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Abstract

Usage-based insurance (UBI) is currently surfac-
ing both in research and within insurance companies.
There are a lack of actual described UBI products, and
those that exist are experimental and limited to small
customer segments. Insurance companies are showing
a clear interest in entering the market, but UBI as a
product is complex, and little research exists when it
comes to completely implemented products. In this pa-
per, the authors describe the design, implementation
and experimentation on Drive-LaB, a fully functional
UBI platform. Drive-LaB lets users collect spatio-
temporal data with their smartphone. The system uses
this data to identify driving style and environmental
context, to allow risk assessment associated with car in-
surance. Drive-LaB is supported by a complex backend
system featuring an advanced data warehouse and com-
putational logic to identify driver styles. It also offers
an easy-to-use Android application frontend, allowing
users to log trips and see detailed statistics on com-
pleted trips. Drive-LaB has been used for experiments,
collecting more than 13.000 kilometers worth of data in
roughly one month. This data has been used to validate
the platform and display how the system performs in a
realistic setting.

1. INTRODUCTION

Usage-based car insurance (UBI) has been re-
searched actively over the last decade. Insurance com-
panies are showing interest in making UBI a reality,
and some have even launched experimental products [3]
[27] [28]. Achieving a fully functional UBI product is
a complex task involving difficult design choices and
numerous technical challenges. Several research papers
attempts to address specific concerns such as data qual-
ity [25] or privacy [5]. UBI products are still sparse,
and to the authors knowledge no one has offered UBI
as a countrywide product, anywhere in the world. For

∗*The Department of Computer S, Aalborg University

Figure 1: Composition of the system

usage-based insurance to compete with traditional car
insurance, there are many potential problems and solu-
tions, depending on the chosen design. Considering a
simple UBI product, insurance companies could mea-
sure distance driven by a user, and bill for mileage ac-
cordingly. Implementing such a simple UBI system still
results in several non-trivial choices. Examples could
be:

• Whether to use dedicated devices or rely on user
equipment such as smartphones

• Which technology to rely on for accurate position-
ing, and at what frequency

• How to retrieve and store data logged by individual
users

• How to let users keep track of their insurance, un-
derstand and verify that they are being billed cor-
rectly

This paper presents the entire stack of a fully func-
tional UBI system that anyone can use. The authors
attempt to move UBI away from ideas and models
and one step closer to a market implementation. Hav-
ing a live UBI system allows for real-life experiments,



and offers unique insight into problematiques associ-
ated with different approaches to UBI. In this paper the
authors try to answer the following questions:

• How could a complete product look like?

• Is it possible to create a UBI system that supports
a fair and understandable metrification of driving
styles?

• Are modern smartphones adequate to support
UBI?

The remainder of this paper describes the process
leading towards answering these questions. In Section
2 the system design is explained. Section 3 describes
the implementation of the system. Section 4 describes
experiments made possible by releasing the system into
a public domain. Finally, the authors provide answers
to the problem statement based on the results of the ex-
periments, followed by a conclusion in Section 6.

1.1. Prerequisites

Drive-LaB is based on the paper An Advanced
Usage Based Insurance And Privacy-Secure Pricing
Model [19]. The project features a metric-based scor-
ingmodel for UBI, and focuses on being intuitive and
understandable. Furthermore, it features an advanced
data warehouse capable of storing all required data
for supporting the described scoringmodel. Drive-
LaB utilizes both the data warehouse and metric-
based scoringmodel, although with certain improve-
ments. The data warehouse implemented for Drive-
LaB can be found in Appendices, Figure 17. Most no-
tably, the SubtTripFact table has not been imple-
mented in Drive-LaB. Instead, two new tables are intro-
duced, namely Competition Information and
CompetingIn.

The scoringmodel has not been altered, although its
flexibility has allowed us to create a more fitting policy
for the system. The policy used for experiments will
be described in Section 4. Each metric delinquency is
divided into 8 different intervals, with different weights
for each interval. Each metric is scored by the following
algorithm:

(
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This results in an aggregated weight. Roadtypes
and Critical time period are scored linearly, calculated
by multiplying the aggregated weight with the amount
of delinquencies. Speeding, Accelerations, Brakes and

Jerks are all evaluated polynomially. The aggregated
weight is fed into a polynomial equation determined by
the policy, resulting in a final aggregated weight which
is multiplied with the amount of delinquencies.

axy +bx+ c

where x = AggregatedWeight

The full description of the scoringmodel is de-
scribed in [19] at Section 5.1.

2. DESIGN

This section describes the design of a full-stack
UBI system. Drive-LaB is designed to collect, process
and store spatio-temporal data from its users. It is a
complex system but is designed to be simple to under-
stand and use. Complexity should not be an issue for
neither the end user nor the insurance company. A goal
of this paper is to answer whether smartphones are suit-
able devices for UBI. For this purpose, the frontend of
Drive-LaB is designed as a mobile application. This
choice eliminates the need for a dedicated tracking de-
vice, while increasing accessibility for anyone wanting
to use Drive-LaB. The design of Drive-LaB as a com-
plete system can be seen in Figure 1. It is composed of
three overall components. On the right side of Figure 1
is the storage server. In itself, it contains no logic, and
simply acts as storage for the data warehouse. Left of
the storage server, is an API server that acts as interface
for the frontend, and performs all required operations
on incoming data. No data is stored on the API server
permanently, but is instead sent to the storage server.
Finally, Drive-LaB has a frontend application. It is re-
sponsible for location tracking, and visual presentation
of the results calculated on the API server. As such
the frontend allows users to evaluate trips after driving
them. External services such as GPS satellites are used
to provide location data for Drive-LaB.

2.1. Frontend

The frontend of Drive-LaB has two responsibili-
ties in the overall system, namely collection and pre-
sentation of location data. As the interface for users,
it is designed with ease of use and understandability in
mind. Given the non-trivial responsibilities, these re-
quirements pose significant design challenges. These
are addressed in Sections 2.1.1 and .

2.1.1. Data Collection. Data collection is complicated
by requiring user interaction. Without additional hard-
ware, it is not possible to automatically detect the be-



Figure 2: Design of the Start/Stop/Finishing button

ginning or end of a trip. As such, users are required
to manually control when their smartphone should start
and stop tracking their movement. Upon ending a trip,
a sequence of actions takes place. A series of locations
has been logged, and is passed on to the API server. To
achieve this, data is converted into classes readable by
the API server. Furthermore, trips are packaged into
JSON objects which can be received by the REST ser-
vice hosted on the API server described in Section 2.2.1.
If the API server is unavailable, trips are cached locally
and bundled the next time a trip is ended. This sequence
of events does not require user interaction, and is fully
automated. Summarizing the process of collecting loca-
tion data, one can gather three different working states
for the application:

• Idle - Ready to track a new trip

• Tracking - Continually logging new positions

• Finishing up - Packaging and sending all logged
data

These working states are made visible through a
central button in the application, as seen in Figure 2.
The progression of working states happens from left to
right. ”START TUR” (START TRIP) means the appli-
cation is ready to track a new trip, and invites the user
to do so. ”STOP TUR” (STOP TRIP) means the appli-
cation is currently tracking, and invites the user to end
the trip when finished. Finally the user is presented with
a message, ”AFSLUTTER TUR” (FINISHING TRIP),
informing the user that the tracking has stopped, but the
application is still working. Upon finishing the process
of sending the trip to the API server, the application
will once again be ready to start a new trip, displaying
”START TUR” for the user. While the logic behind the
button is complex, usage is simple and easy to under-
stand. The user only have to define the beginning and
end of a trip; the application takes care of the rest.

