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RESUMÉ

Formålet med dette projekt er, at udvikle en algoritme til at fejldetektere og diagnosticere

(FDD) pitch systemer i vindmøller. Dette ønskes undersøgt, da et sådant FDD system kan øge

sikkerheden og mindske udgifterne forbundet med pitch systemer. Det initierende problem er

som følger:

Hvordan kan et automatisk fejldetektering og diagnosticerings system designes således, at det

kan anvendes på pitch systemer i vindmøller?

Det opsatte problem analyseres ved, at indsamle informationer om pitch systemet og om

generel diagnostik teori. Derudover udføres et litteraturstudie af videnskabelige artikler

omhandlende fejldetektering- og diagnosticerings- metoder anvendt på hydrauliske systemer.

Dette benyttes til, at identificere eksisterende forskning på området.

På baggrund af analysen af det initierende problem, defineres specialets problem formulering

til:

Ved at anvende standard kunstige neurale netværk, hvordan kan fejl i et hydraulisk servo

system detekteres og diagnosticeres? De betragtede fejl udgør: intern/ekstern lækage

strømninger, fastlåst servo ventil samt defekt tryk sensor.

Den anvendte metode til at udvikle et FDD system er først, at opsætte en matematisk model af

et hydraulisk testsystem. Denne bruges til, at opnå viden om hvorvidt og hvorledes fejltyperne

påvirker systemet. Modellen kan derfor anvendes til, at designe forskellige Kunstige Neurale

Netværk (KNN) FDD tilgange ved, at lære et KNN at genkende bestemte mønstre. Derefter

udføres indledende teoretiske tests af de to tilgange.

De foreslåede FDD tilgange er baseret på kendte teknikker, men sammensætningen samt valg

af de mønstre der ønskes genkendt er ikke foreslået på andre lignende hydrauliske systemer.

Gennem de indledende simuleringer påvises det, at bestemmelse af lækage strømninger kan

bestemmes, og den højeste nøjagtighed opnås med den model-baserede tilgang.

Da det er bevist teoretisk muligt, at den model-baserede opsætning kan diagnosticere

systemet, udvides opsætningen til at inkludere de resterende fejl samt yderligere mønstre. Det

konkluderes, at det anvendte NARX KNN som estimator ikke var i stand til, at genkende de

ønskede mønstre.

Derfor anvendes en "perfekt" estimator, for at påvise om der teoretisk kan stilles en diagnose

af de ønskede fejl under flere test situationer, samt med estimeret målestøj inkluderet. Dette
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bekræftes for to ud af tre situationer. Hvor en situation uden bevægelse i systemet førte til

problemer.

Den udledte tilstands estimator kunne ikke verificeres i alle situationer på testsystemet, men

denne var forsøgt anvendt til sammenligning af en NARX KNN estimator. Det eksperimentelle

arbejde begrænses til én test situation der gentages for de fejl der ønskes testet. Sammenligning

af den praktiske- og teoretiske nøjagtighed anvendes til at påvise, at en fastlåst servo ventil

samt defekt tryk sensor kan detekteres praktisk, hvorimod estimering af lækage strømninger

ikke viser samme nøjagtighed i praktiske tests. Dette antyder at der er mulige forbedringer i

enten data opsamlingen eller den udviklede FDD algoritme.

De teoretiske hovedresultater af FDD algoritmens nøjagtighed, ved et tilfældigt bevægelses

mønster kan ses i fig. 1.
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Figure 1: Simuleret fejl status sammenlignet med estimat fra den udviklede FDD algoritme.
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PREFACE & NOMENCLATURE

The content of the Master thesis: A Novel Approach for Fault Diagnosis of Hydraulic Pitch

Systems in Wind Turbines, is the documentation of the work done by the group MCE4-1023 at

Aalborg University, Board of Studies of Energy at the School of Engineering and Science during

the spring semester of 2016 with the semester theme: Master’s Thesis in Mechatronic Control

Engineering.

The thesis concerns development and testing of fault detection and diagnosis approaches by

utilising artificial neural networks, where the diagnosed system is similar to the hydraulic rotor

blade pitching system used in wind turbines.
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Reader’s Guide

Differentiation with respect to time is denoted with a dot, e.g. ẋ. Matrices are denoted with

a bold font, e.g. x, and vectors are denoted with both bold and italic font, e.g. x. Estimated

values are denoted by a hat, e.g. x̂ and normalised parameters by an over-line, e.g. x. Errors of

predictions are given by tilde, e.g. x̃.

Sections, figures, equations, tables etc. are referenced by chapter# .index# , e.g. sec. 5.2, fig.

5.2, (5.2) and tab. 5.2.

The material used for this Master thesis, has been acquired through research of articles, reports,

web-pages, books and feedback from the supervisors.

All sources can be found in the bibliography sorted in alphabetical order by main author.

References for these sources use Harvard-style notation so all references are marked with

company name or last name of the author as well as year of publication.

The software used for modelling and graphical data presentation is MATLAB®R2015a and

Simulink®.

Data acquisition and supervisory control are done with National Instruments LabVIEW®.

The documentation report is written in LATEX.

The attached files include; MATLAB scripts and Simulink models, scripts designed for Data

acquisition and supervisory control in LabVIEW, SolidWorks CAD model of the test rig, relevant

digital literature, web pages and data-sheets.
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Acronyms

ANN Artificial Neural Network
ARMAX Auto-Regressive Model Approximation with eX-

ogenous input
BP Back Propagation
EKF Extended Kalman Filter
EMA Exponential Moving Average
FDD Fault Detection and Diagnosis
FFANN FeedForward Artificial Neural Network
FIFO First In First Out
FTDANN Focused Time Delay Artificial Neural Network
GA Genetic Algorithm
GM Gain Margin
GNA Gauss-Newton’s Algorithm
HSS Hydraulic Servo System
LMA Levenberg-Marquardt Algorithm
LS Least Squares
LVDT Linear Variable Differential Transformer
MLP Multilayer Perceptron
MFTDANN Multilayer Focused Time-Delay Artificial Neural

Network
NARX Nonlinear Auto-Regressive eXogenous model
PM Phase Margin
RMS Root Mean Square
RT Real Time
SCADA Supervisory Control Algorithm and Data Acquisi-

tion
SDA Steepest Decent Algorithm
SSE Sum of Squared Errors
TDL Tapped Time Delay
UI User Interface
WT Wind Turbine

Subscripts

A Lumped volume A (piston
side)

atm Atmospheric pressure
av g Average
B Lumped volume B (rod side)
bw Bandwidth
C Controller
c Coulomb
C L Closed Loop
cr Critical
d Number of delays
est Estimate
ext External
f Faulty
Gaus A variable with Gaussian noise
i Integral
i deal Ideally simulated residuals
i nt Internal
L Leakage
l Load
n Number of neurons
o Number of outputs
P Piston
p Proportional
r e f Reference
r es Residual
si ne Values belonging to test where

a sine wave is applied
t Test
V Valve
w Weights

Terminology

Disturbance "An unknown (and uncontrolled) input acting on a system perturbation: An input acting on
a system which results in a temporary departure from a steady state."

Fault "A fault is an unpermitted deviation of at least one characteristic property (feature) of the
system from the acceptable, usual, standard condition."

Fault diagnosis "The task of fault diagnosis consists in determining the type, size and location of the most
possible fault, as well as its time of detection."

Fault detection "The task of generating symptoms from extracted features."
Features "Data extracted by, e.g. special signal processing, state estimation, identification and

parameter estimation or parity relations."
Failure "A failure is a permanent interruption of a system’s ability to perform a required function

under specified operating conditions".
Malfunction "A malfunction is an intermittent irregularity in the fulfilment of a system’s desired function."
Method "A procedure, technique, or way of doing something, especially in accordance with a definite

plan."
Residual "Fault indicator, based on deviations between measurements and model-equation-based

calculations."
Scheme "Is a specific arrangement of certain topologies and methods to be followed."
Symptom "Change of an observable quantity from normal behavior."
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Parameters

Symbol Explanation Unit

A Area [m2]

αth Thermal expansion coefficient [◦C−1]

b Viscous damping [Ns/m]

β Bulk modulus [Pa]

CD Discharge coefficient [-]

cad Adiabatic constant of air [-]

d Diameter [m]

εA Volumetric ratio of free air in oil [-]

F Force [N]

m Mass [kg]

µ Dynamic viscosity density [Ns/m2]

p Pressure [Pa]

Q Flow [m3/s]

Re Reynolds number [-]

ρ Density [kg/m3]

T Temperature [◦C]

x Displacement [m]

V Volume [m3]

v Velocity [m/s]

ωn The natural frequency [rad/s]
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INTRODUCTION

Contents

1.1 Introduction to the Wind Turbine Pitch System . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to Maintenance and Diagnosis . . . . . . . . . . . . . . . . . . . . 2

1.3 Initial Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The main objective of this thesis is to develop a fault detection and diagnosis (FDD) scheme

based on artificial intelligence, capable of diagnosing: pressure transducer malfunction, stuck

servo valve spool and leakages in a hydraulic system.

Hydraulic systems are commonly used in applications requiring manipulation of heavy objects

or more generally systems where large forces are exerted, e.g aircrafts, flight/road simulators,

construction vehicles and wind turbines [H. Khan, 2002]. A reliable fault detection and

diagnosis scheme to diagnose faults in the given systems is of high priority, since this can be

used to prevent downtime of the given system, and help the companies to plan maintenance,

hence ensuring maximum profit and safety.

The pitch system on average accounts for more than 20% of the total downtime of a wind

turbine (WT) [Wilkinson, 2011], while operation and maintenance costs of a WT are estimated

to be 20-25% of the total income [X. Wu, 2012]. Furthermore, a pitch system failure may lead

to catastrophic failure of the WT as described in [X. Wu, 2012]. The afore mentioned issues

may be reduced by applying an automated diagnosis scheme, capable of detecting faults on an

early stage. Hence, there exists an incentive to investigate how a fluid power system such as the

pitch system can be monitored to detect and diagnose faults.

1.1 Introduction to the Wind Turbine Pitch System

In a WT it is desired to generate a steady speed on the shaft by constantly adjusting the pitch

angle of each rotor blade, to account for changing wind conditions, within the rated wind speed

for the given WT. The blades on the WT connects to a hub, which is mounted to a rotating shaft

connected to a generator through a gearbox. The pitch angle of each blade is adjusted through

either hydraulic or electrical actuation, which is mounted within the rotating hub of the WT.

In fig. 1.1 a WT interior design is depicted, and the hydraulic components in the hub of the WT

are enlarged.
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Figure 1.1: WT interior design, with enlarge of pitch system [Industries, 2016].

From fig. 1.1 it is observed that the pitch system is only one among several subsystems

representing the WT. However, the pitch system is part of the safety system in a WT, causing

strict requirements to the functionality and safety.

In order to design any condition-monitoring and diagnosis scheme it is necessary to analyse

the different faults which can be expected in such a system. Therefore the physical structure of

the pitch system will be analysed in sec. 2.1.

1.2 Introduction to Maintenance and Diagnosis

Maintenance is in general divided into three categories: Breakdown Maintenance, Preventive

Maintenance and Condition-based Maintenance [Watton, 2007].

Breakdown Maintenance

Breakdown maintenance is also known as the "fix it when it breaks" type of mainte-

nance. Breakdown maintenance is also the most costly and least efficient method, be-

cause many of the repairs could potentially be prevented with properly Preventive main-

tenance. The approach to let the system run until catastrophic failure could potentially

result in very expensive removal and replacement.

Preventive Maintenance

This approach is conducted on a time frame recommended by the manufacturer.

Preventive maintenance includes all kinds of maintenance within a WT e.g; change

of the oil and filters, de-icing of the turbine blades, checking for electrical problems

and replacement of hydraulic components. However, the downside of this method is

that functioning parts might be replaced before the end of their end of life. This is a

potentially hidden expense for the paying company.

Condition-based Maintenance

Condition-based maintenance is based on acquisition and analysis of data. Condition-

based maintenance is a proactive approach against known system issues, where an

automated surveillance system may be used to estimate the different faults before
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they reach a critical state. This will give the company time to plan the maintenance,

hence avoiding the Breakdown maintenance, and the risk of replacing a functioning

component.

Condition-based maintenance requires knowledge about the system’s health, which may be

determined by an appropriate diagnostics method. This diagnostics method relies on sensors

to measure specific system states.

The measurements can in general either be direct or indirect. With the direct measurements it

is possible to detect the fault directly assuming the sensor is operating as intended. However,

this method is often expensive or inconvenient which is why an indirect method is a more

common approach. However, this method can not be used to detect a given fault directly,

hence interpretation of the measurement data is required. Furthermore, multiple faults can be

included in the same measurement further complicating the detection and diagnosis.

1.3 Initial Problem Statement

Based on the operation and maintenance costs, and safety issues regarding the pitch system

presented in the introduction, the following initial problem statement is formulated:

"How can an automated fault detection and diagnosis scheme be designed for the pitch system

of a wind turbine?"

This statement serves as the baseline to a problem analysis and a literature review, which are

presented in the two following chapters.
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The objective of the problem analysis is to analyse the initial problem statement of this thesis

and to gain basic knowledge about the system and diagnostics theory. In the following section

the pitch system is analysed with a focus on the failure rate of the specific components.

2.1 Analysis of the Pitch System

The analysis of the pitch system presented in this section is based on [J. Liniger, 2016]. In

general the pitch system can be divided into three parts: Actuation/Safety, Locking and Supply.

The topology of these is illustrated with a hydraulic diagram in fig. 2.1.

The supply circuit is stationed in the nacelle and is connected to the actuator and safety circuits

through the main shaft. Both the actuator and safety circuits are rotating within the hub, and

three of each system are present (one for each blade). The actuator circuit is made up of one-

or two-cylinders which both are controlled by a proportional valve. The safety circuit is made

up of two accumulators which is used for storing pressurised fluid, that in an emergency are

able to actuate the pitching cylinders to full stroke, using the blades as an aerodynamic brake.

Lastly the locking circuit is used to mechanically lock the blades.

As explained in [J. Liniger, 2016], the WT has four different operation modes; Startup, Power

Regulation, Emergency Shutdown and Normal Shutdown. Each of these modes are described

in the following list.

Startup

The startup mode is activated when the WT is given the command to start power pro-

duction. Before the startup command is given the two pitch cylinders C1, C2 and the

locking cylinder C3 are all fully extended, and all valves are deenergised. First step in the
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Figure 2.1: Generalised fluid power pitch system, based on [J. Liniger, 2016]
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startup mode, is a sanity check on all transducers and sensors (T1-T7). The supply pump

is started, and bypass valve V2 is energised until T2 confirms supply pressure has been

reached. The accumulators A1 and A2 are loaded with pressurised fluid, which is done

by energising valve V5 until T3 confirms a pre-set pressure. Lastly locking cylinder C3 is

retracted by using V9, and the blade is released.

Power Regulation

The power regulation mode is active when the WT is producing power. The pitch cylin-

ders C1 and C2 are used to actuate the blade pitch rotation. Both cylinders are driven by

the proportional valve V6. The pitch controller receives a pre-calculated pitch angle set-

point, depending on the measured wind speed. The controller sends a signal to V6 and

adjusts the pitch angle on the blade until the transition is complete. When the power

regulation mode is active, valve V5 is deenergised, and valve V7, V8 and V10 are all en-

ergised. Furthermore, it should be noted that when the cylinders are extended, it means

that the blade is pitching out of the wind and breaking.

Emergency Shutdown

The emergency shutdown mode is activated by deenergising all valves. This operation

opens for the pressurised fluid from the accumulators to both pitching cylinders (C1 and

C2). This forces both cylinders to a fully extracted position where the rod side fluid is lead

to the piston side i.e. the cylinders are driven in regenerative configuration. Furthermore,

from the circuit in fig. 2.1 it should be noted, that the safety circuit is separated from the

actuation circuit by valve V5 and V7.

Normal Shutdown

The normal shutdown mode is activated if the wind speed is to low or high for power

production, or if a maintenance procedure requires the WT to stop. To initiate the

shutdown mode, the pitch angle setpoint is set to 90◦ which fully extends the pitching

cylinders C1 and C2. When the extension is completed the locking cylinder C3 is engaged

by the use of valve V9. Lastly when the locking procedure is completed, the supply circuit

is deenergised.

It is described in [J. Liniger, 2016], that a special case applies for the emergency shutdown

mode. Where this mode is "safety critical and is normally designed with 2oo3 (Two Out Of

Three) redundancy". Which means it is sufficient for 2oo3 blades to turn fully 90◦ to perform

an emergency stop. However, in the event of only 2oo3 safety systems are deployed, large

loads could be generated on the WT’s structure depending on the severity of the unbalanced

aerodynamic forces.

2.1.1 Failure Analysis of Relevant System Components

In order to determine failures of interest, an analysis presented in [J. Liniger, 2016] has been

used. The analysis covers the main components of the pitch system and the probabilities of

different failures. The main components with their field failure rate are presented in tab. 2.1.

From tab. 2.1 it can be observed, that the oil is the main contributor to the combined

component based field failure rate. However, since oil faults are difficult to implement in a
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Component Total field failure rate [%]
Oil 36.6
Valves 19.7
Accumulators 15.4
Pump 8.7
Pipe/Hoses 6.0
Hydraulic Block 6.0
Cylinders 2.3
Transducers 2.1
Locking system 1.8

Table 2.1: Component based field failure rate, an expanded table of the failure mechanisms can be
found in app. B

controlled manner on a physical set-up, it is therefore not considered further in this thesis.

The total field failure rate of the valves accommodate for ≈ 20% where the top five

contributions can be divided into the percentages presented in tab. 2.2.

Valve Internally stuck [%] Electrical faults [%] External leakage [%] Internal leakage [%]
V6 0.0 0.0 0.9 5.0
V7 6.2 1.2 1.9 1.9
V8 5.6 1.2 2.2 5.0
V9 6.2 2.5 1.2 1.2
V10 5.6 1.2 1.9 0.0

Table 2.2: Top five different valve failure mode distribution.

Though several faults are of significant occurrence, it has been decided to restrict this thesis to

consider internal & external leakages in V6 and/or in the actuator. These are chosen since

internal & external leakages often are associated with wear in valves and/or cylinders, and

therefore this can indicate a possible fault on an early stage.

Furthermore, a stuck valve spool in V6 along with a malfunction of a transducer will be

investigated. The latter two have been chosen to test whether the Fault Detection and

Diagnosis (FDD) scheme is versatile, i.e. that it can function as intended with faults of different

characteristics.

The volumes of which leakages can occur are considered lumped as shown in fig. 2.2.

V6

T4

p
S

p
T

Figure 2.2: Simplified lumped hydraulic circuit in which leakages can occur. Red: VA & blue: VB .
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The origin of the external leakage is not necessarily obvious, since it can occur in almost all

valves, connections, hoses, cylinders, accumulators etc.

Therefore the identification of external leakage is simplified to: leakage from either lumped

volume A or B (VA & VB ) shown in fig. 2.2. Similar, the internal leakage can occur in either

servo valve or cylinder.

Based on the above analysis, the faults (F.1)-(F.5) have been selected.

(F.1) Internal rupture/leakage between the lumped volumes.

(F.2) External rupture/leakage from VA .

(F.3) External rupture/leakage from VB .

(F.4) Transducer failure.

(F.5) Stuck spool in servo valve.

Diagnostics theory will be investigated in the following in order to analyse how the above faults

may be detected and diagnosed.

2.2 Analysis of Diagnostics Theory

In general diagnostics is referred to, as the discipline or practice of diagnosis, where diagnosis

is the recognition of the nature and cause of a certain phenomenon. In [Gertler, 1998] it is

suggested that diagnostics may be classified into two main groups; model-free- and model-

based FDD.

2.2.1 Model-free Fault Detection and Diagnosis

The model-free FDD methods do not need an analytical model, however it may utilise physical

redundancy, limit checking, spectrum analysis, special sensors and logical reasoning. The

methods are listed below from [Gertler, 1998].

(a.1) Physical redundancy: A method where multiple sensors are installed for the same mea-

surement. Any major variation between the two measurements will indicate a sensor

fault. However, in systems with two parallel sensors, fault isolation is not possible, since

the fault could originate from either sensors. Hence, at least three parallel sensors are

needed, to isolate the fault. The method of physical redundancy utilises extra hardware

hence more weight and higher expenses, which could be a concern in some applications.

(a.2) Limit and trend checking: A widely used approach in practice, the plant measurements

are compared with pre-set limits. If a measurement exceeds a threshold, a fault situation

is indicated. In systems there exists two levels of these limits. First a pre-warning, then

an emergency reaction. The limit checking can be expanded to surveillance of the time-

trend of different variables.
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Figure 2.3: Trend checking example, where a upper and a lower threshold fault is indicated with red
and blue respectively.

(a.3) Special sensors: The special sensors can be installed to measure specific fault-indicating

quantities, E.g temperature, sound, deformation etc. The extra sensor data is applied for

trend checking, as explained in (a.2).

(a.4) Spectrum analysis: Spectrum analysis of system measurements may also be utilised for

FDD. Most of the measurable system states exhibits a given frequency spectrum under

normal system conditions. Any deviations from this base frequency is an indication of

abnormalities in the system. The isolation part can then be utilised, since certain type of

faults may have their own characteristic signature in the frequency spectrum.

(a.5) Logic reasoning: Is a broad range methods, which may be complimentary to the

methods described above. In essence the method is aimed at evaluating the symptoms

obtained by the detection system hardware and software. One of the most common

forms of this method consists of the logical rule set; IF symptom AND symptom THEN

conclusion[Gertler, 1998]. From this, each conclusion can serve as a new symptom until

a final conclusion is made [L. Ning, 2011].

2.2.2 Model-based Fault Detection and Diagnosis

The model-based Fault Detection and Diagnosis method utilises an explicit mathematical

model, of the monitored physical system. The general and conceptual structure of model-

based FDD includes two main processes. First the Model-based Fault detection which relies

on analytical redundancy, where measurements of physical system states are compared to

analytically calculated system states, which are formally referred to as residuals.

Secondly, the model-based fault diagnosis is based on an evaluation of the generated residuals,

where a decision making algorithm may be executed to inform if a fault has appeared.

Fault Detection Methods

The Fault detection process is illustrated in fig. 2.4.
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Figure 2.4: General model-based fault detection scheme, with inspiration from [Isermann, 2006].

Fig. 2.4 shows that faults can occur in the actuators, process and sensors. The input applied

to the system is directed to a mathematical model which estimates the system state variables.

The observed features are compared with their nominal values to declare if one or more faults

are present, and hence abnormalities may be detected. These abnormalities described by the

residuals serves as the basis for the fault diagnosis process.

The model based approach consists of one of the somewhat overlapping methods (b.1)-(b.4)

described in [Isermann, 2006].

(b.1) Parameter Estimation: This is based on an identification of the system parameters in a

fault-free situation, by repeatedly identifying these parameters on-line deviations can be

detected.

(b.2) Neural Networks: The neural networks method describes the relationship between any

number of inputs and outputs by utilising; gains, summations and nonlinear, linear or

discontinuous activation functions. The nonlinear mapping capabilities of a neural net-

work is defined in [Isermann, 2006] to fit any desired degree of accuracy.

(b.3) State Observer: An example of a state observer is the Kalman filter. The Kalman filter is

an optimal observer in the sense that it minimises the mean square error of the estimated

parameters if all noise is Gaussian. However, fault detection with Kalman filter requires a

bank of "matched filters", one for each suspected fault. Furthermore, it must be checked

which of these estimates can be matched with the actual observation.

(b.4) Parity Equations: These are rearranged direct input-output model equations, with fixed

parameters, which are subjugated to a linear dynamic transformation. The linear parity

model runs in parallel to the process, as shown in fig. 2.4.

Fault Diagnosis Methods

The previous mentioned detection features are used for the fault diagnosis method, where it is

desired to determine the fault type with as many details as possible. These details could consist

of the following; fault size, location and time of detection.
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The diagnosis is affected by the precision of the model and the noise on the measurements.

Therefore, different diagnosis algorithms need to be considered in order to determine, if a given

deviation of a system feature is a fault or caused by uncertainty and noise.

A survey of the model-based diagnosis methods are presented in [Isermann, 2006], these are

shown in fig. 2.5.

Fault Diagnosis Methods
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Figure 2.5: Survey of the different fault diagnosis methods, with inspiration from [Isermann, 2006].

In fig. 2.5 the diagnosis methods are divided into two main groups. The difference between

classification- & inference methods, is that classification can be done without structural

knowledge, of how the symptoms and fault affects the systems behaviour, whereas the

inference methods depend on this structural knowledge. The general task of all the diagnosis

methods is to separate a number of different faults by using a number of symptoms.

A brief analysis of diagnostics theory has been presented, where it has been illustrated that

various FDD methods exists. These are desired narrowed down based on state of the art

research on the subject. Therefore, a review of the literature regarding applying FDD on a

system with some relevance to the pitch system is performed in the following chapter.
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The following chapter is a literature review of different methods for fault detection and

diagnosis (FDD) of hydraulic servo systems. It is of special interest to locate the latest research

on the matter of actuator leakage, stuck servo valve and malfunctions of sensors.

Sec. 3.1 is reviewing general approaches used in the industry for FDD of different systems.

Throughout the review, two methods yielded promising results, based on artificial neural

networks (ANN) and Kalman filters, and sec. 3.2 consists of a review of the latest advances

with these two specific methods applied on a fluid power system.

Finally, the findings will be used for a conclusion, which will serve as the foundation for the

problem statement of this thesis.

3.1 General Fault Detection and Diagnosis Literature

Recent application of model-based FDD has been reviewed, where the addressed articles are

initially sorted with respect to the type of system. The purpose of the review is to outline the

applied methods and the corresponding potential when applied in different systems. Mainly

FDD applied on fluid power systems will be of interest, but also fundamental work within FDD

will be investigated.
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3.1.1 Nonspecific Stochastic Systems

The articles highlighted in this section give an idea of the possibilities for FDD when applied in

a given stochastic system. One of the earliest articles in this field is [Beard, 1973], and the main

part of the literature found regarding stochastic system FDD can be traced back to this work.

The work done by [R. J. Patton, 1996] concerns an optimal observer for residual generation and

robust FDD for stochastic systems with unknown disturbances. This is claimed by the authors

to be the first time such consideration has been addressed and solved for a fault diagnosis

design. The output estimation error with disturbance has been used as a residual signal and

a statistical testing procedure was applied to test the residuals and from this used to identify

sensor and actuator faults.. The method was only tested in simulation. However, the results

showed that the method could produce a good estimate of the states and that the faults could

be diagnosed by threshold checking.

An optimal stochastic fault detection filter was proposed by [R. H. Chen, 1999]. The objective

of the filter is to monitor certain faults, in the article mentioned as: "Target faults and block

other faults". An advantage for this method, is that the detection filter design can be obtained

for both linear time-invariant and time-varying systems.

A combination of a particle filtering algorithm with a log-likelihood ratio test was proposed

by [P. Li, 2001] based on the generalised likelihood ratio method proposed for the first time by

[A. S. Willsky, 1974], where the Kalman filter is replaced with a particle filter. The method is an

FDD method for general nonlinear stochastic systems with non-Gaussian noise and the results

from this method compared with results by using the Extended Kalman Filter (EKF) showed

superior performance, and promising tendencies. However, only theoretical simulations were

carried out.

In [L. Guo, 2004] a B-spline expansion, and a nonlinear weight model has been utilised to

detect and diagnose problems in general stochastic systems. All tests have been done with

the measured information being the probability distribution of system output rather than the

value of the system output.

This review reveals that the research on general FDD of stochastic systems with Gaussian or

non-Gaussian noise are model-based. The preferred state observer is some variation of the

Kalman filter.

3.1.2 General Fluid Power Systems

Articles with relevant FDD strategies applied on fluid power systems are investigated in the

following. This serves the purpose of analysing the different methods used within general fluid

power. The arguments presented by the authors will serve as a foundation for the choice of

method.

A novel adaptive nonlinear observer technique is presented in [H. Wang, 1996]. The approach

is to have a fixed detection observer and an adaptive diagnosis observer separately. A

modification to the diagnosis observer is proposed to enhance its robustness. Thresholds

for the residual signals have been determined and theoretical verification of the technique is

presented.
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In [G. J. Preston, 1992] a robust method for fault detection is proposed. This utilises a

combination of two observers based on nonlinear models of the hydraulic test rig. The authors

conclude that the residual is capable of tracking faults in the range of 1% deviation and that it

is robust towards unknown disturbances.

These articles constitute some of the early work in robust fault diagnosis on hydraulic systems,

and reveals that a residual based approach have potential, due to robustness against noise and

disturbance.

The work done in [R. Song, 2002] investigates a linear system identification method, named

Auto-Regressive Model Approximation with eXogenous input (ARMAX) with the addition of

the least squares (LS). This is used as FDD to detect and isolate faults caused by wear of the

supply pump (±500 psi). The method was found not feasible due to the hard nonlinearities

in the hydraulic system. However, it was shown that by utilising direct threshold checking on

the estimated model the method could be used to detect and isolate faults originating from

incorrect supply pressure.

Moreover, the authors state that ANN is deselected due to training time on the ANN. This

argument could prove outdated due to the development in computational equipment.

A nonlinear observer-based scheme has been suggested by [H. Khan, 2005], combined with

Wald’s sequential test for detecting faults in a fluid power system. The fault detection is done

by measuring the control signal and the actuators velocity, which are the measurable input

and output variables, respectively. System and sensor faults have been simulated for the

verification. The validity of the nonlinear observer scheme was confirmed by simulations and

experiments, for faults due to incorrect supply pressure and sensor fault.

The authors proved that the observer was robust when driven by input signal and measured

velocity.

In [K. Cao, 2007] FDD on an electro-hydraulic position servo is performed by utilising a support

vector regression as model for residual generation. The fault considered is regarding the

displacement sensor where two examples are given, and the fault is theoretically detected

and isolated. Furthermore, the authors state that support vector regression is chosen instead

of ANN due to traditional ANN approaches have difficulties with generalisation, producing

models with overfitting. This issue will be revisited in sec. 8.2.

The above articles utilises parity equations and state observer methods to detect certain fluid

power system faults.

3.1.3 Aviation Fluid Power Systems

Literature about FDD applied for fluid power systems used in the aviation industry has been

reviewed, because of its dependency regarding system reliability, hence a high quantity of

literature is available from this industry.

