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propagation patterns. This has been stud-

ied in time domain. The used frequencies

will be representative for man-made envi-

ronmental vibrations. Firstly, the basic

theory is explained and based on this the-

ory, a simple model is described for sur-
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Synopsis:

Dette projekt består af en dynamisk

analyse af Jord-Fundament Interaktion,

dvs. Jord-Struktur-Interaktion (JSI)

og Struktur-Jord-Struktur Interaktion

(SJSI). Formålet med projektet er at stud-

ere forskellige bølge udbredelses mønstre.

Dette er blevet undersøgt i tids domæne.

De anvendte frekvenser repræsenterer

menneskeskabte, miljømæssige vibra-

tioner. Først, er det grundlæggende teori

forklaret og baseret på denne teori, er

en simpel model for over�ade bølger

beskrevet. Dernæst, er �nite element

metoden beskrevet, hvorefter disse mod-

eller er sammenlignet med hinanden.

Efter der er redegjort for grundlæggende

egenskaber og antagelser, er de faktiske

mønstre på jordover�aden undersøgt i

tids domæne. Forskellige parametre er

analyseret og deres respektive ind�ydelse

på resultatet er forklaret. Den sidste

del af rapporten fokuserer på JSI, hvor

fundamentet er påvirket med forskellige

kon�gurationer af puls og harmonisk

belastning og det vertikale respons af

dette er analyseret i en afstand, ved et

andet fundament. Dette resulterer i et

forslag om at simpli�cere modellen.

Rapportens indhold er frit tilgængeligt, men o�entliggørelse (med kildeangivelse) må kun ske efter aftale

med forfatterne.
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Preface

This project contains a master thesis, called "Dynamic analysis of Soil-Foundation In-

teraction." written by student in the 4th semester of the M.Sc. in Structural and Civil

Engineering at the Faculty of Engineering and Science at Aalborg University. The project

was conducted from 25 January 2016 till 3 June 2016. The aim of the project is to perform

a dynamic analysis of soil-foundation interaction. This project is divided in a basic knowl-

edge part, a parameter study and the actual soil-foundation interaction study. The �nal

model results has been partly published as, Appendix A, "In�uence of foundation type

and soil strati�cation on ground vibration - A parameter study". For the understanding

of this project, knowledge of dynamics, �nite element model and geotechnical engineering

are required.

Reading guide

This project contains a main report and appendices. The main report contains the basics,

assumptions, method and re�ection. The appendix contains the published paper (Inter-

noise Paper), which is based on this project. As external appendix, the required PLAXIS

log �les to recreate the data are attached where possible. The total library of PLAXIS

data is over 300 Gb, thus the appendix will include instructions for PLAXIS to recreate the

data �les. Also the MATLAB �les are included in this external appendix. The Harvard

method is used for source references. The book reference is indicated by author, year of

publication, ISBN-number, edition and publisher. Tables, equations and �gures are num-

bered in accordance with each chapter and sections, if they are without a reference to a

source, it has been made by myself. Websites are indicated by title, author, URL and date

of download. All the sources have been collected in a bibliography in an alphabetical order.
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Chapter 1
Introduction

It is expected that world's urban population is growing in the following years. Most of

this growth is expected in the developing countries, mainly Africa and Asia as seen in

Figure 1.1. The more populated urban area might result in a heavier used infrastructure

by vehicles or a more dense built area in the cities.



      

    

City Population
500 - 750  thousand
750 - 1000  thousand
1-5 million
5-10 million
10 million or more

Growth Rate
× <1%
× 1-3%
× 3-5%
× 5% +

Note: Designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on 
the part of the Secretariat of the United Nations concerning the legal status of any country, territory or area, or of its authorities, 
or concerning the delimitation of its frontiers or boundaries.

Figure 1.1: Population growth in urban areas worldwide [United Nations, Department of
Economic and Social A�airs, 2015].

Movement of vehicles generates a dynamic load on the topsoil. These dynamic loads

cause waves in the soil. Every type of vehicle has its own load and frequency on which

waves propagate. These frequency speci�c waves in�uence the surrounding soil. In the

surrounding soil, the waves will propagate with a speed speci�ed by the soil properties.

Similar to tra�c, machinery or people can produce dynamic loads and waves in a built

environment, which will propagate throughout the structure of the building to the sur-

rounding soil [Sahar & Narayan, 2016]. Both tra�c and machinery waves can be described

as man-made vibrations. Figure 1.2 illustrates waves in the soil from di�erent sources.

Every type of structure in the surrounding area can be build on shallow footings or deep
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foundations depending on the subsoil conditions. The man-made vibration-induced wave

which is spread through the soil will in�uence these type of foundations. How this wave

will propagate and reach a structure is complex to calculate.

Figure 1.2: Environmental man-made vibrations in soils.

In this thesis, the wave-induced problem is simpli�ed to an equivalent �nite-element model.

A three-dimensional numerical model will be used for an appropriate estimation of the

soil behaviour. This model will be veri�ed with theories known for wave propagation.

Subsequently parameters that might in�uence the result are determined. The aim of this

project is to investigate di�erent wave propagation patterns for slab and pile foundations

and to further discuss the possibility of simplifying the calculations.
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Chapter 2
Wave propagation

Vibrations happens in every type of elastic medium. These vibrations will propagate

through the soil in a speci�c wave pattern. This chapter will explain the basic theory

of wave propagation through the soil. Firstly, the basics of the governing equations are

explained in the equation of motions section. Secondly, this theory is used to describe the

body waves, surface waves, interface waves and the one-dimensional wave. Subsequently

a comparison is made between the di�erent type of waves. And �nally, refraction and

re�ection is introduced for layered soils.

A wave propagates through every medium. These waves are generated by a speci�c source.

The source for elastic media can be an earthquake or so-called man-made vibration. In both

cases the propagation of waves from the source shows a similar behaviour, as illustrated

in Figure 2.1. These waves or vibrations have in�uence on structures and people. At low

frequencies it might be felt by people [Plagenhoef, 1992] or it can hit the eigen frequency

of a structure [Lombaert & Degrande, 1999].

Wavefront

Source

Figure 2.1: Theoretical wave propagation.

Figure 2.1 illustrates mainly the behaviour of body waves in homogeneous soils. This is the

main assumption in the theory, described in this chapter. Some waves only exist in layered

soils, such as the Love wave. Thus, where required, this theory is extended to layered soils.

In addition, layered soils might introduce other behaviour of waves due to re�ection and

refraction.
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2.1. Equations of motion

2.1 Equations of motion

In the previous part theoretical wave fronts are showed. These wave fronts are based on

the theory related to the equation of motions. These equations are described further in

this section.

The equations of motion describes the behaviour of a system as function of time and spatial

coordinates. In this project it is used to describe the wave propagation.

For the formulation of the equations of motion in an in�nite linear-elastic domain is es-

tablished. Within this domain an in�nitesimal cube with dx · dy · dz as dimensions exists,

illustrated in Figure 2.2. The cubic is homogeneity, which implies the elasticity modulus

E and the mass density ρ are independent on position.

dx

d
z x,u

y,v

z,w

𝜎𝑥𝑥 +
𝜕𝜎𝑥𝑥
𝜕𝑥

𝑑𝑥𝜎𝑥𝑥

𝜏𝑥𝑦

𝜏𝑥𝑦 +
𝜕𝜏𝑥𝑦

𝜕𝑦
𝑑𝑦

𝜏𝑥𝑧 +
𝜕𝜏𝑥𝑧
𝜕𝑧

𝑑𝑧

𝜏𝑥𝑧

Figure 2.2: Stresses in the x-direction on an in�nitesimal cube.

There are two types of motion; kinematics and dynamics. In the following solution of the

equation, dynamic motion is used, which takes into account force, momentum and particle

acceleration. The used di�erential equation is Newton's second law of motion. Newton's

second law describes

~F = m~a, (2.1)

with ~F as force vector, m as mass and ~a as acceleration vector.

Newton's second law is only valid for a constant mass. Due to change of spacial coordinates,

6 Chapter 2. Wave propagation



2.1. Equations of motion

the mass does not change. Applying Newton's second law on the cube in x-direction

illustrated in Figure 2.2, and applying a body force b that acts on the mass ρ ·(dx · dy · dz),
the equilibrium equation(

σxx +
∂σxx
∂x

dx

)
· dy · dz − σxx · dy · dz

+

(
τxy +

∂τxy
∂y

dy

)
· dx · dz − τxy · dx · dz

+

(
τxz +

∂τxz
∂z

dz

)
· dx · dy − τxz · dx · dy

+ρbx · (dx · dy · dz) = ρ · (dx · dy · dz) · ∂
2u

∂t2
,

(2.2)

can be obtained. A similar expression can be made for directions y and z. With manipu-

lating the equation and rewriting it in index notation it becomes

ρüi = σij,j + ρbi. (2.3)

By assuming the material as Linear-Elastic, the stresses can be expressed as strains based

on Hooke's law

σij = Eijklεkl, (2.4)

where Eijkl is the elasticity tensor and εkl a strain tensor. The elasticity tensor is symmetric.

This equation is known as the physical condition. The geometrical condition is the relation

between strains and displacement, when assuming small deformations it is known as

εij =
1

2
(ui,j + uj,i) . (2.5)

When the stress-strain relationship assumed to be isotropic, Equation 2.4 can be further

simpli�ed to [Andersen, 2006]

σij = λuk,kδij + 2µεij , (2.6)

with λ and µ as Lamé constants, related to Young's modulus E and Poisson ratio ν

λ =
νE

(1 + ν)(1− 2ν)
,

µ =
E

2(1 + ν)
,

(2.7)

and δij as Kronecker delta,

δij =

1 for i = j

0 for i 6= j.
(2.8)

By substituting all known conditions in Equation 2.3, it can be rewritten to obtain the

Chapter 2. Wave propagation 7



2.2. Body waves

strong form, also known as Navier equations;

ρüi = (λ+ µ)uj,ij + µui,jj + ρbi. (2.9)

From Navier equations, the elastic wave propagation in terms of velocity can be expressed.

This process is explained in following section.

2.2 Body waves

In an elastic soil are two di�erent waves propagating. These waves are dilatational and

rotational waves. The �rst wave or primary wave (P-wave) is a dilatational wave. This

wave is obtained by di�erentiating Equation 2.9, so that

ρ
∂2ε

∂t2
= (λ+ µ)∇2ε+ µ∇2ε, (2.10)

and wherein ε is the divergence of the the displacement vector

ε = uk,k (2.11)

and the Laplace operator ∇ is

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (2.12)

and with rearranging Equation 2.10 to

∂2ε

∂t2
= V 2

p ∇2ε, (2.13)

the variable Vp is introduced as the phase velocity of the �rst wave, showed in

Vp =

√
λ+ 2µ

ρ
. (2.14)

The secondary wave (S-wave) is a rotational wave, based Equation 2.9, the secondary wave

is obtained by applying the curl on the displacement vector, so that

ρ
∂2Ωi

∂t2
= µ∇2Ωi, (2.15)

and wherein the curl is de�ned as

Ωi =
1

2

(
εijk

1

2
(uj,k − uk,j)

)
, (2.16)

8 Chapter 2. Wave propagation



2.3. Surface waves

similar to the P-wave, Equation 2.15 can be rearranged and wherein the shear wave phase

velocity Vs denotes

Vs =

√
µ

ρ
. (2.17)

2.3 Surface waves

In previous section the body waves are explained. Figure 2.3 illustrates the propagation

direction of two wave types, the Rayleigh wave and the Love wave. Firstly the Rayleigh

wave is explained and afterwards the Love wave.

Figure 2.3: Propagation direction of Rayleigh and Love wave.

On free surface, there is a possibility of mixing two body waves (P- and S-wave). This

wave is described as a Rayleigh wave. The Rayleigh wave travels in a semi-in�nite body,

where the particle velocity of the wave close to the surface is relatively high compared to

particle velocity further away from the surface [Pichugin, 2008].