Figure 3: Presentation of trips split across 4 screens

2.1.2. Data Presentation. Data presentation is com-
plicated, both by the extensiveness of the data itself, but
also the limited screen size of a smartphone. In other
words, the application has to fit a lot of information into
a small screen. With the goal of having an easily un-
derstandable system, the extensive data is simplified by
presenting descriptive summaries, rather than raw data.
The small screen is however still a challenge, and for
this reason the application offers a multilevel descrip-
tion of trips, each presenting a certain level of data.
Each level of description is presented on its own screen,
and ranges from a broad description down to specific
statistics. For an arbitrary trip, these screens can be seen
in Figure 3.

On the top left screen, users are first presented with
a list their trips ordered by date. For each trip, gen-
eral statistics are displayed. These are useful mostly for
identifying the trip. In key with keeping Drive-LaB sim-
ple to use and understand, the user can also see the trip-
score summarized as a smiley. Smileys range between
green/happy and red/sad. They allow for cursory trip



evaluation, without the need to look at more detailed
statistics. The top right screen is shown when clicking a
trip, and displays a more extensive score summary. The
screen uses a pie chart to visualize the relative influence
of each metric, allowing the user to identify points of
possible improvement. On Figure 3, the bottom screens
both show evaluation specifics, letting the user see ex-
actly what was registered during a trip. The left screen
places the route on top of a map, showing the user ex-
actly where locations were logged. The right screen
shows exact metric counts, allowing the user to see why
a metric score turned out the way it did. The differ-
ent levels of information allow users to navigate only to
the desired detail level. As such, some users might be
satisfied with seeing the resulting smiley, and will not
be forced to look at details. For those who want more
detailed results however, these are also made available.

2.1.3. Competitions. Drive-LaB is designed to offer
competitions as an additional service, both for the in-
surance company and end users. Competitions allow
the insurance company to collect additional data about
users. For users, bringing a competitive element into
Drive-LaB can act as incentive to use it and perform
to ones best ability. In the Drive-LaB application,
users are able to browse active competitions and choose
which to participate in. Section 4.5 further describes
end user experiments supported by a competition hosted
within Drive-LaB. When participating in a competition,
the user gains access to live statistics for the duration
of the competition. These include current ranking and
a leaderboard meant to encourage and motivate users to
perform better.

2.2. Backend

The backend of Drive-LaB is required to handle a
large amount of incoming data. Whenever a user ends a
trip, the logged data is packaged and sent to the backend
for processing and storage. The backend is also required
to respond to frontend requests for data used for visual
presentation, as described in Section 2.1. These require-
ments are wrapped into a cloud-like architecture, where
all data is stored on the Drive-LaB servers. Whenever a
user attempts to access data on competitions or earlier
trips, the application requests the data from the back-
end. This limits the amount of local storage required by
the application and reduces resources needed for com-
putation on the mobile device.

The backend of Drive-LaB is split across two
servers. The less powerful of the two is exposed on
the internet, hosting the communication layer, logical
layer and data access layer. The other server is hosted

Figure 4: Design of the Drive-LaB backend

only on the same local network as Server 1, with the
trip-processing layer and physical storage layer, as seen
by the standard UML component diagram in Figure 4.
The two servers can be considered available resources,
more than a profound design choice. The functional-
ity design of these servers will now be explained, start-
ing with Server 1, which will be called the API server.
Server 2 will be called the storage server. No work has
been put into security due to prioritization of resources
and the commitment to complete the full range of func-
tionality in the system.

2.2.1. API Server. The API server contains three lay-
ers: A communication layer, logic layer, and data access
layer.

The communication layer provides a uniform in-
terface for both web- and smartphone clients, to com-
municate with the backend system. The communica-
tion layer is designed to be universal and service any
device, be it Android, iOS, Windows Phone, Web, etc.
This is achieved by hosting a RESTful Web Service on
the API server, with a total of four service endpoints.



A service endpoint is an enclosed subset of function-
ality, placed under a URL-extension to the base ad-
dress (the IP-address to the server). Each endpoint of-
fers a set of HTTP methods to access functionality in
the logic layer. The four service endpoints are named
Fact, Trip, Car, and Competition. Each service end-
point offers a structured way of communicating with
the functionality in these four categories. As exam-
ple, the Fact service endpoint offers three HTTP meth-
ods. Two of these use the HTTP GET verb, namely
GetFacts, and GetFactsForMap. Both require a
CarId and a TripId as parameters and returns the set
of Facts corresponding to the parameters. When using
GetFactsForMap the set of facts is trimmed to con-
sist only of GPS coordinates and timestamps, because
this is the minimal requirement for map display. The
third method in the Fact service endpoint is a POST-
method. It accepts a stream of trip data sent by a client
upon ending a trip. Upon receiving this data, a request
is passed on to the logic layer to process the stream of
data.

The other three service endpoints function the same
way, offering structured communication and utilizing
the logical layer for determining which data to either
process, or return to the client. The Trip service end-
point contains three HTTP-Get methods for a client to
request. These methods return a single trip, trips corre-
sponding to a specific user and a customized list of trips
to present in a list, respectively. The Car service end-
point contains two HTTP-Get methods, and one HTTP-
Update method: One HTTP-Get method for returning
the data stored for a CarId, and another to get-or-
create a new car in the system. The latter requires an
IMEI number as a unique combination of numbers to
identify the client. The HTTP-Update method is used
whenever a client wants to provide the system with a
desired username. The Competition service endpoint
has a total of seven HTTP-methods, and will not be de-
scribed thoroughly. It contains methods to return lists
of competitions, and support the ability to sign-up and
sign-down from available competitions.

Data exchanged by clients and the communica-
tion layer is wrapped in JSON-format. JSON is a
lightweight format supported in many environments
and languages. Using XML was also considered, but
has an unnecessary overhead compared to JSON. GPX
(GPS exchange format [6]) was considered for when
clients send raw trip data to the backend, but was not
chosen due to poor support compared to JSON. It would
furthermore require diversification in the formats used,
which is considered unfavorable. To consider the use of
GPX, a test should prove significant benefits in perfor-
mance and data-overhead reduction, but such a test was

not conducted due to prioritization of resources.
The logic layer is extensive, complex and handles

a wide range of functionality in the backend. The logic
layer controls the resulting action when a client accesses
a HTTP-method in the communication layer. In some
cases, the logic behind a HTTP-method is trivial, caus-
ing the logic layer to simply request data from the data
access layer. The logic layer then parses the raw data
into appropriate classes which can be serialized using
JSON. It then returns the result in proper format to the
client. This serialization is designed to be very simple,
because the system makes use of modularized classes.
As an example, the Fact class only contains three sim-
ple properties: EntryId, CarId and TripId. An in-
stance of the Fact class contains instances of six addi-
tional classes called Spatial, Temporal, Measure, Flag,
Segment, and Quality. Each of these classes are serial-
izable on their own, because they implement their own
DataContract. A DataContract defines how to
serialize a C# object into JSON or XML format. Often
a client only require a single module of the otherwise
complex fact object. Having modular classes then al-
lows for serializing simpler objects, which are to be sent
using HTTP verbs.

The logical layer forwards the task of processing
of new trips to the trip-processing layer. This layer is
hosted on the more powerful of the two servers. This
utilizes the computation power available on the two
servers optimally, because trip-processing is the main
consumer of computation power. Trip-processing is de-
scribed in Section 2.2.2.

