
Tool for Transitioning from Scratch to Python

Group DPT106F16

1 February - 13 June

Date Henrik Vinther Geertsen

Department of Computer Science
Computer Science
Selma Lagerlöfs Vej 300
Telephone 99 40 99 40
Telefax 99 40 97 98
http://cs.aau.dk

Title:

Tool for Transitioning from Scratch to
Python

Project period:
1 February - 13 June

Project group:
DPT106F16

Participants:
Henrik Vinther Geertsen

Supervisor:
Bent Thomsen

Pages: 43

Appendices: 0

Copies: 0

Finished: 13 June 2016

Abstract:

Research in the area of novice programming
has existed for a long time. One thing that
is sometimes overlooked, is that the novices
has to transition to a more powerful language.
Depending on the tools and languages cho-
sen by the novice, it might be easier said than
done. This report tries to address some of these
problems, by presenting a tool which can help
a novice transition from a Scratch to Python.
The target language was chosen because of its
similarities of programming constructs com-
pared to Scratch. The idea behind the tool is to
evolve blocks inspired by Scratch so that they
gradually becomes more like Python syntax.
As the final evolution, each block becomes a
new block where the user can write code them-
selves. Both the design and implementation is
described. In the end a small pilot experiment
is performed to see if it has any merit where I
conclude that it has potential.

The content of this report is publicly available, publication with source reference is only allowed with authors’ permission.

http://cs.aau.dk

Preface

The following report was written by Henrik Geertsen in accordance with the conclusion of the tenth
semester of the Computer Science Master Program at Aalborg University.
I would like to thank Bent Thomsen for being a great supervisor throughout the development of
this project. Additionally, I would like to thank Nanna and Christian for their participation in my
experiment.

i

Contents

Preface i

1 Resume 1

2 Introduction 3

2.1 Initial Questions . 3

I Problem Analysis 4

3 Earlier Work 5

3.1 Earlier Work, Overview . 5

3.2 Earlier Work, Analysis . 6

3.2.1 Problems with Programming . 6

3.2.2 Other Problems . 7

3.3 Earlier Work, Language Comparison . 7

3.4 Discussion on Earlier Work . 8

4 Related Work 10

5 Programming Languages 13

5.1 Scratch . 13

5.1.1 Environment . 13

5.1.2 Language Properties . 14

5.2 Languages . 14

5.2.1 Java/C# . 14

5.2.2 C/C++ . 14

5.2.3 Python . 15

iii

6 Problem Formulation 16

II Problem Solution 17

7 Concept and Inspiration 18

7.1 Concept . 18

7.2 Inspiration . 19

8 Design 20

8.1 Design - Graphical User Interface . 20

8.2 Design - Blocks . 21

8.2.1 I/O . 22

8.2.2 Operators . 22

8.2.3 Data . 23

9 Implementation 24

9.1 Classes . 24

9.2 BlockCreation . 25

9.3 BlockMove . 27

9.4 BlockEastWest, BlockNorthSouth, BlockCenter and BlockContainer 28

9.5 Blocks . 30

9.6 BlockSpawner . 30

10 Experiments 32

10.0.1 Participants . 32

10.0.2 Procedure . 32

10.0.3 Tasks . 33

10.1 Results . 36

III Conclusion 37

11 Conclusion and Discussion 38

12 Future Work 40

iv

Bibliography 42

v

vi

Chapter 1

Resume

Denne rapport omhandler et værktøj som skal hjælpe nye programmøre med at transitionere fra nybeg-

ynderværktøjer og sprog, til mere kraftfulde programmerings sprog. Rapporten starter med at beskrive

tidligere arbejder som jeg har været en del af. I det kapitel kommer jeg ind på at programmering er

begyndt at blive en del af den danske folkeskoles obligatoriske emner. Jeg kommer også ind på hvordan

danmark har håndteret det, og i det tidligere arbejde, kom vi frem til at det ikke stor godt til. Udover det,

bliver en analyse beskrevet som ender ud i en diskussion om at Scratch er et ret godt værktøj at starte ud

på som nybegynder.

Næste kapitel handler om relateret arbejder andre har lavet inden for samme område. Der bliver blandt

andet beskrevet en artikel hvori en taxonomi er definieret, for sprog og værktøjer for nybegyndere. Dette

er efter fulgt af to beskrivelser af artikler som omhandler det at transitionere til et kraftigere sprog. Til

sidst bliver der sluttet af med to artikler hvor der bliver argumenteret for “simple” sprog of hvad der er

godt ved at starte med dem.