Lord Rayleigh described the velocity in the equation

(
2− V 2

r

)2
= 4
√

1− V 2
r

√
1− χV 2

r , (2.18)

wherein Vr is described as the Rayleigh wave phase velocity and the non-dimensional χ is

de�ned as

χ =
V 2
s

V 2
p

. (2.19)

With rearranging this equation, the Rayleigh wave is expressed with

Krs =
Vr
Vs
, (2.20)

as parameter of the secondary wave Vs:

K6
rs − 8K4

rs +
(
24− 16χ2

)
K2
rs + 16

(
χ2 − 1

)
= 0. (2.21)

Krs is a factor what has in Equation 2.21 six non-zero roots. However, only one of these

Chapter 2. Wave propagation 9



2.3. Surface waves

roots is valid. For the Poisson ratio interval ν ∈ [0,0.5], a real material, only one root is

real and acceptable, which is lower than Krs < 1.0, since the Rayleigh wave phase velocity

is lower than the S-wave phase velocity.

With knowing the Rayleigh wave phase velocity, the velocity is used to describe the particle

motion of the soil. A Rayleigh wave propagates on a two dimensional plane with a phase

velocity Vr and in the x-direction [Heaton, 2005]. When assuming an elastic half-space,

the motion equations can be considered as

ux = R (A exp (−bz) exp [ikr (x− Vrt)]) ,

uy = 0,

uz = R (B exp (−bz) exp [ikr (x− Vrt)]) ,

(2.22)

where R denotes the real part of the complex number, kr the Rayleigh wave number, and

the real part b, which is positive. A solution to this real part is expressed as

[
V 2
p b

2 −
(
V 2
p − V 2

r

)
k2
r

] [
V 2
s b

2 −
(
V 2
s − V 2

r

)
k2
r

]
= 0. (2.23)

The constants A and B can be obtained by the ratios correspond to the roots of b. Where,

b1 = kr

(
V 2
r
V 2
p

)4
, b2 = kr

(
V 2
r
V 2
s

)4
, (2.24)

and the ratio is de�ned as
B
A = − b1

ikr
, B

A = ikr
b2
. (2.25)

By applying the constants, Equation 2.22 yields

ux = Ckr

(
exp (−qz)− 2qs

s2 + k2
r

exp (−sz)
)

sin (ωt− krx) ,

uz = Cq

(
exp (−qz)− 2k2

r

s2 + k2
r

exp (−sz)
)

sin (ωt− krx) ,

(2.26)

where C is height of surface at x = 0, t = 0, ω is the angular frequency, and q and s are

factors, depending on

q2

k2
r

= 1− χ−2K2
rs,

s2

k2
r

= 1−K2
rs.

(2.27)

Rayleigh waves can originate from two di�erent sources, a line source and a point source. At

a line source, plane Rayleigh waves exists, where it from a point source circular spread from

its origin. With the equation above, it is assumed that the wave propagates continuously

at the same amplitude. Due to the geometrical spreading of the wave, the amplitude of

10 Chapter 2. Wave propagation



2.3. Surface waves

the wave decrease exponentially with 1/
√
r, where r is the radius from the source point.

This is illustrated in Figure 2.4, wherein Equation 2.26 is solved.

0 5 10 15

Distance from point source [m]

-6

-4

-2

0

2

z 
[m

]

Harmonic motion Rayleigh wave

u
z

Particle motion

Figure 2.4: Theoretical surface motion of Rayleigh wave.

Figure 2.4 shows the particle path of the harmonic Rayleigh wave in homogeneous soil. The

particle motion at free surface is an ellipse, with the vertical component about 1.5 times the

horizontal amplitude. The horizontal particle motion is π/2 out of phase from the vertical

component. Rayleigh waves can be observed in both vertical and radial components on

a seismograph. A characteristic Rayleigh wave is known as retrograde particle motions,

the particles are moving counter clockwise for a wave propagating towards the right. At

greater depths, the particle motion is reversed, i.e. prograde.

Waves propagating in traverse direction might occur in layered soils. This traverse wave

is called the Love wave. A Love wave only occurs in the surface layer when the soil is less

sti� compared to the underlying half-space below

G1

ρ1
� G2

ρ2
, (2.28)

where G1 is the shear modulus of the top layer, and G2 of the underlying layer. ρ1 denotes

the mass density of the top layer, and ρ2 for the bottom. The phase velocity Vl is frequency

depended and can be expressed as

tanωH

(
1

V 2
s;1

− 1

V 2
l

) 1
2

=
G2

G1

√
1
V 2
l
− 1

V 2
s;2√

1
V 2
s;1
− 1

V 2
l

, (2.29)

where H denotes the soil layer depth and Vs;1 the S-wave phase velocity for the top layer

and Vs;2 for the underlying. The particle motion of a Love wave in x-direction was described

Chapter 2. Wave propagation 11



2.4. Interface waves

by Love [1929] as

uy =

{
A1 exp

[
−klz

√
1−

V 2
l

V 2
s;1

]
+A′1 exp

[
kz

√
1−

V 2
l

V 2
s;1

]}
exp [i (klx− ωt)] , (2.30)

in the top layer and

uy = A2 exp

[
−klz

√
1−

V 2
l

V 2
s;2

]
exp [i (klx− ωt)] , (2.31)

in the layer below. The love wave should satisfy Navier equations Equation 2.9 (p. 8),

motion uy which is continues at z = 0, the stress σyz which is continues as z = 0, and

σyz = 0 at z = −H. The constants A1, A
′
1 (top layer) and A2 (underlying layer) can be

solved by applying these boundary conditions.

The phase velocity of a low frequency Love wave tends to be similar to the high-velocity half

space. Whereas high frequency waves are vice versa. A Love wave might be generated at a

point source. If this happens, the waves are observed as transverse waves in the component

of motions. These type of waves have their motion at the surface and spreads circularly

from the point of origin. The amplitude decay with the same ratio as the Rayleigh wave,

1/
√
r.

2.4 Interface waves

In addition to the body waves and surface waves, waves at a certain boundary might occur

too. These waves are called the Stonely and Scholte wave. In this section, both wave types

are shortly explained.

The wave existing along a solid-solid interface is called a Stonely wave. A Stonely wave

can be measured by the displacement of an interface [Flores-Mendez et al., 2012]. The

energy in the wave decays away from the interface. The Stonely wave is a complex wave

to de�ne. This wave is related to the primary and secondary wave in both solids existing

at the interface [Achenbach, 1973]. The velocity proportional to the secondary wave speed

can be obtained by

α2

[
1−

(
αKss

κ2

)2
] 1

2

R1 +

[
1−

(
Kss

κ1

)2
] 1

2 µ2

µ1
R2 = 0, (2.32)

wherein the relations between the secondary wave α and relation between primary and
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2.5. 1D bar wave

secondary wave κ are expressed as

α =
Vs
Vp
,

κ =
Vp
Vs
,

(2.33)

and the parameters R1 and R2 as

R1 =
(
2−K2

ss

)2 − 4

[
1−

(
Kss

κ

)2
] 1

2 (
1−K2

ss

) 1
2 ,

R2 =
(
2− α2K2

ss

)2 − 4

[
1−

(
αKss

κ2

)2
] 1

2 (
1− α2K2

ss

) 1
2 ,

(2.34)

these equations can be solved to obtain Kss, which is de�ned as the Stonely wave phase

velocity Vd proportional to the S-wave velocity of the top layer:

Kss =
Vd
Vs
. (2.35)

A wave propagating at a �uid-soil interface is called a Scholte wave. Scholte waves have a

wide range of applications and may exist in every type of �uid. The Scholte wave is based

on a range of experiments of the interaction between an inviscid �uid and an elastic solid.

According to Vinh [2013], the Scholte wave is related to the body wave velocities and the

properties of the �uid. The phase velocity is obtained by the following equation:

ρ∗

ρ
K2
fs

√
1− χKfs + (2−Kfs)

2
√

1− χ∗Kfs − 4
√

1−Kfs

√
1− χKfs

√
1− χ∗Kfs = 0,

(2.36)

where χ is the dimensionless relation between the primary and shear wave speed, χ∗ the
relation of the shear wave compared to the primary wave in the �uid, ρ is mass density of

the soil, ρ∗ mass density of the �uid and Kfs is the dimensionless velocity of the Scholte

wave as function of the S-wave speed

Kfs =
V 2
f

V 2
s

. (2.37)

2.5 1D bar wave

Pile foundations are often dimensioned as a one-dimensional (1D) beams. The theory for

this wave uses Equation 2.3 (p. 7), but only for one direction, in this case the x-direction.
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Using a linear relationship, the elasticity modulus becomes

E =
σ

ε
, (2.38)

and with substituting this equation in Equation 2.3 and Equation 2.5 (p. 7) it is expressed

as

ρük = Euk,kk,

ük = V 2
b uk,kk,

(2.39)

where the 1D bar phase velocity Vb denotes

Vb =

√
E

ρ
. (2.40)

2.6 Comparison of wave types

Four types of waves are discussed in previous sections; body waves, surface waves, interface

waves and the one-dimensional wave. The di�erent types of waves are related to each other

with a certain factor. This factor varies along the interval of ν ∈ [0,0.5], which is also

illustrated in Figure 2.5.
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Figure 2.5: Relative propagation speed in terms of Vs as function of Poisson ratio ν.

Figure 2.5 describes the relation proportional to the shear wave velocity. This S-wave

velocity can be measured in a laboratory and thus all other interesting wave speeds are

known from this graph. For the Scholte wave, the graph di�ers between di�erent densities

of �uids and thus this solution needs to be checked in di�erent situations. However, both
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2.7. Layered soils

fresh water and salty water are added into the �gure, what results in a slightly di�erent

value (≈ 5% o�set). The Love and Stonely wave are not included in this graph. This is

since those waves are depending on the di�erence in material properties between the two

layers at the interface.

For further investigation of dynamic soil-foundation interaction, this basic theory of waves

is used in deriving governing equations of the �nite element method. In homogeneous

soils, the main interest is based on the Rayleigh wave. When observing results in layered

media, a combination of several wave types might occur, due to re�ection and refraction at

interfaces between di�erent material densities, which is further explained in next section.

2.7 Layered soils

In previous part, the theory is explained as in�nite homogeneous medium. In reality soil

is bounded to possible inhomogeneous medium. When a wave, which propagates with

a certain speed, hits a boundary, the wave might re�ect or get transmitted. In a one

dimensional case this is explained as [Andersen, 2006]

ui(0,t) + ur(0,t) = ut(0,t), (2.41)

where u is the particle displacement divided into ui incoming, ur re�ected and ut trans-

mitted particle displacement.

Incomming wave Transmitted wave

Reflecting wave

x

Figure 2.6: Basic theory re�ecting and transmitted wave.

Based on Figure 2.6 and Equation 2.41, it can be mentioned that the velocity and stresses

should be equal on both sides, since the energy is fully transmitted or re�ected. Thus, the

following relation can be made

σi(0,t) + σr(0,t) = σt(0,t), (2.42)

where σ is wave stress. Since the wave is propagating in positive x-direction, σ(0,t) = zv(t),

whereas negative x-direction implies σ(0,t) = −zv(t). This results in

z1v
i(t) + z1v

r(t) = z2v
t(t), (2.43)
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2.7. Layered soils

with v denoting the particle velocity, respective for vi incoming, vr re�ected and vt trans-

mitted waves. And z as material impedance, i.e. zk = ρkVk, based on the mass density ρ

and the phase velocity V . Combining both equations, two additional parameters can be

obtained as re�ection Cr and transmission Ct coe�cients

Cr =
vr(t)

vi(t)
,

Ct =
vt(t)

vi(t)
,

(2.44)

and can be used to obtain an impedance mismatch. This impedance mismatch describes

the relation between two di�erent soils. A range of transmission and re�ection coe�cients

based on impedance mismatch is illustrated in Figure 2.7. As the impedance mismatch is

getting greater, a wave gets fully re�ected and not transmitted.
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Figure 2.7: Coe�cients in relation to impedance mismatch.

The solution above explains an one dimensional case, only this report uses three dimen-

sional models, thus this theory will be slightly modi�ed. An example is provided in Figure

2.8, wherein a wave is not perpendicular to a boundary. In this situation the incoming

wave triggers re�ected and refracted waves.
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Figure 2.8: Re�ection and refraction of body waves.

The ratio of waves which are transmitted can be obtained by Snell's law [Ni et al., 2011].

