VIDEO ANIMATION OF PEOPLE
FROM RGBD DATA

Cathrine J. Thomsen

(Master's Thesis
VGIS10

169gr1048
AALBORG UNIVERSITY Aalborg University
DENMARK June 2016

AALBORG UNIVERSITY
STUDENT REPORT

Title:
Video Animation of People from RGBD Data

Theme:
Computer Vision

Project Period:
Fall semester 2015 and spring semester 2016

Project Group:
16gr1048

Participant(s):
Cathrine Juel Thomsen

Supervisor(s):
Thomas B. Moeslund, Aalborg University
Adrian Hilton, University of Surrey

Copies: 2
Page Numbers: 91

Date of Completion:
June 2, 2016

Vision Graphics and Interactive Systems
Aalborg University
http://www.aau.dk

Abstract:

This work is an investigation in a low cost
solution for performing video animation us-
ing a Kinect v2 for Windows, where skele-
ton, depth and colour data are acquired for
three different characters.

Segmentation of colour and depth frames
was based on establishing person’s range in
the depth frame using the skeleton informa-
tion, and then train a plane of the floor and
exclude points close to it.

Transitioning between motions were based
on minimizing the L2 distance between all
feasible transitioning frames, where a source
and target frame would be found. Interme-
diate frames were made to create seamless
transitions, where new poses were found by
moving pixels in the direction of the optical
flow between the transitioning frames.

An interactive animation was made, where
the motions of three different characters can
be controlled by a user.

The realism of the suggested animation was
verified through a user study to have a
higher rate of preference and perceived re-
alism compared to no animation and anima-
tion using alpha blending. The results from
the user study also showed that there is still
room for improvement, since the number of
intermediate frames should be determined
adaptively according to the similarity mea-
sure and the speed of motion before and af-
ter transitioning.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the

author.

Contents

Preface

1 Introduction

1.1
1.2

Problem Statement

Kinect Overview e

2 Project Overview

2.1
2.2

Requirements
Datasets e e

221 Divisionof Motions e

3 Segmentation

3.1
3.2

3.3

Segmentation Based on Modelling the Background
Segmentation Based on Planes
321 AverageofPlanes.
3.22 Evaluation of Distances
323 Post-processing

Segmentation Overview

4 Similarity Measures

4.1
4.2
4.3
44

Similariy Measure of Skeleton Data
Similarity Measure of Depth Data
Similarity Measure of Colour Data

Transitions Based on Similarity Measures

5 Transitioning Between Motions

5.1
52

Smoothing Transitions Using Alpha Blending
Smoothing Transitions Using Optical Flow
521 Farneback’s Optical Flow
522 Evaluation of Optical Flow Settings

10
10
11

Contents

5.3 Interpolationof Pixels 42
53.1 Post-processing o 44

5.4 Transitioning Overview 47

6 Animation Control 49
6.1 ChoosingaCharacter. 51
6.2 Choosing a Sequence of Motions 0 L. 51
6.3 Determine Transitions e 52
6.4 Animation Control Overview i 53

7 User Study 55
71 Stimuli e e 55

72 Methodof Response 56

73 TestSetup e 57

74 Results e 59
741 DiscussionofResults. 61

8 Evaluation 67
8.1 Conclusion v v vt e e e e 67
8.2 Future Work e e 68

A Evaluation of Distances 72
B Survey Video Namings 78
C Self-similarity Matrices for the Test Datasets 80
D Structure of Attachments 89
Bibliography 90

Page vi of 91

Preface

This report outlines the topic of video animation of people exploiting methods for creating
seamless transitions between motions using captured sequences by a consumer camera. This
project is a long master’s thesis on the master’s programme Vision, Graphics and Interactive
Systems at Aalborg University. The thesis has been made in cooperation with the University
of Surrey in the United Kingdom, which was visited by the author from November 2015 to
June 2016.

The author would like to thank Prof Adrian Hilton from the University of Surrey and
Prof Thomas B. Moeslund from Aalborg University for supervising throughout the past year.
Furthermore, the author would like to thank Dr Marco Volino and Mr Leonardo Ribeiro for
being willing to take part of the captured datasets.

The code is implemented in Python 2.7.6 and uses the following modules:

e MatPlotLib 1.3.1 e NumPy 1.8.2

e OpenCV 2.4.10 e SciPy 0.15.1

Aalborg University, June 2, 2016

Cathrine Juel Thomsen
gthll@student.aau.dk

1. Introduction

Animating people using a maker-based motion capture have been widely used and is perhaps
most known for the Gollum character in The Lord of the Rings, where the actor wears a tight suit
with reflective markers as shown in Figure 1.1. Tracking each of these markers in a multiple
view studio, when the actor performs different motions, will then be used for controlling the
joints of an animated character performing the same motions.

Figure 1.1: Andy Serkis performing as Gollum in The Lord of the Rings (Serkis).

Not only does the marker-based approach require a significant setup time, but it also, in
the case of the Gollum character, takes the actor out of his natural environments and lacks
surface details such as the dynamics of the hair and clothing.

Instead, a marker-less animation have been introduced, where different motion sequences
are captured in a multiple view studio as in (Starck and Hilton, 2007) shown in Figure 1.2
using HD cameras. Using a multiple view stereo approach, 3D meshes are then reconstructed
independently for each frame, which means both shape and appearance of the captured per-
son are preserved as shown in Figure 1.3.

Capturing various motions of a person, thus having a library of different motions, new
animations can be created by combining and transitioning between related motions in the
library. Using a motion graph, a user have the possibility to control the different movements a
character should perform. This motion graph is an animation synthesis that controls feasible
transitioning points between chosen motions, where all states in the graph consists of small
clips in a video library of that particular motion. For each motion, the end and start points
of the video is manually labelled. An example is given in Figure 1.4, where all possible
transitions between each motion is defined. Thus in order from first performing the ‘walk’-
motion and then the ‘run’-motion, the character has to go through "walk to run’.

Chapter 1. Introduction

Figure 1.2: 8 cameras multiple view giving a 360 degrees of Figure 1.3: Reconstruction of a charac-
coverage evenly spaced with an interval of 45 degrees (Starck ter based on the multiple view from Fig-
and Hilton, 2007). ure 1.2 (Starck and Hilton, 2007).

Figure 1.4: Example of a motion graph with walk, jog and run motions (Starck and Hilton, 2007).

Page 4 of 91

1.1. Problem Statement

In order to establish the best transition between two motions, a similarity measure be-
tween the feasible transitioning frames are made. According to a study of different similarity
measures in (Huang et al., 2010), the shape histogram, illustrated in Figure 1.5, was a similar-
ity measure that proved to give the best performance between different people and motions
also used in (Budd et al., 2013). The shape histogram is subdivides a spherical coordinate
system into radial and angular bins, where each bin represents the mesh in that specific area.
The similarity measure between two meshes compares all rotations of the mesh around the
centroid for which the L2 distance is minimum, thus being rotation invariant.

Figure 1.5: Illustration of the shape histogram similarity measure (Huang et al., 2010).

Having a reference mesh it is possible to compare how well the reconstruction of the
surface and texture of a character is done as in (Casas et al., 2013). But whether the animations
are made in a realistic way depends on how it is perceived. This means it is hard to establish
a measure for the realism of the animated videos without testing how people perceive them,
which is why the approach done in (Casas et al., 2014), where a user study was conducted to
test the realism of their videos, would be an appropriate way for testing an animation.

1.1 Problem Statement

Recent work within reconstruction and modelling of people using multiple cameras can result
in a realistic yet expensive video animation. The aim of this project is to investigate in a low-
cost solution by using consumer video and depth cameras instead, i.e. a second generation
Kinect for Windows, and use captured sequences to make an interactive animation of a person,
which will build on previous work within 4D animation. The problem statement is therefore:

How should an interactive animation with seamless transitions which uses captured sequences of a
person be constructed?

1.2 Kinect Overview

The first generation of Kinect, shown in Figure 1.6, was released in 2010 together with the 1.0
SDK in 2011 allowing developers to write applications for the Kinect. The second generation,
shown in Figure 1.7, was released as a stand alone in July 2014 together with the upgraded

Page 5 of 91

Chapter 1. Introduction

2.0 SDK. Before that, the sensor was only distributed together with all Xbox One consoles.

—— s

Figure 1.6: First generation Kinect. Figure 1.7: Second generation Kinect.

The Kinect has video and audio modalities, which provides the four different data streams
as listed below, and Table 1.1.

e Colour stream
o Infrared stream
o Depth stream

e Audio stream

The sensor overview between the two generations for the different modalities are summa-
rized in

Sensor overview

Feature Kinect v1 Kinect v2

RGB resolution 640 x 480 1920 x 1080

RGB format jprg jpg

IR and depth resolution 320 x 240 512 x 424

IR and depth format .png .png

Frame rate 30 Hz 30 Hz

Skeletal tracking 20 joints 25 joints

Skeltal format xml xml

FOV Horizontal 57 degrees, Horizontal 70 degrees,
Vertical 43 degrees Vertical 60 degrees

Audio 4 microphone array 4 microphone array

Hardware prerequisites USB 2.0, Windows 7 USB 3.0, Windows 8

Table 1.1: Overview of the two Kinect sensors (Microsoft, a).

It is possible with the first generation of Kinect to receive a higher resolution of the RGB
camera of 1280 x 960, but this is at the expense of decreasing the frame rate. The second
generation sensor can also capture RGB and IR/Depth at the same time, which is not possible
for the first generation.

For each Kinect generation an Xbox and a Windows version exists, which are identical
sensors. The only difference is that the Xbox Kinect could not connect to Windows until an
adapter was released later in 2014. In 2015, Microsoft announced that they stopped producing
the Kinect for Windows, meaning if one were to buy the second generation Kinect today
and connect it to Windows, the Kinect One sensor must be bought together with an adapter
(Microsoft, 2015).

Using the four data streams, the SDK can provide tools and additional functionalities for
building Windows applications. A short list of these is listed below:

Page 6 of 91

1.2. Kinect Overview

Skeletal tracking

Lean tracking

Gesture tracking

Face tracking

Speech recognition

One of the featured functionalities using the SDK based on the input from the data streams
is the skeletal tracking, where 25 body joints distributed as shown in Figure 1.8 are tracked
for a person facing the sensor with no occlusions (Microsoft, b).

umoﬁ_ﬂ‘gp_mﬁm HEAD Hap_Tze_LeFT
THUME_RIGHT HAND_RIGHT S HAND_LEFTZ _LEFT
WRIST RIGHT { § @4 —= CLepr

ELBOW_RIGHT LA '159'32‘,
Ci:s_ﬂputazn;mfnpt-— — @
- spINeSHOULDER T

A SPINE_MID
\ b
‘ HIP_RIGHT {H:P_LEFT)

FOOT_LEFT

Figure 1.8: Overview of the 25 tracked joints in the skeleton (Microsoft, b).

The skeletal tracking is based on the depth frames as shown in Figure 1.9. It classifies
body segments from the depth data, and hereafter place the joint points at the places with
highest probability according to a pretrained model based on multiple persons of various size
and different clothing (Zhang, 2012).

A 1'\/_}3!
) "

Figure 1.9: Extraction of the skeletal joints (Zhang, 2012).

Since the second generation Kinect for Windows is used in this project, this this referred
to as Kinect throughout the report unless otherwise specified.

Page 7 of 91

2. Project Overview

Diata acquisition

Qe 7
}/gm ent\;En

S|m|lar|‘c3.r measures

f

Seam Iess transitions
between motions

ﬁ“. i

Interactive animation
control

Skeleton

Idle Wave Idle

Figure 2.1: Illustration of the overall system design.

Chapter 2. Project Overview

The overall system design for this project is illustrated in Figure 2.1, which shows the
different stages that are shortly described below.

Data acquisition - Colour, depth and skeleton data is captured from the Windows Kinect
v2 sensor.

Segmentation - The background is removed in the colour and depth frames so only the
person remains.

Similarity measures - Similarity measures are found among all captured frames using
colour, depth and skeleton data to find similar frames to transition between.

Seamless transitions between motions - Animations between transitioning frames are
created to make seamless transitions.

Interactive animation control - All above steps are implemented in a program, where a
user would be able to control the motions that a character should perform and thereafter play
the video.

2.1 Requirements

The requirements for the captured data are summarized in Table 2.1.

Data requirements

Description Specification Reference
RGB frame resolution 1920 x 1080 Table 1.1
Depth frame resolution 512 x 424 Table 1.1
RGB frame format Must be .jpg Table 1.1
Depth frame format Must be .png Table 1.1
Skeleton format Must be .xml Table 1.1
Scene composition The scene must only contain one section 1.2
person facing the camera
Scene composition The scene must contain the entire section 1.2

person without occlusions

Table 2.1: Requirements for the input data to the system.

