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PREFACE

This thesis documents a master thesis completed by group MCE4-1021 at the 10th semester at

M.Sc education in Mechatronic Control Engineering at Aalborg University. The thesis concerns

development and comparison of controllers for secondary control of discrete displacement cylinders.

The thesis is preceded with an introduction and state of the art analysis. This is followed by a short

system description and is concluded by a chapter on the objective and approach of this thesis. The

rest of the thesis is divided into three main parts. The first part concerns modelling of the system

and the experimental validation. The second part describes control consideration, control design

and simulated results. The third part concerns the comparison of the developed controllers based on

tracking performance and energy efficiency and ends with a conclusion.

The initial thesis outline was aimed at testing developed controllers on a test setup readily available

at Department of Energy Technology at Aalborg University. This included modelling and pressure

control of a proportionally controlled symmetrical hydraulic cylinder to function as load for the

discrete displacement cylinder. As the work progressed it became evident that the test setup was not

suited for testing motion control without extensive work on the load side cylinder, which ultimately

was outside the scope of this thesis. However, some work was completed on this part. While not

directly relevant for this thesis, it is still included in the appendix for completeness. Appendix

F describes the LQR pressure control developed, while appendix G describes the work done on

improving the signal splitting between the two proportional valves controlling the load cylinder.

Reading guide

In this report the Vancouver-method is used when referring to sources. These references are listed at

the end of the report with information such as author, title, edition and date. Figures and tables are

numbered according to the chapter in which they occur. This means, that the first figure in chapter 3

has the caption "3.1" etc. The text, for explanation of the figures included, is located below the figures.

A .zip file containing the eMPC algorithm, the Simulink model and a compressed version of the report

have been uploaded as supplement.
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SUMMARY

An interest in reducing losses associated with high-force linear actuated hydraulic system has in this

thesis led to investigating control of digital hydraulics. Three hydraulic topologies was investigated;

Switch Control, Digital Flow Control Units and Secondary Control. Based on the state of the art

analysis the objective of this thesis was to develop position and velocity control for a secondary

controlled discrete displacement cylinder. A discrete displacement cylinder was readily available

at Aalborg University and was used as test setup. The discussion following the state of the art

analysis concluded that, while many secondary control investigations seeks an optimum between

tracking performance and energy efficiency, none of the suggested implementations could claim

optimality. Hence, the hypothesis of this thesis was to investigate if such an optimal control strategy

for secondary controlled discrete displacement cylinder was possible. The optimal control strategy

chosen, was Model Predictive Control.

To develop model based controllers a detailed mathematical model of the system was made. The

developed model was validated by comparison to experimental results.

Some general control considerations of the system revealed the existence of limit cycles due to the

discrete nature of the system, and further analysis revealed a relation between physical parameters

of the system and the amplitude and frequency of the limit cycle. A fundamental difficulty of load

holding was described due to a mismatch between available discrete force levels and the required

force. Based on the control considerations the test setup showed to be impractical for position and

velocity control as the mass of the load was too small. Furthermore, no real life application case

study was readily available. Hence, an imagined application case was synthesised to be able to test

the control strategies developed. The focus of the application case was to replicate difficult control

problems found in real life applications more than describing a real life application.

A Non-linear Model Predictive Control scheme was developed. A reduced order discrete time model

was derived by neglected pressure dynamics. A cost function penalising tracking error and switching

losses was synthesised and physically motivated constraints where formulated. Results showed that it

was possible to penalise switching losses, while maintaining good tracking response for both position

and velocity control. However, it was concluded that Non-linear Model Predictive Control was not

implementable due to the computational heavy optimisation problem.

An explicit Model Predictive Control scheme was developed in order to achieve the results obtained

by the Non-linear Model predictive Control controller in real time. An algorithm to convert the Non-

linear Model Predictive Control solution to an explicit solution was developed. Results from the
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controller showed good tracking performance, while being able to reduce switching losses for both

position and velocity control.

For comparison, a linear position and a linear velocity control was developed. Anti wind-up

was investigated with the purpose of reducing or completely removing limit cycle behavior. The

developed anti wind-up for the velocity control problem was to be able to remove limit cycles at the

cost of introducing a small steady state error.

A comparison between Non-linear Model Predictive Control, explicit Model Predictive Control and

linear control showed that it was possible to reduce the switching losses significantly with the

two Model Predictive Controllers compared to the linear control, while obtaining similar or better

tracking performance. Thus, with explicit Model Predictive Control it was possible to balance tracking

performance and energy efficiency. Finally, it was concluded that position and velocity control was

possible for a secondary controlled discrete displacement cylinder.
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CHAPTER 1

INTRODUCTION

Hydraulic systems are used in many applications where high force is needed, due to the high size-

to-force ratio. A typical hydraulic system consists of a pump unit and a cylinder controlled by a

proportional valve as illustrated in figure 1.1.

A B

M

Figure 1.1. Illustration of a typical hydraulic system with a proportional valve.

By varying the spool position of the valve, an orifice between the the cylinder chamber and the pump

or tank pressure line opens. The pressure difference across the valve orifice give rise to a flow through

the orifice and into or out of the cylinder chamber. The meter-in and meter-out is not controlled

independently by the proportional valve. The throttling and associated pressure drop across the

orifice leads to energy losses. This becomes more significant when supply pressure is not close to

the cylinder chamber pressure. The energy loss due to throttling becomes significant as the power

of the hydraulic application increases. Examples of such applications can be seen in the off-shore

industry, where there is potential for large savings in fuel costs for hydraulic applications.

Digital fluid power is a concept that has been subjected to increasing research. The focus of the

research has been on using digital hydraulics to design energy efficient, low cost and robust systems.

Thus, the concept is interesting in relation to high-power off-shore applications in order to increase

the efficiency and thereby save money on fuel. The idea of using digital hydraulics is to introduce

simple on/off valves, which can replace traditional proportional valves. Digital refers to the discrete

valued nature of the on/off valves used for control of the system. According to [1] two configurations
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1. INTRODUCTION

of digital fluid power exist, namely one based on parallel connection of on-off valves and another

based on switching technologies. In [2] and [3] a third configuration is presented; secondary control.

In figure 1.2 an illustration of how each of the three configurations can be used to replace the

traditional proportional valve is shown.

pT pP

A B

pT pP

A B

Switch-controlled on/off valve Digital Flow Control Unit Secondary Control

phi g h pmed plow

A B

Figure 1.2. Illutstration of different digital valve configurations.

The switching controlled configuration is shown in 1.2 to the left. Switching technologies uses fast

continuous switching valves, where the output is controlled by e.g. pulse width modulation (PWM).

The parallel connected system consist of a number of parallel connected on/off valves, often referred

to as a Digital Flow Control Unit (DFCU). The symbol of a DFCU is similar to the symbol of a

proportional valve, but the lines indicating proportionality are dashed, to point out that the opening

area is discrete in nature. The third configuration used for secondary control is based on a single or

more valves in parallel, all operated as a single on/off valve. The secondary control configuration is

not ideal for fast continuous switching of the valve, but instead the valve is operated as a open or close

state.

In the following chapter a detailed state of the art analysis of the three configurations and some

relevant applications are presented.
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CHAPTER 2

STATE OF THE ART

In this chapter a state of the art analysis of the three digital fluid power topologies switch control,

digital flow control units and secondary control are presented. For each of the topologies one or

more applications are presented. By the end of the chapter a discussion of the conclusions drawn

from the state of the art analysis is made. The goal is to identify the preceding research on the area

and what still needs to be investigated in order to identify the scope of this thesis.

2.1 Switch Control

The switch control valve topology is similar to the well known switch mode control of electric

actuators, such as switch control of an inverter for an electric motor. Similar to the electric switch

mode control, the switch control of digital valves is used to control the average output of the switch

by e.g. PWM control. The switch control of digital valves control the average flow area of the orifice.

In figure 2.1, 2.3 and 2.2 three switch control systems are given, a hydraulic buck converter, an

elementary valve switch system and a pneumatic clutch.

3



2. STATE OF THE ART

Figure 2.1. Sketch of hydraulic buck converter [4].

Figure 2.2. Sketch of pneumatic clutch [5]. Figure 2.3. Configuration with switch controlled digi-

tal valves [6].

In [4] a compact hydraulic buck converter, corresponding to an electric buck converter, is investigated

and developed. The hydraulic buck converter is designed for actuation of mobile outdoor robotic

applications. It uses switch controlled on/off valves configured as sketched in figure 2.1. An

advantage of the design is the possibility to recuperate energy and great energy reduction is achieved

in comparison with a proportional valve.

In [6] motion control of a hydraulic cylinder is performed with PWM control of digital valves, with the

setup shown in figure 2.3. In contrast to a conventional proportional valve the meter-in and meter-

out are controlled independently. Different PWM frequencies are tested and controllability and

dynamic behaviour is investigated. Increased frequency and thereby faster switching of the valves

decreases pressure pulsations and yields better controllability, but does also increase the acoustic

noise level. Finally it is concluded that the system provides comparable control performance as a

proportional valve in terms of response dynamics and precision.

The pneumatic clutch shown in figure 2.2 is investigated in [7] and [5]. The on/off valves are either

fully open or fully closed and are controlled by switching. In [7] a control law is designed using

backstepping theory and is seen to fulfil the accuracy and response requirements. The robustness

of the controller is investigated by adding white noise to the position measurements and robustness

to noise is seen. An issue however with the back-stepping method is that it lack the ability to handle

constraints on actuator position. In [5] a solution to the control problem of the pneumatic clutch

is to use optimal control which can handle both state and input constraints. The optimisation

based control method proposed is Model Predictive Control (MPC). Using MPC for reference tracking

4



2.2. Digital Flow Control Units

control problem of a non-linear constrained system with a quantised input makes it possible, to

penalise both input and system states via weight constants in the cost function. Due to fast dynamics

in the clutch actuator and a small sampling time an explicit approximate solution is utilised.

2.2 Digital Flow Control Units

The DFCU can be seen as a proportional valve, but with discrete nature, where the flow area is the

sum of the open valves in the DFCU, as illustrated in figure 2.4. The flow can be controlled by the

combination of the open valves in the DFCU and thereby controlling the flow by throttling, similar

to a proportional valve. The resolution of the opening area is dependent on the number of valves

in parallel and the coding scheme, which refers to the size of the individual valves. Different coding

schemes exists, with the highest resolution achieved with binary coding, where the second valve is

twice the size of the first valve, the third valve is twice the size of the second valve and so forth. This

gives the size ratio 1:2:4:8 etc. Binary coding gives 2n −1 opening combinations, where n denotes the

number of valves in parallel in the DFCU. An essential difference between the switching valves and

the DFCU is that no switching is required to maintain the output of the DFCU, as this is dependent

of the valve states.

Figure 2.4. Area of DFCU as function of valve states [8].

Binary coding requires that valves are closed and opened simultaneously, which for non-ideal valves

can cause pressure peaks and pressure pulsation, due to difference in switching time. The problem

is investigated in [9] where a binary coding scheme is compared with a Fibonacci coding scheme. In

the Fibonacci coding scheme the ratio of the valve size is 1:1:2:3:5 etc and is a combination of binary

coding and Pulse Number Modulation (PNM), where all valves have same size. The advantage with

PNM is that valves are either opened or closed simultaneously but not both, but the disadvantage is

that it requires a large number of valves to obtain a resolution equal to binary coding. The article can

not conclude that the Fibonacci coding scheme limit pressure peaks compared to binary coding.

2.2.1 Resistive Control

The general idea of resistance control as presented in [10], [2] and [11] is to utilize the many force

levels of a multi-chamber cylinder for velocity control. With a DFCU the force level is selected slightly

above the force required for the wanted acceleration. Velocity control is then achieved by throttling

the flow. This way, the full displacement flow is throttled, but at a much better matching between

supply and load pressure, hence reducing throttling losses. The system under investigation was a

three chamber cylinder with two pressure lines, a pump pressure line and a pressurised tank line.

5



2. STATE OF THE ART

Switching between pressure modes is penalised with a hysteresis term and a maximum switching

frequency. The control strategy was tested with both normal and overrunning loads. The test setup is

shown in figure 2.5.

Figure 2.5. To the left the test setup and to the right the corresponding hydraulic setup used to test resistive

control in [10].

With the configuration the meter-in and meter-out are controlled independently. The authors of the

articles state that even though throttling is used to control the flow, energy efficiency is increased

by introducing digital valves instead of proportional valves. In [10] the energy loss of the system is

compared with a traditional load sensing proportional valve and 33% average energy loss reduction

is seen.

2.3 Secondary Control

Secondary control consists in general of directly connecting a hydraulic actuator and accumulator

to a constant pressure line. The hydraulic accumulator is then used as short term energy storage,

for when the hydraulic actuator supplies energy to the high pressure line. Long term bi-directional

power flow is then possible, if the pump supplying the high pressure line is bi-directional. Thus, the

benefits of secondary control are primarily energy recuperation from the hydraulic actuator, which

could be both a pump/motor drive or linear drive. This thesis focus on secondary control of a linear

drive, in this case a multi chamber cylinder.

Secondary control of a multi chamber cylinder involves connecting actuator ports directly to pressure

lines through a number of on-off valves. The valves are ideally sized such that throttless flow is

achieved under normal working conditions. Parallel connections between pressure line and actuator

enable a multitude of force levels and allows the user to generate and store energy, e.g. recuperate

energy from braking by controlling the system as a hydraulic transformer. The direct connection

between actuator volume and pressure line leads to a discrete output. Thus, for low mass systems

velocity can be difficult to control, due to large acceleration caused by the step like input. In [1] it is

stated that secondary control is one of the most energy efficient ways, to control a hydraulic cylinder

from constant pressure lines.

6



2.3. Secondary Control

2.3.1 Power Take-Off Systems

Secondary control of digital hydraulics has found use in Wave Energy Converters (WEC) as hydraulic

transmissions in Power Take-Off (PTO) systems. The WaveStar prototype employs such a PTO system,

which is thorough described in [3] and [8]. The main principle of the WaveStar PTO system is based

on boyant point bodies resting on the water surface. The float is hinged on a lever arm, providing a

rigid coupling to the sea bed. Energy is then extracted by applying a force to the point absorber to

resist motion caused by waves. A concept drawing can be seen in 2.6
g yp yp

Figure 2.6. WaveStar concept as presented in [12]

The PTO system is based on a three chamber cylinder with three pressure lines, yielding a total of 27

force levels distributed symmetrically around zero. The many force levels allows the PTO system to

closely track a force reference. Both resistive and reactive control, where the PTO emulates a mass-

spring system, was tested in [3], utilising the high-efficient four quadrant control made possible by

the digital hydraulic components. The power supplied by the cylinder to the common rail pressure

is then converted to electrical energy by hydraulic motors and generators. A full scale WaveStar

PTO prototype is located at Aalborg University. In [12] a force control was implemented on the

WaveStar PTO prototype with a force selection algorithm based on force error minimisation and a

maximum frequency of switching. A second selection algorithm included energy costs of switching

and a hysteresis band, enabling user to compromise between tracking error and energy cost. The

latter is the selection algorithm currently implemented on the WaveStar PTO prototype. However, no

work has been done on analysing PTO-efficiency versus force tracking error to optimise efficiency as

a function of tracking error.

Pelamis is another WEC project, which is presented in [13]. It is based on floating linked structures

aligned perpendicular to the wave direction. Energy from the relative rotational motion of the

sections due to wave motion, is then extracted using a hydraulic PTO system. The PTO system is

based on identical pairs of differential hydraulic cylinders connected to a high and low-pressure

line, yielding eight force combinations. The cylinder pair apply a torque to resist the rotational

movement between the sections. Cylinders are connected to high and low pressure accumulators

via rectifying check valves. The high and low pressure lines are then connected to a hydraulic pump-

motor, enabling power to be extracted from the pressure lines.

7



2. STATE OF THE ART

Pressure Peak Minimisation

In [3], [8] and [14] the WaveStar PTO prototype described earlier is investigated. As previous described

the three chamber cylinder with three pressure lines yields 27 force levels. The 27 force levels and a

sketch of the multi-chamber cylinder with its three three pressure lines is shown in figure 2.7. The

multi-chamber cylinder is connected to the three pressure lines through a digital valve manifold

containing 9 valve packs. Each of the 9 valve packs contains a number of on/off valves in parallel.

Thus, it could be seen as a DFCU.

Figure 2.7. Illustration of the test setup used for Wave Star and possible force levels of the multi-chamber

cylinder [14].

Operating the 9 valve packs as single on/off valves, result in fast shift between pressure levels,

which introduce pressure peaks and oscillations in the actuator chamber and transmission lines.

In [8] pressure peaks are evaluated as function of the valve switching time. Faster valve switching

is seen to minimise the pressure peaks, but also yield larger pressure oscillations. In order to

minimize pressure oscillations the valve opening characteristic is considered. In [15] a valve opening

characteristic based on a desired pressure trajectory is proposed. The valve opening is an open-

loop control strategy, which is calculated based on a theoretical model of the system. Hence, a

pressure trajectory is given as input and a model based valve reference as output. By shaping the valve

opening characteristic based on a third or fifth order pressure trajectory the pressure oscillations are

reduced compared to a linear valve opening characteristic. The concept is investigated further in [16],

where the energy loss associated with the valve shifting is also considered and a sinusoidal pressure

trajectory is tested. The experimental setup in both [15] and [16] is made with proportional valves

instead of digital valves. However, in [14] the calculated valve opening characteristic is simulated

with digital valves and similar results are obtained.

2.3.2 Motion Control

In [17] velocity control for an excavator arm was attempted with PI-control in series with a force

step selection algorithm and the focus of their work is the latter part. The hydraulic test setup

was a four chamber cylinder connected to a three level common pressure rail, generating 81 force

steps. Two strategies were tested. One selection algorithm is based on a force error minimisation

with a hysteresis-like switching penalty. A second strategy used a score-based selection, where

switching between force steps with large difference was penalised further in order to obtain a more

8



2.3. Secondary Control

smooth velocity. Difficulties and further research where identified in the differences in hydraulic

capacitances, leading to force transients counteracting the desired piston movement.

A single commercial product utilising digital hydraulics for motion control is available in NorrDigiTM,

developed by NorrHydro Oy. A single research article was published in [18] and other information

is available on the webpage. The NorrDigi is based on a multi-chamber cylinder connected to a

common three level pressure rail through a digital valve manifold and is aimed mainly at mobile

applications, e.g. cranes, excavators, thus reducing fuel costs, and increasing reliability. An

illustration of a conceptual implementation of NorrDigi can be seen in figure 2.8.

Figure 2.8. NorrDigi implementation on a mobile work machinery as presented in [18].

The three level common pressure rail (2) connects the multi chamber cylinders with integrated valve

packs (1) to the accumulators (3) and an energy level management unit, which aims to stabilise

pressure, and enable power recovery. The system works with commercially available pumps (5), such

as fixed displacement pumps. The system is interfaced with CAN-bus (9). Thus, NorrDigi is a highly

integrated product. The datasheet on control software of NorrDigi claims to calculate optimal control

signals, but no information is available for which cost is minimised.

9
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2.4 Discussion

In this state of the art analysis three different digital fluid power topologies using on/off valves have

been presented.

The investigated applications using switch controlled on/off valves, generally showed good perfor-

mance with respect to energy efficiency, dynamic response and accuracy. A disadvantage of one of

the investigated applications was a compromise between pressure pulsations and the acoustic noise

level.

Resistive control of the DFCU topology used in combination with a multi-chamber cylinder, showed

good results with respect to energy efficiency. The topology was compared with a traditional load

sensing proportional valve system and 33% average energy reduction was seen.

The secondary control topology has found use in both WECs and motion control of multi-chamber

cylinders. On the WaveStar PTO prototype system two control algorithms have been tested. One

based on force error minimisation and a maximum frequency of switching, and a second including

energy costs of switching and a hysteresis band, enabling the user to compromise between tracking

error and energy cost.

Another application perform velocity control on an excavator arm with a PI-controller in series with

a force step selection algorithm. The focus of the implemented control algorithm is only on reference

tracking and no attention is given to the energy efficiency of the system.

The product NorrDigiTM, which is a commercial product, have implemented some kind of optimal

control, which could include an optimum between energy efficiency and tracking performance.

However, product information is limited, so it is not possible to determine the implemented control

algorithm.

Common for secondary control is that high energy efficiency is achieved because the generated

energy from the actuator can be recovered.

Based on the state of the art analysis of the three topologies, major disadvantages has not been

determined for any of the topologies. Thus, all three topologies could be interesting to investigate

further. However, in order to narrow the area of interest and because the test setup used in [14], [8]

and [3] is available for the project group, the focus of this thesis will be on secondary control of multi-

chamber cylinders actuated by a digital manifold consisting of nine DFCUs.

Common for the research on secondary control of multi-chamber cylinders is that a control algorithm

taking the tracking error and efficiency into account has not been thorough investigated. So the idea

of using optimal control seems appealing. As mentioned under switching control the optimal control

method MPC is proposed in [5]. The method is able to successfully optimise the control output based

on system inputs and states. This method however is utilised on a switching topology system. In [19]

promising results using MPC have been shown on systems with a low rate of change in the control

output, thus making MPC an interesting prospect for further investigation in this thesis.

In the next chapter a brief description of the Wave Star test setup from [14], with its secondary

controlled multi-chamber cylinder, is presented. After this a detailed description of the objective

and approach for the thesis.
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CHAPTER 3

DESCRIPTION OF SYSTEM

As mention in section 2.4 on the facing page a test setup with a secondary controlled multi-chamber

cylinder is available for the project, thus this system is here briefly described. The test setup

investigated is the full scale PTO unit of the ’Wave Star’ Wave Energy Converter (WEC) test bench

located at Aalborg University [3]. The test bench is shown in figure 3.1. The test setup consist

of two horizontally opposing cylinders connected with a low mass sleigh. On one side a 420kN

multi-chamber cylinder with five chambers operated as three. The cylinder is actuated by secondary

control by switching between three constant pressure lines in a digital hydraulic manifold. This gives

the cylinder a discrete flow input, thus the entire secondary controlled multi-chamber cylinder is

further on called a Discrete Displacement Cylinder(DDC) [14]. The other side is a 840kN standard

proportionally controlled symmetric hydraulic cylinder acting as a load cylinder. The test setup is

mainly being used to test a Power Take Off (PTO) system for a WEC application, where the load

cylinder has been designed with a motion controller in order to emulate waves.

Figure 3.1. The WaveStar PTO test bench. Figure 3.2. The valve manifold of the PTO test bench.

On figure 3.3 a sketch of the entire test setup is illustrated.
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Proportinal valve

Digital manifold Pump

High

Medium

Low

Load Side DDC-Side

(Primary side) (Secondary side)

Figure 3.3. Sketch of test setup.

3.1 Discrete Displacement Cylinder

The DDC system is divided into a primary and secondary side. The primary side consist of a multi-

chamber cylinder with five chambers. Two chambers are operated in parallel and one is connected

to air at atmospheric pressure. This yields effectively three chambers, which are sized to have an

approximately symmetrical force distribution. The total stroke length of the cylinder is 2m, but is

mainly operating in ±0.5m from center position. The manifold of the cylinder have nine on/off-valve

units, which can be seen as DFCUs, connecting the cylinder chambers to three different pressure

levels. This gives a force distribution of 27 different discrete force levels as seen in figure 3.4. Each

of the DFCUs consist of 8-10-18 standard off-the-shelf Bucher on/off-valves sized to match the

corresponding flow area of each chamber. Each pressure line are fitted with gas-loaded hydraulic

piston accumulators to reduce peaks in line pressure levels due to switching. The valve manifold an

pressure lines are seen in figure 3.2.
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Figure 3.4. Force distribution of the 27 different force levels. The letters denotes the pressure levels in the

chambers, where H = 200 bar, M = 107.5 bar and L = 20 bar.
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3.2. Load Side

The secondary side of the DDC system is designed to supply three pressure levels and enable

secondary control. To maintain the high side pressure level the system is connected to a 250cc

close-circuit variable displacement pump/motor between the high and low pressure lines. The mid-

pressure is then obtained by two proportional valves from the high and low pressure lines respectively.

Each line have a 25L accumulator for short-term energy storage. One source of issue regarding the

test setup design is that, in order to allow easy access to internal components, the valve manifold

has been mounted externally on the tube. This causes transmission lines of 2-4m from manifold to

cylinder [3].

3.2 Load Side

The load side cylinder used in the setup have stroke length of 3m, with center aligned with center of

the DDC. It is able to deliver a force of 840kN. The load cylinder consist of two chambers with equal

piston areas. The flow to the cylinder is controlled by two 4/3 proportional valves in parallel. A Parker

D111FP valve with a rated flow of 1000 L/min at 5 bar and overlap of 10%. The overlap around center

position is compensated by the other valve in parallel, a Moog D634 with a rated flow of 100 L/min

at 35 bar. The supply pressure is generated by two variable displacement pumps of 125cc and 250cc.

The supply pressure is furthermore fitted with two 28L accumulators.
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CHAPTER 4

OBJECTIVE AND APPROACH

The state of the art analysis revealed, that limited research has been made on tracking performance

versus energy efficiency for secondary controlled multi-chamber cylinders. The hypothesis is that

an optimum between tracking performance and energy efficiency can be determined, with the aid of

an optimal control scheme. As presented in the state of the art analysis promising results have been

obtained with the optimal control scheme, Model Predictive Control, for two different systems with

quantised inputs. However, MPC has not been attempted on secondary controlled multi-chamber

cylinder systems. Thus, the main objective of this project will be to design a MPC for the Discrete

Displacement Cylinder used on the WaveStar PTO prototype test setup. The mass of the sleigh

connecting the two cylinders in this test bench is relatively low. In order to perform motion control of

secondary controlled systems a high mass to force ratio is preferable. Due to the low mass of the sleigh

the developed control algorithms will not be tested on the test setup, but the test setup will instead

be used to validate a model of the DDC. The performance of the controllers are then evaluated based

on simulations with the validated DDC on an application with a larger mass.

In order to design a NMPC for the system, the following approach will be used.

A detailed model of the entire test setup will be made. This include the equations describing

the multi-chamber cylinder and the digital valve manifold connecting the cylinder to three

pressure lines, and the equations describing the load cylinder. The equations are implemented

in MATLAB Simulink in order to obtain a non-linear model of the whole system.

The non-linear model is verified in order to use the model for control development and later for

control evaluation. The model is verified by comparing it with experimental data from the test

setup. Soft parameters are identified and adjusted to give the best similarity between model

and experimental data.

Requirements for controller design and criteria for which the controllers will be evaluated. In

order to state the requirements for the controller to the multi-chamber system, the losses of

the system associated with shifting from one force level to another will be investigated for

the purpose of including it in the MPC. Furthermore the calculation of the tracking error is

presented likewise in order to include it in the MPC.

