
䴀愀猀琀攀爀 吀栀攀猀椀猀 簀 刀椀挀愀爀搀 䈀漀爀搀愀氀戀愀 䰀氀愀戀攀爀椀愀
䄀愀氀戀漀爀最 唀渀椀瘀攀爀猀椀琀礀 簀 䔀氀攀挀琀爀漀渀椀挀猀 愀渀搀 䤀吀 簀 
䌀漀渀琀爀漀氀 ☀ 䄀甀琀漀洀愀琀椀漀渀

䘀漀爀挀攀 䘀攀攀搀戀愀挀欀 椀渀 琀栀攀 
搀愀 嘀椀渀挀椀 匀甀爀最椀挀愀氀 刀漀戀漀琀

Electronics and IT

Aalborg University

http://www.aau.dk

Title:
Force Feedback in the
da Vinci Surgical Robot

Theme:
Surgical Robotics

Project Period:
September 1st 2015 - June 2nd 2016

Project Group:
1036

Participant(s):
Ricard Bordalba Llaberia

Supervisor(s):
Christoffer Sloth

Copies: 2

Page Numbers: 141

Date of Completion:
June 1, 2016

Abstract:

In the recent years, robotic surgery has
become an important type of operation
within minimally invasive surgery.
Limited or absent haptic feedback
is considered to be among reasons
that impede further spread of surgical
robots. The lack of tactile feeling and
the ongoing discussion among doctors
about its necessity has served as the
main motivation for this research. The
da Vinci Surgical Robot available at
AAU is used, for which a dynamical
model is derived.
Due to the limitations in operating
rooms, sensors are not a straightfor-
ward option. Therefore, a method to
estimate contact force is developed in
this thesis. Robot parameters are first
estimated. Then, an extended Kalman
filter is designed which is able to es-
timate external forces. Finally, a hap-
tic device is used to verify estimated
forces when robot is in contact with
tissue.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

Preface ix

1 Introduction 3
1.1 Background in Surgical Robotics . 3
1.2 The da Vinci Surgical Robot . 4
1.3 Improvements within Surgical Robotics 6
1.4 Project Scope . 7
1.5 Thesis Outline . 7

2 System Description 9
2.1 Da Vinci Robot at Aalborg University 9

2.1.1 Slave Robotic Manipulator . 10
2.1.2 Surgeon Master Console . 11
2.1.3 Controllers in the da Vinci Surgical Robot 12

3 Kinematics 13
3.1 Forward Kinematics . 13

3.1.1 Frames Description . 14
3.1.2 Denavit-Hartenberg Convention 16

3.2 The Manipulator Jacobian . 20

4 Manipulator Dynamics 23
4.1 Euler-Lagrange Formulation . 23
4.2 Kinetic and Potential Energy . 26

4.2.1 Position and Velocities of Links 27
4.2.2 Inertia Tensor . 30

4.3 Friction Model . 33
4.4 Overview of the Manipulator Dynamics 34
4.5 MATLAB Simulation . 36

4.5.1 Simulation Model . 36
4.6 Conclusions . 38

v

vi Contents

5 Controller for Simulation Model 39
5.1 PD Control and Stability Analysis . 39
5.2 Controller Implementation and Results 42
5.3 Conclusions for the Controller . 47

6 Robot Parameters Estimation 49
6.1 Reduced Model . 51
6.2 Convex and non-Convex Optimization 53
6.3 Experiment Design . 56

6.3.1 Trajectory Generation . 56
6.3.2 Trajectory Optimization . 57
6.3.3 Signal Processing . 60

6.4 Linear Least Squares Estimation . 65
6.5 Particle Swarm Optimization . 68

6.5.1 PSO in Parameter Estimation 71
6.6 Parameter Estimation Results . 73
6.7 Error Propagation . 78
6.8 Conclusions for Estimation Results . 80

7 External Forces Estimation 81
7.1 Extended Kalman Filter for Force Estimation 83

7.1.1 Extended Kalman Filter Algorithm 84
7.1.2 System Model . 86

7.2 Joint Torques to End-Effector Forces 87
7.2.1 Translational Jacobian . 88
7.2.2 Rotational Jacobian . 88
7.2.3 Reduced Jacobian . 89

7.3 Force Estimation Results in Simulation 90
7.4 Force Estimation Results in da Vinci Robot 92
7.5 Magnitude of the Force . 98
7.6 Conclusions for the Extended Kalman Filter 99

8 Haptic System 101
8.1 Setup Description . 101
8.2 System Model . 103

8.2.1 Hybrid System . 106
8.3 Stability for Haptic Interaction . 107
8.4 Haptic Implementation in the da Vinci Robot 111
8.5 Discussion for the Haptic System . 113

Contents vii

9 Implementation 115
9.1 System Setup . 115
9.2 ROS Environment . 118

9.2.1 ROS Structure of this Thesis 119
9.3 User Interface . 120

10 Conclusion and Discussion 123

Bibliography 125

A Actuator Dynamics 131

B Setup Guide in ROS 135

C Attached CD 141

Preface

This report documents the work conducted in the period from September 1st to
June 2nd. It is focused on developing a force feedback system for the da Vinci
Surgical Robot available in the Surgical Robotics Lab at AAU. The author would
like to thank Assistant Engineer Simon Jensen for his help with the custom made
AAU da Vinci hardware and Postdoc Karl Damkjær Hansen for his guidance with
the operative system used in the da Vinci robot.

Reading Guide

Unless otherwise noted, this report uses the following notations:

• Cites and references to sources are denoted by square brackets containing au-
thor’s surname and year of publication, directing to the bibliography section.

• Figures, equations and tables are numbered according to chapters and se-
quence, e.g. second figure of Chapter 2 is denoted as Fig. 2.2. However,
equations are enclosed in brackets, e.g. Eq. (3.1).

• Units are given in square brackets, e.g. [m] for meters.

• Symbols and acronyms used in this report are presented in the nomenclature
after this preface.

• Appendices are places after the main report and the bibliography, referred to
by capital letters.

The attached CD contains relevant data, copies of reference used for the research,
MATLAB and Maple scripts, ROS files and a digital copy of this report.

Ricard Bordalba Llaberia
<rborda14@student.aau.dk>

ix

Nomenclature

Acronyms

AAU Aalborg University

MIS Minimally Invasive Surgery

FDA Food and Drug Administration

EMA European Medicines Agency

DOF Degree of Freedom

ROS Robotic Operating System

PI Proportional Integral

PD Proportional Derivative

DH Denavit-Hartenberg convention

CM Center of Mass

LSE Least Square Estimation

WLSE Weighted Least Square Estimation

PSO Particle Swarm Optimization

MSE Mean Square Error

EKF Extended Kalman Filter

sbRIO single board Reconfigurable Input/ Output

FPGA Field Programmable Gate Array

IK Inverse Kinematics

xi

xii Nomenclature

Symbols

Symbol Description Unit
B
AR Rotation matrix from frame {A} to {B}. [-]
B
AT Transformation matrix of points from frame {A} to {B}. [-]
sθ Sine of θ. [-]
cθ Cosine of θ. [-]
α Rotation around x axis [rad]
β Rotation around y axis [rad]
θ Rotation around z axis [rad]
AP Vector of position with respect to a frame {A} [m]
AOB Origin vector of frame {B} with respect to {A} [m]
ai Link length (DH) [m]
αi Link twist angle (DH) [rad]
di Joint distance (DH) [m]
θi Joint angle (DH) [rad]
J Robot Jacobian [-]
0vee Linear velocity of the end-effector [m/s]
0ωee Angular velocity of the end-effector [rad/s]
Jv Jacobian matrix for the linear velocity [-]
Jω Jacobian matrix for the angular velocity [-]
τ n× 1 vector of motor torques [Nm]
q n× 1 vector of joint position or generalized coordinates [rad]
q̇ n× 1 vector of joint velocity [rad/s]
q̈ n× 1 vector of joint acceleration [rad/s2]
M(q) n× n mass matrix of the manipulator [kg m2]
V(q̇, q) n× 1 vector of centrifugal and Coriolis terms [Nm]
G(q) n× 1 vector of gravity terms [Nm]
F(q̇) n× 1 vector of friction torques [Nm]
τext n× 1 vector of external torques seen at the joints [Nm]
L Lagrangian function of the robot [J]
k Kinetic energy of the da Vinci robot. [J]
u Potential energy of the da Vinci robot. [J]
mi Mass of the ith link [kg]
jPci CM of the ith link with respect to frame {j} [m]
jvci CM velocity of the ith link with respect to frame {j} [m/s]
jωi Angular velocity of the ith link with respect to frame {j} [rad/s]
N Number of robot links [-]
I Inertia Tensor around the inertia frame. [kg m2]
I Inertia Tensor around the CM of the rigid body frame. [kg m2]

Nomenclature 1

Symbol Description Unit

Ix Moment of inertia about x axis [kg m2]
Iy Moment of inertia about y axis [kg m2]
Iz Moment of inertia about z axis [kg m2]
I Identity matrix [-]
g 3× 1 gravity vector [m/s2]
Ks Spring torsion coefficient [Nm/rad]
lci Distance from the CM of the ith link with respect to frame {i} [m]
ρ Mass density of the links [kg/m3]
ri Radius of the ith link [m]
hi Height of the ith link [m]
υ Viscous constant of torque friction [Nms/rad]
c Coulomb constant of torque friction [Nm]
η Motor gear ratio [-]
η Diagonal matrix of gear ratios [-]
Jm Motor inertia [kg m2]
Jm Diagonal matrix of motor inertias [kg m2]
Kp Positive diagonal matrix of proportional gains [-]
Kd Positive diagonal matrix of derivative gains [-]
C(q̇, q) Coriolis and centripetal coupling matrix [W]
F Positive diagonal matrix with viscous friction coefficients [Nms/rad]
Φ Observation matrix of system [-]
ω f Fundamental frequency of the optimal trajectory [rad/s]
N f Number of Fourier elements [-]
Ts Sampling time [s]
Tf Period of optimal trajectory [s]
a Trajectory parameter [-]
b Trajectory parameter [-]
F Data matrix build with Φ [-]
W Diagonal matrix of weights of the measured torque [-]
θj,i Parameter j of joint i [-]
M Number of periods of the repeated trajectory [-]
K Number of samples of one trajectory [-]
Fee Vector of force and torque at the end effector [-]
fee Force at the end effector [N]
τee Torque at the end effector [Nm]
kH Human and haptic device stiffness [N/m]
kT Tissue stiffness [N/m]
bH Human and haptic device damper [Ns/m]
ỹ Innovation or measurement residuals of the EKF [-]

Chapter 1

Introduction

The initial chapter of this thesis serves as an introduction to the da Vinci Surgi-
cal System and its application to minimally invasive surgery (MIS). First, a brief
overview of the da Vinci Surgical System and its origins is given. Then, possible
improvements within Surgical Robotics are discussed and the scope of the project
is described. Finally, an outline of the thesis is presented.

1.1 Background in Surgical Robotics

Minimally invasive surgery (MIS) has completely changed the effects that surgi-
cal procedures causes to patients. Compared to traditional open surgery, MIS has
proven to be safer, to reduce recovery time and length of hospital stay, while re-
ducing the patient’s pain and scarring [Trejos et al., 2010]. In MIS, small incisions
are made to the patient such that the instruments enter the body, while causing the
least damage possible to the patient. One type of MIS is the laparoscopic surgery,
where thin telescopes with surgical tools attached are inserted into the patient
through trocars. The patient’s abdomen is inflated with air allowing the surgeon
to maneuver the tools guided by visual feedback from a miniature camera (endo-
scope).

Initially, manual laparoscopic tools were used. It was in the 1980s when the
use of master-slave robotic systems for minimally invasive laparoscopic surgery
began. Such robots allow the doctor to perform surgery on a patient even though
they are not physically in the same location, since camera feedback is provided.
This is known as telesurgery. Moreover, it provides a better work environment for
the doctor by reducing strain and fatigue. Surgeries that lasts for several hours
can worsen the surgeon performance as they experience hand fatigue and tremors,
whereas surgical robots are much steadier and smoother.

3

4 Chapter 1. Introduction

(a) Manual Laparoscopic Tool.

(b) Da Vinci Laparoscopic Tool. (c) Tool in trocar.

Figure 1.1: Tools used for both manual and robotic laparoscopic surgery.

Nowadays, the American company Intuitive Surgical is the leading manufac-
ture of surgical robots for minimally invasive laparoscopic surgery. Their robotic
surgical system, known as da Vinci Surgical System, was released in 2000, after be-
ing approved by the Food and Drug Administration (FDA). Currently, more than
3500 da Vinci units are being used worldwide, where almost 70% of them are in
the USA [Surgical, 2016].

1.2 The da Vinci Surgical Robot

Most surgical robots are master-slave systems which can be fully controlled by the
surgeon. The da Vinci robot consist of four arms for tool and camera handling.
Each of the arms have between 6 and 7 degrees of freedom (DOF), that are posi-
tioned inside the patient’s body. A camera gives a 3D visual feedback to the master
console, while the surgical instrument is controller with a joystick. The surgeon’s
movement is scaled down in order to improve accuracy. Moreover, the user tremor
in the joystick is removed. However, no haptic feedback is provided to the surgeon.

1.2. The da Vinci Surgical Robot 5

Figure 1.2: Da Vinci surgical System. On the left there is the surgeon master console where the
surgeon can control the robot while looking to a 3 dimensional image. On the right, the robotic
manipulator is following the trajectory given to operate a patient.

Limited or absent haptic feedback is considered to be among reasons that im-
pede further spread of surgical robots [Enayati et al., 2016]. Once a system is
controlled remotely, the user loses all abilities to feel interaction forces and can
only rely on visual feedback. The loss of tactile feeling leads to some limitations
[Trejos et al., 2010]:

• It is no longer possible to manually palpate tissue in order to evaluate its
characteristics.

• Excessive forces might be applied and thus, leading to damage to healthy
tissue.

• Insufficient forces might be applied when grabbing or suturing, leading to
slippage and loose surgical knots.

Moreover, despite the potential of surgical robotics, research in the area has been
relatively slow. Patents owned by Intuitive Surgical Inc. are one of the reasons
behind this fact. However, these patents expires by 2016, opening the market for
competitors [Wisniewski et al., 2015]. One potential challenger is the Raven open
source surgical robot, which, like the da Vinci, also has its origins in the U.S. Army.

6 Chapter 1. Introduction

At Aalborg University, the Robotic Surgery Group owns a first generation of
the da Vinci Surgical System, where both a hardware and software system has
been developed in order to create an open source surgical robot in [Wisniewski
et al., 2015]. The console has been detached from the robot in order to focus the re-
search on automating surgical robots. The purpose behind it is to eventually create
a surgical robot that is semi-autonomous, where responsibility would be shared
between the surgeon and a computer [Wisniewski et al., 2015].

Current work at the Robotic Surgery Group is related to safety in robotics
surgery. In [Sloth and Wisniewski, 2015], a safety controller was developed for
beating-heart surgery, where the tool was kept within a safe distance from the
heart by means of barrier certificates. In [Jakobsen and Lykkegaard, 2015], barrier
certificates were also used to ensure a safe operation and avoid cutting undesired
nerves or veins.

1.3 Improvements within Surgical Robotics

Despite the advantages that surgical robots can bring, there is still a lot of room
for improvement. Two main areas are of great interest for further enhancement of
robotic surgery: safety operation and haptic feedback.

Safety in robotic surgery

Once surgical tools enter the patient’s body, it is probable that they get in contact
with nerves, veins or organs that should never be cut. Therefore, it is important
to guarantee safe operation, as it has been done at AAU in [Sloth and Wisniewski,
2015] and [Jakobsen and Lykkegaard, 2015].

Haptics feedback

While performing robotic surgery, lack of force feedback is one of the reasons why
veins or tissue are damaged unintentionally, as the surgeon can only rely on visual
information to estimate the forces applied. However, the use of haptic feedback
has been rather underutilized due to practical difficulties. Its use in MIS has been
discussed in [Trejos et al., 2010] and [Enayati et al., 2016]. Both stated the need
to have force feeling, such that the experience of the user during surgery can be
enhanced.

One of the major challenges is to determine how haptic information can be
obtained. The use of sensors is quite limited due to the strict regulations when
working in operating rooms (e.g. sterilization). For instance, regulations imposed
by both the European Medicines Agency (EMA) and the American Food and Drug

1.4. Project Scope 7

Administration (FDA) should be followed [Enayati et al., 2016]. Moreover, the cost
of such sensors should be reasonable. For this reason, sensorless force estimation
arises as an alternative to solve this issue. This last approach is the one followed in
this thesis.

1.4 Project Scope

This section will give an overview of the intended outcomes of this thesis. The lack
of force feeling in the da Vinci Surgical System, like the one at AAU, and the on-
going discussion [Trejos et al., 2010][Enayati et al., 2016] about the need of haptic
systems in the field of minimally invasive surgery has served as the main moti-
vation for this research. Hence, the overall scope is to develop a force feedback
system for the da Vinci Surgical System available at AAU. This is accomplished
by estimating contact force without the use of force sensors, but only measure-
ments already available from the motors, such as current or joint position. Once
the main goal of the thesis is stated, it is important to define preliminary goals:

• Develop a kinematic and dynamic model. It implies an understanding of
the engineering behind the da Vinci Surgical System.

• Build a simulation for the robot dynamics and design a controller for it,
such that it can be used as a test bench before using the physical robot.

• Estimation of model parameters for the da Vinci robot, such that the model
can be used in force estimation.

• Develop a force estimation algorithm that can estimate external forces with-
out the need of extra sensors.

• Analysis of the haptic system in a master-slave configuration of the da Vinci
robot. This implies an understanding of the entire configuration of the open
source surgical robot at AAU.

1.5 Thesis Outline

This chapter has provided an introduction to surgical robots. The motivation for es-
timating contact forces and developing a haptic system has also been given. Then,
the project scope has been defined. Finally, an outline of the thesis is now provided:

Chapter 2: System Description
The purpose of this chapter is to give an overview of the first generation da Vinci
Surgical robot that is used in this thesis, which is available at Aalborg University
[Lab, 2012].

8 Chapter 1. Introduction

Chapter 3: Kinematics
The purpose of this chapter is to develop a kinematic model for the da Vinci Surgi-
cal robot. This analysis describes the relation between the different links and joints
of the robot, since it is needed for the study of system dynamics.

Chapter 4: Manipulator Dynamics
The purpose of this chapter is to derive a complete model for the da Vinci Surgical
robot and to simulate it. At the time of the beginning of this thesis, a dynamic
model for the system has not been developed yet.

Chapter 5: Controller for Simulation Model
The purpose of this chapter is to design a controller for the simulation of the da
Vinci model and to prove its stability.

Chapter 6: Robot Parameters Estimation
The purpose of this chapter is to identify the robot parameters by means of esti-
mation methods used in industrial robots.

Chapter 7: External Forces Estimation
The purpose of this chapter is to estimate external forces applied to the robot. Once
the model is known, force is estimated without using force sensors but only mea-
surements from the motor.

Chapter 8: Haptic System
The purpose of this chapter is to present the haptic setup used in this thesis, such
that contact forces can be felt by the user. The stability of the haptic interaction is
also discussed.

Chapter 9: Implementation
The purpose of this chapter is to describe the implementation and the contribution
of this project to the da Vinci Surgical Robot at AAU [Lab, 2012].

Chapter 2

System Description

The purpose of this chapter is to give an overview of the first generation da Vinci
Surgical robot that is used in this thesis, which is available at Aalborg University
[Lab, 2012]. The different elements that comprise the system are explained here.
However, a detail description of the hardware and software configuration made at
AAU is given in Chapter 9.

2.1 Da Vinci Robot at Aalborg University

The da Vinci robot at Aalborg Univeristy is the first generation of this surgical
robot which is shown in Fig. 2.1. It consist of two main parts:

• Surgeon master console: This part is where the surgeon controls the robot.
Two high resolution eyepieces at the console show a 3 dimensional image
that gives the surgeon very real vision of the process, compared to the 2
dimensional view that is used in standard laparoscopic surgery.

• Slave Robotic Manipulator: It consist of four robotic arms, also called ma-
nipulators, that respond to the commands given by the surgeon. Each robotic
arm has 6-7 DOF and one of them holds an endoscope.

The slave robotic manipulator has been detached from the surgeon master console
in the da Vinci Surgery System which is in the laboratory at AAU. This has been
done in order to allow research in semi-autonomous control for surgical robotics.

9

10 Chapter 2. System Description

Figure 2.1: 1st generation of the da Vinci Surgical System at Aalborg University.

2.1.1 Slave Robotic Manipulator

The da Vinci Surgical Robot consists of four interactive robotic arms, with different
instruments each, controlled from the surgeon console. One of these instruments
is an endoscope, a tube with two small cameras and a light, which is used to give
3D image to the console. Each manipulator has three different parts as shown in
Fig. 2.2: the arm, the hand and the tool with the end-effector.

• Arm: The arm is the first part of the robot, which is furthest from the patient.
Its joints are fixed before any procedure and cannot be moved during surgery.

• Hand: The hand is the second part of the robot that is attached to the end of
the arm. It can be moved during surgery.

• Tool and end-effector: The tool or instrument is the last part of the robot.
There are several types of instruments that can be used, each one with a
specific function in a surgical procedure. Depending on the instrument used,
the arm will have either 6 or 7 DOF. The end-effector is the end of the tool
and is specially designed to interact with the patient. Its movements should
be extremely precise and they try to mimic a human wrist.

2.1. Da Vinci Robot at Aalborg University 11

hand

arm

tool

end effector

Instrument
Yaw

Instrument
 Roll

Hand Roll

Hand Pitch

Instrument
 Pitch

Iinstrument
Slide

Figure 2.2: Description of the different parts of one arm of the da Vinci Surgical System.

2.1.2 Surgeon Master Console

Generally, the surgeon master console is in the same room than the robotic arms
and the patient. However, it can also be placed further away from the operating
room. The surgeon has 3D visual feedback obtained from the endoscope cameras,
then foot pedals can be used to move this endoscope. Two 7-DOF joysticks provide
control of the robotic manipulators, like the one represented in Fig. 2.2. However,
no force feedback is given to the joysticks. Furthermore, the console in the da Vinci
Surgical Robot at AAU shown in Fig. 2.3 has been detached from the robot.

Figure 2.3: Surgeon master console of the da Vinci robot.

12 Chapter 2. System Description

Since the main goal of this thesis is to implement force feedback to the system, a
haptic device is needed such that a contact feeling can be given to the surgeon. The
Geomagic Touch shown in Fig. 2.4 has been acquired as it is widely used in haptic
research due to its prize and easy configuration. The Geomagic Touch gives 6 DOF
with 3D force feedback. Motors are used to create the 3D forces such that the
contact and interaction with objects can be simulated. Its configuration and setup
is quite straightforward thanks to its Ethernet connectivity. Moreover, packages for
the Robotic Operating System (ROS) are available online. This is important as the
ROS platform is used to connect the Geomagic Touch with the da Vinci Surgical
Robot.

Figure 2.4: Geomagic Touch acquired for force feedback.

2.1.3 Controllers in the da Vinci Surgical Robot

As mentioned before, the manipulator has been detached from the console in order
to be controlled autonomously or by an external joystick. Each joint is moved
by Maxon DC motors. Therefore, custom independent controllers are designed
for each motor by using a cascade scheme with position, velocity and current PI
controllers as shown in Fig.2.5. The cascade scheme is chosen in order to attenuate
disturbances such as joint coupling, and to minimize friction effects. In this thesis,
the custom controllers have not been modified.

da Vinci
Robot

Current
Controller

Velocity
Controller

Position
Controller

+

-

+

-

+

-
i velocity

position

Position
reference

H-bridge M

τ

Figure 2.5: Block diagram of the cascade controller designed for the motors of the da Vinci Robot.
The three controllers are PI controllers.

Chapter 3

Kinematics

The purpose of this chapter is to develop a kinematic model for the da Vinci Sur-
gical robot which is available at Aalborg University [Lab, 2012]. This analysis
describes the relation between the different links of one of the manipulators, as it
is needed for the study of the system dynamics in Chapter 4.

3.1 Forward Kinematics

Forward kinematics refers to the equations that compute the position of the robot
links by using the joint parameters. In this thesis, the kinematic model of one of
the da Vinci manipulators is developed by using the Denavit-Hartenberg notation
[Denavit and Hartenberg, 1955]. The hand and tool, which are shown in Fig. 3.1,
are studied.

hand tool

Instrument
Yaw

Instrument
 Roll

Hand RollHand Pitch

Instrument
Pitch

Instrument
Slide

end effector

Figure 3.1: Hand, tool and end effector of one manipulator arm with the naming convention used
for the da Vinci robot.

13

14 Chapter 3. Kinematics

3.1.1 Frames Description

To describe the kinematics of links and end-effector of any robot, positions and
orientations should be defined with respect to a coordinate system or frame. This
frame can be both fixed in the inertial space or fixed to an object (e.g. links or
joints). Thus, it is important to define whether position and orientation is relative
to one frame or another.

Position is defined as a vector AP = [px, py, pz]T with respect to a frame {A},
while orientation is defined using a 3x3 rotation matrix A

B R which describes a rota-
tion of frame {B} relative to {A}. This rotation matrix is characterized to be orthog-
onal, which allows to find the inverse relation by simply using the transpose as in
Eq. (3.1):

A
B R = B

AR
T

, where det(R) = 1 (3.1)

Furthermore, the rotation matrix R can be build as an arbitrary combination of
different rotations around the x, y and z axis of the reference frame used.

Rx(α) =

1 0 0
0 cα −sα

0 sα cα

 Ry(β) =

 cβ 0 sβ

0 1 0
−sβ 0 cβ

 Rz(θ) =

cθ −sθ 0
sθ cθ 0
0 0 1

 (3.2)

where cα and sα are shorthands for cos(α) and sin(α) respectively, while α, β and
θ are the angles of rotation around x, y and z axis respectively. An example of
rotation of frame {B} relative to frame {A} around x axis is shown in Fig. 3.2.