The data access layer (DAL) handles selecting,
inserting, updating and removing data on the storage
server. This layer has to work well with the choice of
PostgreSQL as DBMS. A description of the physical
data layer can be found in Section 2.2.2. The DAL re-
trieves data from the physical data layer and returns ref-
erences to C# objects in the logic layer. This allows the
DAL to provide simplified access to raw data. Queries
in the DAL service can return both complete rows of
data and customized selections. Conversion from raw
data to class objects often includes extensive null check-
ing in the logic layer, to eliminate null-reference excep-
tions, because the modularity of classes is not perfect.

2.2.2. Storage Server. The storage server contains
two layers: Trip-processing and physical storage.

The trip-processing layer handles the processing of
new trips when it receives a stream of raw GPS data.
The purpose of this layer is immensely specific, but
the functionality it encapsulates is comprehensive. This
layer is intentionally removed from the logic layer and
placed on the storage server to optimize the use of com-



putational resources. It also ensures the fastest possi-
ble retrieval and updating of data in the database, as
the trip-processing layer can utilize localhost querying,
removing any network communication overhead. The
trip-processing layer uses the scoringmodel described
in Section 1.1 and other components referenced in An
Advanced Usage Based Insurance And Privacy-Secure
Pricing Model [19]. The layer completes seven steps to
process a new trip, listed below:

Steps required to process a new trip

• Deserialize from raw GPS data to C# objects

• Insert a new trip into the TripFact table of the
database, and obtain the automatically assigned
TripId

• Insert the raw GPS coordinates and timestamp into
the GPSFact table, setting the relevant CarId and
TripId for each row

• Request map-matching from third party service,
using the raw GPS coordinates [7]. This requires
the parsing of GPS coordinates into CSV-format,
which becomes part of the request sent to the
service. The service returns a set of road seg-
ments used on this trip, and the collection of map-
matched GPS coordinates. Entries in the GPSFact
table is then updated with the map-matched GPS
coordinates, road segment ids and speed limits (if
available).

• Compute measures and flags for the entire trip in
the GPSFact table. Measures are attributes like
speed, acceleration, etc. Flags provides a true/false
value to indicate whether the driver is speeding, ac-
celerating, etc. If duplicate timestamps are found
in the collection of GPS points for a trip, these
are pruned. Using a 1 second resolution makes
such points relatively common, but also useless.
It is impossible to compute measures with a divi-
sion of 0 seconds as time passed since the previ-
ous point. The updated GPSFact entries are then
updated in the GPSFact table with the computed
measures and flags.

• Compute the attributes in the TripFact entry:
Length of trip, duration, optimal score, tripscore
and the count of each delinquency, etc. The at-
tributes in the TripFact entry are then updated in
the database. The entire list of attributes can be
seen in Figure 17 in Appendices.

• Check whether the car is enrolled in a competition,
and if so, check whether the trip is valid for use in

the competition. If it is, update the CompetingIn
table, with the corresponding score and increased
number of attempts.

The physical storage layer is where the database is
hosted. The database is a modified version of the data-
warehouse schema presented in An Advanced Usage
Based Insurance And Privacy-Secure Pricing Model
[19], hosted through the open source DBMS, Post-
greSQL [26]. The modified data warehouse schema can
be seen in Figure 17 in Appendices.

3. IMPLEMENTATION

In the following section the implementation of
Drive-LaB is described.

The backend of Drive-LaB covers the 5 layers de-
scribed in Section 2.2. It spans over 8.042 lines of code,
written in C# in Visual Studio. The frontend application
is implemented as an Android application. It spans over
19.192 lines of code, written in Java and XML, in An-
droid Studio.

The system makes use of 2 different servers. The
first server, being the API server, is a single core server
with a Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
processing unit, and 6GB RAM. The second server is
an 8-core server with an AMD Opteron(tm) Processor
6376 processing unit, and 16GB RAM.

3.1. Frontend

A goal for Drive-LaB is to be easily accessible. To
fulfill this goal, Drive-LaB is developed for Android.
As of 2015 Q2, over 80% of shipped smartphones use
the Android OS [30]. Choosing Android as platform
has allowed for the release of Drive-LaB on Google
Play [12], making it accessible for the vast majority
of smartphone users. Furthermore, the implementation
of Drive-LaB supports Android 4.0 – 6.0.1, making it
compatible with over 97% of current Android devices
[4]. As mentioned in Section 2.1, the application has
two responsibilities; data collection and data presenta-
tion. These responsibilities are mirrored in the structure
of the application, seen in Figure 5. The application
consists of two major components. One is the user in-
terface, consisting of 10 different Android Activity
[9]. The interface presents data for the user, and al-
lows for interaction with Location Service, the
second component. Location Service is an An-
droid Service [17]. It runs separately from the rest of
the application, in its own process. It is however entirely
controlled by the user interface as seen in Section 3.1.1.
The Location Service is responsible for all loca-
tion logging. Running the service separately allows for



Figure 5: The frontend consists of two components,
running separately from each other

a lifecycle independent of any Activity bound to it.
In effect, the Android device can still be used normally.
The application can be closed, and the screen turned
off, saving battery. This will not affect the Location
Service in any way.

3.1.1. Service Communication. The downside of
having Location Service running in a process
separate from the rest of the application, is that com-
munication becomes non-trivial. With the chosen
setup, there is no support for synchronous communi-
cation, method invocation, or even two-way commu-
nication. The alternative method of communication
is illustrated in Figure 6. Location Service and
User Interface represents a running instance of
a Service and an arbitrary Activity respectively.
For these components to communicate, an implemen-
tation of the interface ServiceConnection is re-
quired [18]. The ServiceConnection is bound
to the Location Service using bindService
[10]. Upon a successful connection to the Location
Service, the ServiceConnection instantiates a
Messenger [15] which is able to send messages asyn-
chronously. Looking at the Location Service
in Figure 6, incoming messages are first caught by a
Handler [14] class. By extending this class and over-
riding its handleMessage method, the Location
Service is able to determine a course of action, de-
pending on the message received.

Often, the Location Service is required, not
only to perform an action, but also respond to incom-
ing messages. The Location Service is how-
ever unable to reference a calling Activity. Instead,
the Location Service utilizes sendBroadcast
[16] which issues a message globally on the device. Re-
turning to the User Interface side of Figure 6, the
receiving Activity can then listen for the message

Figure 6: Two-way communication path between Lo-
cation Service and User Interface

using a BroadcastReceiver [11] and act accord-
ingly to the content of the broadcasted message.

3.1.2. Location Logging. Location Service
is responsible for the continuous retrieval of location
updates. Retrieving location updates through Android
is done using the Google Play services location APIs,
specifically the FusedLocationProviderApi
[13]. This API is able to automatically choose the best
location provider, maximizing the possible precision
and availability of location updates. Locations can
therefore be based on both GPS, Cell-ID, or Wi-Fi. To
achieve the desired quality and frequency of locations,
these settings are used when requesting locations
through the FusedLocationProviderApi:

• Desired interval: 1000ms

• Fastest interval: 1000ms

• Priority: High Accuracy

These settings enables Drive-LaB to receive loca-
tions exactly once every second, whenever possible.
Locations are furthermore pinpointed as exact as pos-
sible, regardless of battery consumption. This will usu-
ally result in locations based on GPS positioning, as this
is generally the more accurate option.

