
Broadband aggregation in the
rural areas of Denmark

Master thesis

Jais Langkow Kristensen

Aalborg University
Electronics and IT

Department of Electronic Systems

Aalborg University

http://www.aau.dk

Title:
Broadband aggregation in the rural ar-
eas of Denmark

Theme:
Master’s thesis

Project Period:
Fall Semester 2015 - Spring Semester
2016

Project Group:
1021

Participant(s):
Jais Langkow Kristensen

Supervisor(s):
Tatiana Madsen
Thomas Jacobsen
Andrea Fabio Cattoni

Copies: 2

Page Numbers: 45

Date of Completion:
June 2, 2016

Abstract:

This work presents a solution for ag-
gregating multiple connections, in or-
der to utilise the throughput of both
simultaneously. This system is us-
ing the routing tables in Linux to set
the default routes for each flow. The
flows are being split based on weights,
which are determined by the perfor-
mance of each connection. The met-
ric used in this work to evaluate the
performance is the congestion window
(CWND). The CWND is propagated
from the client to the router via scp,
and the router uses this information
to determine the weights. The system
performance was tested. The results
from the tests shows that an increase
in throughput can be achieved when
utilising two connections compared to
using one connection. The test also
showed that the system does not im-
prove the throughput, compared to a
system with intelligent splitting dis-
abled.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

Preface v

1 Introduction 3
1.1 Coverage . 3

1.1.1 Measurement results . 3
1.2 Bandwidth aggregation . 4
1.3 Service awareness . 5
1.4 Commercial products . 5
1.5 Problem statement . 6

2 Initial analysis 7
2.1 System architecture . 7
2.2 Test specification . 9

3 Design 11
3.1 Routing method . 11

3.1.1 Multipath TCP . 11
3.1.2 Hybrid architecture . 12
3.1.3 Routing tables . 12

3.2 Performance measurement . 13
3.2.1 Passive performance measurement 13
3.2.2 Active performance measurement 14

3.3 Calculating the CWND . 16
3.4 Algorithm design . 16

4 Implementation 19
4.1 Splitting the traffic . 19
4.2 Propagating congestion window from client to router 20
4.3 Receiving the congestion window . 21
4.4 Calculating the weights . 22

iii

iv Contents

5 Test 25
5.1 Test script . 25
5.2 Test results . 26

6 Conclusion 33
6.1 Conclusion . 33
6.2 Future work . 34

Bibliography 35

A Create tables 37

B Test results 39
B.1 Single connection limited to 2 mbps 39
B.2 Single connection limited to 6 mbps 41
B.3 Two connections no intelligence . 41
B.4 Two connections with intelligence . 41
B.5 Single connection limited to 4 mbps 41

Acronyms

ACK Acknowledgement

ADSL Asymmetric Digital Subscriber Line

AIMD Additive Increase/Multiplicative Decrease

CWND Congestion Window

FSM Finite-State Machine

GRE Generic Routing Encapsulation

HYA HYbrid Access

ISP Internet Service Provider

MPTCP MultiPath TCP

NAT Network Address Translation

QoS Quality of Service

RTT RoundTrip Time

ToS Type of Service

VPN Virtual Private Network

Preface

This report documents a master thesis project, for the Networks and Distributed
Systems programme at the Department of Electronic Systems, Aalborg University.

The code used in this project is uploaded on digital exam, and can also be
found on:
http://kom.aau.dk/group/16gr1021/Code/
The code on the client is located in the folder called Client. This folder contains
four scripts

PPropCWND.sh Propagates the congestion window from client to router.

SleepClientsDuo.sh Runs the tests.

tcpshoot.c Used for file transfer in the tests.

tcpsnoop.h Used for file transfer in the tests.

The code on the router is located in the folder called Router. This folder con-
tains four scripts

CreateTables.sh Creates the routing tables.

SetupVars.sh Sets the variables.

iftest.sh Assigns the new weights.

multiarraytest.py Calculates the weights.

Acknowledgement

The author would like to thank Aamir Saeed for technical sparring and cooperation
while writing this report.

Aalborg University, June 2, 2016

v

vi Preface

Jais Langkow Kristensen
<jkris10@student.aau.dk>

Preface 1

Abstract

The internet connection in the rural areas of Denmark are lacking throughput and
often have very poor latency. This causes the farms to have inefficient production
and the families to have limited access to certain services like video streaming and
VoIP. In order to overcome these issues, more connections could be utilised.

This solution is provided by a number of services, which all have some disad-
vantages, but split the traffic on the available connections.

The splitting can be done in numerous ways, and on multiple levels in the OSI
model. In this report the traffic splitting will be done on the transport layer. In or-
der to determine how the traffic should be split on the connections, an intelligent
algorithm is required. This report suggests using the performance of the connec-
tions, to determine how much traffic should be routed on each connection. The
performance metric used in this report is the CWND.
The system presented in this report consists of two entities; the client and the
router. The client generates traffic, by visiting websites and transferring files via
FTP. Further the client device propagates the CWND of all the current flows to the
router regularly. This transmission is necessary, since only the sender knows the
CWND value. Another solution could be to estimate the CWND on the router by
observing the traffic and adjusting the CWND accordingly.
The router entity in the system splits the traffic flows on each connection according
to some weights. These weights are adjusted dynamically using the CWND.

Chapter 1

Introduction

A reliable and fast Internet connection is one of the cornerstones in a modern society. Access
to up-to-date Internet speed is necessary for any household and business to achieve full
potential of the digital opportunities. This report will cover the current Internet speed and
reliability in rural Denmark, and propose solutions to improve the bandwidth. This chapter
introduces and motivates the problem of bandwidth aggregation. The problem statement is
defined in the end of the chapter.

1.1 Coverage

The broadband coverage in Denmark is in general good. However as Figure 1.1
shows, there are parts where 100 mbps download is not achievable. Further, the
map estimates where the infrastructure supports the speed, and not whether or
not the speed is supplied.

In order to find the actual speeds of the Asymmetric Digital Subscriber Line
(ADSL) line an the LTE connection, measurements have been performed in two
locations in northern Jutland, specifically at a farm in Tylstrup (farm 1) and one in
Sæby (farm 2). These measurements were taken over the course of one week.

The following section will cover some of the results from these measurements.
Further results can be seen in [2].