The purpose is to investigate which methods have been applied practically.

The paper [V. A. Skormin, 1992] presents a mathematical model of a self-contained flight

actuator which implies, that all control and command computations are preformed within

the actuator module. On-line parameter estimation is done to detect the following failures:

leakage in the hydraulic system, loss of the control surface, excessive friction in hydraulic
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cylinder, mechanical damage of the actuator, loss of magnetism of the motor, and air in the

hydraulic system. It is then defined which parameters of the actuator model is perturbed by

the failure, and these parameters are then estimated. The conclusion is that it is possible

to detect parameter changes through simulation and it is proposed to perform a prediction

of failures when the elements exhibit statistically significant degradation at a "future time".

Similar approach was followed for a variable displacement pump of a flight actuation system

in [V. A. Skormin, 1995]. The main failure modes considered are fluid contamination by either

air or water and excessive leakage. The method was only proven by simulation.

The method described by [C. S. Byington, 2004] utilises a multi-layer ANN combined with fuzzy

logic classification where a Kalman filter state predictor is used to predict future progression.

The system considered is a stabilator actuator with electro-hydraulic servo valves in an aircraft,

used for operating flight control surfaces, landing gear, cargo doors and weapon systems.

The article emphasises that ANN is effective as time-series predictors and have capabilities

in learning correlations of several inputs/outputs. The ANN was applied as observer and

fuzzy logic classifiers successfully diagnosed the system. Furthermore, the authors compare

performance of a spectrum analysis of both pressure and servo valve control signal with the

ANN predictor with the latter being superior.

In [T. Kobayashi, 2006] a hybrid Kalman filter based on a nonlinear on-board engine model and

piecewise linear models is applied to a aircraft gas turbine engine. The diagnosis is performed

by threshold checking and the results for this scheme are promising, since the fault detection

system was able to detect biases in sensor and actuator, however it failed to detect component

faults. This shortcoming, accordion to the authors, is mainly due to limitations within the

available sensors, from which faults are observed. The authors propose this method for in-

flight diagnostics of aircraft gas turbine engines.

The paper [T. Kobayashi, 2008] utilises dual-channel sensor measurements with a linear on-

board engine model to ensure sensor redundancy. Faults of sensors and components in the

aircraft engine is simulated. This is diagnosed via a threshold check, designed with respect to

the statistical standard deviation of the sensor measurements. The linear on-board engine

model is used to generate residuals, which are used for detection of an anomaly which is

diagnosed when exceeding the afore mentioned pre-established thresholds. It is stated that

due to degradation of the engine over its lifetime, the baseline system must be updated

periodically constituting a major challenge.

In [W. Vianna, 2014] the objective was to estimate hydraulic leakage within a hydraulic system

on-board an aircraft using only the aircraft’s standard sensors such as fluid temperature, fluid

pressure and reservoir level. Results showed the capability to detect leakages, although some

estimations were less precise. The scheme utilises parity equations, used on several aircraft

data series to validate the performance of the method.

The results showed some of the estimations were less precise in estimating leakages. However,

the method is still concluded promising by the authors.

In general there have been applied various FDD methods for hydraulic systems in the aviation

industry. Most of which are based on an observer and some pre-set thresholds depending on

the fault. Based on the results from [C. S. Byington, 2004] the methodology of ANN as predictor

combined with a fuzzy-logic diagnosis method is interesting. This is manly due to the ANN
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predictors superior performance.

3.1.4 Pitch System

A review of the relevant articles regarding the pitch system is used to present the current state

of the art approaches for the system of interest in this thesis.

In [X. Wu, 2012] a dynamic model of the pitch system and an adaptive parameter estimation

algorithm were developed to identify internal and external leakage coefficients under a time-

varying load on the pitching system. Furthermore, a change in bulk modulus e.g. due to air

contamination or change in fluid temperature could be estimated. A downscaled version of the

set-up was developed. With use of the experimental data, the leakage and leakage coefficients

were predicted via the proposed method (external leakage of 7.8% mean steady state error and

11% peak steady state error. Internal leakage of 7.3% mean steady state error and 13.3% peak

steady state error).

In [B. Chen, 2013] a FDD scheme is proposed by using a knowledge-based adaptive neuro-fuzzy

inference system. The main objective of the research is to achieve an automated detection

of significant pitch faults within the wind turbine. The advantages using a-priori knowledge

incorporation are stated by the authors as: "the proposed system has improved ability to

interpret the previously unseen conditions and thus fault diagnoses are improved". However,

in order to apply the proposed scheme, the paper describes that data of 6 known wind turbine

pitch faults are needed to train the ANN with the knowledge incorporated. The origin of the

faults is not addressed.

The paper [Y. Vidal, 2015] presents a FDD and fault tolerant control for a pitch system. The

method is tested theoretically via aeroelastic wind turbine simulator software. The authors

investigates the fault modes: high air content in the oil (from 7% to 15%), pump wear (75% of

the nominal pressure) and hydraulic leakage (corresponding to 50% of the nominal pressure).

These faults were successfully diagnosed by evaluating the natural frequency and damping

of the system and comparing it with the nominal values. However, the severities of the

investigated faults are relatively high.

In [E. Sales-Setien, 2015] a fault detection strategy applicable to the pitch system in offshore

wind turbines is presented. The method consists of a PI observer and by attenuating the

H2-norm between both measurement noise and fault signal, and the fault estimation error,

thresholds were defined to diagnose the faults. The observer is designed with a trade-off

between the number of allowed false alarms, minimum detectable faults and the detection

time.

The authors of the article suggests, that an extension of the scheme towards other fluid power

systems could be a potential future work.

In the wind power industry, FDD with application of ANN for the pitch system is not widely

used. However, application of various observer-based schemes have been found and it is

emphasised that the observer must be robust against changing wind loads and that the

diagnosis should be able to reject measurement noise.

The study of the literature has revealed that the state of the art FDD is done with model-

based methods, where the schemes are designed differently depending on application and
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considered faults. There does not exist any consensus about which residual generation method

or diagnosis method is optimal. However, in the literature about leakage diagnosis in a

hydraulic servo system, the extended kalman filter and various methods based on ANN have

proved to be efficient. These have not been applied directly on the pitch system, but the

hydraulic systems considered are very similar to the one of interest in this thesis. These

methods and the literature concerning them are presented in the following section.

3.2 Literature Reviewed with a Focus on Applied Fault Detection

and Diagnosis Method

The relevant literature about Kalman filter- and ANN-based FDD is reviewed in the following.

The main reason for choosing these is due to theirs advance in the most recent and prominent

research, furthermore, ANN and machine learning have gained increasing interest due to the

availability of big data and increasing computational power.

3.2.1 Kalman Filter Based FDD

Different methods for tackling this issue have been investigated throughout the years, one of

which utilises the Extended Kalman Filter (EKF). The articles; [L. An, 2003], [L. An, 2004] , [L. An,

2014a] and [L. An, 2014b] investigates the method of the EKF, for diagnosis of circuit failure and

actuator leakages. The scheme designed by [L. An, 2003] proved to detect abnormalities of 10%

in the supply pressure. However, the authors stated that because of the uncertainty of the sys-

tem and noise, the level of the residual under normal condition is much higher than those in

simulation, which reduces the resolution of the developed FDD scheme.

The study in [L. An, 2006] confirms on previous published papers focusing on hydraulic leakage

fault detection and isolation. The article verified the effectiveness of the suggested FDD

scheme based on the EKF for detecting a change of supply pressure presented in [L. An, 2003].

The FDD scheme is tested to be effective in experiments, and it is demonstrated that with a

proper residual generation strategy, various leakage faults at a hydraulic actuation system can

be detected with a precision of 0.6 l/min to 1.3 l/min. Furthermore, the study found that the

increase of residual error is proportional to the increase of leakage, which led to the conclusion

that the quantity of the leakage could be estimated from the residuals.

In [L. An, 2004] the external and internal leakages of the hydraulic servo system were

investigated, and it was experimentally documented that increasing leakage resulted in more

significant residuals. The work was continued in [L. An, 2014a] documenting diagnosis of

experimental hydraulic actuator leakage faults using EKF. Here actuator displacement and

line pressures were available measurements and the internal leakage detected and estimated

correctly was in the range of ≈ 0.825 l/min.

In [L. An, 2014b] internal and external leakages of 0.25 l/min were detected correctly, which was

an improvement from previous results proven by the same authors. According to the authors

the work presented in this article contributes to the field and lays a foundation for developing

on-line health monitoring of hydraulic actuators.

Further use of the standard Kalman filter, has been applied by [T. Kobayashi, 2003]. The
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method uses multiple Kalman filters, each of which is designed for detecting a specific sensor

or actuator fault. The method showed, that it is possible to detect and isolate sensor and

actuator bias errors. However, a drawback for the method is that a very large amount of filters

have to be designed for a given system.

In the above, the detectable leakage flows with state of the art FDD schemes have been quan-

tified and the information from the articles about residual behaviour can be used for develop-

ment of FDD later in this report.

In general the results are from a situation by applying a sine position reference or pseudo-

random step inputs. Furthermore, the leakages are diagnosed by applying the moving aver-

aged values of residuals. This is done to filter the signals and this method will be applied when

interpreting the results in this thesis.

3.2.2 Artificial Neural Network Based FDD

Fault diagnosing of internal and external leakages in hydraulic fluid power systems consists

of few attempts with utilisation of ANN for diagnostics. Furthermore, the existing research

is performed with poor computational equipment compared with the processing power of

today’s equipment, [T. T. Le, 1997], [S. He, 2000], [L. Hongmei, 2006a] and [Z. Yinshuo, 2013].

In the research conducted by [T. T. Le, 1997] multilayer perceptron type ANNs are used

to identify and isolate leakages, where both single-leakage and multiple-leakages were

investigated for a hydraulic servo system. It was proven that an external line leakage of 0.2

l/min was detectable. However, detection of internal leakage across the cylinder seal did

only yield promising results for flows above 1.0 l/min. These results are based on line flows

and pressures directed trough a multilayer perceptron with 50 hidden neurons and with 31

different outputs. The network training period was ≈ 4 h computed on a Pentium 90 MHz PC

operating a UNIX workstation. Lastly it was found, that the ANNs performance was degrading

if the working oil temperature deviated from the temperature used for training the network.

Furthermore, a network for both piston extending and retracting were trained with situations

of constant valve signals. The authors claim that by adding the absolute value of the pressure

drop in the actuator and the flow ratio, the convergence of the ANN is accelerated.

In [W. J. Crowther, 1998] an ANN is applied for FDD on a hydraulic actuator circuit and it is

directly stated that: "A novel aspect of the work is that a physical understanding of the system to

be diagnosed is used to determine the inputs required for the neural network. This is in contrast

to approaches where all available data are presented to the network in the expectation that the

relevant information can somehow be extracted." Furthermore, the authors claims that: "The

case for using neural networks to solve difficult, so-called ’intelligent’ problems has perhaps been

overstated in the last few years. However, for the present problem, neural networks offer a number

of advantages: in particular, their ability to deal with highly nonlinear dynamic systems and

high speed of operation when implemented in hardware."

The faults considered in the research concern incorrect supply pressure, increased drive

actuator cross-line leakage and increased load dynamic friction. These faults were introduced

one at a time, since it is assumed statistically unrealistic for several faults to occur at the same

time. The tests were conducted with a maximum peak-to-peak input signal corresponding

to 10% of the actuator stroke with steady state for less than 10% of the test period (giving a
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switching time of 20 ms). The multilayer perceptron network was trained via back-propagation

with 50 samples of; control currents, pressure drops and piston positions forming each input

vector giving 150 inputs, and the ANN was designed with 10 hidden neurons. The network

output consisted of a parameter estimation of the three parameters relevant for the mentioned

faults. During the training of the ANN it was found that increased friction was more difficult to

detect than the other faults.

The authors concluded that a network had to be trained for each specific fault, meaning a

three-fault network was necessary. Moreover, it was emphasised that: "A major challenge

is to obtain training data that cover the whole system output vector space for the faults of

interest. This problem is directly related to that encountered in traditional system identification

or parameter estimation schemes."

Although no fault diagnosis is performed in [S. He, 2000], it has been reviewed due to

its investigation of a nonlinear system identification method for estimating the model of

a hydraulic force-acting system utilising ANN. The method used for approximating the

system model is the ANN modelling method called Nonlinear AutoRegressive-Moving-Average

(NARMA). The article compares the results from the NARMA model, with a linear counter

method called AutoRegressive-Moving-Average (ARMA).

The ANN was trained with an amplitude modulated pseudo-random binary sequence and

tested with a sinusoidal signal not present in the training data.

The comparison between the ANN method and the linear method, showed that the ANN could

produce RMS errors six times smaller than the linear model.

This proves the strong identification capabilities of ANN applied on nonlinear system.

In [Ehsan Sobhani-Tehrani, 2009] it is stated that when utilising ANN for FDD, problems

might arise when measurement noise or other disturbances are injected in the system. The

authors emphasise that this issue can be addressed by using an ANN-based residual generation

decision-making scheme, initially introduced by [R. J. Patton, 1994]. Furthermore, it is stated

that a static NARX or static recurrent network is superior at predicting nonlinear system

behaviours even though environmental conditions are changing and/or noise is present in the

system. No literature about application of this on fluid power has been found, but the topology

with combination of ANNs used in observer-based FDD in fluid power has been documented

in the two following articles.

In [L. Hongmei, 2006a] an investigation of the use of a two stage improved Elman ANN is done.

The first stage was used as a fault observer, and the second stage was used to locate the fault

through the residuals created by the first stage ANN. The generated residuals showed promising

performance when a 1 Hz sinusoidal reference with 20 mm amplitude was applied. This

detected both amplifier fault and leakage fault. However, the Elman ANN is an old method,

and is not recommended for industrial use any more, only for historical purposes [MathWorks,

2015a].

The authors from [L. Hongmei, 2006a] utilised the aforementioned approach in [L. Hongmei,

2006b], except the observer and identification network is a radial basis function ANN and is

used to detect an amplifier fault and a leakage with similar increase as in [L. Hongmei, 2006a].

Based on this it is intriguing to test ANN-observer-based FDD by utilising networks that have

not yet been tested.
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In [Z. Yinshuo, 2013] an improved back-propagation training algorithm for ANN is proposed

for FDD of a hydraulic system. By varying the steepest decent optimisation algorithm the

convergence towards the minimum sum of squared errors is enhanced. The learning period

was decreased from 20.679 s to 7.026 s with the use of an Intel Core2 Duo processor T7700 2.5

GHz and 2 GB RAM. It was further concluded, that the method had a strong learning ability.

Based on this it can be concluded that, the training period with current training algorithms and

computation power is not an issue for development of FDD based on ANNs.

Comments

It has been observed that the general applied hardware versus time required for training speaks

in the favour of ANN in general. Furthermore, the fact that it has been successfully applied in

similar systems and the authors state that further work can be done are positive signs.

According to Mathworks the optimal ANN algorithm for predicting nonlinear time-series is the

NARX algorithm and in [Diaconescu, 2008] the first conclusion was that the NARX recurrent

ANN have the potential to capture and estimate the dynamics of nonlinear dynamic systems

with different time delays. In this way previous data can be used along with the current and

therefore a vector of each training variable can be utilised.

To determine the size of the NARX network a Generic Algorithm (GA) was applied by [Hosovsky,

2011], where the GA optimises both the number of neurons in the hidden layers of the ANN

and the size of the regressor vector. The results achieved showed, that a much simpler model,

which can be derived by the use of the GA algorithm is capable of achieving good accuracy

compared to a trial and error method used for generating the network structure and dynamic

order definition.

3.3 Part Conclusion

[R. Song, 2002] and [K. Cao, 2007] presented arguments that ANN was not interesting due to

the time required for convergence and the difficulties with generalisation, hence, producing

models with overfitting. According to [MathWorks, 2015c] and [MathWorks, 2015d] whom

develops algorithms for ANN, the convergence period has been drastically improved and

solutions to overfitting issues have been developed.

Utilisation of ANN may be done on both calculation of residuals and diagnosis of these, and as

stated in [Isermann, 2006] the method may be utilised to approximate nonlinear relationships

to any desired degree of accuracy. Furthermore, the ANN may be connected directly to specific

system states and detect abnormalities e.g. in terms of parameter estimation.

The Kalman-filter schemes have shown good performance and application of this is thoroughly

researched. On the contrary, limited research about ANN based FDD schemes is available.

Due to the general increasing interest of ANN and the presented arguments the authors are

intrigued by utilising machine learning for FDD.

Since the system of interest contains several non-linearities, it is suggested to predict the

time-series describing the system states, with the Nonlinear AutoRegressive network with

eXogenous inputs (NARX) ANN with feedback connections enclosing several layers of the

network by [MathWorks, 2015b].
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Diagnosis is proposed to be done with the use of either residuals or the directly measured

states, and it is desired investigated through simulation which topology has the most

interesting potential.

The information gathered by the review of state of the art literature will be used to determine

the final problem statement of this thesis.
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PROBLEM STATEMENT

The initial problem statement has been elaborated by analysing the research done within the

area of Fault Detection and Diagnosis (FDD) for hydraulic servo systems. The conclusion of

the preliminary analysis was that application of machine learning methods have interesting

potential, hence the final problem statement is:

"Utilising standard artificial neural networks, how may faults be detected and diagnosed

within a hydraulic servo system?

The faults considered are: internal/external leakages, stuck servo valve and pressure transducer

failure."

To solve the presented problem, the project is divided into three main tasks shown below (each

bullet point is an elaboration of the purpose and reasoning of each main task).

Problem Solution Strategy

1. Derivation of a mathematical model describing the dynamics of the hydraulic servo

system.

• A comparison of simulated results of a healthy and faulty system, will be used to

investigate whether it is realistic to detect the chosen faults with the measurable

system states: valve control signal, pressures, actuator- position & velocity.

The measurable system states have been selected to test a novel configuration

of symptoms, however, based on the system states used in [T. T. Le, 1997],

[W. J. Crowther, 1998], [C. S. Byington, 2004], [H. Khan, 2005] & [W. Vianna, 2014].
• Through simulations of the model, the different fault situations of interest may be

investigated. The data collected from this investigation will be used to design the

FDD schemes.
• The mathematical model of the system will be used to evaluate the performance of

the designed FDD schemes. This is considered a more feasible solution procedure,

than spending time and money on testing it on lab equipment. Furthermore,

the process of testing the different FDD schemes may be automated, so human

interference time may be reduced.
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2. Design of a model-based, and model-free FDD scheme and simulations of the selected

fault modes.

• Preliminary testing of the two FDD schemes will be done to identify the most

promising scheme, which is proposed as candidate for further investigation.

The preliminary tests will be done with default design parameters for the ANNs

(proposed by MathWorks in [M. H. Beale, 2016]). This is done to obtain an

understanding of the general performance of the ANNs.
• Optimisation of the design parameters of the proposed FDD method, to determine

if a performance increase is achievable. The optimisation will be done by utilising

the MathWorks’ GA optimisation.
• The theoretical performance of the proposed FDD scheme will be evaluated at

different system conditions, to investigate the capabilities of the scheme. The

specific situations are:

– Test with several patterns to evaluate if the scheme can recognise the same

fault at different situations.
– Similar test without velocity measurement to evaluate how this affects the FDD

performance.
– Test with measurement noise to evaluate the schemes’ generalisation capabil-

ities.
– Test with a pseudo-random load, to investigate the robustness of the FDD

scheme.
– Test of gradual internal leakage over a period of 1 week, to investigate if a single

fault can be diagnosed in an arbitrary time-frame.

3. Design of supervisory control and data acquisition (SCADA) software in LabVIEW for

experimental tests.

• The architecture of the SCADA software will be designed to include control

algorithms, data logging, and FDD schemes. It will also be considered that the

SCADA software may be used by future students working on the same set-up.

Furthermore, it will contain different safety features, to protect the hardware and

personal during tests. The above features are required in order to perform the

necessary experimental work.
• Experiments on the set-up will be used to verify the mathematical model, this may

eliminate the need of actual data for every faulty situation and thereby the FDD

scheme may be designed via simulation. The theoretical designed scheme will be

tested on the actual set-up, to validate the schemes’ performance.
• If the FDD scheme designed via simulation cannot be validated, actual data will be

collected from the system when a fault is introduced and test the proposed FDD

scheme on the set-up.
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FORMULATION OF A MATHEMATICAL MODEL OF

THE HYDRAULIC SYSTEM
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In the following chapter, the governing equations used in modelling of the hydraulic servo

system are presented. This model is needed in order to perform a theoretical investigation of

fault detection and diagnosis and it must include the possibility of including the faults desired

investigated, in a manner that mimics the actual behaviour of the faults. It is suggested to apply

the model for theoretical testing and development of a Fault Detection and Diagnosis (FDD)

scheme. Therefore, the derived model must be validated, however, it is not a requirement that

it is verified to fit the actual test rig.

The mathematical model is based on the topology depicted in fig. 5.1.

5.1 Servo Valve Expressions

The following section consists of a derivation of the dynamic equations describing the servo

valve. The used servo valve is a 40 l/min D633 by MOOG at nominal pressure of 35 bar [MOOG,

2009].
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MOOG D633 
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Figure 5.1: ISO schematic of the modelled hydraulic servo system with the applied notation.

The flows in and out of the lumped volumes A & B are controlled by a proportional valve, where

the flows passing through the valve are given by (5.1)-(5.6).

Q A =QS→A +Q A→T (5.1)

QB =QS→B +QB→T (5.2)

QS→A = sg n(pS −p A)Qn xV

√
|pS −p A|
∆pn

, xV ≥ 0 (5.3)

Q A→T = sg n(p A −pT )Qn xV

√
|p A −pT |
∆pn

, xV ≤ 0 (5.4)

QS→B = sg n(pB −pS)Qn xV

√
|pS −pB |
∆pn

, xV ≤ 0 (5.5)

QB→T = sg n(pT −pB )Qn xV

√
|pB −pT |
∆pn

, xV ≥ 0 (5.6)

where

pS is the pump pressure. [Pa]

pT is the tank pressure. [Pa]

∆pn is the nominal pressure drop across the valve. [Pa]

Qn is the nominal flow through the valve. [m3/s]

xV is the normalised valve displacement. [-]

The normalised valve displacement ranging from −1 ≤ xV ≤ 1 can be controlled with a voltage

signal ranging from −10 ≤UV ,DC ≤ 10V with linear conversion to valve displacement.

Furthermore, it should be noted that the orifice equation is only valid when the flow has a
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full developed turbulent flow distribution. This is assumed valid with the expected flows and

opening areas during normal operation.

5.1.1 Valve Dynamics

The transient dynamics of the valve spool displacement is approximated by a second order

transfer function, which is based on the information available from the manufacturer, [MOOG,

2009]. The spool displacement (xV ) with regard to the voltage input (UV ,DC ) is described by

(5.7).

GV (s) = xV (s)

UV ,DC (s)
= kV

1
s2

ω2
n,V

+2ζV
s

ωn,V
+1

(5.7)

The gain kV = 0.1 and describes the relationship between voltage input and spool reference.

Furthermore, the estimated damping from the data-sheet is 0.8 and the bandwidth lies in a

range of 25-60 Hz depending on reference signal. With the assumption that the valve will

normally be in the range of ±25% of its maximum stroke, the bandwidth is 60 Hz.

5.2 Actuator Expressions

From the free body diagram shown in fig. 5.2 the different acting forces can be seen.

FLoad

xP

Ff

FB

FA

Figure 5.2: Free body diagram of the hydraulic actuator.

The acting forces, from fig. 5.2 are used in the force equilibrium, given by Newtons second law

in (5.8).

ẍP m =

p A A A︸ ︷︷ ︸
FA

−pB AB︸ ︷︷ ︸
FB

−F f −FLoad (5.8)

The applied continuity equations are given by (5.9) and (5.10).

ṗ A = Q A −Qi nt ,L −Q A,ext ,L − V̇A

A A xP +VA0
βe f f (5.9)

ṗB = QB +Qi nt ,L −QB ,ext ,L − V̇B

VB0 − AB xP
βe f f (5.10)

where
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A A is the piston side area [m2]

AB is the rod side area [m2]

VA0,VB0 are constant volumes of the actuator chambers and hoses [m3]

Qi nt ,L is the internal leakage flow [m3/s]

Q A,ext ,L ,QB ,ext ,L are the external leakage flows [m3/s]

xP is the displacement of the piston [m]

The displacement of the piston in the cylinder is bounded by the dimensions of the actuator,

meaning: 0 ≤ xP ≤ xP,max .

The constant volumes are defined by utilising hose volumes, maximum stroke length and a

constant dead volume. This is defined by (5.11) & (5.12).

VA0 =Vdead +Vhose,A (5.11)

VB0 = AB xP,max +Vdead +Vhose,B (5.12)

where

Vdead is the dead volume inside the cylinders [m3]

Vhose is the connecting hose volume [m3]

Here the dead volume is defined to be the volumes inside the cylinders that cannot be affected

by the piston.

The change in volumes are described by (5.13) & (5.14).

V̇A = A A ẋP (5.13)

V̇B =−AB ẋP (5.14)

5.2.1 Friction Model

The two sources of friction considered are the one occurring when the piston is moving inside

the cylinder, and secondly, the one that may be introduced by the non-dense medium in which

the piston is moving.

Friction is a force resisting the relative motion of solid surfaces, and the normal types of friction

are: dry friction, fluid friction, lubricated friction, skin friction and internal friction, described

by [S. Andersson, 2006].

It is assumed, that the sliding surfaces are lubricated, hence, the friction will decrease

with increased sliding speed until a point where mixed or full film situation is achieved

[S. Andersson, 2006].

The Stribeck friction model includes dry- and fluid friction and is formulated by (5.15).

F f (ẋP ) = sg n(ẋP )
(
bc |ẋP |+Fc + (Fs −Fc )e−

|ẋP |
cs

)
(5.15)

where

bc Viscous friction parameter. [Nm/s]

cs Stribeck parameter [-]

Fc Constant Coulomb friction. [N]

Fs Maximum static friction. [N]

F f Modelled friction. [N]
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The Stribeck model can provide decent estimation of the real friction in a hydraulic cylinder,

since it contains both Coulomb-, viscous- and Stribeck friction.

When the sliding direction is changed the Stribeck model can cause numerical problems due

to friction discontinuity at ẋP = 0. However, this issue has been countered by combining the

Stribeck model with a hyperbolic tangent to accommodate the transition in the change of

sliding direction. The modelled friction is then given by (5.16).

F f (ẋP ) = tanh(kt an ẋP )
(
Fc + (Fs −Fc )e−

|ẋP |
cs

)
+bc ẋP (5.16)

This rewriting causes inaccurate Stribeck effect at low velocities (in between the chosen kt an).

However, the test sequences will not require operation around this velocity for long periods, i.e

the piston will be in motion for most of the tests.

The modelled friction force with parameters determined in chap. 11 can be seen from fig. 5.3.
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Figure 5.3: The total friction force as function of piston velocity. Furthermore the viscous-, Coulomb-
& Stribeck- friction contributions are depicted with dotted lines.

It is observed from the figure that introduction of hyperbolic tangent results in a lower peak

when direction of velocity changes.

5.2.2 Effective Bulk Modulus

The effective bulk modulus describes the stiffness of the fluid and is a function of pressure,

temperature and contamination of the oil (air, metal debris and other impurities). The pressure

used is the one of the respective volume. The derivation of the effective bulk modulus is

explained in detail in [T.O.Andersen, 2003] and the expression is given by (5.17).

βe f f (T, p,εA) = 1
1
βoi l

+εA(p)
(

1
βai r

− 1
βoi l

) (5.17)

The air stiffness can be described by (5.18).

βai r (p) = cad p (5.18)

where
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cad is the adiabatic constant of air, 1.4 [-]

εA is the volumetric ratio of free air in the oil. [-]

p is the absolute pressure in the chamber. [bar]

patm is atmospheric pressure. [bar]

T is the temperature of the fluid. [K]

The βoi l used for simulation is from [H. Rahn, 2015] where the stiffness of oil was

experimentally estimated to be 6500 bar with reference volumetric ratio of free air at 0.0038%.

This is used as an initial guess and will be adjusted when the verification tests are conducted

in chap. 11.

The effective stiffness of hydraulic oil is influenced by the amount of free air in it. Air is

much more compressible than oil and therefore it can have a strong influence on the effective

stiffness. To estimate the stiffness it is assumed that the air molecules does not dissolve in the

oil, meaning a constant amount of free air molecules exist in the oil.

The volumetric ratio of free air, εA , can be calculated by (5.19) where adiabatic conditions are

assumed, [T.O.Andersen, 2003].

εA(T, p) = 1.0(
1.0−εA,0

εA,0

)
ρ0

ρ(T,p)

(
patm

p

) −1
cad +1.0

(5.19)

where

εA,0 is the reference volumetric ratio of free air in the oil at atmospheric pressure. [-]

p is the absolute pressure in the chamber. [bar]

patm is the atmospheric pressure. [bar]

The density of oil decreases when the temperature increases, but increases when pressure

increases. This dependency can be described by using the empirical based Dow and Fink

equation shown in (5.20), [T.O.Andersen, 2003].

ρ(T, p) = ρ0(T )
(
1+ Aβ(T )p −Bβ(T )p2) (5.20)

Aβ(T ) = (−6.72 ·10−4T 2 +0.53T −36.02)10−6 (5.21)

Bβ(T ) = (2.84 ·10−4T 2 −0.24T +57.17)10−9 (5.22)

ρ0(T ) = ρ15

1+αth(T − (15+273.15))
(5.23)

where

αth is the thermal expansion coefficient [◦C−1]

Aβ(T ) is the Dow and Fink temperature coefficient. [bar−1]

Bβ(T ) is the Dow and Fink temperature coefficient. [bar−2]

ρ0(T ) is the density at atmospheric pressure. [kg/m3]

ρ15 is the density at atmospheric pressure and 15◦C [kg/m3]

This estimation can be used to obtain the density at any given temperature and pressure while

the oil density at atmospheric pressure and the thermal expansion coefficient are known.

αt h is independent of oil temperature and pressure and is between 0.0065 and 0.007.