Development of controllers based on the stated requirements. In the design of the MPC the

equations expressing the losses and tracking error will be included in the cost function, in order

for the MPC to optimise based on this two criteria. The main objective is to design an MPC for

the system. However, a PI controller will also be design in order to compare the MPC with a
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4. OBJECTIVE AND APPROACH

simple controller. Simple in the sense of few design parameters. Even thought the PI controller

is a simple controller in terms of design parameters, it require some thoughts to make it work

for the system, due to the quantized input. The PI-controller is implemented together with a

force selecting algorithm.

Implementation and evaluation of controllers. The designed controllers are implemented in the

non-linear model in MATLAB Simulink in order to evaluate control performance. Since the

objective is to investigate the tracking performance and the energy efficiency, each controller

is evaluated based on this criteria.

Controller comparison with regard to tracking performance and energy efficiency. The comparison

will be used to determine which of the controllers, that are most suitable for the system.

Furthermore, the robustness of the controllers to changes in model parameters are evaluated.

Linearisation of the load side system and verification of it based on the non-linear model, can be

found in the appendix section F. Furthermore, development of an LQR controller for the load side

system can be found in the appendix section. Ideally a force tracking reference should be designed

to emulate friction and acceleration of the mass, in order to test and verify the controllers on the PTO

prototype test bench. The reference could be developed based on a model of the system. However, it

is outside the scope of this thesis and will therefore not be developed.
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Part I

Modelling & Validation
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CHAPTER 5

SYSTEM MODELLING

In this chapter a thorough description of all equations and parameters used to model the system

described in section 3 are presented. First the DDC model is described including the manifold

valve characteristics and transmission line dynamics. Next the equations regarding the load-side

cylinder are presented. Furthermore, the system mechanics are described with a friction model and

Newtons 2. law. An overview of the entire model is presented in section 5.4. Lastly, the energy losses

associated with switching between the discrete force levels and the throttling losses of the manifold

are presented.

5.1 Modelling of Discrete Displacement Cylinder

In this section a dynamic model of the DDC is presented. The DDC is illustrated in figure 5.1. Control

of the constant pressure lines from the pump-side is outside the scope of this project. Thus, it is

assumed that the pressure lines delivers three constant pressures for the DDC. It is possible to set

the pressures in the pressure lines manually, but for the rest of this thesis the line pressures used

are; pH = 200 bar, pM = 107.5 bar and pL = 20 bar. A common notation for the line pressure is

pS=[pH pM pL].
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pc3 ∼ pc4
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Figure 5.1. Hydraulic schematic of the Discrete Displacement Cylinder with a multi-chamber cylinder and a

valve-manifold consisting of 9 Digital Control Flow Units.

As presented earlier the cylinder is a 5 chamber cylinder, where only 4 chambers are used, with

chamber 3 and 4 operated in parallel. This means that for the schematic in figure 5.1 the sum of

the two chambers are illustrated as one chamber. Physically the flow out of the third column of valves

is split out into two individual chambers. Thus, the pressure dynamic in each of the 4 chambers are

described by the continuity equation as

ṗc1 = βe (pc1)

V0c1 − Ac1xs
(Qc1 + Ac1ẋs) (5.1)

ṗc2 = βe (pc2)

V0c2 + Ac2xs
(Qc2 − Ac2ẋs) (5.2)

ṗc3 = βe (pc3)

V0c3 + Ac3xs
(Qc3 − Ac3ẋs) (5.3)

ṗc4 = βe (pc4)

V0c4 + Ac4xs
(Qc4 − Ac4ẋs) (5.4)

Where βe (pci ) and V0ci are the effective oil bulk modulus and initial volume respectively of the i ’th

cylinder chamber. Qci is the total flow into the i ’th chamber.

The effective oil bulk modulus is calculated using Lee’s model given as [20]

βe (p) = 0.5βmax log

[
100

(
0.9

p

pmax
+0.03

)]
(5.5)

where pmax = 280bar is the maximum load pressure for which Lee’s model is valid and βmax is the

fluid bulk modulus at pmax . The fluid bulk modulus is chosen to be βmax = 18000bar [20]. This value

however is a soft parameter dependent on many not directly measurable values, like the amount of

air in the oil, and it will therefore be re-evaluated in the validation of the system.

5.1.1 Manifold

The manifold consist of nine valve units with several on/off valves in parallel, which can be seen

and operated as DFCUs. As illustrated on figure 5.1, each chamber of the cylinder is connected to a
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5.1. Modelling of Discrete Displacement Cylinder

column of three valves connecting it to each of the pressure lines. A chamber can only be connected

to one pressure line a time, thus only one DFCUs is opened in each column. Therefore there are

always a maximum of three DFCUs open at a time .

The flows through the nine DFCUs are modelled using the orifice equation. Each of the DFCUs consist

of several on/off valves in parallel. Thus, the area of the orifice is dependent on the number of on/off

valves which are open. In order to take the number of on/off valves in parallel into account, the orifice

equation is scaled with a gain corresponding to the number of valves in the DFCU. With the orifice

equation the flow from A to B is given as

Q AB = ni A0cd u

√
2

ρ

(
p A −pB

)
sgn(p A −pB ) = ni kv

√(
p A −pB

)
sgn(p A −pB ) (5.6)

where A0 is the opening area of 1 on/off valve, cd is the discharge coefficient, u is a normalised input

between 0 and 1, ρ is the oil density, and p A and pB are the pressure before and after the DFCU

respectively. ni is the number of valves in the DFCU for the i ’th chamber, and n1 = 18, n2 = 10 and

n3 = 8. kv is the valve gain. From figure 5.2, kv ∼ 1 ·10−6
[

m3/sp
Pa

]
for flow direction 2-1, which is supply

side to load side.

Figure 5.2. Valve gain characteristics. 1-2 and 2-1 refers to flow direction.[21]

As seen on figure 5.1 the large DFCUs with n1 valves is connected to chamber 1, the DFCU with n2

is connected to chamber 2 and finally the DFCU with n3 valves is connected to the parallel operated
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5. SYSTEM MODELLING

chambers 3 and 4. This means that the third flow out of the manifold, Qm3, is split out to a flow for

each chamber; Qc3 and Qc4.

Qm3 =Qc3 +Qc4 (5.7)

The valve dynamic is described based on pressure curves supplied by the valve manufacturer. It is

modelled as a 9ms delay on the input and a second order output dynamic given as

u

u∗ = ω2
nv

s2 +2ζvωnv s +ω2
nv

(5.8)

where ωnv = 630 rad/s is the eigenfrequency of the valve and ζv = 0.95 is the damping of the valve,

determined approximately from figure 5.3. It is seen that the pressure reaches steady state after

approximately 20ms.

Figure 5.3. Input to pressure time response for the manifold valves. 1-2 and 2-1 refers to flow direction.[21]

5.1.2 Transmission Line Dynamics

With the fast switching valves, pressure transients in the transmission lines connecting the cylinder

chambers to the manifold are expected. In order to take the pressure transients into account a

transmission line model is made. The transmission line model is made as a lumped parameter model,

where the transmission line is divided into a number of elements. For each element pressure, flow

and resisting force are calculated. The transmission line model is illustrated in figure 5.4.

Le
pm

pe,1 pe,i
Qe,i−1 Qe,i

pe,n

Vc

pcQe,nQe,0

Figure 5.4. Illustration of elements in transmission line model.
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5.1. Modelling of Discrete Displacement Cylinder

As illustrated in the figure the transmission line is divided into a number of elements. pe,i denotes the

pressure of the i ’th element. The flow Qe,i is defined as the flow from element i into i +1. Qe,0 is the

flow into the transmission line and Qe,n is the flow out of the transmission line. For the transmission

line from the manifold to the chamber it follows that; Qe,0 =Qm and Qe,n =Qc .

The momentum and continuity equation are applied to each element. Applying the momentum and

continuity equation to the i ’th element yields [22]

Q̇e,i =
(pe,i −pe,i+1)Ae,i −∆p f r i c,i Ae,i

ρLe,i
(5.9)

ṗe,i =
(Qe,i−1 −Qe,i )βe (pe,i )

Ae,i Le,i
(5.10)

where Ae is the cross sectional area of the element, Le is the length of the element, ρ is the density of

the fluid and ∆p f r i c is the pressure loss due friction and fittings connecting the hose/pipe. For the

i ’th element with n fittings the total pressure drop may be written as

∆p f r i c,i =∆pλ,i +∆pξ,1,i +∆pξ,2,i +· · ·+∆pξ,n,i (5.11)

where ∆pλ and ∆pξ are the pressure loss due to friction and fittings respectively. The pressure loss

due to friction as the fluid flow through the pipe, can be calculated for the i ’th element using Darcy’s

equation. [23]

∆pλ,i =λi
Le,i

de,i
ρ

1

2

(
Qe,i

1
4 d 2

e,iπ

)2

(5.12)

where de is the diameter of the element andλ is the friction factor, which can be expressed as function

of Reynold’s number

λ= 64

Re
For laminar flow (Re<2300) (5.13)

λ= 0.3164

Re0.25 For laminar flow (Re>2300) (5.14)

Reynold’s number is calculated as

Re = ρve,i de,i

µ
(5.15)

where v is the mean velocity of the fluid and µ is the dynamic viscosity.

In order to increase the robustness of the simulation and not have discontinuity at Re=2300 a

hyperbolic-tangent expression is used to create a smooth transition between laminar and turbulent

flow. With the hyperbolic-tangent expression the pressure loss due to friction is modelled as

∆pλ,i =
64

Re

Le,i

de,i
ρ

1

2

(
Qe,i

1
4 d 2

e,iπ

)2 (
1

2
+ tanh

(2300−Re
50

)
2

)
+ 0.3164

Re0.25

Le,i

de,i
ρ

1

2

(
Qe,i

1
4 d 2

e,iπ

)2 (
1

2
+ tanh

(−2300+Re
50

)
2

)
(5.16)

The pressure loss due to fitting n for the i ’th element is modelled as [23]

∆pξ,n,i =
ξn,iρ

2

(
Qe,i

1
4 d 2

e,iπ

)2

(5.17)

where ξ is a friction coefficient for the given fitting type.
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5.2 Modelling of Load Side Cylinder

In this section the equations used to model the load side cylinder will be presented. The load side

consist of a symmetric hydraulic cylinder connected to two proportional valves in parallel. The load

side is supplied by two hydraulic pumps of 125cc and 250cc. The pumps are pressure controlled, so

the pump pressure can be seen as a constant pressure, pP , up to 350bar.

Parker D111FP MOOG D634-P

pP

pT

QcBQc A

Vc A VcB

pcBpc A

AcLS

xs

FLS

xv,P xv,M

Qleak

Figure 5.5. Hydraulic schematic of load side cylinder

5.2.1 Pressure Build-up in Cylinder Chambers

The transient response of the cylinder pressures are modelled using the continuity equation. These

are expressed as

Qc A −Qleak =−ẋs AcLS + Vc A(xs)

βe (pc A)
ṗc A (5.18)

QcB +Qleak = ẋs AcLS + VcB (xs)

βe (pcB )
ṗcB (5.19)

The leakage flow Qleak is as seen in equation 5.20.

Qleak = cleak (pcB −pc A) (5.20)

Where cl eak is the leakage coefficient. The chamber volumes as function of cylinder position are

calculated as

Vc A(xs) =
(

LLS

2
−xs

)
AcLS +Vhose (5.21)

VcB (xs) =
(

LLS

2
+xs

)
AcLS +Vhose (5.22)

Where LLS is the total stroke length of the cylinder. Vhose is the hose volume which is equal for both

chambers.

5.2.2 Valve Characteristics

As mentioned the cylinder is controlled by two proportional valves in parallel. Because of the the dead

band around zero flow velocity in the larger 1000L/min Parker D111FP valve, the smaller 100L/min

MOOG D634 valve is introduced to compensate for this. The valves are first modelled individually.
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5.2. Modelling of Load Side Cylinder

The nominal spool position is defined from -1 to 1, therefore each flow out of the valves is expressed

for a positive and negative spool reference. The flow through the valves are calculated using the orifice

equation. For the Parker valve the orifice equation is expressed as in equations 5.23 and 5.24.

Qc A,P =
 cd Ad (xv,P )

√
2
ρ |pP −pc A|sgn(pP −pc A) , xv,P ≥ 0

−cd Ad (xv,P )
√

2
ρ |pc A −pT |sgn(pc A −pT ) , xv,P < 0

(5.23)

QcB ,P =
−cd Ad (xv,P )

√
2
ρ |pcB −pT |sgn(pcB −pT ) , xv,P ≥ 0

cd Ad (xv,P )
√

2
ρ |pP −pcB |sgn(pP −pcB ) , xv,P < 0

(5.24)

Where Ad (xv,P ) is the opening area of the valve as a function of spool position xv,P , andρ is the density

of the fluid.

For the MOOG valve the orifice equations can be written as equations 5.25 and 5.26. The valve

coefficient kv,M is found from the datasheet with kv,M = Qnomp
∆pnom

.

Qc A,M =
{

kv,M xv,M
√|pP −pc A|sgn(pP −pc A) , xv,M ≥ 0

kv,M xv,M
√|pc A −pT |sgn(pc A −pT ) , xv,M < 0

(5.25)

QcB ,M =
{
−kv,M xv,M

√|pcB −pT |sgn(pcB −pT ) , xv,M ≥ 0

−kv,M xv,M
√|pP −pcB |sgn(pP −pcB ) , xv,M < 0

(5.26)

So; Qc A =Qc A,M +Qc A,P and QcB =QcB ,M +QcB ,P .

Valve Dynamics

The position dynamics for both valves are described using a linear second order model with

parameters taken from the respective data sheet. The natural eigenfrequency are 54 and 30 Hz, and

the damping factor is 0.52 and 0.707 for the MOOG and Parker valve respectively. A bode plot of the

two valves are shown in figure 5.6 and datasheet bode plots are show in figure 5.7 and 5.8.
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Figure 5.6. Bode plot of MOOG and Parker valve dynamics.

Figure 5.7. MOOG valve data sheet bode plot.

10% value is used.

Figure 5.8. Parker valve data sheet bode plot. 5%

value is used.

Signal Splitting between the Valves

From the datasheets of valves a characteristic of the valve opening can be calculated. The valve

characteristic as function of nominal spool position are shown on figure 5.9. Here it can be seen

that there is a clear non-linearity of the Parker valve with the dead band around zero spool position

as mentioned earlier. Also the linear relation of the MOOG-valve is illustrated on the figure.
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Figure 5.9. Opening area of MOOG- and Parker-valve as function of nominal spool position.

The signal to each of the valves is then calculated using a “splitting algorithm”. In order to have the

best possible performance of the load side cylinder two different algorithms are investigated. The

algorithms are elaborated in appendix G on page 171.

5.3 Mechanical System

The mechanical system consists of two cylinder pistons and the sleigh connecting them, and thus

the mass considered is the total moving mass of this system. The forces working on the sleigh are the

cylinder force from each cylinder and mechanical friction. The system is regarded as a stiff system,

e.g bending moments resulting from sleigh misalignment are not considered. The dynamics of this

system are then described with a force equilibrium based on figure 5.10.

ms ẍs = FDDC −FLS −F f r i c (ẋs) (5.27)

where ms is the total sleigh mass including piston masses. Furthermore

FDDC =−Ac1pc1 + Ac2pc2 + Ac3pc3 + Ac4pc4 (5.28)

FLS = AcLS(pc A −pcB ) (5.29)

ẋs

FDDCFLS

F f r i c

c1 c2 c 3
+ c 4

cA cB

ms

Figure 5.10. Force equilibrium.

F f r i c is a sum of the Coulomb-friction and viscous friction. For ease of simulation, the Coulomb

friction is modelled with a tangent hyperbolic function to smooth out the function around ẋs = 0.
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Hence, the friction term is described by

F f r i c = tanh

(
ẋs

γ

)(
FC 1 +FC 2e−|ẋs |/kstr i

)
+Bv s ẋs (5.30)

where γ is a coefficient used to control the slope of the tangent hyperbolic function around ẋs = 0,

FC 1 is the Coulomb friction constant and FC 2 and kstr i are coefficients related to the stiction-type

Stribeck friction. Bv s is the viscous friction coefficient. All friction coefficients are assumed constant

and are to be determined experimentally. In appendix A.1 on page 125 the friction is determined.

5.4 Model Overview

The equations described in this chapter are combined to simulate the entire system. A graphical

illustration of the model is seen in figure 5.11. The model have been implemented in MATLAB

Simulink.
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Figure 5.11. Overview of system model.

5.5 Energy Losses

In this section the energy losses of the DDC are investigated. A range of different losses are present

in a hydraulic cylinder. The focus in this section are mainly on the losses associated with the

valve-manifold in form of the compressibility losses associated with shifts between pressure levels

and losses due to throttling of the valves. In [12] a study on minimising the losses in a DDC are

investigated. Based on this research the losses in this section are evaluated.

5.5.1 Switching losses

The first losses evaluated are compression losses caused by a switching between different fixed

pressures for a certain volume. In equation 5.31 the power loss from connecting a volume with
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pressure, pol d , to a fixed pressure supply with pressure, pnew . This power loss is defined as the

difference between energy supplied by the fixed pressure line, ES , and the potential pressure energy

save in the volume EV .

Eβ,loss = ES −EV = 1

2
(pnew −pol d )2 V

β
(5.31)

where V is chamber volume and β is effective bulk modulus.

The total switching loss for the entire cylinder is then calculated as the sum of losses in all three

chambers

Eβ =
3∑

i=1

1

2

(
pnew,i −pol d ,i

)2 Vi (x(t ))

β
(5.32)

where the subscript i denotes the chambers. The chamber volumes are seen as equation 5.33.

V1(x(t )) = (Ls −xs)Ac1 +V0c1

V2(x(t )) = xs Ac2 +V0c2

V3(x(t )) = xs(Ac3 + Ac4)+V0c3 +V0c4 (5.33)

where Ac is cross-sectional area of chamber, V0c is the initial volume of the given chamber, and Ls is

the stroke length. Since chamber 3 and 4 are connected in parallel these are seen together.

The design of the manifold gives, as mentioned, 27 different configurations of pressure levels in the

chambers. In figure 5.12, 5.13 and 5.14 switching between the 27 configurations are illustrated, for

three different cylinder positions. The figures shows a clear symmetry around the diagonal from (0,0)

because the losses due to shifting are the same for e.g. high to low as low to high.

An interesting observation about the switching loss, is that the loss from shifting from low to high

pressure in one chamber is bigger than the sum of shifting from low to medium and medium to high

in the same chamber, and vice versa for high to low. The phenomena is expressed in equation 5.34.

1

2
(pH −pL)2 V

β
>

(
1

2
(pM −pL)2 V

β
+ 1

2
(pH −pM )2 V

β

)
(5.34)

=⇒ (pH −pL)2 > (
(pM −pL)2 + (pH −pM )2)

=⇒ p2
H +p2

L −2pH pL > p2
M +p2

L −2pM pL +p2
H +p2

M −2pH pM

=⇒ −pH pL > p2
M −pM pL −pH pM

=⇒ 0 > pL(pH −pM )+pM (pM −pH )

=⇒ 0 > pL(pH −pM )−pM (pH −pM )

Knowing that pH > pM , it follows that (pH − pH ) > 0. And since pM > pL , the inequality above is

strictly true.

From this it becomes evident that is possible to decrease the cost of switching by going through an

intermediate pressure level. Hence, it would be possible to decrease the overall switching losses

further by increasing the amount of intermediate pressure levels in the system.
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Figure 5.12. Losses from switching between the 27 force levels for xs = 1m.
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Figure 5.14. Losses from switching between the 27

force levels for xs = 1.5m.

5.5.2 Throttling Losses

The other loss evaluated is the throttling losses. Each chamber is always connected to one pressure

line through the valve-manifold. The throttling loss is associated with the loss through each of these

valves [12]. The throttling loss is derived from the orifice equation in section 5.1.1 on page 20 and is
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expressed as

ET,loss = |∆pvQv |=
Q2

v

(ni kv )2 |Qv |=
|ẋ3

s A3
c |

(ni kv )2 (5.35)

where ∆pv is pressure drop across the valve, Qv is flow over the valve, kv is the valve gain and ni is

the number of valves for the specific chamber.

The total loss caused by throttling is then the sum over all active valves. This can be written as:

ET = ∣∣ẋ3
s

∣∣ 3∑
i=1

A3
c,i

(ni kv )2 (5.36)

where the subscript i denotes the different chambers. Again due to the parallel connection of

chamber 3 and 4, these chambers are evaluated together. This means that for i = 3 the cross-sectional

area is Ac3 + Ac4.

From the equation it is seen that the throttling losses are dependent on the sleigh velocity cubed, but

it is independent of the chamber pressures. In figure 5.15 the throttling loss as a function of sleigh

velocity is shown. It can be seen that the throttling loss is insignificant for low velocities.
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Figure 5.15. Throttling loss as function of sleigh velocity.

5.6 Chapter Summary

In this chapter the model of the DDC, load side cylinder and the mechanical system has been

presented. The model of the DDC included a description of the cylinder itself, the manifold

containing nine DFCUs and the transmission line dynamics, which has been included, due to the

length of the transmission lines between the manifold and the cylinder chambers. The symmetric

hydraulic load side cylinder has been described, together with a description of the two proportional

valves in parallel. The signal to the valves is divided between the two valves by the use of a "splitting

algorithm", which is elaborated in appendix G. The mechanical is described by a force equilibrium,

leading to a combined model of the entire system. Lastly, the energy losses associated with switching

between the discrete force levels and the throttling losses of the manifold are presented.

In the following chapter the derived model of the system, will be validated by comparing the

simulated model with experimental data for the test setup.
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CHAPTER 6

VALIDATION OF NON-LINEAR MODEL

To validate the parameters of the non-linear model, some simple experiments have been conducted

on the test setup. The experimental results are then compared, with the simulation of mathematical

model and parameters are adjusted, to make the model match the experimental results.

6.1 Load Side Validation

First the load side model is isolated to validate the orifice equations and continuity equations of the

load side, and the mechanics of the whole system.

The most important soft parameters that are evaluated are bulk-modulus, the valve gains of the two

proportional valves and the friction model. Bulk-modulus mainly affect the frequency of pressure

and velocity dynamics. The valve gains primarily effect the steady state value of the velocity. The

amplitude of the dynamics and the static load pressure value is mainly affected by the friction model.

All parameters have different impact on the system and final values presented in table 6.1 on page 39

are found iteratively.

The valve flow gains are validated by performing a number of test, with different spool reference

inputs to each valve individually. The valve gains are then adjusted to match the simulated velocity

with the measured velocity. For the MOOG valve the valve gain, kv,M , is linear and can therefore be

evaluated directly. This is visualised in figure 6.1, where the left subplot shows the velocity at steady

state for inputs in a range of [-5:5]V. The right subplot shows the valve gain as function of nominal

input. The valve gain is determined from the orifice equation by multiplying the velocity with the

cylinder area divided by the pressure difference squared at the given velocity.

33



6. VALIDATION OF NON-LINEAR MODEL

-5 -4 -3 -2 -1 0 1 2 3 4 5

Input voltage [v]

-0.1

-0.05

0

0.05

0.1

V
el
o
ci
ty

[m
=s
]

Experiment

Simulation

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Nominal input [-]

-8

-6

-4

-2

0

2

4

6

8

k
v
;M
"
x

v
;M

#10!7

y=-1.172e-06*x-2.283e-08

Experiment

Linear -t

Simulation

Figure 6.1. To the left; input to velocity response of MOOG valve. To the right; valve gain of MOOG valve with

a linear fit to find kv,M .

For the larger Parker valve the input to velocity is validated by evaluating the non-linear opening

characteristics given in the datasheet. Due to the size of the Parker valve, it is only possible to evaluate

the opening in a relatively small input range; [-2:2]V. The results are seen in figure 6.2. The figure

shows that the modelled opening characteristics based on the datasheet, is increased to match the

experiment.
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Figure 6.2. Opening characteristics of Parker valve from datasheet, experiment and the fitted curved used in

the model.

Implementation of the measured friction model, seen in appendix A.1, gave some problems when

simulating the system due to a high number of zero crossings. This was solved by reducing the static

friction curve by removing some stiction and increasing viscous friction. This compromise cause a
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smaller steady state error in the modelled load pressure, when compared to the real system. For the

scope of this thesis it is acceptable, as long as the system dynamics have similar response.

To make the velocity and load pressure dynamics of the model match the experiment, the value for

bulk-modulus have been evaluated together with the friction coefficients. In figure 6.3 the velocity

response and load pressure during a step from +4v to -4v on the MOOG valve is seen. The simulated

and measured results are similar. Though the amplitude of the simulated velocity dynamics are larger,

the settling time and frequency matches the experiment.
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Figure 6.3. Step from +4v to -4v on the MOOG valve. To the left velocity, to the right load pressure.

6.2 DDC-side Validation

To validate the pressure dynamics of the DDC-side an experiment where the load side is set to

hold a constant position is conducted. A range of different force steps have been applied to the

DDC-manifold. The Simulink model is then applied with the same valve inputs and secondary

side pressures as measured during the experiment. With this approach it is possible to validate the

parameters of the continuity and orifice equations of the DDC-side. Also the line dynamics from

manifold to cylinder chambers are validated. It is assumed that the difference in pressure for chamber

3 and 4 is insignificant, thus these chambers are seen as one chamber with the same pressure and with

summed piston area and chamber volume. This assumption is therefore initially validated.

6.2.1 Parallel Connection of Chamber 3 and Chamber 4

To show that the chambers 3 and 4 can be seen as one chamber the response from different shifts

are investigated. In figure 6.4 the measured pressure for chamber 3 and 4 is shown together with the

response from a simulation where the two chambers modelled as one, by adding chamber volumes

and piston areas in the continuity equation. The figure shows similar dynamic pressure responses in

the measured data from both chambers with an insignificant difference in amplitude and frequency

of the pressure oscillations. The simulated response also shows similar characteristics regarding the
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6. VALIDATION OF NON-LINEAR MODEL

pressure dynamics. Thus, for the rest of this thesis the parallel connected chamber 3 and chamber 4

will be noted together as chamber 3’. This leads to

c3′ = c3+ c4 (6.1)

pc3′ ≈ pc3 ≈ pc4 (6.2)

Qc3′ =Qc3 +Qc4 (6.3)

Ac3′ = Ac3 + Ac4 (6.4)

V0,c3′ =V0,c3 +V0,c4 (6.5)
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Figure 6.4. Measured pressures for chamber 3 and 4 and simulated pressure for chamber 3’, where the two

chambers modelled as one. Left is step from low to high pressure. Right is step from medium to

low pressure.