3.2. Backend implementation

Servers for the Drive-LaB backend are virtual ma-
chines running Ubuntu, a GNU/Linux operating sys-
tem, and does not naturally run any Windows executa-
bles (.exe). Mono is an open source implementation of
.NET, capable of running C# software on Ubuntu [22].
Because Mono does not implement the complete feature



set of .NET, using Mono causes some issues when port-
ing from initial use of Visual Studio to Mono. These
issues are, among others, stated in the following imple-
mentation description.

3.2.1. API Server. As portrayed in Figure 4 the API
server consists of 3 layers described in this section.

The communication layer is fully implemented in
C# as a RESTful Web Service API, using the built-
in .NET ServiceModel library. It is implemented
following the design described in Section 2.2.1. The
communication layer includes thorough error-handling
along with an error-reporting system. It is critical that
the communication layer does not crash, because the ac-
cess to the Drive-LaB backend will crash with it. The
error-handling ensures that corrupted data being pro-
cessed in the logic layer, does not cast exceptions back
to the communication layer. Also, by using the .NET
RESTful library, a series of error-handling tasks is con-
ducted automatically. As example, if a client targets a
non-existent service endpoint, or if a client use a wrong
HTTP verb, the API will return a corresponding HTTP
error code.

The logic layer is implemented in C# using regular
OOP-style programming. It contains many classes and
methods to handle the variety of functionality handled
by this layer. A majority of this functionality is to create
appropriate C# objects, either based on JSON data re-
ceived from the communication layer, or data received
in DataRow format from the DAL. DataRow is a .NET
specific data type, designed to hold a row of data re-
ceived from a database, which is what the DAL returns
to the logic layer.

The logic layer uses Json.NET, a popular JSON
framework for .NET [23]. Using a third party frame-
work to support JSON serialization and deserialization
is necessary, because Mono does not contain Visual Stu-
dio libraries to support this task. Another library that
is not implemented in Mono is Device.Location,
which offers the type GeoCoordinate in C#. It
is used to store spatio-temporal data, and offers func-
tionality like computing distance between two co-
ordinates. A third party library called GeoCoordi-
natePortable offers this functionality while also being
Mono-compatible [8]. Therefore, this library is used as
substitute.

Last is the DAL. This layer is implemented us-
ing a combination of SQL and C#. It makes use of
Npgsql [24], a .NET data provider for PostgreSQL,
which makes it very easy to write SQL statements and
C# code in the same IDE.

3.2.2. Storage Server. In the implemented system,
it was found to be simpler to implement the trip-
processing layer as part of the logic layer. This does
opposes the design decision to optimize the computa-
tional resources offered by the more powerful server.
Monitoring the ongoing load on the API server, how-
ever shows that computation power is sufficient with a
small set of users. The solution will however not scale
well, and with more users this will have to be reworked
to maximize the performance of the system.

The trip-processing layer contains two extensive
computational schemes named GPSFactUpdater
and TripFactUpdater. The former computes
all measures and flags between every GPS coordi-
nate logged during the trip. This is the founda-
tion for the entries inserted in the TripFact table
and therefore has to be accurate. The modular de-
sign of classes is valuable in the context of process-
ing trips, because appropriate objects can be chosen
and forwarded to the MeasureCalculator. The
MeasureCalculator contains mathematical for-
mulas for calculating measures, for example how to
compute speed. Only the appropriate sub classes are
sent as parameters, and the complete object is not
thrown around between formulas.

TripFactUpdater computes the required at-
tributes in the TripFact, which is statistical group-
ings of the information stored in the GPSFact table.
It uses these statistical attributes to analyze driver per-
formance, compute optimal- and actual tripscores. The
scoringmodel, used to compute the actual tripscore, can
be seen in Section 1.1.

4. EXPERIMENTS

The following section contains a collection of ex-
periments. Section 4.1 is an introductory description of
the data collection used as basis for the experiments,
followed by an explanation of the policy used. Sec-
tion 4.2 is a description of a system experiment, test-
ing whether smartphones are suitable GPS devices for a
usage-based insurance. Following is a test of the met-
rics used in Drive-LaB, to test whether they correlate
with each other. It is described in Section 4.3. This
is done by calculating the Pearson correlation between
the metric scores, and analyzing the results. Section 4.4
contains an experiment on driver profiling. With the ex-
periments follows a discussion of whether the metrics
chosen are sufficient. Optimally, it should be possible
to create a characterizing driver profile and differentiate
among the drivers with risk assessment in mind. Lastly,
Section 4.5 describes a user experiment involving 10
drivers who used Drive-LaB consecutively for a test pe-



riod of roughly one month. This experiment was used to
test the entire system, and the concepts of usage-based
insurance from a business perspective with real users.

4.1. Data Collection

Releasing Drive-LaB into the public has allowed
for the collection of a sizable dataset. For this report,
51 people participated, contributing a total of 581 trips
spanning 13.075 kilometers. The trips are all logged be-
tween May 1st, 2016 and June 11th, 2016. All installa-
tions of Drive-LaB uses the same setup for logging loca-
tions, ensuring a uniform premise across all contributed
trips. As mentioned in Section 3.1.2, the requested sam-
ple rate is set at 1Hz, but conditions such as hardware
limitations and poor signal can block this from being
possible. As such, the collected data varies in sample
rate. The sample rate can be computed by comparing
the total number of entries in the GPSFact table with
total number of seconds driven among all trips.

566.659 entries
898.290 seconds

= 0.63Hz (1)

The total average of the dataset is 0.63Hz, which is
still high-frequency, but lower than the desired 1Hz.

4.1.1. Data. Trips logged through Android devices
contain a set of latitudes, longitudes and timestamps
with an optimal granularity of 1Hz. The Drive-LaB ap-
plication does not store data permanently and therefore
only holds this data in memory. As a trip is sent, all
data is received by the API server and processed as de-
scribed in Section 2.2.1. When the data reach the phys-
ical storage layer on the storage server, all data is stored
in tables corresponding to the data warehouse schema
described in Figure 17 in Appendices.

4.1.2. Policy. The trips have been evaluated based on
a policy throughout the test period. The policy is de-
scribed in Tables 1, 2, 3, 4 and 5. The base values for
the delinquencies are described in Table 6. The most
notable change is that the polynomial scoring mecha-
nism presented in An Advanced Usage Based Insurance
And Privacy-Secure Pricing Model [19] has been omit-
ted, as it is uncertain how the equation directly affects
the scoring of the system. It should be revised when
more information about the effect is present.

4.2. System Experiments

An important aspect of the Drive-LaB experiments,
is to validate if there is an impact on tripscores caused
by the diversity of users’ smartphones. In the con-
text of usage-based insurance, users should be treated

Roadtype Weight
Motorway 0.8
Trunk 0.9
Primary 0.95
Secondary 1.05
Tertiary 1.1
Unclassified 1.1
Residential 1.2
Service 1.2

Table 1: Roadtypes with weights

Active days Start End Weight
Monday - Friday 07:00:00 09:00:00 1.16
Monday - Friday 15:00:00 17:00:00 1.12
Saturday - Sunday 09:00:00 13:00:00 1.02
Saturday - Sunday 20:00:00 23:59:59 1.12
Saturday - Sunday 00:00:00 00:04:00 1.325

Table 2: Critical time intervals with weights

Interval (%) Weight
[0, 10[ 1.3
[10, 20[ 1.4
[20, 30[ 1.5
[30, 40[ 1.6
[40, 50[ 1.7
[50, 60[ 1.8
[60, 70[ 1.9
[70, ∞] 2.0

Table 3: Speeding intervals with weights

Interval (m/s) Weight
[6, 7[ 1.05
[7, 8[ 1.10
[8, 9[ 1.175
[9, 10[ 1.275
[10, 11[ 1.40
[11, 12[ 1.55
[12, 13[ 1.725
[13, ∞] 2.0

Table 4: Acceleration with weights



Interval (m/s) Brake Weight
[8, 9[ 1.05
[9, 10[ 1.10
[10, 11[ 1.175
[11, 12[ 1.275
[12, 13[ 1.40
[13, 14[ 1.55
[14, 15[ 1.725
[15, ∞] 2.0

Table 5: Jerks and brakes with weights

Action Base weight
Acceleration 40
Brake 65
Jerk 15

Table 6: Base weights for accelerations, brakes and
jerks

equally, which relies entirely upon their smartphone and
its GPS antenna. Under optimal conditions, two smart-
phones logging the same trip, should report identical
tripscores. Such an analysis can be quite extensive, in-
volving an entire market of smartphones and different
versions of GPS antennas. Instead, a small scale test
was performed. The test contained a selection of differ-
ent smartphones to indicate whether Drive-LaB is vul-
nerable to GPS inaccuracy.