1.1.1 Measurement results

This section contains the figures produced from the measurements.
Figure 1.2 shows the throughput measured at the first farm located in Tylstrup.

The ethernet cable bars represent the throughput of the deployed ADSL line. The
LTE bars represent the throughput measured directly from the LTE antenna. The
WiFi bars represent the throughput measured outside and inside the farm house.

3

4 Chapter 1. Introduction

Figure 1.1: Coverage map of Denmark [3]

Figure 1.2: Measurements from the farm in Tylstrup.

As Figure 1.2, Figure 1.3 shows the measured throughput. The ADSL connec-
tion is better on this farm than in farm 1, but it is still in the lower end of internet
speeds.

1.2 Bandwidth aggregation

Since the ADSL and LTE connection in rural areas in Denmark are either slow or
unreliable in coverage (as described in section 1.1 and 1.1.1), a single connection

1.3. Service awareness 5

Figure 1.3: Measurements from the farm in Sæby.

can not support the requirements of a modern family and small business. This
issue might be solved by aggregating the LTE connection and the xdsl connection,
and simply summing the data rates. An example of this is shown in figure 1.4.

Figure 1.4: This figure illustrates the basic concept of bandwidth aggregation. Each line between the
two boxes represent different connections with different data rates.

1.3 Service awareness

When aggregating bandwidth, multiple methods can be thought of. One method
could be to blindly treat all traffic equally and separate the packets on the various
connections. Another method could be to divide the traffic into services and prior-
itize different services differently depending on the Quality of Service (QoS) that
service needs. This method can improve the experience of services that require
high data rates, while still giving the same experience of services that does not
require as high data rates such as e-mail.

1.4 Commercial products

Multiple solutions providing bandwidth aggregation exists on the market already,
however these have some restrictions in usability or are quite expensive. This

6 Chapter 1. Introduction

section will cover some of these.

Speedify Speedify is a service that utilises channel bonding to aggregate connec-
tions. The solution is patented in [1], but does not cover how the load balancing
is done and does not allow for configuration thereof. The Speedify solution works
without any additional hardware, only a piece of software is required. It is a
freemium service, where one can get a free packet which includes 1 GB of data per
month, a 50 GB data plan that costs 9 $ per month and finally an unlimited data
plan that costs 12 $ per month.

Viprinet Viprinet functions, like Speedify, by utilising a multichannel Virtual Pri-
vate Network (VPN) router and channel bonding as seen in Figure 1.5. In this
example the data stream from the user is encrypted and distributed on the various
Internet connections. The split data packets are transmitted through the Internet
Service Providers (ISPs) and reaches the data center, which decrypts, aggregates
and forwards the data to the destination [13]. In this setup, a device is needed
from Viprinet, either a multichannel VPN router or hub. This of course increases
the cost of this service.

Figure 1.5: An example of the Viprinet setup

Viprinet is by far the most expensive solution with prices up to 11990 GBP [12].

1.5 Problem statement

How can a system that aggregates multiple connections, intelligently be
developed and implemented.

This report will focus on improving the speed of the connection rather than
focusing on reliability. However it is expected that a fairly high reliability will be
a natural consequence of utilising more connections with the TCP protocol. The
following chapter will describe how a system, that solves the problem statement,
could look.

Chapter 2

Initial analysis

This chapter serves as an initial exploration of the problem statement. First the
overall system architecture will be described and analysed. Given this analysis a
test specification will be stated. This specification will be used in chapter 5 in order
to thoroughly test the system.

2.1 System architecture

In order to develop the system described in section 1.5, an overall system
architecture have been formulated and visualised in figure 2.1. Each sub-
system will be described in the following sections.

Figure 2.1: This figure illustrates how the overall system should look.

The system consists of the following subsystems: The tunnels and Aggregation

server is only required in some routing methods. These will be described
in a later chapter.

7

8 Chapter 2. Initial analysis

The following sections will be describing the sub systems shown in Fig-
ure 2.1, and further explain why they are needed.

Packet classification

In order to divide the traffic according to the Type of Service (ToS), as
described in section 1.3, a classifier is required. The classifier should be
able to determine the ToS affiliated with the packet or flow.

Performance of connections

When dividing the traffic intelligently, the performance of each connection
needs to be measured. This way the link with the best performance can get
the most traffic compared to the link with the worst performance.

Routing method

This is the main subsystem in the overall system. In this block the packets
are routed on the available links. This block also decides how the aggrega-
tion server is going to be designed, as these are inherently linked.

Routing algorithm

In order to split the traffic intelligently, a routing algorithm is needed. This
algorithm utilises the functionalities of the routing method and the perfor-
mance of each connection, and assigns the packet to the optimal link.

Tunnels

As some services, such as https [6], require a unique IP pair, tunnels are
required. These have the purpose of tunneling the traffic to a single server,
which then forwards the traffic with one IP pair per flow to the final desti-
nation.

Aggregation server

The purpose of the aggregation server is to aggregate the traffic after the
splitting. It also serves as the proxy for the tunnels.

Due to time limitations, this report will not take the ToS into account
when splitting the traffic. Due to this limitation, an updated system overview
figure is presented in Figure 2.2

2.2. Test specification 9

Figure 2.2: This figure illustrates how the overall system should look after limitations.

2.2 Test specification

In this section a test specification will be stated. The purpose of the tests
specified is to verify that the system behaves as expected and to measure
the performance in terms of throughput.
In the test setup two connections will be used: One LTE subscription from
Telenor and the wired internet at AAU. These will be limited to mimic
the throughput, that can be expected in the rural areas of Denmark. The
limits will be 2 and 4 mbps. The tool used to limit the connections is
wondershaper. This tool uses the iproute’s tc command to control the trans-
mission rate. During each test, some traffic will be generated.

Test 1

In this test one link will be used. This link will be limited to 2 mbps. The
purpose of this test is to set a minimum throughput.

Test 2

In this test one link will be used. This link will be limited to 6 mbps. The
purpose of this test is to set an upper bound of what can be achieved.

Test 3

In this test two links will be used limited at 2 and 4 mbps accordingly. In
this test the routing algorithm described above will be disabled. The pur-
pose of this test is to verify that an increase in throughput can be achieved
when applying the intelligent routing algorithm.