The modelled effective stiffness is illustrated graphically in fig. 5.4. The results are shown with

constant temperature of 40◦C at different volumetric ratios.
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Figure 5.4: Effective stiffness (βe f f ) as function of pressure at different volumetric ratios, T = 40◦C.

It is observed that the effective stiffness will be affected by the air in the fluid and yields that

a higher concentration of air gives a lower stiffness. However, increase in pressure causes the

impact of entrapped air to become less significant.

5.3 Leakage Expressions

In the system schematic on fig. 5.1 three leakage flows are depicted. By opening the bleed-

valves, both internal and external leakages can be emulated. Double-acting cylinders normally

include almost no cross-port leakage, and this leakage is therefore disregarded.

The required leakages lie in a range of 0-1.5 l/min, and with the expected pressure drops this

flow is obtained at low orifice openings. When applied to (5.24) these levels can cause Reynolds

numbers in the range, at which the flow distribution changes between laminar and turbulent.

Re = ρvav g dH

µ
; dH =

√
4A(x)

π
(5.24)

where

A(x) is the variable opening area of the orifice. [m2]

dH is the hydraulic diameter of the orifice. [m]

µ is the fluid dynamic viscosity. [Ns/m2]

ρ is the fluid density. [kg/m3]

vav g is the average fluid velocity trough the orifice. [m/s]

Due to the expected range of Reynolds numbers the flow through the bleed valves will be

described by a model which evaluates and uses the flow distribution to calculate the flow. This

is described by (5.25).

QL =CD (Re)A(x)

√
2

ρ
|∆p|si g n(∆p) (5.25)

where

CD (Re) is the discharge coefficient of the orifice as a function of the Reynolds number. [-]

∆pcr is the minimum pressure drop resulting in turbulent flow. [Pa]

The change of discharge coefficient for a rounded off orifice is described by (5.26). It is assumed

based on [T.O.Andersen, 2003] that a turbulent flow within a valve requires a Reynolds number
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above ≈ 625.

CD (Re) =
{

CDp
Recr

p
Re for Re ≤ 625

CD for Re > 625
(5.26)

where

CD is the discharge coefficient of the orifice at turbulent flow. [-]

Recr is the critical Reynolds number. [-]

5.3.1 Internal Leakage

The internal leakage between lumped volume A & B is described by the orifice equation (5.25)

and the pressure drop is defined by (5.27).

∆pi nt ,L = (p A −pB ) (5.27)

5.3.2 External Leakage

The pressure drops for the external leakages are described by (5.28) and (5.29), which leaves

lumped volume A & B respectively.

∆p A,ext ,L = (p A −patm) (5.28)

∆pB ,ext ,L = (pB −patm) (5.29)

The flows are unidirectional unless cavitation occurs.

5.4 Overall Model Structure

The considerations necessary to describe the hydraulic servo system have been presented and

the interconnection of these are illustrated in the overall model structure in fig. 5.5.
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Figure 5.5: Simulink schematic of the hydraulic servo system model structure.

The model includes pre-defined initial conditions on the variables: A & B pressures, piston

position and velocity. Furthermore, the additional assumptions have been applied:

• Supply and tank pressure are measurable.

• Constant temperature and air contamination of the fluid.

• Hoses are assumed stiff and lossless.

Due to an expected varying supply pressure on the test rig, the model is only feasible if the

supply pressure can be measured and applied in the simulation.

It should be noted that in order to achieve constant supply pressure a properly dimensioned

36 MCE4-1023



5.5. Part Conclusion

accumulator (4 l) is placed as close as possible to the main connection line, which from

[Mohieddine Jelali, 2003] should be less than 0.05 m. However, the applied pump is not

pressure controlled and therefore constant supply is not a guarantee.

The applied system parameters are presented in app. I.

The temperature of the fluid in the pump system is monitored, and experimental tests are only

conducted if the temperature is 50-60◦C. Therefore an assumption of constant temperature is

valid and the range of 10◦C is not considered to have any noticeable effect on either density or

fluid stiffness based on [T.O.Andersen, 2007].

The fluid contamination is not expected to change over the period of time in which the

experiments are conducted.

In [T.O.Andersen, 2007] it is stated that the decreased efficiency caused by loss in hoses is

normally disregarded. If pressures rise to very high levels and hoses are not sufficiently

dimensioned this can contribute with a decreased effective stiffness due to flexibility of the

hose. However, with the desired pressure magnitudes and the short length of applied hoses

this impact is disregarded for the sake of model simplicity.

The benefits of the presented assumptions are that both model and fault diagnosis can be

developed more rapidly. The disadvantage is an increased likelihood of model uncertainties.

5.5 Part Conclusion

The governing equations describing the dynamics of the hydraulic servo system shown in fig.

5.1 have been presented.

Modelling of the components included in the system is well documented and the mathematical

model is therefore considered valid for preliminary testing, although the actual system

parameters are not known.

An estimation of fluid properties and frictions have therefore been applied based on previous

experience and this has been combined with information from data-sheets. Hereafter, the

system’s soft parameters are estimated by experimental tests as described in chap. 11.

This is done to utilise the available time most efficiently, while the test rig is being

manufactured. The non-verified model will be used to extract data for a healthy and faulty

system, which can be used to do preliminary testing and development of fault detection and

diagnosis, hence a proof of concept can be established.
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In the following chapter it will be investigated whether the leakage faults will result in

theoretical abnormalities exceeding the level of measurement uncertainty. The test sequence

for the preliminary fault detection and diagnosis tests will be explained.

6.1 Description of the Preliminary Test- & Fault Sequence

The preliminary position trajectory consists of a sinusoidal reference with constant frequency

(3 rad/s) and constant amplitude (0.01 m). This is chosen due to its simplicity and repeating

nature, making the influence of each fault comparable.

The preliminary fault sequence will include (F.1)-(F.3).

(F.1) Internal rupture/leakage between the lumped volumes.

(F.2) External rupture/leakage from volume A .

(F.3) External rupture/leakage from volume B.

The impact caused by these faults is found by observing changes on the measurable system

states during simulation. These states are given by (c.1)-(c.4).

(c.1) Chamber pressures (p A , pB ) with a range of [1:180] bar

(c.2) Piston position (xP ) with a range of [0:0.5] m

(c.3) Piston velocity (ẋP ) with a range of [-0.1769:0.1327] m/s (limited by the valve’s nominal

flow of 40 l/min)

(c.4) Valve spool position (xV ) with a range of [-1:1]

The approach is to have a healthy and faulty system and do a comparison of the simulated

noise free states, to investigate whether the residuals are in a measurable range. In reality

the residuals are sensitive to measurement noise and model inaccuracies, which is why the
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residuals have to lie outside thresholds ensure that an actual fault has occurred. The thresholds

are defined as shown in (d.1)-(d.4) based on the applied transducers measurement resolution.

(d.1) Pressures in the test cylinder can be measured with a certainty of ±0.3% of the maximum

pressure (250 bar), i.e. 0.75 bar.

(d.2) Piston position is measurable with a certainty of ±0.01% of the maximum stroke (1 m)

i.e. 0.1 mm.

(d.3) Piston velocity can be measured with a certainty of ±0.5% of the actual velocity.

(d.4) Valve spool position is given with a resolution of 0.02 mA with the LVDT output range

being 4-20 mA.

The concept of generating ideal residuals is depicted in fig. 6.1.

 Model

Model
rideal

u

Fault

y

yf

+
-

Figure 6.1: Structure of the generation of ideal residuals with comparison of the outputs from the model
and from the model introduced to a fault.

In fig. 6.1 the vector y f , represents the faulty system states and y is the normal output states of

the system.

Internal and external leakage in a hydraulic servo system have been proven detectable at

around 0.25 l/min by [L. An, 2014b]. Therefore, a similar level is desired investigated.

The leakage is simulated with the orifice equation and by considering the expected pressure

drops, an estimate of required opening area may be determined to obtain the correct

magnitude of leakage flow.

The test sequence is designed in such a way that the system returns to a healthy state before

introducing another fault, each fault is introduced one at a time in equal increments as shown

in fig. 6.2.

As seen in fig. 6.2 each fault has three opening areas. The reason for having these degrees

of severity, is to include the system’s behaviour at several leakage magnitudes. Thereby the

diagnosis algorithm may be able to determine both which fault has occurred and its severity.

Fault (F.1) has been simulated with opening areas (Ai nt ,L): 0.1, 0.2 & 0.3 mm2. This is

determined so that the minimum flow is ≈0.3 l/min with the simulated load pressure levels.

Fault (F.2) has been simulated with opening areas (Aext ,A,L): 0.04, 0.08 & 0.12 mm2. This is

chosen in a similar manner as for (F.1). The first opening corresponds to ≈0.2 l/min.

Fault (F.3) has been simulated with opening areas (Aext ,B ,L): 0.03, 0.06 & 0.09 mm2. With the

same reasoning as for (F.2).
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Figure 6.2: The fault sequence applied for preliminary testing.

6.2 Simulated Residuals Analysis

The residuals considered are based on the analysis presented in sec. 7.3 and simulation with

the defined fault sequence gives the ideal residuals (ri deal ) shown in fig. 6.3.

Based on the results shown in fig. 6.3 it is observed that all leakage faults are visible in the

lumped volume pressures, however, (F.1) does not result in pressure deviations consistently

outside the measurement uncertainty. (F.2) & (F.3) are significantly outside the level of

uncertainty.

The position residual is outside the uncertainty span at (F.1), however, the lowest severity of

(F.2) & (F.3) is in the periphery of what is expected measurable. The system is operated in

Closed-Loop, and if the applied control strategy is robust to system changes it is not expected

that the position residual will contribute with any useful information. However, this additional

compensation will propagate in the required valve position, which is why the residual of this is

included.

The valve position residual indicates that the faulty system is endeavouring to compensate.

The velocity shows a significant transient residual outside the uncertainty span when the

specific faults are introduced/removed. The static situation does show a deviation outside the

uncertainty, although it is not consistent.

6.3 Part Conclusion

Based on the analysis of the leakages it is concluded that abnormalities may occur in the

measurable variables p A , pB , xP , ẋP & xV . The magnitudes of all the residuals are in a

promising range compared with the thresholds from (d.1)-(d.4), however, the lowest severity

of fault is considered to be in the periphery of what is expected measurable and it is therefore

not feasible to attempt diagnosing faults below this. It is decided to advance with the specified

fault magnitudes to test whether the faults can be found theoretically.

The knowledge about the faults’ affection of the specific states will be used for the design of

Fault Detection and Diagnosis presented in the following chapter.
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Figure 6.3: Simulated results of the residuals when a sine trajectory and the presented fault sequence is
applied. The thresholds from (d.1)-(d.4) are shown with dotted lines.
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In the following chapter an analysis and discussion of Artificial Neural Networks (ANN) and

how these can be used for fault detection and diagnosis (FDD) are presented. A comparison

of two ANN based FDD schemes is presented and one will be selected for further development

based on the simulated performance.

7.1 Basics of Artificial Neural Networks

Essentially an ANN is a composition of mathematically modelled neurons, which is based on

knowledge from neuroscience, specifically about the interaction of neurons in the biological

brain [W. Mcculloch, 1943].

All these artificial neurons are interconnected, which makes it possible to describe a

relationship between certain input and output signals [Rosenblatt, 1958].
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7.1.1 The Artificial Neuron

An artificial neuron model has gained increased interest over the years, from the world of

biology and into the world of practical mathematics.

The mathematical model describing the artificial neuron is the fundamental building block for

ANNs and is illustrated in fig. 7.1.
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Figure 7.1: Structure of a basic neuron with
weights (w), bias (b) and activation
function (ϕ(.)), with inspiration from
[Watton, 2007].

Dendrites

Soma
Synapses

Figure 7.2: Structure of a single biological neuron,
with inspiration from [S. Rajasekaran,
2012].

The composition in fig. 7.1 and 7.2 show that n number of inputs, which in biology are referred

to as dendrites, are multiplied by individual gains (w). These gains are in biology referred to as

synapses. A summation of the weighted input signals from the dendrites is performed where a

bias (b) can be included, this is inspired by the biological soma. Lastly, the weighed sum signal

is passed through an activation function inspired by the biological axon, which generates the

total output, and passes it to the next layer of neurons.

The weighed sum signal through the activation function, may be designed to scale the output

in a manner that fits the application and as the name implies, be used to activate the signal

generated by the soma.

The most common activation functions within the artificial neuron are: linear, step and

sigmoid functions, which are presented in app. C. The neurons use normalised values, and

the activation functions are therefore often restricted between [-1:1]. [Hornik, 1991] showed

that it is not the specific activation function, but rather the multilayer feedforward architecture

itself which gives neural networks the potential of being universal approximators. This is also

referred to as the universal approximation theorem.

The Universal Approximation Theorem

The universal approximation theorem claims that the standard multilayer feedforward

network of a single hidden layer containing finite number of hidden neurons, and with

arbitrary activation function are universal approximators. In mathematical terms the theorem

is:

Theorem 1 Let ϕ(.) be a non-constant, bounded and monotonically-increasing continuous

arbitrary activation function. Let Im denote the m-dimensional unit hypercube [0 1]m . The

space of continuous functions on Im is denoted by C (Im). Then, given any function f ∈ C (Im)

and ε > 0, there exists an integer, N , real constants, vi ,bi ∈ R and real vectors wi ∈ Rm , where
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i ∈ {1, · · · , N }, such that we may define:

f̃ (x) =
N∑

i=1
viϕ

(
wT

i x+bi
)

which is an approximate realisation of the function f , where f is independent of ϕ.

| f̃ (x)− f (x)| < ε

when x ∈ Im or any other compact subset ∈Rm , i.e. functions of the form f̃ (x) are dense in C (Im).

by [Cybenko, 1989] where appropriate proof and lemma are given. The theorem in short states

that the ANN topology is an universal approximator regardless of activation function as longs

as it fulfils the above stated conditions.

The choice of activation function in this thesis is therefore solely based on it being

differentiable, making gradient based training algorithms possible.

For the sake of perspective it is further stated that when utilising the artificial neurons in

an engineering practise, the necessary amount of neurons can vary from a few to several

hundreds, depending on application. In contrast to the billions of neurons present in the

human brain [S. Rajasekaran, 2012].

7.2 Introduction to ANN used for FDD

In this thesis, two approaches are being reviewed either based on system state residuals

combined with fault diagnosis or alternatively, if system measurements should be used directly

to do fault diagnosis. These approaches are depicted in fig. 7.3 & 7.4.
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Figure 7.3: Diagram showing the overall structure of the Fault Detection and Diagnosis (FDD) scheme,
for a data driven approach.
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Figure 7.4: Diagram showing the overall structure of the FDD scheme, for a model-based approach.
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The potential of these approaches applied in similar hydraulic servo systems was presented in

the literature review in chap. 3. None of the approaches yielded superior performance, which

is why both are investigated.

Model-Based FDD

In the model-based FDD the relationship between several measured system states (y) and

estimated (predicted) system states (ŷ) are used to extract information about the system’s

health (can also be referred to as features), an abnormality will be detected if actual and

predicted states diverge.

The detectable faults depend on the model accuracy, since a more accurate model will give a

higher certainty that change in the residual truly is caused by a fault. Highly accurate time-

series predicting models have been presented in the literature by using various types of ANNs,

which serves as a promising argument for studying this scheme.

To investigate this further it is decided to test a Nonlinear AutoRegressive eXogenous (NARX)

model, since [R. Isermann, 2010] argues that the NARX model is effective for nonlinear system

identification problems.

The NARX residuals (rN AR X ) will be compared with the ideal residuals (ri deal ), to determine

the NARX models performance. The processes for generating these residuals are depicted in

fig. 7.5.
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Figure 7.5: Diagram of the residual generation of rN AR X & ri deal .

Data Driven FDD

The data driven FDD approach in its simplest form utilises measured data of a given set of

system states, to estimate the given output(s) containing the faults. Promising results with data

driven ANNs used directly as parameter estimators of leakage coefficients, Coulomb frictions

and supply pump failures were presented in the articles [T. T. Le, 1997] & [W. J. Crowther, 1998]

described in the literature review in chap. 3.

The networks can either be trained with theoretical data or with data collected from a physical

system where faults can be introduced in a controlled environment.
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7.3 Architecture of NARX

The NARX network is a recurrent dynamic network, with feedback connections closing

multiple loops within the different layers in the network. The NARX network can be configured

in two different ways, depending on application, the two architectures are shown in fig. 7.6.

Where the TDL is a Tapped Delay Line.
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Figure 7.6: The two possible architectures for a NARX network, with inspiration from [MathWorks,
2016b].

The parallel network uses the output of the NARX network to be an estimate of the output of

the nonlinear system. The estimated output is fed back into the feedforward ANN as part of

the NARX network.

The series/parallel can be used when the true output is available during simulation of the

network. The true output from the nonlinear system is used instead of the estimated output

feedback, which gives a more accurate prediction [MathWorks, 2016b].

However, in fault detection the series/parallel architecture can have the drawback of being "too

accurate", hence predicting the actual output and therefore not detecting the fault.

For this thesis it is desired to predict the healthy behaviour of the hydraulic servo system, hence

if a fault occurs in the real system the NARX model is not supposed to adapt to the behaviour

of the given fault. Therefore the parallel architecture has been chosen.

7.3.1 Input- & Output- Variables

In order to select the NARX input- & output- variables, it is convenient to use some of the in-

formation gained in the literature review in chap. 3. In [W. Vianna, 2014] it is proposed to use

measurements of fluid temperature, fluid pressure and reservoir level to detect leakages. Like-

wise in [C. S. Byington, 2004] pressures are used along with servo valve control signal to detect

leakages. [T. T. Le, 1997] suggests application of line flows and pressures for leakage detection.

In [W. J. Crowther, 1998] it is proposed to apply the pressure drop, valve control signal and the

piston position to diagnose incorrect supply pressure, increased actuator cross-line leakage

and increased friction. Lastly, [H. Khan, 2005] utilises control signal as input and the actuators

velocity as output to detect faults.

Based on this information, it is decided to do a combination of what has been used in the pre-

vious research, and what is physical possible on the set-up. Since the set-up will be powered by
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a central pumping station, which also supplies other applications, some of the measurements

may not give useful information. It is expected, that the central pumping station’s reservoir will

have a constant temperature, since it is connected to a central cooling system. Furthermore,

the reservoir level will not give useful information in regard to the faults selected, since all ex-

ternal leakages from the set-up will be leaked to the reservoir.

The use of line flow sensors might produce a more stable result, however, accurate flow sen-

sors are expensive and will introduce additional effort when designing the pitch system, which

is why a minimal number of sensors is desired.

Therefore it is considered to combine measurements of: p A , pB , xP , ẋP , xV as output, with the

applied reference, xP,r e f as input. It has been considered to omit the velocity measurement,

since it may be cumbersome and since it is directly connected with the position. It is however,

not obvious which states contribute with sufficient knowledge about the system, which is why

the contribution when the velocity is available will be investigated.

Scaling of Variables

Since ANNs work with scaled variables, all the variables have to be scaled. The scaling of the

variables have been done as described by (7.1).

x̄P,r e f =
xP,r e f

xP,r e f ,max
(7.1)

This procedure is done for every applied variable and therefore the scal i ng notation is omitted

for every variable in this chapter.

The relevant input and output variables have been selected and normalised, and the detailed

structure of the parallel NARX network is shown in fig. 7.7.

Governing Equations of NARX ANN

In fig. 7.7 the input regressor vector for the network is defined by (7.2).

u(k) =
[

xP,r e f (k) xP,r e f (k −1) · · · xP,r e f (k −du)
]T

(7.2)

where du is the memory delay.

The output regressor vector can be written as shown in (7.3).

ŷ(k) =
[

p̂ A(k) p̂ A(k −1) · · · p̂ A(k −dy )

p̂B (k) p̂B (k −1) · · · p̂B (k −dy )

x̂P (k) x̂P (k −1) · · · x̂P (k −dy )

ˆ̇xP (k) ˆ̇xP (k −1) · · · ˆ̇xP (k −dy )

x̂V (k) x̂V (k −1) · · · x̂V (k −dy )
]T

(7.3)

Where the memory delays should be chosen as shown in (7.4).

du ≥ 1

dy ≥ 1

du ≤ dy (7.4)
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Figure 7.7: Structure of NARX in parallel mode with number of inputs (i ), number of input delays (du),
number of output delays (dy ), number of neurons (n), layer weights (Lw), biases (b) and
number of outputs (o).
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The main purpose of the NARX is to realise a nonlinear approximation from i -dimensional

input space to o-dimensional output space, where i is the number of inputs and o is the

number of outputs. This is described by the total network function shown in (7.5) which

describes the network from fig. 7.7.

ŷ(k +1) = Lw2 tanh
(
Lw1ξ(k)+b(1))+b(2) (7.5)

where

Lw1 =


w (1)

1,1 · · · w (1)
1,(du+1)i+(dy+1)o

...
. . .

...

w (1)
n,1 · · · w (1)

n,(du+1)i+(dy+1)o

 Lw2 =


w (2)

1,1 · · · w (2)
1,n

...
. . .

...

w (2)
o,1 · · · w (2)

o,n

 (7.6)

b(1) =


b(1)

1
...

b(1)
n

 b(2) =


b(2)

1
...

b(2)
o

 (7.7)

The combined regressor, ξ(k), is shown in (7.8) and given by (7.2) and (7.3).

ξ(k) =
(

u(k)

ŷ(k)

)
(7.8)

The hyperbolic tangent (sigmoid) function or activation function described by (C.4) in app.

C is used to normalise the output into the interval [−1,1]. The utilisation of the tanh function,

introduces the nonlinear functionality of the NARX network. Furthermore, the training method

utilised (explained in sec. 7.3.2) requires computation of the gradient of the error function,

hence differentiability of the error function has to be guaranteed. This is why the sigmoid

activation function is chosen.

The main purpose of the training algorithm is to optimise all the weights shown in (7.6). This

process is described later in the chapter.

Number of Neurons

In [W. J. Crowther, 1998], [T. T. Le, 1997], [S. He, 2000], [A. El-Betar, 2006] and [J. Anzurez-Marin,

2009] a manual "trial and error" approach was used to determine an appropriate number of

neurons. Their objective was to have good generalisation behaviour (avoiding overfitting) and

accurate representation of the system (avoid underfitting), while decreasing the convergence

period. However, [M. Karpenko, 2002], Yi-Hui [2007] and [Hosovsky, 2011] have presented

approaches with utilisation of different optimisation algorithms to perform this decision.

There does not exist any specific design rules on the matter of choosing the number of either

neurons or delays. However, there does exist a sweet-spot between underfitting and overfitting

by applying an ANN model with sufficient complexity with respect to the problem. This is

elaborated further in sec. 8.2.

In the preliminary test, the number of neurons has been selected with inspiration from the

default values determined by MathWorks, this will later be expanded with the use of an

optimisation algorithm.
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Number of Delays

The number of input and output delays (du and dy ) describes the length of the discrete time

series y(k) for every step during training, where the discrete time shift operator Z−1 denotes a

discrete time shift as described in (7.9).

y(k)Z−1 = y(k −1) (7.9)

The expression can be described by (7.10).

ŷ(k +1) = f
(
x(k), x(k −1), · · · , x(k −du), y(k), y(k −1), · · · , y(k −dy )

)
(7.10)

The sizes of the delays have initially been determined by the same procedure as for the neurons.

7.3.2 Training Method

The NARX network is designed with a set of parameters, which are designed in an adaptation

process based on information about the desired measurable inputs and outputs. This method

was initially proposed by [Hecht-Nielsen, 1988] and the terminology used was to "train the

network".

[R. Isermann, 2010] describes that the automated design process consists of the training stage

previously mentioned and then a generalisation stage where the NARX network is used to

simulate/predict new data, which has not necessarily been part of the training dataset. This

is done to determine the performance of the NARX network for new and unknown data. Lastly,

it should be noted that if the measurable input & output variables are not correlated in any

logical manner, the NARX network cannot be expected to perform well.

There exists three main types of training methods:

Supervised Training

Supervised training or "training with a teacher", provides the ANN with input data and

the correct corresponding output data. The input data is fed through the ANN and the

outputs are compared to the correct outputs. If they agree, no changes are made. If they

do not agree, the weights within the ANN are adjusted to reduce error on a given training

set, ensuring a better likelihood for a correct answer for future similar input data. The

weights are adjusted by the use of a gradient based optimisation algorithm, which will

be explained later.

Unsupervised Training

Unsupervised training provides the ANN only with input data. The ANN has to self-

organise the data, depending on the given structure of the input data. The structure

of the input data would normally consist of redundant data or specific clusters. This is

typically used to organise large amount of data, where a specific output is not known.

Reinforcement Training

Reinforcement training is a combination of the previous two types. The ANN is provided

with the input data, but not the actual output. Instead the ANN is only told if the output

is correct or not. If the output is wrong then the weights are adjusted. This is a trial and

error approach, where the ANN trains until it reaches the actual output and is effective

in learning tasks where the output is either a success or failure.
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The chosen training method is Supervised Training, since this is generally used for prediction

of time series and since the desired output is known.

The objective of training the ANN is to minimise the errors of outputs, hence increasing the

accuracy of the derived network. To achieve this, a number of different training algorithms are

available within the embedded MATLAB neural network toolbox.

Levenberg-Marquardt

Levenberg-Marquardt adaptively varies between the gradient descent update (gener-

ally effective far away from the solution point) and the Gauss-Newton update (gener-

ally effective near the solution point) [Arora, 2012]. The Levenberg-Marquardt Algorithm

(LMA) gives fast convergence and is in general the most versatile algorithm.

Bayesian Regularisation

Bayesian regularisation is a statistical method suited well for small and/or noisy datasets

due to its statistical properties. This may help reduce overfitting of the measured output.

It updates weights and biases by LMA.

Scaled Conjugate Gradient

Scaled conjugate gradient is typically applied to relatively simple problems, due to its

increasing convergence period as complexity increases.

Based on these descriptions and recommendations from MATLAB, and that LMA has been

proven to be fast and stable [Arora, 2012], it is concluded that the LMA is best suited for this

problem. When noisy measurements are included it can be considered to apply the Bayesian

Regularisation as a second choice.

The Levenberg-Marquardt Algorithm

The following section is made with inspiration from [M. T. Hagan, 1994] and to understand the

full process of the LMA, knowledge about the following algorithms is required: Steepest Decent

Algorithm (SDA), Newton’s Method, Gauss-Newton’s Algorithm (GNA). For brevities sake these

will not be explained here, but can also be found in [M. T. Hagan, 1994].

LMA is a combination of SDA and GNA, which results in an inheritance of the convergence

speed from the GNA, but with the stability from the SDA. However, the LMA tends to converge

a bit slower than the GNA, but still much faster then the SDA.

The idea behind the LMA is to make a combination of the two algorithms within the training

process. If the algorithm reaches an area with a non-smooth curvature it will switch to the SDA

until a more smooth curvature is reached. At this area a proper quadratic approximation can

be made, and the LMA switches to the GNA speeding up the convergence.

The advantage of the GNA compared to the standard Newton method, is that the GNA does

not require the calculation of second order derivatives in order to compute the Hessian matrix.

Instead, the GNA introduces the Jacobian matrix, which can be used to approximate the

Hessian matrix. This is beneficial if the second derivatives are computationally difficult to

obtain.

52 MCE4-1023



7.3. Architecture of NARX

To minimise the ANN model error, a summed squared error cost function (7.11) is introduced.

The cost function is updated once all the available data has been applied, and the result of this

is used to update the parameters.

SSE (ξ,Lw ,b) = 1

2

P∑
p=1

M∑
m=1

e2
p,m (ξ,Lw ,b) (7.11)

where

ξ is the regressor vector.

b is the bias vectors.

Lw is the weight matrices.

ep,m is the error at output m when pattern p is applied.

p is the index of patterns, from pattern 1 to total number of patterns P .

m is the index of the outputs, from output 1 to total number of outputs M .

SSE is the sum of squared errors.

The error is described by (7.12).

ep,m = yp,m − ŷp,m (7.12)

where

y is the desired output vector. [-]

ŷ is the actual output vector. [-]

Depending on this error the weights are adjusted by error back-propagation described in the

following.

Hessian Approximation & Adapting the Weights

The LMA is designed like the quasi-Newton methods where the algorithm is approaching

second-order training speed, but without having to calculate the Hessian matrix of the ANN

function. The cost function has the form of a sum of squares given by (7.11) and the

approximated Hessian is given by (7.13) [M. T. Hagan, 1994].

H ≈ JT J+µI (7.13)

where µ is the combination coefficient and is always positive, I is the identity matrix. J is the

Jacobian matrix which holds the first derivatives of the ANN errors, with respect to the weights,

as shown in (7.14).

J =



∂e1,1

∂w1

∂e1,1

∂w2
· · · ∂e1,1

∂wN
∂e1,2

∂w1

∂e1,2

∂w2
· · · ∂e1,2

∂wN
...

...
...

...
∂e1,M

∂w1

∂e1,M

∂w2
· · · ∂e1,M

∂wN
...

...
...

...
∂eP,1

∂w1

∂eP,1

∂w2
· · · ∂eP,1

∂wN
∂eP,2

∂w1

∂eP,2

∂w2
· · · ∂eP,2

∂wN
...

...
...

...
∂eP,M

∂w1

∂eP,M

∂w2
· · · ∂eP,M

∂wN



(7.14)
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The number of weights (N ) are determined by the network design, and when introducing

several patterns and outputs the Jacobian matrix grows by P ×M ×N . For large sized training

patterns this can give memory issues, but due to the amount of training sets in this work and

the relatively restricted size of the ANNs, this is not considered an issue.

Note that the Jacobian includes differentiation of each computed error, hence the entire

dataset is applied for each update iteration. This is referred to as Batch training.

Furthermore, the gradient can be calculated as (7.15).

g = Je (7.15)

Where the error vector is given by (7.16).

e =
[

e1,1 e1,2 . . . e1,M . . . eP,1 eP,2 . . . eP,M

]T
(7.16)

The Jacobian matrix is calculated by utilising SDA, which is also known as the error back-

propagation algorithm. However, it should be noted that in the LMA, the back-propagation

process has to be repeated for all the different outputs separately.