Snell's law describes the relation between angle of incident θ1 related to angle of refraction

θ2 with respect to the phase velocity of the di�erent materials V1 and V2

α =
V1

V2
=

sin θ1

sin θ2
. (2.45)
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Figure 2.9: Principle of Snell's law.
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Chapter 3
Soil-Pile interaction

The interaction between soil and piles is a complicated problem and has been researched

by many through the years. A more complicated situation occurs during vibration. Since

the pile interacts with both the surrounding soil and the soil on the end of the pile. The

dynamic soil-pile interaction is studied and explained in several models, such as the dynamic

Winkler model and several three-dimensional continuum models. Within next section some

obtained results of these models relevant to this project are explained.

3.1 Previous studies

Much studies uses the dynamic Winkler model. A model which explains the behaviour

of soil near a pile foundation. Based on the model proposed by Nogami & Novák [1976],

Yu et al. [2013] has studied the e�ect of sediments on bedrock. The pile is considered

rock-socketed, and the study focusses on vertical dynamic impedance at the head of the

pile. The increase of sediment, i.e. layer thickness, leads to signi�cant in�uence on the

vertical impedance at the pile head. It was observed that the ability of a pile to resist

dynamic vertical deformation was weakened. However, resistance was increased with the

increase of S-wave velocity.

Deng et al. [2014] uses this theory but instead of using a single impulsive force, a harmonic

force is introduced. In this study, the interacting soil is assumed to be viscoelastic material

and the governing equations are subjected to arbitrary harmonic dynamic force, based on

Bernoulli-Euler rod theory. Finally, a relation of the parameters of the pile end soil is

studied. A main statement is made that the pile end soil layer adjacent to the pile end

has signi�cant in�uence on the dynamic response at the pile head and the in�uence of the

thickness is critical. A note to this study is that the decrease of the pile length and increase

of the pile radius might be more remarkable at the pile head.

Padrón et al. [2012] describes a method for superposition pile groups versus slab footings,

with the use of a three-dimensional frequency domain elastodynamic BEM-FEM formu-

lation. It implements an elastodynamic analyses of piled embedded footings. The main

overview is that vertical responses decreases faster with piles by frequency than without

piles. But in overall the response of embedded footings provides a suitable estimate of the

piled behaviour.
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3.2. Finite element model

Cai et al. [2000] proposed with his study a three-dimensional �nite element subsystem

methodology with an advanced plasticity-based constitutive model for soils. It combines

di�erent methods for frame elements and solid elements. In this approach, cyclic behaviour

of soft clays and tangent matrices of soil properties are formulated separately and coupled

due to kinematic interaction. This method requires time domain seismic input, although it

has a limitation in multiple structures, and thus, this method can only be used for simple

structures. Furthermore, this theory focus on soil near foundation.

From this point of view, the interest remains with the main question, what will happen

at a certain distance from the pile, especially with layered soils, since most studies found

relations at or near the pile surface. For the use of this type of analysis, a �nite element

solver may be used, which is in a certain situations a valid solution.

3.2 Finite element model

For the numerical analysis, the �nite element is used. In this section the theory behind

the �nite element is explained for this particular case. For this �nite element model, the

following basic assumptions were made:

� The surrounding soil is isotropic and viscoelastic and can be extended towards in�nity,

the domain boundaries are viscous.

� There is no displacement occurring at the bottom of the domain.

� Dynamic motion is considered, static response due to gravity is neglected.

3.2.1 Strong and weak form

In order to perform a �nite element analysis, the �rst step is establishing a partial di�er-

ential equation, the strong form [Cook et al., 2007].

Volume

Exterior normal

X1

X3

X2

Figure 3.1: Arbitrary body with volume Ω and surface S.
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3.2. Finite element model

The strong from consists of a traction vector t and a boundary normal vector n. The

relation is as follow

ti = σijnj . (3.1)

Based on the strong form, expressed in Equation 2.9 (p. 8) the equation can be rewritten

with the use of Gauss' divergence theorem, wherein it is depending on the volume∫
Ω

(bi + σij,j − ρüi) dΩ = 0. (3.2)

The strong form is multiplied with a weight function δu(x,y,z) and integrate it over its

domain ∫
Ω
δuibidΩ +

∫
Ω
δuiσij,jdΩ−

∫
Ω
δuiρüidΩ = 0, (3.3)

with using the Green-Gauss theorem, the following expression is obtained∫
Ω
δuibidΩ +

∮
S
δuitidS −

∫
Ω
δui,jσijdΩ−

∫
Ω
δuiρüidΩ = 0. (3.4)

This can be rewritten in matrix notation, and thus the weak form results in∫
Ω

(∇̃U)TσdΩ +

∫
Ω
UTρüdΩ =

∮
S
UT tdS +

∫
Ω
UTbdΩ, (3.5)

which contains the following vectors

u =


ux

uy

uz

 , b =


bx

by

bz

 ,U =


δux

δuy

δuz

 , ∇̃U =



∂δux
∂x
∂δuy
∂y

∂δuz
∂z

∂δux
∂y

+
∂δuy
∂x

∂δuy
∂z

+ ∂δuz
∂y

∂δux
∂z

+ ∂δuz
∂x


. (3.6)

3.2.2 Shape-, Weight Functions and Sti�ness Matrix

Di�erent materials have their own respective shape and weight functions. However, not

every structural element has the same element. For example, when introducing a pile

foundation, two di�erent methods can be used:

� Pile foundation assumed as solid (solid-solid model).

� Foundation assumed as embedded beam (beam-solid model).

In all situations both methods are available, only a pile or beam is usually modelled as 1D
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3.2. Finite element model

structural element or 2D shell element, since 3D solid element requires more computational

e�ort.

To use computational power more e�ciently, several mesh types are combined. For the soil

a tetrahedron mesh is used with 10 nodes, the slab foundation uses a quadratic triangular

element (LST, 6 nodes) on top of the soil and for the pile a 3 node beam element penetrating

the soil is used. This beam element can be embedded in a solid element, i.e. crossing a

10-node tetrahedron in any arbitrary direction [Brinkgreve et al., 2015a].

X1

X2

X3

Beam (1D) Triangle (2D) Tetrahedron (3D)

N2

N3

N1

N1

N4

N2

N5 N3

N6

N1

N2

N5

N8

N6

N9

N7

N4

N10

N3

Figure 3.2: Di�erent types of elements used.

According to Galerkin's method, each point is determined relatively to the values of the

element when deformation happens. The determination can be obtained by interpolation.

Shape functions are used to carry out interpolation between the nodes of an element. The

displacement within an element can be described as u(x,y,z) = NU . Wherein the vector

U contains the displacements of a node within the element

U =
{
U1
x U1

y U1
z · · · Unx Uny Unz

}T
, (3.7)

and N is a matrix containing the shape functions

N =


N1 0 0 . . . Nn 0 0

0 N1 0 . . . 0 Nn 0

0 0 N1 . . . 0 0 Nn

 , (3.8)

wherein n is the number of nodes within an element. The shape functions for a 3 node

beam element are

N1 = −1
2(1− ξ)ξ N2 = 1

2(1 + ξ)ξ N3 = (1 + ξ)(1− ξ), (3.9)
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3.2. Finite element model

the 6 node triangular element

N1 = ζ (2ζ − 1) N2 = ξ (2ξ − 1) N3 = η (2η − 1)

N4 = 4ζξ N5 = 4ξη N6 = 4ηζ,
(3.10)

with ζ used as auxiliary coordinate, i.e. ζ = 1 − ξ − η. A 10 node tetrahedron element

consists of the following shape functions

N1 = (1− ξ − ηζ)(1− 2ξ − 2η − 2ζ) N2 = ζ(2ζ − 1) N3 = ξ(2ξ − 1)

N4 = η(2η − 1) N5 = 4ζ(1− ξ − η − ζ) N6 = 4ξζ

N7 = 4ξ(1− ξ − η − ζ) N8 = 4η(1− ξ − η − ζ) N9 = 4ηζ

N10 = 4ξη.

(3.11)

For the sti�ness matrix, the strain interpolation matrix is used ε(x,y,z) = ∇̃NU = BU .

This strain interpolation matrix is described as

B =



dN1

dx 0 0 . . . dNn

dx 0 0

0 dN1

dy 0 . . . 0 dNn

dy 0

0 0 dN1

dz . . . 0 0 dNn

dz

dN1

dy
dN1

dx 0 . . . dNn

dy
dNn

dx 0

0 dN1

dz
dN1

dy . . . 0 dNn

dz
dNn

dy

dN1

dz 0 dN1

dx . . . dNn

dz 0 dNn

dx


. (3.12)

Within the element, the derivation between local and global coordinates involves the Ja-

cobian J: 
∂Nn

∂ξ

∂Nn

∂η

∂Nn

∂ζ

 = J


∂Nn

∂x

∂Nn

∂y

∂Nn

∂z

 . (3.13)

The stress-strain relationship σ = Dε can be expressed with use of the �exibility matrix

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν

ν 1− ν ν 0

ν ν 1− ν
1−2ν

2

0 1−2ν
2

1−2ν
2


. (3.14)
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3.2. Finite element model

Finally, the sti�ness matrix can be obtained from

Ke =

∫
Ωe

BTDBdΩe, (3.15)

since the integrand varies over the element, numerical integration according to the Gauss

rule is recommended [Felippa, 2004]:

Ke =

∫
ζ

∫
η

∫
ξ
BTDBdξdηdζ,

Ke
ij ≈

∑
k

BT
i DBj detJwk,

(3.16)

wherein wk a weight function from the Gaussian interpolation function.

3.2.3 Soil-structure connection

The structures and the soil are only connected in the global sti�ness matrix. The structural

elements, slab foundation and pile foundation are coupled with a rigid interface. The struc-

ture (slab and pile foundation) and soil interface is considered as spring, this is modelled

as an extra thin layer around the nodes which interfere each other [Ports & Zdravkovic,

2001]. The two nodes are at the same position, but connected by a spring, the principle is

illustrated in Figure 3.3.

SoilStructure

Spring connection

Figure 3.3: Soil-structure connection.

Interaction of a spring connection is based on a three-node line element, which will couple

the nodes [Brinkgreve et al., 2015b]. The interaction is represented as skin traction t,

where the incremental process can be expressed as

ts = ts0 + ∆ts, (3.17)

where ts0 is the initial skin traction, and ∆ts is the incremental skin traction. The relation
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is obtained by

∆ts = Ts∆urel,

∆ts = Ts (∆up −∆us) ,

∆ts = Ts (Np∆vp −Ns∆vs) ,

(3.18)

where Ts denotes the material sti�ness, Np and Ns are matrices containing the shape

functions of respectively a structure and soil, ∆urel describes the incremental relative

particle displacement, and vp is the particle velocity of the structure and vs of the soil.

Using the virtual work priciple, the equations was discretised and described by Brinkgreve

et al. [2015b] as∫
S
δuTrel∆tsdS = δvTrel

∫
S
NT
relT

sNreldS∆vrel = Ks∆vrel, (3.19)

where

∆vrel =
{

∆vp ∆vs

}T
, (3.20)

and

Nrel =
[
Np −Ns

]
. (3.21)

The sti�ness matrixKs is obtained which contains the nodes that represents the interaction

between the elements. This sti�ness matrix is expressed as

Ks =

 ∫SNT
pT

sNpdS −
∫
SN

T
pT

sNsdS

−
∫
SN

T
s T

sNpdS
∫
SN

T
s T

sNsdS

 . (3.22)

3.2.4 Boundaries

The �nite element method allows modelling of �nite domains. As mentioned in the as-

sumptions, the soil is considered with an in�nite length. There are several methods to

model an arti�cial boundary at a certain distance, for example in�nite elements, boundary

elements, transmitting boundaries, perfect matching layers or the use of a bu�er zone with

high damping ratios.
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Figure 3.4: Simpli�ed model of FE soil mesh.

Based on Figure 3.4, boundary condition 1 and 4 (BC1 and 4) are considered symmetrical,

BC2 and BC5 can be extended towards in�nity and results in an arti�cial boundary, BC3 is

the free surface and BC6 is a fully �xed arti�cial boundary. This project uses a damper as

arti�cal boundary, except at the free surface. These transmitting boundaries are necessary

to prescribe the behaviour of an in�nite soil. Waves at the boundary should be fully

absorbed. The use of viscous boundaries was described by Lysmer & Kuhlemeyer [1969]

as:

σ1 = −C1zpu̇1,

τ2 = −C2zsu̇2,

τ3 = −C2zsu̇3,

(3.23)

where zp is the material impedance for the P-wave in the soil and zp the S-wave. C1 and C2

are relaxation coe�cients, which have been used to improve the e�ect of absorption. When

C1 = C2, a wave hitting the boundary perpendicular gets perfectly absorbed. However, not

all waves arrives perpendicular at the boundary, thus the values C1 = 1 and C2 = 0.25 will

be used to consider a reasonable absorption. However, with this method it is not possible to

fully absorb S-waves, thus, a limited boundary e�ect is noticeable in the obtained results.