10 Chapter 2. Initial analysis

Test 4

As in test 3, this test will be carried out on two connections limited to 2 and
4 mbps. In this test the routing algorithm is enabled. The purpose of this
test is, as in test 3, to verify that an increase in throughput can be achieved.

In this chapter the overall system architecture was presented and analysed. This
analysis lead to some limitations to the problem. In addition to this a test specifica-
tion was defined in section 2.2.

Chapter 3

Design

Given the limitations specified in chapter 2 the system will be analysed. In this
analysis the state of the art of each subsystem will be presented. Further the algo-
rithms needed in each subsystem will be developed.

3.1 Routing method

In this section the state-of-the-art technologies and methods will be de-
scribed. This will lead to a design decision.

3.1.1 Multipath TCP

MultiPath TCP (MPTCP) [5] provides simultaneous use of more than one
path between hosts, with all the features of a normal TCP connection.
MPTCP enables the hosts to use different paths with different IP addresses
to exchange packets. The MPTCP connection appears as a normal TCP
connection to the application, and each subflow in the MPTCP looks like
a regular TCP connnection, with the only difference of some TCP options.
MPTCP manages the initialisation, termination and utilisation of the sub-
flows. MPTCP is currently being used commercially by smartphone man-
ufacturers and companies providing routing equipment with the sole pur-
pose of combining connections [4].

Advantages MPTCP provides the same inherent features as standard TCP,
which makes the communication reliable.

Disdvantages Since this technology is distributing packets over multiple
IP addresses, some applications like https that require a secure connec-

11

12 Chapter 3. Design

tion, will fail to function [6]. This issue can be solved using a VPN tunnel.
MPTCP is not yet standardised and is still experimental.

3.1.2 Hybrid architecture

The HYbrid Access (HYA), presented in [9], enhances the overall through-
put, by aggregating the bandwidth from a LTE and DSL connection through
a Generic Routing Encapsulation (GRE) tunnel. The data rate and RoundTrip
Time (RTT) of a DSL link is mostly constant, while the data rate and RTT on
LTE varies over time depending on the number of users in the cell. In HYA,
the packet reorder buffer size is related to the difference in RTT on the two
links used. A large RTT difference leads to a lower bandwidth efficiency.
The maximum RTT the customer will experience is the larger of the two
links. HYA uses one connection first, when this is saturated, the other link
will be used. This benefits customers with different prices on each link.

Advantages Since the HYA uses the cheapest link until this is saturated,
the overall price for the customer will be minimized.

Disdvantages Needs an aggregation/proxy server in order to combine and
reorder the packets, and ensure a single IP pair.

3.1.3 Routing tables

In order to utilise more connections, the routing tables in Linux can be used.
[11] presents a method to maintain more default routes for the different in-
coming flows.
A packet arrives from the local network and the Network Address Transla-
tion (NAT) searches already existing connections to determine whether it is
a new connection. When the gateway encounters a new connection, it cre-
ates an uninitialised info-block and passes the packet to the routing system.
In the routing system, the kernel uses some predefined weights, to extract
a default route from the multipath default routes. This provides the output
interface and IP address of the next gateway and thereby enabling routing
for this flow. The packet then passes the postrouting chain in the NAT ta-
ble.
A second packet arrives from the local network with same IP pair as the
previous packet. It passes through the prerouting chain of the mangle ta-
ble. Since it has the same IP pair, the NAT roues it to the same output
interface as was assigned earlier.

3.2. Performance measurement 13

Advantages This method does not require any external equipment, such as
aggregation or proxy servers, since it operates per flow.

Disdvantages Since this method operates per flow, a number of unique IP
pairs is required for the method to split the traffic.

Design choice

In this report the method described in section 3.1.3 will be used. The rea-
son for this is that it does not require any aggregation of the packets, and
therefore can be implemented using only a router. This design choice gives
a new system overview figure, which is presented in Figure 3.1

Figure 3.1: This figure illustrates how the system will look

3.2 Performance measurement

In order to route the traffic intelligently, knowledge of the condition of
the connections is required. This knowledge can be obtained actively or
passively. This section will be describing the difference between these two,
and their advantages and disadvantages.

3.2.1 Passive performance measurement

When doing passive measurements, the traffic going through the link is
being observed. From these observations the current state of the link can be
estimated. This estimation can be based on various metrics, some of these
will be described here. Common for all these methods is that they only
work when traffic is transmitted.

14 Chapter 3. Design

Round trip time

The RTT can be estimated by measuring the time from a packet is send to
the Acknowledgement (ACK) is received.

Bandwidth

The bandwidth can be estimated by counting the number of bytes leaving
the link each second.

Congestion window

The congestion window tells how congested the link is. If the Conges-
tion Window (CWND) is decreasing, the link is congested, however if the
CWND is increasing or not changing, the link has ’room’ for more traf-
fic. The CWND is calculated using Additive Increase/Multiplicative De-
crease (AIMD). This algorithm varies through the implementaions of TCP.

3.2.2 Active performance measurement

When doing active measurements, the link is being probed with data pack-
ets of a certain size. Due to the probing, extra traffic is transmitted on the
link, which could reduce the performance of the actual traffic being trans-
mitted, and may cause a higher cost for the subscriber. Many methods
exists for doing active measurements, some of these will be described here.

Packet pair

The packet pair method estimates the bottleneck link bandwidth. This is
done by sending two packets from the same source to the same destination.
(3.1) shows how the bandwidth is calculated [8].

t1
n − t0

n = max
(

s1

b1
, t1

0 − t1
0

)
(3.1)

3.2. Performance measurement 15

t0
n Arrival time of the first

packet
[s]

t1
n Arrival time of the second

packet
[s]

t0
0 Transmission time of the

first packet
[s]

t1
0 Transmission time of the

second packet
[s]

s1 Size of the second packet [b]
b1 bandwidth of the bottle-

neck link
[bps]

Advantages Simple to implement and does not introduce a lot of extra
traffic on the link.

Disdvantages Very vulnerable to cross traffic.

Train of packets

The train of packet method was introduced in [7]. In the method the source
sends a ’train’ of packets to a destination node. The bandwidth is calculated
using (3.2)

bw =

(
(n− 1) ∗ s

∑ IaT

)
(3.2)

bw Bandwidth [bps]
n Number of packets [·]
s Size of packets [b]
IaT Inter arrival time [s]

Advantages Simple to implement and does not introduce a lot of extra
traffic on the link.