As described in chapter 1, the evaluation of the smoothness and realism of an animation
is determined by how it is perceived, which is why the proposed animation throughout this
work will be evaluated by a user study, which was also performed in (Casas et al., 2014).

2.2 Datasets

Datasets are captured using a c# - program, KinectV2Recorder (Bahnsen), where a screen shot
of the interface is shown in Figure 2.2.

Page 10 of 91

2.2. Datasets

== [inect V2 Recorder - O *

Image directory Capture
CAlsers\m07 579 Documents\Capture Browse
¢ - Capture color + depth + body
Frame rate
30 fps
0 P
Settings Sequence number ~ Image registration
[] Capture thermal stream 1 .
Capture depth stream Generate Generic Lookup Tables

Capture body skeletons

Validate frames after capture
[] Lossless compression on RGB

Generate Lookup Tables for Existing Data

Running

Figure 2.2: Screen shot of the program used for capturing data.

The program saves he placement of the skeletal joints, the depth frame and the colour
frame captured for each time instance in a directory specified by the user. Further, the lookup
tables are also saved in order to perform an off-line mapping between colour and depth
frames.

Four datasets of a person performing different motions are used in this project. The first
dataset, which is used for evaluation throughout the report, is a person alternately waving
with left and right hand. The other three datasets are used for testing, and their motions are
further described in subsection 2.2.1. Frame 100 for each dataset is shown in Figure 2.3 to
Figure 2.6.

2.2.1 Division of Motions

In previous work, (Huang et al., 2010), each motion sequence is captured in one video at
a time including videos where a person transition from one motion to another. Since the
captured datasets in this work are each a full video of a person performing different motions,
the motion sequences an their transitions needs to be divided and labelled, which is done

Page 11 of 91

Chapter 2. Project Overview

Figure 2.3: Frame 100 of the evaluation dataset. Figure 2.4: Frame 100 of the test dataset for the
Cathrine character.

Figure 2.5: Frame 100 of the test dataset for the Figure 2.6: Frame 100 of the test dataset for the
Marco character. Leonardo character.

manually by running through the video and select where each sequence starts and stops. The
motions are divided in a way so they do not overlap, i.e. motion; N motion; ;1 = @.

The divisions for the test datasets are illustrated by a time line for each video in Figure 2.7
to Figure 2.9.

Stand2 Wave2 Clap2 Twist2 Clap2 Wave2 Twist2 Wave2
Stand Wave Wave Clap Clap Twist Twist Clap Clap Wave Wave Twist Twist Wave Wave Clap Clap
- - Il l l l - | | | l
L o L (L | | L | | | |
0 35 65 117 155 255 270 338 366 438 493 554 578 640 678 727 762 813

Figure 2.7: Division of motions for the Cathrine character.

In order to control the transition between each motion, a motion graph as in (Casas et al.,
2012) is made, which keeps track of the current state and the possible transitions. The motion
graphs for each character are illustrated in Figure 2.10 to Figure 2.12.

Other than the Cathrine character, which can directly transition between all motions, the
two other characters need to return to idle between each motion, which the motion graph
assures.

The information about the motions for each character is gathered in a meta data file, which
contains:

o A list of possible motions as strings, e.g. motions = ["Wave", "Clap", "Twist"]
o A list of divisions in the video, e.g. divisions = [35, 65, 117, ...]
¢ A database of motions, where each motion is described by an end and start frame.

o A motion graph, where the current and next possible motions are controlled by if loops.

Page 12 of 91

2.2. Datasets

Idle2 Wave
“‘3‘62 \g::; \‘;;’i gag: 1dle2 StretchR Idle2 StretchlL Wave Two2
e o:v: V\éi\f: . \ATI:,\: e StetchRgprercnp 2idle Stretchl ¢ o0 2idle Two \"T’:‘f Idle idle
|| | | || | | | | [| |
L | | | | 1 | I | L
0 54 75 94 122 140 154 177 199 201 224

244 248 276

444
Figure 2.8: Division of motions for the Marco character.

Idle2 Topl2 Idle2 Idle2 TopR2 Botl2 Idle2 Topl2 Idle2 TopR2 Idle2 BotlL2 Idle2 Topl2 Idle2 BotR2 Idle2 TopR2
Topl- idle TopR BotL idle idle TopL idle TopR idle BotL idle ToplL. idle BotR idle TopR idle

I oplL, TopR Botl Topl, TopR iaom TopLI BotRI TopRl

I | I [Y N Y [N A I | -

T rrrr

0 58 90 97 120 147 159 192 223 231 245

306 315 363 414

rrrrrrrrnr
419 449 471 479 499 552 559 590 621 633 665 699 693 742

Figure 2.9: Division of motions for the Leonardo character.

Figure 2.10: Motion graph for the Cathrine character.

Save upper

Save upper
left corner

right corner

Wave two

Save lower
hands

Save lower

left corner

right corner

Figure 2.11: Motion graph for the Marco character.

Figure 2.12: Motion graph for the Leonardo char-
acter.

Page 13 of 91

3. Segmentation

N

L

tation

(\\
27
Segmen

Figure 3.1: Tllustration of the overall system design.

15

Chapter 3. Segmentation

When calculating the similarity measures of the person from depth and colour frames, a
measure which is not disturbed by the background is wanted. Therefore a segmentation of
the person is needed, where a maximum of the person is preserved and a maximum of the
background is removed. The segmentation labels the pixels to a class, and in this case, the
pixels are either classified as foreground, i.e. the person, or background.

The segmentation can be done using either the colour or depth frames. If the colour frame
is used, there has to be taken account for illumination changes within the frames. In order
to reduce this illumination problem, [Bouwmans et al. 2008] suggests to convert the colour
frames from RGB to YCbCr, where the Y channel (the luminance channel) is not taken into
account, and therefore reduce the illumination problems.

Figure 3.2: Colour frame 100. Figure 3.3: Depth frame 100.

Another problem with using the colour frames for segmentation of the person is cluttering,
i.e. similarity in appearance of colour of the person and the background. A solution is to use
the depth frames instead, which avoids the cluttering and contains less illumination problems.
The reason why it is less and not avoided, is that the IR data stream, which the depth frames
are based on, can vary between very light and vary dark materials.

Since the camera is static, the only motion present in the in the video is the motion of the
person, which is why a model of the background, as described in next section, could be used
for segmenting the person.

3.1 Segmentation Based on Modelling the Background

One way for segmenting the person from the background is by using one or more frames of
the background containing no person and then subtract the frame containing the person. One
problem with using just a single background frame is that it can be highly sensitive to noise
according to which background frame that is chosen.

In order to cope with the temporal changes in noise, the background is learned using mul-
tiple frames. This means a background model is made by calculating the Gaussian probability
density function of each pixel across a known amount of background frames.

When having all pixels in the background model described by its mean, y and variance,
0?, the frame which needs to be segmented, F, is firstly subtracted with the mean of the
background model. The threshold is then set according to a multiple, k, of the standard
deviation, o, of the background model. If a pixel is within a multiple of the standard deviation,
it is determined as foreground and set to 1 and therefore a part of the person, otherwise it is
determined as background and set to 0. This is also shown in Equation 3.1.

Page 16 of 91

3.2. Segmentation Based on Planes

1, if |F—u| <ko.

0, otherwise.

Having 15 background frames to model the background, the segmented output of frame
100 and frame 800 thresholded with different standard deviations are shown in Figure 3.4 to
Figure 3.7.

Figure 3.4: Segmented frame 100 with 1 standard Figure 3.5: Segmented frame 100 with 3 standard
deviation. deviations.

Figure 3.6: Segmented frame 800 with 1 standard Figure 3.7: Segmented frame 800 with 3 standard
deviation. deviations.

As shown in Figure 3.4 to Figure 3.7, noise around the person occurs and most of all there
is a problem due to the small difference in distances between the feet and the floor, which
means that the feet are not segmented from the floor. In order to solve this, a solution could
be to look at the floor as a plane and then exclude the points that is on that plane.

3.2 Segmentation Based on Planes

In order to segment the feet from the floor using a plane, three points of the floor needs
to be known. When doing a segmentation based on a Gaussian model for each pixel as in
section 3.1, there is a problem with determining which points are part of the floor. One

Page 17 of 91

Chapter 3. Segmentation

solution is that points of the floor is known beforehand by user interaction. Because that it
is already known that points of the floor has a similar depth to the body a simpler a faster
segmentation can be used to determine the points automatically.

This can be done by using the information from the skeleton data to find the range of
the body in the x-, y- and z-direction plus an extra margin. This approach requires that the
surroundings do not have any furniture or items that have the same range of the person plus
the margin. This margin is then chosen to be 20 cm, which maintains the entire person. An
example of using the skeleton for segmentation of frame 100 and 800 with the extra margin in
each direction is shown in Figure 3.8 and Figure 3.9.

Figure 3.8: Segmented frame 100 based on the Figure 3.9: Segmented frame 800 based on the
skeleton plus a margin of 20 cm in each direction. skeleton plus a margin of 20 cm in each direction.

The extra margin can provide three points of the floor, which can be used for creating a
plane of the floor. These points are the minimum x-value, maximum x-value and minimum
z-value which are illustrated in Figure 3.10.

Xmin

Xmax

Zmin

Figure 3.10: Illustration of how the plane of the floor is extracted.

By having the normal vector, (4, b, c), which is the cross product of two vectors created by
the three points, an equation of the plane can be made in Equation 3.2, where (xo, yo,20) is a
known point on the plane, i.e. one of the three points.

a(x —x9) +b(y —yo) +c(z—20) =0 (3.2)

Page 18 of 91

3.2. Segmentation Based on Planes

The distance from a plane a with the normal vector, (a,b,¢), to a point P, (x, yo,z0), is
calculated using Equation 3.3.

Ja(x = x0) + b(y — yo) + c(z — 20)|
Va2 +b% 42
Before determining the plane of the person, a conversion from depth to camera space is

done. This is needed in order to avoid interpolation between the pixels in the depth frame
when determining whether the points/pixels are close to the plane.

dist,p = (3.3)

If a point is therefore within a known distance of the plane, it is removed. If the distance
is too low, most of the floor is not removed as shown in figures Figure 3.11 to Figure 3.13. On
the other hand if the distance is too high, both the floor and the feet are removed as shown in
Figure 3.14 to Figure 3.16. A value in between must therefore be chosen where a maximum
of person is preserved and a maximum of the floor is removed. This distance is evaluated in
subsection 3.2.2.

Figure 3.11: Frame 100 with re- Figure 3.12: Frame 450 with re- Figure 3.13: Frame 800 with re-
moved points within 1 cm of the moved points within 1 cm of the moved points within 1 cm of the
plane. plane. plane.

Figure 3.14: Frame 100 with re- Figure 3.15: Frame 450 with re- Figure 3.16: Frame 800 with re-
moved points within 10 cm of the moved points within 10 cm of the moved points within 10 cm of the
plane. plane. plane.

3.2.1 Average of Planes

Figure 3.11 to Figure 3.16 have been segmented individually, which means a new plane is
made for each frame. This can result in different segmentations from frame to frame caused
by small pixel changes. As an example, frame 100 in Figure 3.11 needs a higher distance to
remove points on the floor than frame 800 in Figure 3.13. Since the camera is static, it is not
necessary to find a new plane for each single frame because the floor is also static, why only
one single plane is used for all frames.

Page 19 of 91

Chapter 3. Segmentation

This single plane is found by an average over a number of planes from the first frames.
In order to know how many frames that should be used, the sum of differences between the
points that describes the plane, i.e the normal vector and the known point, are evaluated.
The number of frames which must be used, should therefore be at the point where adding
additional frames does not have a significant change to the description of the plane.

25

2.0

Differences
=
w

=
o

0.5}

0.0

0 10 20 30 40 50
Frames

Figure 3.17: Average of distances between planes with increasing number of frames.

Figure 3.17 shows that after 20 frames, the sum of differences converge, which is why the
20 first frames are chosen for determining the average plane.

The improvement can be shown in subsection 3.2.2 and Appendix A, where points are
removed at different distances to the plane.

3.2.2 Evaluation of Distances

In this section, the best distance to the plane that removes the maximum part of the floor and a
minimum part of the person is evaluated. Instead of labelling the foreground and background
manually for every frame to evaluate the segmentation, a visual evaluation is done instead,
where 10 different frames spaced different places in the video are investigated. The frames are
segmented using different distances, and the output from one frame is shown in this section,
and the rest 9 frames are shown in Appendix A.

Since a distance of 10 cm to the plane where shown in Figure 3.14 to Figure 3.16 to be too
high, the values that are evaluated are from 5 cm to 9 cm with an interval of 1 cm, which are
shown in Figure 3.18 to Figure 3.22.

Choosing a distance of 8 and 9 cm in Figure 3.18 and Figure 3.19, shows that the floor is
removed but parts of the feet are also removed. This means these values are too high. On the
other hand, when choosing a distance of 5 and 6 cm in Figure 3.20 and Figure 3.21, shows
that not all of the floor is removed and therefore is a value that is too low.