3.2.5 Sti�ness, damping and mass matrix

In previous part, the local sti�ness matrix is obtained. For the overall calculations, the

local sti�ness matrix is transformed, with use of transformation matrix T, to the global
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coordinate system and inserted, at the right nodes, in the global sti�ness matrix

K = TTKeT. (3.24)

In general cases, the transformation matrix T denotes

T =


Γ 0

. . .

0 Γ

 , (3.25)

where Γ is used for local matrix transformation within the transformation matrix. Γ

yields to a matrix that rotates the axes with respect to the principle axis of the cross

section (illustrated in Figure 3.5)

Γ = ΓαΓβΓγ . (3.26)

𝑥

𝑦

𝑧

Γα

Γ𝛽

Γ𝛾

Figure 3.5: Transformation of principle axis.

In simple situations, the �nite element method is described as

Ku = F , (3.27)

wherein K is the sti�ness matrix, u a displacement vector and F a vector containing

external forces. This equation can be used to solve an unknown number or quantities,

nodes and their respective degrees of freedom. More interest has the similar dynamic

formulation, which includes inertia and damping

Mü +Cu̇ +Ku = F , (3.28)

Chapter 3. Soil-Pile interaction 27
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where M is the mass matrix, C the damping matrix, ü acceleration vector and u̇ velocity

vector. The damping matrix is determined by use of Rayleigh damping model, wherein

C = αrM+ βrK. (3.29)

The αr and βr are proportionality constants of the mass and sti�ness matrices. αr and

βr are calibrated with the use of two frequencies, f1 and f2 are chosen as the resonance

frequencies related to the two �rst modes of a soil layer, obtained by [Kramer, 1996]:

fn = Vs
2n− 1

4H
, (3.30)

with n as frequency, e.g. 1,2,... and H as depth of the soil layer. Acceptable values for

damping ratio ξ are in the range [0.5%,2%], suggested by Laera & Brinkgreve [2015]. For

harmonic load interaction between foundation and soils, the interest is a series of stable

steady state solutions, wherein the displacement and load vectors are considered as

u =
N∑
j=1

uj exp (iωt) ,

F =
N∑
j=1

Fj exp (iωt) .

(3.31)

i is considered as imaginary number
√
−1, ω the angular frequency and t as time. uj

and Fj are complex vectors, related to a speci�c frequency. The factor N is depended on

frequency and soil characteristics.

3.2.6 Direct-time approach

When applying a harmonic force in time domain, Equation 3.28 is integrated by a direct

time approach. For the integration the Newmark-β method is used [Newmark, 1959]. The

equation of motions at time tn+1 = tn + ∆tn should be full �lled

Mün+1 +Cu̇n+1 +Kun+1 = Fn+1, (3.32)

with the use of predicted displacement and velocity vectors based on Taylor's theorem

u̇n+1 = u̇n + ∆t · üγ ,

un+1 = un + ∆t · u̇n +
1

2
∆t2 · üβ,

(3.33)
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3.2. Finite element model

in which

üγ = (1− γ)ün + γün+1,

üβ = (1− 2β)ün + 2βün+1,
(3.34)

and wherein Newmark's β ≤ 1
2 and γ ≤ 1. Applying this prediction into Equation 3.32

and rearranging variables leads to

Mdün+1 = Fn+1 −C (u̇n + (1− γ) ∆tün)−K
(
un + u̇n∆t+

(
1

2
− β

)
∆t2ün

)
, (3.35)

with this equation, the unknown quantity ün is obtained by solving the following equation

Md = M+ γ∆tC+ β∆t2K. (3.36)
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Chapter 4
Analyses of wave theory

In Chapter 2 (p. 5), the theory of wave propagation was explained. In this chapter

basic models will be described to analyse the wave propagation theory. This model uses

a three dimensional �nite element model. Firstly, the model properties will be described.

Subsequently, the veri�cation from the simple model will be made with other methods for

calculating the same case. The proposed model consists of basic symmetric objects. In

the �rst case a slab foundation will be excited and following up within the same domain a

single pile foundation.

4.1 Model properties

In this section, the model properties will be explained. To verify the results, di�erent

analyses are performed. These models should have the same properties to obtain valid

results, which can be compared in this chapter. The model is veri�ed with the amplitude

of the surface at speci�c distances. Important properties which should be the same through

the models are Young's modulus E, Poisson ratio ν, and mass density ρ. These parameters

are used to describe the Rayleigh surface wave, as stated in Section 2.3 (p. 9).

The model consists of a homogeneous layer of sand which can be extended towards in�nity

in horizontal and vertical direction. Damping of the material is disregarded, thus the

Rayleigh coe�cients αr and βr are equal to zero. Table 4.1 gives an outline of all material

properties used for this model.

Table 4.1: Material properties of the used soil.

Soil Type Dense sand

Material model Linear-Elastic

Mass density ρ 2000 kg/m3

Rayleigh coe�cient αr 0

Rayleigh coe�cient βr 0

Young's modulus E 50 MPa

Poisson ratio ν 0.30

In addition to material parameters the type of structure, dimensions and load is corre-

spondingly de�ned through the tested models. To elucidate the soil behaviour a harmonic
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4.2. Tested models

force of 10 kN/m2 at a frequency of 5 Hz is applied on the structure. The structure consists

of a squared shallow slab foundation (2-by-2 metre) and in the second case extended with

a deep pile foundation, a single 8 metre long pile attached to the slab footing. The self-

weight of the structure and soil is neglected in the model. The principle model is sketched

in Figure 4.1.
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Slab foundation
Pile foundation
Dynamic force

Figure 4.1: Principle model set-up.

In the �nite element models, the top layer mesh is �ner de�ned compared to the bottom

ones to save computing time. By de�ning global parameters for this case, a likewise result

can be obtained using the models described in the following section.

4.2 Tested models

To get a better understanding of soil behaviour, several programs and methods are per-

formed with the same problem. This type of analysis is used to validate the results and

determine the method which is satis�ed for more advanced modelling of structures. The

objective of this analysis is to determine the amplitude at di�erent positions and com-

pare it with other models. In this section, the methods and some required assumptions or

limitations are de�ned.

4.2.1 PLAXIS

PLAXIS is a commercial Finite Element Method tool used for geotechnical applications.

PLAXIS can be used in di�erent type of analyses in two dimensions and three dimensions

[Brinkgreve et al., 2015a]. Both versions of PLAXIS are used for simulating this problem.

However, it is assumed that the PLAXIS 3D model describes the in�uences of the sur-

rounding soil more accurate compared to the PLAXIS 2D model. The foundation in the

2D model has an in�nite length, thus it is assumed the amplitudes are relatively higher
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4.3. Comparison

than the 3D model. Waves propagate in three dimensions, the interest for results of this

analysis is in singular plane (e.g. x = 0, y ∈ [−∞,∞] and z ∈ [−∞,0]).

The dynamical module of PLAXIS is used. In the �rst basic model, a slab and pile

foundation are modelled in the middle of the domain. On this structure, a harmonic

dynamic force will be added at a speci�c frequency, as described earlier in this chapter.

The soil is de�ned as a linear-elastic material, in which the wave propagation theory as

proposed before is valid. The calculation of the dynamic force in PLAXIS is based on

Newmark's-β method [Newmark, 1959]. The used coe�cients of this method are based on

the average acceleration (β = 1
2 and γ = 1

4).

4.2.2 MATLAB Analytical

Based on the theory of Section 2.3 (p. 9) an analytical model is build in MATLAB. The

analytical, as simpli�ed model, is a rough estimation of the situation of the soil. It has

a limitation since it only calculates the surface amplitude with a pre described pattern of

geometrical spreading. For a shallow foundation, this can give a rough estimation which

could be valid. In case of the deep pile foundation, it does not take into account the wave

starting from the bottom of the pile. This model is based on Equation 2.26 (p. 10), with

as start amplitude the initial settlement as described by Lutenegger & Groot [1995]. For

homogeneous cases the model could be valid and explaining the basic theory. When using a

layered situation this model ignores positive and negative interference at a receiving point.

4.3 Comparison

In previous section, di�erent methods to tackle a simpli�ed foundation-soil interaction

problem were introduced. These programs are performed and for each program the results

at the surface are collected. Figure 4.2 illustrates those results, the �gure divides the

type of calculation with a particular colour. Furthermore, the shallow slab foundation is a

continuous line and the deep pile foundation is a dashed line.
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Figure 4.2: Surface amplitudes of various theories.

Based on Figure 4.2 and the wave propagation theory for homogeneous soils, the analytical

solution could be used. However, the interest consists of di�erent soil strati�cations and

di�erent foundation con�gurations, thus, the analytical model would not be suitable. The

analytical model shows a relation to the curves from the 2D FEM slab foundation, those

distributions are similar to each other.

The 2D FEM illustrates a reasonable output. The in�uence of foundations and di�erent

soil strati�cations could be modelled with this model. However, the model assumes an

in�nite row of foundations, thus circular geometric spreading of the Rayleigh wave is not

correctly modelled. The more advanced 3D FEM follows a likewise path to both other

models, thus this method is considered valid for further calculation.
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Chapter 5
Parameter study

In previous chapters, the basic theory and used model is explained and validated. For con-

tinuing calculations, it is necessary to know what are the in�uences of di�erent parameters

in the calculation. Firstly, the model properties are explained, a small veri�cation for cor-

rectness of the model is made and subsequently the results of this analyses are introduced.

Towards the end, parameters which has signi�cant in�uence on the results are obtained.

5.1 Model

For the investigation of wave propagation a three-dimensional �nite element model is made.

Parameters used in every single model are likewise for comparison. The model is de�ned

as Linear-Elastic and for calculation the commercial FEM tool PLAXIS 3D was used.

Properties of the soil are described in Table 5.1.

Table 5.1: Material properties of the used soil.

Soil Type Unit Clay Sand

Material model Linear-Elastic Linear-Elastic

Mass density ρ [kg/m3] 1400 1700

Young's modulus E [MPa] 20 50

Poisson ratio ν [-] 0.25 0.30

Assumed is a domain consisting of an in�nite medium in each direction. This total area

is reduced to a medium described with a certain interest area. The arti�cial boundary

distance d away from the source is related to the relative error ε, and was descibed by

Chen et al. [2015]. The suggestion is based on the shear wavelength λ and was only

examined for frequencies below 100 Hz:

d =

0.1λ for ε = 6.8%

0.2λ for ε = 1.2%.
(5.1)

To obtain valid results the mesh within this arti�cial boundary is more re�ned, and ex-

tended with a bu�er area so that the model boundaries would not cause much interference

in the results. Figure 5.1 illustrate the geometry in x-z plane, where H is depends on
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5.1. Model

homogeneous soils or layered soils.

d
r

L
d

p-load

Soil, interest area

Soil

H

s

Figure 5.1: Schematic situation tested models.

The model boundary conditions are de�ned as viscous boundaries, excluding the surface.

It is assumed that all boundaries absorbs the wave energy completely. The mesh is further

re�ned at the interest points. The mesh consists of 10-node triangular elements, as ex-

plained earlier. These elements have a maximum dimension in which the result is suitable

for further usage. Kuhlemeyer & Lysmer [1973] suggested an element size le in relation to

the wavelength

le ≤
λ

8
. (5.2)

Within the interest area, this relation is valid. Outside the interest area, i.e. the bu�er

zone, the element size might be larger as required, especially for higher frequencies. The

mesh as generated is illustrated in Figure 5.2. Dynamic interaction between the foundation

and soil is simulated by adding a slab for shallow foundations and pile for deep foundations.

The pile has di�erent sizes in the range Lp ∈ [0,6] · rs. A harmonic uniform surface load

p is added on top of the slab. This surface force is multiplied with a sinusoidal time

series multiplier with speci�c frequencies. The tested frequencies were representative for

environmental man-made vibrations, described by Lombaert et al. [2001].
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5.1. Model

Figure 5.2: Layered soil mesh.