The test will be referred to as an applicability test.
An applicability test will confirm whether or not smart-
phones are capable of scoring trips equally. It was con-
ducted by setting up five different smartphones and two
high quality GPS trackers [29] in the same car, and
record the trip concurrently with all devices. For the
system to be applicable for usage-based insurance, the
smartphones needs to report identical tripscores, and the
routes should to be near-identical to those recorded by
the high quality GPS trackers.

With the seven devices, four trips were completed
driving around in northern Jutland, in the vicinity of
Aalborg. Raw data from the trips can be seen in Ta-
bles 10, 11, 12 and 13 in Appendices. A summary of
the tripscores for each device, can be seen in Table 7.

When examining trip 1 from Table 7 which has
a length of approximately 36.200 meters, two smart-
phones and one high quality GPS scores between
37.000-40.000. This corresponds to a good score. But
the remaining four devices disagree with varying sever-
ity. The worst is the Huawei Y330, which scores
81.819. The Huawei Y330 however only logs 23% of
the average GPS coordinates compared to the other de-
vices. The Huawei continues this trend throughout the

Figure 7: Routes traveled in the area of Aalborg dur-
ing the experiment

test, and seems unfit for use in usage-based insurance.
Another alarming result in trip 1 is the degree to which
the two high quality GPS devices disagrees. One scores
37.910 while the other scores 69.956 - a 84% increase.

Trip 2 in Table 7 has a length of approximately
28.200 meters. On this trip, one of the high quality
GPS devices failed to log the entire trip. For the remain-
ing devices, two range from 27.750-28.750 in tripscore.
The noteworthy result compared to trip 1 is, that the de-
vices with a low tripscore are not the same as those in
trip 1.

The same pattern occur with trip 3 from Table
7, which has a length of approximately 13.400 me-
ters. This time, four devices gets a score ranging from
16.500-24.050, which are somewhat similar. The last
three devices got a much higher tripscore, the high-
est being 85.139, approximately 535% above the trip-
length, and it was logged by one of the high quality GPS
devices. To highlight the disagreement between the two
high quality GPS devices, the other device got a score



Table 7: The tripscores from all seven recording devices, on all four trips used, during the first test

Trip 1 Trip 2 Trip 3 Trip 4
OnePlus One 50.191 58.922 42.751 23.228
Samsung Galaxy S5 40.092 56.781 24.026 27.530
HTC One Mini 2 75.063 28.734 21.012 19.203
Huawei Y330 81.819 128.056 50.622 13.082
Samsung Galaxy S4 37.010 27.762 16.927 18.825
BT-Q1300ST (#1) 37.910 25.373 20.981 23.917
BT-Q1300ST (#2) 69.956 72.785 85.139 27.074

of 20.981.
The pattern is broken with trip 4 from Table 7,

where all devices range between 13.000-27.550. While
scores are still diverse, it is significantly better com-
pared it to trip 3. For this trip, the worst device scored
approximately 91% above the length from this trip,
compared to 535% in trip 3. The high quality GPS
devices also score similarly on trip 4 with a result of
23.917 and 27.075 respectively.

When analyzing the results from this test, the im-
mediate thought may be to throw away the smartphone
as usage-based insurance component. Concern about
accuracy, integrity, availability and continuity of service
in standalone GPS receivers is also raised in other arti-
cles [20] [21] [25] [31] [32]. But two other factors may
have influenced the results in Table 7. The first factor
is GPS interference, in which case the test setup could
have changed the results. For the experiment, all GPS
devices were in close proximity of each other. All de-
vices were placed in a fabric container and placed in
the front of the car near the windshield. This could af-
fect the GPS receivers by interfering with each other [1]
[2]. This position was decided upon, because a common
reference point was valued in the applicability test. One
article provides concrete results in terms of coverage
from smartphone GPS receivers, and during a 1 hour
and 15 minutes trip, 6 hard brakes were detected with
an OBD device inside the car. A total of seven smart-
phones was brought on this trip, and they had a coverage
in the interval of 60% to 99.7% when detecting these
brakes [25]. This states that smartphones are indeed
vulnerable to inaccuracy. Coverage means the degree
to which the smartphones align with the control-unit, in
this case the OBD. The test also included outliers, false
positives, and indeterminable which causes the percent-
ages to be skewed.

The second factor is the use of TrackMatching, a
third party software for map-matching spatio-temporal
trajectories [7].. TrackMatch attempts to map-match a
series of points to the OpenStreetMap road network,
and output the entire route by segments and map-
adjusted GPS points. The algorithm TrackMatch uses

to map-match coordinates are however unknown. No
module was implemented to oversee this readjusting, so
this influence cannot be changed.

It was decided to repeat the applicability test and
eliminate the GPS interference as much as possible. For
the second test, the GPS devices were arranged in the
car with as much distance as possible between them.
The possible margin of error by using a separated ref-
erence point was disregarded. The Huawei Y330 was
also omitted.

The test results shown in Table 8 once again shows
a considerable difference when comparing the two high
quality GPS devices. But the difference is decreased
substantially compared to the first test, which signi-
fies that some external influence may have been affect-
ing the devices. Looking at the raw data in Tables 10
through 17, an observation is that their behavior is con-
sistent. When looking at the amount of accelerations,
brakes and jerks, one device consistently counts more
than others. BT-#1 counted a total of 1529 of these
events, whereas BT-#2 counted a total of 3894. That is
191.13 events per trip on average for BT-#1, and 486.75
events per trip on average for BT-#2. This generaliza-
tion of more events registered by BT-#2 are present in
both tests. This signifies that it may not be able to con-
clude any comparison between these two devices, be-
cause they deliver such different results.

The results from Samsung Galaxy S4, Samsung
Galaxy S5 and BT-#1 from the second test, actually
compares well to the results they provided in the first
test. There is an influence in the driving style, but both
tests was performed by the same driver. The driver at-
tempted to follow his personal driving style during both
tests. Additionally, traffic may also influence the re-
sults in the tests, but the tests was performed in a similar
time-period, both on a weekday.