6.2.2 Pressure Dynamics

All chamber pressures are shown for a small force shift from force level 9 to 8 on figure 6.5 and

a larger step from force level 1 to 14 is seen on figure 6.6. Good similarity between measured

and simulated response for most cases is seen. However, the validation showed a small difference

between measurements and simulations for small force step during the first 50 ms. This can be

caused by the opening characteristics of the Bucher on/off valves which are dependent of both flow

and flow direction [21]. Generally the pressure dynamics of the model looks similar to the measured.

Thus, the continuity and orifice equations of the DDC-side are validated.
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Figure 6.5. Chamber pressures for a step from force

level 9 to 8.
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Figure 6.6. Chamber pressures for a step from force

level 1 to 14.

6.2.3 Pressure Dynamics in Transmission Lines

Next the pressure dynamics introduced by the transmission line (pipes, hoses and fittings) connecting

the cylinder to the manifold are validated. In figure 6.7 the pressure response is shown at the chamber

and at the manifold, before the transmission line, for a force shift from level 9 to 8. The figure

clearly shows how the transmission line dynamics introduces extra pressure oscillation in the cylinder

chambers. Furthermore it is seen that the model pressure dynamics matches the experiment fairly

well at both ends of the transmission line.
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Figure 6.7. Pressure response for each chamber before and after the transmission lines connecting the

chambers to the manifold. Left column is pressures in the chambers, right column is pressure

at the manifold.

6.3 Chapter Summary

In this chapter the non-linear model has been validated by comparison with experimental data from

the test setup. For the load side, the valve gains was fitted and validate based on experiments

with different constant velocities. Implementation of the friction model determined based on

measured data, led to simulation issues and resultantly the friction model was adjusted. Even

though a compromise was made on the friction curve, a joint evaluation of bulk-modulus and friction

parameters showed similarity between measurements and simulations for velocity and load pressure

responses. Evaluation of the DDC side showed that it was possible to make the assumption, that the

two parallel connected chambers can be seen together as one. The DDC validation further showed

close similarities in the chambers pressure dynamics, as well as the transmission line dynamics.

Subsequently the model was considered sufficiently accurate for the following control development.

In table 6.1 the soft parameters found in the validation are listed.
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Hydraulic properties
- Bulk modulus βmax 6000 [Bar]
- Dynamic viscosity of oil µ 0.0810 [Pa·s]
- Density of fluid ρ 860 [kg/m3]

Friction properties
- Coulomb friction FC 1[N] 6000 [N]
- Stribeck friction FC 2[N] 6000 [N]
- Stribeck slope coefficient kstr i [m/s] 0.2
- Friction slope coefficient γ 1e-3
- Viscous friction Bv s [Ns/m] 60000 [Ns/m]

MOOG Valve (Load side)

- Valve gain kv,M 1.172e-06 [m3/(s
p

Pa)]
- Natural eigenfrequency ωnv,M 53.5 [Hz]
- Damping factor ζv,M 0.52

Parker Valve (Load side)
- Valve gain / Opening characteristics [-] See figure 6.2
- Natural eigenfrequency ωnv,P 30 [Hz]
- Damping factor ζv,P 0.707

Bucher on/off Valve (DDC side)

- Valve gain kv 9.8995e-07 [m3/(s
p

Pa)]
- Natural eigenfrequency ωnv 100 [Hz]
- Damping factor ζv 0.707

Table 6.1.
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CHAPTER 7

CONTROL CONSIDERATIONS

This chapter discusses some general control consideration regarding the system. The discussion is

made on the basis of the system to be controlled and thus general for the system regardless of the type

of control being implemented. Furthermore, an application case to be used for control evaluation is

presented.

7.1 System Analysis

In this section a commencing analysis of the control essential elements of the system described in

chapter 3 is discussed. This analysis is then used as a basis for the control design in the following

chapters.

7.1.1 Secondary Control

In section 2.3 it is described, that the main advantage of secondary controlled system is that it

is possible to recover some of the energy invested. Hence, disregarding energy losses from non-

conservative forces such as friction, input energy are expected to be recoverable. As a consequence,

the control design should not be penalising high amplitude input signals as long as it is within the

physical limits of the system, i.e. maximum force output. However, as described in section 5.5, losses

are associated with a change of input. This suggests a control objective of little or no overshoot or

other control input oscillations.

7.1.2 Control Input Type

As described, the DDC can give 27 force steps distributed with some symmetry around zero. The steps

are a result of the different combinations of pressure lines and cylinder chambers. Each chamber

can be connected to one of three pressure lines, and as there are three chambers, this yields 33 = 27

different combinations. The articles reviewed in the state of the art chapter on secondary control of

multi-chamber cylinders all use some formulated logic in choosing the required valve combinations

in order to achieve a desired force. The simplest logic is a minimum error, where the logic chooses

which force output level closest to the force reference. This is also known as linear quantisation. More

advanced logic penalises switching based on energy costs and impose minimum switching periods.

Hence, all uses control logic to reformulate the multiple input-single output (MISO) control problem

into a single input-single output (SISO) control system.
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The MISO system can be seen as three chambers each generating an one of three force levels, whereas

the SISO-approach generates a single force. While the SISO-approach enables generation of a single

force reference by e.g. PI-control the logic implemented puts a certain bias on the output. The results

of a combination of PI-control and advanced logic can thus be hard to interpret, and it makes the

design of control parameters difficult. It is then up to the control engineer to balance the PI-control

gains to support the purpose of the logic , e.g. minimising energy costs, while reducing tracking error.

7.1.3 Pressure Oscillations

The DDC suffers from large pressure oscillations when switching between pressure lines, but it is

not possible to increase dampening by applying pressure feedback as for a regular proportionally

controlled servo system. Instead, as discussed in [15], it is possible to design open loop opening

area trajectories to reduce oscillations. However, this is done utilising the many DFCU valves during

switching and thus not directly a part of the secondary control problem. Thus, the problems can

be treated separately as long as the principles of secondary control are not affected (no continuous

throttling). Hence, while the problem of large pressure oscillations can be addressed by avoiding

frequent switching between pressure lines, increased system damping cannot be achieved with

secondary control, but must be handled with other tools.

7.1.4 Effects of Quantization

For a regulation problem of stabilising a system at some equilibrium point, the quantization of the

input can result in oscillations around the equilibrium point or limit cycles. Such behaviour can

not be predicted by linear theory. Instead describing functions can be used to predict limit cycles.

Describing functions are approximations of the frequency response function N (A,ω) of a non-linear

term, that can be used to predict limit cycles of the form x(t ) = Al c sin(ωlc t ), where Al c and ωl c is the

amplitude and frequency of the limit cycle, respectively

To illustrate the problem, a unity feedback controller is implemented to drive the system to the origin.

The system is chosen as a decoupled MISO system, where only the smallest cylinder chamber Vc3′ is

considered. This is chosen in order to simplify the analysis. Thus, the system can be described with

the following state equations, where x1 = xs , x2 = ẋs and x3 = pc3′ .

 ẋ1

ẋ2

ṗc3′

=


x2

(−Bv x2 − tanh

(
x2

γ

)(
FC 1 +FC 2e−|x2|/kstr i

)+ Ac3′pc3′)
1

ms
βe (pc3′)

Vc3′ + Ac3′x1
(Qc3′(u)− Ac3′x2)

 (7.1)

Here, Qc3′ = n3 A0cd

√
2
ρ

(
pS −pc3′

)
sgn(pS − pc3′) is the input flow, where pS can be either of the

three pressure line levels. A condition of describing function analysis is that there is only a single

non-linear component [24]. Thus, the system is linearised in order to neglect other non-linear

terms such as Coulomb friction and valve flow non-linearity. The state equations are linearised

assuming the chamber volume is constant, i.e Vc3′ =V0c3′ = cst . , thus yielding the state space model
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7.1. System Analysis

ẋ = ADDC x+BDDC Qc3(u) and y = CDDC x, where

ADDC =


0 1 0

0 −Bv s

ms

Ac3′

ms
0 −ΛAc3′ 0

 , BDDC =

0

0

Λ

 (7.2)

CDDC =

1 0 0

0 0 0

0 0 0

 (7.3)

The eigenvalues of ADDC are negative, and thus the system is stable. The open loop transfer function

is then

GDDC (s) = xs

Qc3′
= (sI−ADDC )−1 BDDC (7.4)

= 1

s

ΛAc3′

ms s2 +Bv s s +ΛA2
c3′

(7.5)

Here, Λ = β0

V0c3′
, and the chosen linearisation point is at half stroke length. The non-linear effects of

this quantizing of inputs can be compared to that of a relay of on-off non-linearity for the single valve

manifold. Thus, near the origin, the closed loop control will only have two inputs to choose from,

yielding positive and negative acceleration respectively. In [24], the describing function of a relay-

type non-linearity is found to be N (Al c ) = 4M
πAl c

, thus the describing function is only a function of the

amplitude of the assumed limit cycle. M is the magnitude of the output, which in this case is Qc3′ .

The input flow is modelled as the maximum flow when switching between medium and low pressure

line and vice versa, where

Qc3′ =
n3kv

√(
pm −pl

)
sgn(pm −pl )

n3kv

√(
pl −pm

)
sgn(pl −pm)

=⇒ Qc3′ =±Qmax (7.6)

Thus, the input flow is constant positive or negative Qmax for a given state of the on-off relay. A block

diagram of the system is shown in figure 7.1.

−
∑ e u y

−Qmax

Qmax
GDDC (s)0

Figure 7.1. Block diagram of the describing function with M =Qmax in series with the linear system.

If a limit cycle exists, it must satisfy the equation [24],

GDDS
(

jω
)=− 1

N (Alc )
(7.7)
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Since N (Alc ) is real for all Al c , there will be a limit cycle if the Nyquist plot of GDDC ( jω) crosses the

negative real axis. Thus, we find the frequency of where GDDC ( jω) is real.

Im
[
GDDC

(
jωl c

)]= 0 (7.8)

Im

[
1(

jωlc
) ΛAc3′

ms
(

jωlc
)2 +Bv s

(
jωl c

)+ΛA2
c3′

]
= 0 (7.9)

=⇒ ωlc = Ac3′

√
Λ

ms
(7.10)

Thus, indeed there is a limit cycle with approximate frequency ωlc ≈ 36 rad/s. The amplitude can be

found by evaluating

GDDS
(

jωl c
)=− 1

N (A)
=− πAlc

4Qmax
(7.11)

−GDDS
(

jωlc
) 4Qmax

π
= Al c (7.12)

=⇒ Al c =− 4Qmax Ac3′Bv sΛω
2
lc

(msω
3
lc −ΛA2

c3′ωlc )2 +B 2
vω

4
l c

(7.13)

The limit cycle then has an amplitude Alc ≈ 0.15m. The Nyquist plot of GDDC (s) and N (A) can be

seen in figure 7.2.
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Figure 7.2. Nyquist plot of GDDC (s) and −N (A)−1. −N (A)−1 →−∞ for A →∞ and −N (A)−1 → 0 for A → 0

According to the Limit Cycle Criterion in [24], the limit cycle is stable since the points of −N (A)−1

trajectory for A increasing is not encircled by G( jω) in the Nyquist plot. The values found for the

limit cycle are highly approximate due to firstly the approximate nature of describing function and

secondly the many approximations done, such as neglecting other non-linearities. However, insight

is given into which parameters affect the amplitude and frequency. From the above analysis, it is
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7.1. System Analysis

clear, that a smaller mass results in a larger limit cycle frequency and amplitude. Likewise, larger

differences between line pressure increase limit cycle amplitude through Qmax . Conversely, larger

friction terms result in smaller amplitudes. A similar analysis can be done for the SISO system with a

linear quantizer. In figure 7.3 the gain of a linear quantisation for the 27 force levels of the DDC can

be seen as a function of the input. As the force level steps does not include zero, the amplitude is

negative infinite at zero. At higher inputs the relative quantization error decreases and the gain tends

to unity constant gain, hence the name ’linear quantizer’.
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Figure 7.3. The input dependent gain of a linear quantizer on the DDC with 27 force steps.

Figure 7.4 shows the gain of linear quantisation on the DDC where the fourth chamber is utilised. This

yields 81 force steps. It can be seen, that while the gain is still infinite at zero input, the gain tends to

unity faster for larger inputs. Thus, a higher resolution of quantisation leads to a more smooth system

input. If the force reference range is small, the relative quantization error is large. Thus, the system

must be dimensioned such that the force required matches the force available. For a low mass system,

the quantisation range is not properly utilised, leading to coarse force steps to the system. Figures 7.3

and 7.4 underline a fundamental difficulty in controlling quantised input systems and particularly a

DDC in that, for a given operation point load holding is difficult due to the quantisation error yielding

a non-zero acceleration.

To verify the existence of limit cycles in the system, the system is simulated with a P position

controller. The P-gain are chosen such that it yields a stable system with approximately 5% overshoot.

The results are shown in figures 7.5 and 7.6, for a linear quantization and an algorithm with

a minimum switching period respectively. The minimum period is 0.3 seconds and a constant

disturbance force of 130kN is added in both cases.
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Figure 7.4. The input dependent gain of a linear quantizer on the DDC with 81 force steps.
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Figure 7.5. Simulated limit cycle with linear quantiza-

tion.
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Figure 7.6. Simulated limit cycle with a minimum

switching period quantizer.

The limit cycle in figure 7.5 has an amplitude of 0.005m and a frequency of approximately 10H z, while

the frequency limited has an amplitude of approximately 0.05m and a frequency of 3.3H z. Thus, for

quantized input there is a trade-off between the costs of switching and precision.
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7.2. Application Case

7.2 Application Case

To evaluate the control of the DDC it would be ideal to test it on data from a real life application in

order to see the true potential of the controllers developed. Since it have not been possible to retrieve

any real data for this thesis, a simple imaginary application case for the DDC is established to add

extra complexity in the kinematics of the mechanics. The application is designed to match the sizes

and dimensions of the DDC cylinder described in the modelling section 5.1.

The application established here is a reversed pendulum, where the DDC is mounted directly at the

rod. A sketch is shown on figure 7.7. To simplify the system, the centre of mass is assumed to be

in the middle of the mass at the end of the rod, thus the mass of the rod is neglected. The origin

is defined as center of rotation which is located at the button of the rod connected to the ground.

a

b

e

xc

d

L

M

Fc

θ

θ̇

ϕ

Figure 7.7. Sketch of application used to test con-

troller performance.

M 2 ·103 [kg]

L 8 [m]

a 2 [m]

b 2.236 [m]

e 2 [m]

xc {0 : 2} [m]

θ {56 : 141.5} [degree]

d {0.7 : 1.85} [m]

Table 7.1. Parameters used in application.

The kinematics of the application are here deducted. The lengths, a, b, e and L, and the mass M are

all known constants. And xc is a variable of the length that the cylinder is extracted. The angle, θ, is

dependent on xc and it is orthogonal when the cylinder is in centre position. The length, d , is the

length from the origin to a point where d is orthogonal on the cylinder. The analytic expression for θ,

ϕ and d is expressed in equation 7.16. Sizes and dimensions are listed in table 7.1.

θ = cos−1
(

a2 +b2 − (xc +e)2

2ab

)
(7.14)

ϕ= cos−1
(

(xc +e)2 +b2 −a2

2(xc +e)b

)
(7.15)

d = sin(ϕ)b = b

√
1−

(
(xc +e)2 +b2 −a2

2(xc +e)b

)2

(7.16)

Newtons 2’nd low of rotation is used to describe the mechanics of the application, seen in equation
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7.18. The friction used is based on the measured friction shown in appendix A.1 on page 125. The

coulomb and stribeck values are the same as in table A.1, and the viscous damping is chosen as;

B = 9 ·105N m/s. Thus the friction formula is again expressed as

F f r i c = tanh

(
ẋs

γ

)(
FC 1 +FC 2e−|ẋs |/kstr i

)
+B ẋs (7.17)

The effect of the gravitational force on the system is seen on figure 7.8, where the system extrema are

illustrated. It is seen that gravitational torque changes direction around the centre position where

there is no gravitational torque. For a pendulum the mass moment of inertia is defined as; J = L2M .

J θ̈ = τc −τ f r i c −τg (7.18)

τc = Fc d

τ f r i c = F f r i c d

τg = Fg L cos(θ)

Fg = M g (7.19)

Where g is gravitational acceleration.

Since the objective is control of the cylinder, the rotational expression above is transformed into a

mass equivalent force expression with respect to the cylinder.

Meq (xc )ẍc = Fc −F f r i c −Fg ,eq (xc ) (7.20)

Where Meq (xc ) and Fg ,eq (xc ) are the equivalent mass and equivalent gravitation respectively. They

are both a function of cylinder position and are expressed in equation 7.22.

Meq (xc ) = J

d(xc )2 = L2M

d(xc )2 (7.21)

Fg ,eq (xc ) =Fg L cos(θ(xc ))

d
(7.22)

Furthermore, the equivalent loads in the cylinder are shown in figure 7.9 and 7.10 as a function of

cylinder position.

θmax
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F f r i c

d

θ

Fg

Fc FcF f r i c

d

θmi n
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τ f r i c

τg

F f r i c

τc

d

Figure 7.8. Maximum, central and minimum extraction of cylinder.
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Figure 7.9. Equivalent mass on cylinder as function of

cylinder position.
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Figure 7.10. Equivalent gravitational force acting on

cylinder as functon of cylinder position.

This application case is chosen such to test control in several conditions. While not itself necessarily

a realistic set up, it gives the opportunity to test in conditions that are challenging control problems

such as overrunning loads, low and high mass systems as well as load holding for different static loads.

7.3 Chapter Summary

This chapter described some fundamental characteristics of secondary control of a discrete

displacement cylinder. It was concluded, that it was not feasible to attempt to dampen the pressure

oscillations inherent to a DDC system with a secondary control strategy. Furthermore, it was shown

how the input quantisation associated with the DDC can induce limit cycles, and a relation between

physical parameters and the limit cycle frequency and amplitude was found.

Finally, an application case suitable for position and velocity control was introduced.

The next chapter describes the general ideas behind Model Predictive Control and some of the main

strengths and weaknesses of this control type.
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CHAPTER 8

MODEL PREDICTIVE CONTROL

This chapter outlines the principles of Model Predictive Control and some considerations on the

tuning variables and their effect on the control problem. For more information on Model Predictive

Control, see [25] and for explicit Non-linear Model Predictive Control, see [19].

As mentioned, the scope of this thesis is to design a control topology suited to compromise the

relation between the system input energy and a tracking performance. The control problem in this

thesis is designed to regulate a constant or time varying reference which is only know at the exact

time instance and thus unknown for future time steps. The focus of the controllers developed in this

thesis are based on regulating velocity and position.

The basic idea of Model Predictive Control (MPC) is to use a model of the controlled system to predict

future outputs on a determined time horizon as a function of the current measured state x and future

inputs u. The future inputs are then optimised with respect to some chosen criteria, e.g. tracking

error. The output is then applied until new state information is available, and optimal future inputs

are calculated anew. An advantage of MPC is the possibility to include physically and operationally

motivated constraints on state variables and inputs, both on magnitudes and rates of change, in

the optimisation problem. For this thesis the focus is on a Model Predictive Control problem for a

constrained non-linear system, referred to as Non-linear Model Predictive Control (NMPC). Another

advantage lies in the predictive power of the model as e.g. system delays and other non-linearities

can be compensated for as long as the model is sufficiently accurate. Often, discrete time models are

used in MPC. Thus, in general a non-linear system can be described as

x(t +1) = f (x(t ),u(t )) (8.1)

y(t ) = Cx(t ) (8.2)

Estimating the future states using the model, the estimate is denoted x(t +k +1|t ) to reflect that only

state knowledge from time t is used in the estimation and k = 0,1,2..., N , where N is the time horizon.

The future inputs are then u(t +k +1). A general optimisation problem can then be described as

V ∗(x(t )) = min
U

J (U,x(t )) (8.3)
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8. MODEL PREDICTIVE CONTROL

subject to x(t |t ) = x(t ) and

umi n ≤ u(t +k) ≤ umax (8.4)

g (x(t +k|t ),u(t +k)) ≤ 0 (8.5)

x(t +k +1|t ) = f (x(t +k|t ),u(t +k)), k ≥ 0 (8.6)

Here, U = [u(t ),u(t +1),u(t +2), ...,u(t +N −1)] is the set of control moves. The problem solution is

denoted U∗ = [u∗(t ),u∗(t +1),u∗(t +2), ...,u∗(t +N −1)] with corresponding cost function value V ∗.

g is a set of general inequality constraints, which can be physically motivated or stability-preserving

from a solution point of view. The cost function can be described as

J (U,x(t )) =
N−1∑
k=0

[`(x(t +k|t ),u(t +k))]+S (x(t +N |t )) (8.7)

` is known as the stage cost, and S is known as the terminal cost. In general, they both affect control

performance and stability, and are central to achieving good results. Once a solution is found, u(t )

is applied to the system according to the receding horizon principle, until the next sampling instant

(t +k), where U is re-optimised using new state information x(t +k|t +k) = x(t +k). Thus, MPC is in

general a form of closed loop control, even though the solution to optimisation problem is open loop.

The horizon is normally chosen such that the system settling time is within the time horizon [26].

However, increasing N also increases the size of the optimisation problem.

The above problem could describe a control objective to drive the system to the origin, but could also

easily be adapted to a reference tracking problem y(t )−r (t ). Figure 8.1 show the structure of the MPC

optimization for one iteration for the whole horizon N .

∑
Process Model

Optimiser

x(t )

r (t )

u(t ),
u(t +1),

u(t +N −1)
u(t + ...),

y(t +1),
y(t +2),

y(t +N )
y(t + ...),

e(t +1),
e(t +2),

e(t +N )
e(t + ...),

Future outputs

Future errors

Future inputs

State measurement/estimation

Cost function, V Constraint function, g

+
-

Figure 8.1. Structure of MPC for one iteration on horizon N .

The optimisation problem is a multi-parametric Non-Linear Programming problem (mp-NLP

problem) parameterised in x. Hence, it belongs to non-linear branch of MPC (NMCP), which is the

focus in this thesis. Similar problem formulations exists in linear MPC, described as convex quadratic

programming (QP) problems.

When using a nominal model, it is also possible to account for model uncertainties and measurement

errors in the problem formulation. This is not considered further in this report.
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8.1 Cost Function

Solutions to an optimal control problem are based on minimising an appropriate cost function for the

system. Thus, optimal control is not necessarily perfect, but it is optimal in the sense of finding the

best solution to a given cost function with some constraints. Therefore, a well chosen cost function is

a critical part of ensuring good control performance.

In MPC the form of the cost function to be minimised can be seen in the form of equation 8.8 [19].

J (x(t ),u(t )) =
N−1∑
k=0

`
(
x(t +k|t ),u(t +k)

)+S
(
x(t +N |t )

)
(8.8)

where ` is stage cost, S is the terminal cost, N is the horizon and x(t +k|t ) is the system states at time

t+k given the knowledge of system at time t . Included in the stage cost is an expression for penalising

system states and input. The terminal cost is then used to include a penalty on the last point in the

horizon.

For a reference tracking problem, where y(t ) needs to follow a reference r (t ) and all states, x(t ) are

obtainable by measurement or estimation, the cost function can be expressed as in equation 8.9. The

terms of the stage and terminal cost are expressed as quadratic norms with the constant weighting

matrices, Q, R and P .

J
(
x(t ),r (t ),u(t )

)
=

N−1∑
k=0

(∥∥`x
(
x(t +k|t ),r (t |t )

)∥∥2
Q +∥∥h

(
x(t +k|t ),u(t +k)

)∥∥2
R

)
+∥∥S

(
x(t +N |t ),r (t |t )

)∥∥2
P

(8.9)

where `x is a state cost and h is input cost as function of system states and input. Q refers to the

penalty on system states. R is the input penalty. P penalises the terminal cost. Furthermore Q,R,P

are positive semi-definite. ‖•‖A is the A-weighted 2-norm.

The trade-off between the weighting variables, Q and R, is based on how much the system input

energy is penalised compared to the tracking error. Some considerations when choosing the Q

and R weights have to be made in order to ensure stability. Conventional LQR tuning can be a

helpful guideline to find an appropriate starting point [19]. In [19] MPC is designed for two different

systems with quantized input, the terminal cost is in both cases a weighted quadratic norm, where

the weighting coefficient, P , is equal to the coefficient Q. Thus, this could be a starting point when

designing the cost function.

In order to have an intuitive relation between the weighing variables it can be beneficial to normalise

the terms of the cost function. Generally a normalisation of the gradient can ease the convergence of

the equation, because the values of all terms will be in the same range.

8.2 Tuning and Stability

In [27] one of the objectives is to determine some essential parameters that are used to obtain stability.

The authors base their research on a large number of article regarding stability conditions for MPC.

The parameters that are found useful in developing stable MPC with finite horizon are the terminal

cost S and the terminal constraint set XT . The terminal constraint set determines the set in which the

output state has to be within in the last horizon step, in order to obtain a feasible solution.

The terminal cost is an expression for the penalty of the last state in the horizon. Ideally
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the terminal cost should be equal to the infinite horizon cost function, i.e S(x(t + N |t )) =∑∞
k=N [`(x(t +k|t ),u(t +k))].The cost function value corresponding to an infinite horizon would then

be obtained and stability would automatically follow [27]. However, it is generally hard to compute

and simple quadratic approximations are usually chosen [19].

8.3 Explicit Model Predictive Control

A disadvantage of MPC, especially NMCP, is that large computational power is required to solve the

above problem in real time at each sampling interval. For linear convex QP problems very efficient

numerical methods exist, and linear MPC are well suited for processes with slow dynamics, such as

chemical process control, with tens or hundreds of state variables, but with sampling times in order

of minutes.[28] However this is not the case for NMPC, where challenges lies in achieving sufficiently

good results to the mp-NLP problem in real time. One way to address this problem is found in

explicit MPC. Explicit MPC (eMPC) builds on the idea that it is possible to construct piecewise linear

(affine) state feedback functions to approximate the a solution to a mp-NLP. The solution is then

found offline and as an explicit function of the state vector. Thus online, on the real-time computer,

the implemented eMPC maps into a lookup table, and then requires only few simple evaluations or

comparisons to determine the approximate optimal input.

8.4 Chapter Summary

This chapter introduced the general idea behind Model Predictive Control. The idea is to utilise

the predictive power of a model to determine an optimal series of control actions, based on desired

system behaviour. The desired behaviour is then described by the cost function, which is a function

of system input and output. Some general guide lines for tuning and stability was presented. Lastly,

the idea of explicit Model Predictive Control was introduced.