Dynamic equations are integrated based on steps in a time series. For these integrations

Newmark-β method is used [Newmark, 1959]. The used coe�cients of this method are

based on the average acceleration. The calculation in PLAXIS uses sub-steps, these sub-

steps are automatically generated by PLAXIS based on number of data points, material

properties and time step. The model is solved over a time domain of a few seconds, which

depends on the minimum time for a wave to propagate through the model in the soil

tmin = Cd
d

Vr
, (5.3)

where d is the distance between the source foundation and a receiver point, and Cd a

coe�cient slightly higher than 1.0 to ensure the Rayleigh wave is received at the receiver.

The amount of steps in the model is depending on the frequency, to ensure a down-crossing

analysis can be performed based on the peaks in time series at di�erent positions. The

critical time step to assure no wave passes an element unnoticed is de�ned by Pal [1998]

as:

∆tcritical =
le

αt

√
E(1−ν))

ρ(1+ν)(1−2ν)

√
1 + B4

4S2 − B2

2S

[
1 + 1−2ν

4
2S
B2

] , (5.4)

wherein le is the average length of the element, B the largest dimension and S the surface

area of the �nite element. The �rst root consists of the compression wave, multiplied with

a factor αt, which depends on the type of element, described by Zienkiewicz & Taylor

[2000].
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5.2. Validation

5.2 Validation

To verify the correctness of the PLAXIS dynamic analysis, some semi-analytical solutions

are performed. Firstly the arrival time of the Rayleigh wave is checked conform the equation

of motions and their respective equilibrium equations for homogeneous soil. The Rayleigh

wave is depending on the primary and shear wave velocity. This relation was described by

Lord Rayleigh [Pichugin, 2008]. For veri�cation the time is normalised so that the surface

displacement of the tested frequency range are occurring at the same normalised time.

This is illustrated for the surface displacement at the source and at a distance of 10 metres

from the source in Figure 5.3. This �gure shows that the estimated arrival of the Rayleigh

wave matches the start of the harmonic displacement at a distance of 10 metres from the

source point, thus based on this check, the data is considered as valid.
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Figure 5.3: Time series of surface displacement.

Figure 5.4: Displacement distribution at 1s

(8Hz).

Furthermore, with wave propagation at the

surface it is known that for homogeneous

cases with only a slab foundation, that the

displacement spread radial from the source

point. From Figure 5.4 it can be seen that

this is valid for this model.
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5.3. Homogeneous soil analyses

5.3 Homogeneous soil analyses

In this part, a relation for the surface amplitude is analysed for di�erent parameters. The

objective is to harmonize the comparison and make it scalable for other cases. Firstly the

slab foundation is investigated and subsequently the pile foundation is further analysed.

In the analysis, the following parameters are used:

Symbol Description Unit

rs Radius slab foundation [m]

Az Amplitude [m]

Vr Velocity Rayleigh wave [m/s]

p Uniform surface load [kN/m2]

r Radius from source point [m]

f Frequency [Hz]

Lp Length of pile foundation [m]

rp Radius pile foundation [m]

Hn nth-Layer depth [m]

K Bulk modulus [kN/m2]

µ Lamé's constant (Shear modulus) [kN/m2]

ν Possion's ratio [−]
ρ Material density [kg/m3]

5.3.1 Slab foundation

In this section, the slab foundation is further analysed. To scale the model to other type

of soils or properties, the results are normalised. For the displacement at the surface, the

method described by Love [1929], which de�nes an uniform distributed load in a circular

area in relation to displacements in rings, is used. This displacement is expressed as

uz =
2p(1− ν)

πµ

[∫ r

0
K

(
r

ρ

)
dρ+

∫ rs

r

ρ

r
K
(ρ
r

)
dρ

]
, r ≤ rs, (5.5)

and

uz =
2p(1− ν)

πµ

[∫ rs

0
K

(
r

ρ

)
dρ

]
, r ≥ rs. (5.6)

A combination of both equations, results in a static response due to gravity of the structure

on the soil, which can be expressed as

Az,0 =
prs(1− ν)

µ
. (5.7)
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5.3. Homogeneous soil analyses

To normalise the frequency, the radius of the slab in relation to the Rayleigh wave velocity

was used. The result is illustrated in Figure 5.5, which shows the amplitude of the dynamic

accelerated force related to the frequency and its position for both sand and clay soil types.

Az(f) is considered as the amplitude of the steady state response, this is obtained by

running the whole time series and using only the last 2-3 periods of sinusoidal response.

However, this steady state was not fully observed in at a certain frequencies. Although

the material properties, see Table 5.1, and obtained time series di�ers much, the method

for normalisation is su�cient. At lower frequencies f rsVr < 0.25, the amplitude has reached

a maxima, although it has several tips and dips. When reaching higher frequencies, the

amplitude decreases signi�cantly on exponential scale. At higher frequencies f rsVr > 1, i.e.

the radius of the slab is equals to the wavelength, the amplitude tends to be similar to

the source amplitude. When the radius of the slab is near half of the wave length, the

amplitude decreases drastically. The low amplitude at higher frequencies is due to the

e�ect that the interface between the slab and soil does not contains one period or only a

tip or dip, but multiple periods, which causes interference towards each other.
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Figure 5.5: Steady state response for homogeneous soils and slab foundations.

5.3.2 Pile foundation

The dynamic interaction between soil and piles is a challenging subject for geotechnical

researchers. For comparison, the same non-dimensional conversions were used compared to

previous section. Figure 5.6 illustrates the in�uence of a pile foundation relatively to the

surface amplitude. Overall, results obtained by pile foundation follows a similar distribution
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5.4. Layered soil analyses

of amplitudes compared to only a slab foundation. At f rsVr < 0.25 a maxima was reached.

For distances close to the foundation, the in�uence of a pile foundation is around 25%,

for distances further away, the di�erence between a pile and no pile foundation is almost

neglectable. At higher frequencies, f rsVr > 1, the di�erence between a pile foundation and

no pile foundation is limited to 10%.
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Figure 5.6: Steady state response for homogeneous soil and di�erent pile lengths.

5.4 Layered soil analyses

In this part of the analyses, the layered soil model is introduced. It is assumed the layers

would have in�uence on the actual amplitude obtained by receiver points. Similar as

the whole model, the layers are in relation to the radius of the concrete slab foundation.

The parameters used for normalisation are similar as mentioned before. However, Lamé

constant µ, Poisson ratio ν and Rayleigh velocity Vr are based on the properties of the top

layer. The results are limited to 2rs in distance from source point and H1 = 4rs for layer

depth, to obtain an overall view of the results.

5.4.1 Slab foundation

The �rst model conducted consists of a slab foundation and di�erent layer depths. A

comparison with the homogeneous soil model was made, by adding this result in the graph.

The obtained results from this analysis are illustrated in Figure 5.7. With referring to this

�gure, the overall amplitude with a layered model is greater compared to a homogeneous
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5.4. Layered soil analyses

model. Interestingly, where the homogeneous model (blue line) has a plateau with a few

ups and downs for frequencies below f rsVr < 0.25, layered models tends to have a single

peak value. The frequency wherein this peak is obtained depends on the layer depth. For
H0
rs

= 1 (red line) this occurs on 0.25 · f rsVr ,
H0
rs

= 2 (yellow line) at 0.19 · f rsVr ,
H0
rs

= 3

(purple line) at 0.16 · f rsVr and H0
rs

= [4,6] (green, light blue and dark red line) at 0.10 · f rsVr .
Increasing towards higher frequencies, i.e. f rsVr > 0.5, results in similar amplitudes for all

tested layer depths.
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Figure 5.7: Steady state response for layered soils and slab foundations.

5.4.2 Pile foundation

Similar to piles in homogeneous soils, the piles in layered soils were tested in the same

manner. In Figure 5.8 is the result illustrated. In order to make it more structured,

the result is limited to Lp = [0rs,5rs] and H1 = 3rs, in relation to a slab foundation on

homogeneous soil. A higher ratio of layer depth was resulting in similar distributions for

piles.
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Figure 5.8: Steady state response for layered soil (H1 = 3rs) and di�erent pile lengths.

Figure 5.8 illustrates the obtained results normalised with coe�cients as mentioned before.

Looking at lower frequencies, f rsVr < 0.5, the amplitude of di�erent models follows an

unique path. The e�ect of the pile is at this point signi�cant. At higher frequencies than

this point, the pile foundation could be neglected to archive similar results. The location

of the maximum amplitude does not change by introducing a pile, only the amplitude itself

is lower. Interestingly, at speci�c positions, the obtained amplitude is slightly higher than

the amplitude of the source foundation.

Based on the steady state response, amplitude di�erences based on distances is not clearly

illustrated, thus Figure 5.9 illustrates the amplitude distribution over position for di�erent

pile lengths at f rsVr ≈ 0.5. The graph shows clearly visible that the pile length has a signi�-

cant in�uence on the amplitude at a certain distance from the source point for layered soils.

Interestingly, when the depth in the sti�er soil increases, the actual amplitude measured at

the foundation increases again. The e�ect of the pile starts to be visible at some distance

away from the source, thus the pile can not be neglected in layered cases.
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Figure 5.9: Non-dimensional amplitude at di�erent positions.

To illustrate this behaviour better, a �gure is introduced which shows the harmonic dis-

placement for a speci�c frequency and position, as function of time. Figure 5.10 consists of

two graphs, the �rst illustrates the displacement in time domain. The two vertical lines are

the assumed arrival time of the Rayleigh wave from the underlying layer and the top layer.

It can be said that a layered model results in an earlier starting harmonic displacement,

compared to the homogeneous model. This e�ect is caused by a wave transmitted into

the underlying soil creating a Stonely wave at the interface. Another interesting point in

this graph is the time that it takes to develop a stable solution. For layered soils is this

signi�cantly longer than homogeneous soils, whereas homogeneous soils are nearly direct

stable. For comparing this to Padrón et al. [2012] theory, it can be said that this is not

valid when looking into the overall time series at a speci�c distance. The second graph

in this �gure illustrates the measured frequencies of the time series, when the harmonic

force is applied at 20 Hz. It is assumed that the peak frequency will be at 20 Hz. For

all illustrated combinations, this is valid. However, when a pile penetrates the underlying

layer, this peak is not signi�cantly. It has several small peaks in the near frequency range,

which are half the magnitude.
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Figure 5.10: Harmonic displacement.

5.5 Slenderness of pile

As described by Deng et al. [2014], the slenderness of the pile might in�uence the result

signi�cantly. To obtain results of slenderness in�uences, the test was performed in layered

soil at a speci�c frequency and the changing variable is the pile radius. This is changed in

acceptable ranges in relation to the slab radius. This model has been calculated in time

domain. To obtain the results in frequency domain, only the last half a second of the time

series is used, when the harmonic displacement shows a stable behaviour. The amplitudes

are illustrated in Figure 5.11. The maximum measured radius is 20% of the dominant

shear wavelength, which results in a relatively error of 1.2% according to Equation 5.1.
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Figure 5.11: Amplitude at di�erent positions.

When observing Figure 5.11 interesting patterns were obtained. As assumed before, a

larger pile radius results in more surface in which the forces can be transferred from the

pile foundation to the surrounding soil. The local sti�ening e�ect around the pile has as

result that the smallest pile diameter has the largest amplitude at the surface and vice versa.

Some distance away from the source, the amplitude decreases towards a similar amplitude.

Interestingly, at a distance much further away, the amplitude increases in value. This might

occur due to the existence of a boundary and not all waves are getting perfectly absorbed.

Thus, to verify the obtained amplitude at 7rs, a larger model is required to reduce the

arti�cial boundary e�ects. Overall, the theory of in�uence on the displacement is valid,

although compared to the length of the pile it is not signi�cantly, since the pattern remains

the same.

5.6 Pulse load

In previous sections a harmonic force is placed on top of a foundation. This section will

introduce a pulse load on a foundation and its in�uence to the surrounding soil. The

applied pulse load consists of a force with the same magnitude as applied during harmonic

loading. By introducing a pulse load on the structure, the behaviour of the harmonic waves

is reduced to one single sinusoidal period and the resulting impact on the surrounding soil

can be better observed. In this particular case is it possible to determine re�ection and

refraction of a single wave induction.