The remaining devices disagrees with their results
from the first test to the second test, for some of the
trips. When looking at the overall result from both
tests, the system is not currently applicable for usage-
based insurance. This is due to the diversity in trip-
scores for similar trips, making it unfair for policyhold-



Table 8: The tripscores from all six recording devices, on all four trips used, during the second test

Trip 1 Trip 2 Trip 3 Trip 4
OnePlus One 64.511 31.075 17.103 18.223
Samsung Galaxy S5 46.668 48.169 19.010 22.779
HTC One Mini 2 54.564 39.439 27.674 29.767
Samsung Galaxy S4 37.475 29.242 16.672 18.094
BT-Q1300ST (#1) 37.800 30.397 26.440 25.064
BT-Q1300ST (#2) 41.260 37.029 36.531 45.327

ers. While several articles have raised concern about the
GPS receivers, some also suggested ways of supporting
the raw data with model-based signal processing and
an outlier rejection scheme [20] [25] [32]. This would
make the trajectories more stringent, and possibly elim-
inate falsely positive delinquencies caused by a jumpy
GPS coordinate. It is considered a good next step to de-
sign and implement such a scheme into the Drive-LaB
system. This scheme could potentially make each GPS
receiver more consistent. If it could be achieved that ev-
ery GPS device produces reproducible results, a calibra-
tion mechanism could eliminate the diversity caused by
different GPS devices. This would ultimately cleanse
the instability about accuracy, integrity, availability and
continuity of service from standalone GPS receivers,
and make the system robust enough to apply entirely
to usage-based insurance.

4.3. Pearson Correlation

Drive-LaB valuates trips based on the scoring-
model described in Section 1.1. The scoringmodel is
based on six metrics; roadtypes, critical time periods,
speeding, accelerations, brakes and jerks, as described
in An Advanced Usage Based Insurance And Privacy-
Secure Pricing Model [19]. These six metrics cover a
big part of the drivers performance during a trip, but it
is essential to verify the importance of each individual
metric when identifying driver style. Such an exper-
iment can be conducted by computing a Pearson cor-
relation matrix, in order to ensure that no metrics are
directly correlating, meaning one of the metrics is neg-
ligible. This experiment is run in coherence with the
chosen policy, as described in Section 4.1.2. The Pear-
son correlation is calculated on the scores of the metrics
on the given trips.

The matrix of Pearson correlations between the
metrics is shown in Table 9. The most notable result is
the multicollinearity between accelerations and brakes,
which seems rather odd as they are diametrical oppo-
sites and can per definition not exist at the same time.
Another highly correlating metric is jerks, having a cor-
relation of 0.828 with both brakes and accelerations.

Figure 8: A scatterplot of the correlation between
acceleration- and brake score

Looking closer at the multicollinearity between ac-
celerations and brakes, there are a couple of different
factors which affect the result. As mentioned, acceler-
ating and braking are diametrically opposite, but they
are both dependent on the speed of the vehicle (as they
are calculated through the change in speed). Given a
trip starts and ends at the same speed(0 km/t), the accu-
mulated acceleration must be equal to the accumulated
brake.

Figure 8 clearly illustrates the correlation between
accelerations and brakes. Another reason why these
metrics correlate can be the thresholds used in the pol-
icy to calculate the scores. As earlier mentioned, the
threshold for brakes are 8 m/s2 whereas accelerations
are counted from 6 m/s2. If there were no thresholds,
and the delinquencies were scored the same, the correla-
tion would be 1.0 as it only depended on the speed of the
vehicle. Jerks was the metric that met the highest level
of skepticism when the scoringmodel was designed, and
the correlation shows that it was not completely unwar-
ranted. It does show a lot of correlation with both brakes
and accelerations. Figure 9 shows the correlation be-
tween accelerations and jerks. Jerks are, as mentioned,
calculated as m/s3, and a driver with many accelera-
tions are almost bound to have a lot of jerks as it is hard
to keep a constant acceleration.



Table 9: This is the Pearson correlation matrix between the metrics

Roadtypes Critical Time Periods Speeding Accelerations Brakes Jerks
Roadtypes 1
Critical Time Periods -0.250 1
Speeding -0,546 0.156 1
Accelerations -0.341 0.460 0.196 1
Brakes -0,348 0.428 0.195 0.971 1
Jerks -0,241 0.313 0.144 0.828 0.828 1

Figure 9: The correlation between acceleration- and
jerkscore

4.4. Driver Profiling

Creating driver profiles is one of the strengths in
Drive-LaB. With a descriptive set of metrics it is pos-
sible to differentiate between drivers, and create fairly
accurate driver profiles without compromising the users
privacy. The concept of a driver profile is relevant for
this project due to the direct connection to the insurance
industry. Naturally, it is possible to evaluate the drivers
insurance costs more precisely, if the given driver pro-
file is accurate. However driver profiles is demanded to
be accurate and portray the full picture when you are
dealing with paying customers [25] as they need an in-
centive to use the product. In the remainder of this sec-
tion, two random driver profiles will be reviewed and
used to illustrate the capabilities in Drive-LaB to differ-
entiate between driving styles.

Score Percentages are a great way to differentiate
between drivers. The two drivers will be referenced
to as Driver 1 with an average tripscore percentage of
65,08%, and Driver 2 with an average tripscore percent-
age of 39,07%.

Beside the obvious difference in percentages, look-
ing at where the drivers generate their scores, show clear
differences. Figure 10 and Figure 11 shows a compar-
ison between the two drivers, portrayed as a bar chart

and a pie chart with the distribution of the tripscore
based on metrics, respectively. Looking at Driver 1, a
lot of the added score actually comes from accelerations
at roughly 21%, brakes at roughly 28% and to some
extent jerks at roughly 11%. It is also worth mention-
ing that roadtypes actually scored negative on average.
Looking at the pie chart in Figure 11, brakes are eas-
ily recognizable as the biggest contributor to a higher
score.

Figure 10: Bar charts of the distribution of tripscore
percentage by metrics for Driver 1 and Driver 2

Driver 2 has quite a different distribution than
Driver 1, aside from a lower tripscore percentage in gen-
eral. It is clear that accelerations and brakes heavily in-
fluence the score in the system, however this driver has
a significantly lower percentage in both of the metrics
in the tripscore. This is noticeable in the pie chart in
Figure 11 which shows far less disparity between the
metrics than Driver 1.

Normalized Metrics are the average metrics on a cer-
tain distance driven. For easy comparison the distance
chosen is 1.000 meters. Looking at Driver 1 in Figure
12, Driver 1 has 6.84 points with jerks flagged given
the chosen distance. Comparing Driver 2 to Driver 1,
the former almost halves the amount of accelerations,
brakes and jerks per 1.000 meters. The only metric
Driver 2 has more of, given the chosen distance, is
speeding.



Figure 11: Pie charts showing the distribution of tripscore percentage by metrics for Driver 1 and Driver 2

Figure 12: A bar chart of the metrics per 1.000 me-
ters for Driver 1

Severity of Delinquencies is one of the big tells when
differentiating between drivers. It is noticeable when
looking at Figure 13, which represents Driver 1, there is
a slight decline with a spike in the last interval. There
might be several reasons as to why the last interval spike
but the primary reason is that the interval is everything
above a threshold, thus a much larger interval than the
previous. Comparing Driver 1 to Driver 2, shown in
Figure 14, there is quite a different distribution.

It is proven, that it is possible to distinguish be-
tween drivers, and even more important, it is possible
to create driver profiles. Given an arbitrary trip it would
be possible to draw similarities between the trip and the
driver profiles. From a usage-based insurance point of
view, it would be possible to assess the risk of a given
driver. As an example, a driver with a higher amount
of braking delinquencies, all represented as brakes with
a hard degree, might have a higher risk of crashing and

get a more expensive insurance claim.