The next chapter concerns the development of a Non-linear Model Predictive Control Controller for

the application case described in section 7.2.
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CHAPTER 9

DESIGN OF NON-LINEAR MODEL

PREDICTIVE CONTROL

This chapter describes the application of NMPC on the application case using a DDC as an actuator.

In the first part, the optimisation problem is formulated. This includes describing a reduced order

model suitable for NMPC. Furthermore, the cost and constraint functions are discussed, including

criteria on energy efficiency and control performance, and the use of terminal constraints and

terminal costs. Finally a summary of the NMPC problem is made together with a discussion of control

parameters, followed by results showing the control performance.

9.1 Reduced Order Discrete Time Model

In order to have a tractable optimisation problem, a reduced order model is used for describing the

system dynamics in the optimisation problem. It is important to consider the dynamics that has

to be included in the model. Two reduced order models are considered: a second order model,

including only the mechanical system described by Newton’s laws of motion and fifth order model

including the pressure build up in each cylinder chamber. From the discussion in section 7.1.3, the

purpose of the control is mainly position or velocity control and it cannot be expected to dampen

pressure oscillations by control. Furthermore, the pressure dynamics where seen to be in the order of

milliseconds and much faster than the mechanical system to be controlled.

Resultantly, the choice has fallen on a second order mechanical model, where pressure build up have

been neglected. However, pressure level switching may still be penalised based on pressure levels as

described later in this chapter. The mechanical model is described as in section 5.3

Meq (xc )ẍc = Fc −F f r i c −
M g L cos(θ(xc ))

d
(9.1)

In order to use the model for NMPC, it is converted into a discrete time state model. Given that

pressure build up are neglected the model is fairly well conditioned. Thus, it is considered reasonable

to perform the numerical integration for the explicit forward Euler method with time step Ts . This
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yields a discrete time model given as

x1(t +Ts) =x1(t )+Ts [x2(t )] (9.2)

x2(t +Ts) =x2(t )+Ts

[(
−F f r i c −

M g L cos(θ(x1(t )))

d

)
Meq (x1(t ))−1 +Fc (u(t ))Meq (x1(t ))−1

]
(9.3)

y(t ) =C j x(t ) (9.4)

where C1 = diag[1,0] for position control and C2 = diag[0,1] for velocity control. In general for this

problem subscript j is used to distinguish between position and velocity control for j = 1 and j = 2

respectively. The input force is described as Fc (u(t )) , where input vector is u = [u1,u2,u3], i.e. one

input for each cylinder chamber, numbered appropriately. Thus, the control approach chosen is the

MISO approach. This is done in order to avoid any bias imposed by introducing switching logic and

instead use penalty and constraints to define the control objective.

Fc (u) =−Fc1(u1)+Fc2(u2)+Fc3(u3) (9.5)

Each input can take one of three values, from 1 to 3. Each value correspond to a pressure level

command in the corresponding chamber.

ui = 1 =⇒ Fci (ui ) = ph Aci

= 2 =⇒ Fci (ui ) = pm Aci

= 3 =⇒ Fci (ui ) = pl Aci

 for i = 1,2,3 (9.6)

Thus, each ui results in a force acting on the mechanical load and Fc is the sum of forces from each

cylinder chamber acting on the mechanical load. The reason for this indexing of inputs is due to the

choice of numerical optimiser, see appendix B.

9.2 Cost Function

The cost function seen in equation 8.9 consist of input cost, state cost and terminal cost. For the DDC

the input cost can effectively be seen as energy loss for switching from a previous pressure state in a

chamber to a new pressure state given by the input. In section 5.5 a detailed description of the system

losses is presented.

The only loss directly dependent on input is the switching loss, which is described as the difference

between supplied energy to chamber and the potential pressure energy saved in the compression.

The throttling losses are only a function of x2 as was seen in section 5.5. Thus, in order to simplify

the expression for the cost function the throttling losses is not penalised directly, but will instead

be penalised through the penalty of the velocity state x2. The energy losses for the secondary

controlled system described in section 5.5, does not include energy loss associated with input

magnitude, because input energy is expected to be recoverable for a secondary controlled system.

However, in order to increase the controllability and tuning abilities for the NMPC a cost on input

magnitude is introduced. The input magnitude is expressed as the expected force for the given input.

Subsequently, a penalty on force results in a penalty on acceleration.

The function for input cost is the same for position and velocity control, hence the subscript j is

omitted in the expression for the input cost, which is expressed as

h
(
x(t ),u(t ),u(t −1)

)
=


(

3∑
i=1

1

2

(
pi

(
ui (t )

)−pi
(
ui (t −1)

))2 Vi (x(t ))

β

)
E−1
β,max(

− Ac1u1(t )+ Ac2u2(t )+ Ac3′u3(t )
)
F−1

max

 (9.7)
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9.2. Cost Function

Where Vi and pi are the volume and pressure of the i ’th chamber respectively. The pressure, pi ,

is determined as a function of the input at the given time as shown in equation 9.8. It is worth

noticing, that this implementation results in an "open loop" input cost, as the pressures that are

penalised are not measured, but estimated steady state values based on u. The constant Eβ,max is the

maximum switching loss used to normalise the cost function and is derived in equation 9.9. Fmax is

the maximum available force.

ui = 1 ⇒ pi = pl

= 2 ⇒ pi = pm

= 3 ⇒ pi = ph

 for i = 1,2,3 (9.8)

Eβ,max = 1

2
(ph −pl )2 Ls Ac1 +V0

β
(9.9)

Where Ls is the cylinder stroke length, Ac1 is cross-sectional area of chamber 1 and V0 is the initial

volume for all chambers. The state cost is defined similar to equation 8.9 in section 8.1. In order

to penalise the state cost individually for position and velocity control, it is denoted as a vector. For

position control the velocity state is included in the state cost, in order to be able to penalise the

velocity state and thereby the throttling losses. When velocity control is performed the position state

is omitted in the state cost function. The function for state cost for position and velocity control are

expressed as

`x1
(
x(t +k|t ),r (t |t )

)=


x1(t +k|t )− r (t |t )

e1,max

x2(t +k|t )

x2,max

 , `x2
(
x(t +k|t ),r (t |t )

)=


0

x2(t +N |t )− r (t |t )

e2,max


(9.10)

where r (t |t ) indicates a constant reference for the optimisation problem input at time t , i.e. a

trajectory is assumed not available for this problem. The maximum state error e j ,max used to

normalise the state cost is defined as

e1,max = Ls (9.11)

e2,max = 2x2,max (9.12)

The terminal cost, S j , is similar to the state cost. In order to penalise the terminal cost individually for

position and velocity, it is denoted as a vector. The expression for the terminal cost is seen in equation

9.13.

S1
(
x(t +N |t ),r (t |t )

)=


x1(t +N |t )− r (t |t )

e1,max

x2(t +N |t )

x2,max

 , S2
(
x(t +N |t ),r (t |t )

)=


0

x2(t +N |t )− r (t |t )

e2,max


(9.13)

The final cost function is expressed by rewriting equation 8.9 as

J j

(
x(t ),r (t ),u(t ),u(t −1)

)
=

N−1∑
k=0

(∥∥`x j
(
x(t +k|t ),r (t |t )

)∥∥2
Q j

+
∥∥∥h j

(
x(t +k|t ),u(t +k),u(t +k −1)

)∥∥∥2

R j

)
+

∥∥∥S j
(
x(t +N |t ),r (t |t )

)∥∥∥2

P j

(9.14)

The subscript j on the weighting matrices Q, R and P denotes the difference in weightings for position

and velocity control.
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9. DESIGN OF NON-LINEAR MODEL PREDICTIVE CONTROL

9.3 Constraints

The constraints on the system are mainly physically motivated. Thus, a hard physical constraint is

the stroke length of the cylinder. As the reduced order model does not include the continuity and

orifice equations, the pressure drop across the manifold is not included. In a sense, the actuator

then has unlimited power available as input pressure is constant regardless of the flow. Throttling

losses are penalised in the cost function, but a constraint on velocity can be desirable. Ultimately, the

constraints are chosen as

0 ≤ x1(t +k|t ) ≤ Ls

−0.5 ≤ x2(t +k|t ) ≤ 0.5
for k = 1, .., N −1 (9.15)

From a stability point of view the terminal constraint set should be chosen as small as possible [19].

However, due to the quantized input no equilibrium point at the reference may exist, but instead

there might be an offset from the reference or a limit cycle about the reference. Thus, when

determining the terminal constraint set the magnitude of the possible limit cycle should be taken

into account, in order to obtain a feasible solution. An initial value for the terminal constraint set is

then the magnitudes of the limit cycle found in section 7.1.4.

When position control is performed the terminal constraint on both position and velocity is taken

into account. The terminal constraint on the velocity included to secure that the system is steady

in the last horizon step. However, when velocity control is performed the terminal constraint on the

position is omitted, because only the velocity is of interest. The terminal constraint set for position

and velocity control is expressed in equation 9.16 and 9.17.

−0.1 ≤ x1(t +N |t )− r (t |t ) ≤ 0.1

−0.3 ≤ x2(t +N |t ) ≤ 0.3

}
⇒XT 1 =

[−0.1,0.1
]× [−0.3,0.3

]
(9.16)

−0.3 ≤ x2(t +N |t )− r (t |t ) ≤ 0.3
}
⇒XT 2 =

[−0.3,0.3
]

(9.17)

9.4 Problem Summary and Tuning

Based on the reduced order model described in equations 9.2 and 9.3, the cost function in 9.14 and

the constraints of 9.15, 9.16 and 9.17, the optimisation problem is

V ∗(x(t )) = min
U

N−1∑
k=0

(∥∥∥∥ y(t +k|t )− r (t |t )

e j ,max

∥∥∥∥2

Q

+
∥∥∥h j

(
x(t +k|t ),u(t +k),u(t +k −1)

)∥∥∥2

R

)

+
∥∥∥S j

(
x(t +N |t )

)∥∥∥2

P

subject to state equations 9.2, 9.3, x(t |t ) = x(t ) and

ui (t +k|t ) ∈ {1,2,3} , k = 0, ..., N −1 , i = 1,2,3

0 ≤ x1(t +k|t ) ≤ Ls

−0.5 ≤ x2(t +k|t ) ≤ 0.5

}
k = 1, .., N −1

x(t +N |t ) ∈XT j
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9.4. Problem Summary and Tuning

9.4.1 Time Step and Horizon

The choice of forward Euler time step Ts and horizon N are chosen based on a balance between

control performance and computation time. A minimum Ts,mi n = 0.05s is imposed to ensure the

validity of disregarding the pressure build i the cylinder chambers. This is based on the pressure

build up in figure 5.3 and simulation data. From simulation of the full order model, the mechanical

settling time for the velocity response varies with cylinder position between 0.45 and 1.5 seconds in

the operating range of 0.5 to 1.5 m. Different combinations of horizon and time step was tested. It

was found that a too large Ts resulted in a too large acceleration over the time period, thus limiting

the feasible amount of force steps available. Likewise, a too large horizon was found to be increasing

the dimension of the optimisation problem and hence increasing the computational time required to

achieve a feasible result. Moreover, a small horizon with tight terminal constraints forces the control

optimiser to apply a larger input force in order to obtain a feasible solution. Resultantly, a small Ts and

N was found preferable, and testing yielded good results with Ts = 0.1, N = 15 for position control.

For velocity control, the minimum step time, Ts = Ts,mi n is chosen with a horizon N = 15.

9.4.2 Evaluation of Computational Parameters

The problem is solved using glcSolve from the TOMLAB optimization package for MATLAB. As is

described in appendix B, the numerical global optimisation routine has no convergence parameters,

as it is not gradient based. Instead, the amount of function evaluations are used to achieve a desired

level of accuracy. This is a tuning variable as there is no explicit relation between number of function

evaluations and accuracy. To determine the number of function evaluations that should be used,

the solution to the cost function is evaluated as function of the number of function evaluations,

which can be seen in appendix C. Based on the obtained results the number of function evaluations

is chosen to be 4000 evaluations. Since the accuracy of the solution is based on the number of

function evaluations the result can not be said to be a global optimum, but instead a ’close-to-global’

optimum.

In appendix C the computational time of the developed NMPC position controller is evaluated. An

average computational time for each time step for the NMPC position controller is calculated to be

0.23 seconds, 1.3 seconds and 9 seconds for 500, 3000 and 15000 function evaluations respectively.

Thus, the developed NMPC controller cannot achieve desirable results in real time for this system.

There is then a need for an approximate explicit optimal control law in order to reduce the required

computational time.

Even though the NMPC controller cannot achieve desirable results in real time, it will be used to tune

the control parameters, in order to use the control parameters for the eMPC controller that will be

developed later. Furthermore, results from the NMPC position and velocity controller implemented

on the full order model, will be used as comparison for the eMPC controller and the linear controller,

that as well will be developed later.

9.4.3 Parameter Tuning for Position Control

The NMPC position controller is implemented in MATLAB on a simplified model of the system,

without transmission line dynamics, in order to test and adjust the optimisation parameters, such

as the weighting metrices for state, input and terminal cost. To evaluate how the controller is able to

balance between energy losses and tracking error, the controller is first evaluated with a very limited

input penalty. Figures 9.1 and 9.2 show the simulated results for position and force reference for

position control with R1 = 10−6diag[1,0.0005] and Q1 = P1 = diag[15,0.1], initial conditions (0.8,0)
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9. DESIGN OF NON-LINEAR MODEL PREDICTIVE CONTROL

and constant reference r = 1.1m. The right label of figure 9.2, shows the reference pressures in

chamber c1, c2 and c3 respectively. It can be seen that many small force shifts are made, instead

of keeping a constant force level for longer time and thereby decrease the number of shifts. The many

small force shifts result in simultaneous change in pressures in the chambers. Thus, the force shifts

are not made energy efficient. Assuming the pressure in the chambers are the reference pressure, the

energy losses for the step corresponds to approximately 27.4 kJ.
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Figure 9.1. NMPC position controller performance

with small input penalty.
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Figure 9.2. Force reference for NMPC position control

with small input penalty.

In figure 9.3 and 9.4 the force shifts are seen to be reduced by increasing the input penalty to

R1 = diag[1,0.0005], while keeping the other weightings at Q1 = P1 = diag[15,0.1]. The position

response does not change notably, but the controller generally chooses a force level for longer time

and does not change all chambers simultaneously. Assuming the pressure in the chambers are the

reference pressure, the energy losses for the step corresponds to approximately 7.4 KJ. Thus, the

energy efficiency is increased significantly by increasing the input penalty. It should be noted that it is

not the number of force shifts that are penalised, but the energy loss associated with the shifts. When

the controller is close to the reference it generally chooses the force level corresponding to M M M ,

as it is "cheap" to switch from medium pressure to either high or low pressure. In equation 5.34 in

section 5.5 it is illustrated that the energy loss associated with a shift H M M → LM M is larger than the

energy loss from the sum of shifts H M M → M M M → LM M , and vice versa from low to high. Thus,

with the predictive power of the controller the force level corresponding to M M M is chosen when a

small or no force is needed.
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Figure 9.3. NMPC position controller performance

with larger input penalty.
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Figure 9.4. Force reference for NMPC position control

with larger input penalty.

As seen in the figures the developed NMPC position control is indeed able to penalize the losses

associated with force shifts to achieve the desired balance between energy losses and tracking error.

As the tracking error and the energy loss are well balanced with the weightings used for the response

shown in figure 9.3, this weightings are chosen for the NMPC position controller.

To evaluate how weighting on the tracking error affect the response of the system, the NMPC

controller is simulated with different weightings on Q1(1,1), which is the penalty on tracking error.

The second input in the weighting matrix Q1 is kept constant, in order not to change the penalty

on the velocity state. In figure 9.5 simulated results are shown with Q1 = diag[15,0.1], Q1 =
diag[2 ·15,0.1], Q1 = diag[0.5 ·15,0.1] and Q1 = diag[0.1 ·15,0.1], while the weightings on input cost

and terminal cost are kept at R1 = diag[1,0.0005] and P1 = diag[15,0.1] respectively. It was found, that

better results was achieved with no terminal constraints, and resultantly they are omitted.
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Figure 9.5. NMPC position controller performance for different weightings on tracking error.

As can be seen in the figure an increased weighting on the tracking error result in faster step response.

The step response with the weighting Q1 = diag[0.1 ·15,0.1] reach the reference just within the

simulation of 3 seconds. The response for the other weightings are similar for the first part of the

response, since the tracking error is large. However, as the tracking error decreases the difference

between the weightings become clear. It is clear that the position response can be altered by the

weighting of the tracking error.

9.4.4 Parameter Tuning for Velocity Control

Similar to the position controller, the NMPC velocity controller is implemented in MATLAB on a

simplified model of the system, without transmission line dynamics, in order to test and adjust the

optimisation parameters. To evaluate how the controller can balance energy loss and tracking error,

a velocity step is made with different weightings. In figure 9.6 and 9.7 a velocity step response and the

corresponding force reference are shown with the weightings Q2 = P2 = diag[0,2.8] and a small input

penalty of R2 = 10−6diag[1,0]. A similar velocity step response and corresponding force reference is

shown in figure 9.8 and 9.9, but with the input penalty R2 = diag[1,0] and the other weightings kept

at Q2 = P2 = diag[0,2.8]. For both responses the initial conditions are (1,0) and a constant reference

of r = 0.2
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Figure 9.6. NMPC velocity controller performance

with small input penalty.
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Figure 9.7. Force reference for NMPC velocity control

with small input penalty.

As can be seen from figure 9.6 and 9.7 many shifts in force levels are used when the velocity is close

to the reference. As the the input penalty is very small, NMPC velocity controller does not consider

the losses associated with the force shifts. Assuming the pressure in the chambers are the reference

pressure, the energy losses for the velocity step corresponds to approximately 13.6 KJ. In figure 9.9 it

is clearly seen that the force shifts are reduced by increasing the input penalty. The corresponding

velocity step response shown in figure 9.8 has similar performance as the response with a small input

penalty, but the force shifts used to keep the velocity at the reference are reduced. With the same

assumption that the pressure in the chambers are the reference pressure, the energy loss for the

velocity step shown in figure 9.8 is 4.3 kJ. Thus, the developed NMPC velocity controller is able to

balance between the energy losses from shifting and tracking error. Since the weightings used for the

velocity response balance the energy losses and tracking error well, these weightings are chosen for

the NMPC velocity controller.
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Figure 9.8. NMPC velocity controller performance

with larger input penalty.
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Figure 9.9. Force reference for NMPC velocity control

with larger input penalty.

Similar to the NMPC position controller, the response of the NMPC velocity controller is evaluated

for different weightings on the tracking error. In figure 9.10 a velocity step response is shown for

the weightings Q2 = diag[0,2.8], Q2 = diag[0,2 ·2.8], Q2 = diag[0,0.5 ·2.8] and Q2 = diag[0,0.1 ·2.8],

while the weightings on input cost and terminal cost are kept at R2 = diag[1,0] and P2 = diag[0,2.8]

respectively. Like for the position control problem, no terminal constraints are set.
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Figure 9.10. NMPC velocity controller performance for different weightings on tracking error.

As seen from the plot the tendency is that an increased weighting on tracking error result in a faster

step response. The step response for Q2 = diag[0,2.8] and Q2 = diag[0,0.5 ·2.8] is identical until the

last part of the response. However, for the other weightings a clear difference between the weightings

is seen. Even though the difference is not as significant as it was for the NMPC position controller, it

is seen that the velocity response can be altered by the weighting of the tracking error.

9.5 Results

To evaluate the NMPC controller, it have been implemented in the full order model with the control

parameters found in the previous section. In this section results for the NMPC position controller is

shown for a step response and for load holding. Results for the NMPC velocity controller is evaluated

with a step response and a sine wave reference trajectory.

Common for all results is that by using the full model larger pressure oscillations occurs, due of the

introduction of transmission line dynamics. These oscillations are also seen in the force output.

9.5.1 Position Control

A step in position with the NMPC position controller used on the full order model is seen in figure

9.11. The displacement in the top left corner shows similar response as seen for the simplified model

used for tuning the control parameters. The controller is able to reach the reference in approximately

2 seconds using 10 force shifts. The RMS-error for this step response is, eRMS=125.5mm. Mainly

switching in low volume chambers are preferred by the NMPC, as this reduces switching losses.

67



9. DESIGN OF NON-LINEAR MODEL PREDICTIVE CONTROL

Resultantly, only 5 force levels are utilised. The switching loss for the step is, Eβ=9.976kJ. This

switching loss is calculated as in the input cost function in section 9.2.
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Figure 9.11. Step response with NMPC position control. Top left corner is position, bottom left is cylinder force

and the three plots to the right are chamber pressures.

The load holding performance is shown in figure 9.12. A slight error is introduced in order to see the

behaviour. It is seen, that the NMPC has oscillating behaviour, but the switching losses are low as

only the low volume chamber is used for correcting position close to zero error. The RMS-error for

load holding is eRMS=4.3mm.The switching loss is Eβ=5.905kJ.
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Figure 9.12. Step response with NMPC velocity control. Top left corner is position, bottom left is cylinder force

and the three plots to the right are chamber pressures.

9.5.2 Velocity Control

A step in velocity with the NMPC velocity controller used on the full order model is seen in figure

9.13. The controller reaches the reference in just over 0.1s with only one force step. After this two

more steps are made to maintain the velocity. The RMS-error is, eRMS=61.3mm/s and the switching

loss is, Eβ=4.448kJ.
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Figure 9.13. Step response with NMPC velocity control. Top left corner is velocity, bottom left is cylinder force

and the three plots to the right are chamber pressures.

In figure 9.14 the NMPC is set to follow a sine trajectory. Only a small phase lag is seen and NMPC

tracks the velocity well. A high amount of switching on chamber 1 is seen around 2 seconds, yielding

large oscillations in force output. If this behaviour is undesirable, the cost function can be adjusted

accordingly at the cost of tracking performance. The RMS-error is eRMS=27.3mm/s and the switching

cost is Eβ=93.68kJ.

70



9.6. Chapter Summary

0 1 2 3
-0.3

-0.2

-0.1

0

0.1

0.2

V
el
o
ci
ty
[m
/
s]

x2(t)

r(t)

0 1 2 3

Time [s]

0

50

100

150

200

P
re
ss
u
re
[B
a
r]

pc1(t)

p$c1(t)

0 1 2 3

Time [s]

0

50

100

150

200

P
re
ss
u
re
[B
a
r]

pc2(t)

p$c2(t)

0 1 2 3

Time [s]

0

50

100

150

200

P
re
ss
u
re
[B
ar
]

pc3(t)

p$c3(t)

0 1 2 3

Time [s]

-400

-300

-200

-100

0

100

200

300

F
o
rc
e
[k
N
]

Fc(t)

F $
c (t)

Figure 9.14. Sine wave reference trajectory with NMPC velocity control. Top left corner is velocity, bottom left

is cylinder force and the three plots to the right are chamber pressures.

9.6 Chapter Summary

Concluding this NMPC design chapter, an NMPC problem has been formulated based on a discrete

time reduced order model of the application case in section 7.2. This included a cost function that

penalises tracking error as well as losses associated with switching the DDC chambers between

discrete pressure levels. The Euler time step size was chosen based on system settling time as well

as the pressure dynamics of the DDC.
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NMPC has been shown to reduce the losses associated with switching while minimising the error

on both position and velocity by weighting the cost function appropriately. However, it has also

been shown, that it is not possible to achieve these results in a real-time implementation as the

computational effort required is too large for today’s standards. Hence, a more efficient method must

be investigated on how to achieve similar results in a real-time implementation.

The next chapter concerns the development of an explicit implementation of the NMPC control

presented in this chapter.
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CHAPTER 10

DESIGN OF EXPLICIT MODEL PREDICTIVE

CONTROL

As previous mentioned, a disadvantage of NMPC is the large computational power required to solve

the optimisation problem in real time. One way to address this problem is by eMPC. An approximate

multi-parametric Nonlinear Integer Programming (mp-NIP) approach can be used to design an

eMPC controller for constrained nonlinear systems with quantized control inputs [19]. The idea of the

approach is to construct a piecewise constant approximation to the optimal solution of the mp-NIP

problem, such as the one summarised in section 9.4. In this chapter the eMPC approach presented

in [19] is first described followed by a step-by-step procedure of the approach. The procedures used

in the individual steps will thereafter be described in details. By the end of the chapter the parameters

used for the implemented eMPC controller is presented together with an evaluation of the solution.

Furthermore, convergence tolerances are discussed as well as steps taken to reduce convergence

times.

10.1 Algorithm

The main idea of eMPC for systems with quantized inputs is to construct a hyper-rectangle X that

cover the whole partition of the state space. The partition of the state space is bounded by the variable

limits. Hyper-rectangles covering X is then constructed. For each hyper-rectangle covering X , a

set of interior points are computed an denoted W0 = {w0, w1, . . . , wn}, where W0 is the set of points

associated to the hyper-rectangle X0. W0 consists of the center point of the hyper-rectangle X0, and

the vertices and facets center of one or more hyper-rectangles contained in the interior of X0. The

procedure to generate the set of points associated to a hyper-rectangle will be explained later.

A close-to-global solution U∗(wi ) at a point wi ∈ W0 is computed using the routine glcFast of

the TOMLAB optimisation environment in MATLAB, which is based on the DIRECT optimisation

algorithm presented in appendix B. Based on the close-to-global solution at all points wi ∈ W0, a

local constant approximation Û0(x) = K0 = [k1,k2, . . . ,kN ] to the optimal solution U∗(x), valid in the

whole hyper-rectangle X0, is determined. The procedure to determine Û0(x) will be presented in

section 10.2.

An estimate of the error bound between the cost function with the local constant approximation

Û0(x) and cost function with the optimal solution U∗(x) for the hyper-rectangle X0 is denoted ε̂0.
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A comparison between ε̂0 and a maximum approximation error ε̄ set by the user determines whether

the local constant approximation is sufficiently close to the optimal solution. The procedure to

determine ε̂0 is presented later.

The algorithm used to compute the explicit solution for NMPC with quantized control input can be

expressed as the following step-be-step algorithm. A flow diagram of the algorithm can be seen in

figure 10.1.

Step 1. Initialisation of the partition of the whole hyper-rectangle, i.e. Π= {X }. The hyper-rectangle

X is marked unexplored.

Step 2. Any unexplored hyper-rectangle X0 ∈ Π is selected. If no unexplored hyper-rectangle exists

the algorithm is terminated.

Step 3. A set of points W0 = {w1, w2, ...wn} associated to X0 is generated.

Step 4. A solution to the optimisation problem for x fixed to each of the points in the set W0 is

generated, using the routine glcFast of TOMLAB optimization environment. If the optimisation

problem has a feasible solution at all these points, the algorithm goes to step 7. Otherwise it

continue to step 5.