 α

α

z

y

x x

y

z

Frame {A}

Frame {B}

Outwards normal

Figure 3.2: Positive rotation of frame {B} relative to frame {A} of α around x axis.

Very often, points in space are described in different frames. Then, Eq. (3.3) is
used to obtain a mapping of one point described in one frame BP to a description

3.1. Forward Kinematics 15

in another frame AP.
AP = A

B R ·B P + AOB (3.3)

where AOB is the origin vector of frame {B} with respect to {A}. In Fig. 3.3, it is
shown how frame {B} is described with respect to frame {A} with a translation AOB

and a rotation A
B R movement.

z

y

x

Frame {A}

Frame {B}

Outwards normal

α

y
α

x

Figure 3.3: Translation AOB and rotation of α around x axis of frame {B} with respect to frame {A}.

This relation between two frames can be expressed in a 4x4 homogeneous trans-
formation matrix T [Craig, 2009], defined as:

A
B T =

(A
B R AOB

01x3 1

)
(3.4)

It is built by using the rotation matrix and the origin vector AOB. The extra row
makes the T matrix square and allows the concatenation of different transforma-
tions. In order to transform points in frame {B} to frame {A}, as it is done in Eq.
(3.3), an extra row with a 1 is needed in the vector P. Then, Eq. (3.3) can be
expressed in a compact form using T matrix as:

AP =A
B T · BP =

(A
B R AOB

01x3 1

)(BP
1

)
(3.5)

An important property of the T matrix is that it can describe a frame {N} with
respect to a frame {0} if intermediate frame descriptions are known:

0
NT = 0

1T · 1
2T · · · N−1

N T (3.6)

16 Chapter 3. Kinematics

For the hand and tool of the da Vinci robot, a definition of frames is needed in
order to describe the kinematic chain, where this chain is the sequence of links and
joints that goes from the base of the hand to the end effector of the tool. Different
approaches can be done to define the frames, but due to its simplicity, the Denavit-
Hartenberg (DH) convention is used in this thesis.

3.1.2 Denavit-Hartenberg Convention

The Denavit-Hartenberg convention is commonly used in robotics because it re-
duces the number of parameters needed to describe the kinematic chain. Four
terms per link are necessary: two describing the link and two describing the con-
nection to the previous link. The DH convention states that [Denavit and Harten-
berg, 1955]:

• Frame {i} is attached to link i.

• The Zi axis is in the direction of the motion axis of joint i + 1.

• The Xi axis is parallel to the common normal between Zi−1 and Zi.

• The Yi axis is now chosen by the right hand coordinate system.

• ai or link length is the distance from Zi to Zi−1 measured along Xi.

• αi or link twist angle is the angle from Zi−1 to Zi measured about Xi using the
right hand coordinate system.

• di or joint distance is the distance from Xi−1 to Xi measured along Zi−1.

• θi or joint angle is the angle from Xi−1 to Xi measured about Zi−1.

In this convention, the transformation between two consecutive frames {i} and {i-1}
is described with a rotation along the Zi axis plus a rotation along the Xi axis, such
that:

i−1
i T =

0

Rz(θi) 0
di

0 1

ai
Rx(αi) 0

0
0 1

 =

cθi −cαisθi sαisθi aicθi
sθi cαicθi −sαicθi aisθi
0 sαi cαi di

0 0 0 1

 (3.7)

where Rz(θ) and Rx(α) are obtained from Eq. (3.2).

Now, the DH convention is applied to the definitions of the frames for the da
Vinci hand and tool as shown in Fig. 3.4. A DH kinematic chain from previous
work at AAU [Jakobsen and Lykkegaard, 2015] is used for the hand and tool of the
robot and a new base frame is set at the base link. Notice that the base frame from

3.1. Forward Kinematics 17

Fig. 3.4 is not moving as it is part of the arm fixed position. Likewise, due to the
counterweight in link 3, joint 2 is not vertically aligned with joint 3 and therefore,
there is small angular offset between frames.

qi
ai di

outward normal
inward normal
variables
parameters

side
view

a4

d1

z1z2

y1

y2

y3

y4

y5

x1

x2

x3

x4

x5

d2

a3

a5

rcm_base
link1

rcm_parallellogram_base
link3

rcm_instrument_holder
link5

needle_driver
_house
link6

needle_driver_neck
link7

rcm_pivot_plate
link2

rcm_parallellogram_upper_bar
link4

z3 z4

z5

y6

y7

x6

x7

z6

z7
z0

y0

x0

q2

q2
q2

q3

q4

x0

z0

y0

frontview

a8

a9L
a9R

needle_driver_neck
link7

needle_driver_head
link8

jawbone_left
link9L

jawbone_right
link9R

y6

y8

y9Ly9R

y7

x6 x7

x8

x9Lx9R

z6

z7

z8

z9Lz9R

q4

q5

q6

q1

Figure 3.4: Coordinate frames defined using the DH convention.

18 Chapter 3. Kinematics

Links 3, 4 and 5 are built such that they move as a parallelogram, which makes
them have the same joint angle q2. This implies that there are a total of 7 variables
that determine the position of the robot. Therefore, one manipulator of the da Vinci
robot (hand and tool) has 7 degrees of freedom. In case there is one end-effector
instead of two (9L and 9R), then the system has 6 DOF. The parameters for this
frame definition are summarized in Table 3.1.

i αi [rad] ai [m] di [m] θi [rad] Name
1 −π/2 0 0.161 0 base
2 −π/2 0 −0.035 −π/2 + q1 pivot plate
3 π 0.190 0 0.03 + q2 parallellogram base
4 π 0.515 0 0.03 + π/2 + q2 parallel. upper bar
5 π/2 0.040 0 q2 instrument holder
6 0 0 0.282 + q3 0 needle driver house
7 π/2 0 0 q4 needle driver neck
8 π/2 0.009 0 π/2 + q5 needle driver head

9L 0 0.009 0 q6 jawbone left
9R 0 0.009 0 q7 jawbone right

Table 3.1: Parameters of the DH convention for the da Vinci robot hand and tool. The variables
represented as q can be controlled.

A total of 7 variables define uniquely the configuration of the 7 DOF of the
manipulator. In the study of the rigid body dynamics developed in Chapter 4, these
parameters are known as generalized coordinates q. Its generalized velocities q̇ are
the time derivatives of the generalized coordinates. Now, all the transformation
matrices are written for later use in the dynamics analysis as a function of these
generalized coordinates q. Note that there are two end effector in the da Vinci
robot, therefore frames {9R} and {9L} are described with respect to {8}.

3.1. Forward Kinematics 19

0
1T =

1 0 0 0
0 0 1 0
0 −1 0 d1

0 0 0 1

 1
2T =

s(q1) 0 c(q1) 0
−c(q1) 0 s(q1) 0

0 −1 0 d2

0 0 0 1

2
3T =

c(q2 + 0.03) s(q2 + 0.03) 0 a3 · c(q2 + 0.03)
s(q2 + 0.03) −c(q2 + 0.03) 0 a3 · s(q2 + 0.03)

0 0 −1 0
0 0 0 1

3
4T =

−s(q2 + 0.03) c(q2 + 0.03) 0 −a4 · s(q2 + 0.03)
c(q2 + 0.03) s(q2 + 0.03) 0 a4 · c(q2 + 0.03)

0 0 −1 0
0 0 0 1

 (3.8)

4
5T =

c(q2) 0 s(q2) a5 · c(q2)
s(q2) 0 −c(q2) a5 · s(q2)

0 1 0 0
0 0 0 1

 5
6T =

1 0 0 0
0 1 0 0
0 0 1 q3 + 0.282
0 0 0 1

6
7T =

c(q4) 0 s(q4) 0
s(q4) 0 −c(q4) 0

0 1 0 0
0 0 0 1

 7
8T =

−s(q5) 0 c(q5) −a8 · s(q5)
c(q5) 0 s(q5) a8 · c(q5)

0 1 0 0
0 0 0 1

8
9LT =

c(q6) −s(q6) 0 a9L · c(q6)
s(q6) c(q6) 0 a9L · s(q6)

0 0 1 0
0 0 0 1

 8
9RT =

c(q7) −s(q7) 0 a9R · c(q7)
s(q7) c(q7) 0 a9R · s(q7)

0 0 1 0
0 0 0 1

In order to verify the transformation matrices defined according to the DH con-
vention, the Robotics Toolbox in MATLAB [Corke, 2011] is used as it can give a
graphical representation of the robot. Notice that dynamical parameters can be
given to Robotics Toolbox, however it is designed for serial links and the paral-
lelogram can not be modeled. Therefore, only a kinematic model is built, while
dynamics are found in Chapter 4. A 3D plot of the robot is shown in Fig. 3.5 given
the DH parameters in Table 3.1.

20 Chapter 3. Kinematics

-0.6

-0.4

-0.2

0

X

0.2

0.4

Z
q6

Y
q5

0.6

q4

q3

X

1

q2

0.8

q1

 daVinci

-q2

0.6

Y

q2

0.4
0.2

0
-0.2

0.5

-0.5

0Z

Figure 3.5: 3D representation of the daVinci hand and tool in the Robotics Toolbox (Matlab) accord-
ing to the frames defined with the DH convention.

3.2 The Manipulator Jacobian

A Jacobian J is a matrix of first order partial derivatives of a vector function and
is a useful tool widely used in robotics. Basically, it defines a relation or mapping
between two different representation of a system. For instance, a robot end-effector
is defined both by:

• Its position and orientation with respect to a base frame {0}, which will be
denoted as 0x.

• A set of joint angles, known as generalized coordinates q in this thesis.

Therefore, in order to obtain this relation, the robot Jacobian J is defined as [Spong
et al., 2004]:

J =
∂x
∂q

(3.9)

3.2. The Manipulator Jacobian 21

which is rearranged by adding ∂t to the numerator and denominator in order to
relate linear and angular velocity of the end-effector to joint velocities:

J =
∂x
∂t

∂t
∂q

→ ∂x
∂t

= J · ∂q
∂t

(3.10)

Now, considering the time derivatives of x and q, Eq. (3.10) is expressed as:

ẋ = J · q̇ →
[0vee

0ωee

]
=
[

Jv

Jω

]
· q̇ (3.11)

where

0vee is the linear velocity of the end-effector [m/s]
0ωee is the angular velocity of the end-effector [rad/s]
q̇ is the n× 1 vector of joint velocities [rad/s] (revolute) and [m/s] (prismatic)
Jv is the Jacobian matrix for the linear velocity
Jω is the Jacobian matrix for the angular velocity

Another useful application of the Jacobian is to relate torques at the joints with
forces and torques at the end-effector as it is done in Chapter 7. Thus, the Jacobian
matrix is now defined in this chapter for its further use in this thesis.

Chapter 4

Manipulator Dynamics

The kinematic model described in Chapter 3 considers the motion of the robot,
but not the forces required to cause motion. This chapter presents the process of
modeling the manipulator dynamics of the da Vinci robot available at the AAU
laboratory. At the time of the beginning of this thesis, a dynamic model for the da
Vinci robot has not been developed yet. The chapter will be divided in four main
parts:

• First, the Euler-Lagrange formulation is used to derive the general expression
of the robot dynamics based on the energy of the links.

• The energy of the robot is needed in the Euler-Lagrange formulation. There-
fore, both potential and kinetic energy are defined for each link. To do so,
position, linear and angular velocity of all links are defined with respect to
the same frame, the base frame.

• Then, a friction model is also defined for all the joints.

• Finally, a simulation of the manipulator dynamics is created in Simulink in
order to have a test bench for the da Vinci robot.

4.1 Euler-Lagrange Formulation

There are two approaches to dynamic modeling: one is the Newton-Euler method,
which is based on the balance of forces and torques, and the other one is the Euler-
Lagrange method, which is based on the energy of the robot links. Nevertheless,
both methods should reach the same equations describing the dynamics, which can
be written in a generalized form for any manipulator with n degrees of freedom
[Craig, 2009].

τ = M(q)q̈ + V(q, q̇) + G(q) + F(q̇) + τext [Nm] (4.1)

23

24 Chapter 4. Manipulator Dynamics

where

τ is an n× 1 vector of motor torques [Nm]
q is an n× 1 vector of joint position [rad]
q̇ is an n× 1 vector of joint velocity [rad/s]
q̈ is an n× 1 vector of joint acceleration [rad/s2]
M(q) is the n× n mass matrix of the manipulator [kg m2]
V(q̇, q) is an n× 1 vector of centrifugal and Coriolis terms [Nm]
G(q) is an n× 1 vector of gravity terms [Nm]
F(q̇) is an n× 1 vector of friction torques [Nm]
τext is an n× 1 vector of external torques seen at the joints [Nm]

Notice that units are for revolute joints. If joint is prismatic, q is a linear dis-
placement [m] and τ is not a torque anymore but a force [N].

In this thesis, the Euler-Lagrange formulation is used. It relies on the energy
properties of any mechanical system in order to compute the equations of motion.
First, the Lagrangian L is defined as the difference between the kinetic k(q, q̇) and
potential energy u(q) of the system [Murray et al., 1994]:

L(q, q̇) = k(q, q̇)− u(q) [J] (4.2)

where q is the vector of n generalized coordinates, which describe the configuration
of any mechanical system of n DOF, and q̇ is the vector of generalized velocities.
Note that the DH joint variables are already generalized coordinates as mentioned
in Section 3.1.2. Therefore, the hand and tool of the da Vinci robot has 7 joint vari-
ables or generalized coordinates to describe the position of the end-effector.

Now, consider Hamilton’s principle [Wisniewski, 2015b], which states that the
motion of a mechanical system from time a to b is such that the integral of the
Lagrangian L:

I(t, q, q̇) =
∫ b

a
L(t, q, q̇)dt (4.3)

has a stationary value. It means that among all curves q from a to b, the motion
of the system will occur along the curve that gives a stationary value (an extreme
value) to the integral I(t, q, q̇), that is:

∂I(t, q, q̇)
∂q(t)

= 0 (4.4)

Then, as it is described in [Wisniewski, 2015a], the solution to Eq. (4.4) is given by
the Euler-Lagrange equation:

d
dt

∂L
∂q̇
− ∂L

∂q
= 0 (4.5)

4.1. Euler-Lagrange Formulation 25

where this trajectory describes the motion of the mechanical system when only
conservative forces are present. The gravitational force, spring force or magnetic
force are examples of conservative forces that would appear in Eq. (4.5). However,
non conservative forces, such as friction, motor forces or external forces, are not
considered in Eq. (4.5). Therefore, in order to include an arbitrary force (not neces-
sary conservative), the Lagrange-d’Alembert Principle, also known as the Virtual
Work’s Principle, is used. It states that the trajectory of a mechanical system influ-
enced by a force Q (not necessary conservative) is such that the equation of motion
for the system is given by [Wisniewski, 2015b]:

d
dt

∂L
∂q̇
− ∂L

∂q
= Q (4.6)

where Q is known as the generalized force or torque vector, and its ith component is
a torque [Nm] if joint i is revolute, or is a force [N] if joint i is prismatic. Likewise,
the ith component of q is a linear position [m] if joint is prismatic or is an angular
position [rad] if joint is revolute [Spong et al., 2004]. By using the definition of the
Lagrangian from Eq.(4.2), Eq. (4.6) can be written as:

d
dt

∂ (k(q, q̇)− u(q))
∂q̇

− ∂ (k(q, q̇)− u(q))
∂q

= Q (4.7)

where potential energy u does not depend on velocity q̇ but only position q. There-
fore, the term ∂u(q)

∂q̇ = 0 and hence, Eq. (4.7) is reduced to:

d
dt

∂k
∂q̇
− ∂k

∂q
+

∂u
∂q

= Q (4.8)

As later explained in Sec. 4.4, Eq.(4.8) will lead to an equation of the form of:

M(q)q̈ + V(q, q̇) + G(q) = Q (4.9)

where:

• The term M(q)q̈ involves the second derivative of the generalized coordinates
q, the link masses and inertia elements.

• V(q, q̇) are quadratic terms involving the first derivative of q. If the terms
consist of products of q̇2

i they are called centrifugal and if they consist of
product of q̇i q̇j, where j 6= i, they are called Coriolis terms.

• The term G(q) comes from deriving the potential energy and only depends
on q.

26 Chapter 4. Manipulator Dynamics

Finally, considering that external torques (or forces) and friction torques (or forces)
are non-conservative and opposed to the actuator torques (or forces), they can just
be included in Q as:

Q = τ − F(q̇)− τext (4.10)

where:

τ is a vector of actuator torques [Nm] or forces [N]
τext is a vector of external torques [Nm] or forces [N]
F(q̇) is a vector of velocity dependent friction torques [Nm] or forces [N]

Note that the friction model is developed in Section 4.3. Then, Eq. (4.9) be-
comes:

τ = M(q)q̈ + V(q, q̇) + G(q) + F(q̇) + τext (4.11)

4.2 Kinetic and Potential Energy

The dynamics are derived assuming that the kinetic and potential energy can be
express in terms of generalized coordinates q. Therefore, it is necessary to com-
pute these terms as a function of the joints variables (positions and velocities) of
the da Vinci robot. Likewise, it is important to define the energy with respect to
the inertial or base frame.

In [Spong et al., 2004], the kinetic energy of a rigid body is defined as the sum of
both its translational and rotational kinetic energy. If the daVinci links are assumed
to be rigid bodies, Eq. (4.12) is used to find the kinetic energy of the manipulator.

ki =
1
2

mi
0vT

ci
vci︸ ︷︷ ︸

Translational

+
1
2

0ωT
i Ii

0ωi︸ ︷︷ ︸
Rotational

[J] (4.12)

where

ki is the kinetic energy of the ith link [J]
mi is the mass of the ith link [kg]
0vci is the center of mass velocity of the ith link about the base frame [m/s]
0ωi is the angular velocity of the ith link with respect to the base frame [rad/s]
Ii is the 3× 3 matrix of inertia tensor expressed in the base frame [rad/s2]

Now, the total kinetic energy of the manipulator can be computed as the sum
of kinetic energy of its links:

k =
N

∑
i=1

ki [J] (4.13)

4.2. Kinetic and Potential Energy 27

where N is the number of links. Similarly, the potential energy u of the manipulator
is given by the sum of individual potential energy of the links:

u =
N

∑
i=1

ui [J] (4.14)

As the links are assumed to be rigid bodies, then its potential energy is given in
[Spong et al., 2004] as:

ui = mi gT 0Pci [J] (4.15)

where

ui is the potential energy of the ith link [J]
g is the 3× 1 gravity vector [m/s2]
mi is the mass of the ith link [kg]
0Pci is the 3× 1 center of mass of the ith link with respect to frame {0} [m]

4.2.1 Position and Velocities of Links

In order to derive the potential and kinetic energy of the links, position and velocity
of the Center of Mass (CM) of the ith link is needed. Due to the structure of the
DH convention shown in Fig. 4.1, position of the ith CM is easier to determine
with respect to frame {i}. Therefore, Eq. (4.16) is used to find it with respect to the
inertial (or base) frame {0}, that is:

0Pci (q) = 0Oi(q) + 0
i R(q) iPci = 0

i T(q) iPci [m] (4.16)

where

0Pci is the center of mass of the ith link with respect to base frame [m]
iPci is the center of mass of the ith link with respect to frame {i} [m]
0Oi is the center of the ith frame with respect to base frame [m]
0
i R is the 3× 3 rotation matrix from frame {i} to {0}
0
i T is the 4× 4 homogeneous matrix from frame {i} to {0}

It is clear that the CM position can not be determined easily due to the different
shapes of the links. The CM is placed such that it can be located easily with respect
to the frames already defined and therefore, make the calculations simpler. For
instance, the CM of link 3 is set close to the counterweight of the link, but such
that it is still aligned with the x axis of frame {3} as seen in Fig. 4.1.

28 Chapter 4. Manipulator Dynamics

qi

outward normal
inward normal
variables

side
view

z1z2

y1

y2

y3

y4

y5

x1

x2

x

x4

x5

lc3

rcm_base
link1

rcm_parallellogram_base
link3

rcm_instrument_holder

CM5

needle_driver_house

CM7

needle_driver_neck
link7

rcm_pivot_plate

CM2

rcm_parallellogram_upper_bar

CM4
z3 z4

z5

y6

y7

x6

x7

z6

z7
z0

y0

x0

lc5

lc7
link2

3

lc6

Center of mass

x0

z0

y0

front
view

needle_driver_neck
link7

needle_driver_head
link8

jawbone_left
link9L

jawbone_right
link9R

y6

y8

y9L

y9R

y7

x6 x7

x8

x9Lx9R

z6

z7

z8

z9Lz9R

q4

q4

lc4

lc7

lc9

lc8

CM3

link4

link5

link6

CM9

 CM8

CM6

q1q2

q2 q2

q3

q5

q6 q7

Figure 4.1: Center of mass representation of the ith link altogether with the DH convention. The CM
is defined with respect to the frame {i}, as it is attached to link i.

4.2. Kinetic and Potential Energy 29

The placement of the center of mass is summarized in Eq. (4.17). Initial guesses
of these distances are shown in Table 4.1. They are chosen according to the geome-
try of the links, but they may not be precise and are used as an initial guess of the
parameters.

2PC2 = [0 lc2 0]T 3PC3 = [−lc3 0 0]T

4PC4 = [−lc4 0 0]T 5PC5 = [0 0 − lc5]T

6PC6 = [0 − lc6 0]T 7PC7 = [0 − lc7 0]T

8PC8 = [−lc8 0 0]T 9RPC9R = [−lc9 0 0]T

9LPC9L = [−lc9 0 0]T

(4.17)

lc2 [m] lc3 [m] lc4 [m] lc5 [m] lc6 [m] lc7 [m] lc8 [m] lc9 [m]
0 0.34 0.257 0.3 0.4 0.252 0.0045 0.0045

Table 4.1: Distances defined to locate the CM easily using the existing frames.

By differentiating the position expression in Eq. (4.16), velocity is found. Notice
that the position of the ith link is constant with respect to frame {i} as seen in Eq.
(4.17), but it is not with respect to frame {0}:

0vci =
d
(0Pci

)
dt

= 0
i Ṙ(q) iPci + 0Ȯi(q) [m/s] (4.18)

Likewise, angular velocity of the ith link should be computed with respect to the
inertial frame. First, notice that each link is moving with the angular velocity of
the previous link plus its own rotation. Moreover, considering that in the DH
convention, the angular velocity i−1ωi of the ith link is measured about Zi−1, the
rotation matrix 0

i−1R is used to express it in the inertial frame and then, it is added
to the angular velocity of the previous link as [Spong et al., 2004]:

0ωi = 0ωi−1 + 0
i−1R · i−1ωi (4.19)

= 0ω1 + 0
1R · 1ω2 + 0

2R · 2ω3 + · · · + 0
i−1R · i−1ωi [rad/s]

Now, the angular velocity of each link with respect to the previous frame i−1ωi is
related to generalized velocities q̇ as follows:

0ω1 =
[
0 0 0

]T 1ω2 =
[
0 0 q̇1

]T

2ω3 =
[
0 0 q̇2

]T 3ω4 =
[
0 0 q̇2

]T

4ω5 =
[
0 0 q̇2

]T 5ω6 =
[
0 0 0

]T

5ω6 =
[
0 0 q̇4

]T 7ω8 =
[
0 0 q̇5

]T

8ω9L =
[
0 0 q̇6

]T 8ω9R =
[
0 0 q̇7

]T

(4.20)

30 Chapter 4. Manipulator Dynamics

Note that link 1 angular velocity is zero as it is the base link, whereas link 6 only
has a sliding movement q̇3 with respect to frame {5}.

4.2.2 Inertia Tensor

The inertia tensor I is expressed in the inertial frame. However, it is not easy to
compute it as it depends on the configuration of the robot. Whereas the inertia
tensor I expressed in a frame attached to each link’s CM (body frame) is constant.
Then, both inertia tensor Ii and Ii can be related by using the rotation matrix
between the inertial and body frame [Spong et al., 2004]:

Ii = 0
i R · Ii · 0

i RT [kg m2] (4.21)

Now, note that frame {i} is attached to link i according to the DH convention.
However, this frame is not placed at the CM but at the joint. Therefore, a new
frame {i’} is placed at the CM, which is parallel to the frame {i}, as seen in Fig. 4.2.
As both frames are parallel, the already known rotation matrix 0

i R can be used in
Eq. (4.21) to convert the body inertia tensor Ii to the inertial frame of reference.

outward normal
inward normal

z1z2

y1

y2

y3

y4

y5

x1

x2

x

x4

x5

rcm_base
link1

rcm_parallellogram_base
link3

rcm_instrument_holder

needle_driver_house

CM7

needle_driver_neck
link7

rcm_pivot_plate

CM2

rcm_parallellogram_upper_bar

CM4
z3 z4

z5

y6

y7

x6

x7

z6

z7
z0

y0

x0

link2

3

body attached frame

CM3

link4

link5

link6

y’3
x’
z’3

3
y’2

x’2
z’2

x’4

y’4

z’4

z’7

y’7
x’7

Center of mass

Figure 4.2: A new set of body frames are placed at the center of mass of the ith link parallel to the
known frame {i}. An example is shown for link 2, 3, 4 and 7. The same concept is applied to the
remaining links.