4.5. User Experiments

The entire Drive-LaB system has been tested
through an end user experiment involving a subset of
users. The experiment includes 10 drivers, who have
been instructed to use the system for all their vehicu-
lar trips. To get started, all users received a two-page
guide for setting up Drive-LaB on their smartphone.
This guide can be seen in Appendices. The experiment
ran from the 1st of May till the 3rd of June. As a motiva-
tor for using the system thoroughly, a competition was
hosted, offering a prize for the user with the lowest av-
erage score percentage. The competition could be fol-
lowed live through the application, allowing the drivers
to monitor current results and compare them with other
participants. At the end of the competition the 10 users
completed 345 trips spanning 8.191 kilometers.

There are several points to asses in this experiment,
and one of them is to test the system in its entirety,
in a setting true to the environment where the system
will eventually be released. This test setup is as true
to the real setting as possible. The frontend application
was deployed on Google Play, where participants could
downloaded from. Throughout the experiment, partic-
ipants had access to a leaderboard with average scores
for all participants. It would be desirable to receive user
inputs on the system, to learn about perceived ease of
use and possible improvements. As of the publishing of
this paper, that feedback is still on its way.

One of the more interesting things to investigate
through this experiment, is whether participants im-
prove their score percentages over time. Figure 15



Figure 13: A bar chart of the distribution of metrics within the intervals for Driver 1

shows tendency lines for every participant throughout
the experiment. It is important to notice this is merely
tendency lines and not projection lines. Figure 15 shows
a downward trend for 8 of the 10 drivers, with slope
ratios between -0,284 and 3,273. It shows an upward
trend for two of the drivers, with slope ratios at 0,13
and 3,54. The highest numerical slope ratios represents
the drivers with the fewest amount of trips, and drivers
with 0 trips later in the test period. What these results
reveal, is that users of the system scores slightly bet-
ter when having used the system for a period of time.
This could mean that users of the system slowly im-
prove their driving habits, dependent on the system in-
dicating when they are actually a good driver.

Lastly, there is an interesting point to whether or
not there is an incentive to keep using the system. As
mentioned, the winner of the experiment received a
prize at the end. As shown in Figure 16 there is a slight
negative tendency in score summation, but it roughly
correlates with the negative slope ratios of the tenden-
cies in trip percentages. This means there was incentive
enough to keep using the system, with the given prize.
In a future insurance environment the incentive could be
a cheaper insurance for the end user or engaging com-
petitions.

5. RELATED WORK

P. Händel et. al. discusses the technology aspects
of smartphone-based telematics, and highlights chal-

lenges in using smartphones as measurement probes
[25]. They further suggest a number of metrics to dif-
ferentiate between trips, and discuss the relevance and
observability of these. The work is only concerned
with the smartphone and its possibilities. It does not
concern itself with implementing a system to support
usage-based insurance.

P. Händel et. al. outlines a fully implemented sys-
tem, capable of supporting usage-based insurance [20].
They further describe the release of said system and the
collection of 250.000 kilometers worth of data in a span
of 10 months. The authors present findings that prove
data quality is a problem using smartphones for telem-
atics. They do however not follow up on whether the
metric-based detection of driving style worked as in-
tended. It is also unknown if the system had any effect
on the driving style for the end users.

6. CONCLUSIONS

This paper has discussed the entire system of
Drive-LaB. It describes the design and implementation
of the system described in An Advanced Usage Based
Insurance And Privacy-Secure Pricing Model [19] with
a variety of changes and improvements. A goal of this
paper is to propose a possible design and implementa-
tion for an experimental platform for usage-based insur-
ance. This is clearly demonstrated in Section 2 and 3,
design and implementation of Drive-LaB, respectively.

The paper offers a system that can provide informa-



Figure 14: A bar chart of the distribution of metrics within the intervals for Driver 2

Figure 15: A line chart showing the tendency lines for each individual driver

tion that has not previously been available to insurance
companies. It shows a driver profile in terms of com-
parable metrics, which can possibly be used to charac-
terize and identify drivers with a higher risk of being
involved in an accidents. This is proven by the ex-
periments conducted in Section 4.4, Driver Profiling.
Given a time period with this system in action, statis-
tical data for risk assessment can be collected by mon-
itoring which drivers actually are involved in an acci-

dent, and their driver profile could become a model to
detect patterns in driving style that poses a higher risk.
This type of data could benefit greatly from compre-
hensive collaboration with an insurance company, and
is not part of this paper.

The paper presents a series of experiments on the
implemented system. One experiment tests whether the
system performs well in a real environment, compara-
ble to commercial setting. Section 4.5, User Experi-



Figure 16: A summation of scores based on days

ments, put the system to the test. In conclusion it per-
formed sufficiently, with excess performance capabili-
ties to spare in the live setting, with at least 10 drivers
continuously using the system.

Another experiment was conducted to examine
whether users of the system understands the metrifica-
tion chosen in the scoringmodel described in Section
1.1, Prerequisites. Additionally, these users should re-
turn their experience, opinion and comments to using
the system. Part of these responses should be whether
they consider the scoring mechanism fair. The test is
described in-depth in Section 4.5, User Experiments.
Unfortunately, their response did not arrive in time, to
make it into this paper. Consequentially, the authors are
unable to answer whether the Drive-LaB supports a fair
and understandable metrification of driver styles.

On the other hand, it can be answered whether
modern smartphones are adequate to support UBI. In
Section 4.2, System Experiments, two applicability
tests are conducted to examine how five different smart-
phones and two high quality GPS devices perform in
cooperation with Drive-LaB. The experiment is conclu-
sive that smartphones are not adequate for usage-based
insurance in collaboration with Drive-LaB. The test dis-
plays too diversified scores among different types of de-
vices, but a list of possible solutions to the problem are
stated as well. The experiment concludes that Drive-
LaB should explore the possibility to implement model-
based signal processing and outlier rejection schemes,
to make the scoringmodel compute scores on more

stringent trajectories. If this could be achieved, the
scores might align themselves, or at least become ac-
curate enough to consider a calibration mechanism.

The platform itself, provides a basis for numerous
experiments involving GPS coordinates and/or user in-
teraction.

A possible extension for the existing system is to
improved the competition implementation in terms of
diversity -possibly handling a wider variety of competi-
tions.
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APPENDICES



Table 10: Trip 1 - Aalborg to Haverslev

OnePlus One Samsung Galaxy S5 HTC One Mini 2 Huawei Y330 Samsung Galaxy S4 BT-Q1300ST(#1) BT-Q1300ST(#2)
Distance (m) 36203.6 36244.9 36327.4 71450.1 36114.1 36215.7 38888.2
Time (s) 1444 1457 1467 1456 1394 1476 1452
Optimal score 34755.5 34650.1 34801.7 80452.8 34525.1 34694.6 37177.2
Tripscore 50190.9 40091.5 75063.2 81819.4 37010.3 37909.8 69955.7
Accelerations 81 69 174 5 48 29 125
Brakes 49 30 157 5 8 14 112
Jerks 152 126 407 11 61 46 300
Speeding (m) 1521.38 1202.71 1918.33 0 948.122 949.985 3242.5
Number of points 962 928 937 256 850 1475 1448