Step 5. The size of the hyper-rectangle X0 is computed by calculating the area of the hyper-rectangle.

If the size is smaller than a given tolerance εv , X0 is marked infeasible and explored and the

algorithm goes to step 2. Otherwise it continues to step 6.

Step 6. X0 is split into 4 new hyper-rectangles X1, X2, X3 and X4, by a hyperplane through the center

point and orthogonal to each axis. The 4 new hyper-rectangles is marked unexplored and X0 is

removed fromΠ. The algorithm goes to step 2.

Step 7. A constant function Û0 to be used in the hyper-rectangle X0 is computed. If a feasible solution

is found the algorithm continues to step 8. Otherwise X0 is split into two new hyper-rectangles

X1 and X2, by a hyperplane through the center point and orthogonal to an arbitrary axis. X1

and X2 are marked unexplored and X0 is removed fromΠ and the algorithm goes to step 2.

Step 8. An estimate of the error bound ε̂0 is computed. If ε̂0 ≤ ε̄, X0 is marked explored and feasible,

and the algorithm goes to step 2. Otherwise X0 is split into two new hyper-rectangles X1 and

X2, by a hyperplane through the center point and orthogonal to the axis with the largest error

gradient. X1 and X2 are marked unexplored and X0 is removed from Π and the algorithm

continue to step 2.

The algorithm continues until the hyper-rectangle covering the whole partition of the state space X , is

divided into smaller hyper-rectangles, that all have a feasible constant solution or contain infeasible

points and a size smaller than the given tolerance.

74



10.1. Algorithm

Step 1

Step 2

Explored

Terminate

True

Step 3

False

Step 4

All points in W0 are feasible

Step 7

True

Step 5

False

Feasible solution

Step 8

True

Split in two hyper-rectangles
and mark unexplored

False

ε̂< ε

Mark explored and feasible

True

Split in two hyper-rectangles
and mark unexplored

False

‖X0‖< εV

Mark explored and infeasible

True

Step 6

False

Split in four hyper-rectangles
and mark unexplored

Figure 10.1. Flow diagram of the algorithm used to compute the explicit solution for NMPC with quantized

control inputs.

The algorithm is based on the close-to-global solution to a set of points W0 in each hyper-rectangle.

The generated points used in the implemented algorithm for a two dimensional hyper-rectangle is

shown in figure 10.2. The set of points W0 corresponds to the center point of hyper-rectangle X0

denoted w0 in the figure and the vertices (w9, w11, w13, w15) and facets center (w10, w12, w16, w14)

of hyper-rectangle X0. Furthermore, the vertices (w1, w3, w5, w7) and facets center (w2, w4, w6, w8)

of the hyper-rectangle X 1
0 contained in the interior of X0 is used. More hyper-rectangles in the
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interior of X0 could be used to generate more points, which would result in a higher resolution and an

increased number of points that should be optimised, which would increase the computation time

of the algorithm.

w0

w1 w2 w3

w4

w5w6w7

w8

w9 w10 w11

w12

w13w14w15

w16

X0

X 1
0

x1

x2

Figure 10.2. Illustration of how set of points for which a optimal solution is determined.

The hyper-rectangle X 1
0 has the same center point as X0 and half the length of the sides. If one of the

generated points has an infeasible solution the hyper-rectangle is divided into the 4 hyper-rectangles

X1, X2, X3 and X4 as illustrated in figure 10.3. The infeasible points in the figure are w1, w9, w10 and

w11. The hyper-rectangle X0 is divided by a hyperplane through the center point and orthogonal

to each axis. Other splitting strategies could be used, in order to faster divide the whole hyper-

rectangle into feasible and infeasible hyper-rectangles and thereby decrease the computation time

of the algorithm. In [5] a heuristic splitting rule is used to split the hyper-rectangle into feasible

and infeasible hyper-rectangles. However, the heuristic splitting rule is not used in the implemented

algorithm.
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X0

X2

x1

x2

X1

X3X3

infeasible

feasible

Figure 10.3. Illustration of how the hyper-rectangle is divided if it contains at least one infeasible point.

If ε̂0 ≥ ε̄, X0, the hyper-rectangle is split into two new hyper-rectangles X1 and X2. X0 is split by a

hyperplane through the center point and orthogonal to the axis with the largest error gradient. By

splitting orthogonal to the axis with the largest error gradient the estimate of the error is more likely

to be smaller, because the objective function values are more uniform in the new hyper-rectangles.

This and other step done to reduce computational time is further described in section 10.4.1.

10.2 Local Constant Approximation Problem

As previous described the close-to-global solution U∗(wi ) at each point wi ∈ W0 is computed

using the routine glcFast of the TOMLAB optimisation environment in MATLAB. The local constant

approximation Û0(x) = K0 is then computed by solving the following NIP

min
K0∈U B

n∑
i=0

(
J (K0, wi )−V ∗(wi )

)
(10.1)

subject to state equations 9.2, 9.3, x(t |t ) = x(t ) and

ui (t +k|t ) ∈ {1,2,3} k = 0, ..., N −1 , i = 1,2,3

0 ≤ x1(t +k|t ) ≤ Ls

−0.5 ≤ x2(t +k|t ) ≤ 0.5

}
k = 1, .., N −1

x(t +N |t ) ∈XT j

The NIP is solved using the glcFast routine. If a feasible solution of Û0(x) = K0 associated to the hyper-

rectangle X0 is found, the cost approximation error in X0 is

ε(x) = V̂ (x)−V ∗(x) ≤ ε0 , x ∈ X0 (10.2)

77
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where V̂ (x) = J
(
Û0(x),x

)
is the sub-optimal cost function and V ∗(x) is the cost function correspond-

ing to the close-to-global solution V ∗(x) = J (U∗(x),x). An estimate of the maximal approximation

error ε0 can be calculated as

ε̂0 = max
i∈{0,1,...,n}

(
V̂ (wi )−V ∗(wi )

)
(10.3)

10.3 State Space Partitioning

The initial state space partitioning of Step 1 defines the space on which the controller (and system)

is expected to operate. Hence, it is natural to bound this by physically motivated limitations, such as

stroke length and a maximum desired velocity. However, a large state space partition lead to a large

optimisation problem to be solved. In order to reduce the optimisation problem, the state space is

modified to be described by the error, such that

e(t ) =


r (t )− y(t ) if emi n < r (t )− y(t ) < emax

emi n if r (t )− y(t ) < emi n

emax if emax < r (t )− y(t )

(10.4)

Since y(t ) (either x1 or x2) are needed for the state model, cost and constraint functions, it is

calculated as

y(t ) = r (t )−e(t ) (10.5)

The initial state space partitionΠ j is then a hyper-rectangle in three dimensions. For position control

the initial state space is then defined by

Π1 =
[
e1,mi n ,e1,max

]× [
x2,mi n , x2,max

]× [
rmi n ,rmax

]
(10.6)

while for velocity control

Π2 =
[
x1,mi n , x1,max

]× [
e2,mi n ,e2,max

]× [
rmi n ,rmax

]
(10.7)

However, the cost function includes a derivative of the input. Thus, an initial condition of the input

must be defined in each point. These variables are discrete, hence intermediate points are not

feasible and the algorithm described above does not apply. Instead, the state space Π j is expanded

in a discrete fourth dimension. Since there are 27 input combinations, the state space partition is

expanded to 27 three dimensional hyper-rectangle and thus the algorithm must run for each of these

hyper-rectangle.

10.4 Convergence Parameters

The decision of whether a local explicit approximate solution is feasible in Step 8 relies on the

definition of ε̄. Decreasing ε̄, the convergence time is increased and a smaller approximation error

is achieved, while increasing ε̄ decreases convergence time and increases approximation error. Thus,

defining ε̄ relies on a balance between approximation error and convergence time. The the cost

function optimum value V ∗ varies as a function of initial condition. If the initial condition is close to

the reference, the cost function can be expected to be smaller than if the initial condition is far from

the reference. Hence, the state space partitioning defined in section 10.3 makes V ∗(ωi ) more uniform

in X0 by limiting the maximum error. Still, to ensure a finite convergence time, ε̄ is defined to include
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both an absolute approximation error tolerance, εa , and a relative approximation error tolerance, εr .

ε̄ is then defined by

ε̄= max
(
εa ,εr minV ∗(ωi )

)
(10.8)

This ensures that ε̄ is defined by the minimum V ∗ within X0. If V ∗(ωi ) is not sufficiently uniform

within X0, X0 should be split.

10.4.1 Reducing Computational Time

Convergence time is ultimately a parameter on which an optimisation algorithm is evaluated. Hence,

any steps that can be done to reduce convergence time should be explored. As mentioned in section

10.1, the authors of [29] note that a heuristic splitting rule is beneficial when splitting a set of points

where one or more are infeasible. However, for this application, infeasible points only exists in near

the limits of the state space partition and are few in numbers. Thus, the time developing code

applying heuristics is not well spent.

However, other steps where taking to reduce the computational time of the algorithm.

Re-appearing Points

It was found that points in W0 generated in Step 3 often have already been optimised in earlier

iterations. Depending on the amount of sub hyper-rectangles, the number of re-appearing points

constituted between 10% and 70% of the optimisation problem in Step 4. Since Step 4 is the most

time consuming step in the algorithm, code was developed in order to recognize when points in W0

had previously been optimised and then exclude those points from the optimisation in Step 4. On

average, this reduced the computational time in Step 4 by 60%.

The point recognising code was added as a part of Step 4 and its MATLAB implementation can be

seen in appendix D.2.

Approximation Error Gradient

In the description of the algorithm in [19] it is stated that in Step 8 the splitting of the hyper-rectangle

is done through an arbitrary axis. However, in [29] the authors note, that the hyper-plane splitting

the hyper-rectangle is selected such that the change of approximation error is maximal across the

hyper-plane. This is done to minimise the approximation error in each new hyper-rectangle. This

has been implemented in Step 8, such that the approximation error gradient is estimated for each

one axis-orthogonal hyperplane to split the partition.

The implementation can be seen in appendix D.6 as a part of Step 8.

In Step 7, if no feasible solution is found, the largest error gradient condition cannot be used for

selecting a splitting hyper-plane. It is likely that infeasibility of K0 is due to too large parameter

variations in W0. Hence, W0 is split with a hyperplane orthogonal to the axis in which W0 has the

longest facet.

Adaptive Tolerances

In a similar manner as Step 5, a volume tolerance is used to establish a soft limit on the size of

the hyper-rectangles in Step 8. If the volume of the hyper-rectangle is below a given threshold, the

absolute and relative tolerances are increased by a constant factor. Beside having implications on

the computational time, this also has a practical aspect. The volume threshold defines an average
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soft minimum on the length of the faces of the hyper-rectangle, which can be related to the quality

of state measurement. Hence, if a maximum measurement accuracy is e.g. ±0.5 mm, ±0.5 mm/s,

a minimum volume threshold can be set to 1mm·1mm/s. This implementation is not a hard direct

limit on state, as the hyper-rectangle is not necessarily a square. A more direct limit on the size of

state variations of the hyper-rectangles can be implemented in a similar manner, but as this thesis is

mainly focused on simulating results, this was not implemented.

10.4.2 Control implementation

As described in section 10.3 an explicit solution is computed for each initial combination of the input,

which due to the 27 input combinations result in 27 hyper-rectangles each covering the whole state

space Π j . Each of the 27 hyper-rectangles that cover the whole state space are denoted Πd where

d = 1,2...,27. Each Πd consist of a number of smaller hyper-rectangles that either have an associated

feasible control function K0 or no feasible solution, the total number of hyper-rectangles in Πd is

denoted nd
z . In the following i will be used to denote an arbitrary hyper-rectangle inΠd . Each hyper-

rectangle is defined by two vectors, ẑd
i and žd

i , which contains the maximum and minimum state

values respectively. We denote the set of maximum and minimum points zd
i = [ẑd

i , žd
i ]T . The control

value associated with zd
i is Kd

0i = [kd
1i ,kd

2i , . . . ,kd
Ni ]. With the measured state at time t equal to x(t |t ),

the control output at time t is selected such that

u(t ) = kd
1i ∈ Kd

0i (10.9)

where i is chosen such that, e.g for position control

žd
1i ≤ r (t )−x1(t |t ) ≤ ẑd

1i

žd
2i ≤ x2(t |t ) ≤ ẑd

2i

(10.10)

and d is chosen based on the previous input. The computational time of the above is in the order of

milliseconds for nz ∼ 1000.

10.5 Problem Summary

The above algorithm requires a large amount of computational time to complete. Thus, it is not

feasible to test and tune parameters as was done for the NMPC problem. The approach must be

to tune the NMPC problem before converting the solution to an explicit form. Hence, optimisation

problem is the same as the one summarised in 9.4 and the values for Q j ,R j ,S j , N ,Ts are readily tuned

and are stated here

For position control, the horizon is chosen as N = 15 and time step size Ts = 0.1.

Q1 = P1 = diag[15,0.1], N1 = diag[1,0.0005] (10.11)

For velocity control, N = 10 and time step size Ts = 0.05.

Q2 = P2 = diag[0,2.8], N2 = diag[1,0] (10.12)

Both problems have no terminal constraints. Like for the NMPC problem, the optimisation problems

in Step 4 and Step 7 are solved with 4000 function evaluations.

The MATLAB implementation of the algorithm described in section 10.1 is seen in appendix D.
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10.5.1 Three Dimensional State Space

As mentioned the initial state space is naturally bounded by the physically limits of the system. As

shown in 10.3 this was limited by the state space partitioning to reduce the optimisation problem.

Ideally the explicit solution to the initial state spaceΠ j should cover as much of the physical limits as

possible within the computational capacity.

In figure 10.4 the explicit solution is illustrated for the three continuous dimensions in one of the

initial discrete force levels. The state space seen is; Π1 = [−0.2,0.2
]× [−0.4,0.4

]× [
0.75,1.25

]
. The

figure shows the hyper-rectangles for the state space when 82.9% of the volume have been explored.

At this time 5800 regions have been found, both explored and unexplored. In order to speed up the

computation, the algorithm for this computation was made with 800 function evaluations in the

numerical solver. Even with a limited state space and low amount of function evaluations, it took

more than 39 hours to compute the results for 82.9% for one force level. Thus, with limited time and

computational capacity for this thesis it is necessary to investigate how to reduce the problem size.

Figure 10.4. Illustration of explicit solution for three continuous dimensions for one set of discrete pressure

levels (all high pressure). 5800 regions found after 82.9% of the volume was marked as explored.

10.6 Reducing Problem Size

The size of the eMPC problem is mainly described by the dimension of the problem. The

problem above has three continuous dimensions as well as a fourth discrete dimension. Like other

optimisation problem, this problem suffers from the "curse of dimensionality", where problem size

grows exponentially with the amount of problem dimensions. Due to low computational power

available, the problem size has been reduced in order to achieve results before project deadline.

Firstly, one dimension has been made constant. This reduces the amount of continuous dimension

from three to two. Furthermore, the maximum error size defined in section 10.3 has been reduced as
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well as the maximum allowed state values.

The continuous state space is then described by

Π1 =
[
emi n ,emax

]× [
x2,mi n , x2,max

]
(10.13)

where emax =−emi n = 0.3 [m], x2,max =−x2,mi n = 0.4 [m/s] with constant reference r = 1.1 [m]. The

discrete dimension is not reduced. The tolerances εa and εr are chosen based on calculated V ∗ for

the initial partition. εa is chosen as half of the minimum value of V ∗, such that εa = 0.01 and the

relative tolerance is chosen as εr = 0.05.

The continuous state space for velocity control is described by

Π2 =
[
emi n ,emax

]× [
rmi n ,rmax

]
(10.14)

where emax = −emi n = 0.25 [m/s], rmax = −rmi n = 0.25 [m/s] with constant position x1 = 1 [m].

Hence, the position dependency for the switching losses are neglected as well as the position

dependent mass and gravitational force. The discrete dimension is not reduced.

The absolute tolerance is chosen as εa = 0.02 and the relative tolerance is chosen as εr = 0.1 for the

velocity control problem. No sub hyper-rectangles are created in Step 3, and hence a hyper-rectangle

contains 9 points in two dimensions. This is considered reasonable, as the solution to the problem

is assumed sufficiently smooth, i.e no internal infeasible points or large differences in cost function

value.

10.6.1 Two Dimensional State Space for Position Control

An explicit solution have been found for the reduced position problem described above. The solution

space consists of 27 solution planes for each of the 27 force levels (illustrated on figure 3.4 on page 12).

Two examples of these planes are shown in figure 10.5 and 10.6. The solutions shown consists of 243

and 264 hyper-rectangles for the initial force levels of 14 and 3 respectively. The number at each

hyper-rectangle shows the first force level in the horizon of the approximated solution. The colors of

each rectangle corresponds to a force, shown on the colorbar to the right.
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Figure 10.5. Two dimensional state space for eMPC position control. Initial force level is 14, corresponding

to M M M and marked with a bullet next to the colorbar. Colors note the first force level in the

horizon of the approximated solution for each of the 243 hyper-rectangles.

Figure 10.6. Two dimensional state space for eMPC position control. Initial force level is 3, corresponding to

H ML and marked with a bullet next to the colorbar. Colors note the first force level in the horizon

of the approximated solution for each of the 264 hyper-rectangles.

In appendix E.1 on page 153 the solution for all 27 planes is shown. The tendency for all 27 solution

planes is similar as seen on the two figures 10.5 and 10.6. The tendency shown is that around zero
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error, the force levels close to zero are preferred. For positive errors larger force levels are required,

and vice versa for negative error. Generally the solution planes are splitted vertically, with a small

slant dependant on velocity.

Both figures clearly shows that some force levels are favoured for different initial force levels.

Following the theory about MPC the algorithm should favour the more cost efficient shifts. Figure

10.7 shows the switching losses presented in section 5.5 on page 28 from the initial force levels used

in the examples on figure 10.5 and 10.6. Comparing the shifts chosen by the algorithm with the loses

for shifting losses it is noticed that favoured shifts matches the less expensive shifts in a region of force

levels. Evaluating all solution planes tells that the algorithm never enters force levels 13 and 15, which

are H H H and LLL respectively.
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Figure 10.7. Losses from switching. From force level 14 to the left, and from force level 3 to the right. The

bars shows the loss with a cylinder position of xc = 1.1m. The error-bars shows the maximum and

minimum losses for all cylinder positions in the range xc =[0.2:1.8]m.

10.6.2 Two Dimensional State Space for Velocity Control

Here the solution for the reduced velocity problem is presented. Again 27 solution planes are found

for each of the 27 force levels. Like for position control, the force levels 14 and 3 are used to illustrate

the solution in figure 10.8 and 10.9 respectively. The number at each hyper-rectangle shows the first

force level in the horizon of the approximated solution, and their colors corresponds to a force, shown

on the colorbar to the right.
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10.6. Reducing Problem Size

Figure 10.8. Two dimensional state space for eMPC velocity control. Initial force level is 14, corresponding

to M M M and marked with a bullet next to the colorbar. Colors note the first force level in the

horizon of the approximated solution for each of the 515 hyper-rectangles.

Figure 10.9. Two dimensional state space for eMPC velocity control. Initial force level is 3, corresponding to

H ML and marked with a bullet next to the colorbar. Colors note the first force level in the horizon

of the approximated solution for each of the 548 hyper-rectangles.

All 27 solution planes are shown in appendix E.2. Common for all is a clear tendency along the

diagonal from positive reference and negative error to negative reference to positive error. It is worth
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10. DESIGN OF EXPLICIT MODEL PREDICTIVE CONTROL

noticing that in the diagonal, the close to zero force levels are preferred, especially 14 where all

chambers are connected to medium pressure. Hence, if there is a large positive error and a large

negative reference, the velocity is large and friction forces are large. Thus, the control utilises the

friction to slow the velocity rather than forcing it.

Like for position control, some force levels a favoured. Again these matches the cheaper ones, with

regard to switching loss as seen in figure 10.7.

10.7 Results

The reduced eMPC controller is evaluated on the full order model to investigate its potential as an

alternative to the NMPC. The eMPC position controller is evaluated for a step response and its load

holding capabilities. The eMPC velocity controller is evaluated for a step response and a sine wave

reference. For each controller a RMS-error of the difference between reference and actual position or

velocity is calculated, together with a total switching loss for the response period, calculated as in the

input cost function in section 9.2.

10.7.1 Position Control

In figure 10.10 the eMPC position controller is tested for a step from 0.8m to 1.1m, with zero initial

velocity. From the figure it is seen that the position response settles after approximately 2 seconds,

with a small offset to the reference. The controller does only use a few force shifts to bring the position

to the reference and keep it there. The eMPC is based on a constant control output for a small hyper-

rectangle, which could explain the small offset from the reference. Thus, it is possible that a better

tracking of the reference could be obtained by decreasing the error tolerances. The RMS-error and

switching loss for the step response are eRMS=150mm and Eβ=3.825kJ respectively.
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Figure 10.10. Step response with eMPC position control. Top left corner is position, bottom left is cylinder

force and the three plots to the right are chamber pressures.

The load holding performance for the eMPC position controller is seen in figure 10.11. The initial

velocity is zero and the initial position is 1.09m, which is slightly under the reference in order to

simulate preceding history similar to the step response. An initial descrease in position is seen until a

limit-cycle behaviour is reached. Worth noting is that only the reference to chamber three is changed,

which is the smallest chamber. Hence, it is the most energy efficient shifts that are made. The

RMS-error and the switching loss for the load holding response are eRMS=17.1mm and Eβ=7.499kJ

respectively.
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Figure 10.11. Load holding with eMPC position control. Top left corner is position, bottom left is cylinder force

and the three plots to the right are chamber pressures.

10.7.2 Velocity Control

A velocity step response with the eMPC velocity controller is seen in figure 10.12. The step response

has a slight overshoot due to large pressure oscillations in cylinder chamber 1. The velocity settles

with a steady state error of approximately 0.4 m/s. This could be due to a large approximation error

tolerance, when forming the explicit control law or due to the approximation of constant position

when solving the eMPC velocity problem. Only two force shifts are used during this step response.

The RMS-error and the switching loss for the step respone are eRMS=63.2mm/s and Eβ=2.348kJ
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respectively.
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Figure 10.12. Step response with eMPC velocity control. Top left corner is velocity, bottom left is cylinder force

and the three plots to the right are chamber pressures.

In figure 10.13 the eMPC is set to follow a sine trajectory. It can be seen that the velocity follows the

reference with very little phase lag. It is seen that the smallest chamber 3 is most frequently switched,

followed by the slightly larger chamber 2 with a slightly smaller amount of switching.
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Figure 10.13. Sine wave reference trajectory with eMPC velocity control. Top left corner is velocity, bottom left

is cylinder force and the three plots to the right are chamber pressures.

10.8 Chapter Summary

This chapter described the algorithm of converting an NMPC problem to an explicit form. A local

constant approximation to the close-to-global solution is created for a series of hyper-rectangles

covering the state space. In order to achieve a result before project deadline, the problem was reduced

in dimension and size, and several modifications were done to increase the speed of convergence,

here amongst reusing local optimal solutions point for later iterations.
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10.8. Chapter Summary

Solutions were obtained for both position and velocity control. The solution to the position control

problem was reduced to handle a constant reference. Simulated results shows a small steady state

error, but with very low switching losses. The velocity control problem was reduced to a constant

position, hence disregarding the position dependency of the switching losses. Similar to the position

response, the velocity step response show a slight steady state error, again with very low switching

losses.

The eMPC velocity control performed very well when subjected to a sine reference, with only a slight

phase lag and few pressure level switching.

Both problem solutions was achieved with large approximation tolerances and a greatly reduced state

space, and it is expected that performance can be increased with smaller tolerances. It is concluded

that it is possible to convert an NMPC problem with a cost on switching losses to an explicit form in

which the solution also penalises switching costs while minimising tracking error.
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CHAPTER 11

LINEAR CONTROL

This chapter concerns the development of linear position and velocity control for the application case

as well as the introduction of some control modifications to increase performance. A SISO approach

is taken to simplify the development and the logic initially chosen is the simple minimum error logic,

also known as linear quantization. Hence, the control output should be a force reference. Initially, a

naive approach is taken, where the quantisation is linearised to a unity gain and thereby neglected in

the linear control design. Considering the quantisation as a unity gain corresponds to the analysis in

section 7.1.4, where it was shown that the quantizer tends to unity gain as the amount of quantization

levels approaches infinity.

The mechanical system described by equation 7.20 is linearised by neglecting the Coulomb friction

term and the gravitational term. The gravity term will not change significantly for small changes

in position. It is considered reasonable to treat this as a static term, making it irrelevant for the

dynamic analysis. As seen in figure 7.9 the equivalent mass range from approximately 70 · 103 to

180 · 103 kg, and hence an operating point must be chosen. It is chosen such to yield the smallest

system eigenfrequency, which is when the equivalent mass is largest. To compare with eMPC, the PI

controller is designed to work in the same range of positions. Hence, the largest mass is at xc = 1.4,

yielding a linearised mass of meq = Meq (1.4) = 100 ·103 kg. Figure 11.1 shows a block diagram of the

linear system. The subscript j = {1,2} are used to denote the controller and the mechanical system

for position and velocity control respectively. The output y is either y = xc or y = ẋc for position or

velocity control respectively. The force reference is denoted u∗ and the actual force applied to the

mechanical system is denoted u.

Gm j (s)Gc j (s)
∑ uu∗e yr = 0

−
1

Figure 11.1. Block diagram of the linear system.
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11. LINEAR CONTROL

11.1 Position Control

The input-output relation for position control can be expressed as

Gm1(s) = xc

u
= 1

meq s2 +Bv s s
(11.1)

For position control a PI controller is implemented with the form

Gc1(s) = u∗

e
= Kc1

s +ωc1

s
(11.2)

The closed loop system then becomes a third order system with a zero expressed as

Gs1(s) = Gc1(s)Gm1(s)

1+Gc1(s)Gm1(s)
= Kc1(s +ωc1)

s3 + Bv s
meq

s2 +Kc1s +Kc1ωc1

(11.3)

The control parameters are determined by evaluating the step response of the system. The control

parameters for the position controller are tuned to obtain similar step response as the response

obtained with the NMPC controller seen in section 9.4. The controller is tuned to obtain similar

step response for better comparison between the control performance of the NMPC, eMPC and

the linear controller. Furthermore, the control gain is designed such that output does not reach

saturation as long as the position error is less than 0.5 m. The step response of the system and the

corresponding bode plot for the open loop uncompensated and compensated system are shown in

figure 11.2 and 11.3 respectively.
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Figure 11.2. Positionon step response of the closed loop system with PI controller.
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11.2. Velocity Control
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Figure 11.3. Bode plot of the open loop uncompensated system and open loop system with PI controller.