4.2. Kinetic and Potential Energy 31

The constant inertia tensor I is a symmetric 3x3 matrix that depends on the
mass distribution of the object and its geometry. Many tables exist for common
shapes that can ease the process. In order to define it, let ρ(x, y, z) be the mass
density of this object, then the inertia tensor I is computed as:

I =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (4.22)

where the diagonal coefficients are called the principal moments of inertia about
the x, y and z axis and are defined as:

Ixx =
∫

V
(y2 + z2)ρ(x, y, z) dV =

∫
X

∫
Y

∫
Z

(y2 + z2)ρ(x, y, z) dx dy dz

Iyy =
∫

V
(x2 + z2)ρ(x, y, z) dV =

∫
X

∫
Y

∫
Z

(x2 + z2)ρ(x, y, z) dx dy dz

Izz =
∫

V
(x2 + y2)ρ(x, y, z) dV =

∫
X

∫
Y

∫
Z

(x2 + y2)ρ(x, y, z) dx dy dz

where the integrals are computed over the region in space occupied by the rigid
body defined by X, Y, Z. The off diagonal elements are called the cross products
of inertia. If the mass distribution of the body is symmetric with respect to the
body frame, then these elements are 0, otherwise they are computed as:

Ixy = Iyx = −
∫

V
xy ρ(x, y, z) dV = −

∫
X

∫
Y

∫
Z

xy ρ(x, y, z) dx dy dz

Ixz = Izx = −
∫

V
xz ρ(x, y, z) dV = −

∫
X

∫
Y

∫
Z

xz ρ(x, y, z) dx dy dz

Iyz = Izy = −
∫

V
yz ρ(x, y, z) dV = −

∫
X

∫
Y

∫
Z

yz ρ(x, y, z) dx dy dz

where the integrals are computed over the region in space occupied by the rigid
body defined by X, Y, Z. Estimating the inertia matrix is a difficult task. Therefore,
for the purpose of having a simple estimation of this matrix, all the links of the da
Vinci are assumed to be cylinders of radius r and height h, with uniform mass
density and with the CM at the geometrical center of the cylinder. Fig. 4.3 shows
an illustration of how this is done with links 3 and 4.

32 Chapter 4. Manipulator Dynamics

outward normal
inward normal

rcm_parallellogram_upper_bar
CM4

body attached frame

link4

x’4

y’4

z’4

CM3

y’3x’
z’3

3

rcm_parallellogram_base
link3

h4

r4

r3

h3

Figure 4.3: Example of link 3 and 4 modeled as cylinders.

Then, the inertia tensor I of one cylinder, expressed in the body frame, is proven
in [Serway, 1986] to be:

Ii =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 =

 1
12 mh2 + 1

4 mr2 0 0
0 1

12 mh2 + 1
4 mr2 0

0 0 1
2 mr2

 (4.23)

where the z axis goes along the height of the cylinder, but due to the existing
frames it is possible that the axis change with the links (eg. link 3 of Fig. 4.3 has
the x axis aligned with the height). From now on, Ixx, Iyy and Izz will be denoted
as Ix, Iy and Iz respectively.

Finally, determining the mass of the links could be done by dismantling the
manipulator and weighing all the links, however it is not an easy task. Therefore,
intuitive guesses are given in Table 4.2. On the other hand, the height and radius
of the cylinders are chosen according to the dimensions of the links.

link 1 link 2 link 3 link 4 link 5 link 6 link 7 link 8 link 9R/9L
mass [kg] 0 0.5 4 0.7 0.7 0.079 0.079 0.04 0.01
height [m] 0 0.22 0.19 0.515 0.26 0.1 0.4 0.009 0.009
radius [m] 0 0.035 0.1 0.07 0.035 0.07 0.035 0.005 0.005

Table 4.2: Mass and dimension of the cylinder (height and radius) chosen for each link.

Note that Table 4.2 gives an initial guess of the parameters which are used for
the model simulation.

4.3. Friction Model 33

4.3 Friction Model

In all mechanical system there is a loss due to friction. For this reason, the friction
on the joints of the manipulator should be defined. First of all, the viscous fric-
tion is added. It is a very simple model for friction, where the friction torque is
proportional to the velocity of the joint [Craig, 2009, Ch. 6]:

τf = υ · q̇ (4.24)

where υ is a viscous-friction constant of units [Nm/(rad/s)] if joint is revolute or
[N/(m/s)] if it is prismatic. Another simple model of friction that could be added
is the Coulomb friction, which is a constant torque that is opposed to the direction
of the joint velocity [Craig, 2009, Ch. 6]:

τf = c · sign(q̇) (4.25)

where c is the coulomb-friction constant of units [Nm] if joint is revolute or [N] if
it is prismatic. Usually, friction can also show dependency on the joint position q
but it is not considered in this model. Therefore, the total friction torque (or force)
can now be written as one friction terms which is velocity dependent:

F(q̇) = υ · q̇ + c · sign(q̇) (4.26)

However, other effects such as the breakaway friction or Stribeck friction can also
be present in the robot [Dupont, 1990]. A representation of viscous and coulomb
friction altogether with other friction models is shown in Fig.4.4:

τf [Nm]

q [rad/s]
.

Coulomb friction
Breakaway

 friction

Viscous friction

Stribeck friction

Figure 4.4: Representation of different friction models for a revolute joint. Only Coulomb and viscous
friction is used in this thesis.

34 Chapter 4. Manipulator Dynamics

As it is previously shown in Eq. (4.9), this friction is added to the manipulator
dynamics as a vector F(q̇) of non-conservative torques (forces if joint is prismatic)
altogether with actuator and external torques:

τ = M(q)q̈ + V(q, q̇) + G(q) + F(q̇) + τext (4.27)

The actuators that create the joint torques τ are DC motors. Once the motor dy-
namics, developed in Appendix A, are included, Eq. (4.27) is written as:

η τm = (Jm + M(q))q̈ + V(q̇, q) + F(q̇) + G(q) + τext (4.28)

where τm is a vector of motor torques and η is a diagonal matrix with motor gear
ratios η in the diagonal. Jm is the motor inertia diagonal matrix with diagonal
elements η2

i Jmi , where Jmi is the moment of inertia of the motor [kg m2]. Finally,
assuming that the motor inertia is much smaller compared to the mass and inertia
terms of the manipulator, Jm can be neglected and Eq. (4.28) becomes:

η τm = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) + τext (4.29)

4.4 Overview of the Manipulator Dynamics

The Euler Lagrange formalism is used to obtain a dynamical model of the manip-
ulator based on an energy study of the system. To do so, terms such as center of
mass position, moments of inertia or angular velocity should be expressed in the
inertial frame as explained along this chapter. It implies that the complexity of
these terms will increase considerably when the number of joints increases. For
instance, the center of mass of the last link will depend on all the generalized coor-
dinates q. Therefore, the dynamics cannot be developed by hand and the software
Maple is used to find the symbolic expression [MapleSoft, 2014]. The procedure
followed to find the manipulator dynamics is summarized in the following steps:

1. Generalized coordinates q and its first and second time derivative are defined
as time dependent variables (q̇ and q̈ respectively).

2. Transformation matrices from consecutive frames i−1
i T are defined according

to the DH convention from Chapter 3. Then, the transformation matrix from
frame {i} to the base frame {0} is computed. The rotation matrix 0

i R is also
obtained.

0
i T = 0

1T 1
2T · · · i−1

i T (4.30)

3. The CM position of link i is defined with respect to frame {i}. Then, it is
transformed to base frame {0} using transformation matrix 0

i T found in Eq.
(4.30).

0Pci (q) = 0
i T(q) iPci (4.31)

4.4. Overview of the Manipulator Dynamics 35

4. Time derivative of position with respect to base frame {0} is performed:

0vci =
d
(0Pci

)
dt

(4.32)

5. Angular velocity of each link is computed. For link i, that is:

0ωi = 0ωi−1 + 0
i−1R i−1ωi (4.33)

6. The inertia tensor of each link i with respect to its body frame (Ii) is defined
considering links as cylinders. Then, it is computed with respect to the base
frame (Ii).

Ii = 0
i R Ii

0
i RT (4.34)

7. Both translational and rotational kinetic energy of the N links is calculated,
then they are added to find the total kinetic energy.

k =
N

∑
i=1

(
1
2

mi
0vT

ci
0vci +

1
2

0ωT
i Ii

0ωi

)
(4.35)

8. The potential energy of the N links is computed. Then, the total potential
energy is found as:

u =
N

∑
i=1

mi gT 0Pci (4.36)

9. The dynamics are derived using the Euler Lagrange formalism altogether
with the total potential and kinetic energy. Notice that even though there are
10 links (including the base), links 3, 4 and 5 move as a parallelogram with
the same joint angle q3. Therefore, there are 7 generalized coordinates q and
one expression is computed per qi:

d
dt

∂k
∂q̇i
− ∂k

∂qi
+

∂u
∂qi

= Qi (4.37)

10. From the expression obtained in step 9, the matrix M(q) is found by taking
the elements that involve the second derivative of the generalized coordinates
q, the vector V(q, q̇) is found by taking the elements that consist of quadratic
terms involving the first derivative of q and finally, G(q) are the terms that
depend on gravity and the spring force. Then, the system equation is written:

Q = M(q)q̈ + V(q, q̇) + G(q) (4.38)

36 Chapter 4. Manipulator Dynamics

11. Finally, non conservative torques are included to the expression found, that is
external torques τext and friction torques F(q̇) that are opposed to the actuator
torque τ. Moreover, actuator torques τ can be expressed as motor torques τm.
Notice that when the joint is prismatic, these terms are forces and not torques.

τ = ητm = M(q)q̈ + V(q, q̇) + G(q) + F(q̇) + τext (4.39)

The Maple code, where the symbolic expression of the dynamics is derived, can
be found in Appendix C. The equation obtained is now used for both system
identification and model simulation.

4.5 MATLAB Simulation

The dynamical equation for the daVinci robot developed in this chapter is used
to build up a simulation model. The model uses estimated values of the physical
parameters defined in Tables 4.1 and 4.2.

4.5.1 Simulation Model

The simulation of the daVinci robot is divided into three main parts:

• Parameter Initialization: a MATLAB script is used to define the parameters
of the model. Therefore, it is possible to modify these values in the model.

• Simulink Model: The model is built in Simulink, where the daVinci dynam-
ical equation that is simulated is given by:

τ = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) + τext (4.40)

In order to use it in Simulink, it is rewritten as follows:

q̈ = M(q)−1 (τ −V(q̇, q)− F(q̇)− G(q)− τext) (4.41)

Eq. (4.41) is written in an S-Function with q̈ as an output. Finally, a Second
Order Integrator block in Simulink is used to integrate Eq. (4.41) in order
to compute q and q̇. The choice of a Second Order Integrator before two
First Order Integrators is because it allows to simulate a hard stop easier
(i.e. when the robot reaches its physical limits). As explained in [Rouleau,
2014], if two integrators in series are used, then a logic should be built in
order to reset/disable/saturate the integrators. On the contrary, the second
order integrator already brings this option, such that when q hits the physical
limits, then q̇ is set to zero and stops integrating without the need of extra
logic. Moreover, in [Rouleau, 2014] it was shown how the Second Order
Integrator is solving the simulation in 25% less time steps than using First

4.5. MATLAB Simulation 37

Order Integrators. This will have a significant impact on the performance
as the model for the da Vinci Robot is quite large. The implementation in
Simulink is shown in Fig. 4.5.

Figure 4.5: Open loop da Vinci model with a Second Order Integrator in Simulink.

• Graphical Representation: Results from the simulation are shown graphi-
cally as in Fig. 4.6. The kinematic model from Chapter 3 is used to plot the
simulated results by using Robotics Toolbox in MATLAB [Corke, 2011].

Figure 4.6: Example of graphical representation of the da Vinci simulation results.

38 Chapter 4. Manipulator Dynamics

4.6 Conclusions

In this chapter, a model for the daVinci robot is found by using the Euler-Lagrange
formulation, based on the kinetic and potential energy of the robot. Some assump-
tions are done in order to derive the model:

• The links are assumed to be rigid bodies.

• The links are considered to be cylinders, as it is easier when computing the
link inertia.

• The center of mass of each link is chosen to be aligned with the frame of each
link.

To find this model is of great importance, as it is later needed when estimating
contact forces at the daVinci robot in Chapter 7. Furthermore, a simulation is
built in Simulink, where the nonlinear multivariable model is defined by using
initial guesses of the parameters. Therefore, the results obtained in simulation
are not exact as in the real da Vinci robot. Nonetheless, the simulation gives the
opportunity to have a test bench for the da Vinci robot and work with it without
having the physical robot.

Chapter 5

Controller for Simulation Model

The purpose of this chapter is to design a controller for the simulation of the da
Vinci model developed in Chapter 4. First, the Lyapunov theory is used to prove
the stability of a PD controller and then, it is verified in the simulation. Finally, an
integral action is also added to the PD controller.

5.1 PD Control and Stability Analysis

A simple independent PD-control scheme for setpoint tracking is known to work
in the general case of a system of the form of Eq. (5.1) [Spong et al., 2004].

τ = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) (5.1)

Its asymptotically stablility can be proven by using the Lyapunov theory explained
in [Khalil, 2002] and a short introduction is now given. First, consider the system

ẋ = f (x) (5.2)

where f : D → Rn is continuous on the domain D ⊆ Rn. Suppose that x̄ ∈ D
is an equilibrium point of (5.2), that is f (x̄) = 0. Then, let V : D → R be a
Lyapunov function candidate, which is continuously differentiable, that proves
asymptotically stability, that is [Khalil, 2002]:

V(x̄) = 0 and V(x) > 0 in D− {x̄}
V̇(x̄) = 0 and V̇(x) < 0 in D− {x̄}

(5.3)

In order to prove asymptotically stability for the simulation model, the Lyapunov
candidate in [Spong et al., 2004] is used and their methodology is followed along
this section. First, an independent joint PD-control can be expressed in the follow-
ing vector form:

τ = Kp(qre f − q)−K dq̇ = Kpq̃−Kdq̇ (5.4)

39

40 Chapter 5. Controller for Simulation Model

where

q̇ is the joint velocity [m/s]
qre f is a constant position reference [m]
q̃ is the joint position error [m]
Kp is a positive definite diagonal matrix of proportional gains [-]
Kd is a positive definite diagonal matrix of derivative gains [-]

The system model is defined without Coulomb friction as:

τ = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) (5.5)

where F(q̇) consist of viscous friction. The velocity dependent vector V(q̇, q) and the
viscous friction F(q̇) should be rewritten in a different form, such that the system
dynamics becomes [Spong et al., 2004]:

τ = M(q)q̈ + C(q̇, q)q̇ + Fq̇ + G(q) (5.6)

where C(q̇, q) is known as the Coriolis and centripetal coupling matrix and F is a
positive definite diagonal matrix with the viscous friction constant in the diagonal.
Furthermore, it is known that the gravity term G(q) will give a stationary error
when using a PD controller [Spong et al., 2004]. However, assuming that G(q) is
known, it can be removed from the system if it is included in the control law as:

τ = Kpq̃−Kdq̇ + G(q) (5.7)

which yields to the following closed loop system dynamics:

Kpq̃−Kdq̇ = M(q)q̈ + C(q̇, q)q̇ + Fq̇ (5.8)

whose equilibrium point is:

q̃ = 0 → q = qre f

q̇ = 0

Now, lets consider the following Lyapunov function candidate in [Spong et al.,
2004]:

V =
1
2

q̇TM(q)q̇︸ ︷︷ ︸
Kinetic Energy

+
1
2

q̃TKpq̃︸ ︷︷ ︸
Controller Term

(5.9)

where the first term is the kinetic energy of the daVinci robot and the second term
is related to the proportional part of the feedback controller. Now, considering:

• M(q) is a symmetric positive definite matrix of mass and inertia terms.

5.1. PD Control and Stability Analysis 41

• Kp is a positive definite diagonal matrix of controller gains.

Then, it can be concluded that V is a positive function except for the equilibrium
point q̇ = 0 and q = qre f , where V is zero. If now it can be proven that the Lyapunov
function V is decreasing toward zero along any trajectory of the system, then it
means that the system always goes towards the equilibrium point. Therefore, if V̇
is always negative, then V will always decrease. Then, the time derivative of V is
given by:

V̇ =
1
2

q̇T(M(q) + M(q)T)q̈ +
1
2

q̇TṀ(q)q̇︸ ︷︷ ︸
Time Derivative of Kinetic Energy

−q̇TKpq̃

= q̇TM(q)q̈ +
1
2

q̇TṀ(q)q̇︸ ︷︷ ︸
Time Derivative of

Kinetic Energy

−q̇TKpq̃
(5.10)

Notice that qre f in q̃ is constant and the terms M(q) and M(q)T are symmetric. Now,
the term M(q)q̈ can be obtained from the system equation in (5.6), then substituting
into Eq. (5.10) yields:

V̇ = q̇T(Kpq̃−Kdq̇−C(q, q̇)q̇− Fq̇) +
1
2

q̇TṀ(q)q̇− q̇TKpq̃

= −q̇TKdq̇− q̇TFq̇ +
1
2

q̇T (Ṁ(q)− 2C(q, q̇)
)

q̇
(5.11)

where Ṁ(q) − 2C(q, q̇) is a skew symmetric as explained in [Spong et al., 2004],
which implies that any vector q̇ fulfills:

q̇T (Ṁ(q)− 2C(q, q̇)
)

q̇ = 0 (5.12)

Then, by using the skew symmetric property in (5.12), the time derivative of the
Lyapunov function becomes:

V̇ = −q̇TKdq̇− q̇TFq̇

= −q̇T (Kd + F) q̇ ≤ 0
(5.13)

Notice that F and Kd are positive definite diagonal matrices of viscous friction co-
efficients and derivative gains respectively. But Eq. (5.13) only shows that V̇ is
zero when q̇ = 0, while q does not necessary have to be qre f . Therefore it should be
proven that V̇ can only be zero at the equilibrium point q̇ = 0 and q = qre f and not
any other point. To do so, the LaSalle Invariance Principle is used [Khalil, 2002].
If it can be proven that only the equilibrium point can stay identically in V̇(t) = 0,
then the equilibrium point is asymptomatically stable.

42 Chapter 5. Controller for Simulation Model

Suppose that the Lyapunov function reaches zero at some time t, then:

V̇(t) = 0 ∀t (5.14)

Then, from the Lyapunov derivative in Eq. (5.13) it can be seen that q̇(t) = 0 and
hence q̈(t) = 0. Then, by setting q̈ = 0 and q̇ = 0 in the closed loop system in Eq.
(5.8), it results in:

Kpq̃ = 0 (5.15)

which implies that only the equilibrium point q̃ = 0 (q = qre f) and q̇ = 0 is the
solution for the system that stays identically in V̇ = 0. Therefore, by the LaSalle
Invariance Principle it can be stated that the equilibrium point is asymptomatically
stable. Moreover, if V is radially unbounded then x̄ is globally asymptotically
stable, that is:

V(x)→ ∞ as ||x||→ ∞ (5.16)

which is fulfilled in the Lyapunov candidate of Eq. (5.9). Therefore, the equilib-
rium point is globally asymptomatically stable.

5.2 Controller Implementation and Results

After asymptomatically stability is proven in Sec. 5.1, now it can be verified for the
daVinci model. Therefore, once the simulation is built in Simulink, independent
PD controllers are added to it and the closed loop model is shown in Fig. 5.1,
where the control law with gravity compensation is defined as:

τ = Kpq̃−Kdq̇ + G(q) (5.17)

Figure 5.1: Closed loop Simulink implementation with the PD controller.

5.2. Controller Implementation and Results 43

Notice that the gravity term G(q) is computed at every iteration. Moreover,
there are no limitation on the proportional and derivative gains Kp and Kd except
for being positive definite. Therefore, priority has been given to verify the asymp-
totically stability, instead of adjusting the gains. The values chosen are shown in
Table 5.1.

Joint Name Hand Roll Hand Pitch Ins. Slide Ins. Roll Ins. Pitch Ins. Yaw
Kp 500 500 500 10 10 1
Kd 50 50 40 2 0.2 0.02

Table 5.1: Table of proportional Kp and derivative Kd gains for each joint.

First, non-zero initial conditions are given to each joint position q, while joint
velocities q̇ are set to zero as shown in Table 5.2. Finally, references for all joints
are set to zero.

Joint Name Hand Roll Hand Pitch Ins. Slide Ins. Roll Ins. Pitch Ins. Yaw
qinit −π/8 π/8 0.2 −π/4 −π/4 −π/4
q̇init 0 0 0 0 0 0
qre f 0 0 0 0 0 0

Table 5.2: Table of initial condition to the simulation.

The system response is shown in Fig 5.2, where both position and velocity
goes to zero very fast. Therefore, it can be seen how with gravity compensation,
any independent PD controller would be able to control the system for setpoint
tracking. Moreover, it is also interesting to see how the Lyapunov function is
always decreasing and eventually is zero when system reaches the equilibrium
point as seen in Fig. 5.3.

44 Chapter 5. Controller for Simulation Model

t [s]
0 0.5 1 1.5 2 2.5 3

q

-1

-0.5

0

0.5

1

Joint Position

q1 [rad]

q2 [rad]

q3 [m]

q4 [rad]

q5 [rad]

q6 [rad]

t [s]
0 0.5 1 1.5 2 2.5 3

q

-40

-20

0

20

Joint Velocity

q̇1 [rad/s]

q̇2 [rad/s]

q̇3 [m/s]

q̇4 [rad/s]

q̇5 [rad/s]

q̇6 [rad/s]

.

Figure 5.2: Closed loop response with PD controller and gravity compensator.

t [s]
0 0.5 1 1.5 2 2.5 3

V

0

20

40

60

80

100

System Lyapunov Function

Figure 5.3: The Lyapunov function of the system which is always decreasing until it reaches zero
when system is at the equilibrium point.

Another test is carried out to see how the PD controller reaches a non-zero ref-

5.2. Controller Implementation and Results 45

erence. First, zero initial conditions are given to each joint position q and velocities
q̇. Finally, different references for all joints are given.

Joint Name Hand Roll Hand Pitch Ins. Slide Ins. Roll Ins. Pitch Ins. Yaw
qinit 0 0 0 0 0 0
q̇init 0 0 0 0 0 0
qre f −π/8 π/8 0.2 −π/4 −π/4 −π/4

Table 5.3: Table of initial condition to the simulation.

As seen before, the controller can follow any reference and all joints reach the
setpoint.

t [s]
0 0.5 1 1.5 2 2.5 3

q

-1

-0.5

0

0.5

1

Joint Position

q1 [rad]

q2 [rad]

q3 [m]

q4 [rad]

q5 [rad]

q6 [rad]

t [s]
0 0.5 1 1.5 2 2.5 3

q

-20

0

20

40

Joint Velocity

q̇1 [rad/s]

q̇2 [rad/s]

q̇3 [m/s]

q̇4 [rad/s]

q̇5 [rad/s]

q̇6 [rad/s]

.

Figure 5.4: Closed loop response with PD controller and gravity compensator.

In practice, it is possible that the gravity term G(q) is not known exactly. In

46 Chapter 5. Controller for Simulation Model

such cases, a PD controller alone will not be able to reach the reference given and
a small steady state error will appear. As an alternative to a PD controller with
gravity compensator, one could add an integral action to remove this offset. For
this reason, PID controllers are included in the simulation as shown in Fig. 5.5 in
cases the gravity compensation term is not precise.

Figure 5.5: Closed loop Simulink implementation of the PID controller.

The final gains chosen are shown in Table 5.4.

Joint Name Hand Roll Hand Pitch Ins. Slide Ins. Roll Ins. Pitch Ins. Yaw
Kp 500 500 500 10 10 1
Ki 50 50 40 2 1 0.1
Kd 50 50 40 2 0.2 0.02

Table 5.4: Table of proportional Kp, derivative Kd and integral Ki gains for each joint.

The same test to Fig. 5.4 is now carried out, where the initial condition sum-
marized in Table 5.3 are used. Moreover, the mass in the gravity compensator is
0.9 times the mass in the da Vinci model in order to see how the integral action
correct the steady state error. In fact, it can be seen how the integral action makes
the system response faster.

5.3. Conclusions for the Controller 47

t [s]
0 0.5 1 1.5 2 2.5 3

q

-1

-0.5

0

0.5

1

Joint Position

q1 [rad]

q2 [rad]

q3 [m]

q4 [rad]

q5 [rad]

q6 [rad]

t [s]
0 0.5 1 1.5 2 2.5 3

q

-20

0

20

40

Joint Velocity

q̇1 [rad/s]

q̇2 [rad/s]

q̇3 [m/s]

q̇4 [rad/s]

q̇5 [rad/s]

q̇6 [rad/s]

.

Figure 5.6: Closed loop response with PID controller.

5.3 Conclusions for the Controller

In this chapter, a PD controller is designed for the model found in Chapter 4. Then,
asymptotically stability of this PD controller is proved by using Lyapunov theory
and finally, it is tested in simulation.

To do so, it was necessary to compensate for gravity. In case the gravity term
is not known exactly, in practice it means that there will be a steady state error.
As an alternative to the PD control, an integral action is added such that the PID
controller is able to cope with the steady state error due to gravity.

Chapter 6

Robot Parameters Estimation

A detailed dynamic model was developed in Chapter 4 using the Euler-Lagrange
formulation and described using the physical parameters of the da Vinci robot.
Although initial guesses are used for simulation, accurate results are needed in or-
der to use the model for force estimation. Therefore, all parameters such as mass,
inertia products, friction constants or center of mass should be found.

Sometimes, CAD data of robot parts is used to obtain these parameters, e.g.
the CAD model of the KUKA KR15 industrial manipulator is used to obtain ref-
erence values of the inertial parameters in [Swevers et al., 2007]. However, such
data is not available for the da Vinci robot. Also, dismantling the different parts
and measuring the parameters is not a feasible option. Moreover, friction constants
can not be estimated using such methods. Therefore, experimental identification
is a more common approach to obtain accurate parameters, as it has been done in
[Khosla, 1987], [Swevers et al., 2007] or [Janot et al., 2014]. Their approach is based
on rewriting the dynamics differential equation in terms of the parameters, also
called parametrization. Then, it uses motion and actuator torque data, which is
measured during experiments, to determine the parameters by fitting it to the dif-
ferential equation previously found. The robot trajectory should be permanently
exciting the dynamical system, which is an important fact in order to assure a
proper estimation of all the parameters [Swevers et al., 2007]. Moreover, it is re-
peated periodically in order to reduce the effect of noise in the measurement as
explained in Sec. 6.3.