Table 11: Trip 2 - Haverslev to Aalborg

OnePlus One Samsung Galaxy S5 HTC One Mini 2 Huawei Y330 Samsung Galaxy S4 BT-Q1300ST(#1) BT-Q1300ST(#2)
Distance (m) 28375 28196.7 28233.1 98400.9 28185.4 20808.7 46178.6
Time (s) 1209 1232 1246 1216 1210 925 1279
Optimal score 25963.1 25771.8 25805.1 110357 25705.1 19362.5 45462.9
Tripscore 58922.3 56780.8 28734.2 128056 27761.6 25372.5 72784.6
Accelerations 137 127 32 8 16 27 114
Brakes 95 112 13 8 13 26 97
Jerks 283 283 53 15 26 76 311
Speeding (m) 3164.46 3303.57 2064.87 7822.14 1202.25 1658 1471.53
Number of points 804 785 769 170 723 925 1279



Table 12: Trip 3 - Aalborg to Nørresundby

OnePlus One Samsung Galaxy S5 HTC One Mini 2 Huawei Y330 Samsung Galaxy S4 BT-Q1300ST(#1) BT-Q1300ST(#2)
Distance (m) 13443.4 13415.4 13765.9 37611.7 13419.7 13509 22497.8
Time (s) 1767 1761 1777 1693 1794 1798 1855
Optimal score 13766.1 13744 14185.8 42256.7 13775.3 13867 23712.7
Tripscore 42751.4 24026 21012.4 50622.1 16927.1 20980.8 85138.6
Accelerations 175 66 64 31 25 78 249
Brakes 106 56 32 32 18 44 219
Jerks 310 66 96 31 25 137 583
Speeding (m) 1275.5 888.226 913.595 3310.11 567.519 652.36 4927.92
Number of points 1158 1087 1116 204 1060 1796 1798

Table 13: Nørresundby to Aalborg
OnePlus One Samsung Galaxy S5 HTC One Mini 2 Huawei Y330 Samsung Galaxy S4 BT-Q1300ST(#1) BT-Q1300ST(#2)

Distance (m) 6493.1 14431.1 14467.9 9973.32 14417.6 14495.5 10113.1
Time (s) 755 1844 1819 315 1811 1856 1855
Optimal score 6502.84 15574.1 15584.8 11713.7 15545.1 15614.6 10593.5
Tripscore 23228.1 27530.3 19202.5 13082.1 18824.8 23916.6 27074.8
Accelerations 82 72 38 6 35 66 60
Brakes 59 63 32 4 26 38 50
Jerks 160 142 69 3 61 130 127
Speeding (m) 965.408 601.856 660.062 817.946 498.329 794.159 2333.21
Number of points 506 1140 1153 57 1072 1852 1854



Table 14: Aalborg to Haverslev

OnePlus One Samsung Galaxy S5 HTC One Mini 2 Samsung Galaxy S4 BT-Q1300ST(#1) BT-Q1300ST(#2)
Distance (m) 36396.2 36238.9 36402.6 36364.7 36344.3 36122.8
Time (s) 1432 1427 1458 1493 1417 1370
Optimal score 34831.1 34644.4 34764.5 34837.4 34745.1 34497.2
Tripscore 64511.4 46668.4 54563.5 37474.6 37800.1 41260.4
Accelerations 130 64 68 15 27 38
Brakes 90 59 87 5 10 25
Jerks 270 143 184 24 38 78
Speeding (m) 2659.4 2490.6 2568.04 2212.36 2389.12 2653.5
Number of points 970 922 933 936 1419 1373

Table 15: Haverslev to Aalborg

OnePlus One Samsung Galaxy S5 HTC One Mini 2 Samsung Galaxy S4 BT-Q1300ST(#1) BT-Q1300ST(#2)
Distance (m) 28152.9 28120.7 28200 28107.7 28175.9 28328
Time (s) 1190 1178 1195 1188 1203 1203
Optimal score 25703.6 25702.4 25774.8 25690.4 25780.9 25891.8
Tripscore 31074.8 48169.3 39439.1 29242.3 30397.4 37028.7
Accelerations 35 67 78 40 47 89
Brakes 23 63 97 13 70 171
Jerks 49 146 205 47 22 51
Speeding (m) 1389.58 2710.54 2148.87 1356.84 1246.78 1414.33
Number of points 786 751 757 701 1200 1202



Table 16: Aalborg to Nørresundby

OnePlus One Samsung Galaxy S5 HTC One Mini 2 Samsung Galaxy S4 BT-Q1300ST(#1) BT-Q1300ST(#2)
Distance (m) 13416.6 13460.5 13390.7 13410 13637.6 14037
Time (s) 1530 1526 1533 1533 1542 1539
Optimal score 13778.8 13817.2 13718.7 13745.2 13999 14472.2
Tripscore 17102.9 19029.6 27674.4 16671.8 26439.6 36530.7
Accelerations 33 48 68 32 83 147
Brakes 21 28 63 10 172 339
Jerks 48 86 128 32 55 98
Speeding (m) 1328.44 1496.71 1880.29 1482.53 1664.39 2020
Number of points 998 974 966 923 1542 1539

Table 17: Nørresundby to Aalborg

OnePlus One Samsung Galaxy S5 HTC One Mini 2 Samsung Galaxy S4 BT-Q1300ST(#1) BT-Q1300ST(#2)
Distance (m) 14341.5 14409.3 14327.3 14369 14408.5 15051.8
Time (s) 1549 1545 1546 1539 1555 1554
Optimal score 14728.7 14805.5 14742.8 14771.3 14811.9 15473.2
Tripscore 18223.1 22779.1 29766.8 18094 25064.1 45327.1
Accelerations 56 77 85 46 94 187
Brakes 21 47 68 17 159 427
Jerks 57 129 172 43 44 134
Speeding (m) 1083.53 1105.97 1205.53 1101.66 1218.91 1442.7
Number of points 1030 990 980 914 1555 1526



Opstartsguide 

Drive-LaB 

 

Det skal du bruge for at komme i gang 

 Android 4.0 Smartphone 

 Google Play Butik 

 Internet (fx 3G, 4G eller Wi-Fi) 

Din Android version kan findes under:  

Indstillinger > Om telefonen > Android-version 

 

Sådan downloader & installerer du Drive-LaB 

1. Åbn Google Play Butik 

2. Indtast ”Drive-LaB” i søgefeltet 

3. Vælg Drive-LaB fra listen af resultater 

4. Tryk på knappen INSTALLER 

Herefter downloades og installeres applikationen. 
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Opstartsguide 

Drive-LaB 

 

Første opstart 

Drive-LaB benytter sig af enhedens IMEI nummer, samt 

adgang til GPS. På Android 6.0+ vil Drive-Lab spørge om 

adgang til disse, første gang de benyttes. Tilladelserne 

er nødvendige for at Drive-Lab kan fungere korrekt, og 

du skal derfor afgive disse tilladelser når adspurgt.  

 

 

Sådan deltager du i LB-konkurrencen 

1. Tryk på knappen KONKURRENCER 

2. Du skal nu vælge et brugernavn 

NB: For at kunne se konkurrencen 

skal dit brugernavn starte med 

’LB’, fx ’LBMogens’. 

3. Tryk DELTAG for at deltage i konkurrencen 

 

Sådan tracker du din kørsel 

1. Tryk på START TUR når du er klar til at køre 

Drive-LaB er designet til at køre i baggrunden, og du kan 

derfor stadig gøre andre ting, eller slukke for skærmen. 

2. Tryk på STOP TUR når din køretur er slut 

Din tur vil nu blive behandlet og gemt i systemet 

(AFSLUTTER TUR). Denne proces kan vare lige fra et par 

sekunder, op til et par minutter. Efter turen er 

færdigbehandlet kan du igen starte en ny tur. 
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Figure 17: A picture of the entire data warehouse as it is used in the project


