figure 6.24 on the next page, it is

seen how the detection windows change from full-sized to upper body. The main di�erence

is, that the detector is much worse at di�erentiating the windows. This is seen by vast

numbers of windows with a con�dence score of '1.00'. This could mean, the detector does

not have a clear enough de�nition of an upper body, likely by not having good features

for de�ning what an upper body is. It does however, also have good detections as seen in

Figure 6.27 on page 42.
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6.5. State-of-the-Art Discussion

Figure 6.19. Example image, from IN-
RIA, with the detector by
Benenson et al. [2012]

Figure 6.20. Example image, from IN-
RIA, with the basline detec-
tor by Angelova et al. [2015]

Figure 6.21. Example image, from IN-
RIA, with the proposed up-
per body detector

Figure 6.22. Example image, from IN-
RIA, with the detector by
Benenson et al. [2012]

Figure 6.23. Example image, from IN-
RIA, with the basline detec-
tor by Angelova et al. [2015]

Figure 6.24. Example image, from IN-
RIA, with the proposed up-
per body detector

These results can also be interpreted as an indication of how much pedestrian detectors

use lower body features for detection.
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Figure 6.25. Example image, from IN-
RIA, with the detector by
Benenson et al. [2012]

Figure 6.26. Example image, from IN-
RIA, with the basline detec-
tor by Angelova et al. [2015]

Figure 6.27. Example image, from INRIA, with the proposed upper body detector
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Evaluation 7
In this chapter a conclusion of the project according to the problem statement will be

presented along with what could be done for future work to improve upon this project.

7.1 Conclusion

The initiating problem statement is the prerequisite for the conclusion of this project,

which is the following:

How is it possible to design a system for pedestrian detection,

which achieves good performance,

as well as handles segmentation of pedestrians' lower body?

A system for pedestrian detection, which handles segmentation of pedestrians' lower body,

is designed, but this system is not able the achieve good performance. This can be seen

in Figure 6.18 on page 40, that when more of the system was converted to only look at

upper bodies, the worse it becomes.

It is seen, that changing from a full-sized, upper body, upper body cascade into a upper

body, upper body, upper body cascade, the performance is decreasing, which is peculiar as

the �nal deep network remains the same and should have the same performing capabilities

as before. The reason for this might be that the proposed �rst network's hard negatives

have more variance than the ones from the baseline's �rst network. Therefore, this variance

travels all the way up through the cascade and into the last network, which at this point

will have more varying data, and therefore, not be as specialised at the cost of performance.

The reason behind these bad results point to, that the upper body lacks the features needed

for proper performance, with this speci�c detector's architecture or that the proposed

network can not learn the features needed to distinguish properly between upper bodies

and non upper bodies. Given another network structure it might be possible to design

a well performing upper body detector, but presumably still with reduced performance

compared to full-sized detectors, but improving upon the results presented in this project.

A reason why the proposed network is having trouble scoring detections windows could be

because upper bodies do not have a clear contour at the bottom of the upper body. The
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transition between torso and hip can not always be clearly seen, as it could be obscured

by a jacket or a long shirt. The contour of a full-sized pedestrian would be visible at all

times except in the case when background and pedestrian are similarly coloured, or in

case of occlusion, but these problem also exists for upper bodies.

7.2 Future Work

For future work, a better baseline implementation with state-of-the-art performance would

be advantageous, as it would diminish the likelihood of mistakes made for training the

networks, which could couse a reduction in performance.

From the network structure's point of view, it could be that upper body detection needs

be to implemented with better suited features, to solve this detection problem. It might

be that the size of the network is too small and that an upper body detector needs a

deeper network, in order to construct more complex features, for better classi�cation.

Better feature extraction might also increase performance, which could be attained by

using a pre-trained model for general object detection to have a broader range of features

and not just the features trained to make the split between upper body and background

patches.

Another way to improve performance, could be to change the structure of the network

completely and use a part based model instead. This will then be looking at the

parts present in upper bodies like head, torso, and arms as it is also done for full-sized

pedestrians, but again only in a sub-part of a pedestrian.

It might also be that using CNN is the wrong choice, as it might be a harder problem with

this type of network than it would by using a classical approach like HOG or Haar-like

features.
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