As explained in Chapter 4, the formulation of the robot dynamics can be ex-
pressed in the following form:

τ = M(q)q̈ + V(q̇, q) + G(q) + F(q̇) + τext [Nm] (6.1)

where

49

50 Chapter 6. Robot Parameters Estimation

τ is a vector of generalized torques [Nm]
q is an n× 1 vector of joint position [rad]
M(q) is a symmetric mass matrix of the manipulator and motors [kg m2]
V(q̇, q) is an n× 1 vector of centrifugal and Coriolis terms [Nm]
G(q) is an n× 1 vector of gravity terms [Nm]
F(q̇) is an n× 1 vector of friction of the motors and joints [Nm]
τext is an n× 1 vector of external torques seen at the joints [Nm]

For parameter estimation, external torques τext in Eq. (6.1) are set to zero.
Therefore, throughout this section, τext = 0. Now, the system dynamics used for
estimation become:

τ = M(q)q̈ + V(q̇, q) + G(q) + F(q̇) (6.2)

Then, parametrization of the dynamics consists of linear factorization of Eq. (6.2)
into the form:

τ = Φ(q, q̇, q̈) θ (6.3)

where θ is a vector of parameters, which can be a combination of different physi-
cal parameters of the daVinci. Φ is called the observation or identification matrix,
which is a matrix that depends only on the motion of the robot. An interesting
fact about Eq. (6.3) is that it is now linear with respect to the parameters θ and
it simplifies the parameter estimation substantially. Analytical methods such as
Least Square Estimation (LSE) or Weighted Least Square Estimation (WLSE) can
now be used to estimate θ, as it is done in [Swevers et al., 2007], by using data of
torque τ, position q, velocity q̇ and acceleration q̈.

Often, parametrization of Eq. (6.1) is not an straightforward task. The more
joints a robot has, the higher is the complexity of the dynamics equation and
therefore, parameterizing is also more difficult. Alternatively, in [Jahandideh and
Namvar, 2012a] and [Jahandideh and Namvar, 2012b] it was shown how to use
Particle Swarm Optimization (PSO) in order to estimate the physical parameters
of the robot without the need to do any parametrization procedure as in Eq. (6.3).
While parametrization is skipped, the minimization problem becomes non-convex.
For this reason, the difference between convex and non-convex optimization will
be discussed in this chapter.

This chapter is based on the previous referenced work and it will be divided in
the following parts:

• Description of the model used for system identification.

• Short discussion about convex and non-convex optimization problems and
how they can be solved.

6.1. Reduced Model 51

• The experiment design part, where an optimal trajectory, which is perma-
nently exciting the dynamical system, is found. Moreover, measured data is
processed before the estimation.

• Parameter estimation part, where two methods are compared. First, the
methodology in [Swevers et al., 2007] is followed, where the dynamics equa-
tion is parametrized and then, the LSE and WLSE is used. The second
method avoids the parametrization and uses Particle Swarm Optimization
as explained in [Jahandideh and Namvar, 2012a]. Finally, both methods are
tested to estimate the daVinci robot parameters.

6.1 Reduced Model

Due to the complexity of the daVinci model found in Chapter 4, it is very difficult to
use it in the estimation. Therefore, all the joint are assumed to be independent even
though in practice that is not true and there may be coupling between different
joints. First, lets consider the system equation:

τ = M(q)q̈ + V(q̇, q) + G(q) + F(q̇) (6.4)

In order to find a reduced model independent for each joint, it is assumed that
only one joint is moving while the others are fixed. Then, the model for the ith

joint is found by setting qj = 0, q̇j = 0 and q̈j = 0 in Eq. (6.4), where j 6= i. Then, Eq.
(6.4) becomes:

τi = M(qi)q̈i + V(q̇i, qi) + G(qi) + F(q̇i) (6.5)

From now on, the system dynamics in (6.4) will be used to refer the dynamics
for one joint in order to avoid using the subscript i as in Eq. (6.5). After the
simplification, rewriting the dynamics for each joint into the parametrized form of
Eq. (6.2) becomes easier.

τ = Φ(q, q̇, q̈) θ (6.6)

Notice that initially, only the three joints shown in Fig 6.1 will be estimated: Hand
Pitch, Hand Roll and Instrument Slide. The rest are considered to be fixed. There-
fore, only these three joints will be used to prove the estimation of contact force in
the end-effector. To estimate the remaining joints is the first improvement to the
project that should be done after the initial design.

52 Chapter 6. Robot Parameters Estimation

hand_rollhand_pitch instrument
slide

hand_pitch
hand_pitch

Figure 6.1: Representation of the joints that will be estimated. Notice that the joints Hand Pitch move
as a parallelogram.

The system equation is developed in Chapter 4. For each of the joints, the inde-
pendent joint equation is given. Then, it is parametrized. Note that the parameters
follows the notation used in Chapter 4. For instance, mass of link 5 is m5, while υ1

is the viscous friction coefficient for q1.

Hand Roll (q1)

τ1 =(η2
1 Jm1 + Iy2 + Ix5 + Iy3 + 0.036 m3 + 0.036 m4 + 0.036 m5 + 0.38 m5lc5

− 0.38 m3lc3 + m3lc3
2 + Ix4 + m5lc5

2)q̈1 + υ1 q̇1 + c1 sign(q̇1)

+ (−m5lc5 − 0.19 m5 − 0.19 m4 − 0.19 m3 + m3lc3) g sin(q1) [Nm] (6.7)

which can be parametrized as:

τ1 = θ1 q̈1 + θ2g sin(q1) + θ3 q̇1 + θ4 sign(q̇1) [Nm] (6.8)

Then, Φ1 becomes:

Φ1(q1, q̇1, q̈1) =
(
q̈1 g sin(q1) q̇1 sign(q̇1)

)
(6.9)

6.2. Convex and non-Convex Optimization 53

Hand Pitch (q2)

τ2 =(η2
2 Jm2 + Iz3 + Iy5 + Iy6 + Iy8 + Iy9 + 0.04 (m3 + m4 + m5)− 0.38 m3lc3

+ 0.18(m6lc6 + m7lc7 + m8lc8)− 0.22m9lc9 + 0.38 m5lc5 + m3lc3
2

+ m5lc5
2 + m6lc6

2 + m7lc7
2 + m8lc8

2 + m9lc9
2) q̈2 + υ2 q̇2 + c2 sign(q̇2)

+ (−0.19 (m4 −m3 −m5) + 0.09 (m6 + m7) + 0.10(m8 + m9) + m3lc3

−m5lc5 −m6lc6 −m7lc7 −m8lc8 −m9lc9)g sin(q2)+

(−0.01 (m4 + m3) + 0.03 (m5 + m6 + m7 + m8 + m9 + m3lc3))g cos(q2) [Nm]
(6.10)

which can be parametrized as:

τ2 = θ1 q̈2 + θ2g sin(q2) + θ3g cos(q2) + θ4 q̇2 + θ5 sign(q̇2) [Nm] (6.11)

Then, Φ2 becomes:

Φ2(q2, q̇2, q̈2) =
(
q̈2 g sin(q2) g cos(q2) q̇2 sign(q̇2)

)
(6.12)

Instrument Slide (q3)

τ3 =
(
η2

3 Jm3 + m6 + m7 + m8 + m9
)

q̈3 − (m6 + m7 + m8 + m9)g + υ3q̇3 + c3sign(q̇3) [N]

which can be parametrized as:

τ3 = θ1 (q̈3 − g) + θ2 q̈3 + θ3 q̇3 + θ4 sign(q̇3) [N] (6.13)

Then, Φ3 becomes:

Φ3(q3, q̇3, q̈3) =
(
q̈3 − g q̈3 q̇3 sign(q̇3)

)
(6.14)

6.2 Convex and non-Convex Optimization

Throughout this chapter, optimization problems are formulated for both trajectory
optimization and parameter estimation. For this reason, a short introduction to
convex and non-convex optimization is given. First, a minimization problem is
generally written in the form of:

Minimize : f (x)

Subject to : g(x) ≤ 0

where f (x) is the function to minimize and g(x) are constraints to the minimization
problem, which can also be expressed as x ∈ X , where X is the constraint set.

54 Chapter 6. Robot Parameters Estimation

Then, the problem is to find an optimal x∗, where x∗ ∈ X , that gives the minimum
value in f (x) among all the possible x that satisfy the constraints, that is:

f (x∗) ≤ f (x) for all x ∈ X

Once the minimization problem is formulated, it is important to distinguish if the
problem is convex or not, as some algorithm are more efficient than others when
the problem is convex.

Convex Optimization

A minimization problem is convex if both the objective function f (x) and the set X
are convex. Once the minimization problem is convex, it can be solved efficiently.
That is because in a convex optimization problem, the optimal solution x∗ is the
global optimal solution. Therefore, it is important to define both what a convex
function and a convex set are:

• A set X is convex if the line segment between any two points in X lies in
X , i.e., if for any x1, x2 ∈ X and any θ with 0 ≤ θ ≤ 1, there is [Boyd and
Vandenberghe, 2004]:

θx1 + (1− θ)x2 ∈ X (6.15)

An example of convex and non-convex sets are shown in Fig. 6.2.

Figure 6.2: Example of simple convex and non-convex sets in R2. The hexagon set in the left is
convex. Instead, the set in the right is not convex, since part of the line between the two points does
not belong to the set.

• A function f : Rn → R is convex if the domain of f (Dom(f)) is a convex set,
and if the line segment between any two points on the graph lies above the
graph [Boyd and Vandenberghe, 2004], that is:

∀x1, x2 ∈ Dom(f), ∀θ ∈ [0, 1] f (θx1 + (1− θ)x2) ≤ θ f (x1) + (1− θ) f (x2)

It can be graphically represented in Fig. 6.3:

6.2. Convex and non-Convex Optimization 55

x1 x2

θf(x1) + (1-θ) f(x2)

f(θx1 + (1-θ) x2)

Figure 6.3: Convex function representation, where the line segment between two point x1 and x2 of
the function f always lies above f .

A Linear Least Square Problem is a special case of convex optimization with no
constraints which is used in Sec. 6.4 to estimate robot parameters.

Non-Convex Optimization

If the minimization problem is not known to be convex (i.e. non-convex), there
may be many local optimal solutions and to find a global minimum is a more
challenging task. An example of local and global minimums is shown in Fig. 6.4.

x1 x3x2

f(x)

x

Figure 6.4: Representation of local and global minimums in a non-convex function. While x1 and x2
are local minimums, x3 is the global minimum of f (x) that it is desired to find.

Then, heuristic optimization algorithms such as Particle Swarm Optimization

56 Chapter 6. Robot Parameters Estimation

(PSO) [Kennedy and Eberhart, 1995] can be used to find the global optimal so-
lution. Nonetheless, a global minimum can not be guaranteed in a non-convex
problem, as the same algorithm, with different initial conditions, may yield differ-
ent results.

6.3 Experiment Design

In order to identify the parameters efficiently, it is important to have a proper ex-
periment design. First of all, it is necessary that the system is sufficiently excited in
order to have an accurate estimation of all the parameters. Therefore, this exciting
trajectory is found by solving an optimization problem.

6.3.1 Trajectory Generation

An optimal trajectory for the system can be any waveform that minimize an opti-
mization problem. But if this trajectory is periodic and bandlimited, the data can
be processed and the noise effect reduced. For this reason, it is very common to
parametrize the trajectory of the joints as a finite Fourier series, which was intro-
duced by [Swevers et al., 2007] and widely used afterwards. It has the following
form:

q(t) = a0 +
N f

∑
k=1

(
ak

kω f
sin(kω f t)− bk

kω f
cos(kω f t)

)
(6.16)

q̇(t) =
N f

∑
k=1

(
ak cos(kω f t) + bk sin(kω f t)

)
(6.17)

q̈(t) =
N f

∑
k=1

(
−akkω f sin(kω f t) + bkkω f cos(kω f t)

)
(6.18)

where ω f is the fundamental frequency of the trajectory, a and b are parameters
to be found that optimize the trajectory, while N f will determine the number of
Fourier elements. The Fourier series is periodic with period Tf = 2π/ω f and is
chosen to be a multiple of the sampling period Ts. Then, the range of frequencies
of each trajectory will go from ω f to N f ω f .

It is important to note that both the number of Fourier elements N f and the
fundamental frequency ω f are set beforehand as it is done in [Swevers et al., 2007],
and not included in the optimization problem. This implies that if a low fun-
damental frequency ω f is selected, then the robot can cover all the amplitude of
the trajectory easily. However, high frequencies mean high acceleration, which is
also important to properly estimate moments and products of inertia of each link.

6.3. Experiment Design 57

Therefore, there is a trade-off between choosing high and low fundamental fre-
quencies. Furthermore, constraints in position, velocity and acceleration of each
link are considered for trajectory optimization.

6.3.2 Trajectory Optimization

Now that a periodic trajectory is defined in Eq. (6.16), convenient values for the
parameters ak and bk are selected. Usually, they are found by solving non-linear
optimization problems with physical constraints on the robot motion. The most
common method is the d-optimality criterion, which minimizes the minus loga-
rithm of the determinant of the covariance matrix of the model parameter estimates
F defined in [Swevers et al., 1997] as:

F =

 Φ(q(t1), q̇(t1), q̈(t1))
...

Φ(q(tK), q̇(tK), q̈(tK))

 (6.19)

where Φ is the observation matrix defined in Eq. (6.3), and F is built by evaluat-
ing Φ(q(t), q̇(t), q̈(t)) along K samples of position, velocity and acceleration of the
Fourier series trajectory defined in Eq. (6.16). Therefore, the optimization criteria
for a properly excited trajectory is given by:

Minimize : − log
(
|FTF|

)
(6.20)

Subject to : g(q, q̇, q̈) ≤ 0

where g(q, q̇, q̈) ≤ 0 are constraints on the motion of the robot, which are defined
as:

q ∈ [q q] q̇ ∈ [q̇ q̇] q̈ ∈ [q̈ q̈]

where the lower bar express a minimum value and the upper bar express a max-
imum value. The logarithm of the determinant is known to be a convex function
[Boyd and Vandenberghe, 2004]. However, F is not necessary convex and there-
fore, convexity is not assured in Eq. (6.20). For instance, as the Coulomb friction is
defined as sign(q̇) in matrix Φ, then Φ can not be considered convex. Nonetheless,
even though a global minimum can not be guaranteed, the trajectory can be opti-
mized.

This optimization problem can be solved with respect to the trajectory param-
eters using any gradient descent algorithm, and the function fmincon is used in
MATLAB to find the optimal trajectory for each joint. The steps followed are now
summarized:

• Choose a trajectory period Tf multiple of the sample period Ts. It is important
that it is fast enough to excite the system, but also that the robot is able

58 Chapter 6. Robot Parameters Estimation

to follow the given trajectory. Notice that ω f may differ from one joint to
another if its dynamics are considered faster.

• The Fourier series is defined with N f = 2 as:

q(t) = a0 +
2

∑
k=1

(
ak

kω f
sin(kω f t)− bk

kω f
cos(kω f t)

)
(6.21)

q̇(t) =
2

∑
k=1

(
ak cos(kω f t) + bk sin(kω f t)

)
(6.22)

q̈(t) =
2

∑
k=1

(
−akkω f sin(kω f t) + bkkω f cos(kω f t)

)
(6.23)

which gives a total of five parameters (a0, a1, a2, b1, b2) to find in the mini-
mization problem defined in Eq. (6.20).

• Constraints for q, q̇ and q̈ are defined for one period Tf of the trajectory in
the form:

Ax ≤ b (6.24)

where x = a0, a1, a2, b1, b2 and q, q̇ and q̈ are written as Ax. For instance, the
constraint q(t) ≤ q̄ is defined for one period of the trajectory (t is sampled
from 0 to Tf) as:

1
1

ω f
sin(ω f 0) − 1

ω f
cos(ω f 0)

1
2ω f

sin(2ω f 0) − 1
2ω f

cos(2ω f 0)

...
...

...
...

...

1
1

ω f
sin(ω f Tf) − 1

ω f
cos(ω f Tf)

1
2ω f

sin(2ω f Tf) − 1
2ω f

cos(2ω f Tf)

a0
a1
b1
a2
b2

 ≤
q̄

...
q̄

(6.25)

• F is built with Φ(q(t), q̇(t), q̈(t)) as in Eq. (6.19), where q(t), q̇(t) and q̈(t) are
samples for one period of the trajectory (from 0 to Tf). See Sec. 6.1 for the
definition of Φ(q(t), q̇(t), q̈(t)) of each joint. For instance, for joint Hand Roll, F

becomes:

F =

 Φ(q(0), q̇(0), q̈(0))
...

Φ(q(Tf), q̇(Tf), q̈(Tf))

 =

 q̈1(0) g sin(q1(0)) q̇1(0) sign(q̇1(0))
...

...
...

...
q̈1(Tf) g sin(q1(Tf)) q̇1(Tf) sign(q̇1(Tf))

(6.26)

Notice that q(t), q̇(t) and q̈(t) depend on the parameters (a0, a1, a2, b1, b2) that
should be found.

6.3. Experiment Design 59

• Then, position, velocity and acceleration constraints are included in the func-
tion to minimize:

Minimize : Minimize : − log
(
|FTF|

)
(6.27)

Subject to : Ax ≤ b

• fmincon is now used to minimize Eq. (6.27). In Fig. 6.5, trajectories for the
three joints are shown:

t [s]
0 5 10 15 20

q

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Optimal Trajectories

q1 [rad]
q2 [rad]
q3 [m]

Figure 6.5: 20 seconds of permanent exciting trajectories for the three joints.

The trajectory parameters for the three joints in Fig. 6.5 are shown in Table 6.1:

Joint Name a0 a1 b1 a2 b2 Tf [s] f (x∗)
Hand Roll -0.1848 0.0260 0.0813 0.0609 -0.4261 10 -8.5972

Hand Pitch -0.1912 0.2861 -0.0639 0.1741 0.3701 10 -12.7527
Instrument Slide -0.0164 0.0001 0.0002 -0.1632 -0.1350 5 -8.6718

Table 6.1: Table of the trajectory parameters for each joint found after solving the minimization
problem.

The constraints of each joint are shown in Table 6.2 and are chosen after testing
the limitations in position, velocity and acceleration in the daVinci robot.

60 Chapter 6. Robot Parameters Estimation

Joint Name q q q̇ q̇ q̈ q̈
Hand Roll -0.6 0.6 -1.2 1.2 -1.2 1.2

Hand Pitch -0.6 0.6 -1.2 1.2 -1.2 1.2
Instrument Slide -0.0672 0.1097 -2 2 -3 3

Table 6.2: Table of constraints in the trajectory for each joint. Units for the position, velocity and
acceleration of Hand Roll and Hand Pitch are [rad], [rad/s] and [rad/s2] respectively, while units for
Instrument Slide are [m], [m/s] and [m/s2].

6.3.3 Signal Processing

The robot trajectory is now periodically repeated. It is important to have several
periods of the signal as it will be useful to reduce measurement noise. This section
is inspired by [Swevers et al., 2007].

Motor position θm is measured with encoders in the motor. Then, using the
gear ratio η, the joint position q can be found as:

q(t) =
1
η

θm(t) (6.28)

On the other hand, the torque data is obtained using current measurements in the
motor, as it is known that they are proportional and related with the motor torque
constant Km. Also, the motor torque is higher at the joint due to the gear:

τ(t) = ηKm i(t) (6.29)

The motor torque constant of all the motors is known and shown in Table 6.3.
Likewise, the gear ratio of the motors is also known in advance from the motor
specifications.

Motor 1 Motor 2 Motor 3 Motor 4 Motor 5 Motor 6 Motor 7
η [-] 200 200 1340 7.5 12.4 12 12

Km [Nm/A] 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438 0.0438

Table 6.3: Motor parameters.

Notice that Motor 3 corresponds to the prismatic joint, therefore, the gear ratio
relates motor angular position to linear position of the joint.

Data Averaging and Noise Estimation

Measurement noise is present in all sensors and actually, current measurements
are always very noisy. This noise may cause error in the estimation, however it can
be reduced. First of all, since the experiment data is periodic, data averaging can

6.3. Experiment Design 61

improve the signal-to-noise as shown in Fig. 6.6. Therefore, the mean is computed
from the repeated trajectory.

x̄(k) =
1
M

M

∑
m=1

xm(k) (6.30)

where

x corresponds to either measured torque τ or joint position q
x̄(k) is the average of measured data at sample k
xm(k) is the kth sample within the mth period
M denotes the number of periods of the repeated trajectory
K is the number of samples of one trajectory

0 1 2 3 4 5 6 7 8 9 10-4
-3
-2
-1
0
1
2
3
4
5

To
rqu

e=
[N
m]

time [s]

Measured Torque

One period
Mean of the M periods

Figure 6.6: The average of the M periods of the trajectory (red) is compared with one period (blue).

Also, the variance of the mean measured data can be computed, as it can give
information to whether a mean sample is better than another or not. For instance,
a sample with low variance is considered more relevant in the estimation than a
sample with high variance. By using the the M periods with K samples, it can be
computed as:

σ2
x̄ (k) =

1
(M− 1)

M

∑
m=1

(xm(k)− x̄(k))2 (6.31)

62 Chapter 6. Robot Parameters Estimation

Notice that Eq. (6.31) is not the variance of the noise but the variance of the mean
x̄ at every sample k, which is computed using the M periods of the signal. It is
used in Sec. 6.4 to weight the mean samples in the estimation. The variance of the
noise can be computed as:

σ2
x =

1
(MK− 1)

K

∑
k=1

M

∑
m=1

(xm(k)− x̄(k))2 (6.32)

It is expected that after data averaging, the measurement noise of the torque is
reduced. This noise is given by:

eτ(k) = τ̄(k)− τ(k) (6.33)

In order to see the characteristics of this noise, the data histogram is checked in
Fig. 6.7. It appears to be a normal distribution with zero mean.

Figure 6.7: The histogram shows the distribution of the torque noise removed after data averaging.

Joint Velocity and Acceleration

Velocity and acceleration are not directly measured, but they can always be com-
puted by numerical differentiation of position q. However, if noise is present in
the position signal, it can affect the accuracy of this calculation as velocity and
acceleration data becomes very noisy. Fortunately, as the designed trajectory is a
periodic signal with known frequency spectrum, it can be differentiated precisely
using the frequency domain as explained in [Swevers et al., 2007]. Once the robot
follows the trajectory given, it will be very easy to distinguish between signal and
noise in the frequency spectrum of the measured data and filter it. The analytical
differentiation of position is explained as follows:

• The sampling frequency Fs of the joint position measurement should be at
least twice the bandwidth of the periodic signal (2Ff) in order to avoid alias-
ing.

6.3. Experiment Design 63

• Once the trajectory is measured, the averaged joint position q̄(t) computed
using Eq. (6.30) is converted to the frequency domain using the Fast Fourier
Transform (fft in MATLAB). The spectrum Q(f) of one trajectory is shown
in Fig. 6.8.

• Signal is filtered in the frequency domain, a rectangular window H(f) is
multiplied per Q(f) in the frequency domain, such that frequencies that does
not belong to the periodic signal are removed. From the trajectory defined in
Sec. 6.3.1, it is known that each trajectory consist of frequencies at zero, ω f
and 2ω f .

f [Hz]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Q
(f)

 [
dB

]

-40

-20

0

20

40

60

80
Frequency Spectrum of Position

Q(f)
Q(f) kept
80 H (f)

Figure 6.8: Frequency spectrum of Q(f), which is a Fourier series of frequencies 0.1 and 0.2 Hz and
a constant value (frequency zero). A rectangular windows is used to remove the rest of the spectrum
considered noise.

• Now the signal can be differentiated by multiplying Q(f) per the frequency
response of a single and double differentiator:

F
[

dn q̄(t)
dtn

]
= (jω)nQ(f) (6.34)

where ω = 2π f and n determines the degree of the derivative (n = 1 deter-
mines the first derivative to obtain velocity and n = 2 determines the second
derivative to obtain acceleration).

• Finally, the spectrum is transformed back to the time domain using the In-
verse Fast Fourier Transform (ifft in MATLAB). The resulted free of noise

64 Chapter 6. Robot Parameters Estimation

signals are the first and second derivative of the position, which are veloc-
ity and acceleration respectively. Compared to numerical differentiation (e.g.
q̇(k) = (q(k)− q(k − 1))/Ts), the signal is smoother as the noise has been re-
moved as seen in Fig. 6.9. The effect of the noise is more appreciated in the
acceleration.

time [s]
0 2 4 6 8 10

q̇
[r

ad
/s

]

-0.6

-0.4

-0.2

0

0.2

0.4

Velocity
Numerical differentiation
Analytical Differentiation

time [s]
0 2 4 6 8 10

q̈
[r

ad
/s

2]

-5

0

5
Acceleration

Numerical differentiation
Analytical Differentiation

Figure 6.9: First and second derivative of position for Hand Roll. Differentiation in the frequency
domain (analytical differentiation) is compared with the numerical differentiation given.

Noise in q has been removed after data averaging of the position and filtering the
undesired frequencies in the frequency domain. Ideally, the noise should have
zero mean with normal distribution. Therefore, first the noise is shown to have
zero mean and normal distribution in Fig. 6.10. Moreover, noise should be uncor-
related but it is possible that it is slightly correlated as seen in Fig. 6.11. It means
that a small part of the robot trajectory may have been removed during filtering.
However, it is considered that the filtering has removed only measurement noise.
Therefore, the computed q, q̇ and q̈ is free of noise.

6.4. Linear Least Squares Estimation 65

Figure 6.10: The normal probability plot of the noise (upper graph) identifies departures from nor-
mality, which is represented as a deviation from the red straight line. The histogram (lower graph)
also represents how the distribution is normal.

sample [-]
100 200 300 400 500 600 700 800 900 1000

e
q̇
[r
ad

/s
]

-0.01

-0.005

0

0.005

0.01

Velocity Noise

sample lag [-]
0 5 10 15 20 25 30

A
C
F

-0.5

0

0.5

1

Autocorrelation (ACF) of the Noise

Figure 6.11: The difference between the analytical and the numerical differentiation is plotted for
1000 samples (upper graph) and its correlation is shown (lower graph).