Choosing a distance of 7 cm in Figure 3.22, shows that a small amount of the floor is still
present, but the whole person is intact. It is possible that the remaining noise can be removed
by post-processing, which is described in next section.

Page 20 of 91

3.2. Segmentation Based on Planes

Figure 3.18: Frame 100 segmented with a distance Figure 3.19: Frame 100 segmented with a distance
of 8 cm to the plane. of 9 cm to the plane.
Figure 3.20: Frame 150 segmented with a distance Figure 3.21: Frame 100 segmented with a distance
of 5 cm to the plane. of 6 cm to the plane.

3.2.3 Post-processing

One way to remove the noise from the segmentation could be by using binary morphology.
The downside by using this, is that the shape of the body is not entirely preserved, and also
the ideal size of the structured element must be the same size as the noise which can vary
between frames. Another approach is therefore used. By assuming that the output from
the plane segmentation contains connected BLOBs (Binary Large OBjects) (Moeslund, 2012),
where the biggest one is the body, the detection of the pixel sizes of all the BLOBs can be
used to remove the smaller ones. In order to figure out whether pixels are connected or not, a
connected component analysis is done based on 4-connectivity or 8-connectivity as illustrated
in Figure 3.23.

Since BLOBs are unlikely to belong to the body when they touch corners as in Figure 3.23,
a 4-connectivity is therefore chosen when establishing the size of the BLOBs. Further a 4-
connecivity needs fewer computations and the process of finding BLOBs in an image can
therefore happen faster.

An example of removing the noise from the output of the plane segmentation in Fig-
ure 3.22, where the biggest BLOB is kept shown in Figure 3.24.

Page 21 of 91

Chapter 3. Segmentation

Figure 3.22: Frame 100 segmented with a distance of 7 cm to the plane.

4-connectivity 8-connectivity

i

Figure 3.23: Illustration of applying 4- and 8-connectivity to the same image.

o | o | o
o

oo |l o | o

o | o
(=]
ro
N N O O

Figure 3.24: Frame 100 after removing the noise.

Page 22 of 91

3.3. Segmentation Overview

The 9 other frames from the evaluation in Appendix A also include the removed noise
with the chosen distance of 7 cm in the end of the appendix, which all by a visual evaluation
have an acceptable segmentation.

3.3 Segmentation Overview

Flow of the segmentation implemented as processData.py, where the input is the skeleton,
depth and colour frames from a dataset:

¢ Find range of body in each direction using the skeleton data plus a safety margin
o Find the average plane of the floor for the first 20 frames.
¢ Exclude points close to the plane

e Reduce additional noise by preserving only the biggest BLOB, i.e. the person.

Boolean bitwise AND operation is applied to the output frame and the original depth
frame. This depth frame is then further used for mapping the colour frame onto the depth
frame.

Figure 3.25: Frame 100 output Figure 3.26: Frame 100 with its Figure 3.27: Frame 100 mapped
from segmentation. corresponding depth frame. to colour using the depth infor-
mation in Figure 3.26.

Page 23 of 91

4. Similarity Measures

Figure 4.1: Tllustration of the overall system design.

25

Chapter 4. Similarity Measures

Having segmented the person and using the masked frame to get the depth and colour in-
formation, similarity measures for each of the three modalities, skeleton, depth and colour, are
made. These similarity measures should be used for determining the best transition amongst
other frames in the video where the pose and appearance have the best match.

For each modality the similarity between frames are calulated as the Eucledian distance
(L2 distance) between two feature vectores p = (p1, p2, ..., Pn), and q = (41,92, ...,4u) as in
Equation 4.1.

d(p,q) = \/(Pl —q1)*+ (2= q2)* + .+ (pn — 4u)* =

The similarity measure is calculated between all possible frame pairs, and having N num-
ber of frames this will give an N x N matrix as shown in Equation 4.2. Since the frames are
also compared with itself, the self-similarity matrix is zero on the diagonal and symmetrical,
50 Spg = Sgp.

pa = 24

0 Soi - Son
s— |0 O S g (4.2)
Sno Sng . O

After individual normalization of each similarity measure by dividing all values with the
maximum value, they are combined into one similarity measure, where the weight for each
measure, &, B and <, can be set, as shown in Equation 4.3.

S = Sk + ﬁsdepth + YScorour Where a, B,y € [0/ 1} (4.3)

The similarity measures for the skeleton, Sy, the depth data, S4.p, and the colour data,
Scolour, are described in the next sections.

4.1 Similariy Measure of Skeleton Data

Using the joints from the skeleton as a similarity measure can give a good starting point in
evaluating the different positions of the body between each frame. The feature vector for each
frame is made by using all the positions of the skeleton’s joints in world space in 3D, which
are illustrated in 2D in Figure 4.2 to Figure 4.4.

o 1 0| e [o b
i T »[/L\
an L) L)
[l f o T
} ! 1y
-05 Q‘ -05 \ 05, |
! ! L
Figure 4.2: Skeleton’s joints posi- Figure 4.3: Skeleton’s joints posi- Figure 4.4: Skeleton’s joints posi-
tions for frame 100 in 2D. tions for frame 450 in 2D. tions for frame 800 in 2D.

Page 26 of 91

4.2. Similarity Measure of Depth Data

A feature vector for a single frame, p, is therefore described as Equation 4.4, where N is
the number of joints, which is 25.

skel, = [joint0y, joint0y, joint0,, ..., jointN — 1, jointN — 1, jointN — 1,] € RIx(N-3) (4.4)

Having this feature vector for one frame, the similarity measure between two frames, p
and g, is calculated using Equation 4.1 as shown in Equation 4.5.

Ssket = d(skely, skely) 4.5)

The self-similarity matrix of the skeleton’s joints for all frames is shown in Figure 4.5. The
matrix illustrates similar motions throughout the capture.

10
0.9
0.8
107
0.6
40.5

0.4

0.3

0.2

0.1

0.0

0 100 200 300 400 500 600 700 800

Figure 4.5: The self-similarity matrix of the skeleton’s joints mapped from similar, dark blue, to dissimilar, red.

4.2 Similarity Measure of Depth Data

The depth data can provide more information about the position of the body. This is done by
evaluating each depth value from each pixel in the segmented frame, which corresponds to the
size of the depth frame of 512 x 424. Examples of the segmented depth frames corresponding
to the skeletons in Figure 4.2 to Figure 4.4 are shown in Figure 4.6 to Figure 4.8.

The feature vector for a depth frame is the unravelled segmented frame with depth values
of each pixel position as shown in Equation 4.6, where N is 512 and M is 424.

depthy = [Dx0y0, Dxoy1, - Dxoym, Da1,40, Dxigi, o Dan—1ym—1] € RPN-M) (4.6)

Page 27 of 91

Chapter 4. Similarity Measures

Figure 4.6: Segmented depth Figure 4.7: Segmented depth Figure 4.8: Segmented depth
frame 100. frame 450. frame 800.

The similarity between two frames, p and ¢, is done in the same way as for the skeleton
joints in Equation 4.5 as shown in Equation 4.7.

Saeptn = d(depthy, depthy) 4.7)

The self-similarity matrix of the depth data for all frames is shown in Figure 4.9.

0 T T T T 10

A R B

0.8
200

0.7

s
- . 06
400} | H . l l o
500 houd ! | 0.4
L P . ‘ Jul
- 03
600) L
~’ 0.2
700 4
"
‘ 0.1
i !
800 p
i | | W . I ‘ 00

0 100 200 300 400 500 600 700 800

Figure 4.9: The self-similarity matrix of the depth data mapped from similar, dark blue, to dissimilar, red.

4.3 Similarity Measure of Colour Data

The downside by only using skeleton and/or depth data, is that is does not tell anything
about the appearance of the person, which is why the colour data is also introduced as a
similarity measure. Just as the similarity measure for the depth, the colour is also based on
the segmented frame, where each colour pixel is evaluated in the same way. Examples of the
colour frames corresponding to the skeletons in Figure 4.2 to Figure 4.4 and the depth frames
in Figure 4.6 to Figure 4.8 are shown in Figure 4.10 to Figure 4.12.

Page 28 of 91

4.3. Similarity Measure of Colour Data

Figure 4.10: Segmented colour Figure 4.11: Segmented colour Figure 4.12: Segmented colour
frame 100. frame 450. frame 800.

Since the segmented frame masked with the colour frame is 512 x 424 x 3, the feature
vector for the colour frame is therefore described as in Equation 4.8, where N is 512 and M is
424,

1% (N-M-3
colour, = [Rxo,40, Gx0,40, Bx0,y0, » Rx0y1, Gxoy1, Bxog, o Ren—1,yM—1, Gen—1,yM—1, Bxn—1ym-1] € R)

(4.8)

Just as for the skeleton joints and depth data in Equation 4.5 and Equation 4.7, the simi-
larity between two frames, p and g, is described in Equation 4.9.

Scolour = d(coloury, coloury) 4.9)

The self-similarity matrix of the colour data for all frames is shown in Figure 4.13.

0 1.0

100

- ! - - — | — 08
200 — —— —
]

) ' i

500 : 4 10.4

600 F ©

M I 88 | |
e e Az

L |

o} 100 200 300 400 500 600 700 800

700

800

Figure 4.13: The self-similarity matrix of the colour data mapped from similar, dark blue, to dissimilar, red.

The self-similarity matrices for the three test datasets are shown in Appendix X.

Page 29 of 91

Chapter 4. Similarity Measures

4.4 Transitions Based on Similarity Measures

Using a combination of the similarity measures, the best transition for one motion to another
is found by the smallest similarity measure among all frames in the two motions, where the
transitioning frames are referred to the source and target frame as shown in Figure 4.14.

Source motion arget motion
] ®

Source frame

Figure 4.14: Illustration showing a transition between a source and a target motion, where the similarity measure,
S, over all frames is minimized.

According to different settings of the weights in Equation 4.3, this could result in different
source and target frames. In order to illustrate this, the source frame is for simplicity already
established where the best match is found by evaluating all other frames in the video. Choos-
ing frame number 700, means that all values in row or column 700 in the self-similarity matrix
are evaluated, where 700 on the x-axis is 0 according to the self-similarity.

Just looking at each of the similarity measures individually, Figure 4.15 to Figure 4.17
shows the similarity measure for all frames compared to frame 700 and the possible target
frames with the smallest similarity measures.

10 alpha=1, beta=0, gamma=0

similarly measure
—_—

1N N . ||
W ‘ Wy \
W !l'\f\' \UJAMJ

100 200 300 400 500 I 600 700 800
Frames

Frame 589 Frame 791
5=0.0309 S=0.0302

Figure 4.15: Similarity measure for all frames compared to frame 700, where a=1, =0 and =0, i.e. only the
skeleton is taken into account.

The depth and colour similarity measures both agree that frame 597 is the best match,
whereas the skeleton has frame 791 as the best match. By looking at these two possible target
frames as shown in Figure 4.18, it is shown that both frames are similar to the source frame.
Yet, the best target frame from manually evaluating the pose and appearance is in this case
frame 791, i.e. only looking at the skeleton’s similarity measure.

Page 30 of 91

4.4. Transitions Based on Similarity Measures

alpha=0, beta=1, gamma=0

Similariy measure
e
3

e

100 200 300 200 500 0 700 300
Frames
Frame 597 Frame 790
5§=0.3083 5=0.3524

Figure 4.16: Similarity measure for all frames compared to frame 700, where a=0, =1 and =0, i.e. only the depth
is taken into account.

alpha=0, beta=0, gamma=1

06

Similariy measure

04

0.2)

o0 100 200 300 200 500 0 700 800
Frames
Frame 597 Frame 775
5=0.3485 $=0.4079

Figure 4.17: Similarity measure for all frames compared to frame 700, where a=1, =0 and =1, i.e. only the colour
is taken into account.

Page 31 of 91

Chapter 4. Similarity Measures

Figure 4.18: Illustration of source frame 700 and the two possible target frames, frame 791 (top) and frame 597
(bottom).

This is not necessarily the case when transitioning between other frames. For example if
the source frame was frame 703 shown in Figure 4.19 instead, which is very similar to frame
700. The best match is frame 783 as shown in Figure 4.20, which shows that the skeleton
measure can be noisy, and therefore another setting of the similarity measure would be better.

Figure 4.19: Frame 703. Figure 4.20: Frame 783.

Nevertheless, even though frame 791 is the best target frame between all other frames for
transitioning from frame 700, the problem with transitioning to other places in the video, is
that the pose and appearance of the person in the source and target frame is still different and
can make an unrealistic jump in the resulting video, which needs to be handled.

Page 32 of 91

5. Transitioning Between Motions

Seamlesstransitions
between motions

J j J

Figure 5.1: Illustration of the overall system design.