The LMA can be described as the Newton-like update equation shown in (7.17), [M. T. Hagan,

1994].

wk+1 = wk −
(
JT

k Jk +µI
)−1

Jk ek (7.17)

Note, that when µ in (7.17) is approaching zero, the LMA is approaching Newton’s Method, and

when µ is large the LMA approaches the SDA with a small step size.Since Newton’s method

is fast and accurate near a solution point, the goal is to shift to GNA as fast as possible. This

means that µ must be decreased after a successful step, and only increase if the cost function

will increase in the next step. By doing so, the cost function is always reduced at each iteration

of the LMA.

The procedure of the algorithm is illustrated in the following.

Illustrative Example of an Iteration in LMA

The flow diagram of the algorithm is shown in fig. 7.8.
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Figure 7.8: Flowchart of the training process of the Levenberg-Marquardt algortihm, with inspiration
from [M. T. Hagan, 1994].

Where the parameters are defined as shown in tab. 7.1.

Max iterations Initial µ µ increase µ decrease Min gradient Performance goal Max time

kmax µi ni [-] µ+ [-] µ− [-] gmi n [-] Vg oal [-] tmax [s]
10,000 0.001 10 0.1 1e-6 0 ∞

Table 7.1: Values used in the LMA when training ANNs.

The values from tab. 7.1 can be designed to fit the application of the ANN, and thereby the

algorithm can be terminated when it is not feasible to optimise any further.

The given values are an example of the NARX design where zero error is preferred. The iteration

speed varies depending on ANN design and applied data, and 10,000 iterations has been

chosen since the designs capable of completing this amount without reaching the gradient

limit is heavily underfitting. The values in the ANN are normalised, hence a gradient below
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1e-6 is not considered to be sufficient to continue the LMA for the purpose of this ANN. The

maximum time allowed is set to infinity in the preliminary tests to avoid this being a factor on

the achieved performance, which is why either gradient or iteration causes termination.

The benefit of this approach is to reveal the obtainable performance of the ANNs which is

essential to do a comparison. The actual training period required can then be used to evaluate

the effort connected with increased performance.

The process of the LMA shown in fig. 7.8 can be described by the following steps.

Step 1 Generation of an initial random set of weights.

Step 2 Reset m to default. Count iteration number, k and store the current design.

Step 3 The design is used to evaluate the model error from (7.11), the Jacobian from (7.14) and

the gradient from (7.15).

Step 4 The computations from Step 3 are applied to (7.17) which adjusts the weights.

Step 5 The new weights are used to evaluate the total error from (7.11).

Step 6 If a stopping criterion is reached the process terminates.

Step 7.a If the current total error is increased as a result of the update, then reset the weight

vector to the previous values and change the combination coefficient (µ) by µ+. When m

is below 6 then go to Step 4 and update the design again. When m is above 5 go to Step

2.

Step 7.b If the current total error is decreased as a result of the update, then accept the step

and change the combination coefficient by µ−. Then go to Step 2.

Required Training Period

The initial training period for the NARX ANN was: ≈39 min (update of 270 weights and 5

biases). The LMA was terminated by reaching the minimum allowed gradient.

7.3.3 Preliminary Design of NARX for Residual Generation

Based on the previous described theory and decisions, the developed NARX ANN design is

summarised in the list below.

(e.1) Choose suitable design for the ANN (NARX)

(e.1.1) Define number of neurons in the hidden layer: n = 5
(e.1.2) Define number of input delays: d = 8
(e.1.3) Define number of output delays: d = 8
(e.1.4) Training method: Levenberg-Marquardt with back-propagation

(e.2) Define relevant measurable input variables

(e.2.1) Valve position reference (xP,r e f )

(e.3) Define relevant measurable output variables

(e.3.1) Valve position (xV )
(e.3.2) Lumped pressures (p A , pB )
(e.3.3) Piston position and velocity (xP , ẋP )

(e.4) Normalisation of the variables

(e.4.1) Pressures: p A,max = pB ,max = 180 bar
(e.4.2) Actuator position: xP,max = 0.5 m
(e.4.3) Actuator velocity: vP,max = 0.17 m/s
(e.4.4) Valve position: xV ,max = 1
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7.4 Architecture of the Feedforward ANN

The structure of the applied feedforward (FF) networks, specifically Feedforward ANN (FFANN)

and Focused Time-Delay ANN (FTDANN) are identical with the exception of delay functions

being included in the FTDANN, where previous values of the input makes the network

dynamic, hence better possibility of capturing the transient relationships between inputs and

outputs. The architecture with delays is illustrated in fig. 7.9.
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Figure 7.9: Structure of feedforward ANN with number of inputs (i ), number of delays (d), number of
neurons (n), layer weights (Lw), biases (b) and number of outputs (o). It should be noted,
that if d = 0 the structure represents a FFANN.
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This architecture has been chosen due to its simplicity, and prior proven performance in

estimation of parameters in a hydraulic servo system [C. S. Byington, 2004], [W. J. Crowther,

1998] & [A. El-Betar, 2006]. Furthermore, the universal approximation theorem given by

Theorem 1 and [MathWorks, 2016a] states that a FF network with one hidden layer and one

output layer, with enough neurons in the hidden layer, will be able to fit any finite input-output

mapping problem.

7.4.1 Input- & Output- Variables

The selection of input- & output- variables is equal to the one presented in sec. 7.3.1. This

is done with the purpose of making it possible to compare if there is a significant difference

between forwarding the actual residual of the states in contrast to simply forwarding the

measurements from the system directly to the feedforward ANNs.

The training data has been collected through simulation by means of the simulated fault

approach described in chap. 6.

The output variables are chosen to directly reflect the faults desired predicted. For the

preliminary test, the three leakage flows are therefore the outputs.

The input regressor vector for the network is described by (7.18).

u(k) =
[

u1(k) u2(k) · · · ui (k)
]T

=
[

p A(k) pB (k) xP (k) ẋP (k) xV

]T
(7.18)

Where i denotes the number of inputs and k is the current time increment.

The output regressor vector is defined to include the parameters desired estimated. This is

given by (7.20).

ŷ(k) =
[

ŷ1(k) ŷ2(k) · · · ŷi (k)
]T

(7.19)

=
[
Q̂i nt ,L(k) Q̂ A,ext ,L(k) Q̂B ,ext ,L(k)

]T
(7.20)

The total network function for the FFANN and FTDANN is described by (7.21), which

represents the structure from fig. 7.9.

ŷ(k) = Lw2 tanh
(
Lw1ξ(k)+b(1))+b(2) (7.21)

Where the weight matrices are defined by (7.22). Similarly the biases are given by (7.23).

Lw1 =


w (1)

1,1 · · · w (1)
1,(d+1)i

...
. . .

...

w (1)
n,1 · · · w (1)

n,(d+1)i

 Lw2 =


w (2)

1,1 · · · w (2)
1,n

...
. . .

...

w (2)
o,1 · · · w (2)

o,n

 (7.22)

b(1) =


b(1)

1
...

b(1)
n

 b(2) =


b(2)

1
...

b(2)
o

 (7.23)

where n denotes the number of neurons in the hidden layer, d denotes the input delays and

o denotes the number of outputs. These weights and biases are adapting while the network is

training with the back-propagation algorithm, which minimises the square of errors.
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The regressor ξ(k) is given by (7.24).

ξ(k) =


u(k)

u(k −1)
...

u(k −d)

 (7.24)

When using the dimensions for the presented matrices and vectors, the output of (7.21)

becomes a o ×1 vector.

Number of Neurons

The initial design of the FFANN has n = 50 neurons and the FTDANN has n = 12 neurons. The

different designs are based on an manual iterative process where a trade-off between increased

performance versus training period is considered. Furthermore, this contributed knowledge

about the capabilities of the chosen ANNs.

The FTDANN has significantly fewer neurons since it utilises (d + 1) · i input values, i.e

increasing the number of weights.

Number of Delays

The FTDANN is designed with a discrete time delay of d = 8 samples for each input state,

where the sample rate is 1 kHz. This is therefore only a period of 8 ms, however gives useful

information about the change of the states.

This is based on the trade-off between increased performance versus training period found

through manual tuning.

Training Method & Required Training Period

The training algorithm is chosen based on the arguments presented in sec. 7.3.

The training period for the FFANN was: ≈6 min (update of 250 weights and 50 biases).

The training period for the FTDNN was: ≈28 min (update of 540 weights and 12 biases).

7.4.2 Preliminary Design of Data Driven ANN for FDD

Based on the previous described theory and decisions, the design procedure is summed in the

list below.

(f.1) Choose suitable design for the ANN (FFANN or FTDANN)

(f.1.1) Define number of neurons in the hidden layer: n = 50(FFANN) n = 12(FTDANN)
(f.1.2) Define number of delays: d = 8(FTDANN)
(f.1.3) Training method: Levenberg-Marquardt back-propagation

(f.2) Define relevant measurable input variables

(f.2.1) Valve position (xV )
(f.2.2) Lumped pressures (p A , pB )
(f.2.3) Piston position and velocity (xP , ẋP )

(f.3) Define relevant measurable output variables

(f.3.1) Internal leakage flow (QL,i nt )

Department of Energy Technology - Aalborg University 59



7. ARTIFICIAL NEURAL NETWORKS APPLIED FOR FAULT DETECTION & DIAGNOSIS

(f.3.2) External leakage flows (QL,ext ,A ,QL,ext ,B )

(f.4) Normalisation of the variables

(f.4.1) Pressures: p A,max = pB ,max = 180 bar
(f.4.2) Actuator position: xP,max = 0.5 m
(f.4.3) Actuator velocity: vP,max = 0.17 m/s
(f.4.4) Valve position: xV ,max = 1

7.5 Data Driven FDD Results

The preliminary designs of the data driven FDD with and without delays in the ANN are

evaluated by simulation. This is done with the test sequence described in sec. 6.1 where a

sine wave is used as position reference.

Performance Evaluation

To quantify the performance of each ANN the root mean square errors (RMS) of the estimates

are evaluated by (7.25). This is a common approach to give a measure of model estimation

accuracy and has furthermore been applied by [W. J. Crowther, 1998] for evaluation of ANNs

used for leakage estimation.

RMS =
√∑S

k=1(ŷk − yk )2

S
(7.25)

where

k is the current discrete time increment. [-]

S is the number of samples. [-]

In general the RMS value over time smoothens sudden peak differences between estimate and

actual value. On the contrary a continuous error will accumulate over time, hence increasing

the mean. This quality is considered beneficial when evaluating the leakage faults, since it is

preferred to diagnose a fault over longer periods of time, and a continuous error estimate could

result in misinterpretations, whereas a sudden peak would be filtered. The lower the RMS error

the better.

The issue with this value is that it can be difficult to interpret if a given value is statistic

significant and that the prediction can be trusted.

Nevertheless, RMS errors are suited for comparison purposes which is of interest in this project.

The three estimated parameters for the two FDDs and the actual simulated parameters are

shown in fig. 7.10. During the start-up phase (the two first seconds) of the simulation,

inaccurate results are expected since there may exist a difference in the initial conditions. To

minimise this phenomenon the first two seconds have been omitted in some simulations.
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Figure 7.10: The simulated estimated leakage flows (denoted: F 1est − F 3est ) by using FFANN &
FTDANN with data driven FDD, compared with the actual simulated leakage flows.

In fig. 7.10 it is observed that the estimated flows have a tendency of oscillating near the correct

value. Therefore, it is proposed to visualise the difference of performance clearer by removing

some of the oscillations. This is done by introducing an exponential moving average (EMA),

since a similar approach was done in [L. An, 2014b]. This weights the most recent values higher

than previous i.e. has a faster response to changes while removing high frequent oscillations.

The expression is given by (7.26).

EMA(x(k)) = γx(k)+ (1−γ)EMA(x(k −1)) (7.26)

= γx(k)+γ(1−γ)x(k −1)+ (1−γ)2EMA(x(k −2))

= γ
[

x(k)+ (1−γ)x(k −1)+ (1−γ)2x(k −2)+·· ·+ (1−γ)k−1x(1)
]
+ (1−γ)k x(0)

γ= 2

Per i od +1

where

EMA is the value of the exponential moving average. [-]

γ is the exponential multiplier. [-]

Per i od is the period for the moving average, 1kHz· 2 s. [-]

x is the variable which is averaged. [-]
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From the difference equation in (7.26) it can be seen, that as time passes, the EMA becomes the

weighted average of an increasing number of previous measurements x(k −n), and the weight

γ assigned to the past observations. This difference equation can in terms be seen as a discrete

exponential function.

The EMA can be designed with appropriate time periods depending on the length and

increments of the time series. For these particular datasets it is decided to accumulate the

average over a period of 2 seconds and the results when applying this are depicted in fig. 7.11.
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Figure 7.11: 2 second EMA of estimated leakage flows from data driven FFANN & FTDANN compared
with 2 second EMA of actual simulated flow.

The RMS errors of FFANN & FTDANN are shown in fig. 7.12 and these yield that in 2 out

of 3 faults the FTDANN has best performance and that F 3 is the most difficult to estimate

accurately for both ANNs. Based on the RMS errors it is decided to apply the FTDANN for

further work.

In the following the performance of the model-based FDD scheme is investigated.

7.6 Model-Based FDD Results

To test the performance of the model-based FDD scheme, it is initially desired to investigate

the performance of the estimator. This is done by using the afore mentioned ideal residuals

(ri deal ) and the residuals generated by the NARX (rN AR X ). Furthermore, the difference between

actual output and estimated output (7.27) is graphically displayed to illustrate the estimation

62 MCE4-1023



7.6. Model-Based FDD Results

F1 F2 F3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
M

S
 [-

]

FFANN
FTDANN

Figure 7.12: Root-mean-square error between estimated- and actual faults from results shown in fig.
7.11.

accuracy.

∆y = ri deal − rN AR X ; rN AR X = y f − ŷN AR X ; ri deal = y f − y

∆y = y − ŷ (7.27)

where

y is the actual system output without a fault. [-]

y f is the actual system output with a fault. [-]

ŷN AR X is output estimated by the NARX ANN. [-]

The purpose of the comparison is to obtain a measure for the designed ANN’s capability of

replicating the behaviour of the system. The residuals for pressures are shown in fig 7.13. The

position in fig. 7.14 and velocity in 7.15. The valve position residual is shown in fig. 7.16. It

should be noted that the two first seconds of each data series have been omitted, due to differ-

ences of initial conditions and since this part is not relevant for analysis purposes.

The residuals are generated with the fault sequence defined in sec. 6.1.

The interpretation of the ∆y is simply that values equal to zero represent a perfect model, and

that oscillation around zero reveals an accurate mean residual with some level of uncertainty.
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Figure 7.13: Simulated difference in pressure residuals generated with a sine input trajectory.
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Figure 7.14: Simulated difference in position residuals generated with a sine input trajectory.

It is observed from the results in fig. 7.13, that the mean pressure residuals have an offset of

≈0.5 bar with oscillations of ≈±1.25 bar amplitude. It is expected that the FTDANN is capable
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of recognising the overall tendency and to some extend filter the residual. The residual is

therefore not filtered, with the purpose of minimising the design effort.

Furthermore, during the start-up phase (first five seconds) the pressures do not fit, which as

mentioned earlier is caused by initial conditions on the pressures, which are not included in

the NARX model. This is expected to affect the diagnosis during the start-up phase, but is not

considered a major issue for the FDD performance.

The NARX does mimic the overall behaviour of the pressures in the actual system.

It is observed from the results in fig. 7.14, that the position estimate does include both offset

of ≈-0.2 mm and oscillations of ≈±0.5 mm. However, as is the case with pressures, the NARX

does mimic the overall behaviour of the position of actual system, even though it has never

seen the fault sequence before.
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Figure 7.15: Simulated difference in velocity residuals generated with a sine input trajectory.

It is observed from the results in fig. 7.15, that the velocity estimate has an offset of ≈0.3 mm/s

with an uncertainty of ≈±1.7 mm/s. Again the overall behaviour is sufficiently estimated.
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Figure 7.16: Simulated difference of valve position residuals generated with a sine input trajectory.

The valve position from fig. 7.16 has an estimation oscillation of ≈ ±0.01 and is a result

of the performance of the Closed-Loop design. This reveals whether the actual system is

compensating as usual or if adjustments are performed to track the position reference. The

benefit of this residual is that it can be extracted directly from the control system and no special

sensors are needed.

The general tendency from the above graphs are, that the residuals generated by NARX ANN is

oscillating near the correct value. The magnitude of the oscillations is significant compared

with the absolute residual when a fault is introduced. However, the NARX ANN is able to

estimate the system states to some degree without having seen the faults beforehand, which

is an indication that the NARX ANN behaves in a similar manner as the model. It has been

decided to investigate FDD performance when applying the actual residuals and comparing

the results with the NARX estimated residuals.

The preliminary design of the FTDANN is applied to diagnose the residuals. The approach for

this was described in sec. 7.4.

The results presented in sec. 7.5 revealed some oscillations on the estimated parameters. These

tendencies were also present in the results with the model-based scheme, which is why only

the EMA results will be presented. The obtained results with the generated residuals can be

seen in fig. 7.17.
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Figure 7.17: Two second EMA of estimated leakage flows (F 1est − F 3est ) with either ideal or NARX
residuals (ri deal , rN AR X ) applied to the FTDANN, compared with two second EMA of actual
simulated leakage flows.
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Figure 7.18: Root mean square error between estimated- and actual faults from results shown in fig.
7.17. For ease of comparison, the RMS errors from the data driven diagnosis shown in fig.
7.11 are included.

The RMS errors from fig. 7.18 show that the ideal residuals give superior results compared with

application of NARX residuals or data-driven FDD. Furthermore, the FTDANN is better than

the NARX model-based scheme, i.e. the estimator must be enhanced in order for this scheme

to be feasible.
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7.7 Part Conclusion

Two FDD schemes have been designed and tested through simulation. The theoretical results

yielded promising potential for both FDD designs, but only one is selected for further work.

The model-based scheme with utilisation of the exact model showed superior results, and

although it is not expected that a model with such accuracy can be realised in reality, the

model-based FDD is considered to have potential. With the main reason being that the

algorithm is "helped" to understand how an abnormality looks like via modelled residuals.

Instead of the data driven approach, where raw features are fed to the ANN and is expected

to somehow give a valid diagnosis.

Furthermore, it has been proven in literature that model-based FDD schemes include some

level of robustness towards measurement noise and model uncertainties [Ehsan Sobhani-

Tehrani, 2009].

The data driven scheme did yield promising estimates of the leakage and due to its simplicity,

the design of such a FDD scheme is straightforward. Similar data driven schemes have

been tested in [T. T. Le, 1997], [W. J. Crowther, 1998] & [A. El-Betar, 2006], which is why it

is considered less interesting from a research point of view, compared with the model-based

scheme. Therefore, the model-based scheme is chosen for further development.

Finally, simulation showed that the FTDANN slightly outperforms the FFANN when estimating

leakage flows in a hydraulic servo system and the FTDANN is therefore applied in the scheme.
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Based on the findings from chap. 7 a Fault Detection and Diagnosis (FDD) scheme has been

selected, and in the following chapter this will be expanded to include the remaining faults and

the amount of training data will furthermore be increased.

The data structures for training of the nonlinear autoregressive exogenous (NARX) ANN and

the focused time-delay network (FTDANN) will be illustrated and elaborated. This structure

is based on the work presented in [A. El-Betar, 2006] combined with information from

[M. H. Beale, 2016] & [H. Su, 1992].

The objective is to investigate under what conditions the developed scheme is valid. Therefore

the fault diagnosis estimated by the FTDANN and the residuals generated by the NARX ANN

will be investigated in different scenarios which will be described in this chapter.

This is an investigation of the theoretical performance and will initially be evaluated without

any measurement noise or uncertainty. However, a Gaussian distributed white noise on the
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measurements will later be applied to evaluate the ANNs robustness towards measurement

noise.

8.1 Analysis of the Additional Faults

The faults of interest are listed again for convenience.

F 0 is no fault/a healthy system.

F 1 is internal rupture/leakage between volume A & B .

F 2 is external rupture/leakage from volume A.

F 3 is external rupture/leakage from volume B .

F 4 is pressure transducer failure.

F 5 is a stuck servo valve.

The impact caused by F 1-F 3 was described in chap 6, which is why only F 4 & F 5 are analysed

in the following.

Pressure Transducer Failure

F 4 is emulated by either receiving maximum or minimum measurable output from the

transducer. This is based on the normal occurrence of failure in such a component [Pedersen,

2016].

Therefore, the pressure output on the transducer connected with volume A will be constantly

either 1 or 250 bar, as shown in (8.1).

p A =
{

p A for F 4 = 0

250∨1 bar for F 4 = 1
(8.1)

F 4 is non-dimensional and binary, with 1 resulting in an erroneous transducer signal. The

estimation of this failure (F̂ 4) will therefore be trained to output either 0 or 1.

Valve Failure

F 5 is emulated by disconnecting the control signal to the valve at some given point in time. It

is then assumed that the valve spool will be affected by the spring and thereby return to neutral

position. This is described by (8.2).

uV =
{

uV for F 5 = 0

0 for F 5 = 1
(8.2)

The actual valve position and valve reference are available on the test rig, and the fault is

expected detectable only by these variables.

F 5 is non-dimensional and binary, with 1 indicating a stuck spool. F̂ 5 is the notation for the

estimate.

The simulation of the fault indices can be observed on fig. 8.1.
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Figure 8.1: The fault sequence used for evaluation of the FDD. Note the faults F 4 & F 5 are non-
dimensional and furthermore F 4 is applied twice; one for both max and min pressure fault
signal.

Through simulations it was found, that to detect all faults in one scheme, it is necessary to

utilise two ANNs for classification of the faults. Therefore, F 5 is diagnosed with data driven

FDD and the remaining faults are diagnosed with a model-based FDD. This expanded structure

of the FDD scheme is illustrated in fig. 8.2.
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Figure 8.2: The FDD scheme where estimated values are denoted with a hat, i.e. ŷ and the difference
between estimate and actual values are denoted with a tilde, i.e. p̃ A .

The external load and position trajectories shown in fig. 8.2 will be explained later in this

chapter.

It is observed from the figure, that the data driven method is applied for FTDANN2 to detect

the valve failure by monitoring the valve position and the referenced position. This is chosen

since its simple and sufficient, but also because it is not effective when included in FTDANN1.

The remaining faults are diagnosed by FTDANN1 through the model-based scheme.

This topology introduces an issue when an unknown fault occurs. Therefore, it was initially

proposed to train FTDANN1 to understand that the occurrence of F 5 should not cause any
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other faults. The reason for doing so, is that the purpose of applying ANNs is to avoid human

interference where a list of rules must be designed, i.e. the objective is to let the scheme learn

over time if the decision is correct or not. However, this did not give the desired results, which

may be caused by the relatively low complexity of the network (only one hidden layer). This

issue might be addressed by increasing the amount of hidden layers, which in the literature,

e.g. [X. Glorot, 2010] proves enhanced learning capabilities (deep-learning). This will be tested

later in this chapter.

Alternatively a manual rule can be implemented in the algorithm in order to make the ANNs

communicate. This is defined by the sentence shown in algorithm 1, where the EMA refers to

the previously applied Exponential Moving Average.

if 0.99 ≤ EMA2(FTDANN2) ∧ EMA2(FTDANN2) ≤ 1.01 then
EMA2(FTDANN1) = [

0 0 0 0
]

end
Algorithm 1: Manual overwrite of FTDANN1 output.

This will enable communication between FTDANN1 & FTDANN2. However, the proposed

manipulation will become problematic if the output of FTDANN2 is between the limits while

another fault is active. This gives a risk of inaccurate fault estimation, but the advantage of

algorithm 1 is considered greater than the disadvantage since the output of FTDANN2 has

proved to be reliable.

8.2 Training of the FDD Scheme

In the following section it will be explained how the scheme has been trained and how the

design parameters of the ANNs have been optimised. The structure is based on the training

approach for a feedforward ANN from [A. El-Betar, 2006] and for a recurrent ANN in [H. Su,

1992].

8.2.1 ANN Training Data Structures

In this section, the design of the data structures applied for training will be addressed. This

structure can affect both the performance and the training period of an ANN. Therefore, it is

relevant to investigate how this may be done most efficiently.

The data structures of interest are those which occur concurrently (in a non specific time

sequence), and those which occur sequentially (in a specific time sequence).

In the concurrent structure, the succession of each vector is of no importance. Therefore the

data can be utilised simultaneously.

The sequential data structure is time-dependent and the succession is therefore important.

Both data structures are beneficial when training a dynamic ANN, i.e. network with either

feedbacks or delayed data. The utilisation of concurrent data will make it possible to train a

given ANN with all time series in parallel.

The reasoning for this structure is that the ANN can be designed to respond differently to

each of the input vectors, as if they were applied to separate parallel ANNs. This feature
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gives the opportunity to create several different input vectors, where each vector would hold

information about a healthy or faulty system, in a variety of different situations.

The approach for implementing the presented matrices into MATLAB, is to create one partly

concurrent and partly sequential matrix for the system input sequence, and a similar one for

the system output data.

In (8.3), (8.4), (8.5), (8.6), (8.7) & (8.8) the matrices applied when training the ANNs are

described. Each structure in the matrices are denoted by {x}, these are a sequential

representation of the measurable data.

UNARX =
[

{xP,r e f }1 {xP,r e f }2 · · · {xP,r e f }m

]
(8.3)

YNARX =


{p A}1 {p A}2 · · · {p A}m

{pB }1 {pB }2 · · · {pB }m

{xP }1 {xP }2 · · · {xP }m

{ẋP }1 {ẋP }2 · · · {ẋP }m

{xV ,r e f }1 {xV }2 · · · {xV }m

 (8.4)

UFTDANN1 =


{p̃ A}1,1 {p̃ A}2,1 · · · {p̃ A}m,1 {p̃ A}1,2 {p̃ A}2,2 · · · {p̃ A}m,%1

{p̃B }1,1 {p̃B }2,1 · · · {p̃B }m,1 {p̃B }1,2 {p̃B }2,2 · · · {p̃B }m,%1

{x̃P }1,1 {x̃P }2,1 · · · {x̃P }m,1 {x̃P }1,2 {x̃P }2,2 · · · {x̃P }m,%1

{ ˜̇xP }1,1 { ˜̇xP }2,1 · · · { ˜̇xP }m,1 { ˜̇xP }1,2 { ˜̇xP }2,2 · · · { ˜̇xP }m,%1

{x̃V }1,1 {x̃V }2,1 · · · {x̃V }m,1 {x̃V }1,2 {x̃V }2,2 · · · {x̃V }m,%1

 (8.5)

YFTDANN1 =


{F 1}1,1 {F 1}2,1 · · · {F 1}m,1 {F 1}1,2 {F 1}2,2 · · · {F 1}m,%1

{F 2}1,1 {F 2}2,1 · · · {F 2}m,1 {F 2}1,2 {F 2}2,2 · · · {F 2}m,%1

{F 3}1,1 {F 3}2,1 · · · {F 3}m,1 {F 3}1,2 {F 3}2,2 · · · {F 3}m,%1

{F 4}1,1 {F 4}2,1 · · · {F 4}m,1 {F 4}1,2 {F 4}2,2 · · · {F 4}m,%1

 (8.6)

UFTDANN2 =
[

{xV }1,1 {xV }2,1 · · · {xV }m,1 {xV }1,2 {xV }2,2 · · · {xV }m,%2

{xV ,r e f }1,1 {xV ,r e f }2,1 · · · {xV ,r e f }m,1 {xV ,r e f }1,2 {xV ,r e f }2,2 · · · {xV ,r e f }m,%2

]
(8.7)

YFTDANN2 =
[

{F 5}1,1 {F 5}2,1 · · · {F 5}m,1 {F 5}1,2 {F 5}2,2 · · · {F 5}m,%2

]
(8.8)

where
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%1 is the number of fault modes in FTDANN1, 5. [-]

%2 is the number of fault modes in FTDANN2, 2. [-]

m is the number of test trajectories, 3. [-]

NARX is an index to indicate data applied for NARX network. [-]

FTDANN1 is an index to indicate data applied to diagnose the faults F 1-F 4. [-]

FTDANN2 is an index to indicate data applied to diagnose the fault F 5 . [-]

p A is the A pressure. [Pa]

pB is the B pressure. [Pa]

xP is the piston position. [m]

ẋP is the piston velocity. [m/s]

xP,r e f is the piston position reference. [m]

xV is the valve position. [-]

xV ,r e f is the valve signal. [-]

F 1 is the internal leakage flow. [l/min]

F 2 is the external A leakage flow. [l/min]

F 3 is the external B leakage flow. [l/min]

F 4 is the non-dimensional pressure failure. [-]

F 5 is the non-dimensional stuck valve failure. [-]

The training matrices have the characteristic that all columns can be swapped provided

its counterpart in the corresponding matrix is swapped in a similar manner. This allows

for training of ANN with application of all the time series input and output data series

simultaneously, which not only shortens the training period but also decreases the risk of

overfitting. Furthermore, the issues connected with input and output fitting with ANNs are

elaborated in the following.

The Bias-Variance Dilemma

The Bias-Variance dilemma from [R. Isermann, 2010] describes a trade-off between the bias

error and the variance error. This rises from supervised training algorithms which will prevent

the ANN from generalising beyond their training. The dilemma is illustrated in fig. 8.3, where

the bias error is a systematic deviation from the true output of the system. Since it is a

systematic deviation, it will cause a distortion from the true output in a predictable direction.

This occurs when the ANN model does not have enough flexibility (number of neurons and

delays) to fit the real system (underfitting). The bias error decreases, as the ANN complexity

rises. This increases the variance error which is an indication that the ANN attempts to fit the

noise instead of the actual output. This is referred to as overfitting and is caused by the ANN

adapting to the exact tendencies in the training data set.

The Bias-Variance dilemma is handled by training the ANN through a two step procedure. The

first step is the training of the ANN, where the weights of the ANN are optimised to give the best

possible fit to the training data. The second step is the generalisation, here the ANN is used to

simulate new data, which have not been part of the training data set. A well generalised ANN

will have good estimations of the new unseen data, and the training data. If the trained ANN

is capable of estimating the training data precisely but fails to estimate the new unseen data,

the ANN have been trained to overfit the data. The application of this procedure is described

in the following section.
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Figure 8.3: The trade-off between the bias- and variance- error, with inspiration from [R. Isermann,
2010].