Disdvantages Very vulnerable to cross traffic.

Other methods exist but will not be discussed in this report.
In this project the method described in section3.2.1 will be used.

16 Chapter 3. Design

Another possible solution for getting the CWND on the router is to cal-
culate it directly there. The work presented in [10], shows how the CWND
can be calculated using Finite-State Machine (FSM). The following section
will describe the method they use.

3.3 Calculating the CWND

As described in section 3.2.1 the CWND is calculated using the AIMD. This
can be done at any point on the route from sender to receiver, if it is as-
sumed that all ACKs from receiver to sender are received at the sender. The
idea is to create a duplicate of the senders state for each flow. This is done
by observing the traffic in both directions between sender and receiver. A
TCP sender can be in either slow-start or congestion avoidance mode. For
each ACK received the CWND is either increased by 1 or 1/CWND. In
the case where loss is detected by receiving 3 duplicate ACKs, each TCP
flavor acts differently. In [10] the 3 most common TCP flavors are consid-
ered, namely Tahoe, Reno and NewReno. These are distinguished by using
the fact that any TCP sender cannot have more unacknowledged packets
than min(cwnd, acwnd1). This fact is utilised by checking each packet sent,
if it violates any of the flavors. The flavor with the least violations, is the
flavor of this flow.

3.4 Algorithm design

In order to determine the weights in the kernel, an algorithm is required.
In this section this algorithm will be designed.

In order to set the weights, the state of the connection is used.

if StateO f Connectionx == bad then
if Wx ≥ 2 then

Wx ←Wx − 1
end if

else
Wx ←Wx + 1

end if
This way the weights will decrease if the connection is bad and increase

else. A weight of zero would mean that no traffic is directed on that connec-
1the receivers advertised window

3.4. Algorithm design 17

tion. This is an undesirable situation, and is avoided by checking Wx ≥ 2.
The StateO f Connectionx can be found in multiple ways. All of these meth-
ods require the change in CWND to be found. This is, in this report, defined
in (3.3).

∆CWNDy
x = CWNDy

x(t− τ)− CWNDy
x(t) (3.3)

y Flow number [·]
x Connection [·]
CWNDy

x Congestion window size [Byte]
t time [seconds]
τ time interval [seconds]

The StateO f Connectionx can be either ’bad’ or ’good’. Some of the ways
to determine this will be described in the following algorithms.

Algorithm 3.1 Using the first flow only

if ∆CWND1
x ≤ 0 then

StateO f Connectionx ← good
else

StateO f Connectionx ← bad
end if

This algorithm only looks at the first flow, when deciding whether the
link should be marked as good or bad. The disadvantage of this method is
that if the flow closes, the algorithm compares the now closed flow CWND
with a different flow CWND. This situation can be avoided by taking the
average CWND of all the flows.

Algorithm 3.2 Using the the average CWND, Y is the number of flows

λ(∆CWNDy
x) =

Y
∑

i=1
∆CWNDi

x

Y
if λ(∆CWNDy

x) ≤ 0 then
StateO f Connectionx ← good

else
StateO f Connectionx ← bad

end if

18 Chapter 3. Design

The disadvantage of taking the mean of the CWNDs, is that if one flow
is being saturated, and is increased while another flow is not saturated yet,
the mean will show that the CWND is constant, labelling the link as being
’good’. The next algorithm may solve this issue.

Algorithm 3.3 Majority ruling, Y is the number of flows

GoodFlows = 0
BadFlows = 0
for i=1; i<=Y; i++ do

if ∆CWNDi
x ≤ 0 then

GoodFlows← GoodFlows + 1
else

BadFlows← BadFlows + 1
end if

end for
if GoodFlows ≥ BadFlows then

StateO f Connectionx ← good
else

StateO f Connectionx ← bad
end if

Other methods exists, but will not be described in this report. Due to
time constraints, Algorithm 3.1 will be used for determining the state of the
connections in this report.

In this chapter the system was analysed. Given this analysis some additional
limitations were introduced. The analysis and limitations led to the design of the
system and the underlying subsystems. Further the concept of weights was intro-
duced as the way to split the traffic flows. These weights are being determined in
Algorithm 3.1. In the following chapter the implementation of the system will be
described.

Chapter 4

Implementation

In this chapter the implementation of the system defined in chapter 3 will be de-
scribed. A figure of this system can be seen in Figure 6.1

Figure 4.1: This figure illustrates how the overall system looks.

4.1 Splitting the traffic

As described in section 3.1.3 method chosen in this report, is utilising the
default routes in the routing tables, when splitting the traffic. The script
for setting up the default routes can be found in Appendix A. This script is
presented in [11].

In order to set the weights as described in section 3.4, the CWND is
needed on the router. As the CWND is initialised and maintained only by
the sending side of the transmission, the router cannot access this informa-
tion directly. This issue can be solved in two ways. One way was described
in section 3.3, the other method is described in the following section.

19

20 Chapter 4. Implementation

4.2 Propagating congestion window from client to router

Since only the sender knows the CWND, and the router needs this informa-
tion, to set the weights in the load balancing system, one solution could be
to propagate the value from the client to the router. This is done in Listing
4.1.

Listing 4.1: Obtaining and propagating the CWND.

1 #!/bin/bash

2 while true

3 do

4 # Obtaining socket statistics and saving in ssfile.dat

5 ss -itn4 > ssfile.dat

6 # Clear old file

7 > cwndfile.dat

8 # Remove header from ssfile

9 tail -n +2 ssfile.dat > ssNew.dat

10 lines=$(cat ssNew.dat | wc -l)

11 # Getting every second line in ssNew.dat

12 for ((i=1; i<= $lines; i=i+2))

13 do

14 let o=$i+1

15 # Removing unnecessary text from line 1, 3, 5...

16 # In order to get the IP DST address

17 awk 'NR=='$i '' ssNew.dat | awk '{print $5}' | grep

'[0 -9]\{1 ,3\}\.[0 -9]\{1 ,3\}\.[0 -9]\{1 ,3\}\.[0 -9]\{1 ,3\} ' | sed s

/:[0 -9]*//g >> tmp.dat

18 # Removing unnecessary text from line 2, 4, 6...