The observed time series is illustrated in Figure 5.12. After applying one sinusoidal cycle,

the response illustrates a dip. This dip is due to the e�ect that the motion in vertical

direction results in an inertia which damps out over time. At the receiver point in the soil
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some interesting e�ect happened, when a layer is present, the �rst dip in the graph is not

the lowest one, similar as at the source, but the second one instead. This can be due to

some waves transmitted through the bottom soil and causing a di�erent response at the

interface which is obtained at a receiver. With the existence of layers the waves are more

likely to be trapped in the layer and creating additional vertical responses after some time.
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Figure 5.12: Displacement due to pulse load on source foundation (a) and at 8rs receiver
point (b).

5.7 Conclusion

When looking into detail in all situations, the theory proposed by Deng et al. [2014] is valid

in all cases. The dimensions of the pile are critical for the amplitude at low frequencies. For

the higher frequencies (above 30 Hz), the dimensions of the structure does not in�uence

the results much. This is due to the existence of multiple wave types. Depending on the

layer depth, the location and in�uence of a re�ected wave is di�erent. When the pile length

increases and reach the interface between the layers, the arrival time at the interface away

from the source point decreases signi�cantly. The measured amplitude in the near soil

increases and further away decreases. This behaviour occurs due to the pile size, since the

pile radius relatively to the slab radius is small, the surrounding in�uence area is smaller.

For the distribution of amplitudes, the frequency of the wave and its wavelength compared

to the foundation radius shows a speci�c behaviour. When the wavelength is larger than

2.0rs, the amplitudes of the harmonic displacement behaves like the theory as proposed

in Section 2.3 (p. 9). If the wavelength decreases, additional waves were visible. The

exception occurs when the foundation is a shallow foundation (only a concrete slab), in
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this case the the additional waves (re�ected and refracted) are minimal.

Pin

Figure 5.13: Wave propagation behaviour for slab foundation.

At low frequencies (1-10 Hz), i.e. large wave lengths, the obtained wave at the receiver

behaves like a Rayleigh wave for both homogeneous soils and layered soils. For higher

frequencies, the homogeneous model remains with the same pattern, a theoretical Rayleigh

wave. However, the layered model shows during harmonic loading no stable result in

the �rst received periods. A peak arrives before the Rayleigh wave arrival time, which

is caused by the underlying layer and this might result in the occurrence of a Stonely

wave. Depending on the location, the time required to obtain stable results increases. The

response does not show only a Rayleigh wave, but also some interference at the surface.

This happens due to re�ection at the interface between the layers. Whereas around the

arti�cial boundaries the waves are not fully absorbed, which causes some re�ection back

towards the receivers.

A suggestion based on this study is to limit the model for the required distances to obtain

a stable solution in a shorter time and introduce damping. For continuing, the parameters

which might in�uence the results of this study are layer depth, pile length and ratio between

di�erent type of soils (body wave speeds). However, the pile length might not in�uence

the results much in homogeneous soils and could be omitted.
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Chapter 6
Interaction of two foundations

Within previous chapter, the di�erent parameters and their in�uence on soil response were

explained. In this chapter, several foundation con�gurations are further studied to obtain

relations in wave propagation patterns. In the �rst section the geometry and material

properties are explained, following with analyses of the di�erent foundation con�gurations

and their respective propagation patterns. Finally, a suggestion for further studying the

behaviour is proposed.

6.1 Geometry and Material properties

As mentioned earlier, the aim of this project is to investigate di�erent wave propagation

patterns for shallow (slab) and deep (pile) foundations. Similarly to other calculations, a

three dimensional �nite element model was made in PLAXIS 3D. The model consists of

two structural objects, a source and receiver. The source is accelerated with a force at a

certain frequency, whereas the model has a homogeneous and layered con�guration. Figure

6.1 illustrates the geometry of the 3D-model in x-z plane. It is assumed that the structural

elements consists of circular cross sections. Furthermore, to enhancing scalability of the

model, all dimensions are relatively to the diameter of the foundation, Df (Df = 2rs).

Due to time limitations, only the layer depth H = 3Df and pile dimension Dp = 1
4Df

were analysed. Based on previous study, it is less likely that the slenderness ratio results in

signi�cantly di�erent results. The distance d is 2NtDf , where Nt varies through di�erent

con�gurations. The length if the piles, L1 and L2 are also varying throughout the models.
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Figure 6.1: Geometry of tested model.

Both soil and foundation are assumed to behave linear-elastic. Thus, in this model the

theory from Chapter 2 (p. 5) can be applied. The used material properties are described in

Table 6.1. Two di�erent soil con�gurations were analysed, a layered model, which consists

of a soft layer over a sti� half-space, and a homogeneous model, which has only a sti� half-

space. The slab foundation and the piles were modelled with the same material properties,

concrete. The force Pin acts on the source footing as uniformly distributed surface load

and has a magnitude of 10 kN/m2.

Table 6.1: Used material properties.

Soil Type Unit Soft Sti� Concrete

Mass density ρ [kg/m3] 1500 2200 2500

Young's modulus E [MPa] 45 1500 30 000

Poisson ratio ν [-] 0.48 0.30 0.25

P-wave speed Vp [m/s] 508.4 1036 3759

S-wave speed Vs [m/s] 99.71 497.7 2170

A suggestion from previous chapter, Chapter 5 (p. 35), was the use of Rayleigh damping.

The damping ratio ξ = 2%, was used on the �rst two frequencies representing the �rst

modes of the top soil layer. Figure 6.2 illustrated the �nite element model. Boundaries

applied to the soil, marked BC1, BC2 and BC5 have viscous conditions, i.e. the wave gets

fully absorbed, BC4 is a fully free and BC3 functions as plane of symmetry. The dimension

of the model is depending on the con�guration. A Rule of thumb that was used is that the

horizontal dimension from the source was the maximum value of 2d and 0.1λ. In vertical

direction, the model size is equal to the maximum of 2L and two times the horizontal

direction.
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Figure 6.2: Three-dimensional �nite element model of foundation and soil.

Based on previous chapter, it can be assumed that the layered model will have a more

interesting time series than the homogeneous case. Thus, the following sections are focused

on the time series of layered cases in a mid-range frequency. The tested cases are described

in Table 6.2.

Table 6.2: Test cases.
Test name Case nr. L1 L2 f [Hz]

Slab-Slab 1 0Df 0Df 30

Pile-Pile 2 6Df 6Df 30

Slab-Pile 3 0Df 6Df 30

Pile-Slab 4 6Df 0Df 30

6.2 Slab-slab interaction

The �rst con�guration consists of two shallow foundations (test case 1, Table 6.2 (p. 51)

based on Figure 6.1 (p. 50)). The graph itself contains four di�erent colours, which matches

the di�erent distances relatively to the diameter of the slab. The source response is dashed,

where the colour of the lines matches the distance (calculated through separate models.

All lines have an o�set from the zero point of the graph based on the distance d from the
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6.3. Pile-pile interaction

source and a certain factor to distinguish all lines. The black dashed-dotted line is the

arrival of the P-wave of the soft layer, and almost the arrival time of the S-wave of the

sti�er layer. The black dotted line is the arrival time of the S-wave.

Figure 6.3 illustrates the relation over time and by distance. The �rst response is scaled

for visibility of the whole model. The source foundation was accelerated with a pulse load,

i.e. one sinusoidal period. This period results in the �rst peak visible, where after the

force is abruptly stopped. This force was transmitted to the sti�er soil and partly re�ected

back to the foundation. Looking at d = 2Df , a small peak occurs before the arrive of the

S-wave and Rayleigh wave of the top layer. However, the receiver foundation follows the

vertical response, which results in the �rst small peak. The second peak, received after the

S-wave arrival time was limited in actual response. This is due to the interface between the

layers has a maxima slightly after the maxima of the surface layer. This e�ect of two waves

propagating with a di�erent wavelength happens throughout the whole model, where this

e�ect has a certain in�uence on the actual height of the arrived peak amplitude at the

receiver. Interestingly, at the largest distance d = 16Df , the Rayleigh wave was not the

most dominant wave. The wave caused by interference, i.e. trapped in the layer, causes

the highest magnitude.
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Figure 6.3: Time series of responses with shallow foundation for source and receiver (o�set
5 · 10−6d).

6.3 Pile-pile interaction

Another basic con�guration excited with a pulse load consists of two pile foundations (test

case 2, Table 6.2 (p. 51) based on Figure 6.1 (p. 50)). The parameters used were similar

to previous output and similarly the �gure consists of the same type of lines. Only in this

case the scale of the source response is slightly lower. In the slab-slab interaction a small
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6.3. Pile-pile interaction

wave propagating at the sub-surface layer arrived earlier than the actual Rayleigh surface

wave. In this model it is expected that this e�ect will happen even more, due to the direct

transmission from the pile foundation into the sti� layer and its receiver located partly in

the sti� layer.

Figure 6.4 illustrates the obtained results from this analysis. In similarity to previous

model, the �rst peak at d = 0, the coloured dashed lines, exists when the force was applied

and it will take afterwards some time before this peak damps out. However, as seen

mainly for the larger distances, the rate wherein it damps out is not the same for every

distance d. This indicates some degree of structure-soil-structure interaction existing for

pile foundations. Interestingly, similar to the slab foundation the sti�er layer and soft layer

have both a wave propagating with a di�erent speed. At d = 2Df this results in a large �rst

wave occurring slightly before arrival time of the S-wave. However, due to this �rst wave,

the second peak reduces in amplitude, whereas this e�ect was not seen at larger distances.

As seen from the �gure, when d = 4Df , the �rst peak was received through the underlying

layer and was slightly smaller than the actual Rayleigh wave. The response at the receiver

indicates some wave interference at the receiver. As known from this receiver response,

it is expected to happen also at d = 8Df and d = 16Df in a similar way. At d = 16Df

there were even two signi�cant peaks with a higher magnitude received before arrival of

the Rayleigh wave. Another interesting e�ect is that when the distance d increases, the

time before this single wave damps out increases signi�cantly.
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Figure 6.4: Time series of responses with deep foundation for source and receiver (o�set
2 · 10−6d).
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6.4. Slab-pile interaction

6.4 Slab-pile interaction

Based on the previous types of foundations a combination between these foundations was

made. In this section the results are explained wherein the source was considered as slab

foundation and the receiver as pile foundation (test case 3, Table 6.2 (p. 51) based on

Figure 6.1 (p. 50)). It is expected that the wave propagates with some similarity to both

models.

Figure 6.5 illustrates the the vertical responses as function of time. Comparing this to

previous models concludes some expectations. The response of the source was similar to

the slab-slab source response. However, the receiver has no relation to any of the previous

models. Only at when the receiver was positioned at d = 2Df , a wave is obtained with

a similar magnitude as the slab-slab interaction. When increasing this distance, this �rst

wave still exists, only the obtained magnitude of the peak has a value which is similar

to the results obtain far after the Rayleigh wave propagates and starts to damps out.

After the S-wave has reached the receiver the Rayleigh wave produces a peak amplitude at

the receiver. Intriguingly, the interference patterns similarly to other models as described

before were reduced in this case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

-3

-2

-1

0

1

2

3

4

D
is

pl
ac

em
en

t [
m

]

#10-5

.125 A B
2

B
4

B
8

B
16

Figure 6.5: Time series of responses with shallow foundation for source and deep for receiver
(o�set 2 · 10−6d).

6.5 Pile-slab interaction

This section describes the last, missing combination, the source modelled as pile foundation

and the receiver as slab foundation (test case 4, Table 6.2 (p. 51) based on Figure 6.1 (p.

50)). Similar to all earlier situations, it is expected to have two separate peaks visible. The

�rst peak might be better visible than the slab-pile case, due to the source which transfer
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the wave directly to the sub-surface. However, the slab foundation is not able to receive

this peak similar to the pile-pile interaction (through underlying soil and at the pile tip).

It can be assumed that the �rst occurring wave is an interface wave, where the top soil

follows the amplitude of the underlying layer at the interface.

Figure 6.6 contains the vertical responses for this case. The response at the source has a

similar start compared to the pile-pile interaction. Only the receiver changed compared to

this model. The observed response at the receiver has some similarities with the slab-slab

model. However, the �rst wave occurring before the Rayleigh wave arrival was smaller

compared to that model. At d = 2Df , the wave propagation in the bottom soil creates

quite some interference at the receiver. Interestingly, the interference produced reduces the

actual peak amplitude and similarly the waves looks like damps out quite early, which might

be a result of this e�ect. The e�ect of interference is distance independent, compared to

d = 4Df , d = 8Df and d = 16Df . Similar to the slab-slab interaction, the vertical response

at the receiver at position d = 16Df peaks due to interference afterwards.
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Figure 6.6: Time series of responses with deep foundation for source and shallow for receiver
(o�set 2 · 10−6d).