6.4 Linear Least Squares Estimation

At the beginning of this chapter, it was assumed that all the joints are independent.
Therefore, each joint is excited and estimated separately. For now, only the Hand
Pitch, Hand Roll and Instrument Slide are used. Then, consider the robot dynamics

66 Chapter 6. Robot Parameters Estimation

in Eq.(6.35), where external forces are considered zero:

τ = M(q)q̈ + V(q̇, q) + G(q) + F(q̇) (6.35)

As mentioned before, Eq. (6.35) can be written linearly in terms of the parameters
θ to be estimated [Swevers et al., 2007]:

τ = Φ(q, q̇, q̈) θ (6.36)

See Sec. 6.1 for the parametrized equations. Once the system dynamics can be
expressed as a linear equation with respect to the parameters as in Eq. (6.36), the
mean measurements τ, q, q̇ and q̈ computed in Sec. 6.3.3 can be used to write the
following system of linear equations:

τ = F θ (6.37)

where

F =

 Φ(q(t1), q̇(t1), q̈(t1))
...

Φ(q(tK), q̇(tK), q̈(tK))

 (6.38)

is built using the identification matrix Φ evaluated at every time sample,

τ =

τ(t1)
...

τ(tK)

 (6.39)

is built using the torque data at every time sample, and

θ =

θ1
...

θp

 (6.40)

is the vector of independent parameters or combination of parameters. Consider-
ing that the number of samples K (i.e. the number of equations) is higher than
the number of parameters p to estimate, then the system in Eq. (6.37) is overde-
termined (i.e. more number of equations than unknown parameters to find). A
common method to get unbiased estimates of the parameters is the Linear Least
Square Estimation (LLSE), which estimate the vector θ that minimizes the square of
the estimated torque error with respect to the estimated parameters θ, given data
of τ, q, q̇ and q̈. LLSE is a widely known optimization problem, which is convex
and unconstrained [Boyd and Vandenberghe, 2004] and can be easily solved. First,
lets formulate the optimization problem as:

Minimize: f (θ) = ‖τ −Fθ‖2 (6.41)

6.4. Linear Least Squares Estimation 67

One way to take into account the noise present in the torque τ measurement is
to weight the corresponding error using a diagonal weighting matrix W, which
is used to discriminate between accurate and inaccurate data as it is explained in
[Swevers et al., 2007]. Then, the problem to solve can be expressed as Weighted
Least Square Estimation (WLSE), where the function to be minimized becomes:

f (θ) = ‖W1/2 (τ −Fθ)‖2 (6.42)

where

W is an K× K diagonal matrix of weights of the measured torque
τ is an K× 1 vector of the mean measured torque [Nm]
F is an p× K system matrix
θ is an p× 1 vector of unknown parameters

Note that the above dimensions are for the case of one joint. The weighted
square error should now be minimized, which can be expressed as:

(6.43)
f (θ) = ‖W1/2 (τ − Fθ)‖2

= (τ − Fθ)TW(τ − Fθ)
= τTWτ − θTFTWτ − τTWFθ + θTFTWFθ

where θTFTWτ and τTWFθ have dimensions 1 × 1, so they are scalars, hence
θTFTWτ = τTWFθ. Then, the weighted square error to minimize becomes:

f (θ) = τTWτ − 2θTFTWτ + θTFTWFθ (6.44)

By differentiating (6.44) with respect to θ and equating to zero, the minimum of
the convex function is found:

− 2FTWτ + 2(FTWFθ) = 0 (6.45)

Once Eq. (6.45) is rearranged, the estimated θ̂ that minimizes the weighted square
error is expressed as:

θ̂WLSE = (FTWF)−1FTWτ (6.46)

Note that if W = I, where I is the identity matrix, then the WLSE problem becomes
the LSE. In order to find the weighting matrix W, the variance of the mean torque,
defined in Eq. (6.31), is used:

σ2
τ̄(k) =

1
(M− 1)

M

∑
m=1

(τm(k)− τ̄(k))2 (6.47)

Notice that the data used in the WLSE is the mean of a repeated periodic trajectory,
and the different periods are used to find the above variance in the torque. Then,

68 Chapter 6. Robot Parameters Estimation

a covariance diagonal matrix Σ is built using the variance found in Eq. (6.47). The
higher is the variance, the worse is the sample. Therefore, its inverse Σ−1 is used
as a weight for the WLSE.

W = Σ−1 =

1

σ2
τ (1) · · · 0
...

. . .
...

0 · · · 1
σ2

τ (K)

 (6.48)

Finally, Eq. (6.46) becomes:

θ̂WLSE = (FTΣ−1F)−1FTΣ−1τ (6.49)

If data is not weighted, then the WLSE becomes the LSE:

θ̂LSE = (FTF)−1FTτ (6.50)

Both methods are later compared, altogehter with PSO estimation, in Sec. 6.6.

6.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization algorithm which was in-
spired by natural phenomena, such as the behavior of bird swarm in the nature. It
is a technique to solve both convex and non-convex optimization problems which
was originally introduced in [Kennedy and Eberhart, 1995]. PSO has been used
ever since in different optimization applications until it found way into system
identification problems. For instance, in [Xia et al., 2012] it is used to solve a non-
convex optimal power flow problem in power systems. Jahandideh and Namvar
introduced the use of PSO in parameter estimation of robot dynamics in [Jahan-
dideh and Namvar, 2012a] and [Jahandideh and Namvar, 2012b]. The interesting
part of their approach is that the parametrization of the robot dynamics is not
needed, as it sometimes can be a difficult task. This is the reason why PSO is cho-
sen as an alternative to compare with WLSE/LSE in this project.

Likewise, it is important to remark that for convex functions, where the min-
imum is global, other tools can be used to obtain the optimal solution more effi-
ciently. Therefore, notice that PSO is used to solve a non-convex problem in order
to find the parameters of the system.

The main goal of PSO is to optimize a function f : Rn → R given some con-
straints to the physical parameters (e.g. mass is positive):

Minimize : f (x)

Subject to : x ∈ X

6.5. Particle Swarm Optimization 69

where X ⊆ Rn. Then, the algorithm of PSO uses a swarm of k particles or in-
dividuals that search for an optimal solution for f (x) in an n-dimensional space
(x ∈ Rn). An overview of the algorithm is given in Fig. 6.12.

Start

Define:
- Number of parameters n
- Number of particles k
- Range ꭓ of parameter values
- Number of iterations iter

Init k particles of dimension n p0

n parameters randomly
with uniform distribution in ꭓ

i=0

Init particle
best experience

Pbest = p0

Init swarm
best experience

Gbest = min f(p0)

Learn from own and
swarm experience:

Compute Vi

Update particle position:

pi = pi-1 + Vi

If f(pi)<f(Pbest)

i+1

If f(pi)<f(Gbest)Pbest = pi Gbest = pi

If i > iter

T T

F

F F

T

End

Figure 6.12: Overview of the PSO algorithm.

70 Chapter 6. Robot Parameters Estimation

The algorithm is described as follows:

• Each particle represents a potential solution of x to the optimization problem.
Each particle is written in an n× 1 vector p, where n is the dimension of x.

• Each particle of the swarm is initialized randomly with uniform distribution
within X .

• Each particle calculates the function value f (pi) of its current position pi,
where i stands for the ith iteration.

• Each particle knows its own best experience Pbest and the global best expe-
rience of all the swarm Gbest. At every iteration i, the best experience Pbest
is compared with the current position pi and it is updated if necessary. The
same comparison is made with Gbest and pi as:

Pbest = pi if f (pi) < f (Pbest)

Gbest = pi if f (pi) < f (Gbest)

• Each particle moves according to its experience (Pbest) and the swarm expe-
rience (Gbest). The movement of one particle at the ith iteration is divided in
three parts:

Vi = wiVi−1︸ ︷︷ ︸
Previous direction

+ C1r1 (Pbest − pi−1)︸ ︷︷ ︸
Cognitive part

+ C2r2 (Gbest − pi−1)︸ ︷︷ ︸
Social part

(6.51)

where

Vi is an n× 1 vector of the direction of one particle
pi is an n× 1 particle at iteration i
Pbest is n× 1 vector which stores the best experience of the particle
Gbest is n× 1 vector which stores the best experience of all k particles
r1 r2 are uniformly distributed random number in the range [0, 1]
C1 is the cognitive learning rate (learning from own experience)
C2 is the social learning rate (learning from group experience)
wi is the inertia weight which defines how fast the particles move

This direction Vi can be seen as a gradient which leads the particle to the
function minimum. It is initialized to V0 = 0. Then, the new position of the
particle is defined using the previous position and the gradient found:

pi = pi−1 + Vi (6.52)

6.5. Particle Swarm Optimization 71

• This process is iterated until some conditions are fulfilled. Generally, the con-
dition to stop is either a predefined number of iterations, or a given number
of iteration without any significant change in Gbest. Then, the global best
experience Gbest at the last iteration is considered to be the optimal solution.

The PSO algorithm is implemented in MATLAB using the Particle Swarm Opti-
mization Toolbox from [Birge, 2006]. An important advantage about PSO com-
pared to other methods for non-convex problems is that the use of several particles
will make it easier to reach the global minimum as shown in Fig. 6.13.

x1 x3x2

f(x)

Figure 6.13: Illustration of PSO optimization. The use of multiple particles will help to reach a
global minimum as each particle is initialized in a different point. The red particles are closer to
local minimums like x1 or x2, while the green particles are closer to the global minimum x3. The
swarm learning algorithm will eventually lead all particles to x3.

6.5.1 PSO in Parameter Estimation

As an alternative to WLSE, in [Jahandideh and Namvar, 2012a] they suggested that
PSO could also be used to estimate robot parameters without parametrization of
the system dynamics. The concept of PSO is that it minimizes or maximizes a
function. Therefore, an error function is defined in order to be minimized. First,
the robot dynamics equation is used to estimate the torque, which depends on the
measured data and the set of potential estimates of the parameters:

τ̂ = M(q)q̈ + V(q̇, q) + G(q) + F(q̇) (6.53)

Then, the error can be defined as the difference of the measured and predicted
torque:

e(t) = τ(t)− τ̂(t) (6.54)

Now, the error for all K samples is written in a vector E as:

E =

e(t1)
...

e(tK)

 (6.55)

72 Chapter 6. Robot Parameters Estimation

Finally, the function to be minimized can be defined as the 2-norm of the error
vector:

f = ‖E‖2 (6.56)

Even though the 2-norm is known to be a convex function [Boyd and Vanden-
berghe, 2004], e(t) is non-convex. That is because τ̂ is not parametrized and some
parameters appear as quadratic terms or multiplying other terms in τ̂ (e.g. m lc

and m l2
c in Sec. 6.1). Therefore, the problem is non-convex. Nevertheless, notice

that if τ̂ = Φθ, the problem would become convex. However, then parametrization
will be needed again and here it is desired to avoid it.

Now, PSO can be used to minimize Eq. (6.56). As it is using a swarm of
particles, it is more possible to reach the global minimum and not a local minimum.
At least, it would perform better compared to other algorithms, such as gradient
descent, that uses just one initial point in order to find a local minimum. A total of
24 particles are used to find the physical parameters of each joint. The algorithm
is iterated a total of 3000 times unless it stops when the best global experience
does not change for 150 iterations. An example of how the global best experience
evolves during the algorithm is shown in Fig. 6.14.

iterations [-]

50 100 150 200 250 300 350 400 450 500 550

f(G
b
es
t)

500

1000

1500

2000

2500

PSO minimization

X: 562

Y: 23.67

Figure 6.14: Minimization of the function using PSO.

Results of the estimation and are shown and discussed in Sec. 6.6.

6.6. Parameter Estimation Results 73

6.6 Parameter Estimation Results

In this chapter, estimation of the joints is done one at a time. Both WLSE/LSE
and PSO are used to estimate the parameters and they are compared with the
initial guesses done in Chapter 4 by computing the Mean Square Error (MSE). The
equations used for the estimation were developed in Maple and given in Sec. 6.1.

Hand Roll (q1)

Its dynamical equation is found as:

τ1 =(η2
1 Jm1 + Iy2 + Ix5 + Iy3 + 0.036 m3 + 0.036 m4 + 0.036 m5 + 0.38 m5lc5

− 0.38 m3lc3 + m3lc3
2 + Ix4 + m5lc5

2)q̈1 + υ1 q̇1 + c1 sign(q̇1)

+ (−m5lc5 − 0.19 m5 − 0.19 m4 − 0.19 m3 + m3lc3) g sin(q1) [Nm] (6.57)

which has a total of 12 parameters for PSO. Eq. (6.57) can be expressed in 4 inde-
pendent parameters for WLSE/LSE:

τ1 = θ1,1 q̈1 + θ2,1g sin(q1) + θ3,1 q̇1 + θ4,1 sign(q̇1) [Nm] (6.58)

In Table 6.4 the initial guesses are compared with the estimations done using
WLSE/LSE and PSO:

Parameters Initial Guess WLSE LSE PSO
θ1,1 0.3843 0.4521 0.4528 0.4528
θ2,1 0.194 0.0110 0.0103 0.0103
θ3,1 1 0.3707 0.3706 0.3705
θ4,1 1 0.2203 0.21968 0.2197

MSE 1.3899 0.0199 0.0197 0.0197

Table 6.4: Table of the estimated parameters for Hand Roll.

There is no difference between weighted and not weighted LSE so they are
considered the same. Also, PSO gives practically the same results. Note that
WLSE/LSE uses Eq. (6.58) while PSO uses Eq. (6.57). A comparison is now made
between the predicted torque with the two methods and the torque prediction error
is also computed.

74 Chapter 6. Robot Parameters Estimation

time [s]
0 2 4 6 8 10

τ
[N

m
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Input Torque

Measured torque
Predicted Torque (LSE)
Predicted Torque (PSO)

time [s]
0 2 4 6 8 10

e
(t
)
[N

m
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Torque Prediction Error

Figure 6.15: Comparison of the estimation with LSE and PSO (left) for Hand Roll and the torque
prediction error with LSE (right).

Ideally, if the model was exact, the torque prediction error would be the noise
of the torque measurement, which is considered to have a normal distribution with
zero mean. Moreover, the torque estimation error should be uncorrelated.

Data
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

P
ro

b
ab

il
it
y

0.001

0.02
0.10
0.25
0.50
0.75
0.90
0.98

0.999

Normal Probability Plot

Data
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

F
re

q
u
en

cy

0

200

400

600

800

1000
Estimation Error Histogram

Figure 6.16: The normal probability plot of torque prediction error (upper graph) shows that the
data follows a normal distribution. The histogram (lower graph) shows the distribution centered at
zero.

6.6. Parameter Estimation Results 75

sample [-]
×10

4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

τ
−

τ̂
[N

m
]

-0.5

0

0.5

Torque Estimation Error

sample lag [-]
0 5 10 15 20 25 30

A
C
F

-0.5

0

0.5

1

Autocorrelation (ACF) of the Error

Figure 6.17: A high correlation appears in the error, but it is expected as there will always be model
uncertainties when dealing with the real world.

Error appears to be quite correlated. This is because the model is not exact as
it is difficult to model the real world. One example is the Coulomb friction, which
does not fit exactly the model. Other possible causes are discussed in Sec. 6.7.
However, the error appear to have a normal distribution with zero menan as seen
in Fig. 6.16. Since the estimation fits quite well the measured data, it is considered
valid for the force estimation in Chapter 7.

Hand Pitch (q2)

Its dynamical equation is found as:

τ2 =(η2
2 Jm2 + Iz3 + Iy5 + Iy6 + Iy8 + Iy9 + 0.04 (m3 + m4 + m5)− 0.38 m3lc3

+ 0.18(m6lc6 + m7lc7 + m8lc8)− 0.22m9lc9 + 0.38 m5lc5 + m3lc3
2

+ m5lc5
2 + m6lc6

2 + m7lc7
2 + m8lc8

2 + m9lc9
2) q̈2 + υ2 q̇2 + c2 sign(q̇2)

+ (−0.19 (m4 −m3 −m5) + 0.09 (m6 + m7) + 0.10(m8 + m9) + m3lc3

−m5lc5 −m6lc6 −m7lc7 −m8lc8 −m9lc9)g sin(q2)+

(−0.01 (m4 + m3) + 0.03 (m5 + m6 + m7 + m8 + m9 + m3lc3))g cos(q2) [Nm]
(6.59)

which has a total of 21 parameters for PSO. They can be expressed in 5 independent
parameters for WLSE/LSE:

τ2 = θ1,2 q̈2 + θ2,2g sin(q2) + θ3,2g cos(q2) + θ4,2 q̇2 + θ5,2 sign(q̇2) [Nm] (6.60)

76 Chapter 6. Robot Parameters Estimation

In Table 6.5 the initial guesses are compared with the estimations done using
WLSE/LSE and PSO:

Parameters Initial Guess WLSE LSE PSO
θ1,2 0.2961 0.2381 0.2384 0.2406
θ2,2 1.9475 0.1350 0.1343 0.1345
θ3,2 0.115 0.064 0.0705 0.0704
θ4,2 1 0.9110 0.9064 0.9061
θ5,2 0.1 0.4151 0.4155 0.4156

MSE 2.9145 0.0461 0.0460 0.0460

Table 6.5: Table of the estimated parameters for Hand Pitch.

Again, results are very similar for all methods, while initial guesses are not. A
comparison is also made between the predicted torque from LSE and PSO with the
measured torque. The torque prediction error is also shown.

time [s]
0 2 4 6 8 10

τ
[N

m
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Input Torque

Measured torque
Predicted Torque (LSE)
Predicted Torque (PSO)

time [s]
0 2 4 6 8 10

e
(t
)
[N

m
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Torque Prediction Error

Figure 6.18: Comparison of the estimation with LSE and PSO (left) for Hand Pitch and the torque
prediction error with LSE (right).

Ideally, the torque prediction error should have normal distribution with zero
mean and be uncorrelated. It is clear that due to model uncertainties, it is not
uncorrelated and the autocorrelation is not shown. However, the normal plot and
the histogram in Fig. 6.19 show that the error mean is zero with a higher variance
than a normal distribution. Nevertheless, the estimation fits well the measured
data and therefore, it is considered a valid model.

6.6. Parameter Estimation Results 77

Data
-1 -0.5 0 0.5 1

P
ro

b
a
b
il
it
y

0.001

0.02
0.10
0.25
0.50
0.75
0.90
0.98

0.999

Normal Probability Plot

Data
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

F
re

q
u
en

cy

0

500

1000
Estimation Error Histogram

Figure 6.19: The normal probability plot of torque prediction error (upper graph) show that the
distribution has with higher variance than expected. The histogram (lower graph) shows that it is a
distribution with zero mean.

Instrument Slide (q3)

Its dynamical equation is found as:

τ3 =
(
η2

3 Jm3 + m6 + m7 + m8 + m9
)

q̈3 − (m6 + m7 + m8 + m9)g + υ3q̇3 + c3sign(q̇3) [N]

which has a total of 7 parameters to be used in PSO, and can be expressed in 4
independent parameters for WLSE/LSE as:

τ3 = θ1,3(q̈3 − g) + θ2,3q̈3 + θ3,3 q̇3 + θ4,3 sign(q̇3) [N] (6.61)

In Table 6.6 the initial guesses are compared with the estimations done using
WLSE/LSE and PSO.

Parameters Initial Guess WLSE LSE PSO
θ1,3 0.141 2.4610 2.5626 2.485
θ2,3 10−6 -0.0750 -0.0712 0.0003
θ3,3 1 3.2723 3.2723 3.1939
θ4,3 3 3.9842 3.9840 3.9975

MSE 8.8435 1.8100 1.8101 2.2986

Table 6.6: Table of the estimated parameters for Instrument Slide.

78 Chapter 6. Robot Parameters Estimation

Notice that the results for this joint are not as good as with the other two. More-
over, the value θ2,3 obtained from WLSE and LSE is not physically possible as the
motor inertia Jm3 should be positive, while in PSO it was constrained. However,
the model found with LSE is the one that gives the lowest MSE and therefore, it
is chosen for the force estimation. The test was conducted at high speed, however
the joint is never gonna be moved fast and the dynamics will not be so present at
smaller velocities. Then, only friction will be seen at the joint. Moreover, autocor-
relation or histogram plot of the error will not be shown for this joint, as the error
is far from ideal and no further conclusions can be obtained from them.

time [s]
0 1 2 3 4 5

τ
[N

]

-10

-5

0

5

10

Input Force

Measured force
Predicted Force (LSE)
Predicted Force(PSO)

time [s]
0 1 2 3 4 5

e
(t
)
[N

]

-10

-5

0

5

10

Force Prediction Error

Figure 6.20: Comparison of the estimation with LSE and PSO (left) for Instrument Slide and the force
prediction error with LSE (right).

6.7 Error Propagation

Once the estimation results are obtained, it can be seen that the model error is not
totally ideal. This may be caused by several reason which are considered here:

• Filtering the position may remove part of the real trajectory, even though
it is practically the same and it helps to obtain free of noise velocity and
acceleration.

• As the fundamental frequency ω f and the number of Fourier elements N f of
the optimal trajectory are chosen beforehand in Sec. 6.3.1, it might be that
the trajectory found is not sufficiently exciting the system. Then, when joints
are moved at higher velocities, the model may not be precise enough.

• The friction in the joints does not follow exactly the theoretical model. Actu-
ally, this friction is not symmetric as it behaves differently in both direction.
The position is increased slowly in the Instrument Slide joint such that the

6.7. Error Propagation 79

velocity and acceleration terms can be neglected. Also, it is moved horizon-
tally such that the gravity term is zero. This way, the motor force generated
is equal to the friction forces. As seen in Fig. 6.21, hysteresis occurs in the
friction. Moreover, Coulomb friction does not behave as a sign function even
though it is approximated as such. So it is important to note that the model
used does not fit exactly the real world behavior.

q̇ [m/s] × 10 -6
-5 -4 -3 -2 -1 0 1 2 3 4

F
[N

]

-6

-4

-2

0

2

4

6

Joint Friction

Real friction
Friction model

Figure 6.21: Friction of the Instrument Slide joint compared with the model used.

• The controllers in the da Vinci robot are used to follow the optimal trajectory.
Therefore, the estimation is made in closed loop and the fastest dynamics
that appear in all joints may be caused by the controller.

• The model for each joint is considered independent to the others. However,
joints with high inertias like Hand Roll or Hand Pitch may be affected by each
other. Joints like Instrument Slide are not so affected by dynamics but mostly
friction. Therefore, the independent model may be good for some joints but
not all. One could use an alternative estimation method where the controller
is included in the model [Hof and Schrama, 1994].

Despite the model is not ideal, it is never easy to obtain accurate results when
dealing with the real world. Therefore, the estimation is considered good to be
used in the force estimation in Chapter 7.

80 Chapter 6. Robot Parameters Estimation

6.8 Conclusions for Estimation Results

In this chapter, an experiment was performed in order to identify the robot pa-
rameters. A permanent exciting trajectory, which was periodic, was designed. The
method proved to remove the noise present in the position measurement and it
allowed to compute the velocity and the acceleration free of noise, while noise in
the torque measurements was reduced.

The identification was simplified by moving one joint at a time and fixing the
others, which reduced the total number of parameters that could be estimated.
It is possible that joints Hand Roll and Hand Pitch are dependent on other joints,
while Instrument Slide is mostly affected by friction. Therefore, the independent
joint model may be good for certain joints but not all. Two approaches were used
to estimate the parameters by using the measured data from the experiment:

• First, the Weighted and non weighted Least Square Estimation are derived.
Their results show that there is no significant improvement when weighting
the data, so there is no need to use WLSE.

• On the other hand, the algorithm Particle Swarm Optimization also gave
similar results to LSE while skipping parametrization of the dynamics. More-
over, constraints can be included in PSO while in LSE cannot. Therefore, it is
a good alternative method when parametrization is not an easy task. How-
ever, due to the physical constraints, results for the joint Instrument Slide were
worst.

The prediction error was used to verify the accuracy of the estimation. The model
was good except for velocities close to zero due to the limited accuracy at low
velocity of the Coulomb model used. Furthermore, the results for the Instrument
Slide joint are worse compared to the other two. However, the models found are
considered to be good enough for force estimation in Chapter 7.

Chapter 7

External Forces Estimation

The purpose of this chapter is to estimate external forces using the models found
in Chapter 6. Once the external forces are estimated, they can then be used for
force feedback in a haptic device in order to create a contact feeling to the surgeon.

In the da Vinci surgical system, currently the surgeon does not have feeling
of applied force during operation and therefore, it may worsen his experience. A
survey was carried out in [Trejos et al., 2010] where it was stated the need of force
sensing in minimally invasive surgery. The first consideration would be to add
force sensors at the end effector such that they can measure the force. In practice,
it is not so easy to add anything to the end effector as it will prevent a normal
use during surgery. Moreover, in case a sensor could be placed on the tool, two
problems would arise:

• All sensors that are in contact with the patient should be able to withstand a
sterilization procedure [Trejos et al., 2010]. This implies that the choice of the
force sensor is limited.

• In the da Vinci robot, each tool is limited to a specific number of uses. As
the sensors should be placed at the tool, their lifetime is also short. Then, the
cost would increase considerably.

One could place torque sensors where the instrument is attached, such that the
they are not inside the patient during surgery and also, such that they should not
be removed when an instrument is changed as shown in Fig. 7.1.

81

82 Chapter 7. External Forces Estimation

(a) Instrument to be removed. (b) Instrument holder (outlined).

Figure 7.1: Force sensors could be placed at the instrument holder as it is not removed when instru-
ment is changed.

Nevertheless, to avoid adding any sensor, the alternative is to estimate these
contact forces using available measurements from the motors (i.e. current and po-
sition measurement), which is commonly used in haptic feedback as it is desired in
this project. Furthermore, it is important to have a known model, including friction
dynamics, in order to obtain accurate results.