19 # In order to get the CWND

20 awk 'NR=='$o '' ssNew.dat | awk '{ print $1 $2 $3 $4 $5 $6 $7 $8 }' |

grep -Po 'cwnd :[0-9]*' | sed s/cwnd ://g >> tmp.dat

21 tmpLines=$(cat tmp.dat | wc -l)

22 # If the flow has a CWND

23 if (($tmpLines ==2))

24 then

25 # Add IP and cwnd to cwndfile.dat

26 cat tmp.dat >> cwndfile.dat

27 fi

28 # Clear tmp file

29 > tmp.dat

30 done

31 # Transfer file to the router

32 scp cwndfile.dat sabwa@10 .0.0.1:/ home/sabwa/RoutingTables

33 # Append to Result file , for plotting purposes

34 cat cwndfile.dat >> cwndResult.dat

35 sleep 1

36 done

In Listing 4.1, the ss command is used to get information on all existing
flows. This information is shaped into a usable format, and propagated us-
ing scp. The information is also stored in the file cwndResult.dat, for testing
and plotting purposes. The transmitted file has the following format:

4.3. Receiving the congestion window 21

Listing 4.2: cwndfile.dat format

1 216.58.209.142

2 12

3 216.58.209.131

4 10

5 109.105.109.207

6 10

7 216.58.209.142

8 10

When the router has received the file, it initiates the performance estimation
of each link as described in 3.4.

4.3 Receiving the congestion window

While the script described in section 4.2, is running, the router needs a way
to convert the IP’s to the associated interfaces and calculate the weights
from the received CWNDs. This is done in Listing 4.3.

Listing 4.3: Get cwndfile.dat

1 #!/bin/bash

2 . SetupVars.sh

3 ./ CreateTables.sh

4 # Available interfaces

5 interList =(eth0 eth3)

6 # Initial weights

7 weightlist =(1 1)

8 # Initial CWND

9 oldcwnd =(10 10)

10 len=${#interList[@]}

11
12 while true

13 do

14 # If file has been received

15 if [-e "cwndfile.dat"]

16 then

17 # Initialise arrays

18 cwnd =()

19 inter =()

20 lines=$(cat cwndfile.dat | wc -l)

21 filecontent =(`cat cwndfile.dat `)

22 let lines=$lines -1

23 for i in $(seq 0 $lines)

24 do

25 if (($i % 2 ==0))

26 then

27 # Append interface name to array

28 inter +=($(ip route get ${filecontent[$i]} | awk '{ print $5}'

| head -n1))

29 else

30 # Append CWND to array

31 cwnd +=(${filecontent[$i]})

32 fi

22 Chapter 4. Implementation

33 done

34 leninter=${#inter[@]}

35 len2=${#cwnd[@]}

36 # For testing data

37 echo ${inter[@]} >> ./ Actualtests/FlowsFive2MultiPlus.txt

38 echo ${cwnd[@]} >> ./ Actualtests/FlowsFive2MultiPlus.txt

39 # Python script to calculate the weights

40 python multiarraytest.py $len ${interList[@]} ${weightlist[@]} ${

oldcwnd[@]} $len2 ${inter[@]} ${cwnd[@]} > temp.txt

The last line in Listing 4.3 calls a python script. The following section
will describe this script.

4.4 Calculating the weights

The first 32 lines in the python script, loads the variables from the bash
script. Since the variables from the bash script are in arrays, the python
script needs to load these one element at the time. Listing 4.4 shows an
example of how the variables are loaded.

Listing 4.4: Calculating the weights

10 # Load variables to list

11 for i in range(lengh):

12 interList [(i)] = str(sys.argv[(i+2)])

13 o += 1

14 for i in range(lengh):

15 weightList [(i)] = int(sys.argv[(i+lengh +2)])

16 o += 1

17 for i in range(lengh):

18 oldCwnd [(i)] = int(sys.argv[(i+lengh +4)])

19 o += 1

Once the variables are loaded, the weights are calculated and printed to
the bash script to set the new weights. Listing 4.5 shows this.

Listing 4.5: Calculating the weights

34 # For no of flows

35 for k,item in enumerate(inter):

36 # Is interface registered

37 if inter[k] in TotList [0]:

38 indexx = TotList [0]. index(inter[k])

39 # If interface is not set and oldcwnd <= current cwnd

40 if TotList [3][indexx]==0 and TotList [2][indexx]<=cwnd[k]:

41 newcwnd[indexx] = cwnd[k] # Set new to current

42 TotList [3][indexx] = 1 # Interface set

43 TotList [1][indexx] += 1 # Add 1 to weight

44 # If interface is not set and oldcwnd > current cwnd

45 elif TotList [3][indexx]==0 and TotList [2][indexx]>cwnd[k]:

46 TotList [3][indexx] = 1 # Interface set

4.4. Calculating the weights 23

47 newcwnd[indexx] = cwnd[k] # Set new to current

48 # Is weight >= 2

49 if TotList [1][indexx]>=2:

50 TotList [1][indexx] -= 1 # subtract 1 from weight

51
52 for k,item in enumerate(interList):

53 # If interface is not set (no flows on interface)

54 if TotList [3][k]==0:

55 TotList [1][k] +=1 # Add 1 to weight

56
57 # Reducing the fraction

58 f=Fraction(TotList [1][0] , TotList [1][1])

59 TotList [1][0]=f.numerator

60 TotList [1][1]=f.denominator

61 weightList [0]=f.numerator

62 weightList [1]=f.denominator

63 # Design choice , one weight may not be more than 5 times the other weight

64 if (weightList [0]- weightList [1]) >=5:

65 weightList [0]= weightList [0]-1

66 elif (weightList [1]- weightList [0]) >=5:

67 weightList [1]= weightList [1]-1

68 # Output

69 print(newcwnd)

70 print(weightList)

After the python script is done, the bash script updates the routing table
with the newly calculated weights. This can be seen in Listing 4.6.