33

Chapter 5. Transitioning Between Motions

The best transition between two motions is determined by the smallest similarity measure,
where a source and target frame are found. Since the source and target frames can have a dif-
ference in shape and appearance, when transitioning between these frames, it will then make
a jump in the resulting video, which is unwanted. Smoothing the transitions will therefore
be needed, which can be done by creating new intermediate frames between the source and
target frames.

5.1 Smoothing Transitions Using Alpha Blending

It is possible that there is a difference in the shape and appearance of the person when transi-
tioning, and in order to make a smooth transition, new frames between the source and target
frame are created. These frames could be made by using alpha blending described in Equa-
tion 5.1, where each pixel in a source frame, f;, and a target frame, f;, are blended by an
a-value giving the resulting blended frame, b.

b(x,y) = (1—a)fs(x,y) +afi(x,y) where « € [0,1] (5.1)

Using the alpha blending, it is possible to mix the two frames either equally, by setting
x=0.5, or give the two frames different importance. This is useful when a number of interme-
diate frames should be created, since it would be possible to gradually change between the
source and target frame by changing the a-value as shown in Figure 5.2.

100% 50% 0%

0% 50% 100%

Figure 5.2: Illustration of gradually transitioning from a 100%, i.e a = 1, source frame to a 100%, i.e. « = 0, target
frame by changing the value of importance of each frame.

An example of smoothing transitions using the alpha blending between a source and target
frame from Figure 5.3 to Figure 5.4, with three intermediate frames are shown in Figure 5.5.

Using just alpha blending for transitioning between a source and target frame will appear
smooth whenever there is a difference in appearance, e.g. wrinkles on a shirt. But problems
occur when the shape is not similar, which will result in ghosting as shown in Figure 5.5.
The final transition might appear smooth, but not necessarily perceived as being realistic. A
different approach for creating intermediate frames is therefore exploited in section 5.2.

5.2 Smoothing Transitions Using Optical Flow

The problem with using alpha blending occurs when the shape between the source and target
frame was too different. So creating new frames with intermediate poses between the source

Page 34 of 91

5.2. Smoothing Transitions Using Optical Flow

Figure 5.3: Source frame - frame 603. Figure 5.4: Target frame - frame 611.

Figure 5.5: Three intermediate frames between the source and target frame from Figure 5.3 and Figure 5.4 made
with alpha blending. From left « = 0.25, 0.5 and 0.75.

and target frame instead could, compared to the alpha blending, increase the smoothness and
perceived realism of the transition. Inspired by (Casas et al., 2013) and (Fechteler et al., 2014),
where new 3D meshes are created by interpolation between the source and target frames, a
novel approach is therefore suggested, where the displacement in shape between the frames
is estimated by optical flow and then used for create intermediate poses by moving the pixels
accordingly.

The optical flow between two frames estimates the changes in illumination whenever a
camera is moved or an object is displaced. A number of different optical flow algorithms exist,
but what they all have in common is the brightness constancy constraint, where the pixels
are assumed to have the same intensity values when displaced. Having this constraint it is
possible to estimate the displacement by searching for similar correspondences, as illustrated
in Figure 5.6.

This means that for each pixel in the source frame will have a flow vector which determines
the estimated flow towards the target frame. The displacement of the pixels can therefore be
described in Equation 5.2.

farget (X, Y) ~ faispiaced (%, Y) = (fsource(X) + flow(x), fsource(v) + flow(y)) (52)

Page 35 of 91

Chapter 5. Transitioning Between Motions

—

Source Target Flow

Figure 5.6: Illustration of the optical flow between two frames with a displaced box.

Since the optical flow estimates the displacements in a specified size of neighboorhood,
it assumes that the displacement is not too big. But in order to increase robustness of the
estimation and also estimate larger displacement than the size of the neighbourhood an image
pyramid could be used. An illustration of such is shown in Figure 5.7

Flow estimation

Level 3

Z Level 2

Level 1: original image

|

Displacement

Figure 5.7: Illustration of an image pyramid with 3 levels, where the higher the level the smaller is the displace-
ment.

The first and lowest level in the pyramid is the original frame, and at each level the frame
is downsampled. The estimation of the flow then starts at the top level, i.e. at the lowest
resolution, and then uses the estimated displacement from that level as an initial guess in the
next level and so forth.

Since the flow is estimated by looking at the illumination changes, the frames are converted
from RGB to gray-scale. This is done by weighting the different colour channels as described
in Equation 5.3 (Moeslund, 2012).

I=wr-R4+wg-G+wp-B where wg+wg+wpg=1 (5.3)

The weights for the colour channels could be assigned if a colour channel had more im-

Page 36 of 91

5.2. Smoothing Transitions Using Optical Flow

portance than another, e.g. if the person was only wearing red clothing, hence a larger im-
portance for the red colour channel. But since each character in the database wears different
colour clothing, the values are instead assigned according to the standardized weights for the
individual colour channels optimized for the human visual system, which are wgr = 0.299, wg
= 0.587 and wp = 0.114.

A common way of estimating the optical between two frames is by using the iterative
Lucas-Kanade optical flow, where the flow is estimated by finding corresponding intensity
values in the other frame where the displacement between the two frames are minimized
(Lucas et al., 1981). Since the Lucas-Kanade algorithm is sparse it only needs a set of features
present in both frames to estimate the flow. These features are extracted by a keypoint detector
such as SUREF, SIFT or Harris corner.

But instead of extracting features to track and determine how to move the pixels between
the keypoints when creating new poses, a possibility is to estimate the flow for every pixel,
hence using a dense optical flow. This approach is also used for alignment of textures to a
geometric proxy mesh in (Casas et al., 2014), where the Farneback Optical Flow is used.

5.2.1 Farneback’s Optical Flow

The dense optical flow using Gunner Farneback’s algorithm is based on approximating each
neighbourhood as a quadratic polynomial as described in Equation 5.4, where A is a symmet-
rical matrix, b is a vector and c is a scalar (Farneback, 2003).

f(x) ~xTAx +bTx +c (5.4)

This means that all neighbourhoods, e.g. in Figure 5.6, are described by a quadratic poly-
nomial, where the coefficients are found by a least square fit. Using these polynomials to
compare the neighbourhood with the other neighbourhoods in the other frame, the best fit for
the displacement can be found. So for example displacing a polynomial f;(x) with d, a new
polynomial f,(x) is constructed (Farnebick, 2003):

fi(x) =xTAix +bx+c
f(x)=filx—d) = (x—d)TA (x —d) + b (x —d) 4+

5.5
= JCTAX -+ (bl — 2A1d)TX + dTAld — b{d +c1 ()
=xTAx + b2Tx +c

Where due to the brightness constancy constraint, the coefficients can be equated as:
A= A
by = b —2Ad (5.6)

) = dTA1d — blT +C

By assuming that A is non-singular, meaning that it is invertible, the displacement of d
can therefore be solved as:

Page 37 of 91

Chapter 5. Transitioning Between Motions

by =b1 —2A1d

2A1d = = (b2 — b1) (5.7)

1
d= —EA{l(bz —by)

In principle, searching for the polynomial with the best fit could be done in the whole
frame. But since this turns out to be too noisy, it is assumed that the pixels only undergoes
a small displacement, which means searching for the best fit by minimizing displacements
together with the error between the coefficients is only done within a surrounding neighbour-
hood of pixels.

Farneback’s optical flow is implemented in OpenCV as calcOpticalFlowFarneback (docu-
mentation), which takes eight input values as listed below, where the output of each pixel is a
flow vector, where the magnitude of 1 corresponds a displacement of one pixel horizontal or
vertically.

e Source frame

o Target frame

e Image pyramid scale

o Levels in image pyramid

o Kernel size of average filter

e Iterations in each pyramid level

o Kernel size of the searching neighbourhood

e Standard deviation for the kernel of the searching neighbourhood

According to default settings in the OpenCV implementation (documentation), a classical
image pyramid is used with a value of 0.5, which means the next layer is half the size of the
previous layer. Further the size of the neighbourhood in the search for the displacement is
set to 5, with the standard deviation set to 1.1. In order to set the rest of the parameters, i.e.
levels in the pyramid, average kernel size, and the number of iterations in each pyramid level,
an evaluation is done in subsection 5.2.2.

5.2.2 Evaluation of Optical Flow Settings

An evaluation of Farneback’s optical flow by changing its parameters is done in order to
set appropriate paramters as well as understanding its restrictions. The evaluation is done
by analyzing the flow vectors for a known movement, which in this case is moving an arm
up from frame 283 to 286 as shown in Figure 5.8, where the difference is shown by alpha
blending.

Looking at the implementation of the Farneback’s optical flow in MATLAB, it has the
same default values as the OpenCV implementation. Further it has also default values for
the number of levels in the pyramid set to 3, the averaging kernel size set to 15x15, and the

Page 38 of 91

5.2. Smoothing Transitions Using Optical Flow

250

225

175

125

100

Figure 5.8: The difference between the frame 283 and 286 shown by alpha blending, which is used for evaluation
of the settings for the optical flow.

Figure 5.9: The estimated flow a with the default MATLAB settings.

Page 39 of 91

Chapter 5. Transitioning Between Motions

number of iterations in each level of the pyramid set to 3. Using these settings will result in a
flow shown in Figure 5.9.

Choosing less levels in the pyramid, e.g. 1, it will in this case make the flow estimation
worse as shown in Figure 5.10, which is because the displacement between the pose is too big.

Figure 5.10: Estimated flow with levels=1, window=15, iterations=3, between frame 283 and 286

Keeping in mind that the pyramid levels enables the optical flow to track large displace-
ments, would mean that if the displacement is less it would be possible to give a better
estimate of the flow. This is shown by estimating the flow between fame 283 and 284 shown
in Figure 5.11.

Choosing a higher number of pyramid levels than 3 and therefore downsampling the
frame would not necessarily add more robustness to the frame, since the frame at the last
level would be very small. Setting the number of pyramid levels to 3, would in this case be an
appropriate value.

As shown in Figure 5.9 noise appears in the form of the flow vectors not moving uniformly,
and using a smaller averaging kernel size on the frame before estimating the flow will only
add more noise as shown in Figure 5.12, where a kernel size of 5x5 is used.

By using a larger kernel size could eliminate some of the noise and also make the flow
smoother and more uniform as shown in Figure 5.13, where a kernel size of 25x25 is used.
Compared to Figure 5.9, using a larger kernel size will eliminate noise and also improve the
robustness of the flow estimation, which is why a kernel size of 25x25 would be used.

According to setting the number of iterations, the algorithm performs a search at each
level to find the best match and will after a number of iterations converge. So choosing a
higher number of iterations and make sure that the algorithm reach convergence or closer
to convergence, could increase the robustness to noise. Choosing the number of iterations
of 10 would result in a flow as shown in Figure 5.14. Comparing this to the estimated flow
in Figure 5.13, then choosing a higher number of iterations is an improvement according to
the noise in the areas where the structure is very uniform, e.g. the pants. This also means

Page 40 of 91

5.2. Smoothing Transitions Using Optical Flow

Figure 5.11: Estimated flow with levels=1, window=15, iterations=3, between frame 283 and 284

Figure 5.12: Estimated flow with levels=3, window=5, iterations=3, between frame 283 and 286

Page 41 of 91

Chapter 5. Transitioning Between Motions

Figure 5.13: Estimated flow with levels=3, window=25, iterations=3, between frame 283 and 286

that setting the number iterations to only 3, will in this case not be enough for making the
algorithm to converge.

The resulting parameter settings used in the Farneback’s optical flow are therefore:
e Pyramid scale = 0.5
e Levels in pyramid = 3

o Kernel size of average filter = 25

Iterations in each pyramid level = 10

Kernel size of pixel neighbourhood =5

Standard deviation of kernel = 1.1

The flow estimation using these parameters can vary according to the size of the person,
the frame and the size of the displacement field. The optical flow is restricted to only estimate
the flow between small displacements. If the poses differs too much, it will be hard to make a
correct flow estimation. In order not to have positions that vary too much, is something that
should be minimized by a combination of the parameters in the similarity measure, which
will then find a good transition between a source and target frame with a small displacement.

5.3 Interpolation of Pixels

Having estimated the dense optical flow between the source and target frame, a position for
where every pixel should go is provided, which can be used for making a linear interpolation
of the pixels.

A problem occurs, since the flow vectors are not necessarily integers, which means the
destination for a pixel becomes a position that is not possible. In order to handle this problem,

Page 42 of 91

5.3. Interpolation of Pixels

Figure 5.14: Estimated flow with levels=3, window=25, iterations=10, between frame 283 and 286

the values are rounded off to the nearest possible pixel, also called zeroth-order interpolation
(Moeslund, 2012). E.g. flow vectors like (2.3, 3.7) are interpolated to (2, 4).

Gradually moving the pixels in the direction of the flow, will then create intermediate
poses. This is done by adding each pixel a percentage of its flow vector as in Equation 5.2,
which will result in frames shown in Figure 5.15 where the pixels are moved 0%, 25%, 50%
and 75% in the direction of the flow, i.e. forward mapping is performed.