6.6 Conclusion

Based on previous sections, the layered cases provides interesting results. In overall, the

pattern for applied pulse loads illustrates for all cases similar behaviour if d ≤ 8Df , the

response at the receiver point obtains two peaks with a higher magnitude, one arriving

before the S-wave, which was caused by the wave propagating through the underlying soil

and one surface wave afterwards which is the Rayleigh wave. However, at d = 16Df , the

wave with the highest magnitude was caused by interference at the receiver due to waves
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trapped in the soil layer.

In Section 5.7 (p. 47) the unknown parameter for the model in harmonic con�gurations was

the time to obtain stable solutions. Models described in this chapter which were excited

with a pulse load can be used to predict required minimum time of model run for harmonic

solutions. A suggested format to determine the required runtime is

tmin =
Nr

f
+ Cd

d

Vs
+
Nc

f
, (6.1)

wherein Nr is a number of sinusoidal cycles wherein the sine function will be ramped

from zero to a full magnitude, Cd is a constant, which depends on the relation between

the Rayleigh wave and S-wave, Nc is the number of addition cycles necessary to provide

a stable solution. The numbers for this equation depends on several factors, size of the

model, the presence of layers and type of foundations.

For further investigation, some limitation of model con�gurations is required. In this

particular case, di�erence between source and receiver foundations would not introduce

completely new patterns compared to an equal foundation, i.e. the foundation with and

without piles covers most of the patterns.
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Chapter 7
Vertical responses at foundations

Based on the model proposed in Chapter 6 (p. 49), a time domain analysis was performed

for several frequencies and structure con�gurations. This analysis is time consuming, thus

the number of models which are able to run were limited. The average running time for

pulse loads was 16 hours each model, for the harmonic case, Table 7.1 explains the exact

values in hours. The responses of the di�erent structure con�gurations are explained in

following sections, to conclude a comparison between the methods is made.

Table 7.1: Obtained test results and their respective calculation time for 1-50 Hz frequency
range for Homogeneous and Layered soils (Harmonic loads) and system con�guration.

d = 2Df d = 4Df d = 8Df d = 16Df

H L H L H L H L

L = 0Df 56:522 48:191 80:053 53:503 18:181 60:022 21:461 44:251

L = 2Df 26:153 45:143 32:433 60:272 12:301 36:264 23:101 45:011

L = 4Df 27:453 59:432 24:141 47:323 13:181 40:584 24:121 49:261

L = 6Df 24:031 31:171 23:571 48:413 22:053 72:413 25:321 48:391

1 Windows 10, 4 core (4.3 GHz), 8 Gb RAM
2 Windows 10, 2 core (2.4 GHz), 2 Gb RAM
3 Windows Server 2008R2, 4 core (2.6 GHz), 4 Gb RAM
4 Windows 7, 12 core (2.6 GHz), 32 Gb RAM

For normalisation and make it possible to compare it with other soil types, the following

factors were used in the axes

φ = f
Df

Vs
,

α =
Ast

p
(

0.25πD2
f

) . (7.1)

7.1 Transient response of pulse loads

The �rst analyses performed was a transient response analyses due to pulse loads represen-

tative for e.g. pile driving. The pulse loads consists of di�erent periods in range equivalent

for man-made environmental vibrations. Since only one single period of sinusoidal load is

applied, it is assumed to result in one single peak output. However, as explained in Chapter
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6 (p. 49), for layered soils, this might not be the case. The result will output the maximum

obtained peak response. Although, this is not necessarily the �rst dominant peak in the

time series, especially for layered soils. The response of pulse loads has as advantage that

actual propagation patterns can be inspected with less interference. In the �rst part of this

section, the homogeneous soil will be investigated and afterwards the layered model, with

reference towards the homogeneous soil.

7.1.1 Homogeneous soil

Figure 7.1 illustrates the results of the homogeneous soil model. In overall, the results are

as expected before. The Rayleigh wave is the dominant wave and diminishes over distance,

with the known dissipation factor. The pile foundation itself results in marginal changes

of the amplitude. At source point A a reduction of 30% was obtained, whereas at point C,

the amplitude increases upto 15%. At the receiver only a 4% decrease is measured in point

B and at point D this is 6%. The in�uence of the piles itself is limited to the response at

the receiver. For this situation, a model only containing a surface footing would provide a

fair estimation.

Disregarded the �rst dip at point B, the result at the surface is close to being frequency

independent. However, the responses at point C, located at depth of H under the source

and receiver, changes by frequency. The maximum value at point C is obtained at L = 4Df .

At this point, the pile reaches point C and transfers the loads more down to this depth.

However, if a pile becomes longer, the vertical response decreases due to further local

sti�ening. Similar to point C, point D is frequency dependent. In addition, this frequency

dependency is related to the distance. Reaching the higher tested frequencies, the vertical

response decreases at point C and D with a similar rate in the �gure. An exception occurs

when the pile does not reach these points.
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Figure 7.1: Maximum transient response at selected observation points for homogeneous
soil.

7.1.2 Layered soil

When comparing the homogeneous model to the layered model, it was seen that the layered

model has a stronger frequency dependency. Illustrated in Figure 7.2, without pile and with

L = 2Df , an overall maximum is reached around φ = 0.16. However, for a distance of

d = 4Df , this point is reached at a higher frequency and for d = 16Df this is reached

slightly earlier. From previous observations at L < H it was seen that the Rayleigh wave

is not the most dominant one, but the interference, i.e. trapped waves afterwords were.

In all these cases, the amplitude decreases exponentially by increased frequency towards

a similar level as the lowest frequencies. When the pile length reaches the half-space, i.e.

l = 4Df or l = 6Df , the actual peak shifts towards a higher frequency, respectively φ = 0.6

for the points A and C and φ = 0.5 for B and D. However, the distance d = 2Df obtains

several peak values and a dip occurring in the mid-frequency range. As obtained from
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earlier examination of results, the waves propagating in the top layer and the underlying

layer are reducing each other at the receiver, since the wave length is not equal to each

other and the wave propagation in both layers might be in opposite phase.
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Figure 7.2: Maximum and �rst transient response at selected observation points for layered
soil.

With referring to Chapter 6 (p. 49), the time series of layered cases have an interesting

pattern, which is not clearly visible in graphs containing the maximum values. Thus,

Figure 7.2 contains four extra lines which illustrates the �rst arrival peak before the arrival

of the S-wave. This phenomenon occurs at all frequencies and distances. However at lower

frequencies and shorter distances, this phenomenon can not be distinguished. A limitation

is for d = 16Df , where two peaks with a higher magnitude arrived before the S-wave.

The relation of di�erent distances between the source and receiver results in an interesting

observation. At d = 2Df and d = 4Df , the �rst major wave received at point B is equal to

or higher than the wave received in point D. For point d = 8Df and d = 16Df , the obtained

peak is lower when the pile does not reach the interface. Interestingly, the obtained �rst
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vertical response at d = 16Df is larger than the �rst response obtained from d = 8Df . The

exception occurs at φ < 0.23, where the amplitude shifts strong in response from a lower

value than d = 8Df towards a higher one. In overall, when the pile reaches the interface

between the layers, the magnitude of the �rst wave is equal or higher than that in point

D. For d = 2Df the amplitude is the highest peak measured at point B.

7.2 Steady state response of harmonic loading

In addition to a pulse load, the structure was exited with a harmonic load. The results

used are determined by a reverse down-cross method. The assumption is made that after

a speci�c time, obtained from the analysis with pulse loads, the harmonic excitation has

reached a steady state. Thus, the last period is used as reference and backwards over

the measured amplitudes, all amplitudes within a 0.1% error margin from the reference

were used for this analyses. Similar to pulse loads, �rst the homogeneous model will be

explained and consequently the layered model.

7.2.1 Homogeneous soil

Figure 7.3 illustrates the result of the homogeneous soil harmonic loads acceleration. Look-

ing at the results, similar to the pulse load, point A and B at the surface are nearly frequency

independent. Similar to pulse loads, point C and D are frequency depended. Where point

C increases till the pile foundation reaches this point and then further reduces. The de-

pendency on the frequency of point D is dependent on the distance. At shorter distances

is tends to be frequency dependent on lower frequencies. At point B and D, the amplitude

decays exponentially with the distance between the receiver and the source. This reduction

is due to dissipation of the Rayleigh wave and similar for all frequencies.

In overall, the response at the measure points has a similar pattern compared to the pulse

load. Only, the response of point C and D illustrates several tips and dips, depending on

the distance. Where d = 2Df has only 3 peaks a higher magnitude, d = 8Df has 6 of them.

The length of the pile has limited impact on this e�ect. The arise of positive and negative

interference between incoming and scatterer Rayleigh waves might explain this behaviour.

At d = 16Df , the occurring dip at mid-frequency range is signi�cant and afterwards the

obtained steady state response at the receiver B is greater than at d = 8Df for L ≤ 4Df .

Whereas afterwards the pattern remained the same.
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Figure 7.3: Steady state response at selected observation points for homogeneous soil.

7.2.2 Layered soil

In contrast to homogeneous soil, layered soil is more frequency dependent and has several

similarities with pulse loading. Figure 7.4 illustrates the obtained results. When a pile

does not reach the interface between the layers, a maximum is reached around φ = 0.16.

For longer piles, the frequency increases quite much towards d = 0.7 when a maximum

magnitude is obtained. For longer piles, the frequency dependence is smaller. Point A,

the source, is nearly the same for d = 2Df and d = 4Df . However, at d = 8Df and

d = 16Df di�erences are visible, thus this indicates a strong degree of structure-soil-

structure interaction. Point C illustrates a similar behaviour when the pile reaches the

interface.
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Figure 7.4: Steady state response at selected observation points for layered soil.

Point B has in this case the most interesting behaviour throughout the models. When

the pile does not reach the sti�er layer, the amplitude peaks at φ = 0.18 and decreases

exponentially towards the amplitude at the lowest frequencies. When the pile goes into

the underlying half-space, a more constant level of amplitudes is observed. However for

d = 16Df the amplitude remains stable when φ ≤ 0.8, afterwards its decrease is more

signi�cantly visible compared to the smaller distances from the source. Compared to pulse

loads, in�uences of waves being trapped in the top layer and creating constructive or

destructive interference is overly visible by all the local tips and dips. In speci�c cases,

mainly when L < H, the amplitude at interface point D reaches a higher vertical response

than the amplitude at the receiver.
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7.3 Comparison

Within this section, methods are proposed and veri�ed to be able to simplify this prob-

lem. Since as is this analysis is computational intensive. Firstly, a relation of pulse loads

versus harmonic loads is checked, consequently the e�ect of piles is better observed. Both

comparisons are made for both homogeneous and layered soils.

7.3.1 Harmonic and Pulse loads

The �rst analysis made for harmonic and pulse loads is �nding a relation how they match

each other in terms of measured amplitude. In this report, the calculation has been done in

time domain. Since the calculation of the pulse load is less CPU intensive in time domain,

a simpli�cation to transform harmonic loads towards equivalent pulse loads would reduce

the calculation time signi�cantly.
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Figure 7.5: Harmonic loading relative to pulse load at receiver B for homogeneous soil.
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Figure 7.5 illustrates the homogeneous soil case. Overall, the error between the models is

relatively small, less than 3% when d ≤ 8Df . However, speci�c e�ect for harmonic loading,

i.e. structure-soil-structure interaction or a possible obstructive or destructive scattered

waves are not obtained during the pulse load analysis. This is visible with the single points,

ranging from -25% towards +40% in worst case. Interestingly, at d = 8Df the average error

compared to the pulse load is likewise, whereas at d = 16Df it decreases.