Data Division for Enhanced ANN Generalisation

The ANN’s generalisation capabilities may be enhanced by using the general practice from

[M. H. Beale, 2016], where the data is divided into three random or predefined subsets: Training

set, validation set, and test set, where the ratio of data applied is 70%/15%/15% respectively,

based on recommendations from [M. H. Beale, 2016]. However, other division fractions have

been applied by [P. S. Crowther, 2005], where it is also noted, that the division of data may be a

dynamic process depending on the application.

The training set is used for calculating and optimising the ANN weights and biases.

The validation set is used to evaluate the generalisation when the ANN is presented to unseen

data from the validation set.

The test set can by used to evaluate the performance of the design during the training process.

The performance evaluation of an ANN can be illustrated by plotting the training-, validation-

and test set mean squared error as the training of the ANN progresses. An example of such

a plot is shown in fig. 8.4, where an epoch defines the number of times the ANN has been

presented to the entire data set.
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Figure 8.4: Illustrative example of training-, validation- and test mean square error performance plot.

Fig. 8.4 shows that after 9 epochs the ANN slowly starts overfitting, which is revealed by the

rising validation error. When the validation and test error reaches a minimum and the design
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cannot be improved further, the design of weights and biases is saved.

The explained procedure allows for the overall performance of the ANN with the given data set

to be determined.

The division of data cannot address the Bias-Variance dilemma completely since it cannot

adjust the complexity of the ANN model. Therefore it is proposed to perform a generic

optimisation with the purpose of locating the optimum model complexity.

8.2.2 Optimal ANN complexity for the FDD scheme

Based on the previous discussion about the ANN Bias-Variance dilemma and since there does

not exist any design rules for ANNs, it is proposed to apply an optimisation algorithm. This is

primarily chosen due to the prior presented theory from [R. Isermann, 2010], stating that there

is a clear connection between ANN performance and ANN complexity. It is therefore expected

that an optimisation will be able to locate the most suitable design in a more time efficient

manner compared with simply brute forcing all possible designs in the set.

In this thesis it is not the objective to search for the global optimum design, however, it is

desired to rapidly locate a design that fit the specific FDD scheme. Therefore, an evaluation

of ANN performance after a given period of training (10 min) is utilised, i.e. a design with fast

convergence and sufficient performance is found. For further aspects it is suggested to remove

this limit.

The design is found via the genetic algorithm (GA) by MathWorks, which has been chosen since

its heuristic and since the cost function is not guaranteed to be convex.

The basic theory and explanations for the applied optimisation is presented in app. C.2, and

the specific optimisation settings are presented below.

The optimisation vectors are given by (8.9).

xNARX =
[

du dy n
]T

xFTDANN =
[

du n
]T

(8.9)

where

du is the number of input delays.

dy is the number of output delays.

n is the number of neurons.

x is the design parameter vector.

The initial guess for the input vectors are given in (8.10).

xNARX,0 =
[

1 1 1
]T

xFTDANN,1,0 =
[

1 1
]T

xFTDANN,2,0 =
[

1 1
]T

(8.10)

Furthermore the upper and lower bounds have been specified as seen in (8.13).

1 ≤ xNARX(1) ≤ 10 ; 1 ≤ xFTDANN1 (1) ≤ 30 ; 1 ≤ xFTDANN2 (1) ≤ 30 (8.11)

1 ≤ xNARX(2) ≤ 10 ; 1 ≤ xFTDANN1 (2) ≤ 8 ; 1 ≤ xFTDANN2 (2) ≤ 8 (8.12)

1 ≤ xNARX(3) ≤ 6 (8.13)

The upper and lower bounds have been specified from knowledge about previously successful

designs for similar problems. This was found in the articles [W. J. Crowther, 1998] &

[M. Karpenko, 2002] during the literature review in chap. 3.
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The fitness function is defined to be the sum of squared errors (from (7.11) in sec. 7.3.2)

(8.14) after a 10 min period. This enhances the convergence period of the GA and furthermore

ensures that an ANN design with fast convergence is obtained.

f (x) = 1

2

P∑
p=1

M∑
m=1

e2
p,m(x) (8.14)

where

ep,m is the error at output m when pattern p is applied.

p is the index of patterns, from pattern 1 to total number of patterns P .

m is the index of the outputs, from output 1 to total number of outputs M .

x is the design parameter vector.

A total of five fitness values are calculated for each generation, and the algorithm is restricted

to optimise for a total of 50 generations. This is chosen so that the algorithm is not limited by

number of iterations, which is confirmed by the convergence plot in fig. 8.5.
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Figure 8.5: Convergence plot of the GA algorithm during optimisation of the FTDANN1.

The optimum vector designs can be seen in tab. 8.1.

Network du dy n

NARX 9 2 4
FTDANN1 6 - 6
FTDANN2 12 - 5

Table 8.1: Results of the GA optimisation.

The optimums are in a range similar to the ones found throughout the literature review and

hence the design is considered reasonable. It is not certain that the designs are optimal when

the algorithm is permitted longer training periods, but this is irrelevant for the purpose of this

thesis. The increase of performance will be evaluated in sec. 8.3 where the performance of the

optimum FDD design is compared with the one from the preliminary tests from 7.3.3 & 7.4.2.

8.2.3 Training & Test Sequences

The purpose of the training and test sequences is to validate the FDD scheme at various condi-

tions. Hence, it is not a requirement that this is designed with a realistic representation of the

external load and/or position trajectories occurring in a wind turbine.
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Instead simple conditions will be defined with the possibility of adding stochastic character-

istics. From this consideration a rapid development and testing of the FDD scheme may be

achieved, which for this thesis is considered sufficient as a proof of concept.

Applied External Load

The external load has been designed to disturb the hydraulic system with a pseudorandom

term so that the FDD scheme cannot simply memorise the output. It is not necessary to design

a replicate of an actual wind load, since it is solely desired tested if the FDD scheme can operate

at an arbitrary load condition. Which may be confirmed/denied with the proposed load in

(8.15).

FL = cGaus,L
1

τs,L s +1
+ab,L sin(ωb,L t )+bb,L (8.15)

where

ab,L is the load base amplitude. 7 kN

bb,L is the bias on the base amplitude. 10 kN

cGaus,L is Gaussian white noise with frequency of 63 rad/s and noise power 5 kN

ωb,L is the wind load base frequency. 1 rad/s

τs,L is the first order system time constant. 0.1 s
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Figure 8.6: An example of the external load.

The load has a repeating characteristic, however, the Gaussian steps result in a noticeable

change, which will appear as random disturbances.

Training Trajectories

The training trajectories have been designed to simulate three situation with significantly

different behaviour, which will make it possible to test the FDD schemes’ versatility.

The three situations are described below.

Sine Wave Reference

A sine wave is chosen due to its repeating dynamic behaviour, which eases the learning

problem for the ANNs. A base frequency of 3 rad/s and amplitude of 4% of full stroke (20 mm)
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is applied. Similar reference is applied for a similar problem in [L. An, 2014b] thereby making

the results comparable.

Sine Wave with Gaussian White Noise Reference

This reference is chosen to maintain the repeating behaviour of the sine wave. The stochastic

behaviour allows for investigation of the schemes ability to learn the symptoms at random in-

puts. Hence, it will not be possible to memorise the exact pattern of the symptoms.

The reference is described by (8.16). The Gaussian white noise step is fed through a first order

system to avoid heavy velocity spikes. The reference is inspired by [L. An, 2014b] where an ap-

proach with pseudorandom steps was applied for a similar problem.

xP,r e f = cGaus,P
1

τs,P s +1
+ab,P sin(ωb,P t ) (8.16)

where

ab,P is the pitch base amplitude. 0.02 m

cGaus,P is Gaussian white noise with frequency of 4.15 rad/s and noise power 0.0002 m

ωb,P is the base frequency. 3 rad/s

τs,P is the first order system time constant. 0.5 s

Constant Reference

A constant reference is chosen since it will contribute information about the schemes

capabilities when the system is not excited.

8.3 Evaluation of FDD Schemes Ability to Recognise Several Fault

Patterns

The performance of the developed FDD scheme will be evaluated in a strategic manner that

allows interpretation of each component of the designed scheme. Therefore, it will initially be

tested if accurate fault diagnosis can be obtained with a classic state estimator resulting in ideal

residuals (ri deal ) for each of the afore mentioned trajectories.

The performances of the above test sequence are compared with the performance of the

preliminary design from sec. 7.6 where only one input was used for training. Thereby the

FTDANN’s ability to recognise different patterns is evaluated. These results will furthermore be

compared with a scheme that does not include velocity measurements. This is used to evaluate

the increase/decrease in performance when the velocity measurement is applied.

The schemes ability to generalise is tested by introducing noise on the measurements and

evaluating the diagnosis performance.

Finally, the designed NARX estimator is tested by comparing its estimated outputs with the

actual outputs.

The estimated faults from the FDD scheme are depicted in fig. 8.7, 8.8 & 8.9. Furthermore,

the actual position and reference are shown. It should be noted that the applied controller

is a standard P-controller. This is chosen because of its simplicity and since the tracking

performance is not relevant at the current stage of the FDD evaluation.

It is observed that the scheme has high performance for all faults shown in fig. 8.7 & 8.8.

Therefore it is concluded that the FTDANN has adapted to recognise both known and unknown
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Figure 8.7: Two second EMA of estimated and actual simulated- faults when ideal residuals (ri deal ) are
applied.
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Figure 8.8: Two second EMA of estimated- and actual simulated faults when ideal residuals (ri deal ) are
applied.
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Figure 8.9: Two second EMA of estimated- and actual simulated faults when ideal residuals (ri deal ) are
applied.
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Figure 8.10: RMS error of estimated- and actual faults from results shown in fig. 8.7, 8.8 & 8.9. The
y-axis is logarithmic due to the significant difference in RMS values.

patterns of residuals. The preliminary performance of F 1-F 3 depicted in fig. 8.10 shows that

the expanded- and optimised- scheme has improved significantly.

In fig. 8.9 the results of the situation of constant reference are shown, it is observed that

the diagnosis is more difficult when the system is in steady-state. In general this situation is

considered to result in insufficient performance, especially the stuck valve estimation is invalid

for this situation. This is considered caused by the limited required control signals, which are

only applied when the piston drifts due to leakage.

The hypothesis of adapting the FTDANN with multiple input sequences has been confirmed

in 2 of 3 cases. The most important result is that the diagnosis is valid even though the position

trajectory has a stochastic behaviour.

8.3.1 Evaluation with Noise & without Velocity Measurements

The results in the previous section are simulated without any measurement noise. It is desired

investigated if the faults can be diagnosed when a Gaussian white noise is applied to the

measurements. This can be used to prove if the trained FTDANN is adequately fitted to the

data, i.e. if it is capable of recognising a known sequence with some deviation from the data

applied for training.

The noise is introduced as a Gaussian distributed white noise added to the relevant states,

which is designed as seen in tab. 8.2.

State p A pB xP ẋP xV

Approximated noise gain [-] 0.75e5 0.75e5 0.0001 0.0001 0.001
Noise power [-] 0.0001 0.0001 0.0001 0.0001 0.0001

Measurement delay [ms] 4 4 0.5 0.5 0.5

Table 8.2: Values connected with the noise and delay on state measurements.

The noise levels have been designed to approximate the expected uncertainty of each

measurement.

In reality there will be a delay on the measurements. This is in the range of a few milliseconds,

and is therefore of no importance for the estimations of the developed FDD and will not be

further investigated.
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The generated residuals with noise on measurements are shown in fig. 8.11.
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Figure 8.11: Residuals (ri deal ) generated with the presented noise levels with a sine wave position
reference and the leakage faults.

These residuals are applied to the FTDANN for diagnosis and since the results are quite similar

to the ones seen in fig. 8.7, 8.8 & 8.9 the graphs with diagnosis results with noise and without

velocity are omitted, but can be found in app. I in fig. I.10, I.11, I.12, I.13, I.14 & I.15.

The RMS values for these tests are given in tab. 8.12 with noise-free results for comparison. The

results without application of the velocity measurements are also included in fig. 8.12.

It is observed that there is a difference in RMS errors with and without noise. The noise will in
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Figure 8.12: RMS error of estimated- and actual faults from results shown in fig. 8.7, 8.8 & 8.9 compared
with the same sequence while noise is applied and also for the FDD scheme where the
velocity is not included.

general worsen the estimation, however, the worst case RMS difference is around 0.0005 l/min

which is considered acceptable.

Generally the noise is not considered to have any significant impact and the FTDANN1 is

therefore considered able to reject the simulated noise levels, even though it has not been

trained with such data.

The test with noise and without the use of velocity reveals that the internal leakage (F 1) has

worsened significantly. Whereas the remaining faults do only show minor differences.

By analysing the result graphs from app. I in further detail it is observed that the estimation is in

general delayed. This may be interpreted in the sense that the significant transient symptoms

are dominating in the velocity residual which may also be observed from fig. 8.11. This feature

can therefore be used to detect the fault more rapidly.

The delayed estimation will give a greater RMS error, but will not necessarily cause unreliable

diagnosis.

For the specific faults it is therefore not considered essential to have velocity measurements.

8.3.2 Evaluation of Residuals Generated by NARX ANN

In the previous section it was proved that the faults could be estimated for three different

situations both with and without noise. This was estimated with a classical state estimator

used to generate the residuals.

In the following it will be discussed whether the NARX ANN is capable of estimating the system

states with sufficient accuracy compared with the state estimator. This is used to analyse the

possibility of applying NARX ANN for residual generation.

The generated residuals are investigated in a similar manner as presented in sec. 7.6 where

the estimated states were evaluated. The three trajectories are applied, and by analysing the

difference between the actual and estimated states, the accuracy can be evaluated. For the

sake of brevity the result graphs are not presented here, but can be found in app. I in fig. I.1,

I.2, I.3, I.4, I.5, I.6, I.7, I.8 & I.9.

The simulation results shows insufficient performance of the NARX ANN. Especially the

stochastic position reference shows ±30 bar deviations on the chamber pressure estimates and
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in general the NARX ANN has insufficient accuracy. This indicates that the NARX ANN has not

been able to learn the actual system behaviour.

The decreased performance is connected with the increased training data, and the proposed

training and NARX design is therefore not sufficient for residual generation valid for all input

trajectories. However, if the FDD scheme is designed to diagnose exclusively when a certain

input sequence occurs, it would be possible to train the NARX to this specific situation.

Based on this it cannot be proved that the training method can make the NARX ANN adapt to

changing input sequences for the given system. In other words, further work must be done if

this type of estimator is desired to work under any given conditions.

In the following section it will be investigated whether the NARX can be trained with a single

repeating input sequence and with introduction of the external load defined in sec. 8.2.3.

8.4 Evaluation of the Fault Detection and Diagnosis Scheme with

External Load

The NARX ANN is desired investigated while an external load is applied. The applied load was

described in sec. 8.2.3 and it is expected that the load force is measurable. This is done to test if

it is possible to teach the impact of a given external load to the ANN. The position trajectory is

chosen as a sine wave, since the residual analysis revealed highest performance for this input.

The training procedure of the NARX ANN in this case is with the designed wind load applied as

an exogenous input together with the reference signal.

The diagnosis results when using the residuals generated with the external load along with a

sine position trajectory are presented in fig. 8.13.

The results shows similar tendencies to the ones previously shown in fig. 8.7. However, as seen

in fig. 8.14 the overall performance of leakage estimations has decreased as a consequence of

the external load.

The internal leakage is considered valid since it tracks the actual leakage when introduced,

furthermore the inaccurate estimates occurs at F 4 and only for a short temporary period.

The external leakage shows promising results, but it is not possible to distinguish which

chamber is leaking. This indicates that the symptoms on the residuals are similar when a

load is introduced. F 4 & F 5 are not affected in any significant manner by the introduced load,

although fig. 8.14 shows that F 4 has become more uncertain.

Based on these results it is possible to train the NARX ANN towards stochastic load conditions

provided a repeating sine trajectory is applied and force measurement is available.

8.5 Evaluation of Gradual Leakage

It is desired to evaluate if the designed FDD scheme is capable of detecting gradual internal

leakage over a long-period of time (1 week). If this can be diagnosed it is expected that certain

symptoms are static and not only transient, since the fault does not have the abrupt behaviour

from the previous tests. Furthermore, this test is used as a proof of concept to investigate

whether the FDD scheme can recognise the symptoms in an arbitrary time frame.

The gradual leakage is assumed to occur linearly over time, and is therefore simulated by slowly
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Figure 8.13: 2 second EMA of estimated- and actual simulated faults when applying the NARX ANN as
estimator with a sine wave input and wind load trajectory.
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Figure 8.14: RMS error of estimated- and actual faults from the results shown in fig. 8.13 & 8.7.

opening the leakage valve in the model with a slope of 0.3 mm2/7 days. In reality this is not

necessarily the actual occurrence of the fault, but is however an approximation of wear in the

system.

The gradual leakage tests are performed both with and without wind load since it was proved

that the internal leakage could be detected with the NARX estimator during a sinusoidal

reference with a measurable load.

The estimated and actual simulated faults are logged every two seconds and an EMA with a

period of 2000 seconds is applied. This is done to limit the size of the data file, and the EMA is

designed to filter this data sufficiently.

The results from the gradual leakage tests can be seen in fig. 8.15 & 8.16.
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Figure 8.15: Simulated internal leakage flow com-
pared with all fault estimations from
FTDANN1 without load.
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Figure 8.16: Simulated internal leakage flow com-
pared with all fault estimations from
FTDANN1 with load.

The results for the test without any load gives a clear indication that an internal leakage is

gradually increasing in the system. However, the estimation has an offset of ≈0.3 l/min. This

is considered acceptable, since this type of fault indication is only proposed to be used for

planning preventive maintenance on the given application. The estimation of external leakage

in chamber A has an offset and slope which could cause misinterpretation. However, the
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estimation of F 1 does show the most significant deviation from the normal value, and it can be

concluded that the system is gradually failing.

The estimations while an external load is applied are not as accurate as the test without load.

However, both the actual and estimated internal leakage are drifting, where the other fault

estimations are at a constant offset. The results are on the periphery of what can be considered

accurate enough to validate the FDD scheme during external load and gradual increase of F 1.

The argument speaking in favour of the validity is the estimated slope of F 1est .

Based on the diagnosis results without a load it is concluded that FTDANN1 has been able to

learn the correlation between the symptoms and the magnitude of the internal leakage. The

estimates do not have equal accuracy as for the much shorter step tests presented in sec. 8.3,

but it is expected that the proposed FDD scheme will be able to give a fair estimate of the faults

even during long periods of time. Furthermore, the gradual tests are performed with the NARX

estimator and if this is improved or a classic state estimator is used, the diagnosis is expected

to perform better.

8.6 Evaluation of Data Driven FDD Schemes Ability to Recognise

Several Fault Patterns

The model-based scheme from the above analysis relies on a model which was expected to

be realised with application of a NARX ANN. This could not be validated at multiple input

sequences, and it has therefore been considered to modify the scheme from fig. 8.2 by making

it only based on data driven FDD. This is illustrated by fig. 8.17.

System

Fault Sequence

FTDANN2

[xV,ref  xV] [F0  F5]
Position 

Trajectory

FTDANN1

[pA  pB  xP   vP  xV] [F0  F1  F2  F3  F4]

^ ^

^^^^^

Data driven FDD

Figure 8.17: The expanded data driven FDD scheme, where the design of FTDANN1 is re-trained with
the actual system states.

FTDANN1 is trained in a similar manner as was the case with a model-based topology which

was explained in sec. 7.4 & 8.2. The three training trajectories without load or noise are used

for evaluation. The results are shown in fig. 8.18. Graphs can be found in app. I in fig. I.16, I.17

& I.18.

The results in fig. 8.18 show that the RMS of the fault estimates from the data driven scheme is

higher than the prior presented model-based accuracy. Only F 5 is equal in both schemes. This

is caused by application of equal FTDANN2 in both schemes.
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Figure 8.18: RMS error of estimated- and actual leakage from results shown in fig. 8.7, 8.8 & 8.9
compared with the same sequence applied to the data driven scheme shown in fig. 8.17.

It is concluded that the most promising FDD scheme is the model-based. This requires an

experimentally verified state estimator, which for the given system is considered achievable

provided the test from chap. 11 can be conducted.

In the following it is investigated if the FTDANN can be improved by adding an additional

hidden layer.

8.7 Evaluation of Multilayer Focused Time Delay ANN

To investigate if the performance of the FTDANN is linked to the number of neurons in a single

layer, or the number of layers in the design of the ANN, a Multilayer Focused Time Delayed

Feed Forward ANN (MFTDANN) has been designed and tested. The MFTDANN is replacing

FTDANN1 from fig. 8.2 & 8.17.

A MFTDANN is designed for both the data driven and model-based scheme where the residuals

are generated by the classic state estimator. Furthermore, the tests have been conducted

without the overwrite rule described by algorithm 1. By excluding the overwrite rule, the

MTDFANN enhanced learning capabilities (deep-learning) may be investigated. In fig. 8.19,

b
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(2)

b

∑ 

(3)

Lw2Lw1

ξ(k) y(k)^

Hidden Layer 1 Hidden Layer 2 Output Layer

Lw3
d2

TDL

Figure 8.19: Simplified structure of Multilayer Focused Time Delayed ANN.

a simplified schematic of the MFTDANN is illustrated. The schematic is based on the theory

presented in sec. 7.4, but with the addition of a layer.

The MTDFANN design parameters are based on the ones applied for the FTDANN found in

the study presented in sec. 8.3. This is done since it is not considered feasible to apply the

GA optimisation on the MFTDANN, due to the increased time required for ANN training and

hence also for GA convergence.
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The total network function for the MFTDANN can be described by (8.17), which represents the

structure from fig. 8.19.

ŷ(k) = Lw3 tanh
(
Lw2ξT DL(k)+b(2))+b(3) (8.17)

The regressors ξ(k) & ξT DL(k) are given by (8.18).

ξT DL(k) =


tanh

(
Lw1ξ(k)+b(1))

tanh
(
Lw1ξ(k −1)+b(1))

...

tanh
(
Lw1ξ(k −d2)+b(1))

 ; ξ(k) =


u(k)

u(k −1)
...

u(k −d1)

 (8.18)

The matrices and vectors are given by (8.19) & (8.20).

Lw1 =


w (1)

1,1 · · · w (1)
1,(d1+1)i

...
. . .

...

w (1)
n1,1 · · · w (1)

n1,(d1+1)i

 Lw2 =


w (2)

1,1 · · · w (2)
1,(d2+1)n1

...
. . .

...

w (2)
n2,1 · · · w (2)

n2,(d2+1)n1

 Lw3 =


w (3)

1,1 · · · w (3)
1,n2

...
. . .

...

w (3)
o,1 · · · w (3)

o,n2


(8.19)

b(1) =


b(1)

1
...

b(1)
n1

 b(2) =


b(2)

1
...

b(2)
n2

 b(3) =


b(3)

1
...

b(3)
o

 (8.20)

where n1 denotes the number of neurons in hidden layer 1, n2 denotes the number of neurons

in hidden layer 2, d1 denotes the input delays, d2 denotes delays of hidden layer 2 and o denotes

the number of outputs and i denotes the number of inputs. It should be noted that the output

from the first hidden layer is stored d2 +1 times.

The training procedure is Levenberg-Marquardt with back-propagation presented in sec. 7.3.2.

Network d1 d2 n1 n2 Training period

FTDANN1 6 - 6 - 28 min
MFTDANN (Data-Driven) 6 6 6 6 5 h 23 min
MFTDANNri deal 6 6 6 6 8 h 22 min

Table 8.3: Comparison of FTDANN and MFTDANN design and training period.

The evaluation of the multilayer schemes is done by comparing them with both the model-

based scheme in sec. 8.3 without algorithm 1 and the data driven scheme in sec. 8.6 without

algorithm 1. In this manner it is possible to investigate if the additional layer is an improvement

of the previous most promising designs. The three training trajectories without load or noise

are applied.

In fig. 8.3 the diagnosis results for each scheme can be seen. The corresponding graphs can be

found in app. I.2 in fig. I.19, I.20, I.21, I.22, I.23 & I.24.

The RMS error results for the model-based scheme shows that the addition of a hidden

layer does not enhance the performance significantly. It is therefore not considered a better

alternative than applying the FTDANN1 with algorithm 1. Furthermore, the results from fig.

8.10 where algorithm 1 was applied, show that this is superior with respect to the MFTDANN
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Figure 8.20: The RMS error of estimated- and actual leakage when FTDANN is applied without
algorithm 1, compared with the RMS of the same sequence applied to the data driven and
model-based FDD schemes designed with a MFTDANN.

scheme. Therefore, and due to the increased training period, multilayer diagnosis is not

considered feasible in this scheme. The most promising model-based scheme is therefore, two

FTDANNs with the proposed overwrite algorithm 1, although this involves manipulation of the

outputs.

The results for the data driven scheme shows, that the MFTDANN outperforms the standard

FTDANN in almost every fault indices. However, the increased performance comes at a cost

of increased training period by a factor of 11. Depending on the application, the training

period may or may not be considered an issue, since less data may be used, or better computer

hardware is available, hence the absolute training period could be reduced. This issue is

addressed in [X. Glorot, 2010] stating, that standard gradient descent training is not suited for

deep feedforward ANN. Therefore, it is not considered feasible to increase the amount of layers

any further, due to the increase of the training period.

The data driven results are considered to validate that an additional layer can enhance the

diagnosis performance. Hence, further work should be addressed to investigate the benefits of

increasing the amount of layers further while changing the training approach.

The main benefit of this MFTDANN data driven scheme is its independence of residual

generation, and therefore a reduction of engineering effort may be realised.

8.8 Part Conclusion

A systematic test procedure has been performed to evaluate the capabilities of various FDD

schemes.

The model-based scheme was trained to recognise different series of input residuals and faults

with different characteristics were successfully diagnosed. This is an indication of the schemes

versatility and it is proposed to investigate to what extend the list of faults can be expanded.

The stuck valve required additional attention and an alternative solution was suggested.

The model-based scheme proved to be sufficient with respect to generalisation, i.e. it

functioned as intended to unseen data. Furthermore, a comparison of the scheme with and

without application of the velocity was performed. This yielded that the benefits of applying
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velocity did not outweigh the additional complications connected with such measurements,

for the specific application of interest in this project.

The NARX ANN was not able to predict the desired outputs with different series of exogenous

inputs.

During the work of this thesis it was investigated if the NARX ANN could be trained in a similar

manner as the system identification problem for a hydraulic servo system described in [L. Li,

2013]. This was done with a slow and fast series of step inputs (to excite the valve dynamics

and the actuator dynamics separately). However, this did not yield any promising results.

Further work must be addressed to design a NARX estimator for this specific system,

alternatively a classic state estimator may be applied.

Introduction of a stochastic load complicated the FDD problem and resulted in poorer

performance on F 2−F 3, even though the force acting on the actuator was measurable. The

estimations of the remaining faults were with an acceptable RMS error.

A simulation with a gradual increase of F 1 showed promising estimation without load, even

though the FDD scheme had not been trained with this exact type of fault. This indicates that

the scheme is capable of recognising the static values of the symptoms and connecting them to

the different faults with correct severity and time of occurrence. When a load was introduced

the estimations were questionable.

A pure data driven scheme was proposed, due to the complications with the NARX estimator.

This resulted in significantly poorer diagnosis performance, however, with the benefit of

eliminating the need for an estimator.

An additional hidden layer was added to FTDANN1 in the data driven and model-based

topology. This did not give enhanced performance in model-based FDD. However, the data

driven scheme was improved significantly, and the requirement for a manual overwrite was

reduced. However, the required training period with the Levenberg-Marquardt algortihm was

considered infeasible if additional complexity was desired. Therefore, a deep layer network

scheme based on reinforcement learning could serve as a future aspect to design a general

solution to the FDD problem.

The performance of several FDD schemes has been evaluated via simulation. It is proposed to

test the model-based scheme with a sine trajectory on the actual test rig to investigate if similar

results can be obtained practically. This is presented in chap. 11.
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In the following chapter, control strategies for the test rig are designed. These will be used to

control the piston position of the test hydraulic servo system (HSS) and the force of the load

HSS.

The purpose of the control strategies is to be able to use the test rig in a similar manner as

done for the Fault Detection and Diagnosis (FDD) simulations where a desired load can be

implemented. The subscript t and l are used to denote test- and load HSS respectively.

The derivation and verification of the linear model can be found in app. A.

9.1 Analysis of the Control Problem

The two actuators in the system are controlled independently with one servo valve for each

actuator. Due to their physical coupling the independent control introduces an additional

problem which need to be addressed. To solve this problem, it is proposed to apply

feedforwarded information from the position servo reference when controlling the force in the

load actuator. The solution is shown in sec. 9.3.

The control problem is considered as two SISO systems with an unknown disturbance (from

the opposing actuator). This is done to simplify the control design while fulfilling the control

specifications which are explained later in this chapter.

In chap. 8 it was found that promising results were achieved when a sinusoidal reference with

or without a stochastic term and a constant load were applied.
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The TF’s of the systems are desired investigated at different piston position to confirm that a

single linear controller is feasible in the entire working area. The bode plots corresponding to

the TFs for position and force at different piston positions are presented in fig. 9.1 & 9.2.
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Figure 9.1: Open-Loop frequency response of the piston position in the test actuator, for different
linearisation points.
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Figure 9.2: Open-Loop frequency response of the piston force in the load actuator, for different
linearisation points.

The derivation of the TFs for the bode plots in fig. 9.1 & 9.2 can be found in app. A. It is

observed that the frequency response of the two respective hydraulic servo systems does not

vary significantly although the linearisation point is changed. Therefore it is verified that a

standard linear controller for both systems is feasible.

The derived TFs will be applied when designing linear control strategies in the following.
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9.2. Position Control of Test Actuator

9.2 Position Control of Test Actuator

Tracking of the position reference is done by applying a feedback of the test side piston

position, comparison of these gives et which is directed to the developed control strategy. The

structure of this is shown in fig. 9.3.

G2,t(s)+
-

GC,t(s)
xP,ref xP

Fl(s)

GV(s)+
-

G1,t(s)

Ft(s)

Figure 9.3: Block diagram of test side position servo control. The load actuator force is considered as
an unknown disturbance.

The TFs from fig. 9.3 can be described by (9.1), (9.2) (from sec. 5.1), (9.3) (from app. A) & (9.4)

(from app. A).