Figure 5.15: Example of where pixels are gradually moved in the direction of the flow between frame 603 and 611.
From left - 0%, 25%, 50% and 75% of the flow vectors.

This works well for creating intermediate poses between a source and target frame, but
holes in the resulting frames appears. This is can be due to rounding errors when doing the
zeroth-order interpolation of the flow vector, but it also happens when a pixel does not have a
destination of a flow vector from another pixel. This makes sense when e.g. moving the arm,
where the previous position of the arm should be empty in the new frame. But this can also
happen inside the body, which must be handled.

Usually the problem with holes in the output frame is handled by performing backward
mapping (Moeslund, 2012), where pixel values in the output frame are found in the input
frame using the inverse transformation, which is illustrated in Figure 5.16.

Page 43 of 91

Chapter 5. Transitioning Between Motions

Figure 5.16: Illustration of performing forward and backward mapping.

This could work since pixels have its own transformation from the optical flow vector. But
a problem is still if a pixel does not have a destination from the optical flow, meaning it has
no transformation thus no inverse transformation. In order to give this pixel a colour value,
would then be by evaluating the surrounding pixels to either see what their inverse transfor-
mations are or what their colour value is in the output frame. This is the same issue found in
forward mapping. Due to the extra computational time to perform backward mapping and
still have holes in the output frame, which needs to be filled, the forward mapping is therefore
chosen. So the pixels that need to be filled, are found by evaluating the surrounding pixels in
the output frame.

5.3.1 Post-processing

In order to fill the holes which appears when moving the pixels in the direction of the flow, the
surrounding pixels are evaluated by applying a filter. One way of using a filter to fill out the
holes is to apply it to the whole frame as shown in Figure 5.17 where a mean filter of size 3x3,
5x5 and 7x7 is applied to frame where the pixels are moved 75% in the direction if the flow
from Figure 5.15. The problem with using this approach is that the holes a not completely
filled, and choosing a larger filter would only create additional blur to the resulting frame.

Figure 5.17: Applying a mean filter to moving the pixels 75% in the direction of the flow from Figure 5.15. From
left - kernel sizes 3x3, 5x5 and 7x7.

In order to preserve the person in frame without blur, a search through that frame for
holes, i.e. black pixels ([0,0,0]) is done. These pixels are then replaced with the colour value
from the one of the filtered frame in Figure 5.17 at the same position. The resulting frame
with the different kernel sizes are shown in Figure 5.18.

Page 44 of 91

5.3. Interpolation of Pixels

Figure 5.18: Replacing holes in with the values from the filtered frames in from Figure 5.17. From left - kernel
sizes 3x3, 5x5 and 7x7.

The holes are still not completely filled, since the mean filter takes the value of the hole
into account when calculating the mean value. One way to solve this is to create a new filter
that not does not use this value. This means instead of using a mean filter of, e.g. size 3x3 as
in Equation 5.8.

1 111
A=) 111 (5.8)
111
The filter will instead be as in Equation 5.9.
1 111
A= 3 1 01 (5.9)
111

This only solves the problem when none of the surrounding pixels within the applied
filter, does not contain holes. This means an adaptive filter should be made according to how
the holes are placed, which is a solution that is computationally demanding. Another issue
when using a mean filter, is that the resulting colour might not have the same value or be a
very different value according to the surrounding pixels. Using a median filter instead can
solve these problems, since a colour value is chosen between already existing values. The
result from using a median filter on the frame instead is shown in Figure 5.19.

Compared to the mean filtered frames in Figure 5.18, using the median filter does provide
a better resulting frame. The kernel size of 3x3 as shown in Figure 5.19 is too small, since it
does not fill all holes, but using a filter of 5x5 or above will. Addtionally, the kernel should
not be too large either. When zooming in on the frames where a kernel size of 5x5 and 7x7 are
used in Figure 5.20, it is shown that using a kernel of 7x7 or higher adds a extra pixels to the
body, most visible at the neck, and also a more blurred output. A median filter with a kernel
size of 5x5 is therefore used.

After filling out the holes when moving the pixels in the direction of the flow, a problem
occurs, because moving the pixels in the full direction of the flow still vary according to the
actual target frame as shown in Figure 5.21, which could create a jump in the resulting video.

In order to solve that problem, the flow from the target frame to the source frame is also

Page 45 of 91

Chapter 5. Transitioning Between Motions

Figure 5.19: Replacing holes in with the values from median filtered frames. From left - kernel sizes 3x3, 5x5 and
7X7.

Figure 5.20: Zoomed frames of using the kernel sizes 5x5 and 7x7 from Figure 5.19.

Page 46 of 91

5.4. Transitioning Overview

Figure 5.21: The moved pixels 75% in the direction of the flow estimated from source to the target frame, and the
target frame 611.

used as shown in Figure 5.22, where the pixels are moved in each direction of the flow 25%
, 50% and 75% of the way. Here it shows that the frames in the top row are more close to
the source frame, and the same way for the bottom row have frames more close to the target
frame. A solution is then to merge top and bottom row by alpha blending.

The resulting intermediate frames will therefore be a blend of the top and bottom row in
Figure 5.22.

5.4 Transitioning Overview

The flow of creating intermediate frames when transitioning, implemented as intermediate-
Frames.py:

Find Farneback’s optical flow from source to target and target to source

Move gradually pixels in the direction of their individual flow vectors

Fill out holes by using a median filter

Blend the frames from each direction.

The amount of intermediate frames are set to 5, which are further evaluated in chapter 7.

An example for calculating the middle frame between a source and target frame, i.e. when
pixels are moved 50% along their flow vectors, is illustrated in Figure 5.23.

Page 47 of 91

Chapter 5. Transitioning Between Motions

Flow from source to target

~ 3 £
& L &

Source

Figure 5.22: The flow from source to target (top row) and from target to source (bottom row), where the pixels are
moved 25%, 50% and 75% in the direction of the flow.

Figure 5.23: Illustration of how an intermediate frame between a source frame (frame 603) and a target frame
(frame 611) is made.

Page 48 of 91

6. Animation Control

O

Interactive Animation
Control

0

Idle Wave Idle

Figure 6.1: Tllustration of the overall system design.

49

Chapter 6. Animation Control

A program for a user to create videos of characters performing a chosen set of motions
is in this chapter explained. Three possible characters can be chosen, Cathrine, Marco and
Leonardo, which each has different motion options.

The Cathrine character can perform three different dance motions, which are wave, clap
and twist as shown in Figure 6.2.

Figure 6.2: The motions of the Cathrine character. From left - wave (frame 70), clap (frame 220) and twist (frame
300).

The Marco character can perform four different motions, which are wave with one hand,
wave with both hands, stretch to the right and stretch to the left as shown in Figure 6.3.

Figure 6.3: The motions of the Marco character. From left - wave one hand (frame 80), wave both hands (frame
150), stretch right (frame 200) and stretch left (frame 245).

The Leonardo character can perform four different goalie motions, which are save top left
corner, save top right corner, save bottom left corner and save bottom right corner as shown
in Figure 6.4.

Figure 6.4: The motions of the Leonardo character. From left - save top left (frame 90), save top right (frame 150),
save bottom left (frame 230), save bottom right (frame 630).

Page 50 of 91

6.1. Choosing a Character

6.1 Choosing a Character

The first part of the program, the user has to choose one of the three characters by a number,
i.e. Cathrine=1, Marco=2 or Leonardo=3. If a different number is pressed, then the Cathrine
character is chosen as default.

Each character has a corresponding file containing meta data about its motions which is
loaded in to the program when choosing a character. This meta data file contains an array of
the possible motion names, an array of where the motions are divided in the original video, a
database of the motions and finally a motion graph determining how to shift between motions.

Therefore, when choosing a character, the program loads the following:

e An array of motion names

e An array of where motions are divided in the video
e The motion graph

o The self-similarity matrix of the skeleton

o The self-similarity matrix of the depth

o The self-similarity matrix of the colour

o The segmented colour frames

The similarity matrices are used for determining the best transition between the motions.

6.2 Choosing a Sequence of Motions

When the above are loaded into the program, the possible motions from the array of motion
names are then presented to the user. This is done by looping through the list of names. The
output for each of the characters presented to the user are shown in Figure 6.5.

HEREER WELCOME #&8#88 #EEaEE WELCOME #a8#as #aaHas WELCOME SERHEER
Possible characters: characters: Possible characters:
1 - Cathrine ine 1 - Cathrine

2 - Marco 2 - Marco 2 - Marco

3 - Leonardo 3 - Leonardo 3 - Leonardo

hoose your character (1-3): 1 your character (1-3): 2 Choose your character (1
ossible motions: o le motions: Possible motions:

C

[}

1 - Wave E Wave one hand 1 - Save top left

2 - Clap 2 - Wave both hands 2 - Save top right

3 - Twist 3 - Stretch right - Save bottom left
4 - Stretch left - Save bottom right

Figure 6.5: The possible motions to choose from when a character is chosen.

The user then chooses a sequence of motions, the same way as choosing a character, i.e. by
a number. This runs as a loop as shown in Figure 6.6, where the chosen number for each loop
is appended to a list. If a number is outside the possible list of numbers, the loop starts over
again without appending a number to the list. In order to end appending additional motions,

Page 51 of 91

Chapter 6. Animation Control

se a motion (End

a motion (End

e a motion (End
value cannot be

You chose the sequence of motions to be:
Stretch right
one hand

Stretch

Figure 6.6: An example of choosing motions for the Marco character.

0 is pressed. Hereafter the sequence of the chosen motions are presented to the user as shown
Figure 6.6.

Before creating the animation, the weights for the similarity measure in Equation 4.3 are
also selected by the user as shown in Figure 6.7. These values are then used for determining
the best transition between the chosen motions.

Choose the weight for the skeleton between 8-1: 1

Choose the weight for the depth between @-1: 1

Choose the weight for the colour between 8-1: @

Figure 6.7: An example of choosing the weights for the similarity measure, where a=$=1 and =0.

6.3 Determine Transitions

Having the list of motions which the chosen character should perform together with the
weights for the similarity measure, the best transition between each motion are found.

For each transition there is a source motion and a number of possible target motions
as illustrated in Figure 6.8. In order to find the best transition with the smallest similarity
measure, all frames in the source motion are compared with all frames, as in this example,
two target motions. This leads to two similarity measures, S;, and S;, which each determines
the transition from the source motion to one of the target motions. The final transition is
chosen by the smallest of those two similarity measures, which gives the transitioning source
and target frame marked by the black dot.

This search for the best source and target frame between two transitioning motions is
implemented as findSourcelargetSingleMulti.

The chosen target motion then becomes the new source motion, and going through the
motion graph, a new set of possible target motions are available. The search for the next
transition is done again in the same way as illustrated in Figure 6.9, where all frames in the
red bar are appended to the video.

Between each transition, 5 intermediate frames are generated and inserted in the video
sequence. When determining the source and target frame, it is possible that the transition

Page 52 of 91

6.4. Animation Control Overview

Source motion

—

Figure 6.8: Illustration showing possible transitions between one source motion and number of possible target
motions with their corresponding similarity measures, S1, and S;.

Figure 6.9: Illustration of searching for the best transitions through multiple motions and the resulting video
sequence marked with red.

with the smallest similarity measure is the actual next frame in the original video. This
means, that no intermediate frames are needed, so frames are only inserted if the source and
target frames are not consecutive frames.

Since the capture of the Cathrine and Leonardo character have motions which are per-
formed multiple times, there are therefore a number of possible motions to start the video
sequence from as shown in Figure 6.10.

Source motions

Figure 6.10: Illustration showing possible transitions between two source motions two possible target motions
with their corresponding similarity measures, S, Sy, S3 and S4.

One way of choosing the starting motion could be randomized, but this does not necessary
result in the best transition. Therefore all possible transitions are evaluated. According to the
implementation, this means findSourceTuargetSingleMulti is called as many times as the number
of source motions to start from, and the transition with the minimum similarity measure is
then chosen.

6.4 Animation Control Overview

An overview of the different steps in the animation control are listed below implemented as
interactiveControl.py, and an example of running this script and choosing the Marco character
is shown in Figure 6.11.

Page 53 of 91

Chapter 6. Animation Control

Choose character

Choose motion sequence

Choose settings for the similarity measure

Determine transitions and create intermediate frames

Show video

HHHHE WELCOME fHHHHE
ble characte
1 - Cathrine
2 - Marco
- Leonardo

motion (end by pr
motion (end by pr
motion (end by pr
motion (end by pr

ore moti

uence of motions to be:
retch left
both ha
one hand

e the weight for the skeleton between @-1:

e the weight for the depth between @

the weight for the colour between 8-1: 1

1 for playing the wvideo (Press a different number to terminate): 1

Figure 6.11: Example of the animation control, where the Marco-character is chosen together with three motions.