A very common approach is to use a disturbance observer, which compares
the difference between the outputs of the nominal model (i.e. without external
forces) and the measured system output, as it is done in [Eom et al., 1998]. An
extended Kalman filter is also used in [Jung et al., 2006] and [Lee and Ahn, 2010]
to estimate external forces, which are considered disturbances. A different ap-
proach has been done in [Stolt, 2015] and [Wahrburg et al., 2014], where a convex
optimization problem is solved, but still using measurements of joint angles and
motor current. In [Stolt, 2015], a probabilistic disturbance model was developed
for the friction and then, external forces were estimated by solving a convex op-
timization problem. This method is focused on estimating the force in industrial
robots when velocities are very small, as dynamics from acceleration are very low
and neglected. All methods agree that modeling the friction is an important part
in force estimation. From the referenced work about force estimation, only [Lee
and Ahn, 2010] has actually been used in telesurgery applications, while the other
examples are related to industrial robots.

This chapter is based on the previous referenced work and is divided as follows:

7.1. Extended Kalman Filter for Force Estimation 83

• First, the model used for force estimation is described.

• An extended Kalman filter is used to estimate torques at three joint by using
the models in Chapter 6, while the remaining joints are considered to be
fixed.

• Then, a relation between forces applied at the end-effector and the estimated
torques at the joints is given, where the Jacobian of the da Vinci robot is used.

• Finally, results from the extended Kalman filter for each joint are shown and
discussed.

7.1 Extended Kalman Filter for Force Estimation

If a model of the system is known, then τext can be estimated using this model.
First, lets consider the system from Chapter 4:

τ = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) + τext [Nm] (7.1)

where

τ is a vector of motor torques [Nm]
q is an n× 1 vector of joint position [rad]
M(q) is a symmetric mass matrix of manipulator and motor [kg m2]
V(q̇, q) is an n× 1 vector of centrifugal and Coriolis terms [Nm]
G(q) is an n× 1 vector of gravity terms [Nm]
F(q̇) is an n× 1 vector of friction of motors and joints [Nm]
τext is an n× 1 vector of external torques seen at the joints [Nm]

Notice that units are for revolute joints. If joint is prismatic, units of q are [m],
gear ratio is [1/m] and instead of torques, there are forces [N].

Intuitively, one could say that by using the model in Eq. (7.1) and the parameter
estimation made in Chapter 6, the external joint torques could be estimated simply
using:

τ̂ext = τ −M(q)q̈−V(q̇, q)− F(q̇)− G(q) (7.2)

Unfortunately, this estimation will include an error e, which consist of both un-
modeled dynamics and sensor noise from τ:

τ̂ext = τext + e (7.3)

In order to show it, a small torque is applied to the Hand Pitch joint and the
external torque is estimated in Fig. 7.2 by using Eq. (7.2). Even though it appears
that external torques can be estimated, there is a lot of noise present.

84 Chapter 7. External Forces Estimation

#104

1 2 3 4 5 6

q
[r

ad
]

-1

0

1
Trajectory

q
q ref

#104

1 2 3 4 5 6

=
 [N

m
]

-10

-5

0

5
Torque

Measured Torque
Estimated Torque

#104

1 2 3 4 5 6

=
 [N

m
]

-5

0

5

10
External Torque

Figure 7.2: The Hand Pitch joint is following a given trajectory while external torques are applied to
this joint. The motor reacts to them to keep following the trajectory and a noisy torque is computed
from Eq. (7.2).

While the error due to unmodeled dynamics can only be removed by improv-
ing the model, which is not an easy task, the measurement noise can be removed
if a filter is applied. In these cases, it is very common to use a Kalman filter as it is
done in [Jung et al., 2006] and [Lee and Ahn, 2010]. For instance, in [Lee and Ahn,
2010] an adaptive Kalman Filter (AKF) is used for force estimation in a telesurgery
application, where an adaptive rule for the measurement covariance matrix R is
suggested. Then, external forces are considered as a disturbance and estimated.
In this project, a non linear model is found, therefore, the discrete-time Extended
Kalman Filter (EKF) for each joint is used instead.

7.1.1 Extended Kalman Filter Algorithm

First, lets define the nonlinear dynamic model and measurement model in discrete
for the general case of the EKF, where the system and measurement noise are

7.1. Extended Kalman Filter for Force Estimation 85

considered to be white and uncorrelated [Grewal and Andrews, 2008]:

xk+1 = fd(xk, uk) + wk wk ∼ N (0, Qk)

yk = hd(xk, uk) + vk vk ∼ N (0, Rk) (7.4)

E(w vT) = 0

where

xk is the system state vector at time k
yk is the observation vector of the system at time k
fd(xk, uk) is the non linear discrete system equation
hd(xk, uk) is the non linear discrete measurement equation
N (µ, Q) denotes a Gaussian distribution with mean µ and covariance Q
wk is the system noise with zero mean and covariance Qk
Qk is the system noise covariance matrix
vk is the measurement noise with zero mean and covariance Rk
Rk is the measurement noise covariance matrix

The EKF uses the derivation of the KF and then approximates and linearizes the
non linear terms only when necessary. Therefore, fd and hd should be linearized
with respect to x:

Fk =
∂ fd(x, u)

∂xT

∣∣∣∣
x̂k|k ,uk

Hk =
∂hd(x, u)

∂xT

∣∣∣∣
x̂k|k−1,uk

(7.5)

where x̂k|k is the estimation of xk given data at time k and x̂k|k−1 is the estimation of
xk given data at time k− 1. This notation is now used for the recursive algorithm
of the EKF, which is divided in three parts and described in [Grewal and Andrews,
2008]:

• Initialization of the algorithm:

x̂0|−1 = 0

P0|−1 = Q0

• Measurement update after receiving yk and uk, where the previous state
prediction is compared with the actual measurement and then corrected:

ŷk|k−1 = hd(x̂k|k−1, uk)

ỹk|k−1 = yk − ŷk|k−1

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1

x̂k|k = x̂k|k−1 + Kk ỹk|k−1

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)T + KkRkKT
k

(7.6)

86 Chapter 7. External Forces Estimation

• Time update from k to k + 1, where the next state and covariance matrix P
are predicted:

x̂k+1|k = fd(x̂k|k, uk)

Pk+1|k = FkPk|kFT
k + Qk

(7.7)

where

ŷk|k−1 is the predicted measurement at k from estimation of x̂k made at k− 1
ỹk|k−1 is the innovation or measurement residual at time k
Kk is the Kalman gain
x̂k|k is the corrected predicted state using the Kalman gain
Pk|k−1 is the a priori covariance matrix of the states estimate at time k
Pk|k is the a posteriori covariance matrix of the states estimate at time k
x̂k+1|k is the corrected predicted state using the Kalman gain

The predicted state x̂k|k is the corrected state of the system with the Kalman gain
and therefore, it is the desired information from the Kalman.

7.1.2 System Model

A model is needed for the estimation of external torques τext in the joints. For any
robot manipulator such as the da Vinci robot, the system model was given as:

τ = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) + τext (7.8)

Note that the independent joint dynamics defined and estimated in Chapter 6 are
used in Eq. (7.8). Considering q̇ = dq, then it can be rewritten as First-Order
Ordinary Differential Equations:{

q̇ = dq

ḋq = M(q)−1 (τ −V(dq, q)− F(dq)− G(q)− τext)
(7.9)

Notice that τext is considered a disturbance and in order to estimate it using the
EKF, it should be represented as a state. As the external torques are unknown,
one common assumption is to consider that this disturbance is slowly varying and
practically constant, which can be represented as:

τ̇ext = 0 (7.10)

Which gives the following system equation:
q̇ = dq

ḋq = M(q)−1 (τ −V(dq, q)− F(dq)− G(q)− τext)

τ̇ext = 0

(7.11)

7.2. Joint Torques to End-Effector Forces 87

where q, dq and τext are the states of the system and τ is the input. Moreover, in
the da Vinci, position and velocity measurement are available, so the measurement
equation becomes:

y =
[

1 0 0
0 1 0

]
︸ ︷︷ ︸

H

 q
dq
τext

 (7.12)

Both Eq. (7.11) and (7.12) can be expressed as the following continuous system:

ẋ = f (x, u)

y = H x
(7.13)

where the output equation is linear but not the system equation. As the EKF
algorithm is implemented in discrete, the dynamical model should also be discrete.
For this reason, Eq. (7.13) is discretized by using the Forward Euler method as:

xk+1 = xk + Ts f (xk, uk)

yk = H xk
(7.14)

where Ts is the sampling time. Therefore, the discrete model can be written as:
qk+1 = qk+1 + Ts dqk

dqk+1 = dqk + Ts M(qk)−1 (τk −V(dqk, qk)− F(dqk)− G(qk)− τextk)

τextk+1 = τextk

(7.15)

Finally, the non linear discrete system in Eq. (7.14) should be linearized at x̂k|k as it
is needed to compute the a priori covariance matrix Pk+1|k in the time update step
in (7.7), that is:

Fk = I + Ts
∂ f (x, u)

∂xT

∣∣∣∣
x̂k|k ,uk

(7.16)

while the measurement equation in Eq. (7.14) is already linear. Notice that the
Coulomb model used is Fc = C sign(q̇), which is not differentiable at q̇ = 0. For this
reason, it is assumed that the system will never be exactly at q̇ = 0 and then, the
differentiation is zero.

7.2 Joint Torques to End-Effector Forces

Now that τext is estimated with the EKF, the Jacobian J can be used to find also
the forces/torques applied at the end-effector. Therefore, the end-effector force/
torque vector Fee is related with the joint torque τext using the robot Jacobian matrix
[Linderoth et al., 2013]:

τext = JT Fee [Nm] (7.17)

88 Chapter 7. External Forces Estimation

where the robot Jacobian J is defined in Chapter 3 during the kinematics study of
the hand and tool. Both the end effector force/torque vector Fee and the Jacobian J
can be partitioned as follows:

τext = JT Fee =
[

Jv
T Jω

T] [fee

τee

]
(7.18)

where fee is a 3x1 vector of external forces at the end-effector [N] and τee is a 3x1
vector of external moments applied at the end-effector [Nm]. It is now necessary
to compute the translational Jv and the rotational Jω part of the Jacobian, which
map joint velocities with end-effector linear and angular velocity respectively:

0vn = Jvq̇ [m/s]
0ωn = Jωq̇ [rad/s]

(7.19)

7.2.1 Translational Jacobian

To find Jv, the position of the last link n, the end-effector, should be known with
respect to frame {0}. Lets consider the transformation matrix from the end-effector
frame to the base frame, which can be computed by concatenating intermediate
frames as explained in Chapter 3:

0
nT(q) = 0

1T · 1
2T · · · n−1

n T =
(0

nR(q) 0On(q)
01x3 1

)
(7.20)

where

0On(q) is the origin of the end-effector frame with respect to the base frame
0
nR(q) is the rotation from the end-effector frame with respect to base frame

Now, the term Jv can be computed with the partial derivative of the position of
the end-effector 0On(q) with respect to the joint positions [Spong et al., 2004]:

Jv =
∂ 0On(q)

∂q
(7.21)

7.2.2 Rotational Jacobian

To find Jω becomes easier if the angular velocity of the end effector is computed,
which is defined as the sum of the previous link’s angular velocity with respect to
frame {0}:

0ωn = 0ω1 + 0
1R · 1ω2 + 0

2R · 2ω3 + · · · + 0
n−1R · n−1ωn [rad/s] (7.22)

7.2. Joint Torques to End-Effector Forces 89

where i−1ωi is the rotation of joint i measured along z axis of joint i − 1, which
is the generalized velocity q̇k̂ if joint is revolute and 0k̂ if joint is prismatic, and
k̂ =

[
0 0 1

]T
. By looking to the generalized coordinates q defined in Chapter

3, the term i−1ωi can be determined and the angular velocity of the end-effector
becomes:

0ωn = 0
1R · q̇1k̂ + 0

2R · q̇2k̂ + 0
3R · q̇2k̂ + 0

4R · q̇2k̂ + 0
6R · q̇4k̂ + 0

7R · q̇5k̂ + 0
8R · q̇6k̂ [rad/s]

(7.23)
Notice that the angular Jacobian from Eq. (7.2) relates end-effector angular velocity
with joint velocity. Therefore, the contribution of the joint velocity q̇i (six in total)
to the end-effector angular velocity 0ωn can be used to find Jω, that is:

Jω =
[

0
1R k̂

(
0
2R k̂ + 0

3R k̂ + 0
4R k̂

)
03x1

0
6R k̂ 0

7R k̂ 0
8R k̂

]
(7.24)

7.2.3 Reduced Jacobian

The calculation of the Jacobian is done in Maple. For simplicity, only the joints
Hand Roll, Hand Pitch and Instrument Slide, shown in Fig. 7.3, are used in the
model, while the rest are fixed. As mentioned in Chapter 6, to use the remaining
joints is the first improvement to the project that should be done after the initial
design. Moreover, by assuming that only forces are applied at the end-effector,
then Eq. (7.18) becomes:

τext = Jv
T fee (7.25)

where Jv
T is a 3× 3 matrix, as only three joints are used in this model. As Jv

T is
square, it can now be inverted in order to obtain forces at the end-effector fee:

fee =
(

Jv
T
)−1

τext (7.26)

90 Chapter 7. External Forces Estimation

fee
z0

y 0

x0

side
view

front
view

instrument
slideinstrument

slide

hand_rollhand_pitch

hand_pitch

fee

Figure 7.3: Joint movements that are used to estimate external forces fee at the end-effector. The
outlined instrument will move only with a slide movement and the end-effector is assumed to be
fixed and not moving.

7.3 Force Estimation Results in Simulation

The extended Kalman filter is first tested in the simulation. All measurements
are sampled at a rate of 100 Hz. Zero-mean Gaussian noise is added to the mea-
surement according to the standard deviation shown in Table 7.1. The two mea-
surements have different characteristics, since velocity is computed from position
measurement and its noise variance is higher.

Measured Variable Symbol Standard deviation
Joint Position q 0.01 rad
Joint Velocity dq 0.008 rad/s

Table 7.1: Table of standard deviation of the noise added to simulation measurements.

Only one joint is tested in simulation, the Hand Pitch, in order to prove that
external forces can be estimated by the EKF designed. The experiment is shown in
Fig. 7.4 and summarized as follows:

• A sinusoidal trajectory is given to each joint.

7.3. Force Estimation Results in Simulation 91

• External torques are applied periodically to the joint. A triangle wave gener-
ator is used to create them.

• The controller reacts very fast when external forces are applied in order to
keep following the reference.

t [s]
0 2 4 6 8

q
[r
a
d
]

-0.5

0

0.5

Joint Position

q

q̂ EKF

0 1 2 3 4 6 7 8 9

τ
[N

m
]

0

1

2

Input torque
t [s]

0 2 4 6 8

q̇
[r
ad

/
s]

-0.5

0

0.5

Joint Velocity

dq

d̂q EKF

t [s]
0 1 2 3 4 5 6 7 8 9

τ
e
x
t
[N

m
]

0

1

2

Externtal Torques
τext

τ̂ext EKF

2.4 2.6 2.8

5
t [s]

Figure 7.4: The upper plots shows the measurements of the system. The middle plot shows the input
torque, which reacts to external torques. The lower plot compares the external torques applied with
the estimation form the EKF.

Results show that the controller designed in Chapter 5 reacts very fast to external
forces applied. Moreover, the EKF is able to capture the external torques as it is
desired. The system and measurement noise covariance matrices are tuned in order
to obtain uncorrelated measurement residuals (innovation) as seen in Fig. 7.5. Note
that they could be tuned further in order to reduce the noise in the estimation of
external torques, however simulation is only used to prove that external torques
can be estimated with the EKF designed.

92 Chapter 7. External Forces Estimation

Sample(-)
200 400 600 800

ỹ
1

×10
-3

-2

0

2

Position Residuals

Sample(-)
200 400 600 800

ỹ
2

-0.02

0

0.02

Velocity Residuals

Sample Lag (-)
0 5 10 15 20 25 30

A
C
F

0

0.2

0.4

0.6

0.8

1

ACF of Position Residuals

Sample Lag (-)
0 5 10 15 20 25 30

A
C
F

0

0.2

0.4

0.6

0.8

1

ACF of Velocity Residuals

Figure 7.5: Residuals for the joint Hand Pitch (simulation) and its autocorrelation.

The residuals for both measurement appear to be uncorrelated as expected. In
simulation, the system is ideal and the model used in the EKF is exact.

7.4 Force Estimation Results in da Vinci Robot

The model used for the EKF is based on the independent joint dynamics described
and estimated in Chapter 6. Each joint is now tested separately in the da Vinci
robot, where:

• A sinusoidal trajectory, different to the one used for estimation, is given to
each joint.

• Forces/torques τext are manually applied to the joint in order to see how the
EKF is able to capture them. Its characteristics are unknown but the time
when they are applied is known and thus, it is noted in the plots.

• The input force/torque measured is compared with the input force/torque
that is obtained from the model, which is given as:

τ̂ = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) (7.27)

7.4. Force Estimation Results in da Vinci Robot 93

• The estimated external force/torque from the EKF is compared with the one
obtained from Eq. (7.2), which is:

τ̂ext = τ −M(q)q̈−V(q̇, q)− F(q̇)− G(q) = τ − τ̂ (7.28)

Hand Roll

Results for this joint show high peaks in input torque when external torques are
applied. The EKF is actually able to capture these changes in the input very fast,
while it remains close to zero when no torque is manually applied to the joint.

t [s]
0 5 10 15 20 25

q
[r

ad
]

-0.4

-0.2

0

0.2

0.4

Joint Position

q
q EKF

t [s]
0 5 10 15 20 25

τ
[N

m
]

-1

-0.5

0

0.5

1

Input Torque

t [s]
0 5 10 15 20 25

τ e
xt

[N
m

]

-1

-0.5

0

0.5

1

External Torque

τ
τ
applied τext

^

τext
τext EKF
^

applied τext

^

^

Figure 7.6: The upper graph shows the trajectory followed by the Hand Roll. In the middle plot, the
input torque measured is compared with the torque from the model. Finally, the lower graph shows
the external torque estimated.

94 Chapter 7. External Forces Estimation

Hand Pitch

Results for this joint also show that the EKF is able to capture external torques
successfully, while it remains close to zero when no torque is applied.

t [s]
0 5 10 15 20 25

q
[r

ad
]

-0.4

-0.2

0

0.2

0.4

Joint Position
q
q EKF

t [s]
0 5 10 15 20 25

τ
[N

m
]

-0.5

0

0.5

1

1.5

Input Torque

t [s]
0 5 10 15 20 25

τ e
xt

[N
m

]

-0.5

0

0.5

1

External Torque

τ
τ
applied τext

^

τext
τext EKF
^

applied τext

^

^

Figure 7.7: The upper graph shows the trajectory followed by the Hand Pitch. In the middle plot, the
input torque measured is compared with the torque from the model. Finally, the lower graph shows
the external torque estimated.

Instrument Slide

The model for this joint found in Chapter 6 is known to be inaccurate. However,
the force applied is quite big compared to the force needed to move the joint.

7.4. Force Estimation Results in da Vinci Robot 95

Therefore, the EKF can capture external forces and remain close to zero when they
are not applied. Moreover, the Coulomb model also create errors in the external
torque τ̂ from Eq. (7.28) when velocity changes sign. However, the EKF is able to
smooth this error.

t [s]
0 5 10 15 20 25

q
[m

]

-0.05

0

0.05

Joint Position

q
q EKF

t [s]
0 5 10 15 20 25

τ
[N

]

0

2

4

6

8

10
Input Force

t [s]
0 5 10 15 20 25

τ e
xt

[N
]

-2

0

2

4

6

8

External Force

τ
τ
applied τext

^

τext
τext EKF
^

applied τext

^

^

Figure 7.8: The upper graph shows the trajectory followed by the Instrument Slide. In the middle
plot, the input torque measured is compared with the torque from the model. Finally, the lower
graph shows the external torque estimated.

96 Chapter 7. External Forces Estimation

Correlation of the Error

The measurement residuals from the EKF should be white noise as the measure-
ment noise that was assumed in the model. However, the model considered exter-
nal forces as a constant disturbance and they are not. Moreover, the friction model
(Coulomb) is also known to be bad when velocities are close to zero. Therefore, it
is expected that residuals are correlated when velocity is close to zero and when
non constant external forces are applied. Therefore, the autocorrelation of the error
is now checked when none of the conditions mentioned above are fulfilled in or-
der to verify the rest of the model. The system and measurement noise covariance
matrices from the EKF are tuned in order to obtain the most uncorrelated residuals
possible.

Sample(-)
50 100 150 200 250 300

ỹ
1

×10
-5

-15

-10

-5

0

5

Position Residuals

Sample(-)
50 100 150 200 250 300

ỹ
2

-0.01

0

0.01

Velocity Residuals

Sample Lag (-)
0 10 20 30

A
C
F

-0.5

0

0.5

1

ACF of Position Residuals

Sample Lag (-)
0 10 20 30

A
C
F

-0.5

0

0.5

1

ACF of Velocity Residuals

Figure 7.9: Position and velocity residuals for the joint Hand Roll and its autocorrelation.

7.4. Force Estimation Results in da Vinci Robot 97

Sample(-)
50 100 150 200 250 300

ỹ
1

×10
-4

-2

0

2

Position Residuals

Sample(-)
50 100 150 200 250 300

ỹ
2

-0.05

0

0.05

Velocity Residuals

Sample Lag (-)
0 10 20 30

A
C
F

0

0.5

1

ACF of Position Residuals

Sample Lag (-)
0 10 20 30

A
C
F

0

0.5

1

ACF of Velocity Residuals

Figure 7.10: Position and velocity residuals for the joint Hand Pitch and its autocorrelation.

Sample(-)
50 100 150 200

ỹ
1

×10
-5

-5

0

5

Position Residuals

Sample(-)
50 100 150 200

ỹ
2

-0.01

-0.005

0

0.005

0.01

Velocity Residuals

Sample Lag (-)
0 10 20 30

A
C
F

-0.2

0

0.2

0.4

0.6

0.8

ACF of Position Residuals

Sample Lag (-)
0 10 20 30

A
C
F

0

0.5

1

ACF of Velocity Residuals

Figure 7.11: Position and velocity residuals for the joint Instrument Slide and its autocorrelation.

Residuals for the three joints appear to be slightly correlated. However, it is
known that the model is not ideal and a small correlation can be expected. More-

98 Chapter 7. External Forces Estimation

over, results from Instrument Slide joint show more correlation than the other two
joints, that is acceptable as the fit of the model found in Chapter 6 is the worst of
the three joints.

7.5 Magnitude of the Force

Initially, the measurement of input torque or force τ is obtained through current
measurements. The gear η and motor constant Km of each motor taken from the
motor specifications in Table 6.3 are used to compute it as:

τ = ηKm i (7.29)

where i is the motor current. However, the motor constant has not been measured
and it may not be accurate. Therefore, the estimated force may be scaled. One
way to check it is to attach a known mass m to the Instrument Slide joint while it is
aligned vertically. This way, the external force applied to the joint are known. The
estimated external torque is compared with the known weight as seen in Fig. (7.12).

t [s]
0 1 2 3 4 5 6

q
[m

]

-0.04

-0.02

0

0.02

0.04

Joint Position

t [s]
0 1 2 3 4 5 6

τ
[N

]

-10

-5

0

Input Force

t [s]
0 1 2 3 4 5 6

τ̂
e
x
t
[N

]

-10

-5

0

External Force

Figure 7.12: Trajectory of Instrument Slide joint (upper graph), where a constant weight is attached
to the joint. A constant force from the EKF is estimated (lower graph). Its mean (red) is the weight
estimated by the EKF.

7.6. Conclusions for the Extended Kalman Filter 99

First, a trajectory has been given to the slide movement such that a constant
weight should be estimated, for a mass m = 0.097 kg, that is:

τext = m g = 0.9516 [N] (7.30)

From the EKF, a weight is estimated in Fig. 7.12 with a mean of τ̂ext = 4.7945 N.
Then, the scaling factor can be found as:

scale =
4.7945
0.9516

= 5.0384

Note that the force/torque estimated in each joint is already scaled in the EKF
results in Sec. 7.4.

7.6 Conclusions for the Extended Kalman Filter

This chapter verifies that external forces/torques in the joints can actually be es-
timated by using sensor measurements in the motor without the need of expen-
sive force/torque sensors. The disturbance model for external forces/torques has
proved to work both in simulation and the real robot.

It should be noted that independent joint models are used in the EKF. However,
there may be a coupling between them as mentioned in Chapter 6. But if future
work focus on improving the model, the same EKF can still be used to estimate
external forces without the need of extra sensors.

Chapter 8

Haptic System

Once external forces are estimated in Chapter 7, they are used in a haptic device
such that contact forces can be felt by the user. The purpose of this chapter is to
present the setup used in this thesis and show the results obtained in the da Vinci
robot. Moreover, stability of the human arm with the haptic device interaction is
discussed.

First, the system is modeled as a switched linear system in order to describe
when the system is in contact or not with the tissue. Then, stability is proven by
solving an LMI problem and finding a Common Quadratic Lyapunov Function for
the hybrid system. An LMI problem is also solved in [Dang et al., 2012] in order to
find the critical system parameters in which the haptic system becomes unstable.
However, their model is not a switched system. Another approach was used in
[Gil et al., 2007] and [Hulin et al., 2008] to find a stability boundaries for haptic
rendering by using the Routh-Hurwitz criterion.

Finally, experimental results of the haptic implementation for the da Vinci robot
are shown in one dimension. Tissue is used to represent the interaction of the robot
with the patient. Furthermore, possible future applications for the estimated joint
torques/forces are discussed.

8.1 Setup Description

The haptic interface is used to link the human arm and the da Vinci robot in both
directions, such that the robot follows the human’s commands and the human feels
the interaction forces in the robot. The setup used in the laboratory is shown in
Fig. 8.1.

101

102 Chapter 8. Haptic System

Figure 8.1: Overview of the setup in the laboratory.

The setup in Fig. 8.1 is described as follows:

• The human operator holds the haptic device. The Geomagic Touch shown
in Fig. 8.2 is used in this thesis. It has 6 DOF and it is used to command
position to the da Vinci robot. Note that it is not designed specifically for
the da Vinci robot, since its joint movements are not directly related with
da Vinci joints. Therefore, inverse kinematics are computed to relate joystick
end-effector position with the robot end-effector position.