GC ,t (s) = uV ,t (s)

et (s)
= Kp (9.1)

GV (s) = xV ,t (s)

uV ,t (s)
= 1

s2

ω2
n,V

+2ζV
s

ωn,V
+1

(9.2)

G1,t (s) = Ft (s)

xV ,t (s)
= A A,t kQ,t (ms +B)

ms2 +B s −kQP,t ms −kQP,t B + A A,t AP,t
(9.3)

G2,t (s) = xP (s)

Ft (s)
= 1

(ms +B)s
(9.4)

The mass (m) & damping (B) applied in the TFs are the combined mass and damping acting

on the moving parts.

The argumentation for applying a P-controller and design of (9.1) are presented below.

9.2.1 Argumentation for Controller Choice and Tuning of Controller Gains

The purpose of the position controller is to be able to track a sinusoidal reference with a

frequency of 0.1 Hz and it is not considered an issue if it does not have tracking capabilities

below 2% of full stroke, corresponding to 8 mm.

The FDD scheme is designed to mimic the implemented controller, i.e. it is trained in Closed-

Loop. Therefore, the design of the controller is irrelevant as long as the algorithm is presented

with data generated with the actual controller.

The control may therefore be realised by a P-controller designed, so that the system is stable

at the worst case linearisation point. This is ensured by tuning the controller gain to give an

Open-Loop phase margin (P M) of atleast 45◦ and gain margin (GM) of atleast 6 dB by using

the linear model. This results in some robustness towards disturbances or changes of system

parameters.

Furthermore, it is irrelevant to design a controller with a bandwidth above that of the servo

valve (60 Hz), and since the position servo is initially only required to track a sine wave
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with frequency of 0.1 Hz, the controller can be designed with a Closed-Loop bandwidth

approximately twice of this.

The requirements to the controller are:

(g.1) Closed-Loop bandwidth: ωbv,C L>0.2 Hz

(g.2) Gain margin: GM>6dB

(g.3) Phase margin: P M>45◦

The tuned controller gain for the linearisation point, can be seen in tab. 9.1, and the chosen

point is explained in app. A. The frequency response of the compensated system and the

designed controller can be seen in fig. 9.4.

Controller Parameters Compensated System
xP0 [m] ẋP0 [m/s] Kp [-] GM [dB] P M [◦] ωbw,C L [Hz]

0.15 0.03 40 23 89 9.5

Table 9.1: Position controller values and resulting gain margin, phase margin and Closed-Loop
bandwidth at the linearisation point.
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Figure 9.4: Open-Loop frequency response of the test actuator, with and without the designed
controller.

From fig. 9.4 it is observed that the gain of the position servo has been increased and that the

compensated and uncompensated resonance peak occurs at equal frequencies with the same

magnitude.
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Figure 9.5: Closed-Loop step response of the compensated test actuator.

The simulated position tracking performance can be found in app. D.

9.3 Force Control of Load Actuator with Velocity Feedforward

The two hydraulic actuators are both mounted on the same slider. Therefore it is proposed to

feedforward the desired velocity of the test actuator to the load actuator. This will cause the

load actuator to become a slave to the test actuator which acts as the master.

The desired load force will be added by manipulating the load actuator control signal

additionally.

The generated force from the system (estimated from pressure measurements) is used as a

feedback and a controller is designed to track the desired force. The general structure of the

control system can be seen in fig. 9.6.

+
-

GC,l(s)
Fl,ref

Fl(s)

GV(s)+
-

G1,l(s)

(G1,l(s)G2,l(s)s)
-1

xP(s)
.

Figure 9.6: Block diagram of load side force servo control with velocity feedforward from the test side.
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The TFs from fig. 9.6 which are not previously described can be defined by (9.5), (9.7) & (9.6).

GC ,l (s) = uV ,l (s)

el (s)
= Kp

(1+ z0s)

(1+p0s)
(9.5)

G1,l (s) = Fl (s)

xV ,l (s)
= A A,l kQ,l (ms +B)

ms2 +B s −kQP,l ms −kQP,l B + A A,l AP,l
(9.6)

G2,l (s) = xP (s)

Fl (s)
= 1

(ms +B)s
(9.7)

(G1,l (s)G2,l (s)s)−1 =
(

ẋP (s)

Fl (s)

Fl (s)

xV ,l (s)

)−1

= xV ,l (s)

ẋP (s)

Theoretically the inverse of (9.6) can be used to decouple the two actuators, by compensating

the valve displacement in the load actuator to follow the velocity of the test actuator. This

cannot be implemented in reality since the inverse of G1,l (s)G2,l (s)s is a non-proper TF and

furthermore, the valve displacement cannot be directly manipulated.

Therefore, to approximate the inverse of the TF and to manipulate the control signal (uV ,l )

instead of the actual valve displacement (xV ,l ) the TF in (9.8) is defined and the DC-gain of it is

given by (9.9). The modified structure is illustrated in fig. 9.7.

GV ,l (s) =(
sGV (s)G1,l (s)G2,l (s)

)−1 (9.8)

Hl =GV ,l (0) (9.9)

+
-

GC,l(s)
Fl,ref

Fl(s)

+
-

G1,l(s)

Hl

GV(s)

xP(s)
.

Figure 9.7: Modified block diagram of load side force servo control.

Determination of the desired velocity can be obtained from the defined position reference, if

the signal is continuous and hence differentiable. If this cannot be guaranteed, i.e. in the case

of a step input, another method must be applied.

For the requirements of the force controller in this project it is sufficient to apply the DC-gain

of the test actuator velocity TF as described by (9.11).

GV ,t (s) =sGV (s)G1,t (s)G2,t (s) (9.10)

Ht =GV ,t (0) (9.11)

This is combined with (9.9) thereby a gain (Γ) which is a function of the moving direction is

defined as seen in (9.12).

Γ=
{

H+,t H+,l = 0.2331 for uV ,t ≥ 0

H−,t H−,l = 0.2593 for uV ,t < 0
(9.12)
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9.3. Force Control of Load Actuator with Velocity Feedforward

In (9.12) the + & - subscript defines if positive or negative valve reference is used during the

derivation of the TF’s. The specific gains can be found in app. A along with the different

linearisation points which are shown in sec. A.1.

9.3.1 Argumentation for Controller Choice and Tuning of Controller Gains

A lag controller has been chosen since it is desired to reduce the gain and phase around the

resonance peak. In this manner the desired gain margin may be achieved and the control

design effort is minimal. During the design the following requirements for the controller have

been considered:

(h.1) Closed-Loop bandwidth: ωbv,C L>15 Hz

(h.2) Rise time: τC L<0.1 s

(h.3) Gain margin: GM>6dB

(h.4) Phase margin: P M>45◦

The required Closed-Loop bandwidth and rise time are a consequence of the designed

load trajectory presented in sec. 8.2.3. This was designed with a 0.16 Hz sine wave and

pseudorandom steps of 10 Hz with a time constant of 0.1 seconds (time until 63.2% of the

step is reached). The design of the lag compensator fulfilling this is given in tab. 9.2.

Controller Parameters Compensated System
xP0[m] ẋP0[m/s] Kp [-] z0 [-] p0 [-] GM [dB] P M [◦] ωbw,C L [Hz] τC L [ms]

0.25 0.03 5e-6 0.0027 0.027 47 ∞ 63 4.5

Table 9.2: Force controller values and resulting gain margin, phase margin, Closed-Loop bandwidth
and rise time at the linearisation point.

-150

-100

-50

0

50

100

M
ag

ni
tu

de
 (

dB
)

100 101 102 103 104
-270

-180

-90

0

90

P
ha

se
 (

de
g)

GG
C,LAG

GG
C,LAG

Frequency (rad/s)

Figure 9.8: Open-Loop frequency response of the load actuator, with and without the designed
controller.
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Figure 9.9: Closed-Loop step response of the compensated load actuator.

The simulated force tracking performance can be found in app. D.

9.4 The Governing Control Equations

The presented controllers can be combined in a single system diagram with the decoupling as

shown in fig. 9.10.

Test

HSS

Load 

HSS
+
-

GC,t(s)+
-

GC,l(s)+
-

Fl,ref

xP,ref xP(s)

Fl(s)

Г 
uV,t

uV,l

Figure 9.10: Final structure of the control strategy.

The system TF’s changes as a function of direction of piston movement. Therefore the varying

gain, Γ, is introduced to accommodate for this.
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9.5. Part Conclusion

The test and load side valve control signals can then be defined as (9.13) & (9.14).

uV ,t =GC ,t (s)et (s) (9.13)

uV ,l =GC ,l (s)el (s)−ΓuV ,t (9.14)

The theoretical performance for both the position- and force controller with and without

feedforward can be found in app. D.

9.5 Part Conclusion

A position and force controller have been designed for the test and load actuators respectively.

These were designed at the linearisation points corresponding to the lowest eigenfrequency in

order to ensure stability in the expected working area.

The controllers have been proved input/output stable at the chosen linearisation point, and

the design criteria have been met. This was done by evaluating the gain margin, phase margin,

closed-loop bandwidth and rise time of the two separated compensated systems.

The choice of controller was based on finding the simplest solution to the control problem,

while still meeting the system requirements.

The simulated tracking performance is illustrated in app. D, where the improvement caused

by the feedforward gain is obvious.
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This chapter describes the implementation and functions of the Supervisory Control and Data

Acquisition (SCADA) system, which will be used on the laboratory set-up.

NI9144 EtherCAT Slave 

User 

Interface 

PC

pSpTpA,tpB,tpA,lpB,l

xP

uc,t

uc,l

xV,t

xV,l

TCP/IP

Analog in

Analog out

QA,t QB,t

Qint,LQA,ext,L QB,ext,LFL

RT-Machine

xP

.

Figure 10.1: Communication of hardware used on the set-up, where t & l denotes test and load side
respectively.
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10. IMPLEMENTATION OF SUPERVISORY CONTROL AND DATA ACQUISITION SYSTEM

The SCADA system will be used to collect data for verification of the mathematical model,

and of the proposed fault detection and diagnosis scheme. The SCADA system is designed

as an EtherCAT master/slave Ethernet fieldbus system. The master unit is a LabVIEW Real-

Time Desktop PC (RT-Machine) which utilises deterministic software/Digital based control.

The slave unit is a National Instruments (NI) NI9144 8-Slot EtherCAT Chassis, which will hold

different NI C Series I/O Modules, where for this thesis an analogue input, an analogue output,

and a digital I/O have been utilised. A functional connection diagram of the measurement

system can be seen in fig. 10.1. The implemented control algorithm runs on the RT-Machine

which is connected to the EtherCAT slave. This holds the Data Acquisition Cards (DAQ) from

which measured inputs may be read and output signals may be written. All commands and set-

point changes to the RT-Machine are send from the user interface computer (UI PC), where real

time is not needed.

The following section contains a description of the implemented software, how the RT-

Machine operates, and how the system is controlled from the UI PC.

10.1 Architecture of Implemented Software

The developed software implemented on the RT-Machine, is a customised version of LabVIEW

Real-Time Control (NI-DAQmx) template provided by National Instruments. The overall

architecture of the different loops, communication, data logging and system health monitoring

can be seen in fig. 10.2.

UI Event 

Loop

UI Message 

Loop

Acquisition/

Logging  

Loop

RT Message 

Loop

RT Loop

RT Watchdog 

Loop

Lossless 

Databuffer

TCP/IP

Queued Messages 

UI PC RT-Machine

Data Display 

Loop

Data 

Figure 10.2: Top level software architecture of the implemented SCADA system.

The following subsections will explain the different parallel loops on both the UI PC, and the

RT-Machine.

10.1.1 User Interface PC

The first layer of the developed software is the UI PC. The UI PC is a Windows based PC, which

runs a standard version of LabVIEW. Here the user/operator can set different control variables,

give commands to the RT-Machine, activate the data-logger and survey the systems health.
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10.1. Architecture of Implemented Software

All the parallel loops are connected through a message queue, which can transmit commands

between the different loops. This feature removes the need for interrupting the loops, when

a command is send. Instead the message is introduced when the loop has completed the

iteration, and is preparing the next iteration. The UI PC software architecture consists of four

parallel loops, which can be described as the following.

UI Event Loop

The Event Loop surveys all user activity, by checking if one or more of the user input

variables have changed value or state. If a change has been made, a message is created

and send to the UI Message Loop along with the new user input data, as a package. The

created message acts as a header for the package. Every user event will have a unique

message, making the user input data distinguishable.

UI Message Loop

The Message Loop receives all messages send from all the loops running on the UI PC

along with all messages send from the RT-Machine. If a message is received from the

UI Event Loop, the message header is interpreted and sorted. Next it is pushed into the

message queue to the local or remote receiver, along with the data attached to it. The use

of the queued message approach allows the UI PC to use a high level of data integrity, but

still have a low influence on the parallel execution of the other loops

UI Acquisition/Logging Loop

The Acquisition/Logging Loop reads all the data from a First In First Out (FIFO) data

buffer send from the RT-Machine. The data is read in chunks, and send to the UI Data

Display Loop. If a message containing a data logging command, along with a user

defined logging interval, the received data is also saved to a file. The use of a FIFO buffer

allows for lossless data displaying and data logging, as long as the Acquisition/Logging

Loop reads the data from the FIFO buffer faster than the RT-Machine is pushing data to

the buffer.

UI Data Display Loop

The Data Display Loop receives data from the Acquisition Loop, and displays it to the

user. The loop is a low priority loop, and therefore only updates every 200 ms to save

CPU time.

Figures of the UI layout, and operation guides can be found in app. G

10.1.2 RT-Machine

The RT-Machine consists of several parallel loops, where the general structure can be seen in

fig. 10.2. The different parallel loops are clocked at different frequencies, and have different

prioritising, where the RT Loop is considered a high priority loop, and the different user

interacting loops are of lower priority. The following description will cover the main features of

the different loops and features implemented on the RT-Machine.

RT Message Loop

The RT Message Loop operates in the same manner, as the UI Message Loop. All

messages received from the UI PC or local loops on the RT-Machine are sorted, and

forwarded to the given process responsible of the task described in the message.

RT Loop

The RT Loop is the main loop of the program which is implemented to have a fixed

Department of Energy Technology - Aalborg University 109



10. IMPLEMENTATION OF SUPERVISORY CONTROL AND DATA ACQUISITION SYSTEM

frequency of 1 kHz. This means, that each iteration is timed to 0.001 s. If the RT-Machine

cannot complete one iteration within the time limit, a finished late error is triggered. The

sequence which the RT loops has to complete in each iteration can be explained as the

following:

The measurements are sampled, and the raw data collected is converted into SI units.

Since the measurements may by subjected to noise, digital Butterworth filters are

implemented and may be used by the SCADA software, if the user finds it necessary.

The data is checked up against predefined hardware protection values, and if the data

exceeds one or more thresholds, an error is triggered. If no error is trigged, the data

is fed into a state machine, where it may be used for control purposes. In fig. 10.3 a

visualisation of the designed state machine can be seen.

Safe State 

(Active)

Safe State 

(Faulted)

Manual
Manual Fault 

Override

Automatic

Figure 10.3: Visualisation of the implemented state machine.

The state machine is partly controlled by the user and partly by the program it terms of

safety. The different states can be described as:

Safe State (Active)

The Safe State (Active) is the start up state (default state), which is the state that will

be active when the UI PC is connected to the RT-Machine, and no errors have been

triggered. This state ensures that so called Safe Output Values are generated, which

for the two outputs to the MOOG valves are 0V. This state can only be active if no

errors have been triggered, hence the state can be changed directly by the UI PC.
Safe State (Faulted)

The Safe State (Faulted) is activated if the RT-Machine encounters an error. This is

done immediately and automatically by the RT-Machine to prevent damage to the

hardware and test rig. The state will be locked until the error has been eliminated

or the Manual Fault Override state is activated by the user. The Safe Output Values

are also used in this state, ensuring a fast cut-off of the pressure lines to the system.
Manual Fault Override State

The Manual Fault Override state may be activated by the user, allowing for manual
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control over the system so a given fault may be isolated. However, this state only

allows up to 10% of the full output.
Manual State

The Manual state may only be activated by the user, and allows for full output range.

This state is designed if manual tests, or a simple movement of the cylinder piston

is required.
Automatic State

The Automatic state like the Manual State may only be activated by the user. This

state allows the system to be controlled by a pre-implemented feedback trajectory

controller. In the case of this thesis, this mode will contain two controllers, one for

controlling the position of the test cylinder, and one for controlling the load deliv-

ered by the load cylinder. In both cases the controllers are trajectory controlled,

by pre-made trajectories, which are loaded on connection to the RT-Machine. The

discretisation of the controllers is done by Tustins Approximation, and is explained

in app. E.

RT Watchdog/Error Handling Loop

The Watchdog and Error Handling Loop is used to automatically survey the system

for any triggered faults. The Error Handler part of the loop is the custom made limit

checking, which is used for hardware and personal protection. If one or more limits are

exceeded the Error Handler will force the RT-Loop state into Safe State (Faulted), and a

message is send to the UI PC explaining the error. The Watchdog timer works by having

the RT-Machine constantly receive confirmation that the computer is still functioning

properly, hence no software fault has occurred, and that the device is still connected to

the host UI PC. If the Watchdog does not receive this confirmation within a pre-set time-

out period, the Safe State (Faulted) will be activated and the Safe Output Values written to

the outputs and a message will be send to the UI PC. These safety features are necessary

since the system may be used for testing experimental controllers and in the case of this

thesis fault diagnosis techniques.

RT Lossless Data Buffer

The RT Lossless Data Buffer collects, and temporary stores all measurement data. Since

the RT Loop samples at 1 kHz a buffer must be used to prevent data losses, when

transmitting the data to the UI PC. The Lossless Data Buffer is a FIFO buffer hosted

on the RT-Machine, where the size of the FIFO is designed such that the read rate by

the UI Acquisition/Logging Loop can keep up with the 1 kHz write rate of the RT-Loop,

hence, a buffer overflow is not encountered. The idea of the FIFO buffer is shown in fig.

10.4, where the input data is enqueued one sample per iteration by the RT Loop, and the

dequeuing is done in chunks by the UI Acquisition/Logging Loop.
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Enqueue Dequeue

Figure 10.4: Simple FIFO buffer example.

10.1.3 Implementation of the Fault Detection and Diagnosis Scheme

The Fault Detection and Diagnosis (FDD) scheme may be implemented in several different

ways. Two different approaches will be investigated in this thesis. The first is an off-line

implementation, where the data is collected through the data logger and then analysed off-

line by the FDD scheme. The second approach is an on-line implementation, where the FDD

scheme is implemented alongside the RT state machine. Since the first method does not

require additional coding, it will not be further explained, however, a short explanation of the

on-line implementation is given in the following.

Data Exchange from LabVIEW to Simulink through UDP Communication

To speed up the on-line FDD, a User Datagram Protocol (UDP) is proposed. The UDP enables

data to be exchanged from LabVIEW to Simulink with the sampling time limitations set by the

operating system, hence a LabVIEW implementation of the ANN is not necessary. However,

the UDP can be a risky choice if the data being exchanged is of critical character, since the

protocol does not guarantee a "safe" delivery of data being send. Hence, the UDP is only

recommended to send short, and non-critical messages [Instruments, 2006]. Since the FDD

data being transmitted is not of critical character in a system functionality content, this is not

considered a major issue, for the proof of concept. Furthermore, since the UDP does not have

much communication control, no explicit connection to the receiver is necessary. The client

(Simulink) must simply listen on a specified UDP port, and any data broadcast to that port is

received.

In fig. 10.5 & 10.6 the implementation of the UDP communication can be seen, where both the

Simulink and the LabVIEW are running on the UI PC.

Data In 2001

All UI Loop Stop

-1

1 27.0.0.1

Figure 10.5: Data is prepared as a string, and
send as pure ASCII characters from
LabVIEW.

UDP
Receive
Binary

Data

N

Receive

Real-time UDP
Configuration
Bus: 0 Slot: 0

Id: 1
Intel 8255x

Real-time UDP
Configuration

ASCII
Decode

D 1

ASCII Decode

1

Out

Terminator

Figure 10.6: Data is received in Simulink as pure
ASCII character and is converted
back to floating numbers.
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10.2. Part Conclusion

The loop running in LabVIEW is executed in parallel with the model in Simulink. These ex-

change values on each iteration, with an update period of what is allowed by Windows OS on

the UI PC. The UI PC is not running in real time, hence the data will be delayed. However, this

is not considered as an issue since the data send from the RT-Machine to the UI PC through the

data buffer. The data buffer is forwarding chunks to Simulink, where these are unpacked and

diagnosed.

The Data In object in fig. 10.5 contains all necessary measurements including: p A,t (k),pB ,t (k),xP (k),ẋP (k),xV (k),xP,r e f (k),pS(k),pT (k),p A,l (k),pB ,l (k).

This approach is chosen since it reduces the time spend on re-formulating the FDD scheme to

other programming environments. However, future work could be addressed towards develop-

ing methods to exchange data from LabVIEW to Simulink faster, and with a guarantee of data

integrity.

10.2 Part Conclusion

Software for supervisory control and data acquisition has been developed and compiled to the

hardware on the test set-up. This serves the main purpose of doing data acquisition from the

transducers and controlling the servo valves. Furthermore, safety and condition monitoring

considerations have been presented, and incorporated in the architecture of the software,

which will ensure that the system operates safely and as intended.

A method for communicating between Simulink and LabVIEW has been proposed, such that

the FDD scheme can be executed in the Simulink environment, while receiving real system

measurements from the LabVIEW environment. Future work in developing a more safe and

faster data exchange method was proposed.
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HYDRAULIC TEST RIG & EXPERIMENTAL TESTS
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In the following chapter the test rig will be explained, along with a number of experimental

tests, used to verify the mathematical model from chap. 5. The main purpose is to investigate

if the model is sufficient as state estimator in the developed model-based FDD scheme.

All the applied raw data files are appended along with the scripts designed for data acquisitions

and data processing.

11.1 The Hydraulic Test Rig Design

A cross view of the mechanical test rig is illustrated in fig. 11.1 and the hydraulic diagram is

depicted in fig. 11.2.

Figure 11.1: Cross view of the mechanical structure of the test rig.
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Figure 11.2: Hydraulic diagram showing the interconnection of components and transducers in the test
rig.

Symbol Component Type Comment
A1 Accumulator Bosch 4 l.

H1 & H2 Hoses SEMPERIT DIN EN 856
4SN

1.6m & 1.6 m. d = 1/2".

H3 & H4 Hoses SAIAG DIN EN 852 2SN 1.4m & 1.0 m. d = 3/8".
V1 & V2 Servo valves MOOG D633-313 Input:±10VDC. Output actual spool

position 4-20 mA. Supply 24VDC.
V3 Pressure relief valve Unspecified Pressure limit of 300 bar

V4-V6 Bleed valves FT257/2-38 Manually adjusted opening areas
C1 Hydraulic test-cylinder LJM NH30-S-D-80/40xL-

500-S
Maximum pressure 250 bar.

C2 Hydraulic load-cylinder Hydra Tech 8054202-
40/25x400 Regal CC

Maximum pressure 250 bar.

T1 Magnetostrictive, Abso-
lute, Non-contact Linear-
Position Sensor

Temposonics R-Series
Model RP A41

Repeatability ±0.001% full stroke. Ve-
locity deviation <0.5%. Supply 24VDC.
Output 4-20 mA.

T2-T7 Pressure transducers Danfoss MBS 33 060G2199 250 bar. Output 4-20mA. Supply 10-
30VDC.

T2,T3,T6 & T7 Pressure transducers Danfoss MBS 33-
060G2199

250 bar. Output 4-20mA. Supply 10-
30VDC.

T4& T5 Pressure transducers Danfoss MBS 32-3615-
1AB06

400 bar. Output 0-10VDC. Supply 15-
30VDC.

T8 & T9 Flow sensors Parker SCQ-060-0-02 ±60 l/min (±3VDC). Supply 18-
30VDC.

T10-T12 Flow sensors Parker K-SCVF-015-10-07 ±15 l/min (20mA). Supply 18-30VDC.
P1 Pump station Serman & Tipsmark Supply pressure of 120 bar.

Table 11.1: Applied components and transducers on the test rig, data sheets are appended.
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Two opposing hydraulic actuators are applied in the test rig, one producing a load while the

other tracks a position reference. The actuators are controlled independently by servo valves,

which receives control signals from a real-time PC through LabVIEW. The experiments of

interest require measurements of chamber, supply & tank pressures, piston & valve positions

along with the velocity of the piston. The control and acquisition procedure is explained in

chap. 10.

Since it is desired to emulate internal and external leakage, the test rig has been equipped with

bleed-valves as can be seen in fig. 11.2.

11.2 Estimation of Friction Parameters

In the following section, the tests carried out for estimation of the friction characteristic are

presented.

Purpose

The purpose of this test is to calculate an estimate of the actual friction parameters in the

actuators on the test rig. The actuators’ rods are mounted on a slider as seen in fig. 11.1. To

simplify the test sequence it is decided to design a friction model which include the combined

system friction.

Methods

The test rig with the forces of relevance for friction parameter estimation is shown in fig. 11.3.

Test Load

FP,t FP,l

Ff,t Ff,sli Ff,l

Figure 11.3: Free-body-diagram of the forces acting on the moving parts.

The equation of motion with regard to the notation shown in fig. 11.3 is given by (11.1).

ẍP m = FP,t −FP,l − (F f ,l +F f ,t +F f ,sl i )︸ ︷︷ ︸
F f

(11.1)

The notations t , l & sl i describe test, load and slider respectively.

The actuators are physically coupled (equal velocity) and when they are operated at constant

velocity the acceleration force is zero. The combined friction in the system can therefore be

expressed by reformulating (11.1) to (11.2).

F f = (p A,t A A,t −pB ,t AB ,t )− (p A,l A A,l −pB ,l AB ,l ) (11.2)

The expression for the modelled friction is given by (11.3) and by adjusting these parameters

the friction can be approximated. This friction model is a rough estimate since the real friction
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may be both pressure-, temperature-, position- & velocity dependent.

F f (ẋP ) =


tanh(kt an ẋP )

(
Fc,p + (Fs,p −Fc,p )e

− |ẋP |
cs,p

)
+bc,p ẋP for ẋP ≥ 0

tanh(kt an ẋP )

(
Fc,n + (Fs,n −Fc,n)e

− |ẋP |
cs,n

)
+bc,n ẋP for ẋP < 0

(11.3)

The expression allows for a friction model which depends on the moving direction to account

for possible asymmetrical construction properties.

Parameter Sensitivity

It is observed from (11.2) that deviations on the pressure measurements may lead to inaccurate

friction parameter estimation. Therefore, a measurement uncertainty of 0.75 bar is applied to

depict the span in which the measured friction is expected to lie. This illustrates the sensitivity

of the friction. The limits are defined by manipulating the pressure measurements to a worst

case as shown in tab. 11.2. Further uncertainties may be introduced by inaccurate transducer

Uncertainty band max [bar] min [bar]

p A,t +0.75 -0.75
pB ,t -0.75 +0.75
p A,l -0.75 +0.75
p A,l +0.75 -0.75

Table 11.2: Description of the applied manipulations of the pressures to obtain the worst case
deviations of the measured friction force.

calibration. However, the severity of this is unknown and cannot be included in the parameter

sensitivity.

Experimental Procedure

Estimation of the friction parameters for the friction model requires constant velocity on the

piston of the cylinder. By doing this at different velocities, the friction model can be designed

by adjusting the parameters in (11.3). To achieve this, a constant input to the valve is applied

and the velocity measured. During this the chamber pressures are also logged.

Each velocity is tested five times in order to validate the consistency of the friction estimate.

Furthermore, if the data points show a significant coherence the estimated friction is not

sensitive to measurement noise.

All tests are performed after a warm up procedure has been done. This consists of full valve

opening until the piston is near endstop. This is repeated until the oil temperature is ≈55◦C.

Furthermore, this decreases unwanted air bubbles in the fluid which limits the sources of error.

An example of a test sequence can be found in fig. 11.4.

The velocity shown in the figure is based on flow measurement and known actuator dimen-

sions. This results in less noise than the alternative of deriving the position measurement.

The velocity magnitudes were compared for both methods and there was sufficient coherence

between the two, which is why the approach with less noise is used. It is observed from the

sequence that the velocity is not completely constant, which gives rise to a source of error in

the friction estimation. Therefore the slope of the position is calculated, and this is used as the

average velocity during each test. Furthermore, the average pressure forces during this period

of approximate constant velocity is used when estimating the friction.
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Figure 11.4: Results of the test for determination of friction.

The followed approach is considered sufficient for the purpose of this project, but a future

aspect may be to implement velocity control to ensure constant velocity and thereby a more

accurate friction estimation may be obtained.

Results

The measured friction force compared with the modelled is shown in fig. 11.5.

The results reveal an asymmetrical friction force but with the expected overall characteristics.

The uncertainty span shows that a insufficient pressure calibration or measurement uncer-

tainty will give rise to significant offset.

The estimated parameters describing the friction are shown in tab. 11.3.
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Figure 11.5: Simulated friction force compared with estimated friction from test rig.

F̂c,p [N] F̂s,p [N] b̂c,p [Ns/m] ĉs,p [m/s] F̂c,n [N] F̂s,n [N] b̂c,n [Ns/m] ĉs,n [m/s]

1e3 2.2e3 3e3 30e-3 0.4e3 0.3e3 2e3 20e-3

Table 11.3: Results of the estimated friction parameters from (11.3).

Part Conclusion

An estimate of the relevant friction parameters have been found, however there does exist

a large span of uncertainty on the pressure measurements. Furthermore, an offset on the

calibration of each sensor will cause discrepancies between the estimated and actual friction.

This calibration was performed by fitting the measured supply pressure on the set-up to the

supply pressure measurement from the supply pump interface board. Hereafter each chamber

from each cylinder is connected to the supply line, and the pressures in the chambers are

calibrated in the same manner as the supply pressure sensor. Since the pressures have to

be calibrated by another sensor, and the procedure is done manually, the calibration may be

corrupted. Therefore the results does have several sources of error.

11.3 Model Verification Tests

The tests performed to verify the derived model are described in the following.

Purpose

The primary purpose of this test is to investigate if the model is sufficient as estimator for

model-based FDD. This is done by validating the flows, chamber pressures, piston position

and valve signal. These are chosen since they are applied in the FDD scheme and therefore

need to be verified. However, the flows are solely included to verify that the measured flow is

corresponding to the simulated.