Page 54 of 91

/. User Study

The purpose of performing a user study is to test how the realism is perceived when transi-
tioning between motions, and whether there is a perceived difference when transitioning with
or without animation. In order to test this, the area within psychophysics is exploited, where
the human perception can be measured through psychometric methods.

When observing the world, as illustrated in Figure 7.1, information, e.g. light and sound,
is received to the brain through various numbers of receptors, e.g. eyes and ears, and the
perception is then the interpretation of the given information. Perception can therefore be
described as the sum of all impressions.

Figure 7.1: Illustration of how information is perceived.

But the way people interpret the received information can be very different, since it can
depend on each person’s personality and experiences. E.g. professional musicians can hear
if a beat is out of sync, whereas non-experts might not hear that because they do not have as
much experience as the musicians. The test subjects will in this user study be non-experts.

Within psychophysics, a user study involves a scenario where test subject are provided
with some well known events, i.e. stimuli, which the subject should respond to (Poulsen,
2005). In this case the stimuli are videos with different known settings, which will be further
described in section 7.1, and the method of how subjects should respond is described in
section 7.2.

7.1 Stimuli

The test subjects are presented with three different sets of videos, where

o The transition between motions is made with no animation
o The transition between motions is made with animation based on alpha blending

o The transition between motions is made with animation based on optical flow

55

Chapter 7. User Study

The hypothesis to test is the videos with animations based on optical flow will have a
better perceived realism than the the other videos.

Since it is known from section 4.4 that different parameter settings for the similarity mea-
sure will find different transition points in the video and thus create different output videos,
a number of settings are therefore tested. Knowing that there are infinite combinations of
parameter settings to be tested, only a selection of combinations are chosen. The 10 different
parameter settings which are tested, are presented in Table 7.1.

Parameter Settings

o B 0% # frames
1 - - -
1 - - 5
1 1 - -
1 1 - 5
1 1 = SR
1 - 1 5
1 1 1 5
- 1 - 5
- - 1 5
- 1 1 5

Table 7.1: The parameter settings for each video. *Blended frames.

Having three different characters, videos with the different parameter settings are gen-
erated for each character, i.e. 30 videos are generated. Each character will perform three
different motions, presented in Table 7.2, which will be the same for all videos.

Motions in Videos

Cathrine Marco Leonardo

Wave Wave two hands Save bottom left corner
Twist Stretch left Save top right corner
Clap Wave one hand Save top left corner

Table 7.2: Overview of the input motions for each character.

The different combinations of the similarity measure, will then find different source and
target frames between each motion and then perform a transition.

7.2 Method of Response

Dividing the test in three parts, each part for each character, the output of the user study
should be an order of which parameter settings are the best according to their realism. This
means all 10 stimuli is presented, and the test subject must then order them.

The problem with this approach, is that it can be confusing when then the subject is
presented to many stimuli. It also puts a large demand on their memory of how previous
videos looked like. The solution is to perform a pairwise comparison, where the user is

Page 56 of 91

7.3. Test Setup

presented with only two stimuli at a time (Lawrence E. Marks, 2002) This is also the approach
used in (Casas et al., 2014) when the realism of their animation was evaluated in a user study.

When performing a paired comparison, all combinations must be tested as illustrated in
Figure 7.2, which means the user has to make 10> — 10 = 90 combinations for each character.
But if a no order effect is assumed, i.e. the order in which the stimuli are presented, it can be
reduced by half to 45 combinations. To avoid the test subject from predicting which videos to
appear next, they are therefore presented in a shuffled order.

A|B|C A|lB|C
A X | X A
B | x X B | x
C|l x| x Cl x| x

Figure 7.2: Illustration of the combinations in a pairwise comparison that must be tested (marked by x) with and
without order effect.

After the test subjects are presented with two videos at a time, they are then asked three
questions:

1. Which video do you prefer?
2. How would you rate the realism of the top video

3. How would you rate the realism of the bottom video

Test subjects could answer these questions on a nominal scale, i.e. for the first question,
the user can choose either between top preference or bottom preference, and the realism for
each video can be chosen to be either bad or good. But if a ordinal scale is chosen instead,
where the test subject can give their answer on a scale from e.g. 1 to 5. This means more
information about their perception can be retrieved.

The Likert scale is therefore used, which is a category scale (Lawrence E. Marks, 2002).
Here the test subject will in terms of preference rate on a scale from top preference to bottom
preference, and the realism will be rated from very bad to very good. It is important to note
that increasing the points the scale will also increase the workload for the test subject. Since
the workload is already high due to the many comparisons, the 5 point scale is therefore used,
which is also the same size used in (Casas et al., 2014). For any scale it is also important for
the test subject to have the possibility to give a neutral answer. For example if the video is
neither bad nor good. This is why an uneven number for the scale chosen, so the test subject
in that situation has the opportunity to answer 3.

7.3 Test Setup

The user study is made as a web-based survey using Google forms, where the videos must
be inserted from YouTube. The videos can therefore in addition to be watched from the
attachment also be watched online on the YouTube account called ¢ thomsen. Since the test

Page 57 of 91

Chapter 7. User Study

subject has the opportunity to view the videos more than once, it is therefore assumed that
the order in which the videos are presented has no effect on the rating.

The stimuli together with the questions presented to the user is shown in Figure 7.3, which
is the first comparison of the first part in the survey. At the start of the survey the test subject
is introduced to the user study, together with a statement of consent, which is shown in
Figure 7 4.

Survey - Part 1

Character 1

Top video
character]_dancing capt @ #
r'.
¥}
Bottom video
character]_dancing cap3 @
Which video do you prefer? * SUrVey -Part 1
1 2 3 4 5 Welcome!
Thank you for showing interest in participating in this survey about video animation.
Top Bottom The survey will consist of three parts, each containing a different character performing various
r;'r . O O (w] [} (w] ;f ; e motions. At the end of each part, a link to the next partis provided.
prefersnce preference The estimated time for the whole survey is 1 hour.

You will be presented two videos at a time, and your job is to rate which one of the two videos you

How would you rate the realism of the top video? prefer and also rate their realism. If you prefer, you can watch the videos again
N p v ?

Enjoy!
1 2 3 4 5
*Reqired
Very poor 8] o] o] O (] Wery good
Statement of consent *
How would you rate the realism of the bottom video? O I hereby accept that my participation and answers in this survey is used by
1 2 3 4 - Cathrine Juel Thomsen for her master thesis 2016. | will not be mentioned
2 by name, and | allow publication of the answers if needed
Very poor (2] o] o] O (] Wery good O I do not accept the above
BACK NEXT 5% complete R 2% complete
Figure 7.3: Paired comparisons in the survey. Figure 7.4: Statement of consent in the survey.

The survey is divided in three different parts, each part corresponding to one of the char-
acters having 45 comparisons. Three Google Forms is created, and in the end of the first and
second part of the survey, a link was provided to the next part.

In order to avoid the test subjects from figuring out which settings the videos have in the
different characters, their namings are shuffled as summarized in Appendix B.

A pilot test was conducted to make sure that all videos could be played and all questions
were identical. The outcome of the pilot test was also to estimate the time for completion of
the whole test, so the test subject knows how much time he/she has to spend. The estimated

Page 58 of 91

7.4. Results

time for completion was approximately 1 hour, as also shown in Figure 7.4.

7.4 Results

Answers from each of the three parts in the survey are saved in a Google spreadsheet. An
example in Figure 7.5 shows the results of the first three comparisons for the first part in the
survey, i.e. the Cathrine character.

B c D B F e H 1 J

MGG i G o ' How vl ou et o v you o« G S SOOI

& 3 8 1 1 9

10
1
12
13
13
15

18
18
20

22
23
24
25

G W R @ R R R W R R W D e N e W R R
L N S P P RN AR
DWW W e N W e R W RN W e e W
MWW ;o s WS W W s Ww WM WLE R WS
B W W R @R R R R R W R N R W e e R
G W R W W N NN S W W NN S e N e WL E
MWW ww s o W e R W W e RN R W e R

Figure 7.5: Example of the results of three comparisons presented in a spreadsheet.

Every comparison has three questions, which corresponds to three columns and row 2
shows the two videos which are compared. The first column is the rating for the preference
between the two videos presented to the test subject, the second column is the rated realism
for the top video and the third column is the rated realism for the bottom video. This is
repeated for each comparison which are divided by colours as shown in Figure 7.5.

The mean and standard deviation of the ratings for the perceived realism is found by
gathering the data for each individual video. So for example the data for video in 1 in
Figure 7.5 are gathered from column G and L

In order to do the same for the preference the data is firstly divided so that 1 corresponds
to low preference and 5 corresponds to a high preference. So the first answer in row 4 in
the first comparison in Figure 7.5, shows a preference of 2, which means a slightly higher
preference to the top video than the bottom video. The top video has therefore a preference
of 4 and the bottom video has a preference of 2. This means the preference for the bottom
video corresponds to the results in the first column, and the preference for the top video
corresponds to results in first column, where each answer is subtracted with six.

The results for each character is summarized in Table 7.3 to Table 7.5, and the mean and
standard deviation for the preference and perceived realism are illustrated in Figure 7.6 to
Figure 7.11.

Page 59 of 91

Chapter 7. User Study

Results - Character 1

o B 0% #f Preference Realism

1 - - - 2.77 (£0.98) 3.10 (£1.08)
1 - - 5 3.29 (+0.79) 3.71 (+0.81)
1 1 - - 2.99 (£0.99) 3.24 (£1.04)
1 1 - 5 3.29 (+0.85) 3.67 (£0.87)
1 1 - 5* 2.39 (4+0.98) 2.78 (£0.96)
1 - 1 5 3.23 (4+0.85) 3.59 (+0.87)
1 1 1 5 3.33 (£0.85) 3.70 (£0.83)
- 1 - 5 3.33 (+0.82) 3.67 (+0.83)
- - 1 5 2.14 (£1.11) 2.35 (£1.20)
- 1 1 5 3.25 (+0.86) 3.69 (£0.90)

Table 7.3: Results for the Cathrine character.
Results - Character 2

o B 0% #f Preference Realism

1 - - - 2.51 (£0.86) 3.11 (£0.88)
1 - - 5 3.34 (+0.67) 3.93 (+0.79)
1 1 - - 2.52 (£0.78) 3.04 (+0.95)
1 1 - 5 3.37 (£0.69) 3.98 (+0.80)
1 1 - 5* 2.30 (+0.91) 2.87 (+1.06)
1 - 1 5 3.49 (£0.72) 3.97 (+0.86)
1 1 1 5 3.41 (£0.65) 3.94 (+0.76)
- 1 - 5 3.27 (+0.67) 3.89 (+0.81)
- - 1 5 2.38 (£0.86) 3.01 (+£0.92)
- 1 1 5 3.41 (+0.72) 3.91 (+0.80)

Table 7.4: Results for the Marco character.
Results - Character 3

o B 0% #f Preference Realism

1 - - - 2.52 (+0.86) 2.67 (+0.86)
1 - - 5 3.66 (+0.86) 3.67 (+£1.03)
1 1 - - 2.42 (£0.83) 2.63 (+0.81)
1 1 - 5 3.66 (+0.80) 3.76 (+£0.94)
1 1 - 5* 2.08 (4+0.89) 2.37 (+0.86)
1 - 1 5 3.79 (£0.83) 3.88 (+£0.94)
1 1 1 5 3.51 (4+0.81) 3.65 (+0.93)
- 1 - 5 2.77 (£0.79) 3.05 (+0.89)
- - 1 5 2.78 (£0.85) 3.05 (+0.95)
- 1 1 5 2.81 (+0.79) 3.12 (+0.90)

Table 7.5: Results for the Leonardo character.

Page 60 of 91

7.4. Results

Character 1 Character 1

Preference
w
E—
Realism

1000
1005
1100
1105
1105*
1015
1115
0105 |
0015
0115
1000
1005
1100
1105
1105*
1015
1115
0105 1
0015
0115

Figure 7.6: Test results for the preference for the Figure 7.7: Test results for the perceived realism for
Cathrine character. the Cathrine character.

5 i Ch§ract§r 2 ‘ 5 i Chéractgr 2 ‘

4 4

o |

Preference
) w
—_—
[—
—_—
—
—_——
—
—
J—
> |
—
Realism
N

1000
1005
1100
1105
1105*
1015}
1115
0105 |
0015
0115
1000
1005
1100
1105
1105* |
1015
1115}
0105
0015
0115

Figure 7.8: Test results for the preference for the Figure 7.9: Test results for the perceived realism for
Marco character. the Marco character.

7.4.1 Discussion of Results

The results show that the animation based on alpha blending was rated as one of the lowest
for all three characters, and this is followed by the transitioning with no animation, which
also scored a low preference and perceived realism. As an example, the transition between
two first motions for the Leonardo character using the skeleton and depth information with
no animation is shown in Figure 7.12, where the transition is done between frame 491 and
376, which shows a difference in shape, and therefore creates a jump in the output video.