• The Geomagic Touch has three motors that are used to create 3D force feed-
back. Then, estimated force in the robot end-effector is used for force-feedback
in the haptic device.

• Both the da Vinci Surgical Robot and the haptic device have been connected
by using ROS as explained in Chapter 9.

Figure 8.2: Representation of the 6DOF of the Geomagic Touch.

8.2. System Model 103

8.2 System Model

If the joystick is just used to command the da Vinci robot without force feedback in
the haptic device, the haptic system is stable as no force is introduced that may lead
to instability. However, it is possible that once the external forces are created in the
haptic device, the closed loop system in Fig. 8.3 may become unstable. Therefore,
the closed loop system is modeled in order to discuss stability.

Human Arm
Haptics
Device

Da Vinci
Robot

Tissue

FH xref x

FTFT
^xref

Figure 8.3: Overview of the closed loop setup used in this project. The red arrow represents how the
system is closed when estimated force is sent to the Haptic Device.

A model for the one dimension case of the haptic system is developed. The
different parts represented in the diagram of Fig. 8.3 are considered separately
and are finally combined.

Human Arm and Haptic Device

A human arm is holding the haptic device, shown in Fig. 8.2, while applying a
force FH to it. A very common approach to model both human arm and haptic
device is to consider that the connection between them is ideal, which means that
both move as one rigid body. Then, they can be modeled as a mass m with a spring
KH and a damper bH as it is done in [Dang et al., 2012] and [Hulin et al., 2008].
A model for the haptic device used has also been developed in [Cavusoglu and
Feygin, 2001].

Da Vinci Robot and Controller

The human force moves the joystick. Then, the joystick position xre f is sent to the
robot controller and the da Vinci robot moves following the joystick commands.
As the controller in the da Vinci robot runs at high rate, it can be assumed that
the commanded position is the same than the da Vinci robot position xre f (t) = x(t).
Therefore, the da Vinci Robot block in Fig. 8.3 is considered as an identity block
with gain 1 when no scaling from haptic device to robot is made.

System Delay

When a filter such as the EKF in Chapter 7 is used, a delay may appear. Moreover,
the network used to connect both the haptic device and the robot may also create

104 Chapter 8. Haptic System

some communication delay. However, only a simple model is desired. Therefore,
delay is considered to be very small and thus, neglected.

Tissue

Finally, once the surgical robot is in contact with tissue, a reaction force FT is
estimated and F̂T is sent back to the haptic device so a force can be created and
the loop is closed. Due to the increasing use of surgical simulation, several models
for tissue have been developed. As described in [Ayache and Delingette, 2003], the
main existing models of soft tissue are:

• Surface or Volumetric Tissue Model: The tissue is represented by deformable
surfaces or volumes. Surface models are computationally are known to be
faster than volumetric ones. However, volumetric models give a more real-
istic simulation of cutting or suturing operations, as these operations change
the geometry of the tissue model [Ayache and Delingette, 2003]. The finite
element models are the most common representation of this type of models,
where a finite number of basic shapes are used, such as triangles, quadrilaters
or hexagons.

• Spring and Particles Model: This model consist of a set of points that are
linked by spring and/or dampers. For instance, both in [Chen et al., 2007]
and [Pezzementi et al., 2008] a mesh of springs is used as shown in Fig.
8.4, where in the second the spring constants were derived from a learning
algorithm.

Figure 8.4: Representation of a tissue surface modeled with masses connected to its six neighbors
through springs.

• Heuristic Model: The use of more practical models are the alternative to
physical models. In [Pezzementi et al., 2008], they mention the use of an
heuristic model to simulate an isotropic elastic membrane.

8.2. System Model 105

A detailed model is not a priority in this thesis and a simple 1D model is used.
Therefore, a basic static model is chosen, where tissue is considered a spring. Then,
the force of tissue FT is given by:

FT = −kT x (8.1)

where kT is the tissue stiffness [N/m] and x is the deformation from the rest po-
sition [m]. In order to verify this model, the robot end-effector is moved with
constant low velocity towards tissue as shown in Fig. 8.5.

t [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x
[m

]

-0.1

-0.05

0

0.05
End-Effector Position

t [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F T
[N

]

-10

0

10

20

30
Tissue Force

Tissue

Figure 8.5: The robot end-effector is moved with constant velocity towards tissue (upper plot). Then
the EKF is used to estimate contact force (lower plot).

Force is estimated with the EKF in Chapter 7 and a linear fit is done in Fig. 8.6
in order to obtain a guess for the tissue stiffness of KT = 457.24 [N/m].

106 Chapter 8. Haptic System

x [m]
-0.03 -0.02 -0.01 0 0.01 0.02 0.03

F̂ T
[N

]

-5

0

5

10

15

20

25
Tissue Response

F̂T
Linear fitting Tissue

Figure 8.6: Tissue force response when end-effector is in contact (shadowed region).

From Fig. 8.6 it can be seen how the fit is not perfect since tissue has its own
dynamics. It is expected as a simple static force model is used in order to discuss
stability. However, to obtain a perfect tissue model is not a priority.

8.2.1 Hybrid System

Once all the elements of the closed loop system in Fig 8.3 are defined, they can be
combined in order to obtain the model shown in Fig. 8.7:

m

Human Arm + Haptic Device

 kH FH kT

bH x

Tissue

Figure 8.7: Physical model of the addressed system when robot is in contact with tissue.

The representation in Fig. 8.7 describes when robot is in contact with tissue.
The system dynamics are expressed as:

mẍ = FH − kH x− bH ẋ− kT x (8.2)

8.3. Stability for Haptic Interaction 107

which can be rewritten as first order differential equations:

ẋ1 = x2

ẋ2 =
1
m

(FH − kH x1 − kT x1 − bH x2)
(8.3)

and then expressed in the following linear state space form:ẋ1

ẋ2

 =

 0 1

− (KH + KT)
m

−bH

m

︸ ︷︷ ︸

A1

x1

x2

 +

 0
1
m

︸ ︷︷ ︸

B

FH (8.4)

However, Eq. (8.3) only defines the system dynamics when robot is in contact with
tissue, that is when x1 ≥ 0. In order to describe when the robot is away from the
tissue, that is when x1 < 0, the system is expressed without tissue stiffness as:

ẋ1 = x2

ẋ2 =
1
m

(FH − kH x1 − bH x2)
(8.5)

which can be expressed in a linear state space form:ẋ1

ẋ2

 =

 0 1

−KH

m
−bH

m

︸ ︷︷ ︸

A2

x1

x2

 +

 0
1
m

︸ ︷︷ ︸

B

FH (8.6)

Therefore, the haptic system addressed in this thesis is defined by the two subsys-
tems of Eq. (8.4) and (8.6) with a state dependent switching signal. This is known
as a switched system or hybrid system. By considering no human forces, that is
FH = 0, the switched system can be expressed as:

ẋ = Ax
{

A1 x if x1 ≥ 0
A2 x if x1 < 0

(8.7)

8.3 Stability for Haptic Interaction

A necessary requisite for any haptic application is that stability should be pre-
served. In order to prove it, the switched system defined in Eq. (8.7) should be
stable. Many studies discuss stability regions where the haptic system is stable,
either by applying the Routh-Hurwitz criterion as in [Gil et al., 2007] [Hulin et al.,
2008] or by using Lyapunov stability theory as in [Dang et al., 2012]. All consider
a delay in the system. However, none of them consider a switched system where

108 Chapter 8. Haptic System

the model changes when the robot is not in contact, as it is done in this thesis.

It is possible that each linear system is stable. However, it may be that together
the hybrid system is not as it is shown in Fig. 8.8. Therefore, the stability of both
linear system should be studied together.

1

2

1

12

2 2

21

1

x1 x1

x2x2

x2 x2

x1x1

Stable Systems

Switched Systems
Unstable Stable

Figure 8.8: Example of two stable subsystems (top figures). When they describe a switched system,
they can become unstable (bottom left) or remain stable (bottom right) under certain switching
condition.

For the stability analysis, first it should be proven that the switched system is
stable when there is no restriction on the switching signal. This is known as the
stability analysis under arbitrary switching. It states that if there exists a Common
Quadratic Lyapunov Function (CQLF) for all the subsystems, then the switched
system stability is guaranteed under arbitrary switching. Moreover, it is known
that the condition for the existence of a CQLF can be expressed as Linear Matrix
Inequalities (LMIs) [Lin and Antsaklis, 2009]. First, a quadratic Lyapunov function
is defined as:

V = xT P x (8.8)

where P ∈ Rn×n is a symmetric positive definite matrix. Its derivative becomes:

V̇ = xT(AT
i P + PAi)x ∀ i ∈ {1, 2} (8.9)

8.3. Stability for Haptic Interaction 109

where (AT
i P + PAi) is negative definite for all subsystems and i ⊆ Z. Both Eq. (8.8)

and (8.9) can now be expressed as a LMI problem. That is, a CQLF exists if the
following LMI constraints are fulfilled:

P > 0

AT
i P + PAi < 0 ∀ i ∈ {1, 2}

(8.10)

For studying the stability of the hybrid system defined in Eq. (8.7), both mass m
and damper coefficient bH are fixed to 1 [kg] and 1 [Ns/m] respectively. Then,
for every possible value of the human stiffness KH, the tissue stiffness KT is in-
creased until the LMI problem can not be solved and thus, a CQLF under arbitrary
switching does not exist. However, it may be possible that under certain switching
conditions, the hybrid system is still stable. YALMIP [Löfberg, 2004] in MATLAB
is used to solve each LMI problem.

Critial Tissue Stiffness

25 Unknown

20

-�

-� 15
c..)

Stable Area
�

10

5

o�-�--�--�--�--�--�--�--�--�-�

0 20 40 60 80 120 140 160 180 200

Figure 8.9: Plot shows the region of KT − KH where a CQLF has been found that proves stability
under arbitrary switching. However, A CQLF has not been found in the red region and stability is
not verified.

A simulation of the hybrid system in the known stable area is shown in Fig.
8.10. Besides stability, another interesting factor that could be consider is the set-
tling time. Not only the system has to be stable, but it should reach the equilibrium
point within an acceptable time. Nonetheless, performance analysis is not in the
scope of the project and no further study is done.

110 Chapter 8. Haptic System

t [s]
0 5 10 15 20 25 30

x 1
[m

]

-0.5

0

0.5
Position

t [s]
0 5 10 15 20 25 30

x 2
[m

/s
]

-1

-0.5

0

0.5

1
Velocity

x1 [m]
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 2
[m

/s
]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
System Trajectory

Trajectory
Initial Condition
Switching Surface

Tissue

Tissue

Figure 8.10: Simulation of the system where its trajectory is going towards the origin (upper plot).
Position response and velocity response are showed in the middle and lower plot respectively.

8.4. Haptic Implementation in the da Vinci Robot 111

8.4 Haptic Implementation in the da Vinci Robot

As mentioned before, in this thesis the Geomagic Touch is used to move the robot.
A three dimensional force is estimated in the end-effector and created in the hap-
tic device. Its joints are not directly couple with the da Vinci joints. This implies
that inverse kinematics (IK) are needed to map the end-effector position from 3D
cartesian space (received from the joystick) to the 6D joint space. The KDL inverse
kinematics solver in ROS is used for such purpose. Results for the force feedback
in one dimension are shown.

A test is carried out where tissue is placed on a flat surface as shown in Fig.
8.11, such that the da Vinci end-effector can reach it. Then, both Hand Roll and
Hand Pitch are fixed while the Instrument Slide is following the z axis movement of
the haptic device.

Figure 8.11: Tissue used to test the vertical movement of the da Vinci robot which is commanded by
the haptic device.

Estimated external forces are only expected in the z axis when end-effector is
in contact with tissue, that is when z > 0. Moreover, higher forces are expected
when end-effector is further inside the tissue. The test intends to demonstrate the
following:

• Initially, the robot end-effector is moved in and out of the tissue very fast
between 0 to 8s. This is done in order to see if the EKF is able to react to fast
changes in the force.

• From 8 to 15s, the joystick is moved very fast while robot is away from tissue.
This is done in order to see if the EKF is still precise at higher speed. If so,
the estimated force should be zero.

• From 15s to the end, the robot is moved at lower speed while it enters the

112 Chapter 8. Haptic System

tissue. This way, it can be seen how estimated external forces are higher when
end-effector is deeper inside the tissue.

t [s]
0 5 10 15 20 25 30

z
[m

]

-0.15

-0.1

-0.05

0

0.05
End-Effector Position

t [s]
0 5 10 15 20 25 30

F T
[N

]

-15

-10

-5

0

5
Tissue Force

Tissue

Tissue

Figure 8.12: In the upper plot, the robot end-effector is moved vertically up and down while inter-
acting with tissue (shaded area). In the lower plot, the EKF estimates force when it is in contact with
the tissue (shaded area).

Results show that the EKF algorithm from Chapter 7 estimates contact forces only
when robot is in contact with tissue. Likewise, it can be seen how estimated force
is higher when end-effector is deeper inside the tissue as it is expected. Moreover,
although the friction model was not very accurate, the estimation has hardly been
affected by it. When no forces are applied, small oscillations around zero appear
in the estimated force. A threshold could actually be applied to remove them.

After commenting the results, it can be stated that a force feeling for the da
Vinci Surgical Robot has been implemented successfully. Even though only the
one dimension case is shown, it demonstrates how tissue can be felt just by using
sensor measurements from the motor.

8.5. Discussion for the Haptic System 113

8.5 Discussion for the Haptic System

Haptic feedback has only been shown in the one dimensional case. Results are
promising as tissue contact is estimated by the EKF without the use of extra sen-
sors. Even though it is only shown in one dimension, it is considered sufficient to
establish a "proof of concept" framework.

Once it is proven that external forces can be estimated in the joints, another
interesting application is to use them to create grabbing or pinching feeling. How-
ever, the haptic device has 6 DOF (7 are needed for grabbing) and it only has 3D
force feedback (joint force feedback is needed). Ideally, the joystick joints should
be directly coupled with the da Vinci joints as the original joystick is (then no IK
solver is needed). Then, force feedback should be implemented for each joint in
order to create the desired pinching or grabbing feeling. However, the original da
Vinci joystick cannot be modified and an equivalent joystick which allows force
feedback is needed. This is out of the scope of the project and it can be considered
in future work.

Chapter 9

Implementation

The purpose of this chapter is to describe the implementation and the contribution
of this project to the da Vinci Surgical Robot at AAU [Lab, 2012]. First, a short de-
scription to the actual system setup is given. Modifications have been made to the
software, both in low level (microcontroller) and high level (ROS). The Extended
Kalman filter runs in the microcontroller, while the haptic device is interfaced us-
ing ROS.

9.1 System Setup

As mentioned in Chapter. 2, a cascade scheme with position, velocity and current
controllers is used in the da Vinci robot as shown in Fig. 9.1. While position
controller is implemented in a microcontroller, velocity and current controllers are
implemented in the motor driver in order to ensure sufficient controller speed.

da Vinci
Robot

Current
Controller

Velocity
Controller

Position
Controller

+

-

+

-

+

-
i dq

q

q
ref

i
ref

dq
ref

Motor DriverMicrocontroller

H-bridge M

τ

Figure 9.1: Block diagram of the cascade controller designed for the motors of the da Vinci Robot.
The three controllers are PI controllers. Position controller is implemented in the microcontroller,
while velocity and current controllers are implemented in motor drivers.

The actual hardware configuration of the AAU Surgical Robot is presented in
the diagram of Fig. 9.2 and is described as follows:

115

116 Chapter 9. Implementation

• Client PC: It is used for processes that are not possible to run in real-time
and require more computing power, such as path planning or user interac-
tion. The computer runs the Robotic Operating System (ROS), an open source
software framework for robots, and is connected to the embedded computer
via a TCP/IP network, with a JSON based serialization protocol and a mes-
sage rate of 100 Hz [Wisniewski et al., 2015]. It receives sensor measurements
(position, velocity and motor current).

• Embedded Computers: There are two single board Reconfigurable Input/
Output (sbRIO) from National Instruments which are responsible for getting
position, velocity and current measurements from encoders and potentiome-
ters in the MAXON motors. This is done through a Field Programmable
Gate Array (FPGA) based hardware, which is configured to interface the
sensors. Then, sensor measurements are sent both to the client PC and mo-
tor drivers. The reason why two sbRIO are used is the lack of input/output
ports in one. Position controllers are implemented here and the control refer-
ence is received from the client PC to drive the motors. Moreover, they also
ensure security constraints, such as stopping the motors when joint limits are
reached or limiting the control values to protect the motor [Wisniewski et al.,
2015].

• LabView: It is used to program both the processor and FPGA using the
same toolchain. It also provides a graphical interface in order to manage the
data, such as control signals or sensors measurements. Moreover, it allows to
record and save this data.

• ESCON Motor Driver: One driver per motor is used and tuned for speed
control with inner current loop, which runs in real-time. Therefore, both
controllers run at very high speed.

sbRIO #1 sbRIO #2

ESCON motor
drivers

Potentiometers

Encoders

Maxon
Motors da Vinci

Driver
TCP/IP

Low Level InterfaceDa Vinci Robot ROS

Figure 9.2: Overview of the custom configuration made for the da Vinci Robot located at AAU.

9.1. System Setup 117

In this thesis, the original system setup has been extended in order to add the
haptic device and implement the force feedback to the surgeon. The modifications
made are shown in the diagram of Fig. 9.2 and are explained as follows:

• An Extended Kalman Filter is developed in Chapter 7. It is preferred that
estimation of contact force runs at higher speed than the haptic device, there-
fore the EKF is implemented in the microcontroller sbRIO. An m code for the
EKF is given to LabView, where it is converted to microcontroller code.

• A ROS Driver is used to connect the haptic device Geomagic Touch with
ROS, which is connected to the PC via TCP/IP network. This driver is avail-
able online as explained in Sec. 9.2.1.

• The Haptic Interface is created in ROS in order communicate the haptic sys-
tem described in Chapter 8 with the da Vinci Robot. First, reference position
from the joystick is sent to robot through the TCP/IP communication. Then,
estimated contact force is received in ROS. Finally, it is sent to the haptic
device in order to create the force feedback to the user.

sbRIO #1 sbRIO #2

ESCON motor
drivers

Potentiometers

Encoders

Maxon
Motors da Vinci

Driver
TCP/IP

Low Level InterfaceDa Vinci Robot ROS

Haptic Device
Driver

Haptic
InterfaceEKF

Geomagic
Touch

Haptic Device

TCP/IP

Figure 9.3: Overview of the configuration of the da Vinci Robot located at AAU with the modifica-
tions made in this thesis.

118 Chapter 9. Implementation

9.2 ROS Environment

ROS is an open-source operating system for robots. It provides the same function-
alities than any standard operating system, such as hardware abstraction, low-level
device control, message-passing between processes, and package management.
ROS is represented in a graph architecture as shown in Fig. 9.4, where processes
that can be distributed across machines (also known as nodes) are loosely coupled
using the ROS communication infrastructure. The ROS environment is currently
only developed for Ubuntu [ROS, 2016].

Before elaborating further on the ROS structure of this thesis, it is important to
have an overview of the general terms used in the ROS environment. Basically, the
main concepts that should be known are:

• Node: is a process that performs some computation.

• Topic: is the communication between two or more ROS node.

• Message: is an information that is sent to a topic.

• Publish: Nodes can publish to topics in order to send messages.

• Subscribe: Nodes can subscribe to topics in order to read messages.

• Service: is a communication used to interact between nodes. It consist of a
request message that awaits for a reply message.

• Package: is simply an organized set of ROS elements. It might contain ROS
nodes, libraries, datasets or configuration files.

Node 1 Topic Node 2
publish subscribe

Service

Figure 9.4: Graph representation of a ROS network. A service sends a request from Node 1 which
awaits for a reply from Node 2. Moreover, Node 1 publishes a message to a topic and Node 2 is
subscribed to it in order to read it.

9.2. ROS Environment 119

9.2.1 ROS Structure of this Thesis

The ROS environment created in this thesis to interface with the da Vinci Surgical
Robot contains several packages that are grouped in a workspace. The packages
are described as follows:

• davinci_description: The URDF model of the da Vinci robot, where the Uni-
fied Robot Description Format (URDF) is an XML format for representing a
robot model. It basically describes the kinematic chain of the robot.

• davinci_driver: The interface between the physical Davinci Robot and ROS.
It requires the davinci_despription package. It subscribes to joint refer-
ences, which are sent to the robot, and it publish sensor measurements and
estimated force, which are received from the robot and microcontroller.

• omni_description: URDF model for the Geomagic Touch, previously known
as the Sensable Phantom Omni.

• phantom_omni: The interface between the Geomagic Touch and ROS. It pub-
lishes joint states, which are received from the haptic device, and subscribes
to 3 dimensional force data in order to sent it to the haptic device. This pack-
age has been modified in order to publish the position in Cartesian space of
the joystick end-effector.

• haptic_interface: The node created in this thesis to communicate the Geo-
magic Touch with the da Vinci robot. Its structure is explained in Sec. 9.3.
First, it subscribes to joystick end-effector position and estimated force in the
robot. Then, it publish estimated force to the haptic device and commands
joints position to the robot (after computing IK).

All the the code related to the da Vinci robot is located at the github site of the
Robotic Surgery Group from Aalborg University:
https://github.com/AalborgUniversity-RoboticSurgeryGroup

The code for the Geomagic Touch is located at the github site of Dane Powell:
https://github.com/danepowell

However, the whole ROS workspace used can be found in Appendix C. An overview
of the environment created in ROS is given in Fig. 9.5.

https://github.com/AalborgUniversity-RoboticSurgeryGroup
https://github.com/danepowell

120 Chapter 9. Implementation

phantom_
omni

Joystick position

haptic_
interface

davinci_
driver

davinci_descriptionphantom_description

Force feedback

da vinci joint reference

Estimated force

da Vinci RobotGeomagic Touch

TCP/IPTCP/IP

Figure 9.5: Overview of the interface created in ROS (red) in order to communicate the da Vinci
robot (blue) with the Haptic Device (purple).

9.3 User Interface

A user interface is created in order to use the ROS node created in this thesis. First,
the ROS structure should be properly set up as explained in App B. After running
the haptic node in ROS, a graphical user interface appears with multiple modes as
shown below:

The following modes are avaiable:

press 'a' to move daVinci with Haptics Device (force feedback)

press 'b' to move daVinci with Haptics Device (no force feedback)

press 'c' to give joint setpoints to da Vinci (FK)

press 'd' to give 3d force setpoint to joystick

press 'e' to move Slide joint with Haptic Device

• The options a and b consist of controlling the da Vinci robot with the joystick,
with and without force feedback. Position in the haptic device is directly
related to position of the robot end-effector. Then, inverse kinematics are
computed for the da Vinci Surgical Robot in order to find corresponding
joints position q to the end-effector position. The algorithm to run this mode
is shown in Fig. 9.6.

9.3. User Interface 121

• Modes c and d are used to give position and force references to the da Vinci
robot and haptic device respectively.

• Mode e is similar to a and b but the haptic device is only moving the Instru-
ment Slide joint of the da Vinci robot. This way, inverse kinematics are not
needed, as the joystick z axis is directly the reference for the slide movement.
This is done in order to avoid computing inverse kinematics.

Start

Initialize da Vinci robot

Initialize Hatpic device

Read data
- Joystick position
- Estimated force

Compute Inverse Kinematics

End

- Launch davinci_driver (TCP/IP connection)
- Initialize robot joint references topic

- Launch phantom_omni (TCP/IP connection)
- Initialize force feedback topic

User Interface
- Move da Vinci with joystick
- da Vinci joint setpoints (FK)
- Haptic device force setpoints

- Subscribe to force estimation topic
- Subscribe to joystick position topic

Set loop rate to 100 Hz

Command position
to robot

- Publish to robot joint references topic

Display force in
haptic device

- publish to force feedback topic

Done?
F

T

Write data to file

Figure 9.6: Algorithm of the ROS node. The position of the haptic device is sent to the robot while
the estimated force in the robot is sent to the haptic device.

Chapter 10

Conclusion and Discussion

This chapter finalize the report by summing up the work and findings of this
project. It also concludes the results obtained throughout this thesis. Lastly, possi-
ble improvements are discussed and recommendations for future work are given.

Conclusion

The aim of this project is to develop a haptic interface for the da Vinci Surgical
Robot in order to enhance the capabilities of the surgeon, as analysed in Chapter
1. Difficulties arise when sensors are used to obtain haptic information, as they
are limited due to strict regulations in operating rooms. Therefore, sensorless force
estimation becomes a real alternative to the use of sensors.

Estimating contact forces can not be done without a detailed model of the sys-
tem. Therefore, a kinematic and dynamic model of the da Vinci Surgical Robot
is developed in Chapter 3 and 4. Then, a simulation is built for the nonlinear
multivariable system in Simulink and a controller is designed for it in Chapter 5.
Simulation has been used as a test bench5.

The problem of obtaining the model parameters has been simplified by assum-
ing independent joint models. In Chapter 6 it is demonstrated how parameters can
be estimated if a proper exciting trajectory for the system is found. Two different
estimation methods (constrained and unconstrained) are compared with similar
accuracy. Moreover, results show that friction (mostly Coulomb) appears to be-
have slightly different than the theoretical model. However, the models found for
three joints are considered to be valid for estimating contact forces.

An extended Kalman filter is then presented in Chapter 7, where external

123

124 Chapter 10. Conclusion and Discussion

torques and forces are modeled as disturbances in order to estimate them. Re-
sults for three joints show that forces at the joints can actually be estimated by
using available position and current measurement from the motor.

Lastly, estimated forces at the joints are used to compute forces applied at the
robot end-effector. Then, they are used for force feedback in a haptic device in
Chapter 8. Results are shown in one dimension as it is considered sufficient to
prove the concept. Forces are estimated when the robot is in contact with tissue as
it is desired. All the haptic interaction has been implemented in the ROS environ-
ment as explained in Chapter 9.