The zero of the PI controller is placed four decades before the mechanical pole. The system has a

settling time of approximately 2 seconds and no overshoot. The open loop system has a phase margin

of 83.3◦ and an infinity gain margin. Hence, the linear system is at the operating point stable.

11.2 Velocity Control

The input-output relation for velocity controlled system is

Gm2(s) = ẋc

u
= 1

meq s +Bv s
(11.4)

For velocity control a PI controller is implemented with the form

Gc2(s) = u∗

e
= Kc2

s +ωc2

s
(11.5)

The closed loop system is then expressed as

Gs2(s) = Gc2(s)Gm2(s)

1+Gc2(s)Gm2(s)
= Kc2(s +ωc2)

s2 +
(

Bv s+Kc2
meq

)
s + Kc2ωc2

meq

(11.6)

The closed loop system is a second order system with a zero. The eigenfrequency and damping of the

system can be expressed as

ω2
n = Kc2ωc2

meq
(11.7)

2ζωn = Bv s +Kc2

meq
(11.8)
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11. LINEAR CONTROL

As for the position controller the control parameters are tuned to obtain a similar step response as the

NMPC seen in section 9.4. The velocity step response is seen in figure 11.4, while the corresponding

bode plot of the open loop uncompensated and compensated system is shown in figure 11.5.
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Figure 11.4. Velocity step response of the closed loop system with PI controller.
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Figure 11.5. Bode plot of the open loop uncompensated system and open loop system with PI control.

The zero of the PI controller is placed at the mechanical pole, when it is at its minimum, which is

when meq = 100 ·103 kg. A unity damping factor and a settling time of approximately 0.3 second are

achieved. The open loop phase and gain margin are 90◦ and infinity respectively. Hence, the linear

system is stable at the operating point.
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11.3. Anti Wind-up

11.3 Anti Wind-up

As was shown in section 7.1.4, quantisation can induce oscillations or limit cycles in the system.

One way to address this problem can be to introduce anti wind-up (AW) in a similar manner as for

saturation non-linearities. A block diagram of the control system including AW is shown in figure

11.6.

∑
Gm j (s)Gc j (s)

∑ uu∗

e ′

e yr = 0 ∑

G AW j (s)

−

−

Figure 11.6. Implementation of AW in a system with quantised inputs.

11.3.1 Anti Wind-up for Velocity Control

In the following, AW is designed for the velocity controller. The control output is a function of e and

e ′:

u∗ =Gc2(s)e +G AW 2(s)e ′ (11.9)

where

Gc2(s) = Kc2
s +ωc

s
(11.10)

G AW 2(s) = K AW 2
1

s
(11.11)

where e ′ denotes the quantisation error. e ′ can be interpreted as an output disturbance and it is

therefore relevant to analyse this disturbance, and how the system reacts to it. The following relations

can be deduced from figure 11.6

e =−ẋs (11.12)

e ′ = u −u∗ (11.13)

x =Gm2(s)u (11.14)

From the above a relation between u∗ and e ′ can be derived, yielding

Geu2(s) = u∗

e ′
= G AW 2(s)−Gc2(s)Gm2(s)

1+Gc2(s)Gm2(s)
(11.15)

Which has the steady state output of

Geu2(0) = K AW 2Bv s

Kc2ωc2
−1 (11.16)

Thus, for K AW 2 < Kc2ωc2
Bv s

, Geu(0) < 0 and a positive disturbance e ′ will result in u∗ becoming negative.

This response to disturbances is natural for most disturbances. However, in the case of a quantizer,

this will result in a jump down in u, which then results in a negative e ′ leading to a positive u∗.

Instead if K AW 2 = Kc2ωc2
Bv s

, Geu(0) = 0 and the control ’ignores’ the quantisation disturbance. Since this
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11. LINEAR CONTROL

disturbance is predictable, this will not effect general disturbance rejection, but will result in a steady

state error, that is maximum when the quantisation error is maximum, which is half the quantisation

increment size, ∆i , e ′max = 0.5∆i . The maximum steady state error caused by quantisation is then

em,max =Gm2(0)e ′max = ∆i

Bv s
(11.17)

Subscript i here reflects a non-uniform step size of the quantisation. Since Bv s is not known exactly,

K AW should be designed with some margin. For the case system, the force range of the DDC is close

to 800 kN. Assuming evenly spaced step size of the quantisation, the average step is 800/27 kN, which

yields a maximum error of 14.8 kN. With a viscous friction of 90 ·104 N/(m/s), the steady state error in

velocity is at maximum 0.016 m/s. Hence, for this system, the maximum steady state velocity error is

considered acceptable.

11.3.2 Anti Wind-up for Position Control

For position control, the system Gm1 contains a free integrator and with a similar analysis as for the

velocity control AW it is found that

Geu1(s) = u∗

e ′
= G AW 1(s)−Gc1(s)Gm1(s)

1+Gc1(s)Gm1(s)
(11.18)

where the steady state gain is

Geu1(0) =−1 (11.19)

Hence, a limit cycle behaviour can not be avoided with this type of AW and this problem must be

addressed with other tools. As a final remark on AW for position control, it was found that by varying

K AW 1 it was possible to alter the frequency of the limit cycle. However, further analysis of equation

11.18 yielded no conclusive result.

11.4 Results

The linear controllers are evaluated by simulating the response on the full order model. First, the

linear position controller is evaluated for a step response and for its load holding capabilities. Second,

the linear velocity controller is evaluated for a step response, both with and without anti wind-up. The

linear velocity control is also tested for a sine reference.

Both controllers are used with a linear quantisation coupled with a minimum switching period, tmi n,

for switching between pressure lines. For position control tmi n = 0.1s, while for velocity control

tmi n = 0.05s. This is chosen for better comparability to the MPC controllers.

Similar to the other controllers an RMS-error of the tracking is calculated, together with a total

switching loss for the response period, calculated as in the input cost function in section 9.2.

11.4.1 Position Control

The linear position control is tested for a step from 0.8m to 1.1m in figure 11.7. It can be seen that

the control uses many force steps before settling at a close to minimum force output. This results

in a high number of switching between line pressure for each chamber. The position error is close

to zero after 1.5 seconds, but thereafter converges slowly. The RMS-error is, eRMS=110.8mm and the

switching loss totals to Eβ=35.86kJ.
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Figure 11.7. Step response with linear PI position control. Top left corner is position, bottom left is cylinder

force and the three plots to the right are chamber pressures.

The load holding performance for the linear position control is seen in figure 11.8. A slight error of

0.01m is introduced to simulate a preceding history similar to the step response. It can be seen, that

in this point the linear position control handles load holding very well and no limit cycles are seen.

This could be due to a fortunate combination between static forces and quantisation error yielding a

very little acceleration. The RMS-error is, eRMS=5.4mm and the switching loss is Eβ=5.35kJ.
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Figure 11.8. Load holding with linear PI position control. Top left corner is position, bottom left is cylinder

force and the three plots to the right are chamber pressures.

11.4.2 Velocity Control

Initially, the linear velocity control is tested with no anti wind-up in figure 11.9. It is tested for a

step response from 0 to 0.2m/s at center position. It can be seen that the velocity error is zero after

0.15 seconds, but then enters a limit-cycle with frequent switching. Resultantly, the RMS-error is

eRMS=61.8mm/s and the switching loss is Eβ=22.73kJ.
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Figure 11.9. Step response with linear PI- Velocity control. Top left corner is position, bottom left is cylinder

force and the three plots to the right are chamber pressures.

Figure 11.10 show the step response for the linear velocity control with added anti wind-up. The initial

behaviour is similar for the two controllers, but the linear control with AW does not enter a limit-cycle.

Instead, it settles with a small steady state error as intended. The RMS-error is eRMS=62.0mm/s and

the switching loss is Eβ=7.35kJ. It is concluded from here, that the anti wind-up functions as intended

and is included for the remainder of this thesis.
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Figure 11.10. Step response with linear PI velocity control. Top left corner is position, bottom left is cylinder

force and the three plots to the right are chamber pressures.

In figure 11.11 the linear velocity control with AW is set to follow a sine trajectory. The force shifts are

frequent when the gradient of the trajectory is large, as the linear controller uses each force closest

to the desired force. When the gradient is small, i.e. near the peak values, the force settles on a

constant value. This is due to the anti wind-up, and the effect on the error is minimal. The RMS-error

is eRMS=33.2mm/s and the switching cost is Eβ=155.684kJ.
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Figure 11.11. Sine wave reference trajectory with linear PI velocity control. Top left corner is position, bottom

left is cylinder force and the three plots to the right are chamber pressures.

11.5 Chapter Summary

Linear position and velocity control have in this chapter been developed and tested on the full

order model. Generally many force shifts are seen with the linear controllers, as they chooses the

force reference closest to the desired force. For PI velocity control an AW has been developed and

implemented. Simulated results with AW for a step response and a sine wave reference has shown

good results compared to simulated results without AW. With the AW implemented a small steady
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state error is obtained instead of a limit-cycle around the reference. Thus, the implemented AW

function as intended.
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Part III

Comparison & Final Remarks

105





CHAPTER 12

COMPARISON

The NMPC, eMPC and linear control results obtained in the previous chapters, will in this chapter be

compared to each other. It is not possible to use the NMPC in a real-time implementation, due to too

large computational requirements. However, the NMPC is used for comparison, since it can indicate

the performance limits of the eMPC, based on the assumption that with increased computational

power, the eMPC performance can be made close to the NMPC, by decreasing the error bounds

and thereby increasing the resolution of the eMPC solution. The position controllers are compared

with respect to the step response and the load holding capability, while the velocity controllers are

compared with respect to the step response and the sine reference tracking. Furthermore, the RMS-

error and the switching losses are compared for each response. Lastly the robustness to change in

friction and line pressures are compared for the three controllers.

12.1 Position Control Comparison

In figure 12.1 the previous obtained step response and force reference for NMPC, eMPC and PI

position control are shown. From the figure it is seen that the eMPC has the slowest response and

a slightly larger offset compared to the PI controller.

The difference between the PI controller and the two other controllers is clearly seen in the force

reference. As previous described the PI controller chooses the force reference closest to the desired

force, which result in shifts to all force levels between the maximum and minimum desired force

reference, whereas the MPC controllers chooses the force levels based on a balance between tracking

error and switching loss. The capability of balancing tracking error and switching loss become

evident when comparing the RMS-error and total switching losses, which are seen in figure 12.2. The

lowest RMS-error is obtained with PI control, while eMPC has the largest RMS-error, which is 35.4%

greater than the RMS-error with PI control. However, comparison of switching losses reveal that the

PI controller has a significant larger switching loss compared to the two MPC controllers. Compared

to the switching loss with PI control, the switching loss is reduced 72.2% and 89.4% for NMPC and

eMPC respectively.

A comparison of the load holding capability for the three controllers and the corresponding force

reference are shown in figure 12.3. The resulting RMS-errors and switching losses can be seen in 12.4.

It can be seen that similar RMS-errors are achieved with NMPC and PI-control, while the steady state

error of the eMPC results in a larger RMS-error.
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Figure 12.1. Position response and force reference for a position step with NMPC, eMPC and PI position
control.
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Figure 12.2. RMS-error and switching losses for NMPC, eMPC and PI position control for position step
response.

Interestingly, the switching losses are similar for all three controllers, even though the PI control

switches only two times. This illustrates that the number of switching is not necessarily a good

estimator for switching losses.

The above comparison show that it is indeed possible to achieve a low position error, while

considering the losses associated with switching. The NMPC and eMPC both perform well compared

to the standard PI control. While eMPC control is not performing exactly similar to the NMPC from

which it is derived, the switching losses are still greatly reduced while still maintaining a small control

error. It is considered reasonable to expect that the performance differences between NMPC and

eMPC can be decreased by decreasing tolerances of the approximation algorithm.
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Figure 12.3. Position response and force reference for load holding with NMPC, eMPC and PI position control
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Figure 12.4. RMS-error and switching losses for NMPC, eMPC and PI position control for load holding.

12.2 Velocity Control Comparison

The velocity step response for the three controllers are seen in figures 12.5. Similar step responses are

seen, while the PI and eMPC have a slight steady state error. The force output of the three controllers

are also similar, but with PI control using more force levels.

The resulting RMS-errors and switching losses are shown in figure 12.6. It is seen that the RMS-error

are nearly the same for all three controllers. However, the switching losses reveal much larger losses

for the PI control. Compared to the switching loss with PI control, the switching losses with eMPC is

reduced by 68%. Hence large energy reduction is achieved with similar tracking performance.

For the sine trajectory, the tracking performance of the three controllers are indistinguishable and all

have similar phase lag. The control output are equally similar, but with a less varying control output

from the PI-control.
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Figure 12.5. Velocity response and force reference for a velocity step with NMPC, eMPC and PI velocity control.

The RMS-errors are also similar for the three controllers, with the PI control having a larger error

than the two MPC controllers. As was generally the case with position control, for velocity control the

switching losses are considerably reduced using MPC controllers. Here eMPC both RMS-error and

switching losses are reduced by 19.9% and 66.7% respectively compared to PI control.

have clearly the smallest losses, while the PI-control has the largest losses. The results show that like
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Figure 12.6. RMS-error and switching losses for velocity step with NMPC, eMPC and PI velocity contro.

for position control, an NMPC can be designed such to penalise switching losses while minimising

velocity error. Furthermore, the explicit implementation yields good results while reducing switching

losses. As was the case for MPC position control, NMPC and eMPC yield dissimilar results, but both

manage to reduce switching losses and have tracking performance which is comparable or better

than a PI control.
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Figure 12.7. Velocity response and force reference for sine wave trajectory with NMPC, eMPC and PI velocity
control.
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Figure 12.8. RMS-error and switching losses for sine wave trajectory with NMPC, eMPC and PI velocity control.

12.3 Robustness Analysis

The basis for MPC is a refined knowledge about the system. Thus, the robustness to change in system

parameters is evaluated for NMPC and eMPC. This is done by using the same control parameters as

found in section 9.4 on page 60, after which some of the system parameters are changed. Again the

NMPC and eMPC are compared together with the linear PI controller, also using the same control

parameters as found in chapter 11 on page 93.

First the robustness to change in friction is investigated. This is chosen because friction is a parameter

that often is hard to determine and in most application friction can change over time as joints and

bearings erode. To evaluate the robustness to friction, it is changed by ±20%. The next parameter

investigated is the line pressure, pS=[pH pM pL]. Even though the line pressures could be input to

the NMPC, as the NMPC indicate the performance limits of the eMPC. By changing the line pressure
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the predicted force by the NMPC and eMPC no longer corresponds to the actual force. Robustness

for changes in line pressure is tested for ±10%.

Generally the switching losses are not changed notable for the different changes in friction and line

pressures. Hence, the force shifts and the associated switching losses will not be presented.

Figure 12.9 show the position step response for all three position controllers, where the friction

parameters are changed in the full order model. The general tendency seen in the figures is that a

lower friction result in a faster response and opposite for larger friction. Both the NMPC and eMPC is

seen to be robust to change in friction, as the step response with the three different friction values

settles at the same value. The settling value of the PI controller is not the same when friction is

changed. A better tracking result is actually seen with decreased friction, which could be due to a

fortunate combination between the static friction and the quantised force output.
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Figure 12.9. Position step response for NMPC, eMPC and PI position control for change in friction.

In figure 12.10 the position step response is shown for change in line pressure, which directly affects

the available force. All three controllers are seen to be robust to change in line pressure. The first part

of the response is slightly different for NMPC and eMPC, but without any significant difference. The

largest difference is seen for the eMPC. However, the position almost settles at the same value for the

three different values of line pressures.
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Figure 12.10. Position step response for NMPC, eMPC and PI position control for change in line pressure.

In figure 12.11 a velocity step response is shown for all three velocity controllers with change in

friction. Both NMPC and eMPC are seen to be sensitive to change in friction, especially a smaller

friction affects the step response. The PI controller show good response for an increased friction, but

an offset is seen when the friction is decreased. As the friction directly affects the velocity, it is evident

that a changed friction affect the velocity response. Generally the NMPC and eMPC is not seen to be

very robust to change in friction, while the PI controller show some robustness to change in friction.
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Figure 12.11. Velocity step response for NMPC, eMPC and PI velocity control for change in friction.
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Figure 12.12 show the velocity step response for all controllers for different line pressure values. The

settling value of the NMPC is very dependent on the line pressure values. In contrast the eMPC and

PI controller show some robustness to change in line pressures. The eMCP response has an offset

on both sides of the reference dependent on the change in line pressure. For increased line pressure

the PI controller response is seen to reach what could look like a limit-cycle around the reference.

As shown in section 11.3 the developed AW gain is determined based on the control gain, which is

determined based on the system gain. Thus, by increasing the line pressures, the calculated AW gain

no longer ’ignore’ the quantisation. With the increased line pressures the AW gain is to small. Hence,

limit-cycles can occur. Generally change in line pressures are seen to affect the velocity response of

all controllers. However, the eMPC and PI velocity controller shown some robustness to change in

line pressure.
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Figure 12.12. Velocity step response for NMPC, eMPC and PI velocity control for change in line pressure.

12.4 Chapter Summary

The NMPC, eMPC and PI controller has in this chapter been compared. The position controllers has

been compared for a step response and load holding capabilities. For the compared step, the three

controllers show similar position response. However, the NMPC and eMPC controller reduces the

switching losses with 72.2% and 89.4% respectively compared to the switching loss with PI control.

For load holding the switching losses are similar for all controllers, even though the PI controller

switches significantly less. Generally the comparison of the position controllers showed that it was

possible to achieve low position error, while considering the losses associated with switching. The

velocity controllers has been compared for a step response and a sine reference. Similar RMS-error

was seen for the three controllers for the velocity step, while the switching losses with eMPC was

reduced by 68% compared to PI control. For the sine reference the eMPC was seen to reduce both

RMS-error and switching losses by 19.9% and 66.7% respectively, compared with PI control.

In the robustness analysis the performance of the three controllers was evaluated for changes in

friction and line pressures. All position controllers showed robustness to change in both friction and
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line pressures. The velocity controllers generally showed a smaller degree of robustness to similar

changes in friction and line pressures, with the PI controller showing most robustness.
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CHAPTER 13

CONCLUSION

The use of digital hydraulics have received renewed interest due to potentially large energy savings,

particularly for large scale applications such as in the off-shore industry. A state of the art analysis was

conducted to investigate the current technologies and advances within digital hydraulics, and three

main topologies were described: switch control, digital flow control units and secondary control. This

master’s thesis set to investigate control strategies for secondary control of a discrete displacement

cylinder (DDC) as a test setup is readily available at Aalborg University.

The discussion following the state of the art analysis concluded that, while many secondary control

investigations seeks an optimum between tracking performance and energy efficiency, none of

the suggested implementations could claim optimality. Hence, a hypothesis of this thesis was

to investigate if such an optimal control strategy for secondary controlled discrete displacement

cylinder was possible. It was found in [5], that MPC had been used to control a switch controlled

pneumatic clutch application with discrete inputs. The authors had developed an explicit MPC

solution for the problem, based on solving the NMPC problem for several points in a confined state

space.

Part I

In order to develop model based controllers a detailed mathematical model of the discrete

displacement cylinder test setup was made. This included modelling transmission line dynamics

using momentum and continuity equations. The valve manifold was modelled using the orifice

equation and cylinder chamber pressure dynamics was described with continuity equations.

Uncertain parameters such as friction was experimentally determined.

The model was validated by comparison to experimental results and considered sufficiently accurate

for control development. Furthermore, the energy losses associated to switching between pressure

levels was described as well as the throttling losses based on the work in [12].

Part II

Analysis of the mathematical model revealed the possibility of limit cycles due to the discrete nature

of the system, and further analysis revealed a relation between physical parameters of the system and

the amplitude and frequency of the limit cycle. Particularly, a small load mass and large pressure line
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differences was revealed to have a negative impact on the size and frequency of the limit cycles. A

fundamental difficulty of load holding was also described, caused by a mismatch between available

discrete force levels and the required force.

The test bench at the university showed to be impractical for position and velocity control as the

mass of the load was too small. Furthermore, no real life application case study was readily available.

Hence, an imagined application case was synthesised to be able to test the control strategies

developed. The focus of the application case was to replicate difficult control problems found in

real life applications more than describing a real life application.

NMPC Controller

A NMPC controller was developed to form a basis for the later work on creating an explicit

approximation of the NMPC solution. A discrete time reduced order model was described, where

pressure dynamics where neglected. A cost function penalising tracking error and switching losses

was synthesised and physically motivated constraints where formulated. The NMPC problem was

solved using the glcFast routine of the TOMLAB optimisation package, which yields a close-to-global

solution to the problem.

Results showed that it is possible penalise switching losses while maintaining good tracking

performance for both position and velocity control. However, it was furthermore concluded that the

NMPC is not implementable in real-time due to the computational heavy optimisation problem.

eMPC Controller

An eMPC control was developed in order to achieve the results obtained by the NMPC control in

real time. The eMPC control was developed based on the work in [5]. The complete algorithm to

convert the NMPC problem to explicit form was described and implemented in MATLAB and several

modifications where added to increase the speed of convergence for the algorithm. Due to a very large

required computational effort, the problem size was reduced in dimension and size and convergence

parameters where increased.

The eMPC solutions based on the NMPC problem showed to have good tracking performance and be

able to reduce switching costs for both position and velocity control. Some steady state errors was

seen, and they are assumed to be due to the large approximation tolerances.

Linear Control

For comparison, a linear position and a linear velocity control was developed. Anti wind-up was

investigated with the purpose of reducing or completely removing limit cycle behaviour. Anti wind-

up developed for the velocity control problem was showed to be able to remove limit cycles at the cost

of introducing a small steady state error. No such solution was found for the linear position control.

Part III

A comparison between eMPC, NMPC and the linear control showed that eMPC and NMPC was able to

reduce the switching losses significantly compared to the linear control, while having equal or better

tracking performance. For a step response in position, the eMPC control had a 35% larger RMS-error

compared to the PI control, but switching losses where reduced by 89%. For a velocity step response,
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the eMPC and PI control had similar RMS-error, but the eMPC reduced switching losses by 68%.

For a sine wave trajectory, the eMPC velocity control achieved 20% smaller RMS-error and 67% less

switching losses than the linear equivalent.

An analysis of robustness showed that all three controllers showed robustness for changes in friction

and pressure supply level for position control. For velocity control, all three controllers showed a

smaller degree of robustness for similar changes, with a small advantage to the linear control.

Finally, it can be concluded that position and velocity control is possible for a secondary controlled

DDC. While the tracking error may not be on par with a proportional valve controlled system,

energy efficiency are greatly reduced, which makes it an interesting alternative. It has been shown

that switching costs can be further reduced by applying optimal control in the form of eMPC. The

computational time required to find an explicit approximate solution makes this control best suited

to integrated solutions, such as was seen in NorrDigiTM. However, as the number of pressure levels

and cylinder chambers increase, so does the number of discrete dimensions of the eMPC problem,

increasing the required computational effort and reducing the usability of the eMPC algorithm.

Hence, it is best suited for applications with a small amount of discrete force levels.

13.1 Future Work

The developed eMPC controllers was based on large approximation tolerances and a reduced state

space and it was considered reasonable that performance differences between the eMPC and the

NMPC could be reduced by reducing the approximation tolerances and solving the problem for the

full state space. It then remains to be shown that this is indeed the case, and thus the implementation

of the algorithm should be further developed to be able to support parallel computing for faster

problem solving.

The control developed in this thesis was evaluated by simulation only. It is important for the proof of

concept of eMPC on a DDC that it is tested on a real life application or an appropriately scaled test

bench.

Large pressure oscillations was seen in the simulated results on the full order model, due to the

long transmission lines between the valve manifold and the DDC chambers. In order to reduce the

pressure oscillations future work could be to investigate and implement valve opening trajectories.

The test setup available at Aalborg University was seen to be impractical for position and velocity

control testing on the DDC. However, during this thesis, a lot of work have been put in developing

pressure control for the load side cylinder. It is encouraged that this work is continued. This includes

validating the control performance of the developed pressure control as well as work on emulating

various high mass loads on the DDC by developing pressure trajectories based on state feedback.
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APPENDIX A

EXPERIMENTAL DESCRIPTION

A.1 Determination of Unknown Constants

To determine the friction coefficients of the non-linear friction model a simple experiment have been

conducted. The friction model is described in section 5.3, and is here expressed with all viscous,

Coulomb and Stribeck -friction. A standard velocity/friction relation is shown in figure A.1 and it

follows equation A.1.

F f r i c = tanh

(
ẋs

γ

)(
FC 1 +FC 2e−|ẋs |/kstr i

)
+Bv s ẋs (A.1)

where γ is a coefficient used to control the slope of the tangent hyperbolic function around ẋs = 0,

FC 1 is the Coulomb friction constant and FC 2 and kstr i are coefficients related to the stiction-type

Stribeck friction. Bv s is the viscous friction coefficient.
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Figure A.1. Coulomb friction model with and without viscosity and Stribeck effects

To investigate the velocity/friction relation of the test-setup used in this thesis the loadside cylinder

is operated to run with sinusoidal position symmetric around the centre position. This is done by

giving a low frequency sinusoidal position reference to the loadside position control. For the low
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changing reference the position control is able to accurately control the position. By doing this the

cylinder velocity will also follow a sinusoidal tendency and the system will thereby experience a range

of velocities around zero. When the cylinder velocity crosses zero the Coulomb and Stribeck effects

are clarified. An example of the position and velocity references are seen on figure A.2.
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Figure A.2. Example of position and velocity reference with: ωc = 0.25 r ad
s and a = 0.5

Since the is not possible to directly measure the friction directly it will be estimated by measuring

some of the system variable. The estimated friction is then found by rewriting Newtons 2. law from

section 5.3 on page 27 to equation A.2.

F f r i c (ẋs) = FDDC −FLS −ms ẍs (A.2)

A.1.1 Experimental Results

Three experiments have been conducted to determine the system friction at different velocity ranges.

The DDC-cylinder is for these test set at a constant force level. The force level with the lowest force

is chosen. Then a velocity controller is used to track the velocity reference. There are no acceleration

sensors on the test setup, so therefore the acceleration is estimated by differentiating the velocity

reference.

First is the sinusoidal velocity reference given in a range of [-0.5:0.5] m
s , in order to determine friction

at larger velocities. The result from this is seen in figure A.3.

Next two experiments are made in lower velocity ranges of [-0.1:0.1] m
s and [-0.15:0.15] m

s . From these

experiments it is easier to extract the Coulomb and Stribeck effects. Figures A.4 and A.5, shows the

results from these experiments.
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Figure A.3. Test 1: High velocity range [-0.5:0.5] m
s .
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Figure A.4. Test 2: Low velocity range [-0.15:0.15] m
s .
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Figure A.5. Test 3: Low velocity range [-0.1:0.1] m
s .