Listing 4.6: Get cwndfile.dat

41 # Output from python script

42 Alloldcwnd=$(cat temp.txt | head -n1 | sed 's/[][]//g' | sed s/,//g)

43 Allweightlist=$(cat temp.txt | tail -n +2 | sed 's/[][]//g' | sed s

/,//g)

44 # Updating the variables

45 oldcwnd [0]=$(echo $Alloldcwnd | awk '{ print $1}')

46 oldcwnd [1]=$(echo $Alloldcwnd | awk '{ print $2}')

47 weightlist [0]=$(echo $Allweightlist | awk '{ print $1}')

48 weightlist [1]=$(echo $Allweightlist | awk '{ print $2}')

49 # Setting the weights

50 Weight1=$(echo $Allweightlist | awk '{ print $1}')

51 Weight2=$(echo $Allweightlist | awk '{ print $2}')

52 # For testing data

53 echo ${interList[@]} >> ./ Actualtests/Five2sMultiPlus.txt

54 echo ${Alloldcwnd[@]} >> ./ Actualtests/Five2sMultiPlus.txt

55 echo ${Allweightlist[@]} >> ./ Actualtests/Five2sMultiPlus.txt

56
57 rm cwndfile.dat

58 # Update routing tables with new weights

59 ./ CreateTables.sh

60 else

61 # Just to verify the script is running :-)

62 echo "No file"

63 sleep 1

64 fi

65 done

24 Chapter 4. Implementation

In this chapter the system overview figure was presented, and the implementa-
tion of the system was described. The following chapter will evaluate the system,
by performing a series of tests as specified in 2.2.

Chapter 5

Test

In this chapter the tests specified in section 2.2 will be performed. In order to
automate the tests, a script has been developed. The following section will describe
this script.

5.1 Test script

In order to generate traffic a script has been developed. The script begins
by making the folder of the current test. After this a for loop runs 5 file
uploads, in parallel. This is done clients times. The script can be seen in
Listing 5.1.

Listing 5.1: Obtaining and propagating the CWND.

1 #!/bin/bash

2 Port =10000

3 Port2 =10100

4 clients =50

5 b=1024

6 c=2048000

7 lim =2000

8 delay=1

9 FolderName="SingleAAU -b-${b}-c-${c}_clients -${clients}_sleep_${delay}"

10
11 mkdir $FolderName

12
13 for ((i=1; i<= $clients; i++))

14 do

15 let Port=$Port+1

16 let Port2=$Port2 +1

17 ../../ DropUploader.sh -f ~/. dropbox_uploader -q upload 20130607 - ipfw3.tgz

temp.tgz

18 ./ tcpshoot -b $b -c $c -f ./ $FolderName/"throughput_${Port}.log" -p $Port

-s 192.38.55.84 &

25

26 Chapter 5. Test

19 ./ tcpshoot -b $b -c $c -f ./ $FolderName/"throughput_${Port2}.log" -p

$Port2 -s 192.38.55.131 &

20 scp 20130607 - ipfw3.tgz server2@192 .38.55.84:/ home/server2/Desktop &

21 scp 20130607 - ipfw3.tgz jais@192 .38.55.131:/ home/jais/ &

22 sleep $delay

23 done

24 wait

25 echo 'done '

This generates 5 flows of approximately 2 mB simultaneously.

5.2 Test results

In this section some of the results of the tests will be presented. The plots
not shown in this section can be found in Appendix B.

Test 1

In this test one link was used and limited to 2 mbps. Figure 5.1 shows the
throughput over time. It shows a steady value of a little more than 2 mbps.

0 500 1000 1500 2000 2500

Time [s]

0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t [

b/
s]

×106 Single_connection_2000mbps Raw

Figure 5.1: .

Figure 5.2 shows the PDF of the throughput. Again it can be seen that
the most occurring value is a little more than 2 mbps.

The results of this test is as expected. The throughput is approximately
2 mbps.

5.2. Test results 27

0 0.5 1 1.5 2

Bandwidth [bps] ×106

0

1

2

3

4

5

6

7

8
×10-6 Single_connection_2000mbps PDF

Figure 5.2: .

Test 2

In this test one link was used and limited to 6 mbps. Figure 5.3 shows the
throughput over time. It shows a steady value of a little more than 6 mbps,
with some spikes at approximately 7 mbps.

Figure 5.4 shows the PDF of the throughput. Again it can be seen that
the most occurring value is a little more than 6 mbps.

The results of this test is as expected. The throughput is approximately
6 mbps.

Test 3

In this test two links were used and limited to 2 and 4 mbps. The test
was performed without updating the weights. This means that the weights
remain 1 and 1 throughout the entire test. Figure 5.5 shows the throughput
over time. In the beginning of the test, the throughput reaches a little more
than 6 mbps, but after some time, the throughput decreases to 4 mpbs, with
gaps of 0 to 1 mbps.

Figure 5.6 shows the PDF of the throughput. The PDF in this case shows
a big spike at 4 mbps, with more smaller spikes below 4 mbps.

These results shows that the routing mechanism provides a performance

28 Chapter 5. Test

0 100 200 300 400 500 600 700 800

Time [s]

0

1

2

3

4

5

6

7
T

hr
ou

gh
pu

t [
b/

s]
×106 Single_connection_6000mbps Raw

Figure 5.3: .

0 1 2 3 4 5 6 7

Bandwidth [bps] ×106

0

0.5

1

1.5

2

2.5

3
×10-6 Single_connection_6000mbps PDF

Figure 5.4: .

increase when compared to the test with 2 mbps.

5.2. Test results 29

0 500 1000 1500 2000 2500 3000 3500 4000

Time [s]

0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t [

b/
s]

×106 No_intelligence Raw

Figure 5.5: .

0 1 2 3 4 5 6

Bandwidth [bps] ×106

0

1

2

3

4

5

6
×10-7 No_intelligence PDF

Figure 5.6: .

Test 4

In this test two links were used and limited to 2 and 4 mbps. In this test
the algorithm for setting the weights are enabled. Figure 5.7 shows the

30 Chapter 5. Test

throughput over time. In the beginning of the test, the throughput reaches
a little more than 6 mbps, but after some time, the throughput decreases
with spikes both at 2 and 4 mbps.

0 500 1000 1500 2000 2500

Time [s]

0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t [

b/
s]

×106 Intelligent_Routing Raw

Figure 5.7: .

Figure 5.8 shows the PDF of the throughput. In this test the majority
of the throughput is 2 mbps, but 4 mbps is also represented with a high
number of data points.

These results show that the routing algorithm does not increase the
throughput significantly compared to test 3 where the routing method is
applied without the routing algorithm.