Methods & Experimental Procedures

Verification of the derived model is done by applying valve input steps of various magnitudes

and periods. The valve displacement, flows, pressures and piston position are measured. The

simulated system is compared with the measurements and if the two are coherent, the system
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model is verified. This test is carried out three times and if all are similar, only one of the three

is presented. This ensures that the test results are consistent.

Initially the servo valves offsets will be determined by looking at the displacement output while

zero control signal is applied. Thereby the neutral position of the spring can be estimated

under the assumption that the current output from the valve transducer is sufficiently accurate.

This verification aids in the overall system verification.

The valve flow is investigated to validate that the valves have been modelled sufficiently.

If this is the case, comparison of simulated and measured piston position is expected to

show a sufficient fit, since the velocity and flow are directly correlated when not considering

compression of fluid. If this is not the case, either the position measurement, flow

measurements or actuator manufacturing tolerances are insufficient.

The chamber pressures in the test cylinder are verified by using the measured load actuator

pressures in the model to ensure that the external load is simulated as measured. The

simulated pressures are adjusted by tuning the soft parameters of the oil stiffness.

Results

The results for determination of the valve offsets are shown in fig. 11.6.
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Figure 11.6: Test results to determine the neutral position of the MOOG servo valves.

From the figure it is concluded that the normalised neutral position for the two MOOG servo

valves are 7.5e-3 and -3.5e-3.

The main results of both simulation and experimental test are shown in 11.7. As previously

mentioned three tests have been conducted. These showed similar results which is why two of

them are omitted.

The flows are simulated by applying the information from the manufacturer and as observed

there is a sufficient coherence. It should be noted that there is an uncertainty on the

measurement of ≈±0.3 l/min.

The position reveals some discrepancies. Therefore the measured A-chamber flow divided by

the piston area informed by the manufacturer is plotted along side, which shows that the model

is accurate and measurement is inaccurate. This leaves a number of possible conclusions,

either an incorrect piston area is used, the flow is calibrated insufficiently or the position
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Figure 11.7: Test results and simulated counterparts for verification of the overall model dynamics.

measurement is incorrect.

The valve flow is calculated and measured with the exact specification from the manufacturer

and the same is the case for the actuator dimensions. The position measurement has

been checked for no- and full- actuator stroke resulting in 0 and 400 mm with a linear

characteristics. The actual positions were verified with tape measurements. The actuator and

valve specifications are considered to be highly accurate, and will therefore not adjusted.

The simulated movement in the positive direction is slower than anticipated from measure-

ments. The slope in negative direction is fitting sufficiently. This tendency is similar in the

chamber pressures, which are insufficient in positive direction but fits in negative direction.

The amount of uncertainties caused by pressure measurements (calibration and uncertainty),

friction model (simple approximation), actuator dimensions, the simulated load compared

with the actual load, and flow measurement (calibration and uncertainty) makes it difficult

to argue why the pressures does not fit consistently.

Conclusively it is uncertain if the mathematical model is sufficient to use for model-based FDD.

If the FTDANN is able to learn the normal residual between model and measurements it is

theoretically possible that it will be able to diagnose the faults accurately although the model

does not represent the measurements accurately.

It is therefore proposed to proceed with both the state estimator and to train a NARX ANN with

the measured data. These will be compared trough tests with the faults of interest.
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Part Conclusion

A coherence between simulated and measured flows have been confirmed. The simulated and

measured position showed different slopes while moving in positive direction, but accurate

slope in negative direction.

The simulated and measured chamber pressures did reveal coherence in negative direction,

but in positive direction the magnitudes did not fit. The issue was considered to have several

sources of error, which is why no solution could be proposed. This was also the case for the

simulated piston position.

The valve offsets along with the adjustments made on the fluid stiffness is shown in tab. 11.4.

The bulk modulus and air in the fluid have been manually tuned to estimate the pressure build-

up from the measurements.

Soft Parameters β̂oi l [bar] ε̂A,0[%] ûc,t ,o f f set [-] ûc,l ,o f f set [-]

Preliminary 6.5e3 0.38 0 0
Adjusted 13e3 1 7.5e-3 -3.5e-3

Table 11.4: The adjustments of the soft parameters applied in the model. Performed to fit the
measurements.
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In the following chapter evaluation tests of the developed FDD scheme on the physical test rig

are described. The FDD scheme of interest has been presented and explained in chap. 8. A

recap on the FDD scheme utilised is shown in fig. 12.1.

System

NARX ANN/

State Estimator

Fault Sequence

FTDANN2

[xV,ref  xV]

Z
-1

yNARX
^

[F0  F5]

+
-

External

Load

Position 

Trajectory

yf

FTDANN1

[pA  pB  xP  xV]
~    ~    ~    ~

[F0  F1  F2  F3  F4]

^ ^

^^^^^

Data driven FDD

Model-based FDD

Figure 12.1: The FDD scheme with estimated values denoted with a hat, i.e. ŷ and the difference
between estimate and actual values are denoted with a tilde, i.e. p̃ A .

Fig. 8.2 shows that the generation of a residual is either originating by using a classical state

estimator or by a NARX ANN. This has been chosen since the verification of the model was

problematic at some situation as explained in 11.3.
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12.1 Purpose

The purpose of the tests are to verify the developed FDD schemes capability to estimate

an actual leakage fault, stuck valve or pressure transducer failure, which are emulated on a

physical test set-up.

12.2 Methods

By emulating the faults of interest on the test set-up it is possible to obtain data series that can

be used to train and validate the developed FDD scheme. The approach will be similar to the

one described in sec. 8.3.

It was initially proposed to apply the ANNs trained from modelled data, with the purpose of

having an efficient approach for FDD development. However, the model verification revealed

that there were some discrepancies between measured and simulated data, which is why the

data has been collected experimentally, and the ANNs retrained.

The input and output regressors applied for training can be described as shown in (12.1)-(12.6),

all variables are measured values from the test set-up, with exception of {xP,r e f } which is the

input reference. The measurable values have all been filtered with a 6th . order Butterworth

filter, with a cut-off frequency of 50 Hz, the filter design is explained in app. F.

UNARX =
[

{xP,r e f }1 {xP,r e f }2 · · · {xP,r e f }m

]
(12.1)

YNARX =


{p A}1 {p A}2 · · · {p A}m

{pB }1 {pB }2 · · · {pB }m

{xP }1 {xP }2 · · · {xP }m

{xV }1 {xV }2 · · · {xV }m

 (12.2)

UFTDANN1 =


{p̃ A}1,1 {p̃ A}2,1 · · · {p̃ A}m,1 {p̃ A}1,2 {p̃ A}2,2 · · · {p̃ A}m,%1

{p̃B }1,1 {p̃B }2,1 · · · {p̃B }m,1 {p̃B }1,2 {p̃B }2,2 · · · {p̃B }m,%1

{x̃P }1,1 {x̃P }2,1 · · · {x̃P }m,1 {x̃P }1,2 {x̃P }2,2 · · · {x̃P }m,%1

{x̃V }1,1 {x̃V }2,1 · · · {x̃V }m,1 {x̃V }1,2 {x̃V }2,2 · · · {x̃V }m,%1

 (12.3)

YFTDANN1 =


{F 1}1,1 {F 1}2,1 · · · {F 1}m,1 {F 1}1,2 {F 1}2,2 · · · {F 1}m,%1

{F 2}1,1 {F 2}2,1 · · · {F 2}m,1 {F 2}1,2 {F 2}2,2 · · · {F 2}m,%1

{F 3}1,1 {F 3}2,1 · · · {F 3}m,1 {F 3}1,2 {F 3}2,2 · · · {F 3}m,%1

{F 4}1,1 {F 4}2,1 · · · {F 4}m,1 {F 4}1,2 {F 4}2,2 · · · {F 4}m,%1

 (12.4)

UFTDANN2 =
[

{xV }1,1 {xV }2,1 · · · {xV }m,1 {xV }1,2 {xV }2,2 · · · {xV }m,%2

{xV ,r e f }1,1 {xV ,r e f }2,1 · · · {xV ,r e f }m,1 {xV ,r e f }1,2 {xV ,r e f }2,2 · · · {xV ,r e f }m,%2

]
(12.5)

YFTDANN2 =
[

{F 5}1,1 {F 5}2,1 · · · {F 5}m,1 {F 5}1,2 {F 5}2,2 · · · {F 5}m,%2

]
(12.6)

where
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%1 is the number of fault modes in FTDANN1, 5. [-]

%2 is the number of fault modes in FTDANN2, 2. [-]

m is the number of test trajectories, 1. [-]

NARX is an index to indicate data applied for NARX network. [-]

FTDANN1 is an index to indicate data applied to diagnose the faults F 1-F 4. [-]

FTDANN2 is an index to indicate data applied to diagnose the fault F 5 . [-]

F 1 is the internal leakage flow. [l/min]

F 2 is the external A leakage flow. [l/min]

F 3 is the external B leakage flow. [l/min]

F 4 is the non-dimensional pressure failure. [-]

F 5 is the non-dimensional stuck valve failure. [-]

The training method utilised in for the ANNs, is the same as presented in sec. 7.3.3.

Furthermore, the design used, is the same as used for the ANNs presented in sec. 8.2.2. The

given designs and training periods, for the ANNs used in this section can be seen in tab. 12.1.

Network du dy n Training period

NARX 9 2 4 2 h 30 min
FTDANN1 (NARX) 6 - 6 42 min
FTDANN1 (Classical state estimator) 6 - 6 3h 41 min
FTDANN2 12 - 5 9 min

Table 12.1: ANN design variables, based on the results from sec. 8.2.2

12.3 Experimental Procedures

Each test is initiated by a warm-up procedure as described earlier in sec. 11.2. This is to ensure

temperature of ≈55◦C of the oil, to avoid changing fluid properties as a function of temperature

resulting in inconsistent results.

Subsequently all sensors are calibrated to minimise bias errors on the measurements.

A sinusoidal reference of 1.5 rad/s with 0.1 m amplitude is applied for all tests and a constant

load of 2 kN is referenced to the load cylinder. The position reference frequency is therefore

decreased by a factor of two and the amplitude increased by a factor of five from what was

applied during the theoretical tests. This results in a longer period of time before the direction

is changed, which was necessary in order to obtain accurate leakage measurements, since

the applied sensors need a certain amount of flow to give consistent outputs. This issue is

especially associated with the external leakage sensors, which are of the type gearwheel volume

counter, where the gearwheel needs to be spinning at the same rate as the flow in order to give

an accurate output.

By opening internal leakage valve V4 connecting chamber A and B in the test cylinder to a

given opening area, the internal leakage fault can be emulated. 100 seconds will be logged for

each test sequence. The valve configuration can be seen in fig. 11.2.

The same procedure is followed with external leakage valve V5 & V6 and furthermore, a test

with all the afore mentioned valves closed is performed to have data for the system without a

fault.
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The pressure transducer failure is emulated by manipulating the measured pressure output

and the stuck valve is tested by manipulating the reference signal within the control software.

The proposed test sequence allows for a similar data structure as presented in sec. 8.2.

A single continuous sequence containing the faults of interest is proposed to evaluate the FDD

scheme’s performance. The fault outputs are similar to previous faults and the generalisation

capability will therefore be visualised.

Ultimately the described test will represent an actual diagnosis situation where the system

changes from a healthy- to a faulty- state. If this can be diagnosed the scheme is considered

sufficient for its purpose.

12.4 Results

The main results of both fault measurements and estimations are shown in fig. 12.2

representing the FDD scheme with a classical state estimator. The faults are introduced one

at a time and applied for a 100 second period.

An EMA of ten seconds has been applied for all data series to decrease oscillations, thereby

enhancing the visibility of each fault estimation. It should be noted that the measured leakages

without EMA applied oscillates from 0.3-1.2 l/min.
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Figure 12.2: Experimental results of the FDD scheme with classical state estimator compared with the
measured faults. Every 100 second represents a given fault in ascending order from F 1-F 5
with F 4 being represented twice to emulate 1 & 250 bar pressure transducer output.

The results from fig. 12.2 shows consistent fault estimation in all situations except F 2 & F 3.

This is a decrease of performance compared with the theoretical tests. The main sources of

error are considered to be the detected issues with the modelling of pressures in sec. 11.3 and

the possible bias from uncertainty and calibration of the sensors that may be present in the

measurements.

Therefore it is suggested for future work to investigate the validity of the measurements, which

may be used to improve the model and ultimately the FDD scheme.

The results when the NARX ANN is utilised as estimator, and a FTDANN as diagnose scheme

are shown in fig. 12.3.
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Figure 12.3: Experimental results of the FDD scheme with NARX ANN compared with the measured
faults. Every 100 second represents a given fault in ascending order from F 0-F 5 with F 4
being represented twice to emulate 1 & 250 bar pressure transducer output.

The results reveal similar tendencies as the case with a classical estimator shown in fig. 12.2.

To visualise the difference, the respective RMS values of both FDD schemes are shown in fig.

12.4. These are compared with the theoretical performance of the model-based FDD scheme

previously described in sec. 8.3 where a sinusoidal reference was applied.
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Figure 12.4: RMS values of estimated- and actual faults from the experimental tests compared with the
theoretical RMS values from results shown previously in fig. 8.7.

From fig. 12.4 it can be seen that the FDD scheme with a classical estimator shows slightly

better performance than the NARX ANN estimator. Furthermore, the theoretical performance

is superior during the leakage faults. This is considered to be a consequence of the uncertainty

connected with measurements and the models ability to predict the system behaviour.

12.4.1 Evaluation of ANN Generalisation

The generalisation of the ANN is evaluated by the FDD scheme’s ability to recognise similar

faults as previously seen, however, introduced at an arbitrary time instant during one time

sequence.

The leakage magnitudes are slightly different than during training but in a somewhat similar

range. This will reveal if the FDD scheme is sufficient to be applied on the test set-up.

The results from the test are shown in fig. 12.5.
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Figure 12.5: Experimental results of the FDD scheme with classical state estimator compared with the
measured faults. The leakage magnitudes and time of occurrence are different than the
one applied in the training set.

It is observed from fig. 12.5 that the leakage faults are not diagnosed accurately. Therefore, the

residuals during these faults are investigated which revealed that only the pressure residuals

had a sight noticeable change. These pressure residuals are shown in fig. 12.6.
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Figure 12.6: Pressure residuals during F 1− F 3 where the introduction and removal of each fault are
marked with a black vertical dotted line.

The graphs illustrates that F 1 is not noticed in the pressures, but F 2 & F 3 causes the pressure

residuals to have larger peaks than normal while maintaining the overall tendency.

The main conclusion is that the change in residuals in general is insignificant during F 1-F 3.

The insufficient state estimator performance and measurement uncertainties compromises

the capabilities of the FDD scheme when applied on the physical test set-up. Therefore

any future improvements of the FDD scheme is proposed addressed towards these issues,

otherwise the ANN FDD approach may not remedy from the performance issues.

12.5 Part Conclusion

The FDD scheme was able to learn seven different patterns representing a series of symptoms

connected to different faults. Since the diagnosis is performed by an ANN, which is a black box

approach, it is not possible to obtain insight of exactly which phenomena caused the faults to

trigger within the ANN. Therefore a test with new data, which previously was not included

in the training set was conducted. This resulted in severe decrease of performance during

the leakage faults, in the model-based FDD scheme. Hence the generalisation of the ANN

could not be verified. This conclusion supports the argument that the training has resulted

in convergence between inputs and outputs, but with insufficient capability to recognise the

faults when introduced randomly.

Furthermore, when additional data sets from leakage faults were introduced in the training

process, the FDD schemes showed decreased performance. This tendency supports the earlier

mentioned conclusion, that the measured data might be corrupted.
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CONCLUSION

The main objective of this thesis was to investigate how an automated fault detection and

diagnosis (FDD) scheme could be designed for the pitching system of a wind turbine. This

problem was analysed and relevant literature was reviewed. This lead to the conclusion, that

there could be an unrealised potential by applying artificial neural networks (ANN) to design

such a FDD scheme. The final problem statement was:

"Utilising standard artificial neural networks, how may faults be detected and diagnosed

within a hydraulic servo system?

The faults considered are: internal/external leakages, stuck servo valve and pressure transducer

failure."

A solution strategy was formulated to answer the question in a systematic manner and the

main part conclusions hereof are summarised in this chapter.

A mathematical dynamic model of the hydraulic servo system was developed and this was

initially used to analyse the leakage faults. Based on the analysis of the leakages it was

concluded that abnormalities may occur in the measurable variables: chambers pressures,

piston position, piston velocity and valve spool displacement. The magnitudes of the residuals

were in a promising range compared with the defined level of measurement uncertainty.

However, the lowest severities of faults were considered to be in the periphery of what were

expected measurable and it was therefore not considered feasible to attempt diagnosing faults

below this limit.

Different FDD schemes based on ANNs were proposed for preliminary testing with inspiration

from the literature, where especially the novel aspect from [W. J. Crowther, 1998] using a

physical understanding of the system to determine the inputs, was adapted in this thesis. The

specific combination of the symptoms and faults have not been tested in any of the reviewed

literature. Furthermore, application of NARX ANN to generate residuals used for diagnosis of a

hydraulic servo system has not previously been tested.

The preliminary tests showed that a model-based scheme possessed greatest potential for

the leakage faults in the hydraulic servo system, and this was therefore chosen for further

investigation. Furthermore, it was concluded that the most efficient diagnosis was obtained

when a given number of previous system states were included along with the current state of
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the system. This approach is also consensus in the reviewed literature regarding fluid power

FDD with application of ANNs.

The model-based scheme was expanded to include the transducer failure and stuck servo valve

and an optimisation was proposed to minimise the risk of either under- or overfitting of the

ANNs. These optimum designs were developed to approximate the ANN complexity required

for the specific problem. The optimised designs did yield superior performance compared with

the preliminary designs.

The FDD scheme was trained to recognise three different operating patterns. The scheme was

trained to recognise the faults of interest by analysing the system states.

The evaluation was done in a strategic manner, so that only one parameter was changed for

each test, making it possible to limit possible sources of error. It was concluded that the FDD

scheme was sufficient with respect to generalisation when a mathematical model was applied

to generate residuals. However, the scheme did show a significant decrease of performance

during stationary operation of the piston for all the considered faults.

Measurement noise was simulated and the results did not show any significant deterioration.

Furthermore, velocity measurements were omitted from the tests which yielded a delayed but

accurate diagnosis.

Analysis of the NARX ANN state estimator yielded insufficient performance when subjected to

the three different operating patterns. Therefore, the NARX ANN estimator with an external

load applied was only tested with a sinusoidal position reference. This tests revealed that

external leakage flows were detectable, however, the origin of the leakage could not be

determined. The remaining faults were detected with sufficient certainty.

Due to the issues connected with the NARX ANN estimator, it was proposed to evaluate

the performance of a pure data driven scheme in a similar manner as for the model-based

scheme. This did not yield the desired performance on diagnosis of the leakage flows, however,

sufficient for the remaining faults. It was proposed to add an extra hidden layer in the ANN.

The additional layer did enhance the diagnosis performance at the cost of increased training

period. However, the theoretical performance was not superior compared with the model-

based scheme with a classical state estimator.

Software for supervisory control and data acquisition has been developed and implemented to

the hardware on the test set-up. This serves the main purpose of doing data acquisition from

the transducers and control of the servo valves. Furthermore, safety and condition monitoring

considerations have been presented, and implemented, which will ensure that the system will

run as intended and that the necessary data will be logged.

A method for communicating between Simulink and LabVIEW was proposed, such that the

fault detection and diagnosis scheme could be executed in the Simulink environment, while

receiving real system measurements from the LabVIEW environment. The communication

method have not been tested on the set-up.

Based on measurements from the experimental results the model could not be verified in

the entire test sequence. Therefore, the derived state estimator was concluded to be a rough

estimate of the measured states.

It was experimentally tested if the diagnosis ANN could distinguish between modelling errors

and residuals caused by actual faults. The faults of interest were emulated on the test set-

up and the data was used to train the FDD scheme, which ultimately showed a decrease in
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performance compared to the theoretical studies. In the experimental results, the FDD scheme

was able to learn seven different patterns representing the different faults.

The diagnosis is performed by an ANN, which is a black box approach and it was therefore not

possible to obtain insight in which phenomena are causing a given fault to trigger. However,

an analysis of the residuals given to the ANN was done, which showed a correlation between

the significance of residual and the ability to diagnose a given fault.

Lastly, the experimental tests did not yield equal performance compared with the theoretical

tests. This indicates that the FDD scheme may remedy if the measurements and operation

conditions on the practical set-up can be verified with the model.

In short the most promising FDD approach utilising standard ANNs in regard to the presented

faults for the hydraulic servo system, was a model-based scheme with a classical state estimator

utilising FTDANNs.

Future Aspects

Further work is proposed towards a more accurate state estimator with the use of either NARX

ANN or a classical state estimator. This is expected to enhance the model-based FDD scheme.

Furthermore, the certainty of the measurements from the test set-up is desired improved in

order for a mathematical model to be accurately verified.

Alternatively the model may be excluded, by the addition of hidden layers in the data driven

diagnosis. Due to the simulated improvements when adding a hidden layer. Therefore, further

attention is proposed towards investigating application of several hidden layers. Furthermore,

it was found through simulation and a literature review of [X. Glorot, 2010], that a gradient

based training algorithm is not ideal for deep layer ANNs. It is lastly suggested to investigate

other training algorithms.
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LINEAR MODEL

In the following a linear model describing a double-acting hydraulic actuator will be derived.

All linearised variables are denoted with a 0 in the subscript, e.g. p A0 is a constant linearisation

pressure for chamber A. The derived nonlinear model is the baseline, although some rewritings

of the equations are done to simplify the derivation of the linear model. The equations are

shown in (A.1)-(A.7)

ṗ A =Q A − A A ẋP
β(p A0)

A A xp +VA0︸ ︷︷ ︸
ch A

(A.1)

ṗB =QB +αA A ẋP
β(pB0)

VB0 −αA A xp︸ ︷︷ ︸
chB

(A.2)

QS→A = kV xV
p

pS −p A , xV ≥ 0 (A.3)

Q A→T = kV xV
p

p A −pT , xV ≤ 0 (A.4)

QS→B = kV xV
p

pS −pB , xV ≤ 0 (A.5)

QB→T = kV xV
p

pB −pT , xV ≥ 0 (A.6)

kV = kACD

√
2

ρoi l

FL = p A A A −αpB A A = pL A A (A.7)

α= AB

A A

The equations are linearised by applying the presented assumptions:

(i.1) The servo valves are constructed with ideal zero-lap spools
(i.2) The servo valves spool have perfect symmetrical opening areas
(i.3) Possible leakage flows in servo valves are disregarded
(i.4) Constant supply- & tank pressure
(i.5) Bulk modulus is constant
(i.6) The dynamics of the servo valves are disregarded due to their rapid response compared

with the rest of the system
(i.7) The actuator has no internal leakage
(i.8) Steady state flow conditions
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A. LINEAR MODEL

Reduction of the System Order and Linearisation

For simplification, a reduced order model is derived in the following. This is done by applying

(i.2), (i.3) plus (i.8) and only considering positive spool position the flows can be used to

describe the chamber pressures.

αQ A =−QB (A.8)

m (A.9)

αkV xV
p

pS −p A =−kV xV
p

pB −pT (A.10)

m (A.11)

α
p

pS −p A =−ppB −pT (A.12)

m (A.13)

α2(pS −p A) = (pB −pT ) (A.14)

(A.15)

The chamber pressures can be isolated to:

p A = α2pS +pT −pB

α2 (A.16)

pB =α2pS +pT −p Aα
2 (A.17)

The load pressure in (A.7) can be described as (A.18) and be used to isolate A and B pressures

depending on the load pressure. The reason for this rewriting will become clear when

linearising the flow.

pL = p A −αpB = α2pS +pT −pB

α2 −α2pS +pT −p Aα
2 (A.18)

m (A.19)

p A = pL +α3pS +αpT

1+α3 for xv ≥ 0 (A.20)

pB = α2pS +pT −α2pL

1+α3 for xv ≥ 0 (A.21)

Similar approach is taken for the negative spool position resulting in (A.22) and (A.23).

p A = pL +α3pS +αpT

1+α3 for xv ≤ 0 (A.22)

pB = pS +α2pT −α2pL

1+α3 for xv ≤ 0 (A.23)

By Taylor approximation the flows can be linearised as shown in (A.24) and (A.26) with the

shown linearisation coefficients.

∆Q A = kq,A∆xV +kqp,A∆p A (A.24)

kq,A = ∂Q A

∂xv

∣∣∣∣
p0

=
{

kV
p

pS −p A0 for xv ≥ 0

kV
p

p A0 −pT for xv ≤ 0
; kqp,A = ∂Q A

∂p A

∣∣∣∣
p0

=
{ −kV xV 0

2
p

pS−p A0
for xv ≥ 0

kV xV 0
2
p

p A0−pT
for xv ≤ 0

(A.25)

∆QB = kq,B∆xV +kqp,B∆pB (A.26)

kq,B = ∂QB

∂xv

∣∣∣∣
p0

=
{

−kV
p

pB0 −pT for xv ≥ 0

−kV
p

pS −pB0 for xv ≤ 0
; kqp,B = ∂QB

∂p A

∣∣∣∣
p0

=
{ −kV xV 0

2
p

pB0−pT
for xv ≥ 0

kV xV 0
2
p

pS−pB0
for xv ≤ 0

(A.27)
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The governing equations have now been reduced and linearised. This allows for a definition of

the transfer function.

Deriving the Transfer Function

The pressure changes (∆pL) can be obtained directly from (A.22) and (A.23) because of (i.4).

Note that this is independent of sign on valve reference.

∆p A = 1

1+α3∆pL (A.28)

∆pB =− α2

1+α3∆pL (A.29)

Now the derivative of change in load pressure can be obtained by utilising (A.1),(A.2), (A.24),

(A.26), (A.28) and (A.29).

∆ṗL =∆ṗ A −α∆ṗB = ch A(∆Q A − A A ẋP )−αchB (∆QB +αA A ẋP ) (A.30)

= ch A(kq,A∆xV +kqp,A∆p A − A A∆ẋP )−αchB (kq,B xV +kqp,B pB +αA A∆ẋP ) (A.31)

= ch A

(
kq,A∆xV +kqp,A

1

1+α3∆pL − A A∆ẋP

)
−αchB

(
kq,B∆xV −kqp,B

α2

1+α3∆pL +αA A∆ẋP

)
(A.32)

= (ch Akq,A −αchB kq,B )︸ ︷︷ ︸
kQ

∆xV +
(
ch Akqp,A

1

1+α3 − chB kqp,B
α2

1+α3

)
︸ ︷︷ ︸

kQP

∆pL − (ch A A A + chBαA A)︸ ︷︷ ︸
AP

∆ẋP

(A.33)

= kQ∆xV +kQP∆pL − AP∆ẋP (A.34)

The acceleration of the piston can be described by (A.35).

ẍP = pL A A −B ẋP

m
(A.35)

The governing equations (A.34) and (A.35) can be combined to the final TF (A.36) and (A.37)

with valve position as input and either piston position or force as output, the position output

block diagram of this is shown in fig. A.1.

xP (s)

xV (s)
= A AkQ

ms2 +B s −kQP ms −kQP B + A A AP

1

s
(A.36)

FP (s)

xV (s)
= A AkQ (ms +B)

ms2 +B s −kQP ms −kQP B + A A AP
(A.37)

The eigenfrequencies of the test and load cylinder is given by (A.38) and this as a function of

cylinder positions are shown in fig. A.2 & A.3.

ωn,c yl =
√

A2
A

m

(
ch A +α2chB

)
(A.38)

This rounds the derivation of a linear model, and this can be applied to design a simple

position and force controllers for the HSS.
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Figure A.1: Block diagram of the linearised HSS by means of (A.34) and (A.35).
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Figure A.2: Eigenfrequency of test cylinder.
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Figure A.3: Eigenfrequency of load cylinder.

A.1 Verification of Linear Model

Verification of the linear model is done by comparing the force step response of the nonlinear

model with the force step response of the linear model. The linearisation points for both

positive and negative direction can be seen in (A.39).

x+0,t =


xP0,t

ẋP0,t

xV 0,t

p A0,t

pB0,t

=


0.15 m

0.03 m/s

0.034 −
36 bar

48 bar

 x−0,t =


0.15 m

−0.03 m/s

−0.1693 −
64 bar

85 bar

 (A.39)

The positions are chosen to represent the point with the lowest eigenfrequency. The velocity

is chosen to represent the expected average operating condition and the pressures and valve

opening are calculated based on the velocity. In this manner zero acceleration and actual

required flow rate is applied.

A similar linearisation point is chosen for the load cylinder, however with a position that

correspond to (A.40).

xP0,l = 0.400−xP0,t (A.40)
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This gives the points shown in (A.41).

x+0,l =


xP0,l

ẋP0,l

xV 0,l

p A0,l

pB0,l

=


0.25 m

0.03 m/s

0.1462 −
23 bar

37 bar

 x−0,l =


0.25 m

−0.03 m/s

−0.0438 −
59 bar

98 bar

 (A.41)

Therefore the force step response is compared by applying the linearised valve opening at t = 0.

The simulated linear and nonlinear force is shown in fig. A.4.
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Figure A.4: The step response of the transfer function describing the piston force when a 10% valve
signal is given as input. The linear response is without the valve dynamics.

In fig. A.4 it can be observed, that the forces does not match in magnitude or frequency.

This is caused by the missing valve dynamics, which influences the system when the step is

applied. This indicates, that the valve dynamics cannot be disregarded in the linear model.

The response when the 2. order valve dynamics is included can be seen in fig. A.5.
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Figure A.5: The step response of the transfer function describing the piston force when a 10% valve
signal is given as input. The valve dynamics is included in the response.

In fig. A.5 the valve dynamics has been included in the linear model, and the responses have

an acceptable fit. This confirms that the linear force TF can be used to design controllers when

the system is near the linearisation point.
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The position TF is verified without the free-integrator, i.e by solely considering the velocity

responses. The velocity response is shown in fig. A.6.
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Figure A.6: The step response of the transfer function describing the piston velocity when a 10% valve
signal is given as input. The valve dynamics is included in the response.