Based on the results obtained in this project, it is concluded that force feeling
can be achieved by estimating contact forces only from motor sensor measure-
ments. Thus, the prime focus of this thesis is achieved. A haptic device connected
to the da Vinci Surgical Robot at AAU is used to test it. Moreover, the preliminary
goals set at the beginning of the thesis are also fulfilled. Despite the project is
considered successful, there are still opportunities for further enhancements.

Improvements and Future Work

The developed force estimation proved to capture contact forces in the da Vinci
Surgical robot. However, there is still room for improvement:

• Even though a nonlinear multivariable model of the da Vinci robot is found in
Chapter 4, a nonlinear independent model for each joint is used. Therefore,
future work can focus on estimating parameters for the multivariable model.

• Only three joints are used to estimate external forces although the da Vinci
robot has a total of 6 or 7 joints (depending on the configuration). Therefore,
estimate the remaining joints is considered the next step to the actual work.

• The friction model used (mostly Coulomb) does not fit exactly the theoretical
model. Therefore, it may be interesting to research further in this matter.

• A joystick with 3D force feedback is used to test the estimated contact forces
in the robot. However, it does not include force feedback in all the joints.
This implies that only contact forces at the end-effector can be tested. For in-
stance, grabbing or pinching feeling can not be implemented with this device.
Therefore, it may be interesting to use a haptic device with force feedback for
all joint for such purpose.

This project is hereby finished.

Bibliography

[Lab, 2012] (2012). Surgical Robotics Lab AAU. http://www.es.aau.dk/

sections-labs/Automation-and-Control/Laboratory+facilities/Surgical+

Robotics+Lab/. Accessed: 2015.

[ROS, 2016] (2016). ROS Documentation. http://http://wiki.ros.org/. Ac-
cessed: 2016.

[3DSystems, 2016a] 3DSystems (2016a). Geomagic Touch Device Drivers: Help
Guide.

[3DSystems, 2016b] 3DSystems (2016b). Geomagic Touch Device Guide.
http://dl.geomagic.com/binaries/support/downloads/Sensable/3DS/

Geomagic-Touch_Device_Guide.pdf. Accessed: 2016.

[Ayache and Delingette, 2003] Ayache, N. and Delingette, H. (2003). Surgery Sim-
ulation and Soft Tissue Modeling: International Symposium, IS4TM 2003. Juan-Les-
Pins, France, June 12-13, 2003, Proceedings. Lecture Notes in Computer Science.
Springer Berlin Heidelberg.

[Birge, 2006] Birge, B. (2006). Particle swarm optimization toolbox in
matlab. http://www.mathworks.com/matlabcentral/fileexchange/

7506-particle-swarm-optimization-toolbox.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Op-
timization. Berichte über verteilte messysteme. Cambridge University Press.

[Cavusoglu and Feygin, 2001] Cavusoglu, M. C. and Feygin, D. (2001). Kinemat-
ics and dynamics of phantom model 1.5, haptic interface. Technical Report
UCB/ERL M01/15, EECS Department, University of California, Berkeley.

[Chen et al., 2007] Chen, F., Gu, L., Huang, P., Zhang, J., and Xu, J. (2007). Soft
tissue modeling using nonlinear mass spring and simplified medial represen-
tation. In 2007 29th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pages 5083–5086.

125

http://www.es.aau.dk/sections-labs/Automation-and-Control/Laboratory+facilities/Surgical+Robotics+Lab/
http://www.es.aau.dk/sections-labs/Automation-and-Control/Laboratory+facilities/Surgical+Robotics+Lab/
http://www.es.aau.dk/sections-labs/Automation-and-Control/Laboratory+facilities/Surgical+Robotics+Lab/
http://http://wiki.ros.org/
http://dl.geomagic.com/binaries/support/downloads/Sensable/3DS/Geomagic-Touch_Device_Guide.pdf
http://dl.geomagic.com/binaries/support/downloads/Sensable/3DS/Geomagic-Touch_Device_Guide.pdf
http://www.mathworks.com/matlabcentral/fileexchange/7506-particle-swarm-optimization-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/7506-particle-swarm-optimization-toolbox

126 Bibliography

[Corke, 2011] Corke, P. I. (2011). Robotics, Vision & Control: Fundamental Algorithms
in. Springer.

[Craig, 2009] Craig, J. J. (2009). Introduction to Robotics: Mechanics and Control. Pear-
son, 3rd edition.

[Dang et al., 2012] Dang, Q. V., Vermeiren, L., Dequidt, A., and Dambrine, M.
(2012). Analyzing stability of haptic interface using linear matrix inequality ap-
proach. In Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference
on, pages 1129–1134.

[Denavit and Hartenberg, 1955] Denavit, J. and Hartenberg, R. S. (1955). A kine-
matic notation for lower-pair mechanisms based on matrices. Journal of Applied Me-
chanics.

[Dupont, 1990] Dupont, P. E. (1990). Friction modeling in dynamic robot sim-
ulation. In Robotics and Automation, 1990. Proceedings., 1990 IEEE International
Conference on, pages 1370–1376 vol.2.

[Enayati et al., 2016] Enayati, N., Momi, E. D., and Ferrigno, G. (2016). Haptics
in robot-assisted surgery: Challenges and benefits. IEEE Reviews in Biomedical
Engineering, PP(99):1–1.

[Eom et al., 1998] Eom, K. S., Suh, I. H., Chung, W. K., and Oh, S. R. (1998). Distur-
bance observer based force control of robot manipulator without force sensor.
In Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference
on, volume 4, pages 3012–3017 vol.4.

[Gil et al., 2007] Gil, J. J., Sanchez, E., Hulin, T., Preusche, C., and Hirzinger, G.
(2007). Stability boundary for haptic rendering: Influence of damping and delay.
In Proceedings 2007 IEEE International Conference on Robotics and Automation, pages
124–129.

[Grewal and Andrews, 2008] Grewal, M. and Andrews, A. (2008). Kalman Filtering:
Theory and Practice Using MATLAB. Wiley.

[Hof and Schrama, 1994] Hof, P. M. V. D. and Schrama, R. J. P. (1994). Identifica-
tion and control — Closed-loop issues.

[Hulin et al., 2006] Hulin, T., Preusche, C., and Hirzinger, G. (2006). Stability
boundary for haptic rendering: Influence of physical damping. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1570–1575.

[Hulin et al., 2008] Hulin, T., Preusche, C., and Hirzinger, G. (2008). Stability
boundary for haptic rendering: Influence of human operator. In 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3483–3488.

Bibliography 127

[Jahandideh and Namvar, 2012a] Jahandideh, H. and Namvar, M. (2012a). Use of
pso in parameter estimation of robot dynamics; part one: No need for parame-
terization. pages 1–6.

[Jahandideh and Namvar, 2012b] Jahandideh, H. and Namvar, M. (2012b). Use of
pso in parameter estimation of robot dynamics; part two: Robustness. pages
1–6.

[Jakobsen and Lykkegaard, 2015] Jakobsen, B. L. and Lykkegaard, C. K. (2015).
Safety in Automated Surgery with the da Vinci Robot. AAU.

[Janot et al., 2014] Janot, A., Vandanjon, P. O., and Gautier, M. (2014). A generic
instrumental variable approach for industrial robot identification. IEEE Transac-
tions on Control Systems Technology, 22(1):132–145.

[Jung et al., 2006] Jung, J., Lee, J., and Huh, K. (2006). Robust contact force es-
timation for robot manipulators in three-dimensional space. Proceedings of the
Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Sci-
ence, 220(9):1317–1327.

[Kennedy and Eberhart, 1995] Kennedy, J. and Eberhart, R. (1995). Particle swarm
optimization. 4:1942–1948 vol.4.

[Khalil, 2002] Khalil, H. (2002). Nonlinear Systems. Pearson Education. Prentice
Hall.

[Khosla, 1987] Khosla, P. K. (1987). An algorithm to estimate manipulator dynamics
parameters. Carnegie-Mellon University, Robotics Institute.

[Lee and Ahn, 2010] Lee, S. C. and Ahn, H. S. (2010). Sensorless torque estimation
using adaptive kalman filter and disturbance estimator. In Mechatronics and Em-
bedded Systems and Applications (MESA), 2010 IEEE/ASME International Conference
on, pages 87–92.

[Lin and Antsaklis, 2009] Lin, H. and Antsaklis, P. J. (2009). Stability and stabiliz-
ability of switched linear systems: A survey of recent results. IEEE Transactions
on Automatic Control, 54(2):308–322.

[Linderoth et al., 2013] Linderoth, M., Stolt, A., Robertsson, A., and Johansson, R.
(2013). Robotic force estimation using motor torques and modeling of low veloc-
ity friction disturbances. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pages 3550–3556.

[Löfberg, 2004] Löfberg, J. (2004). YALMIP : A toolbox for modeling and optimiza-
tion in MATLAB. In CCA/ISIC/CACSD.

128 Bibliography

[MapleSoft, 2014] MapleSoft (2014). MAPLE User’s Manual. MapleSoft.

[Murray et al., 1994] Murray, R. M., Li, Z., and Sastry, S. S. (1994). A Mathematical
Introduction to Robotic Manipulation. CRC Press.

[Pezzementi et al., 2008] Pezzementi, Z., Ursu, D., Misra, S., and Okamura, A. M.
(2008). Modeling realistic tool-tissue interactions with haptic feedback: A
learning-based method. In 2008 Symposium on Haptic Interfaces for Virtual En-
vironment and Teleoperator Systems, pages 209–215.

[Rouleau, 2014] Rouleau, G. (2014). How to Model a Hard Stop
in Simulink. http://blogs.mathworks.com/simulink/2014/01/22/

how-to-model-a-hard-stop-in-simulink/.

[Serway, 1986] Serway, R. (1986). Physics for scientists & engineers. Number v. 2 in
Physics for Scientists & Engineers. Saunders College Pub.

[Shi and Eberhart, 1998] Shi, Y. and Eberhart, R. (1998). A modified particle swarm
optimizer. pages 69–73.

[Sloth and Wisniewski, 2015] Sloth, C. and Wisniewski, R. (2015). Recent Advances
in Mechanism Design for Robotics: Proceedings of the 3rd IFToMM Symposium on
Mechanism Design for Robotics, chapter Towards Safe Robotic Surgical Systems,
pages 165–175. Springer International Publishing, Cham.

[Spong et al., 2004] Spong, M. W., Hutchinson, S., and Vidyasagar, M. (2004). Robot
Dynamics and Control. 2nd edition.

[Stolt, 2015] Stolt, A. (2015). On Robotic Assembly using Contact Force Control and
Estimation. Department of Automatic Control, Lund University.

[Surgical, 2016] Surgical, I. (2016). da Vinci Products FAQ. http://phx.

corporate-ir.net/phoenix.zhtml?c=122359&p=irol-faq. Accessed: 2016.

[Swevers et al., 1997] Swevers, J., Ganseman, C., Tukel, D., De Schutter, J., and
Van Brussel, H. (1997). Optimal robot excitation and identification. Robotics and
Automation, IEEE Transactions on, 13(5):730–740.

[Swevers et al., 2007] Swevers, J., Verdonck, W., and De Schutter, J. (2007). Dy-
namic model identification for industrial robots. Control Systems, IEEE, 27(5):58–
71.

[Trejos et al., 2010] Trejos, A. L., Patel, R. V., and Naish, M. D. (2010). Force sens-
ing and its application in minimally invasive surgery and therapy: a survey.
224:1435–1454.

http://blogs.mathworks.com/simulink/2014/01/22/how-to-model-a-hard-stop-in-simulink/
http://blogs.mathworks.com/simulink/2014/01/22/how-to-model-a-hard-stop-in-simulink/
http://phx.corporate-ir.net/phoenix.zhtml?c=122359&p=irol-faq
http://phx.corporate-ir.net/phoenix.zhtml?c=122359&p=irol-faq

Bibliography 129

[Wahrburg et al., 2014] Wahrburg, A., Zeiss, S., Matthias, B., and Ding, H. (2014).
Contact force estimation for robotic assembly using motor torques. In Automa-
tion Science and Engineering (CASE), 2014 IEEE International Conference on, pages
1252–1257.

[Walter, 1999] Walter, L. (1999). Hooke’s law, simple harmonic oscillator. mit
course 8.01: Classical mechanics, lecture 10.

[Wisniewski, 2015a] Wisniewski, R. (2015a). Mechanical Systems II: Introduction to
Calculus of Variations. Aalborg University.

[Wisniewski, 2015b] Wisniewski, R. (2015b). Mechanical Systems II: Lagrange Me-
chanics. Aalborg University.

[Wisniewski et al., 2015] Wisniewski, R., Sloth, C., Jensen, S., and Hansen., K. D.
(2015). Instrumentation of the da vinci robotic surgical system.

[Xia et al., 2012] Xia, S., Bai, X., Guo, Z., and Xu, Y. (2012). Improved particle
swarm optimization for non-convex optimal power flow. In Power and Energy
Engineering Conference (APPEEC), 2012 Asia-Pacific, pages 1–5.

Appendix A

Actuator Dynamics

The manipulator dynamics in Chapter 4 did not include the dynamics of the mo-
tors that generate the torques to move the joints. In this appendix, the motor
dynamics are described and related to the manipulator dynamics in order to see
how relevant they are to the model.

Joints DC Motors Dynamics

This section provides a detailed model of the DC motors at the joints of the da
Vinci robot. Notice that this section is inspired by [Spong et al., 2004, Ch. 10]. In
Chapter 4, the manipulator dynamics were expressed in a nonlinear equation of
the following form:

τ = M(q)q̈ + V(q, q̇) + G(q) + F(q̇) + τext (A.1)

where the generalized forces or torques τ are generated by DC motors. Therefore,
it is important to understand how this torque is generated. A DC motor consists of
a fixed stator with permanent magnets and a movable rotor (also called armature),
which rotates due to a generated magnetic flux. This rotation produces a torque
proportional to the current. At the same time, when a motor is rotating, a voltage
opposed to the current flow is created.

Electrical Equation

The electrical circuit of a DC motor is shown in Fig.A.1:

131

132 Appendix A. Actuator Dynamics

V(t) M

+

-

Vb

τm , θm

LR
τl,τf

I

Figure A.1: Representation of the electrical circuit of a DC motor with the torque τm generated when
current is flowing. Load torque τl and friction torques τf are also present in a motor and opposed to
the motor torque.

where:

V(t) is the armature voltage [V]
L is the armature impedance [H]
R is the armature resistance [Ω]
Vb is the back induced voltage opposed to the current flow [V]
i is the armature current [A]
θm is the rotor angular position [rad]
τm is the generated motor torque [Nm]
τl is the load torque of the manipulator opposed to the motor torque [Nm]
τf is the friction torque in the motor [Nm]

Once the circuit in Fig.A.1 is defined, its electrical equation is given by:

V(t)−Vb(t) = L
di(t)
dt

+ R i(t) (A.2)

where the back induced voltage is proportional to the angular velocity of the motor:

Vb(t) = Kb ωm(t) = Kb θ̇m(t) (A.3)

with Kb the back induced voltage constant [Vs/rad], while the motor torque gen-
erated is proportional to the current:

τm(t) = Km i(t) (A.4)

with Km the torque constant [Nm/A]. Finally, the electrical equations can be com-
bined into one:

V(t)− Kb θ̇m(t) = L
di(t)
dt

+ R i(t) (A.5)

133

Mechanical Equation

Newton’s second law for rotation is used to relate the torques with angular accel-
eration such that:

τm(t)− τf (t)− τl(t) = Jm θ̈m(t) (A.6)

where:

τm is the torque generated by the motor [Nm]
Jm is the motor inertia [Kg m2]
τf is the friction torque [Nm]
τl is the load torque [Nm]

Often, in robotic applications, the speed required by the load (manipulator) is
rather smaller than the motor speed. For such cases, gears are placed between the
motor and the load in order to reduce η times the angular velocity of the load. At
the same time, the gear ratio η causes an increase in the torque τ seen at the load
(or a load torque reduction seen at the motor)[Craig, 2009, Ch. 9]:

τ = η τm (A.7)

Furthermore, in any motor there is loss due to friction. It is modelled as a torque
opposed to the motor torque that is dependent on the motor angular velocity θ̇m(t),
which is divided into viscous and Coulomb friction:

τf (t) = υm θ̇m(t) + cm sign(θ̇m(t)) (A.8)

where υm is the friction-viscous constant of the motor [Nm s/rad] and cm is the
Coulomb friction constant of the motor [Nm]. Commonly, friction is also affected
by the joint position in many manipulator joints, but this dependency is not con-
sidered in this thesis. Due to the gear, the load torque from the manipulator is η

times smaller in the motor dynamics, that is:

Jm θ̈m(t) + υm θ̇m(t) + cm sign(θ̇m(t)) = τm(t)− τl(t)/η (A.9)

Now, angular position of the motor θm and joint position q can be related using the
gear ratio as:

θmi = ηi qi (A.10)

where ηi is the gear ratio of joint i, with units [-] if joint is revolute, and [1/m] if
joint is prismatic. Then Eq. (A.9) can be written in terms of generalized coordinates
qi of the manipulator. For joint i and motor i, that is:

τl = ηiτmi − η2
i Jmi q̈i − η2

i υmi q̇i − ηicmi sign(q̇i) (A.11)

134 Appendix A. Actuator Dynamics

Note that when the motor is seen from the manipulator side, both motor inertia
and motor viscous friction appear to be increased by a factor η2, while the motor
torque and motor Coulomb friction are increased by a factor of η. The motor
dynamics in Eq. (A.11) are now merged with the manipulator dynamics in Eq.
(A.1) considering the load torque from the manipulator is the generalized torque
[Spong et al., 2004], that is τ = τl . Once they are written in matrix form, both
manipulator and motor dynamics become:

η τm = (Jm + M(q)) q̈ + V(q̇, q) + F(q̇) + G(q) + τext (A.12)

where Jm is the motor inertia diagonal matrix with diagonal elements η2
i Jmi . Vectors

V(q̇, q) and G(q) are the manipulator dynamics terms. F(q̇) now expresses the vector
of combined Coulomb and viscous friction of both the motors and joints. However,
note that F(q̇) consist mostly of motor friction, as motor friction is increased when
seen from the manipulator side as shown in Eq. (A.11). Finally, the input τm is a
vector of motor torques τmi and η is a diagonal matrix with gear ratios ηi in the
diagonal. Finally, both manipulator inertia and motor inertia can be combined in
one term M(q):

η τm = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) + τext (A.13)

Summary

The daVinci dynamics can be divided into three parts:

• The electrical dynamics of the DC motors, which can be considered to be
very fas compared to the mechanical dynamics:

V − Kb θ̇m = L
di
dt

+ R i (A.14)

• The relation of the motor current with the motor torque τm:

τm = Kmi (A.15)

• The mechanical dynamics of the motor and the manipulator:

η τm = M(q)q̈ + V(q̇, q) + F(q̇) + G(q) + τext (A.16)

In this project, only the mechanical dynamics are used for force estimation, while
the electrical dynamics are derived in order to understand how a DC motor works.

Appendix B

Setup Guide in ROS

This appendix serves as a guide to set up the ROS environment used in this thesis.
Files and folder mentioned throughout this section can be obtained from Appendix
C. It is assumed that Ubuntu is used as operating system in the computer, as ROS
is currently only developed for Ubuntu. The guide is divided in two main parts:
haptic device configuration and ROS configuration.

Geomagic Touch Configuration in Ubuntu

• Download the OpenHaptics SDK and the Geomagic Touch device driver
from:
https://3dsystems.teamplatform.com/pages/102863?t=fptvcy2zbkcc

• Install them. It is recommended to follow the ReadMe guides provided in
the download site.

• Connect the Geomagic Touch device as shown below:

Figure B.1: Connection of the device to the computer. Source: [3DSystems, 2016b].

135

https://3dsystems.teamplatform.com/pages/102863?t=fptvcy2zbkcc

136 Appendix B. Setup Guide in ROS

• Plug the Geomagic Touch device to the power supply. Ensure that the Geo-
magic Touch Status Indicator Light is lit (it will either be blinking yellow or
solid orange if working properly). If it is not, check all of the connections.

• Click on the Network icon to see the list of the connections. If you have
multiple wired connections, note the connection name that is using USB-
LAN connection.

Figure B.2: Network configuration. Source: [3DSystems, 2016a].

• Click on Edit Connection.... Then, select the network connection name and
click on Edit.

• After clicking Edit, a new window, Editing <network connection name> window
will appear. Navigate to IPv4 Settings tab, and click on Method dropdown list.
Select Link-Local Only option from the dropdown list and click on Save.

137

Figure B.3: Select Link-Local. Source: [3DSystems, 2016a].

• Go to the installation folder of the Geomagic Touch in Ubunutu and open the
Geomagic Touch Setup, by default it is in:
/opt/geomagic_touch_device_driver/Geomagic_Touch_Setup

• Make sure that the correct Geomagic Device Model (Touch) is selected on
the Hardware tab. Set Device Name to Geomagic Touch. If you choose another
name, be sure it is also changed in the phantom_omni ROS node, otherwise
the device will not be detected in ROS.

• After you have identified your device you will need to lock or Pair it with
your host PC. To do so, click the Pairing button on the setup window and
click on the Pair button on the back of the Geomagic Touch device.

138 Appendix B. Setup Guide in ROS

Figure B.4: The Geomagic Touch Setup Window. Source: [3DSystems, 2016b].

• To test the configured haptic devices, go to:
/opt/geomagic_touch_device_driver/

Geomagic_Touch_Geomagic_Touch_Diagnostic

• The Geomagic Touch device is now properly configured to be used in ROS.

ROS Configuration

• Install ROS. The follow URL is recommended:
http://wiki.ros.org/ROS/Installation

• Create a ROS workspace in the terminal:
$ mdkir -p ~/daVinci_ws/src

• Navigate to the source directory (src) and type the following to initialize the
workspace:
$ cd ~/daVinci_ws/src
$ catkin_init_workspace

http://wiki.ros.org/ROS/Installation

139

• Copy the following packages to the source directory (src) of the workspace:

– davinci_description

– davinci_driver

– omni_description

– phantom_omni

– haptic_interface

• Build packages in the catkin workspace:
$ cd ~/daVinci_ws
$ catkin_make

• Add workspace to your ROS environment. This should be done every time a
new terminal is open:
source ~/daVinci_ws/devel/setup.bash

• Establish TCP/IP connection between ROS and the RIO board by launching
the driver:
$ roslaunch davinci_driver davinci_driver.launch

• Establish TCP/IP connection between ROS and the Geomagic Touch haptic
device. Open a new terminal and type:
$ roslaunch phantom_omni omni.launch

• Run the haptic interface node created in this thesis. Open a new terminal
and type:
$ rosrun haptic_interface haptic_interface

• Now, the user interface described in Chapter 9 appears:

The following modes are avaiable:

press 'a' to move daVinci with Haptics Device (force feedback)

press 'b' to move daVinci with Haptics Device (no force feedback)

press 'c' to give joint setpoints to da Vinci (FK)

press 'd' to give 3d force setpoint to joystick

press 'e' to move Slide joint with Haptic Device

Appendix C

Attached CD

The attached CD contains a digital copy of this thesis, altogether with all the code
developed. They are divided as follows:

• MATLAB scripts:

– System Identification scripts.

– Simulink dynamic model for the da Vinci Surgical Robot.

– Extended Kalman filter scripts.

• Maple code where the robot dynamics are derived using the Euler-Lagrange
formulation.

• ROS Workspace used in this thesis.

141

	Contents
	Preface
	1 Introduction
	1.1 Background in Surgical Robotics
	1.2 The da Vinci Surgical Robot
	1.3 Improvements within Surgical Robotics
	1.4 Project Scope
	1.5 Thesis Outline

	2 System Description
	2.1 Da Vinci Robot at Aalborg University
	2.1.1 Slave Robotic Manipulator
	2.1.2 Surgeon Master Console
	2.1.3 Controllers in the da Vinci Surgical Robot

	3 Kinematics
	3.1 Forward Kinematics
	3.1.1 Frames Description
	3.1.2 Denavit-Hartenberg Convention

	3.2 The Manipulator Jacobian

	4 Manipulator Dynamics
	4.1 Euler-Lagrange Formulation
	4.2 Kinetic and Potential Energy
	4.2.1 Position and Velocities of Links
	4.2.2 Inertia Tensor

	4.3 Friction Model
	4.4 Overview of the Manipulator Dynamics
	4.5 MATLAB Simulation
	4.5.1 Simulation Model

	4.6 Conclusions

	5 Controller for Simulation Model
	5.1 PD Control and Stability Analysis
	5.2 Controller Implementation and Results
	5.3 Conclusions for the Controller

	6 Robot Parameters Estimation
	6.1 Reduced Model
	6.2 Convex and non-Convex Optimization
	6.3 Experiment Design
	6.3.1 Trajectory Generation
	6.3.2 Trajectory Optimization
	6.3.3 Signal Processing

	6.4 Linear Least Squares Estimation
	6.5 Particle Swarm Optimization
	6.5.1 PSO in Parameter Estimation

	6.6 Parameter Estimation Results
	6.7 Error Propagation
	6.8 Conclusions for Estimation Results

	7 External Forces Estimation
	7.1 Extended Kalman Filter for Force Estimation
	7.1.1 Extended Kalman Filter Algorithm
	7.1.2 System Model

	7.2 Joint Torques to End-Effector Forces
	7.2.1 Translational Jacobian
	7.2.2 Rotational Jacobian
	7.2.3 Reduced Jacobian

	7.3 Force Estimation Results in Simulation
	7.4 Force Estimation Results in da Vinci Robot
	7.5 Magnitude of the Force
	7.6 Conclusions for the Extended Kalman Filter

	8 Haptic System
	8.1 Setup Description
	8.2 System Model
	8.2.1 Hybrid System

	8.3 Stability for Haptic Interaction
	8.4 Haptic Implementation in the da Vinci Robot
	8.5 Discussion for the Haptic System

	9 Implementation
	9.1 System Setup
	9.2 ROS Environment
	9.2.1 ROS Structure of this Thesis

	9.3 User Interface

	10 Conclusion and Discussion
	Bibliography
	A Actuator Dynamics
	B Setup Guide in ROS
	C Attached CD