Derefter er der en analyse af forskellige programmeringssprog, hvor jeg kommer frem til at Python er et

godt sprog transitionere til hvis man kommer fra Scratch.

Den første del af rapporten bliver afsluttet med at formulere en problem stilling, som jeg forsøger at løse

i de senere kapitler.

Anden del af rapporten begynder med et kapitel om konceptet og inspirationen bag den løsning jeg laver.

Inspirationen kommer blandt andet fra det relaterede arbejde jeg har undersøgt, et værktøj som hedder

DrRacket og Scratch. Konceptet er at min løsning skal fungere ligesom Scratch, med klodser som man

forbinder til hinanden for at lave kode. De klodser skal så kunne udvikle sig jo bedre man bliver til at

programmere, og så skal de transformere sig længere og længere over i Python syntaks.

Dette bliver efterfulgt af et kapitel om hvordan blokkende er designet, og hvordan jeg har tænkt mig

at de skal udvikle sig. Derefter kommer et kapitel om hvordan programmet er implementeret med en

beskrivelse af kode og hvordan programmets klasser hænger sammen.

I slutningen af anden del af rapporten, bliver mit eksperiment præsenteret, hvor jeg har haft to personer

1

til at prøve min løsning.

Til sidst i rapporten er konklusionen hvor jeg konkluderer at der er potentiale i sådan et værktøj.

2

Chapter 2

Introduction

Programming is becoming a more and more relevant when it comes to children. Some countries have

even begun to add programming to the school curriculum. A lot of research have been done in the

area of programming for children and novices in general, trying to lower the entry bar to the world of

programming making it more accessible. This has resulted in a lot of novice friendly programming

languages and tools. Although, many of them does not necessarily lead novices on the way to more

powerful programming languages. The ones that do runs the risk of being to hard for a novice, compared

to other tools which are further away from general purpose programming languages potentially making

them more suitable for novices.

This could potentially result in a lot of novices who do not know what to do after they are finished

with a novice friendly environment or language. It might seem to daunting to transition directly into a

commercial general purpose programming language like Java. There does not seem to be a go-to tool

for novices when they wish to transition into a more powerful language compared to what they already

know. This leads to the following inital questions:

2.1 Initial Questions

• What can be found in the literature regarding novices transitioning from a beginners programming

language, i.e. Scratch to a general purpose programming language?

• What is a fitting general purpose programming language to learn when already knowing Scratch?

– How well do they translate into a block structure?

3

Part I

Problem Analysis

4

Chapter 3

Earlier Work

The work done in this report is a continuation of work reported in [1]. The project was done by the author

of this report together with Jais Morten Brohus Christiansen, Svetomir Kurtev and Tommy Aagaard

Christensen. This chapter provides a summary of that earlier work to add context to the work done in

this report.

3.1 Earlier Work, Overview

The overall goal of the report was to analyze the field of novice programming and locate problems within

that field. The report itself was split into two halves. The first half was the analysis of the field and the

second half contained a language comparison of three novice programming languages/environments.

The goal of the last half was to make a deeper analysis of specific novice programming languages

based on some criteria and to compare them to each other based on those criteria. Both to get a better

understanding of what made the languages novice friendly and to find out if it made sense to use criteria

as a way of comparing novice programming languages.

The reason that the work was made is because programming has begun to be seen as an essential skill

for living in our modern digital society. This has been on the agenda a couple of times through out

history but it has never really caught on. However, with the arrival of educational visual- and block-

based programming languages, such as Scratch, and generally a larger amount of educational tools for

programming, it has become more feasible than ever. This is also why more countries are beginning to

make programming a mandatory subject in primary schools. It is therefore important to get an under-

standing of what is happening in the area of novice programming, as it is exposed to a larger amount of

people because of it being mandatory.

5

3.2 Earlier Work, Analysis

Through the analysis a couple of problems was identified, both inherent to some forms of programming

but also in the implementation of programming in school curricula.

3.2.1 Problems with Programming

The main problem identified with programming for novices was writing the basic syntax. This consists

of brackets, semicolons, commas, and other such symbols, representing control for the program. A lot

of educational languages was analyzed and none of the text-based ones addressed this problem. Many

visual-based programming languages do not have this problem, as they use some kind of visual aid to

program e.g. blocks, which limits or nullifies the need to write code at all.