The friction forces from all three experiments are plotted in a velocity/friction plot, seen on figure A.6.

Together with the experimental data is a optimal and a fitted analytic expression for friction with the

parameters shown in table A.1.

Implementation of the friction in Simulink, showed some uncontrolled oscillation in the numerical

solver caused by the decreasing nature of the Stribeck friction and the lack of damping. In order to

make the dynamics of the Simulink model work as seen in real life a compromise have been made on

the friction model. The revisited friction curve is illustrated with the dashed line on figure A.6.
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Figure A.6. Velocity-friction plot.
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Name Variable Optimal fit Revisited

Coulomb friction constant FC 1[N ] 6000 6000

Stribeck friction constant FC 2[N ] 17000 6000

Stribeck time constant kstr i [m/s] 0.08 0.2

Slope of tangent hyperbolic function γ [-] 6 ·10−4 1 ·10−3

Viscous friction coefficient Bv s [N s/m] 30000 60000

Table A.1. Friction parameters
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APPENDIX B

NUMERICAL OPTIMISATION

The routine "glcFast" of the TOMLAB optimisation environment in MATLAB is used to solve the

optimum of the objective function. It implements an extended version of the DIRECT optimisation

algorithm presented in [30]. The DIRECT algorithm as presented in [30] is only able to handle

inequality constraints, but the algorithm used in the routine "glcFast" is modified to be able to handle

equality constraints as well. In the following the general concept of the DIRECT algorithm will be

presented.

The DIRECT algorithm (DIviding RECTangles) is a direct search method and therefore not based on

the gradient of the objective function or an approximate of it, i.e. it is a derivative-free method. An

advantage of the algorithm is that it can handle problems that may contain both continuous and

integer variables, and the functions may be nonlinear and non-smooth.

The general problem solved by the DIRECT algorithm can be written as

V ∗(x0) = min
z

f (z,x0) (B.1)

subject to:

g j (z,x0) ≤ 0 , j = 1,2, . . .m (B.2)

li ≤ zi ≤ ui , i = 1,2, . . .r (B.3)

zi ∈ I , i = r +1,r +2, . . . s (B.4)

(B.5)

where I is the set of variables that are restricted to integer values. The vector of optimisation variables

z = [1, . . . zr , zr+1, . . . , zs], includes both variables (1, . . . , zr ) and integer variables (zr+1, . . . , zs). The

bounds on the variables limit the search to a s-dimensional hyper-rectangle. The algorithm proceeds

by dividing the hyper-rectangle into smaller rectangles, where the function value is sampled at each

center. In figure B.1 the first three iterations of the algorithm for a hypothetical problem with two

optimisation variables are shown.
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Iter. 1

Iter. 2

Iter. 3

Start Select Trisect and sample

Figure B.1. Partition of the hyper-rectangle with the DIRECT algorithm [30].

For each iteration the partition of rectangles is evaluated and one or more rectangles is selected for

further search. The selected rectangles are then trisected along one of its long sides and the center

points of the new rectangles are sampled. For the first iteration the entire space is covered by one

rectangle and the selection of rectangles is therefore trivial. For the second iteration three rectangles

can be chosen and in this example one is selected. For the third iteration 5 rectangles can be selected

and two is selected in this example.

The key concept of the algorithm is the selection of rectangles, since it determines how the entire

space is evaluated. The rectangles are selected based on weightings of local versus global search.

The difference between global and local search can be explained by considering the two extreme

cases. If a pure global search strategy were used one of the biggest rectangles would be selected every

iteration and the rectangles would become small at the same rate. By the end, the sample points

would form a uniform grid. With the global strategy every part of the search space is considered and

optimum parts is not overlooked. On the other hand, if only local search strategy were used, the

rectangle with the best objective function value would be selected every time, which would result in

a fast solution. However, an optimum could be overlooked, if it was found in a rectangle with a poor

objective function value at the center. Before presenting how the algorithm selects the rectangles it

will be explained how inequality constraints are treated.

The algorithm uses an auxiliary function that combines information about the objective and

constraint functions. A notation denoting the center point of the p’th rectangle is introduced as

zp . Furthermore, positive weighting coefficients for the inequality constraints are introduced as

ϕ1, ...,ϕm . The weighting coefficients are calculated based on the ratio between the average rate
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of change of the objective function and the constraints. Denoting the global optimum as V ∗ and

the minimum objective function value at the current iteration as Vmi n(x0), V ∗ is assumed to satisfy

V ∗ ≤ Vmi n(x0)− ε, where ε influence the accuracy of the solution. Values for ε can be found in [30].

The auxiliary function, evaluated at the center of rectangle p, is then

V a
p (V ∗,x0) = max

{
f (zp ,x0)−V ∗,0

}+ m∑
j=1

ϕ j max
{

g j (zp ),0
}

(B.6)

The first term penalise objective function values above V ∗. The second term is a sum of weighted

constraint violations. The lowest possible value of the auxiliary function is ε and occurs at the global

minimum. At other points the auxiliary function is larger either due to infeasibility or objective

function values larger than the optimum.

The selection of rectangles is based on the rate of change of the auxiliary function. In order to

evaluate this, a measure of the rectangles sizes is introduced as dp and this expresses the distance

from centre point to vertices of the p’th rectangle. The rate of change of the auxiliary function for the

p’th rectangle can then be expressed as

hp (V ∗,x0) =
max

{
f (zp ,x0)−V ∗,0

}+∑m
j=1ϕ j max

{
g j (zp ),0

}
dp

(B.7)

The selection algorithm is based on the rate of change function hp as function of V ∗. An example

with 5 rectangles is shown in figure B.2.
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Figure B.2. Rate of change as function of V ∗ used for selecting rectangles.

For V ∗ > Vmi n(x0)− ε the first part of the rate of change function is zero and thus the function is

constant due to the constant constraint value for each rectangle. For V ∗ < Vmi n(x0)− ε the rate of

change function increases. The rectangles in the lower left envelope represents the rectangles that are

selected by the algorithm. For the example shown in the figure rectangle 2 and 4 would be selected.

The selected rectangles are then trisected and the algorithm is ready for a new iteration. Integer

variables are handled with minor changes in the trisection routine and the way the center point of

the rectangle is defined. The center point of a rectangle consisting of integers is defined as the floor

of the algebraic average. For a rectangle consisting of two integer variables both with the range [1:8],
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the center point is (4,4). The rectangles containing integer variables, can not necessary be trisected

such that the new rectangles have the same size. However, the trisection is performed such that the

center point of the trisected rectangle, remains the center of one of the new rectangles. In order for the

algorithm to work best, the integer variables has to be ordered, e.g the integer variable with the range

[1:8] is ordered from 1 to 8. The integer variables are ordered so the function value in a rectangle’s

center can be expected to be indicative for what the function is like in the rest of the rectangle.

The stopping criteria of the algorithm is the number of function evaluations, which is determined

by the user. However, the algorithm implemented in "glcFast" is modified so an evaluation time of

the algorithm can be used as stopping criteria as well. The stopping criteria does not insure that the

calculated optimum is actually the optimum of the objective function. Thus, the function evaluations

or evaluation time of the algorithm has to be considered in order to obtain the required accuracy of

the solution.

In [30] disadvantages and advantages of the algorithm are stated. A disadvantage of the space-

partitioning approach is that relatively tight lower and upper bounds on all variables are required

for the algorithm to work well. Due to the space-partitioning approach the algorithm works best for

low-dimensional problems, which is stated as less than 20 variables. The algorithm is efficient in

terms of the number of function evaluations required to get close to the global minimum, but takes

longer to achieve a high degree of accuracy. Thus, the authors suggest that the best performance

of the algorithm is obtained by combining the DIRECT algorithm with a good local optimiser. The

algorithm works well when small uncertainties or noise is present, because it result in a small change

in objective function values, which usually has little impact on the set of selected rectangles until late

in the search. The main advantage of the algorithm is its unique approach to balance local and global

search, by the simple idea of not sampling just one point per iteration, but rather sampling several

points using all possible weightings of local versus global search.

A step-by-step procedure of the DIRECT algorithm is found in [30].
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APPENDIX C

EVALUATION OF COMPUTATIONAL

PARAMETERS

C.1 Function Evaluations

To determine the number of function evaluations that should be used by the numerical optimiser,

the solution to the cost function is evaluated as function of number of function evaluations. The cost

function is dependent on the state vector x(t ). Thus, the solution to the cost function is evaluated for

three different initial values of x(t ). The cost function values as function of the number of function

evaluations are shown in figure C.1 for a step where the initial value of the position is larger than

the reference, where the initial position is less than the reference and where the initial position is

the same as the reference. For all three cases the initial velocity is zero. It should be noted that the

optimum determined by the numerical optimiser is not necessarily determined on the last function

evaluation, but could be determined on a previous function evaluation.
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Figure C.1. Cost function values as function of the number of function evaluations for three different initial

values of mathb f xt

For some cases it is seen that the cost function value increases for an increase in the number of

function evaluation, this is because the cost function values are calculated based on the actual output

at each time steps. Thus, the horizon for each step is not considered in the cost function value.

A difference in the first step in the horizon, which is the actual output, can therefore change the

optimisation problem in the next time step and thereby change the overall cost function value.

As can be seen from the figure, it is not possible to determine a clear number of function evaluations,

for which the cost function values are at a constant minimum for all three cases. However, the

tendency is that for number of function evaluations less than 3000 an increase in cost function is seen.

Based on the cost function values shown in the figure 4000 function evaluations is chosen for the

numerical optimiser. It is possible that the accuracy of the solution could be increased with a larger

number of function evaluations, but it would at the same time result in an increased computational

time of the numerical optimiser.

C.2 Computational Time

On average the computational time is mainly divided between the glcFast optimisation routine,

evaluation of state equations 9.2, 9.3, evaluation of the input equation 9.6 and evaluation of cost

function equation 9.14. Figure C.2 show the relative computational time for each sub-function of an

optimisation step for 500, 3000 and 15000 function evaluations.
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Figure C.2. Computational time of sub-functions in an optimisation step.

The average computational time for each time step was 0.23 seconds, 1.3 seconds and 9 seconds

for 500, 3000 and 15000 function evaluations respectively. It can be seen, that a great part of the

computational time is spent with user supplied functions. Hence, those function should be optimized

with respect to computational time. MATLAB code for the user supplied function in C.2 are shown in

appendix D, sections D.3, D.4 and D.5 for the discrete system equations, cost function equation and

input equation respectively.
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APPENDIX D

ALGORITHM MATLAB CODE

D.1 Main loop code

The MATLAB implementation of the eMPC algorithm is shown here. Each step is mainly calculated

in separate functions, and hence, the code shown here illustrates the book-keeping and code-flow of

the implementation.

1 run model_script;

2

3 %% Initialise
4 clear xdata wdata subidx W

5 global optParam mpcParam sysParam

6

7 % Set MPC parameters

8 mpcParam.N = 15; %Set mpc horizon.

9 mpcParam.Ts = 0.1; %Set Euler forward integration time.

10 mpcParam.N0 = 0; %Set number of sub-HR to be constructed in X0.

11 mpcParam.Q = 1*diag([15,0.1]); %State cost (x1,x2).

12 mpcParam.R = 1*diag([1,0.0005]); %Input cost (dU, U).

13 mpcParam.P = 1*mpcParam.Q; %Terminal state cost (x1,x2).

14

15

16 % Set system parameters

17 sysParam.x1c_U = S.L; % Upper constraint on y.

18 sysParam.x1c_L = 0; % Lower constraint on y.

19 e1c_TU = 0.7; % Upper terminal constraint on x1.

20 e1c_TL = -0.7; % Lower terminal constraint on x1.

21 x2c_U = 0.4; % Upper constraint on x2.

22 x2c_L = -0.4; % Lower constraint on x2.

23 e2c_TU = 0.4; % Upper terminal constraint on x2.

24 e2c_TL = -0.4; % Lower terminal constraint on x2.

25

26 %Set constraint vectors for horizon N, incl. terminal constraint

27 c_Ux1vec = [sysParam.x1c_U*ones(mpcParam.N,1);e1c_TU];
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28 c_Ux2vec = [x2c_U*ones(mpcParam.N,1);e2c_TU];

29 c_Lx1vec = [sysParam.x1c_L*ones(mpcParam.N,1);e1c_TL];

30 c_Lx2vec = [x2c_L*ones(mpcParam.N,1);e2c_TL];

31

32 %Set limits of state space

33 sysParam.x_U = [0.3, 0.4, S.L-0.75]; % Upper limits [x1_U, x2_U,...,

xN_U]

34 sysParam.x_L = [-0.3, -0.4, 0.75]; % Lower limits [x1_L, x2_L,...,

xN_L]

35

36 %Load data structs

37 sysParam.DDC = DDC; % Load DDC struct from DDC parameters.

38 sysParam.S = S; % Load S struct from sleigh parameters.

39 sysParam.A = A; % Load A struct from application

parameters.

40 sysParam.G = G; % Load G struct from sleigh parameters.

41

42 %Set bounds for input U

43 sysParam.u_U = 3*ones(3*mpcParam.N,1)'; % Upper bounds for U.

44 sysParam.u_L = ones(3*mpcParam.N,1)'; % Lower bounds for U.

45

46 %Set constraint vectors

47 N1 = 1+(1+mpcParam.N0)*(2^length(sysParam.x_U)+2*length(sysParam.x_U)

);

48 sysParam.c_U = [c_Ux1vec;c_Ux2vec]; % Upper bounds for constraints.

49 sysParam.c_L = [c_Lx1vec;c_Lx2vec]; % Lower bounds for constraints

50 sysParam.c_U_hat = [repmat(c_Ux1vec,[N1 1]);repmat(c_Ux2vec,[N1 1])];

51 sysParam.c_L_hat = [repmat(c_Lx1vec,[N1 1]);repmat(c_Lx2vec,[N1 1])];

52

53 % Setting U to be integer variables

54 sysParam.IntVars = 1:length(sysParam.u_L);

55

56 % Initial input vector

57 sysParam.U0 =[2,2,2];

58

59 % Set optimiser parameters

60 optParam.maxFcnEval = 4000; %Set maximum function evaluations.

61 optParam.maxApproxFcnEval = 4000; %Set maximum function evaluations.

62 optParam.MaxCPU = []; %Set maximum CPU time (in seconds).

63 optParam.prntLvl = 0; %Set print level: 0 none, 1 some, 2 all.

64

65 %Cost function for step 4.

66 optParam.costFcn = 'glcOpt_f_v3'; %Name of cost function.

67 optParam.cnstrFcn = 'glcOpt_c_v3'; %Name of constraint function.

68

69 %Cost function for step 7.

70 optParam.costApproxFcn = 'glcApproxOpt_f_v3';
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71 optParam.cnstrApproxFcn = 'glcApproxOpt_c_v3';

72

73 %Set up glcFast (some parameters change for step 7).

74 optParam.Prob = glcSetup_v3();

75

76 % Set algorithm parameters

77 epsVol = 0.01*prod(sysParam.x_U-sysParam.x_L); %Tolerance size of

rectangle

78 expV = 0; %Initially explored volume

79 eps_a = 0.02; %Absolute tolerance level of approximation error.

80 eps_r = 0.05; %Relative tolerance level of approximation error.

81

82 % Create empty and zero-sets used in book keeping.

83 emptyNSet = cell(1,2^(size(sysParam.x_U,2)));

84 zeroNSet = cell(1,2^(size(sysParam.x_U,2)));

85 zeroNSet(:) = {0};

86 empty2Set = cell(1,2);

87 zero2Set = cell(1,2);

88 zero2Set(:) = {0};

89

90

91

92 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

93 % Step 1: Initialise state space %

94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

95 display('Step 1: Initialising state space as hyper-rectangle.')

96 xdata.X{1} = [sysParam.x_U;sysParam.x_L];

97 % Define different sets used in book-keeping

98 xdata.feas{1} = [];

99 xdata.xplrd{1} = 0;

100 xdata.V_hat{1} = [];

101 xdata.u_hat{1} = [];

102 subidx = 0;

103

104 wdata.W = [];

105 wdata.V = [];

106 wdata.ExitFlag = [];

107 wdata.U = [];

108 startTime = tic; %Start timer

109

110

111 % Plot initialisation (2D only)

112 p = patchIni(xdata.X); %Initialise partition plot.

113

114 % Save name for data

115 saveName = sprintf('%s%d%d%d', 'xdata_', sysParam.U0);

116 %% Start while-loop
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117 while (1)

118 subidx = subidx+1; %Index to keep track of current hyper-

rectangle

119

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

121 % Step 2: Select any unexplored hyper-rectangle %

122 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

123

124 currentTime = toc(startTime);

125 display('Step 2: Selecting unexplored hyper-rectangle.')

126 idx = find([xdata.xplrd{:}]==0,1);

127 explIdx = find([xdata.xplrd{:}]==1);

128

129 % If no such hyper-rectangle exists, terminate.

130 if isempty(idx)

131 display(' No more unexplored hyper-rectangles.

Terminating.')

132 fprintf(' Time since start: %0.0f minutes\n',

currentTime/60)

133 load handel;

134 player = audioplayer(y, Fs);

135 play(player); % Halleluja!

136 % Save partition data

137 save(saveName, 'xdata','wdata');

138 break

139 end

140 % Display information on current progress.

141 fprintf(' Time since start: %0.0i seconds\n',currentTime)

142 fprintf(' Number of state partitions: %0.0f\n', size(xdata

.xplrd(:),1));

143 fprintf(' Volume of selected hyper-rectangle: %f\n',prod(

abs(diff(xdata.X{idx},1,1))))

144 center = mean(xdata.X{idx});

145 fprintf(' Center of selected hyper-rectangle: (%0.3f,%0.3f

,%0.3f)\n',center(1),center(2),center(3))

146

147 expV = 0;

148 if isempty(explIdx)

149 expV = 0;

150 else

151 for i = explIdx

152 expV = expV+prod(abs(diff(xdata.X{explIdx(i)},1,1)));

153 end

154 end

155 pctExpl = expV*100/prod(sysParam.x_U-sysParam.x_L);

156

157 fprintf(' Volume explored: %0.2f pct.\n',pctExpl)
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158

159 %Plot partition with color coding.

160 patchplot_v3(p,xdata.X,idx, xdata.feas);

161

162

163 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

164 % Step 3: Generate a set of points W0 = {w0,w1,w2, ...,wN1 } %

165 % associated to X0 by applying Procedure 1.1. %

166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

167 display('Step 3: Generating W0.')

168 W = step3_v3(xdata.X{idx});

169

170

171 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

172 % Step 4: Compute a solution to the problem for x fixed to %

173 % each of the points wi, i = 0, 1, 2, ... , N1 by %

174 % using routine 'glcFast' of TOMLAB optimization %

175 % environment. If the problem has a feasible solution%

176 % at all these points, go to step 7. %

177 % Otherwise, go to step 5. %

178 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

179

180 fprintf('Step 4: Computing solutions for W0, set of %i points.\n'

, size(W,2))

181 tic;

182 [wnew, wres] = step4_v3(wdata,W);

183 wdata.W{subidx} = wnew;

184 wdata.V{subidx} = ([wres(:).f_k]);

185 wdata.U{subidx} = ([wres(:).x_k]);

186 wdata.ExitFlag{subidx} = ([wres(:).ExitFlag]);

187 fprintf(' Solutions to W0 found in %0.1f seconds.\n', toc)

;

188

189 if ~isempty(find([wres(:).ExitFlag]~=0,1))

190

191

192 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

193 % Step 5: Compute the size of X0 using some metric. %

194 % If it is smaller than some given tolerance, %

195 % mark X0 infeasible and explored and go to %

196 % step 2. Otherwise, go to step 6. %

197 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

198 volx = step5_v3(xdata.X{idx});

199 fprintf('Step 5: Volume of rectangle: %0.3f.\n',volx)

200 if volx<=epsVol

201 display(' Volume of X0 lower than tolerance,

marking infeasible and explored and going to step 2.')
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202 xdata.feas{idx} = 0;

203 xdata.xplrd{idx} = 1;

204 continue;

205 end

206

207

208

209 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

210 % Step 6: If at least one of the points in wi, %

211 % i = 0,1,2,...,N1 is feasible, split X0 into %

212 % hyper-rectangles X1, X2,..., XNs by applying %

213 % the Heuristic splitting rule 1.1. If none of %

214 % the points wi, i = 0,1,2,...,N1 are feasible, %

215 % split X0 into two hyper-rectangles X1 and X2 by %

216 % a hyperplane through its center point and %

217 % orthogonal to an arbitrary axis. %

218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

219 xtmp = step6_v3(xdata.X{idx});

220 xdata.X(idx) = [];

221 xdata.feas(idx) = [];

222 xdata.xplrd(idx) = [];

223 xdata.V_hat(idx) = [];

224 xdata.u_hat(idx) = [];

225 xdata.X = [xdata.X, xtmp];

226 xdata.feas = [xdata.feas, emptyNSet];

227 xdata.xplrd = [xdata.xplrd, zeroNSet];

228 xdata.V_hat = [xdata.V_hat, emptyNSet];

229 xdata.u_hat = [xdata.u_hat, emptyNSet];

230 clear xtmp;

231 display('Step 6: Applying splitting rule and going to step 2.

')

232 continue

233 end

234

235

236 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

237 % Step 7: Compute a constant function K0(x_hat) as an %

238 % approximation to be used in X0. %

239 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

240 display('Step 7: Computing a constant function K0 using Procedure

5.1')

241 tic;

242 wdataApprox = step7_v3(wdata.W{subidx},wdata.V{subidx});

243 fprintf(' Constant solution to W0 found in %0.1f seconds.\

n', toc);

244 if ~isempty(find([wdataApprox.ExitFlag]~=0,1))

245 % Find longest facet.
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246 [~, splitIdx] = max(abs(diff(xdata.X{idx})));

247 % Split across longest facet .

248 xtmp = splitX_v3(xdata.X{idx}, splitIdx);

249 xdata.X(idx) = [];

250 xdata.feas(idx) = [];

251 xdata.xplrd(idx) = [];

252 xdata.V_hat(idx) = [];

253 xdata.u_hat(idx) = [];

254 xdata.X = [xdata.X, xtmp];

255 xdata.feas = [xdata.feas, empty2Set];

256 xdata.xplrd = [xdata.xplrd, zero2Set];

257 xdata.V_hat = [xdata.V_hat, empty2Set];

258 xdata.u_hat = [xdata.u_hat, empty2Set];

259 clear xtmp;

260 fprintf(' Infeasible K0, splitting X0 orthogonal to x%

i into X1 and X2 and going to step 2.\n',splitIdx)

261 continue

262 end

263

264

265 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

266 % Step 8: Compute an estimate e0_hat of the error bound e0 in %

267 % X0 by applying Procedure 5.2. %

268 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

269 [eps_0_hat, splitIdx] = step8_v3(wdata.W{subidx},wdataApprox.x_k,

wdata.V{subidx});

270 fprintf('Step 8: Estimate of error bound, ê0 of X: %f\n',

eps_0_hat)

271 fprintf(' Minimum V(x): %f\n',min(wdata.V{subidx}))

272 eps_inc = 1;

273 %Increase tolerance if volume is below threshold (0.1% of total)

274 if prod(-diff(xdata.X{idx},1,1))<epsVol*0.1

275 eps_inc = 10;

276 fprintf(' Volume below threshold, increasing

tolerances.\n')

277 end

278 if eps_0_hat<= max(eps_a*eps_inc,eps_inc*eps_r*min(wdata.V{subidx

}))

279 xdata.feas{idx} = 1;

280 xdata.xplrd{idx} = 1;

281 xdata.V_hat{idx} = wdataApprox.f_k;

282 xdata.u_hat{idx} = wdataApprox.x_k;

283 display(' Accepting K0. Marking feasible and explored

and going to step 2.')

284 else

285 % Split orthogonal to axis with greatest error gradient.

286 xtmp = splitX_v3(xdata.X{idx},splitIdx);
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287 xdata.X(idx) = [];

288 xdata.feas(idx) = [];

289 xdata.xplrd(idx) = [];

290 xdata.V_hat(idx) = [];

291 xdata.u_hat(idx) = [];

292 xdata.X = [xdata.X, xtmp];

293 xdata.feas = [xdata.feas, empty2Set];

294 xdata.xplrd = [xdata.xplrd, zero2Set];

295 xdata.V_hat = [xdata.V_hat, empty2Set];

296 xdata.u_hat = [xdata.u_hat, empty2Set];

297 fprintf(' Rejecting K0. Splitting X0 orthogonal to x%i

into X1 and X2 and going to step 2.\n',splitIdx)

298 clear xtmp;

299 end

300 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

301 end
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D.2 Step 4

The code for Step 4 is shown here. This code includes the steps taken to recognise if a point have

previously been optimised in an earlier iteration.

1 function [W, Res] = step4_v3(wdata,W)

2 % Step 4, solve mp-MIP problem with glcSolve/glcFast for

3 % all points in W.

4 % Solver options are set in global struct optParam

5 % This implementation also recognises points already

6 % optimised in earlier iterations and excludes them

7 % from optimisation.

8 % Input: - wdata, including previously optimised points

9 % - subset W = [w1, w2,...wi]

10 % Output: - New subset of W, may be in a different order

11 % due to reusing points

12 % - Results from optimisation.

13

14 global optParam

15 Prob = optParam.Prob;

16 n = size(W(:),1); %n: number of points in W

17 m = size(wdata.W,2); %m: number of sets W

18 if m>0;

19 for i = 1:n

20 for j = 1:m

21 oldW = (cat(1,wdata.W{j}{:}));

22 newW = W{i};

23 % Index of oldW where rows of oldW are equal to newW(i).

24 I{i} = find(ismember(oldW,newW,'rows')==1);

25 if ~isempty(I{i})

26 % i'th point in W found in j'th oldW in row I{i}.

27 idxCell{i} = [I{i},j];

28 % Do not search for more matches on point if already

found.

29 break

30 end

31 end

32 end

33 for i = sort(find(~cellfun(@isempty,I)),'descend')

34 W(i) = []; %Delete those points that are already optimised

35 end

36 end

37 l = size(W(:),1);

38 if l~=n % If data has been deleted from W

39 idxVector = cat(1,idxCell{:});

40 fprintf(' W0 contains %d points from previous iterations.\

n Excluding points from optimisation and re-using

results.\n',(n-l));
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41 end

42 %Run optimiser for points in W.

43 for i = 1:l

44 Res(i) = glcOpt_v3(W{i},Prob); %Get result struct,

45 end

46 if l~=n % If data has been deleted from W

47 for i = 1:size(idxVector,1) % Add previously known data.