Using 5 frames based on alpha blending with the same similarity settings instead, creates
a unrealistic transition, which is shown in Figure 7.13, whereas the animation based on optical
flow, shown in Figure 7.14, creates a much smoother transition with no blur.

Interestingly, the transitions with animation based on optical flow using only the colour
data in the similarity measure, received a very low score, and for the Cathrine character, it
even got the lowest score. Comparing these transitions with the transitions where the skeleton
is added, is shown in Figure 7.15, where they both have the same target frame, but different
source frames.

The resulting animation for each of the settings are shown in Figure 7.16 and Figure 7.17,

Page 61 of 91

Chapter 7. User Study

Character 3 5 Character 3

Preference
~ w
—_—
—
[|
o
Realism
S w
1
—_—
—
— 5 |
o
—
—_—

1000
1005
1100
1105
1105+* |
1015
1115
0105 |
0015
0115
1000
1005
1100
1105
1105*
1015}
1115
0105 1
0015
0115

Figure 7.10: Test results for the preference for the Figure 7.11: Test results for the perceived realism
Leonardo character. for the Leonardo character.

Figure 7.12: Transition between frame 491 and 376 using the skeleton and depth information in the similarity
measure.

where using the colour information causes the transition to be unrealistic. This is due to the
fact that the pose between the source and target frame is too different, and the optical flow
therefore fails since it is restricted to a small difference in pose as mentioned in section 5.2.

The same issue is also visible for the Marco character, where the source and target frame
found only by the colour information are too different as shown in Figure 7.18. Adding the
skeleton information creates again a better match between the source and target frame.

The resulting animation between the source and target frames using the two different
parameter settings are shown in Figure 7.19 and Figure 7.20, where optical flow again fails to
estimate the flow correctly due to the large difference in pose.

The results also shows that using the skeleton information only or adding it to the colour
an depth information will give a better match in terms of difference in poses between a source
and target frame, which is why the the videos where the skeleton information are used re-
ceived higher scores for all characters. Since the skeleton only provides information about
the pose, whereas the colour information only provides information about the appearance, it
therefore makes sense that skeleton overrules the other similarity measures because the output
from transitioning using the similarity measures should be the best match in pose.

Adding colour or depth information to skeleton also showed to have small impact in the

Page 62 of 91

7.4. Results

Figure 7.13: Animation based on alpha blending between the source and target frame found by the skeleton and
depth information.

Figure 7.14: Animation based on optical flow between the source and target frame found by the skeleton and
depth information.

Figure 7.15: Two source frames with the same target frame (frame 554) found by two different similarity measure
settings. Top source frame (frame 65) is found using the colour information only, whereas the bottom source frame
(frame 88) is found using colour and skeleton information.

Page 63 of 91

Chapter 7. User Study

Figure 7.16: Animation based on optical flow between the source and target frame found by the colour information.

Figure 7.17: Animation based on optical flow between the source and target frame found by the colour and
skeleton information.

Figure 7.18: Two source frames with the same target frame (frame 224) found by two different similarity measure
settings. Top source frame (frame 168) is found using the colour information only, whereas the bottom source
frame (frame 173) is found using colour and skeleton information.

Page 64 of 91

7.4. Results

Figure 7.20: Animation based on optical flow between the source and target frame found by the colour and
skeleton information.

preference and the perceived realism in the videos for all characters. This is because the source
and target frames only vary by one or two frames, which in the end will create a very similar
transition. An example is given for the Cathrine character, where the transitioning frames
for using skeleton, shown in Figure 7.21, using skeleton and depth, shown in Figure 7.22,
and using skeleton and colour, shown in Figure 7.15, only vary with a few frames and the
difference in poses are still very small.

Figure 7.21: The source frame (frame 90) and tar- Figure 7.22: The source frame (frame 89) and tar-
get frame (frame 557) from only using the skeleton get frame (frame 556) from using the skeleton and
information. depth information.

Looking at the animation in Figure 7.14, Figure 7.17 and Figure 7.20, the transitions appear
smooth and the reason why they did not received an even higher score could be due to the
chosen number of intermediate frames.

When playing the video with the animation in Figure 7.17 for the Cathrine character, it
will create a small pause when the transition happens, since the movements before and after
the transition are performed quickly. This means the number of intermediate were in this
case set too high. On the other hand, the number of frames can also be set too low, which
will result in transitions that happen too fast where the change of pose and appearance in the
animation is noticeable, which is the case for the Marco character. So analyzing the motion
before and after the transition could help establishing an appropriate number of intermediate
frames, which could create a better animation with higher rate of realism.

Page 65 of 91

8. Evaluation

Having implemented an interactive animation control and evaluated the animation through a
user study, an overall conclusion is made followed by a discussion of the future work.

8.1 Conclusion

The conclusion is based on the problem statement:

How should an interactive animation with seamless transitions which uses captured sequences of a
person be constructed?

Three different people performing various motions were captured by acquiring the skele-
ton, depth and colour data from a second generation Kinect for Windows. The motions in
each capture were manually divided and inserted in a motion graph to assure only feasible
transitions between motions would happen.

Segmenting the colour and depth frames by learning a background model proved to be a
poor segmentation, thus another approach was suggested. Using the skeleton information to
establish the range of the body in the depth frame gave a segmentation where the person and
a part of the floor was left. The floor was then segmented by averaging a plane over the first
20 frames of a captured video and exclude points close to the plane in the rest of the video.
Additional noise left in the frames were removed by preserving only the biggest BLOB using
a 4-connectivity connected component analysis. This segmentation was visually evaluated to
be acceptable.

The best transition between a source and target motion was found by a similarity measure
by minimizing the Euclidean distance of a combination of skeleton, depth and colour data
between all possible frames. In order to create seamless transitions between motions, inter-
mediate frames were needed. The suggested approach was to create new poses by estimating
the dense optical flow between the transitioning frames in each direction and then move the
pixels step wise towards the flow and blend the frames from each direction.

An interactive animation control was implemented, where it is possible for a user to control
three different characters. Animations between the best transitions are made using a fixed
amount of intermediate frames from the suggested approach.

The suggested animation based on optical flow was compared with animations using a
direct alpha blending between the transitioning frames and not performing any animation.
This was evaluated through a web based user study between three different characters. The
results showed consistency over all characters where the suggested animation with different
similarity measure settings had a higher rate of preference and perceived realism than using
animations based on alpha blending and using no animation. The user study also showed

67

Chapter 8. Evaluation

possible ways for improving the suggested animation by establishing an adaptive number of
intermediate frames instead of being fixed.

8.2 Future Work

This section describes possible topics for future work, which could improve the video anima-
tion of people.

Looping motions

In order for a person to perform the same motion multiple times, looped motions, as illus-
trated in Figure 8.1, could be implemented. These loops could be created by minimizing the
error in the self-similarity matrix within that motion together with maximizing the length of
the looped sequence as in (Schodl et al., 2000). Looped motions could also be created by tran-
sitioning between the end and the start of a motion, but this of course requires that the end
and start frame are similar enough to perform a smooth transition.

Figure 8.1: Illustration of the motion graph for the Cathrine character with looped motions added.

Another possibility to determine the length of the looped motion could be if the user
determined the amount of time that the person has to perform the motion, e.g. Wave(10
seconds), Twist (3 seconds), clap (5 seconds). This information could then be used to create a
looped motion with a number of frames that corresponds to the set time.

Adaptive number of intermediate frames

The number of intermediate frames should not be fixed to the same number for all transitions,
but should vary according to the the speed of motion before and after transitioning. But
even if the motions before and after the transition are fast does not necessarily mean that a
small number of intermediate frames need to be added, because if the difference in pose are
large, i.e. above a threshold, more intermediate frames are needed. This means the similarity

Page 68 of 91

8.2. Future Work

between the source and target frame should also be taken into account to determine the
number of intermediate frames between a transition.

Having an adaptive number of intermediate frames, it would be interesting to see how
far the system could be pushed by minimizing the amount of intermediate frames and still
maintain a high perceived realism. This could be investigated by performing a user study
using the method of limits for determining a threshold (Poulsen, 2005).

Using this method, the test subjects would be presented with ascending or descending
number of intermediate frames in a video until their response change from unrealistic to
realistic. The output of this study would then be the smallest number of intermediate frames
needed in an animation, where the realism of the transition is still maintained.

Animation test

The user study performed in chapter 7 was made, where the different characters was pre-
sented on a black background. This could mean that small differences in the animation or
segmentation would be easier to spot than inserting the characters into another video with a
moving background where less focus is on the person. Inserting the same videos on a moving
background, would therefore be interesting to see if they provide higher rate of realism.

Automatically dividing motions

Manually dividing motions could with many videos be very time consuming, which is why a
method for performing this automatically could be investigated.

One way to divide the motions automatically could be by performing frame clustering
as in (Klaudiny et al., 2012), where similar successive frames has a low similarity measure
around the diagonal of the self-similarity matrix, which can be utilized by clustering. Each
cluster will then be equivalent to one motion as illustrated in Figure 8.2.

Figure 8.2: An example of how the automatic division should be done by using frame clustering marked by a red
square.

Page 69 of 91

Chapter 8. Evaluation

Automatically labelling motions

If a database with labelled motions were available, labelling motions from a new capture
automatically could then be possible. So whenever a new capture is done, the new motions
are held up against the database. Motions could then be automatically labelled if the new
capture have similar motions to the ones in the database, so frame clustering approach could
therefore also be performed here. If motions are very different from the ones in the database,
then the user should label the motion him-/herself and in that way adding new motions to
the database.

An example is given below, where the database is the evaluating dataset, where a person
is waving with left and right hand, and the new capture is the dataset for the Marco character,
where one of his motions is waving with left hand. Finding the similarity for, e.g. the skeleton
across all frames will result in a similarity matrix as shown in Figure 8.3, where the x-axis is
the frames the database and the y-axis is the new capture.

3.00

Figure 8.3: Similarity of the skeleton between the evaluating dataset (x-axis) and the dataset with the Marco
character (y-axis).

By thresholding the similarity measure in Figure 8.3 with 1.5, it is then visible that there is
a high similarity measure between the wave motion in the database and the wave motion in
the new capture shown in Figure 8.4. The other motions with the high similarity measure are
idle periods as shown in Figure 8.5.

Page 70 of 91

8.2. Future Work

Frame 310

Figure 8.4: Thresholded Figure 8.3, where the high similarity for the wave motion is highlighted with two similar
frames.

Frame 410

Figure 8.5: Thresholded Figure 8.3, where the high similarity for the idle period is highlighted with two similar
frames.

Page 71 of 91

A. Evaluation of Distances

Distance of 5 cm

Figure A.1: Frame 70 segmented Figure A.2: Frame 150 seg- Figure A.3: Frame 200 seg-
with a distance of 5 cm to the mented with a distance of 5 cm mented with a distance of 5 cm
plane. to the plane. to the plane.

Figure A.4: Frame 285 seg- Figure A.5: Frame 300 seg- Figure A.6: Frame 450 seg-
mented with a distance of 5 cm mented with a distance of 5 cm mented with a distance of 5 cm
to the plane. to the plane. to the plane.

Figure A.7: Frame 580 seg- Figure A.8: Frame 700 seg- Figure A.9: Frame 820 seg-
mented with a distance of 5 cm mented with a distance of 5 cm mented with a distance of 5 cm
to the plane. to the plane. to the plane.

Distance of 6 cm

Figure A.10: Frame 70 seg- Figure A.11: Frame 150 seg- Figure A.12: Frame 200 seg-
mented with a distance of 6 cm mented with a distance of 6 cm mented with a distance of 6 cm
to the plane. to the plane. to the plane.

Figure A.13: Frame 285 seg- Figure A.14: Frame 300 seg- Figure A.15: Frame 450 seg-
mented with a distance of 6 cm mented with a distance of 6 cm mented with a distance of 6 cm
to the plane. to the plane. to the plane.

Figure A.16: Frame 580 seg- Figure A.17: Frame 700 seg- Figure A.18: Frame 820 seg-
mented with a distance of 6 cm mented with a distance of 6 cm mented with a distance of 6 cm
to the plane. to the plane. to the plane.

Page 73 of 91

Appendix A. Evaluation of Distances

Distance of 7 cm

Figure A.19: Frame 70 seg- Figure A.20: Frame 150 seg- Figure A.21: Frame 200 seg-
mented with a distance of 7 cm mented with a distance of 7 cm mented with a distance of 7 cm
to the plane. to the plane. to the plane.

Figure A.22: Frame 285 seg- Figure A.23: Frame 300 seg- Figure A.24: Frame 450 seg-
mented with a distance of 7 cm mented with a distance of 7 cm mented with a distance of 7 cm
to the plane. to the plane. to the plane.