The velocity in fig. A.6 shows that the linear model agrees with the nonlinear at the linearisation

point.

The above analysis shows that the linear model is valid at the verification point. However,

the linear model does not agree with the nonlinear when moving away from the linearisation

point.
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FAILURE MECHANISM ANALYSIS

In tab. B the components with corresponding failure modes and causes are presented.

Component Failure modes Root causes Phenomena Characteristics

Servo valve Blocked nozzle Oil pollution (air/wa-
ter/acid/debris)

Increased zero offset, de-
creased frequency response,
unstable system

Abrupt, obvious fault

Spool stuck open/-
closed

Oil pollution, spool valve
deformation, solenoid
malfunction or spring
malfunction

Constant output flow, lower
system pressure

Abrupt, obvious fault

Leakage Edge wear or radial main
spool wear

Increased zero offset, de-
creased system gain, lower
pressure, greater noise

Slow, unobvious fault

Gain deviation Elastic element with
shock or deformation

Deviated gain Abrupt, obvious fault fea-
tures

Sensor Variable output
gain

Adjustment circuit bridge
gradual

Time-varying output gain Slow, gradually obvious
fault

Constant output
gain

Adjustment circuit bridge
failure

Varied output gain with con-
stant coefficient

Abrupt, obvious fault

Constant output
deviation

Elastic element with
shock or deformation

Constantly deviated output Abrupt, obvious fault

Actuator Drift Elastomer with internal
force imbalance

Graded-offset output Slow, unobvious incipient
fault

Leakage Moving parts wear or
sealing failure

Slower velocity, lower system
pressure

Slow, unobvious fault

Stuck Radial unbalance or oil
pollution

Loss of control of the actuator Abrupt, obvious fault

Pump Leak of inlet pres-
sure

Supercharging device
breakdown, liquid level
of oil tank is too low, oil
viscosity, inlet pipe

Intermittent violent vibration,
abnormal noise, fluctuation
of outlet pressure

Slow, gradually obvious
fault

Wear of port plate Oil pollution, insufficient
lubrication

Volumetric efficiency de-
crease, leakage oil increase,
abnormal vibration

Slow, unobvious fault

Fault of roller bear-
ing

Roller fatigue wear, com-
ponents of bearing wear
and strain

Slight abnormal vibration Slow, unobvious fault

Off-center of
swashplate

Assembling error, serious
wear

slight abnormal vibration Slow, unobvious gradual
fault

Increscent clear-
ance of piston/shoe

Wear of matching surface
between sliding shoe and
piston, clearance incre-
ment

slight vibration, performance
no change

Slow, unobvious incres-
cent fault

Table B.1: Table suggested by [H. Liu, 2014], axial piston pump analysis added from [J. Du, 2010]
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ACTIVATION FUNCTIONS AND GENETIC

ALGORITHM

C.1 Activation Functions

The activation function within the artificial neuron, acts like a transfer function, where it

translates the input signal to a output signal of the artificial neuron. The most commonly used

activation functions are shown in fig C.1-7.1.

1

a

F(a)

Figure C.1: Unipolar step.

1

a

F(a)

Figure C.2: Unipolar sigmoid.

In fig. C.1 the output is set at one of two possible output levels, depending on if the input signal

is above or below a given threshold. This gives the mathematical function in (C.1).

F (a) =
{

0 i f 0 > a

1 i f a ≤ 0
(C.1)

In fig. C.2 the output function is defined by the logistical sigmoid function, where the output

values are ranging between 0 and 1. The function can be described by (C.2).

F (a) = 1

1+e−2a (C.2)
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Figure C.3: Bipolar step.
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Figure C.4: Bipolar sigmoid.
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Figure C.5: Identity activation function

Similar to the unipolar function, a bipolar set of the activation functions can be utilised. These

do also operate with negative values and the bipolar step function can be described by (C.3).

F (a) =
{

−1 i f 0 > a

1 i f a ≤ 0
(C.3)

The bipolar sigmoid function is given by (C.4).

F (a) = 1−e−2a

1+e−2a (C.4)

Lastly, the identity function is shown in (C.5).

F (a) = a (C.5)

C.2 Optimisation of ANN Structures

To optimise the number of neurons, input- and output delays, a generic optimisation

algorithm (GA) has been utilised.

The input vector denoted as x will consist of the number of hidden neurons, number of input

delays and number of output delays, as shown in (C.6).

x =
[

du dy n
]T

(C.6)
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C.2. Optimisation of ANN Structures

Note that all inputs can only take integer values, this information will also be provided to the

GA.

The GA algorithm can be explained in three main steps

Step 1

GA creates a random initial population.

Step 2

GA creates a sequence of new populations. Every time the algorithm takes a step, GA

takes the individuals in the current population and uses these, to generate the next

population. In order to generate a new population, GA takes the following sub-steps.

1. Rates all the different members of the current population, and rates them based on

their fitness value.
2. All fitness scores are normalised.
3. Members with the highest fitness values, are chosen as parents.
4. Some of the members in the current population which have a lower fitness value,

are passed to the next population.
5. GA produces children from the chosen parents. The children can be made by

mutating a single parent, or by combining two parents composition.
6. The new generated children becomes the next generation.

Step 3

GA repeats from Step 2, or stops if a stopping criteria is met.

The stopping criteria includes a check of current generation number with the maximum

allowed, while continuously checking if the number of allowed stall generations has been

exceeded. A stall generation is defined as a generation where the average relative change of

fitness function does not exceed the function tolerance.

The GA option parameters are shown in tab. C.2.

Max generations Population size Stall generations Function tolerance

50 5 5 1e-3

Table C.1: Setting for the GA to define stopping.
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CONTROLLER TRACKING RESULTS

The tracking performance of the controllers designed in chap. 9 are shown in fig. D.1, D.2, D.3

& D.4.
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Figure D.1: Simulated position tracking when GC ,t is applied.
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Figure D.2: Simulated force tracking of 5 kN load when both GC ,l plus velocity feedforward are applied.
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Figure D.3: Simulated force tracking of 5 kN load when GC ,l without velocity feedforward is applied.
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Figure D.4: Simulated force tracking of 5 kN load when both GC ,l plus velocity feedforward for positive
direction are applied.
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CONTROLLER DISCRETISATION

The following chapter describes the controller discretisation used for implementation of the

controllers in the developed LabVIEW software. Since the LabVIEW software operates in the

discrete time domain all controllers needs to be converted from the continuous s-domain to

the discrete z-domain.

Tustin’s Approximation

In Tustin’s approximation, it is assumed that the Laplace transfer function is approximately the

same as the transfer function in the z-domain.

This emulation method usually gives good results, if the sampling frequency (1 kHz) is atleast

20 times bigger than the compensated closed loop system bandwidth (the bandwidth for test

cylinder is 28 Hz, for the load cylinder it is 63 Hz). From the assumption that the transfer

functions in both the s- and z-domain are approximately the same, the maximum possible

difference between the z- and s-domain frequency, can be evaluated from (E.1), [C.L.Phillips

og J.M.Parr, 2011].

ωw = 20ωb

π
tan

( π
20

)
ωw = 1.008ωb (E.1)

From (E.1) it can be seen, that the difference between the z-domain and s-domain frequency

is less than 0.8%, hence Tustin’s approximation is considered feasible, this results in (E.2).

s ≈ 2

T

z −1

z +1
(E.2)

Where T is the sampling time of the Real Time Loop.

Proportional and Lag Controllers

For simplicity reasons, the controller discretisation is split up into two parts, where each part

is converted separately. The two controllers utilised are as following, a position controller:

GP = kp (E.3)
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and a force controller:

Glag =
a1s +a0

b1s +1
(E.4)

Proportional

p(s) = kp e(s) (E.5)

Since the proportional part is not dependent on s it can be written directly as

e(s) = E(z) = e(k)

p(k) = kp e(k) (E.6)

Lag

The lag part for the controller is described by the continuous function in (E.7).

Glag(s) = a1s +a0

b1s +1
e(s) (E.7)

Here (E.7) is converted into the discrete z-domain again by using Tustin’s approximation.

This is shown in(E.8).

Mlag(z) = a1
2
T

z−1
z+1 +a0

b1
2
T

z−1
z+1 +1

E(z)

Mlag(z) = a0T −2a1 +a0Tz +2a1z

T −2b1 +Tz +2b1z
E(z)

(T −2b1 +Tz +2b1z)Mlag(z) = (a0T −2a1 +a0Tz +2a1z)E(z)(
(T −2b1)z−1 +T +2b1

)
Mlag(z) = (

(a0T −2a1)z−1 +a0T +2a1
)

E(z) (E.8)

The difference equation of the lag controller can then be written as shown in E.9.

mlag(k) = 2a1 +a0T

2b1 +T
e(k)− 2a1 −a0T

2b1 +a0T
e(k −1)+ 2b1 −T

2b1 +T
m(k −1) (E.9)

The final P and lag controller may then be implemented directly in the software.
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BUTTERWORTH FILTER DESIGN

In the following appendix chapter a design of a nth order Butterworth filter will be explained.

The chapter is been made with inspiration from chapter two in [Dimopoulos, 2011]. The nth

order Butterworth filter utilises a modified low-pass filter function, where the transfer function

is given as in (F.1).

H(s) = 1∏n
k=1

(s−sk )
ωc

(F.1)

where sk is determined by (F.2).

sk =ωc e
j (2k+n−1)π

2n (F.2)

k = 1,2,3...,n (F.3)

The poles given by (F.1) will be placed in a circle, equally spaced around the imaginary axis,

with radius ωc , which is illustrated in fig. F.1.
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Figure F.1: Pole-location of 6th-order Butterworth filter.
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Normalised Butterworth

When the Butterworth filter is implemented in MATLAB, a normalisation procedure is used.

This is done by writing the polynomial as a set of coefficients, which then are multiplied with

the pole pairs complex conjugates. The polynomials are given in (F.4) and (F.5).

Bn(s) =
n
2∏

k=1

[
s2 −2s cos

(
2k +n −1

2n
π

)
+1

]
(F.4)

n = even

Bn(s) = (s +1)

n−1
2∏

k=1

[
s2 −2s cos

(
2k +n −1

2n
π

)
+1

]
(F.5)

n = odd

The normalised Butterworth filter transfer function, is then expressed as (F.6).

H(s) = 1

Bn(α)
(F.6)

where

α= s

ωc
(F.7)

Whereωc denotes the normalised cut-off frequency. For the filtering of the measurement data,

a 6th order Butterworth filter, cut-off frequency of 100 Hz is utilised. The normalised cut-off

frequency at the sampling rate of 1000 Hz is then given as (F.8).

ωc = 100Hz

1000Hz
(F.8)

From (F.4), the polynomial of the transfer function can then be determined by (F.9).

B6(α) = (
α2 +0.5176s +1

)(
α2 +1.4142s +1

)(
α2 +1.9319s +1

)
(F.9)

Where (F.9) and (F.7) is inserted into (F.6) which yields the final transfer function (F.10).

H(s) = 1((
s
ωc

)2 +0.5176
(

s
ωc

)
+1

)((
s
ωc

)2 +1.4142
(

s
ωc

)
+1

)((
s
ωc

)2 +1.9319
(

s
ωc

)
+1

) (F.10)

The transfer function results in the normalised frequency response shown in F.2.
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Figure F.2: 6th-order Butterworth filter, with a normalised cut-off frequency of 0.1.
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USER INTERFACE AND IMPLEMENTATION

G.1 User Interface

In this section an explanation of the different user interfaces will be given. The first control

panel, shown in fig. G.1, is the main user interface (UI), where the different controller gains can

be specified, along with a Transfer/Run button. Where the transfer button, places the pistons

in the start position of the trajectory, and the Run button launches the trajectory. The default

mode is Transfer. Furthermore, during the transfer mode the output voltage limited to 1V out

of 10V, so if a bad controller is typed in, the system is still protected.

Figure G.1: Main user interface controls.

The Technical Data Management Streaming (TDMS) data logger is located in the fan TDMS Log

and shown in fig. G.2. The user specifies the file name, a comment for the file, and the duration

of the log. Lastly, the trigger button initiates the TDMS logger.
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Figure G.2: Data logger UI.

The UI Queues tab shown in fig. G.3, gives the user information on the buffer status. Here the

different buffer sizes can be seen and how much is being used at a given time during a run.

Figure G.3: Buffer health UI.

The last tab of interest is the RT Monitoring shown in fig. G.4. In this tab the Real Time (RT)

Machines CPU load can be monitored, along with the time it takes the RT Loop to complete an

iteration. If the code in the RT loop contains heavy or bad code, it will give a high CPU load, and

maybe also a slower completion time of the RT Loop, hence a finished late error is triggered.
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G.1. User Interface

Figure G.4: RT-Machine health and RT Loop time UI.

The main user control panel can be seen in fig. G.5, where the different states of

the state machine may be controlled, along with the manual controls for the cylinders.
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A)

B)

C)

D)

Figure G.5: State Machine UI Controls.

A) The first task of the user is to initiate

the TCP/IP connection to the RT-

Machine. This is done by inputting

the IP address of the RT-Machine,

and hit connect. Furthermore, the

connection can also be terminated

by hitting the Exit button.

B) Here the State Machine can be con-

trolled, and the current state is dis-

played. The default start-up state is

the Safe State.

C) If the Manual or Manual Override

state have been selected, then the

two cylinders may be controlled

manual, through the valves, from

the controls shown. This is done, by

feeding the valves with a direct volt-

age reference without a controller.

D) Here the connection state between

the UI PC and the RT-Machine can

be seen, along with a System Status

Log, which displays all software er-

rors or warnings that might be trig-

gered during a run.
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G.2 Implementation of Controllers

The controllers are implemented in two nested case structures, where the outer case

determines whether the system is in a error or no error mode, The inner case determines which

case of the state machine is active i.e. closed loop, manual, safe state or manual override, this

inner nest case can be seen in fig. G.6.

1 Lim

0

input_eng_filt

pos_ref
pos

True

Force_ref
Valve_Lim

force
force_ref

Get ALL

2

3

0.2322

76.5763

1 25.6637

-1

1 File

True

-1

1

input_eng_filt 6

Next_name
TDMS_trigger

Position_ref

"Closed Loop: Initialize", "Closed Loop: Active"

Figure G.6: Implementation of the controllers nested case structures.

In fig. G.7, the Flat Sequence structure is used to ensure that the controller subdiagrams are

executed before the output variables are written to the output channels. Further more. it can be

seen, how the data is being routed to the correct controller block, which contains the difference

equations presented in E.
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1 Lim

Figure G.7: Controllers and limitation selector, in flat sequence.

The implementation of the controllers difference equations derived in E is done, as shown in

fig. G.8, where input data is shown in the left, and output data on the right. It should be noted,

that the force controller is implemented like the position controller.

Out

float64 error = pos_ref-pos;
float64 P = 0;
float64 I = 0;
float64 k1  = 0 , k2 = 0, k3 = 0, B = 0, VFF_out = 0;
float64 Anti_Wind_Gain = 1 ;
Anti_Wind_old *= Anti_Wind_Gain;

P = k_p * error;
I = ((k_i*T_sam)*((error+error_old)-(2*Anti_Wind_old))/2) + I_old;

k1  = G_lead * ((2*Tz + T_sam)/(2*Tp + T_sam));
k2 = G_lead * ((2*Tz - T_sam)/(2*Tp + T_sam));
k3 = G_lead * ((2*Tp - T_sam)/(2*Tp + T_sam));

m_lead = (k1 *error)-(k2*error_old)+(k3*m_lead_old);

VFF_out = vel_ref * 29.781 1 ;

if(VFF == 1 ) {
Out = P+I+m_lead+VFF_out ;

}

if(Out > Lim){
Out = Lim;
Anti_Wind_Out = Out -Lim;

}
if(Out < (-Lim)){

Out = -Lim;
Anti_Wind_Out = Out +Lim;

}
if(Out > (-Lim) & &  (Out < Lim)) {

Anti_Wind_Out = 0;
}

VFF

vel_ref

G_lead

error_old
m_lead_old

Tp
Tz m_lead

I

Anti_Wind_Out

error

Out

T_sam

Lim

Anti_Wind_old

I_old

pos

pos_ref

k_i
k_pController Constants

Tp
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G_lead
Ki
Kp

1 000000

RT Sampling Freq (Hz)

Old

anti_wind_old
error_old

m_lead_old
I_old

Position

vel_ref
pos_ref

pos

Default

Lim
VFF

Loop_Vars

m_lead_old
I_old

anti_wind_old
error_old

Figure G.8: Implemented position controller on RT-Machine.

G.2.1 Automatic Data Logging for Parameter Identification Tests

To speed up the parameter identification tests presented in sec. 11.2, an automated test

sequence have been implemented. The program utilises the controllers described above,
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where the user feeds in a desired test sequence trajectory, with the addition of a trigger value,

to let the program know when to log data. The concept is shown in fig. G.9.

1 File

True
1

Next_name
TDMS_trigger

Figure G.9: Implemented of Technical Data Management Structure (TDMS) trigger, for automatic
parameter identification.

When the trigger is received a five seconds logging period is activated, when the logging is

finished the program iterates the name structure, and prepares the next trajectory run.
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Figure H.1: Diagram of sensor wiring on the test set-up.
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RESULT GRAPHS & MODELLING PARAMETERS

I.1 Evaluation of Residuals in the Extended FDD
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Figure I.1: Sine wave input: Simulated pressure residuals and the difference of these (∆p A = p A,ri deal −
p A,rN AR X ).
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Figure I.2: Sine wave input: Simulated position and velocity residuals and the difference of these
(∆xP = xP,ri deal −xP,rN AR X ).
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Figure I.3: Sine wave input: Simulated control signal residuals and the difference of these (∆xV ,r e f =
xV ,r e f ,ri deal

−xV ,r e f ,rN AR X ).
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Figure I.4: Sine wave with Gaussian white noise input: Simulated pressure residuals and the difference
of these (∆p A = p A,ri deal −p A,rN AR X ).
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Figure I.5: Sine wave with Gaussian white noise input: Simulated position and velocity residuals and
the difference of these (∆xP = xP,ri deal −xP,rN AR X ).
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Figure I.6: Sine wave with Gaussian white noise input: Simulated control signal residuals and the
difference of these (∆xV ,r e f = xV ,r e f ,ri deal

−xV ,r e f ,rN AR X ).
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Figure I.7: Constant input: Simulated pressure residuals and the difference of these (∆p A = p A,ri deal −
p A,rN AR X ).
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Figure I.8: Constant input: Simulated position and velocity residuals and the difference of these (∆xP =
xP,ri deal −xP,rN AR X ).
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Figure I.9: Constant input: Simulated control signal residuals and the difference of these (∆xV ,r e f =
xV ,r e f ,ri deal

−xV ,r e f ,rN AR X ).
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Figure I.10: Sine wave input: 2 second EMA of estimated and actual simulated faults when ideal
residuals (ri deal ) are applied along with noise on the measurements.
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Figure I.11: Sine wave with Gaussian white noise input: 2 second EMA of estimated and actual
simulated faults when ideal residuals (ri deal ) are applied along with noise on the
measurements.
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Figure I.12: Constant input: 2 second EMA of estimated and actual simulated faults when ideal
residuals (ri deal ) are applied along with noise on the measurements.
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Figure I.13: Sine wave input: 2 second EMA of estimated and actual simulated faults when ideal
residuals (ri deal ) without velocity are applied along with noise on the measurements.
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Figure I.14: Sine wave with Gaussian white noise input: 2 second EMA of estimated and actual
simulated faults when ideal residuals (ri deal ) without velocity are applied along with noise
on the measurements.

186 MCE4-1023



I.1. Evaluation of Residuals in the Extended FDD

0 10 20 30 40 50 60 70 80 90 100
249.5

250

250.5

251

251.5

P
is

to
n 

P
os

iti
on

 [m
m

]

x
P,ref

x
P

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

In
te

rn
al

 L
ea

ka
ge

 [l
/m

in
]

F1
F1

est

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

E
xt

er
na

l L
ea

ka
ge

 [l
/m

in
]

F2
F2

est

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

E
xt

er
na

l L
ea

ka
ge

 [l
/m

in
]

F3
F3

est

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

T
ra

ns
du

ce
r 

F
ai

lu
re

 [-
]

F4
F4

est

0 10 20 30 40 50 60 70 80 90 100
Time [s]

-1

-0.5

0

0.5

1

S
tu

ck
 V

al
ve

 [-
]

F5
F5

est

Figure I.15: Constant input: 2 second EMA of estimated and actual simulated faults when ideal
residuals (ri deal ) without velocity are applied along with noise on the measurements.
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Figure I.16: Sine wave input: 2 second EMA of estimated and actual simulated faults for the data-driven
scheme.
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Figure I.17: Sine wave with Gaussian white noise input: 2 second EMA of estimated and actual
simulated faults for the data-driven scheme.
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Figure I.18: Constant input: 2 second EMA of estimated and actual simulated faults for the data-driven
scheme.
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Figure I.19: Sine wave input: 2 second EMA of estimated and actual simulated faults for the multilayer
model-based scheme.
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Figure I.20: Sine wave with Gaussian white noise input: 2 second EMA of estimated and actual
simulated faults for the multilayer model-based scheme.
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Figure I.21: Constant input: 2 second EMA of estimated and actual simulated faults for the multilayer
model-based scheme.
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Figure I.22: Sine wave input: 2 second EMA of estimated and actual simulated faults for the multilayer
data driven scheme.
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Figure I.23: Sine wave with Gaussian white noise input: 2 second EMA of estimated and actual
simulated faults for the multilayer data driven scheme.
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Figure I.24: Constant input: 2 second EMA of estimated and actual simulated faults for the multilayer
data driven scheme.

I.3 Experimental Results

The obtained and applied parameters are shown below.
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I.4 General Parameters

Index Description Value Unit
αth Thermal expansion coefficient 0.007 [◦C]
βoi l Max fluid stiffness 13000 [bar]
cad Adiabatic constant 1.4 [-]
CD Orifice discharge coefficient 0.61 [-]
ktan Velocity crossover constant for Coulomb friction 1e3 [-]
εA,0 Relative volume of air in the fluid 0.01 [%]
pS Supply pressure 180 [bar]
pT Tank pressure 1 [bar]
Toi l Fluid temperature 55 [◦C]
ρoi l Fluid density at 15◦C 910 [kg/m3]
µoi l Fluid dynamic viscosity at 15◦C 0.0425 [Ns/m2]

Table I.1: General parameter values.

I.5 Parameters for Hydraulic Test Cylinder

Index Description Value Unit
αt Effective area ratio 0.7500 [-]
bc,n Viscous friction coefficient of system in negative direction 2000 [Ns/m]
bc,p Viscous friction coefficient of system in positive direction 3000 [Ns/m]
cs,n Stribeck parameter in negative direction 20e-3 [m/s]
cs,p Stribeck parameter in positive direction 30e-3 [m/s]
DP,t Diameter of piston 80 [mm]
Dr,t Diameter of piston rod 40 [mm]
Fc,n Coulomb friction constant in negative direction 400 [N]
Fc,p Coulomb friction constant in positive direction 1000 [N]
Fs,n Maximum static friction constant in negative direction 300 [N]
Fs,p Maximum static friction constant in positive direction 2200 [N]
mP,t Mass of moving parts 20 [kg]
Vdead ,t Dead volume 1.5e-4 [m3]
Vhose,A,t Hose volume in A 2.0e-4 [m3]
Vhose,B ,t Hose volume in B 2.0e-4 [m3]
xP,max,t Maximum stroke length 0.5 [m]

Table I.2: Parameters for the position servo cylinder.
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I.6 Parameters for Hydraulic Load Cylinder

Index Description Value Unit
αl Effective area ratio 0.6094 [-]
xP,max,l Maximum stroke length 0.4 [m]
DP,l Diameter of piston 40 [mm]
Dr,l Diameter of piston rod 25 [mm]
mP,l Mass of moving parts 20 [kg]
Vdead ,l Dead volume 0.8e-4 [m3]
Vhose,A,l Hose volume in A 8.6e-5 [m3]
Vhose,B ,l Hose volume in B 7.5e-5 [m3]

Table I.3: Parameters for the load servo cylinder.

I.7 Parameters for MOOG Servo Valve 1 & 2

Index Description Value Unit
kV Gain between normalised opening area and voltage drop 0.1 [m/V]
UDC The range of input control voltage ±10 [V]
∆pn Nominal pressure drop 35 [bar]
Qn Nominal flow (40 l/min) 6.67e-4 [m3/s]
ζ Damping of the servo valve 0.8 [-]
ωn Natural frequency of the servo valve 60 [Hz]

Table I.4: Parameters for the used MOOG D633-331 servo valves.
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MATLAB CODE FOR MULTILAYER FTDANN

1 %Create the concurrent data s e r i e s used for training of

2 %the Multi layer Focused Time Delay Neural Network

3 run ( ’Main ’ ) ;

4 nFaults = 7 ;

5 Mode = 1 ;

6 ParaData = 1 ;

7 FaultTrajectory = 1 ;

8 TrajectorySelect = 1 ;

9 Time = 20;

10 FaultSequence ( 1 : nFaults ) = 0 ;

11 i = 1 ;

12 h = waitbar ( 0 , ’ Please wait . . . ’ ) ;

13 % Training Sequence : 1 = Sine+Gaussian , 2 = Sine , 3 = Constant , 4 = Steps

14 for TrajectorySelect = 1:3

15 FaultSequence ( 1 : nFaults ) = 0 ;

16 FaultSequence ( 1 ) = 1 ;

17 sim ( ’ NonlinearModelRev10 ’ ) ;

18 y1 ( i , : ) = sim2nndata ( LeakageFlowsExtended . Data ) ;

19 u1 ( i , : ) = sim2nndata ( Input . Data ) ;

20 i = i +1;

21 waitbar ( i / 21)

22 for Fault = 2 : nFaults

23 FaultSequence = c i r c s h i f t ( FaultSequence , [ 1 , 1 ] ) ;

24 FaultTrajectory = 1 ;

25 sim ( ’ NonlinearModelRev10 ’ ) ;

26 y1 ( i , : ) = sim2nndata ( LeakageFlowsExtended . Data ) ;

27 u1 ( i , : ) = sim2nndata ( Input . Data ) ;

28 i = i +1;

29 waitbar ( i / 21)

30 end

31 end

32 close (h)
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33 %% Merge Vectors

34 u_mul = catsamples ( . . .

35 u1 ( 1 , : ) , u1 ( 2 , : ) , u1 ( 3 , : ) , u1 ( 4 , : ) , u1 ( 5 , : ) , u1 ( 6 , : ) , u1 ( 7 , : ) , . . .

36 u1 ( 8 , : ) , u1 ( 9 , : ) , u1 ( 1 0 , : ) , u1 ( 1 1 , : ) , u1 ( 1 2 , : ) , u1 ( 1 3 , : ) , u1 ( 1 4 , : ) , . . .

37 u1 ( 1 5 , : ) , u1 ( 1 6 , : ) , u1 ( 1 7 , : ) , u1 ( 1 8 , : ) , u1 ( 1 9 , : ) , u1 ( 2 0 , : ) , u1 ( 2 1 , : ) , . . .

38 ’pad ’ ) ;

39 y_mul = catsamples ( . . .

40 y1 ( 1 , : ) , y1 ( 2 , : ) , y1 ( 3 , : ) , y1 ( 4 , : ) , y1 ( 5 , : ) , y1 ( 6 , : ) , y1 ( 7 , : ) , . . .

41 y1 ( 8 , : ) , y1 ( 9 , : ) , y1 ( 1 0 , : ) , y1 ( 1 1 , : ) , y1 ( 1 2 , : ) , y1 ( 1 3 , : ) , y1 ( 1 4 , : ) , . . .

42 y1 ( 1 5 , : ) , y1 ( 1 6 , : ) , y1 ( 1 7 , : ) , y1 ( 1 8 , : ) , y1 ( 1 9 , : ) , y1 ( 2 0 , : ) , y1 ( 2 1 , : ) , . . .

43 ’pad ’ ) ;

44 %% Configuration of Multi Layer FTDANN

45 % Create the ANN object

46 net = distdelaynet ( { 1 : 6 , 1 : 6 } , 6 ) ;

47 % Layers

48 net . numInputs = 1 ;

49 net . numLayers = 3 ;

50 % Bias connections

51 net . biasConnect = [ 1 ; 1 ; 1 ] ;

52 %Weights connection

53 net . inputConnect = [ 1 ; 1 ; 1 ] ;

54 %Input Connect

55 net . inputConnect = [ 1 ; 0 ; 0 ] ;

56 %Layer Connect

57 net . layerConnect = [0 0 0 ; 1 0 0 ; 0 1 0 ] ;

58 %Output Connect

59 net . outputConnect = [0 0 1 ] ;

60 %Hidden layer 1

61 net . l a y e r s { 1 } . s i z e = 12;

62 net . l a y e r s { 1 } . transferFcn = ’ tansig ’ ;

63 net . l a y e r s { 1 } . initFcn = ’ initnw ’ ;

64 net . l a y e r s { 1 } .name = ’Hidden ’ ;

65 %Hidden layer 2

66 net . l a y e r s { 2 } . s i z e = 12;

67 net . l a y e r s { 2 } . transferFcn = ’ tansig ’ ;

68 net . l a y e r s { 2 } . initFcn = ’ initnw ’ ;

69 net . l a y e r s { 2 } .name = ’Hidden ’ ;

70 %Output layer

71 net . l a y e r s { 3 } . s i z e = 4 ;

72 net . l a y e r s { 3 } .name = ’ Output ’ ;

73 %Input layer

74 net . inputs { 1 } . exampleInput = s i z e (u_mul) ;

75 net . inputs { 1 } . s i z e = 5 ;

76 %Config training options

77 net . initFcn = ’ i n i t l a y ’ ;

78 net . performFcn = ’mse ’ ;
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79 net . trainFcn = ’ trainlm ’ ;

80 net . divideFcn = ’ dividerand ’ ;

81 net . plotFcns = { ’ plotperform ’ , ’ p l o t t r a i n s t a t e ’ } ;

82

83 %I n i t i a l i s e ANN

84 net = i n i t ( net ) ;

85 view ( net )

86

87 %% Training

88 net = t r a i n ( net , u_mul , y_mul ) ;

89

90 %% Deploy to Simulink

91 gensim ( net , samplesize )
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