In contrast to homogeneous soil, the layered soil harmonic load versus pulse load, as il-

lustrated in Figure 7.6, shows quite some variation. In the lower frequency range and the

higher ones (when no pile exists), the amplitude of the harmonic load is likely to have an

amplitude lower than the pulse load. In the situations that the pile reaches the interface,

the spread of amplitudes changes almost by frequency. In overall, the average error of

results between all amplitudes is 55%, whereas the total bandwidth of errors ranges from

-97% till almost 300% relatively to the pulse load amplitude.
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Figure 7.6: Harmonic loading relative to pulse load at receiver B for layered soil.
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7.3.2 Pile length

Another simpli�cation to the model might be related to the length of the pile. In this com-

parison the amplitude for a speci�c pile length is put relatively to the amplitude without

pile foundation. In this method, the required amount of calculations can reduce signif-

icantly. The graphs are similar to all other graphs normalised based on frequency and

amplitude. However, the amplitude is made relatively towards the amplitude measured at

a situation without piles. The graphs are distinguished by distance.

With referring to Figure 7.7, an interesting pattern can be obtained based on distance and

frequency. Especially at lower frequencies, the in�uence of a pile foundation on the results

itself is limited. The dependence decreases by distance. Where the total bandwidth of

results is 75% till 101% AL=0Df
for d = 2Df , the total bandwidth at d = 8Df is reduced

till 85% till 110%. After this distance, i.e. increasing the distance towards d = 16Df , the

bandwidth increases to 70% till 130%. An overall average illustrates the decrease of 15%

range till 5% error at larger distances.
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Figure 7.7: Harmonic loading relative to pile length at receiver B for homogeneous soil.

For layered soils, a similar comparison is made. Figure 7.8 illustrates the relation of

the amplitude obtained with a pile compared to the amplitude obtained by only a slab

foundation. In contrast to homogeneous soils, a di�erent pattern is obtained. Where the

error reduces by distance for homogeneous soils, the similar reduction is not obtained in

this situation. Although, the average error decreases to a minimum at d = 4Df , where

after it for larger distances increases. Only at L = 2Df an average reduction is measured at

d = 16Df . The bandwidth of the results is compared to homogeneous soils quite high (over

a 1000%). For layered soils, the higher frequencies results in a larger amplitude compared

to only a shallow foundation.
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Figure 7.8: Harmonic loading relative to pile length at receiver B for layered soil.
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Chapter 8
Conclusion

This report consists of a dynamic analysis of the interaction between foundations and soil.

Di�erent patterns have been obtained by performing a three-dimensional �nite element

analysis. The analysis consists of three di�erent parts. A veri�cation with known theories

to decide a feasible method which has stable, reliable and consistent results. Consequently

a parameter study, to obtain which parameters could in�uence the result and �nally, a

more detailed analysis of the interaction between two di�erent foundations.

Di�erent models proposed as analytical or �nite element model are suitable for wave prop-

agation in soils. However, both models have their own advantage and disadvantage. The

analytical model only uses of surface waves. Thus, for basic Rayleigh wave propagation

from slab foundations, this method could be used. Although, when modelling a second

structure scattered waves are not included, and introducing a layered model, this type

of analytical model disregards possible re�ection and the e�ect of trapped waves in a

soil layer. A �nite element model is more feasible in these soil dynamics calculation. A

two-dimensional model is a simple model, which provides reasonable results at a certain

distance, includes re�ection and refraction of waves. However, this model assumes, when it

comes to foundations, an in�nite row of foundation structures. Thus the e�ect of geomet-

rical dissipation is not representative for single point loads. A more re�ned model, which

includes a third dimension, i.e. a three-dimensional �nite element model, can simulate

the behaviour of geometrical dissipation from a point load. Overall, a model required to

analyse this problem would be a three-dimensional �nite element model. PLAXIS 3D is a

commercial �nite element solver which was used for this purpose.

With the use of a three-dimensional �nite element model. The �rst situation modelled

is the in�uence of soil strati�cation and structure geometry on the soil response. Several

combinations were examined to obtain the in�uences of parameters in relation to the ver-

tical response. All models were made relatively to the radius of the slab foundation. The

pile foundation and layer depth ranges in factor to the actual radius of the slab foundation.

At lower frequencies, the obtained results have a maximum, whereas at higher frequencies

the measured amplitude decreases signi�cantly. However, for layered models at higher fre-

quencies, the existence of re�ected waves, i.e. trapped waves, in the soil layer increases,

similarly to the calculation time to obtain stable results. This e�ect changes due to the

location, layer depth and wavelength. If a pile penetrates the interface towards an underly-
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ing sti�er layer, the actual arrival time of a wave decreases. A �rst wave is measured before

arrival time of the Rayleigh wave. This indicates a Stonely wave occurs at the interface

and the top soil is following the vertical response of the underlying layer. The slenderness

of the pile foundation has limited e�ect on the vertical response. Overall, the parameter

considered to have in�uences on the results are layer depth, pile length, receiver distance

and relation of soil properties between the layers.

Finally, two foundations, shallow and deep foundations, were analysed for di�erent soil

strati�cations by a similar three-dimensional �nite element model. A homogeneous half-

space was used as reference to a layered ground consisting of a soft top soil with an under-

lying sti�er half-space. The analysis was made for a pulse load and harmonic loading. A

pulse load was examined in time domain for propagation patterns and used to determine

stable times for a harmonic excitation. The pulse loads tend to have at least two peaks

with a higher magnitude in layered cases. This e�ect is similar as described above. The

wave in the underlying layer propagates faster than in the top layer. For larger distances,

in some cases it was observed that neither the Rayleigh nor Stonely wave caused the peak

response, but instead the interference due to trapped waves afterwards. The harmonic ex-

citation results were proposed in frequency domain. The steady state response to harmonic

excitation of homogeneous soils was found less frequency-dependent compared to layered

soils. In both cases, some degree of structure-soil-structure interaction was observed. In

the layered model, the response at the receiver foundation showed a strong dependency

of frequency, due to trapped waves in the soft layer, forming interference. In overall, the

response between the pulse loads and harmonic loading tends to be following a similar

trend. However, for both soil models this might be the case, disregarded oscillation ob-

served at the receiver. The complex interference patterns could not develop in pulse loads,

where they exists during harmonic loading. It tends that the homogeneous model has less

in�uence of that behaviour compared to the layered model. Introducing piles, have led

to a di�erence of 2% till 15 % for homogeneous soils, with the larger distances as less

in�uences. In contrast to layered soils, were the di�erences is at least 40%. Interestingly,

similar relation with distances as homogeneous soils was not found.

To conclude, wave propagation in soils is fairly hard to estimate. It relies on several factors,

such as structure dimensions and soil strati�cation. In both tested situations an estimation

can be obtained by performing a pulse load. However, local side e�ects due to interference

is disregarded. A more suitable change is omit a pile foundation. This could be done for

homogeneous soils, where it tends to have a limited in�uence and for distances further away,

the in�uence is neglectable. For layered cases it is important to model the pile foundation

correctly, due to much interference what partly happens because of the existence of the

pile foundation.

70 Chapter 8. Conclusion



Chapter 9
Re�ection

With this chapter, the results will be evaluated with other methods from theories and

explained what could have been done di�erently. This chapter is divided in several sections

that includes possible improvement of the obtained results.

9.1 Constitutive model

Several methods can be used to study the interaction of foundations and soils. The known

equation of motions proposed is valid in time domain and is considered for linear-elastic

models. However, the appropriate soil constitutive model is more complex. Even with

the most advanced soil model, a certain limitations are involved to simplify real soil be-

haviour [Liu et al., 2005]. A good consideration for determination of soil model is based

on the characteristics of the problem. A linear-elastic soil model is easier to calibrate, but

more assumptions have been made. In reality, vibrations causes a cyclic shear loading. A

sequence of loading and unloading generates a hyseteric loop, which cannot be modelled

with a linear-elastic model. Instead, a hardening soil small strain model is capable of

this hyseteric loop, plasticity and in addition, it can describe hysteretic damping. Only

such an advanced model requires more calibration factors to de�ne the material properties.

Appropriate behaviour of soils, i.e. plasticity-based analysis, can produce a substantia-

tion modi�cation which might lead to permanent increase of resulting vertical response

[Amorosi & Boldini, 2009]. However, when using sti�er soils the advantage over simple

models is little, as long as the soil is considered in very small strains [Fernández Ruiz &

Medina Rodríguez, 2015].

9.2 Method

This study uses a three-dimensional �nite element model. There are several other models

which can be used to describe a soil intercation problem. A disadvantage of this �nite

element method is the required model size to describe the soil behaviour accurately. A

more advanced method such as the boundary element method could have been used instead

for the soil. This method has as advantage that it gives a suitable solution for dynamic

problems in an unbounded domain [Birk & Behnke, 2012]. There are several methods to use

the boundary element model, Genes [2012] has used a parallel coupled model based on �nite
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element method, boundary element method and scaled boundary �nite element method.

This has as advantage to models is time e�cient for large-scale problems. However, this

proposed model is made in two-dimensions. Andersen et al. [2007] has introduced a �nite

element and boundary element model to investigate moving loads representative for moving

vehicles. Wherein a coupling between local �nite elements with a boundary element model

is described. Which solved the lack of ability of the �nite element model to radiate energy

at the boundaries.

Overall, the obtained results from the �nite element method shows similarities with the

result of Yu et al. [2013] study based on the dynamic Winkler model, and with Padrón

et al. [2012] frequency domain coupled FE-BE model are similarities with a possibility to

ommit the pile foundation for homogeneous cases. Based on the research of Deng et al.

[2014] similarities were found, but in context of this study, the conclusion was di�erent.

9.3 Parameter study

In the parameter study, a large amount of model con�gurations was tested; di�erent homo-

geneous models, with and without piles, several layer con�gurations, also with and without

piles, slenderness of piles, and in�uence of pulse loads. With these results a range of com-

binations could be described. However, suggested by Yu et al. [2013], the layer depth and

material properties have stronger in�uence. This in�uence can be expressed with Equa-

tion 5.7 (p. 39). The tested layered models consists of only one combination of materials.

Hence, it might have been relevant to slightly modify the relation between two di�erent lay-

ers. Another method for obtaining results was described by Shahin [2016], which is based

on arti�cial neural networks (ANN). This uses data for training and prediction. Only, this

theory still has several shortcomings that needs further attention.

9.4 Foundation interaction

The interaction between foundations was tested in several cases (piles, slabs and combi-

nations of those) at a speci�c frequency and only two cases (piles and slabs) for a whole

range of frequencies. The two tested cases were representative for other options. However,

there are many more other con�gurations what could have been investigated, such as cel-

lars under a structure or the e�ect of grouped piles. Even the location of the source could

change, instead of on a structure it might have a source in the soil, for example a tunnel.

Andersen [2014] has researched various structure combinations of building and subsoil.

This have been done with the use of a coupled �nite element and boundary element model.

The source of the vibration is external and applied on the surface. It was obtained that the

subsoil has strong in�uence on the building response. The inclusion of a cellar might change

the ground �oor displacement, whereas the strongest in�uence is obtained for layered soils.
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9.4. Foundation interaction

Cellars de�ned as embedded basement of a structure could have in�uence on the response

of the structure. Di�erences were observed by Turan et al. [2013], where the basement

mass has a small in�uence on the motion at foundation base, but it has no in�uence on

structure level. Only, small changes in mass or acceleration could in�uence the response

signi�cantly. Furthermore, an interesting behaviour of cellars can be the response due to

interface and surface waves during harmonic loading.

Mentioned by Huang et al. [2016], the capacity and reliability of grouped piles versus

single piles will increase, what might be bene�cial in case of failure for a pile. However,

a group of piles during harmonic vibration acts like one single pile, which is at lower

frequencies observed by Gazetas et al. [1993], or a local pile-soil-pile interaction can be

observed [Chow & Teh, 1991]. Furthermore, described by Caputo & Viggiani [1984], the

interaction between two piles in groups remains linearly. It was also researched by Chow

[1986] based on non-linear response the grouped pile-pile interaction remained elastic.

Wang et al. [2012] has studied the in�uence of vibration in a tunnel due to a high speed

maglev train, and Guo et al. [2013] has introduced an underground subway station and

introduced vibration on the surface. Both studies explains di�erent approaches of the

in�uence of a tunnel on the surrounding soil or at surface. Overall, the strati�cation of soil

has in�uence on the vibration measured at the surface, whereas it tends that dry soil has a

smaller vibration response than saturated soils. When introducing an vibration source at

the soil, a tunnel cannot be ignored, since it results in an increased deformation of adjacent

structures. However, mainly vibration with large wavelengths are a�ected by the presence

of the tunnel compared to the shorter wavelengths.
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