Figure A.25: Frame 580 seg- Figure A.26: Frame 700 seg- Figure A.27: Frame 820 seg-
mented with a distance of 7 cm mented with a distance of 7 cm mented with a distance of 7 cm
to the plane. to the plane. to the plane.

Page 74 of 91

Distance of 8 cm

Figure A.28: Frame 70 seg- Figure A.29: Frame 150 seg- Figure A.30: Frame 200 seg-
mented with a distance of 8 cm mented with a distance of 8 cm mented with a distance of 8 cm
to the plane to the plane to the plane

Figure A.31: Frame 285 seg- Figure A.32: Frame 300 seg- Figure A.33: Frame 450 seg-
mented with a distance of 8 cm mented with a distance of 8 cm mented with a distance of 8 cm
to the plane. to the plane. to the plane.

Figure A.34: Frame 580 seg- Figure A.35: Frame 700 seg- Figure A.36: Frame 820 seg-
mented with a distance of 8 cm mented with a distance of 8 cm mented with a distance of 8 cm
to the plane. to the plane. to the plane.

Page 75 of 91

Appendix A. Evaluation of Distances

Distance of 9 cm

Figure A.37: Frame 70 seg- Figure A.38: Frame 150 seg- Figure A.39: Frame 200 seg-
mented with a distance of 9 cm mented with a distance of 9 cm mented with a distance of 9 cm
to the plane. to the plane.. to the plane.

Figure A.40: Frame 285 seg- Figure A.41: Frame 300 seg- Figure A.42: Frame 450 seg-
mented with a distance of 9 cm mented with a distance of 9 cm mented with a distance of 9 cm
to the plane. to the plane. to the plane.

Figure A.43: Frame 580 seg- Figure A.44: Frame 700 seg- Figure A.45: Frame 820 seg-
mented with a distance of 9 cm mented with a distance of 9 cm mented with a distance of 9 cm
to the plane. to the plane. to the plane.

Page 76 of 91

Distance of 7 cm - Noise Removed

Figure A.46: Frame 70 seg- Figure A.47: Frame 150 seg- Figure A.48: Frame 200 seg-
mented with a distance of 7 cm mented with a distance of 7 cm mented with a distance of 7 cm
to the plane and noise removed. to the plane and noise removed. to the plane and noise removed.

Figure A.49: Frame 285 seg- Figure A.50: Frame 300 seg- Figure A.51: Frame 450 seg-
mented with a distance of 7 cm mented with a distance of 7 cm mented with a distance of 7 cm
to the plane and noise removed. to the plane and noise removed. to the plane and noise removed.

Figure A.52: Frame 580 seg- Figure A.53: Frame 700 seg- Figure A.54: Frame 820 seg-
mented with a distance of 7 cm mented with a distance of 7 cm mented with a distance of 7 cm
to the plane and noise removed. to the plane and noise removed. to the plane and noise removed.

Page 77 of 91

B. Survey Video Namings

Shuffled video namings - Character 1

o B v #f Attachment name YouTube name

1 - - - testDir/cathrine/al_b0_g0_f0 characterl_dancing_cap6
1 - - 5 testDir/cathrine/al_b0_g0_f5 character]_dancing_cap3
1 1 = = testDir/cathrine/al_b1_g0_f0 characterl_dancing_cap9
1 1 - 5 testDir/cathrine/al_b1_g0_f5 characterl_dancing_cap7
1 1 - 5% testDir/cathrine/al_b1_g0_f5Blend characterl_dancing cap10
1 - 1 5 testDir/cathrine/al_b0_g1_f5 characterl_dancing_cap8
1 1 1 5 testDir/cathrine/al_b1l_gl {5 characterl_dancing_capb
- 1 - 5 testDir/cathrine/a0_b1_g0_f5 characterl_dancing_cap1
- - 1 5 testDir/cathrine/a0_b0_g1_f5 characterl_dancing_cap4
- 1 1 5 testDir/cathrine/a0_b1_gl_f5 characterl_dancing_cap2

Table B.1: The namings of the survey videos for the Cathrine character in the attachment and the shuffled namings

on YouTube. *Blended frames.

Shuffled video namings - Character 2

o B 0% #f Attachment name YouTube name

1 = = = testDir/marco/al_b0_g0_f0 character2_random_cap10
1 - - 5 testDir/marco/al_b0_g0_f5 character2_random_cap3
1 1 - - testDir/marco/al_bl_g0_f0 character2_random_cap2
1 1 - 5 testDir/marco/al_b1l_g0_f5 character2_random_cap6
1 1 - 5% testDir/marco/al_b1l_g0_f5Blend character2_random_capl
1 - 1 5 testDir/marco/al_b0_gl_f5 character2_random_cap8
1 1 1 5 testDir/marco/al_bl_gl_f5 character2_random_cap?7
- 1 5 testDir/marco/a0_b1_g0_f5 character2_random_cap4
- 1 5 testDir/marco/a0_b0_g1_f5 character2_random_cap9
- 1 1 5 testDir/marco/a0_b1_gl_f5 character2_random_cap5

Table B.2: The namings of the survey videos for the Marco character in the attachment and the shuffled namings

on YouTube. *Blended frames.

78

Shuffled video namings - Character 3

% B 0% #f Attachment name YouTube name

1 - - = testDir/leonardo/al_b0_g0_f0 character3_goalie_cap9
1 - - 5 testDir/leonardo/al_b0_g0_f5 character3_goalie_capl
1 1 - - testDir/leonardo/al_bl_g0_f0 character3_goalie_cap2
1 1 - 5 testDir/leonardo/al_bl_g0_f5 character3_goalie_cap5
1 1 = & testDir/leonardo/al_b1l_g0_f5Blend character3_goalie_cap4
1 - 1 5 testDir/leonardo/al_b0_g1_f5 character3_goalie_cap3
1 1 1 5 testDir/leonardo/al_bl_gl_f5 character3_goalie_cap?7
- 1 5 testDir/leonardo/a0_b1_g0_f5 character3_goalie_cap6
- 1 5 testDir/leonardo/a0_b0_g1_f5 character3_goalie_cap10
- 1 1 5 testDir/leonardo/a0_bl_gl_f5 character3_goalie_cap8

Table B.3: The namings of the survey videos for the Leonardo character in the attachment and the shuffled
namings on YouTube. *Blended frames.

Page 79 of 91

C. Self-similarity Matrices for the Test Datasets

Character 1

1.0
0.9
0.8
H0.7
10.6

405

0.4

0.3

0.2

0.1

0.0

0 100 200 300 400 500) 600 700 800

Figure C.1: The self-similarity matrix of the skeleton data for the Cathrine character mapped from similar, dark
blue, to dissimilar, red.

80

1.0

0.8

—10.7

10.6

405

0.4

0.3

0.2

0.1

800
= .
0 100 200 300 400 500 600 700

0.0

Figure C.2: The self-similarity matrix of the depth data for the Cathrine character mapped from similar, dark blue,
to dissimilar, red.

Page 81 of 91

Appendix C. Self-similarity Matrices for the Test Datasets

1.0

0.9

0.8

—10.7

0.6

40.5

104

0.3

0.2

0.1

sl e

= . 0.0
0 100 200 300 400 500 600 700 800

Figure C.3: The self-similarity matrix of the colour data for the Cathrine character mapped from similar, dark
blue, to dissimilar, red.

Page 82 of 91

Character 2

1.0

0.9

0.8

—10.7

0.6

405

104

0.3

0.2

0.1

0.0

0 100 200 300 400

Figure C.4: The self-similarity matrix of the skeleton data for the Marco character mapped from similar, dark blue,
to dissimilar, red.

Page 83 of 91

Appendix C. Self-similarity Matrices for the Test Datasets

10

0.9

0.8

H0.7

0.6

40.5

0.4

0.0

0 100 200 300 400

Figure C.5: The self-similarity matrix of the depth data for the Marco character mapped from similar, dark blue,
to dissimilar, red.

Page 84 of 91

100

200

0.5

0.4

300

0.3

0.2

400 0.1

0.0

0 100 200 300 400

Figure C.6: The self-similarity matrix of the colour data for the Marco character mapped from similar, dark blue,
to dissimilar, red.

Page 85 of 91

Appendix C. Self-similarity Matrices for the Test Datasets

Character 3
0 T . 1.0
0.9
100
0.8
200 F .
H0.7
300 40.6
40.5
400
40.4
500 F
0.3
600 0.2
0.1
700 » . - - o]
e =] r 1]
- 0.0
0 100 200 300 400 500 600 700

Figure C.7: The self-similarity matrix of the skeleton data for the Leonardo character mapped from similar, dark
blue, to dissimilar, red.

Page 86 of 91

0.6

300

405

400

0.4

0.3

0.2

600

0.1

0.0

0 100 200 300 400 500 600 700

Figure C.8: The self-similarity matrix of the depth data for the Leonardo character mapped from similar, dark
blue, to dissimilar, red.

Page 87 of 91

Appendix C. Self-similarity Matrices for the Test Datasets

200

0.6

300

405

400

0.4

500
0.3

0.2

0.1

0.0

0 100 200 300 400 500 600 700

Figure C.9: The self-similarity matrix of the colour data for the Leonardo character mapped from similar, dark
blue, to dissimilar, red.

Page 88 of 91

D. Structure of Attachments

The structure of the attachments is listed below:

A - Source Code
B - User Study Videos

C - User Study Results

89

Bibliography

Chris Bahnsen. Kinectv2recordings - data acquisition for the kinect v2 for windows.

Chris Budd, Peng Huang, Martin Klaudiny, and Adrian Hilton. Global non-rigid alignment
of surface sequences. International Journal of Computer Vision, 102(1-3):256-270, 2013.

Dan Casas, Margara Tejera, Jean-Yves Guillemaut, and Adrian Hilton. 4d parametric mo-
tion graphs for interactive animation. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, pages 103-110. ACM, 2012.

Dan Casas, Margara Tejera, Jean-Yves Guillemaut, and Adrian Hilton. Interactive animation
of 4d performance capture. Visualization and Computer Graphics, IEEE Transactions on, 19(5):
762-773, 2013.

Dan Casas, Marco Volino, John Collomosse, and Adrian Hilton. 4d video textures for inter-
active character appearance. In Computer Graphics Forum, volume 33, pages 371-380. Wiley
Online Library, 2014.

OpenCV 24.13.0 documentation. Motion analysis and object tracking. URL
http://docs.opencv.org/2.4/modules/video/doc/motion_analysis_and_
object_tracking.html#calcopticalflowfarneback.

Gunnar Farnebdck. Two-frame motion estimation based on polynomial expansion. In Image
analysis, pages 363-370. Springer, 2003.

Philipp Fechteler, Wolfgang Paier, and Peter Eisert. Articulated 3d model tracking with on-
the-fly texturing. In Image Processing (ICIP), 2014 IEEE International Conference on, pages
3998-4002. IEEE, 2014.

Peng Huang, Adrian Hilton, and Jonathan Starck. Shape similarity for 3d video sequences of
people. International Journal of Computer Vision, 89(2-3):362-381, 2010.

Martin Klaudiny, Chris Budd, and Adrian Hilton. Towards optimal non-rigid surface tracking.
In Computer Vision-ECCV 2012, pages 743-756. Springer, 2012.

George A. Gescheider Lawrence E. Marks. Psychophysical Scaling, volume 4. 2002.

Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with an appli-
cation to stereo vision. In IJCAI volume 81, pages 674-679, 1981.

Microsoft. Kinect hardware, a. URL https://developer.microsoft.com/en-us/
windows/kinect/hardware.

Microsoft. Skeletal tracking, b. URL https://msdn.microsoft.com/en-us/library/
hh973074.aspx.

90

Bibliography

Microsoft. Microsoft to consolidate the kinect for windows ex-
perience around a single sensor, 2015. URL https://
blogs.msdn.microsoft.com/kinectforwindows/2015/04/02/
microsoft-to-consolidate-the-kinect-for-windows—-experience—-around-a-single-ser

Thomas B Moeslund. Introduction to video and image processing: Building real systems and appli-
cations. Springer Science & Business Media, 2012.

Torben Poulsen. Psychoacoustic Measuring Methods. Version 2.2. 2005. 31230-08.

Arno Schodl, Richard Szeliski, David H Salesin, and Irfan Essa. Video textures. In Proceedings
of the 27th annual conference on Computer graphics and interactive techniques, pages 489-498.
ACM Press/Addison-Wesley Publishing Co., 2000.

Andy Serkis. Gollum in the lord of the rings - performance capture. URL http://www.
serkis.com/performance—-capture-gollum.htm.

Jonathan Starck and Adrian Hilton. Surface capture for performance-based animation. Com-
puter Graphics and Applications, IEEE, 27(3):21-31, 2007.

Zhengyou Zhang. Microsoft kinect sensor and its effect. MultiMedia, IEEE, 19(2):4-10, 2012.

Page 91 of 91