These results will be further discussed in the following chapter.

5.2. Test results 31

0 1 2 3 4 5 6

Bandwidth [bps] ×106

0

1

2

3

4

5

6

7
×10-7 Intelligent_Routing PDF

Figure 5.8: .

Chapter 6

Conclusion

6.1 Conclusion

The Internet in the rural areas of Denmark, is lacking speed. This can be
solved by utilising more connections and aggregating the throughput. This
lead to the problem statement:

How can a system that aggregates multiple connections, intelligently be
developed and implemented.

In the initial analysis, the system was analysed which lead to Figure 6.1.

Figure 6.1: This figure illustrates how the system will look.

After the initial analysis and design the system was implemented. The
implementation was done in some bash scripts and a python script. These
were described in chapter 4. After the system was implemented, it was
tested. These tests showed that utilising two connections can improve the

33

34 Chapter 6. Conclusion

speed compared to using only one of the connections. However when ap-
plying the intelligent routing algorithm, the throughput was not increased.
The reason for this is twofold. The first reason is that the amount of data
transmitted over the two connections is congesting both. If both connec-
tions are congested, both will eventually be assigned a weight of 1. This
is essentially the same as not applying any intelligence. The second reason
is the amount of unique IP pairs. In the test only 3 unique IP pairs were
used. This means that one connection will transmit 2 of these pairs, while
the other will handle the last. The connection handling the two pairs, will
be congested faster. The only way to control how many flows are assigned
to the connections is via the weights. Since the weights will remain 1 as de-
scribed above, the connection that is assigned the first pair, will also get the
third. This can result in the connection with the worst performance getting
the most flows.

6.2 Future work

In order to improve this system, a number of steps can be taken. The
method presented in 3.3 needs to be implemented, such that the end user
can use the system as is, without having to install and run the script that
propagates the CWND. The algorithm that calculates the weights, should
be upgraded to be able to handle more than two connections, while still
being able to reduce the weights and maintaining the ratio between them.
In addition to this, the system should be deployed in a real setup, and tested
in a real life scenario. As the performance can only be measured on TCP
traffic, the end user must be generating some TCP traffic for the system to
route the traffic intelligently. Another way of measuring the performance,
which also takes UDP traffic into account should be applied.

Bibliography

[1] Gizis et al. Network Address Translating router for mobile networking. https:
//docs.google.com/viewer?url=patentimages.storage.googleapis.com/

pdfs/US20130346620.pdf. 2013.

[2] Jose G. Lopez et al. Intelligent Farming. Dec. 2015.

[3] The Danish Business Authority. Broadband Mapping 2013. http://w2l.dk/
file/475201/broadband-mapping.pdf. 2013.

[4] Olivier Bonaventure. Commercial usage of Multipath TCP. http://blog.multipath-
tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.

html. 2014.

[5] Olivier Bonaventure, Mark Handley, and Costin Raiciu. “An overview of
Multipath TCP”. In: USENIX login; (2012).

[6] The Apache Software Foundation. SSL/TLS Strong Encryption: FAQ. http:
//httpd.apache.org/docs/2.0/ssl/ssl_faq.html. 2013.

[7] Raj Jain and Shawn A. Routhier. “Packet Trains–Measurements and a New
Model for Computer Network Traffic”. In: IEEE (1986).

[8] Kevin Lai. “Measuring Link Bandwidths Using a Deterministic Model of
Packet Delay”. In: SIGCOMM ’00 (2000).

[9] M. Wesserman X. Xue D. Zhang N. Leymann C. Heidemann. GRE Notifica-
tions for Hybrid Access draft-lhwxz-gre-notifications-hybrid-access-00. Dec. 2014.
url: https://tools.ietf.org/html/draft-lhwxz-gre-notifications-
hybrid-access-00.

[10] Christophe Diot Jim Kurose Don Towsley Sharad Jaiswal Gianluca Iannac-
cone. “Inferring TCP Connection Characteristics Through Passive Measure-
ments”. In: INFOCOM 2004 (2004).

[11] Christoph Simon. Howto to use more than one independent Internet connection.
2001. url: {http://ja.ssi.bg/nano.txt}.

[12] Viprinet. Price list. http://www.wiredbroadcast.com/downloads/viprinet_
price_list_gbp_09_15.pdf. 2015.

35

https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US20130346620.pdf
https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US20130346620.pdf
https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US20130346620.pdf
http://w2l.dk/file/475201/broadband-mapping.pdf
http://w2l.dk/file/475201/broadband-mapping.pdf
http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html
http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html
http://blog.multipath-tcp.org/blog/html/2015/12/25/commercial_usage_of_multipath_tcp.html
http://httpd.apache.org/docs/2.0/ssl/ssl_faq.html
http://httpd.apache.org/docs/2.0/ssl/ssl_faq.html
https://tools.ietf.org/html/draft-lhwxz-gre-notifications-hybrid-access-00
https://tools.ietf.org/html/draft-lhwxz-gre-notifications-hybrid-access-00
{http://ja.ssi.bg/nano.txt}
http://www.wiredbroadcast.com/downloads/viprinet_price_list_gbp_09_15.pdf
http://www.wiredbroadcast.com/downloads/viprinet_price_list_gbp_09_15.pdf

36 Bibliography

[13] Viprinet.com. The vipirnet principle. https://www.viprinet.com/en/technology/
viprinet-principle. 2006.

https://www.viprinet.com/en/technology/viprinet-principle
https://www.viprinet.com/en/technology/viprinet-principle

Appendix A

Create tables

1 #!/ bin/bash

2 # Clear stuff

3 iptables -F

4 ip route flush cache

5 #ip route flush table main

6 ip route flush table 222

7 ip route flush table 201

8 ip route flush table 202

9
10 #service network -manager restart

11 #sleep 5

12 # Setting up IP-Tables:

13 iptables -t nat -A POSTROUTING -o $IFE1 -s $NWI/$NMI -j SNAT --to $IPE1

14 iptables -t nat -A POSTROUTING -o $IFE2 -s $NWI/$NMI -j SNAT --to $IPE2

15
16 iptables -t nat -A POSTROUTING -o $IFE1 -s $NWI/$NMI -j MASQUERADE

17 iptables -t nat -A POSTROUTING -o $IFE2 -s $NWI/$NMI -j MASQUERADE

18
19 # Making firewall stateful:

20 iptables -t filter -N keep_state

21 iptables -t filter -A keep_state -m state --state RELATED ,ESTABLISHED \

22 -j ACCEPT

23 iptables -t filter -A keep_state -j RETURN

24
25 iptables -t nat -N keep_state

26 iptables -t nat -A keep_state -m state --state RELATED ,ESTABLISHED \

27 -j ACCEPT

28 iptables -t nat -A keep_state -j RETURN

29
30 # More statefulness:

31 iptables -t nat -A PREROUTING -j keep_state

32 iptables -t nat -A POSTROUTING -j keep_state

33 iptables -t nat -A OUTPUT -j keep_state

34 iptables -t filter -A INPUT -j keep_state

35 iptables -t filter -A FORWARD -j keep_state

36 iptables -t filter -A OUTPUT -j keep_state

37
38 # Init loopback:

37

38 Appendix A. Create tables

39 ip link set lo up

40 ip addr add 127 .0.0.1 /8 brd + dev lo

41
42 ip link set $IFI up

43 ip addr add $IPI/$NMI brd + dev $IFI

44 ip rule add prio 50 table main

45 ip route del default table main

46
47 ip link set $IFE1 up

48 ip addr flush dev $IFE1

49 ip addr add $IPE1/$NME1 brd $BRD1 dev $IFE1

50
51 ip link set $IFE2 up

52 ip addr flush dev $IFE2

53 ip addr add $IPE2/$NME2 brd $BRD2 dev $IFE2

54
55 ip rule add prio 222 table 222

56 #ip route add default table 222 proto static \

57 # nexthop via $GWE1 dev $IFE1 \

58 # nexthop via $GWE2 dev $IFE2

59
60 ip rule add prio 201 from $NWE1/$NME1 table 201

61 ip route add default via $GWE1 dev $IFE1 src $IPE1 proto static table 201

62 ip route append prohibit default table 201 metric 1 proto static

63
64 ip rule add prio 202 from $NWE2/$NME2 table 202

65 ip route add default via $GWE2 dev $IFE2 src $IPE2 proto static table 202

66 ip route append prohibit default table 202 metric 1 proto static

67
68 ip route add default table 222 proto static \

69 nexthop via $GWE1 dev $IFE1 weight $Weight1 \

70 nexthop via $GWE2 dev $IFE2 weight $Weight2 \

Appendix B

Test results

B.1 Single connection limited to 2 mbps

0 0.5 1 1.5 2 2.5

Throughput [b/s] ×106

0

0.2

0.4

0.6

0.8

1

F
(x

)

Single_connection_2000mbps CDF

Figure B.1: .

39

40 Appendix B. Test results

0 0.5 1 1.5 2 2.5

Throughput [b/s] ×106

0

20

40

60

80

100

120
Single_connection_2000mbps Histogram

Figure B.2: .

0 1 2 3 4 5 6 7 8

Throughput [b/s] ×106

0

0.2

0.4

0.6

0.8

1

F
(x

)

Single_connection_6000mbps CDF

Figure B.3: .

B.2. Single connection limited to 6 mbps 41

0 1 2 3 4 5 6 7 8

Throughput [b/s] ×106

0

20

40

60

80

100

120
Single_connection_6000mbps Histogram

Figure B.4: .

0 1 2 3 4 5 6 7

Throughput [b/s] ×106

0

0.2

0.4

0.6

0.8

1

F
(x

)

No_intelligence CDF

Figure B.5: .

B.2 Single connection limited to 6 mbps

B.3 Two connections no intelligence

B.4 Two connections with intelligence

B.5 Single connection limited to 4 mbps

42 Appendix B. Test results

0 1 2 3 4 5 6 7

Throughput [b/s] ×106

0

50

100

150

200

250

300

350

400
No_intelligence Histogram

Figure B.6: .

0 1 2 3 4 5 6 7

Throughput [b/s] ×106

0

0.2

0.4

0.6

0.8

1

F
(x

)

Intelligent_Routing CDF

Figure B.7: .

B.5. Single connection limited to 4 mbps 43

0 1 2 3 4 5 6 7

Throughput [b/s] ×106

0

50

100

150

200

250

300

350

400

450
Intelligent_Routing Histogram

Figure B.8: .

0 0.5 1 1.5 2 2.5

Throughput [b/s] ×107

0

0.2

0.4

0.6

0.8

1

F
(x

)

Single_connection_4000mbps CDF

Figure B.9: .

44 Appendix B. Test results

0 0.5 1 1.5 2 2.5

Throughput [b/s] ×107

0

20

40

60

80

100

120

140
Single_connection_4000mbps Histogram

Figure B.10: .

0 200 400 600 800 1000 1200

Time [s]

0

1

2

3

4

5

6

7

T
hr

ou
gh

pu
t [

b/
s]

×106 Single_connection_4000mbps Raw

Figure B.11: .

B.5. Single connection limited to 4 mbps 45

0 0.5 1 1.5 2

Bandwidth [bps] ×107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
×10-6 Single_connection_4000mbps PDF

Figure B.12: .

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Coverage
	1.1.1 Measurement results

	1.2 Bandwidth aggregation
	1.3 Service awareness
	1.4 Commercial products
	1.5 Problem statement

	2 Initial analysis
	2.1 System architecture
	2.2 Test specification

	3 Design
	3.1 Routing method
	3.1.1 Multipath TCP
	3.1.2 Hybrid architecture
	3.1.3 Routing tables

	3.2 Performance measurement
	3.2.1 Passive performance measurement
	3.2.2 Active performance measurement

	3.3 Calculating the CWND
	3.4 Algorithm design

	4 Implementation
	4.1 Splitting the traffic
	4.2 Propagating congestion window from client to router
	4.3 Receiving the congestion window
	4.4 Calculating the weights

	5 Test
	5.1 Test script
	5.2 Test results

	6 Conclusion
	6.1 Conclusion
	6.2 Future work

	Bibliography
	A Create tables
	B Test results
	B.1 Single connection limited to 2 mbps
	B.2 Single connection limited to 6 mbps
	B.3 Two connections no intelligence
	B.4 Two connections with intelligence
	B.5 Single connection limited to 4 mbps