48 W{l+i} = wdata.W{idxVector(i,2)}{idxVector(i,1)};

49 Res(l+i).x_k = wdata.U{idxVector(i,2)}(:,idxVector(i,1));

50 Res(l+i).f_k = wdata.V{idxVector(i,2)}(idxVector(i,1));

51 Res(l+i).ExitFlag = wdata.ExitFlag{idxVector(i,2)}(idxVector(

i,1));

52 end

53 end

148



D.3. Discrete Time System Function Code

D.3 Discrete Time System Function Code

Implementation of state equations 9.2, 9.3 in MATLAB. To increase optimisation speed only strictly

necessary parameters are input to the function. Other system constants are defined in the function.

1 function x = sysFcn_v4(x0,p,dt)

2 % Discrete time implementation of the system.

3 % Explicit integration using forward Euler.

4 % Input: - initial state x(t+k|t)

5 % - input u(t+k|t)

6 % - forward Euler timestep, dt

7 % Output: - x(t+k+1)

8

9 %Pre-allocate vectors (for speed)

10 x = zeros(size(x0'));

11

12 %Define constants

13 A_c1 = 0.0235; % Piston area 1 [m^2]

14 A_c2 = 0.0122; % Piston area 2 [m^2]

15 A_c3 = 0.0087; % Piston area 3+4 [m^2]

16 gamma = 1e-3; % Friction slope around 0 velocity [-]

17 Fc1 = 6000; % Coloumb friction [N]

18 Fc2 = 6000; % Stribeck friction [N]

19 k_stri = 0.2; % Stribeck coefficient [-]

20 Bv = 15*60e3; % Viscous friction [N/m/s]

21 M = 2000; % Mass [kg]

22 L = 8; % Length L [m]

23 g = 9.81; % Gravitational constant [m/s^2]

24 b = 2.236; % Length b [m]

25 e = 2; % Length e [m]

26 a = 2; % Length a [m]

27

28 % Discrete State Space form:

29 d = b*sqrt(abs(1-(((x0(1)+e)^2+b^2-a^2)/(2*(x0(1)+e)*b))^2)); %Moment

arm

30 k = (a^2+b^2-(x0(1)+e)^2)/(2*a*b); %cos(theta)

31 Meq = L^2*M/d; %Equivalent mass [kg]

32

33 x(1) = x0(1)+dt*x0(2);

34 x(2) = x0(2)+dt*(-tanh(x0(2)/(gamma))*(Fc1+Fc2*exp(-abs(x0(2)/k_stri)

))-Bv*x0(2)+(-p(1)*A_c1+p(2)*A_c2+p(3)*(A_c3)-M*L*g*k/d))/Meq;

35 x(3) = x0(3);

36 end
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D.4 Cost Function Code

Implementation of cost function equation 9.14 in MATLAB.

1 function V = costFcn_v3(x,u,Q,R,P)

2 % Cost function implementation.

3 % Input: - state vector x(t+k|t) for k = 0,...,N

4 % - input vector u(t+k|t) for k = 0,...,N-1

5 % - weighting matrices Q, R, P

6 % Output: - cost function value V(x,u)

7

8 %Define constants

9 A_c1 = 0.0235; % Piston area 1 [m^2]

10 A_c2 = 0.0122; % Piston area 2 [m^2]

11 A_c3 = 0.0087; % Piston area 3+4 [m^2]

12 V_0c1 = 0.04814; % Initial chamber volume 1 [m^3]

13 V_0c2 = 0.00114; %I nitial chamber volume 2 [m^3]

14 V_0c3 = 0.002280; % Initial chamber volume 3+4 [m^3]

15 Fmax = 428120; % Maximum force [N]

16 max_loss = 2.7842598e4; % Maximum shift cost [J]

17 beta = 6000e5; % Bulk modulus [Pa]

18 Ls = 2; %Stroke length [m]

19 v_max = 0.5; %Maximum velocity [m/s]

20

21 % Normalise state vector

22 e = [(x(3,1)-x(1,:))/Ls; x(2,:)/v_max];

23

24 %Calculate state cost Q||x||^2+P||x||^2

25 stateCost = sum(sum(Q*(e(:,1:end-1).^2)))+sum(P*e(:,end).^2);

26

27 %Calculate input cost R||h(u,x)||^2

28 dU = diff(u,1,1)'; %Find pressure difference in time.

29 V_c = [-A_c1*x(1,1:end-1)+V_0c1; A_c2*x(1,1:end-1)+V_0c2; (A_c3)*x

(1,1:end-1)+V_0c3]; %Find volumes

30 switchCost = sum(((sum((0.5*dU.^2).*(V_c/beta)))/(max_loss)).^2);

31

32 forceCost = sum(((-A_c1*u(1,2:end)+A_c2*u(2,2:end)+(A_c3)*u(3,2:end))

/(Fmax)).^2);

33 inputCost = R(1,1)*switchCost+R(2,2)*forceCost;

34

35 V = stateCost+inputCost;
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D.5 Input Function Code

Implementation of input function of equation 9.6 in MATLAB.

1 function p = inputFcn_v3(U)

2 %Input function, tranlates input constraints (1,2,3) to physical

inputs to

3 %system.

4 %Input: input vector U = [u1, u2, u3]

5 %Output: pressure in chambers, p = [p1, p2, p3]

6

7 p_h = 200e5; % High pressure supply level [Pa]

8 p_m = 107.5e5; % Medium pressure supply level [Pa]

9 p_l = 20e5; % Low pressure supply level [Pa]

10

11

12 if U(1) == 1

13 p1 = p_h;

14 elseif U(1) == 2;

15 p1 = p_m;

16 else

17 p1 = p_l;

18 end

19

20 if U(2) == 1

21 p2 = p_h;

22 elseif U(2) == 2;

23 p2 = p_m;

24 else

25 p2 = p_l;

26 end

27

28 if U(3) == 1

29 p3 = p_h;

30 elseif U(3) == 2;

31 p3 = p_m;

32 else

33 p3 = p_l;

34 end

35 p = [p1; p2; p3];

36 end
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D.6 Step 8

Implementation of Step 8 in MATLAB. This code includes approximating the error differences across

possible splitting hyper-planes.

1 function [eps_0_hat, splitIdx] = step8_v3(W,K0,localV)

2 % Step 8 function, finds maximum error bound of K0.

3 % Input: - subset W = [w1, w2,...wi]

4 % - constant function K0

5 % - cost function value set V^*(u^*,W)

6 % Output: - maximum error bound of K0

7 % - Index value for largest error difference

8

9 global optValues optParam

10 Prob = optParam.Prob;

11 %Find V_hat for each point in W (is written in global variable)

12 for i = 1:size(W,2)

13 W{i}(1) = W{i}(3)-W{i}(1); %y(t) = r(t)-e(t)

14 end

15 Prob.user.W = W;

16 Prob.user.localV = localV;

17 [~] = glcApproxOpt_f_v3(K0,Prob);

18

19 n = size(localV,2);

20 eps_0 = zeros(n,1);

21 for i=1:1:n

22 eps_0(i,1) = optValues.localApproxV(i)-localV(i);

23 end

24

25 for i = 1:size(W,2)

26 W{i}(1) = W{i}(3)-W{i}(1); %e(t) = r(t)-y(t)

27 end

28 % Project W to origo

29 Wtmp = cat(1,W{:})-repmat(W{1},n,1);

30 % Find error difference across first, second and third axis

31 dx = abs(sum(eps_0(Wtmp(:,1)>0))-sum(eps_0(Wtmp(:,1)<0)));

32 dy = abs(sum(eps_0(Wtmp(:,2)>0))-sum(eps_0(Wtmp(:,2)<0)));

33 dz = abs(sum(eps_0(Wtmp(:,3)>0))-sum(eps_0(Wtmp(:,3)<0)));

34

35 %Split across axis with largest error difference

36 [ ~, splitIdx] = max([dx dy]);

37

38 eps_0_hat = max(eps_0,[],1);
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SOLUTION FOR EXPLICIT MODEL

PREDICTIVE CONTROL

In this appendix the 27 hyper-rectangle solutions found with eMPC for both the position and velocity

control are presented. First the solution for position control is presented, followed by solution for

velocity control.

E.1 Solution for Explicit Model Predictive Position Control

The explicite solution for the position control problem has the two continuous dimensions, which is

the position error and the velocity. A solution is shown for each of the 27 force levels, which can be

seen as the discrete dimension.
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E.2 Solution for Explicit Model Predictive Velocity Control

The explicite solution for the velocity control problem has the two continuous dimensions, which

is the velocity error and the reference. The position is assumed constant at the center position. A

solution is shown for each of the 27 force levels, which can be seen as the discrete dimension.
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APPENDIX F

LOAD SIDE LINEARISATION AND CONTROL

In this appendix, a pressure control for the load side cylinder will be synthesised based on linear

control theory. Even though this is not directly in the scope of this thesis, pressure/force control of

the load side is a fundamental step in order to use the test setup described in chapter 3 for further

evaluation of motion control on the Discrete Displacement Cylinder.

As different test case application varies in load profile, different types of controllers are developed,

mainly for tracking and regulating. A position tracking control was developed in [3] based on a similar

approach. Before linearising the load cylinder equations, the following system simplifications are

made:

• Supply and tank pressures are considered constant.

• Safety valves and accumulators are neglected.

• The two parallel valve configuration is considered as a single symmetric valve SISO system.

For simplicity the hydraulic model is derived only as a reduced order model where a load pressure is

introduced. When describing the hydraulic model as a reduced order model the pressure dynamics in

each chamber are not considered, but only the combined dynamic of the system. As the cylinder has a

stroke length of 3m and is operated only ±0.5m from center position, this simplification is considered

reasonable. The load flow and pressure are defined as

QL = 1

2
(Qc A +QcB ) (F.1)

pL = pc A −pcB (F.2)

Assuming equal displacement flows in the cylinder (Qc A = QcB ), the load flow can be described as a

function of the load pressure, yielding the following load flow orifice equation

QL =


cd A(xv )

√
2

ρ

√
pS −pL −pT

2
for xv ≥ 0

cd A(xv )

√
2

ρ

√
pS −pL +pT

2
for xv < 0

(F.3)

Linearising this equation yields, for xv ≥ 0:

QL
(
xv , pL

)= Kqx xv −Kqp pL (F.4)
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where

Kqx = ∂QL

∂xv

∣∣∣∣
xv0,pL0

= cd Ad0

√
2

ρ

√
pP −pL0 −pT

2
(F.5)

Kqp = ∂QL

∂pL

∣∣∣∣
xv0,pL0

=
cd Ad0

√
2
ρ√

8(pP −pL0 −pT )
(F.6)

Subscript 0 indicates point of linearisation. Since the valves in the two-valve configuration have

similar dynamic behavior, they are here treated as a single linear SISO system with second order

dynamics:

Gv,LS(s) = xv

x∗
v
=

ω2
nv,LS

s2 +2ζv,LSωnv,LS +ω2
nv,LS

(F.7)

where ωnv,LS = 330 rad/s and ζv,LS = 0.707. A continuity equation can be derived based on the

definition of load flow:

QL = Qc A +QcB

2
=−AcLS ẋs + cl eak (pc A −pcB )+ VA(xs)

2βe (pc A)
ṗc A + VB (xs)

2βe (pcB )
ṗcB (F.8)

To simplify this expression, the point of linearisation is chosen to be at the cylinder center position.

Thus, for this symmetrical cylinder, the two chamber volumes are equal. Furthermore it is assumed

that βe (pc A) = βe (pcB ) = β0 = cst ., and that the position dependent term of VA(xs) and VB (xs) is

negligible. This reduces the continuity equation to the linear equation

ṗL = 4β0

Vt ,LS

(
QL + AcLS ẋs − cl eak pL

)
(F.9)

where Vt ,LS = Vc A +VcB is the total load cylinder volume. The choice of linearisation point for the

cylinder position yields the lowest system eigenfrequency. Choosing a linearisation point for the

valve position (xv0) affects system damping term through the flow-pressure coefficient Kqp . A small

valve opening yields lower system damping and thus leads to a conservative control design. The

mechanical system is linearised by ignoring the non-linear Coulomb-friction of equation 5.27 on

page 27, yielding the linear system

ms ẍs = FDDC −FLS −Bv s ẋs (F.10)

= FDDC − AcLS pL −Bv s ẋs (F.11)

The above equations is put into state space form with state vector xLS =
[

xs , ẋs pL xv ẋv

]T
and

input u = x∗
v :

ẋLS = ALS xLS +BLSuLS , y = CxLS (F.12)

where

ALS =



0 1 0 0 0

0 −Bv s

ms
− AcLS

ms
0 0

0 ΛAcLS −Λ(Kqp + cl eak ) ΛKqx 0

0 0 0 0 1

0 0 0 −ω2
nv,LS −2ζv,LSωnv,LS


, BLS =


0

0

0

0

ω2
nv,LS

 (F.13)

CLS =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 (F.14)
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whereΛ= 4β0

Vt ,LS
. The open loop transfer function is then:

GLS(s) = pL

x∗
v
= (sI − ALS)−1 BLS (F.15)

=
Kqx

ms

(
s + Bv s

ms

)
s2 +

(
Bv

ms
+Λ(

cleak +Kqp
))

s + Λ

ms

(
A2

cLS +Bv s
(
cleak +Kqp

))Gv,LS(s) (F.16)

The damping ratio ζh,LS and eigenfrequencyωnh,LS of the mechanical-hydraulic system is then found

to be:

ωnh,LS =
√
Λ

ms

(
A2

cLS +Bv s(cl eak +Kqp )
)

, ζh,LS = 1

2ωnh,LS

(
Bv s

ms
+Λ(cleak +Kqp )

)
(F.17)

The undamped eigenfrequency is found to be approximately 10 Hz. Due to the low mass of the system

and large volume of the cylinder chambers, Bv s
ms

ÀΛ
(
cleak +Kqp

)
, thus the system damping is mainly

due to the mechanical feedback term. The damping ratio is found to be approximately 0.09, which

indicates a highly underdamped system resulting in a resonance peak around the eigenfrequency.

Furthermore, the mechanical feedback term contributes with a zero in the transfer function, causing

the system to further amplify inputs at frequencies larger than Bv s
ms

≈ 1.7 Hz, thus adding to the

amplification of the resonance peak. The bode plot of GLS can be seen in in figure F.1.
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Figure F.1. Bode plot of GLS .

F.1 Linear Model Validation

Validation of the linear model is done by comparing outputs with the non-linear model to similar

input and working conditions. The linear model is validated at half stroke length and under the
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F. LOAD SIDE LINEARISATION AND CONTROL

following operation points:

xv0 = 0.032[−] pL0 = 67[bar] (F.18)

The results are shown in figures F.2 and F.3.
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Figure F.2. Velocity validation.
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Figure F.3. Load pressure validation.

It can be seen that the eigenfrequency and steady state gain of the linear and non-linear model are

similar. Hence, it is concluded that the linear model is sufficient for control design.

F.2 Valve Non-linearity Cancellation

As was seen from the linearisation, the orifice equation is the main source of non-linearities in the

system. To cancel this non-linearity, the detailed valve model derived in chapter 5 is used to modify

the system to calculate an equivalent spool position based on the required flow by inverting the flow

gain:

Q∗
L = cd A(xv )

√
2

ρ

√
∆p (F.19)

⇔ x∗
v = Q∗

L

cd A0

√
2
ρ

√
∆p

(F.20)
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where ∆p is pP −pT −pL or pP −pT +pL depending on active metering edge. To analyse the effects

of the load pressure feedback the equation is linearised, yielding

Q∗
L = Kqx xv −Kqp pL (F.21)

⇔ x∗
v = Q∗

L

Kqx
+ Kqp

Kqx
pL (F.22)

The modified state space equations are then

ALS =



0 1 0 0 0

0 −Bv s

ms
− AcLS

ms
0 0

0
4β0

Vt ,LS
AcLS − 4β0

Vt ,LS
(Kqp + cl eak )

4β0

Vt ,LS
Kqx 0

0 0 0 0 1

0 0
Kqp

Kqx
−ω2

nv,LS −2ζv,LSωnv,LS


, BLS =



0

0

0

0
ω2

nv,LS

Kqx


(F.23)

From this, it can be seen that the load pressure feedback is positive and effectively decreasing system

damping. To reduce this effect, a load pressure reference can instead be used, transforming the

term into a feed forward gain and thus acting as a pre-filter on the load pressure reference. For

load pressure control, assuming a small control error, this will only result in a small error in the feed

forward gain.

F.3 Linear Quadratic Regulator

The control problem is solved using optimal control. Linear Quadratic Regulator is an optimisation

approach based linear state feedback control. The criterion to be minimised is a weighting of control

input energy and control error. Thus the cost function can be described as F.24 for the linear system

in F.23.

J =
∫ ∞

0

(
x(t )T Qx(t )+u(t )T Ru(t )

)
d t (F.24)

The state vector used is x =
[

ẋs pL xv ẋv

]T
, as position has no influence on pressure dynamics

in the linearised system. Here, J is the cost function and Q and R are the weighting for the state

errors and inputs respectively. Q should be chosen positive semidefinite while R should be chosen

semidefinite. With only one input, R is a scalar and is set to unity. The penalty is then tuned by

adjusting the elements of Q. The optimisation problem of F.24 is minimised by solving the stationary

Ricatti equation in MATLAB, yielding a set of feedback gains L, and the control law is thus

u(t ) =−Lx(t ) (F.25)

For a tracking problem where the controlled variable should follow a given reference signal the

control law becomes

u(t ) =−Lx(t )+Lr r (t ) (F.26)

=−L1x1(t )−L2x2(t )−L3x3(t )−L4x4(t )+Lr r (t ) (F.27)

where the feed forward gain Lr is chosen to be equal to L2 to give unity steady state gain for pressure

control. The spool position is not readily available as a measurement. Instead, the spool position
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is estimated from the desired load flow Q∗
L using the valve dynamics and inverse orifice equation

described above. The effect of this spool observer can be analysed by linearisation of the observer.

The output of the control is as equation F.27. Ignoring load pressure and velocity feedback, the control

output is then

u =−L3x3 −L4x4 +Lr r (F.28)

where

x3 =
ω2

nv,LS

s2 +2ζv,LSωnv,LS +ω2
nv,LS

u

Kqx
(F.29)

x4 = sx3 (F.30)

Inserting this yields

u =−
ω2

nv,LS(L3 + sL4

s2 +2ζv,LSωnv,LS +ω2
nv,LS

u

Kqx
+Lr r (F.31)

⇔ u

r
= Kqx Lr

s2 +2ζv,LSωnv,LS +ω2
nv,LS

s2 + (2ζv,LSωnv,LS +ω2
nv,LSL4)s +ω2

nv,LS(1+L3)
(F.32)

Thus, for L3, L4 > 0 the observer acts as a second order lead regulator, which allows attenuation of

high frequency dynamics in the system. Initially, the LQR-problem is solved with a penalty solely on

the load pressure. This is tuned to achieve the desired bandwidth. This reveal; Q = diag(0,10−8,0,0).

Furthermore, this results in a more dampened system, with a damping factor of 0.5. For further

tuning Q, the effect of increasing feedback gains on the closed loop system, root locus for all four

states are plotted in figures F.4-F.7. This gives an idea of which states to penalise to achieve wanted

characteristics. As seen in F.6 increasing feedback gain on spool position may increase damping until

a certain point. Rate feedback in form of spool position is seen to dampen the system, but also moving

the less dominant pole closer to the imaginary axis.
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Figure F.4. Root locus for velocity feedback
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Figure F.5. Root locus for pressure feedback
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Figure F.6. Root locus for spool position feedback

-1500 -1000 -500 0
-1500

-1000

-500

0

500

1000

1500

0.7

0.5 0.3 0.1

0.9

0.7

0.5 0.3 0.1

0.9

Re [s!1]

Im
[s
!

1
]

Figure F.7. Root locus for spool velocity feedback
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The load pressure is the state to controlled. Hence, it is not the load force exerted on the DDC that is

being controlled as no friction compensation has been developed. However, due to the large forces

exerted, the friction contribution is relatively small and is considered negligible.

F.4 Velocity feed forward

The piston velocity can be interpreted as a disturbance on the load pressure for which the control

need to compensate. Since, for position or velocity control of the DDC, a velocity trajectory is often

available. This velocity trajectory can be mapped to a required displacement flow, cancelling the

velocity disturbance (assuming a small velocity error). The required displacement flow feed forward

is then

Q ẋs , f f = ẋ∗
s AcLS (F.33)

The flow command Q ẋs , f f is then added to the control output of the LQR-control.

F.5 LQR Integrator

The steady state gain of the closed loop system using the above control is unity, causing the system

to track the reference. However, model errors and disturbances are not well compensated and

thus a higher steady state gain is desirable. For a constant or slowly varying reference, the state

space model can be augmented to include an integrator state ż = pL . The state vector is then

x̃LS =
[

xs , ẋs , pL , xv , ẋv , z
]T

The augmented state space equations are then

ÃLS =
[

A 0

C 0

]
, B̃LS =

[
B

0

]
(F.34)

where 0 here are zero-vectors of appropriate size. The extra state can then be penalised in a

similar manner to control the integrator gain. The required bandwidth is achieved with Q̃ =
diag(0,10−8,0,0,106).
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APPENDIX G

SIGNAL SPLITTING BETWEEN THE VALVES

The signal to each of the two proportional valves on the load side is the calculated using a

“splitting algorithm”. In this appendix two splitting algorithms are explained. First, the one already

implemented on the test-setup, based on splitting the opening area. After this a revisited splitting

algorithm with a more simple and smooth transaction on the threshold between the two valves. This

second one is based on splitting an equivalent spool position.

G.1 Splitting Opening Area - Algorithm

The first splitting algorithm is the one implemented by [3].

One of the issue with this algorithm is that the ramp on spool position used to compensate for the

dead band introduces a step in spool velocity. This might cause some problems later on if using

an observer to feedback valve states. Another issue with this approach is the uncertainties about the

opening characteristics given by the datasheet. There might be a further issue with the codependency

of the two signals. All these issues will potentially result in some unpredictable oscillations around

the dead band threshold.

Since the output of the controller is a flow reference the first step of the algorithm is to calculate a

wanted opening area, Ao,r e f , using the inverse orifice equation G.1.

Ao,r e f =
Qr e f

cd

√
2
ρ∆p

(G.1)

Where ∆P is the pressure difference over the valve. The next step of the algorithm is a splitting of the

opening area as in equation G.2. In figure G.1 the area reference to each valve is depicted.

AM ,r e f =
{

Ao,r e f , Ao,r e f ≤ Ao,thr eshol d

Ao,thr eshol d (2− Ao,thr eshol d

Ao,r e f
) , Ao,r e f > Ao,thr eshol d

AP,r e f =
{

0 , Ao,r e f ≤ Ao,thr eshol d

Ao,r e f − AM ,r e f , Ao,r e f > Ao,thr eshol d
(G.2)

Where AM ,r e f and AP,r e f is the wanted opening area of the MOOG and Parker valve respectively.

Ao,thr eshol d is the opening threshold value for when the Parker-valve starts moving. For this case

Ao,thr eshol d = AM ,max ·0.25. Where AM ,max is maximum opening area of MOOG-valve.
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Figure G.1. Opening area reference to each valve as function of total wanted opening area.

The voltage signal to both valves should be in a range of [-10 : 10] v. For the MOOG-valve the voltage

signal is found by G.3.

umoog = 10
AM ,r e f

AM ,max
sgn(Qr e f ) (G.3)

The voltage signal for the Parker valve is calculated by using a 3rd order polynomial to compensate

for the non-linearity of the opening area as seen. There is also implemented an extra offset to the

polynomial to account for the dead band. This is done with a ramp since the exact value of the dead

band is unknown. In figure G.2 the voltage signal for a positive flow reference as function of the

area reference given to each valve is shown. The voltage signal is multiplied with the sign of the flow

reference.
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Figure G.2. Voltage signals as function of area reference to each valve.
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G.2. Splitting Equivalent Spool Position - Algorithm

G.2 Splitting Equivalent Spool Position - Algorithm

For this splitting algorithm the idea is to make a simple splitting algorithm to avoid the issues

described for the “Area split” above. The disadvantage of this method is that it will not account for the

non-linearities of the Parker-valve. These will then have to be compensated by the system controller.

Like the first algorithm an inverse orifice equation is used to find an equivalent spool position based

on the flow reference, Qr e f .

xv,eq = Qr e f

Ao,max cd

√
2
ρ∆p

(G.4)

Where Ao,max is a sum of maximum opening areas for both valves.

The equivalent spool position xv,eq is split out into a spool reference for the MOOG and parker valve,

xv,P and xv,M respectively, by using the algorithm in equation G.5.

xv,M =
{

xv,eq
cm,max

2cxv,l i m
, xv,eq < cxv,l i m

cm,max

2 (2− cxv,l i m

|xv,eq | )sgn(xv,eq ) , xv,eq ≥ cxv,l i m

xv,P =
{

xv,eq , xv,eq < cxv,l i m

xv,eq , xv,eq ≥ cxv,l i m
(G.5)

Where the constant cm,max determines how much of the MOOG valves capacity is utilised with a value

between 0 and 1. cxv,l i m is a constant determining the value of the deadband limit of, xv,eq , for which

the Parker valve gets an input. The equivalent opening area from the algorithm is depicted in figure

G.3.
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Figure G.3. To the left voltage signals as function of equivalent spool position. To the right opening area

(according to data sheet information) as function of equivalent spool position.
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G.3 Comparison of splitting algorithms

As mentioned previously both algorithms have pros and cons. Where the main disadvantage of the

“area - split” is some discontinuity in spool velocity around the threshold value.

For simplicity the flow trough the valves can now be expressed with one orifice equation based on the

equivalent valve reference, xv .

Q A =
{

kv,eq (xv )
√|pP −p A|sgn(pP −p A) , xv ≥ 0

−kv,eq (xv )
√|p A −pT |sgn(p A −pT ) , xv < 0

(G.6)

QB =
{
−kv,eq (xv )

√|pB −pT |sgn(pB −pT ) , xv ≥ 0

kv,eq (xv )
√|pP −pB |sgn(pP −pB ) , xv < 0

(G.7)

Where kv,eq (xv ) is an equivalent valve gain as a function of valve reference. The valve reference xv is

either area reference or equivalent spool position. In figure G.4 the equivalent valve gain is illustrated.

On the figure it is seen that the “area-split” algorithm theoretically is able to cancel the non-linearities

of the Parker valve. But this is based on a lot of assumptions, one being that the algorithm is able to

accurately predict which voltage corresponds to the wanted opening area.
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