Another problem identified was which paradigm to use in educational programming languages and tools.

Imperative programming is often straightforward in its nature, but its connection to real world problem

solutions can be hard to grasp for novices. Object oriented programming is easier for this, as the novice

can use objects as models for their problems. Although, this introduces a bigger overhead in learning, as

it adds more syntax and semantics and more principles to get accustomed to. Functional programming

is also a possibility, but as it is similar to functions in mathematics in its concepts it can be hard to teach

to novices e.g. in primary school, who has not yet been introduced to those concepts.

As stated earlier some educational programming languages and tools was analyzed, these were split

into three categories being; Educational text-based programming languages and tools, educational tools

for general purpose programming languages and visual-based programming environments. The first

category contained:

• Smalltalk: It is one of the first dedicated languages for educational purposes.

• Turtle Programming: The first language which contained constructs for turtle programming was

LOGO. Constructs for it has since been part of a large amount of different educational tools, even

newer ones.

• Small Basic: It is one of the only, currently maintained, text-based programming languages which

has the specific purpose of teaching programming to novices to then be thrown away by them and

be replaced by a general purpose programming language.

The second category contained:

• BlueJ: It uses Java as its language and provides an environment which focuses on the object

oriented aspect of the language.

• Dr. Racket: It is an IDE for the language Racket. Its main feature is that it can use subsets of the

language to control which features of the language a novice has access to.

6

The last category contained:

• Scratch: It is block-based and is, in essence, a 2D game engine.

• Alice: It is block-based and a 3D animation engine.

3.2.2 Other Problems

Problems regarding the implementation of programming in school curricula was also found. Three

countries was analyzed; Denmark, the United Kingdom and the United States of America. It was found

that the UK had implemented it well, educating teachers and hiring people from organizations that

already taught programming to novices as teachers. Denmark on the other hand have made programming

mandatory, but has not allocated additional resources to teaching teachers or hiring people who already

has experience. They expect the individual teachers to teach themselves the subject, to then teach the

students. Herein lies the problem that the students of those teachers will possibly inherit bad habits

and misunderstandings which can affect them later on. The US has compromised in the sense that they

recognize the need for programming in schools, but were not willing to spend the money on educating

the teachers like in the UK, so they chose not to make it mandatory. Instead they are preparing their

educational system in smaller steps for making it mandatory in the future.

3.3 Earlier Work, Language Comparison

In the Language Comparison part of the report, three educational languages and environments was

analyzed. The three was: BlueJ, Dr. Racket and Scratch. It was carried out as a subjective evaluation

by the authors, with the intention of understanding the novice approach to programming. The approach

that was taken in evaluating the three, was:

1. Choosing and defining criteria for the foundation of the evaluation

2. Create tasks which must be implemented in all three languages

3. Evaluate how the language fits the criteria based on the tasks

4. Comparison of the three languages based on their criteria evaluation

The criteria used for the evaluation is shown in the following list, but with most of their definitions

removed because a general notion of what they mean is enough for the context of this section (For more

details see [1]).

• Readability: How easy code is to read and understand

• Writability: The ability to translate thoughts into code

7

• Observability: The level of feedback gained for a better understanding of how the code affects the

project

• Trialability: The level of possibility for trial and error through coding

• Learnability: The ease of learning the language

• Reusability: The level of possibility for reusing code through abstraction

• Pedagogic Value: The ease of which one can go from the learned language to a different one

• Environment: The usability of the environment

• Documentation: The amount of documentation, as well as the informative value of this

• Uniformity: The consistency of appearance and behavior of language constructs

There was four tasks for the evaluation, one where a number had to be added to every second element

in a list, a number guessing game, hangman and the Fibonacci sequence. Together with the criteria they

founded the basis of the evaluation.

The results that was found by doing the evaluation was that Scratch was ahead of the others in most of

the criteria. For a novice it is easier to read as it resembles a natural language more than the others.

It also seemed as if it would be easier to translate thoughts to code in Scratch for a novice because of

how the blocks interact. It is easy to do trial and error in Scratch, because it has a functionality where

one can execute a block of code, without having to run the whole program. It is also possibly easier

to learn, as all the functionality is presented through the environment, whereas in the environments you

have to know what you need before you can use the functionality. Regarding observability, reusability

and uniformity it was evaluated worse than the others. Each of the three languages a good pedagogic

value in different ways, which resulted in a tie.

3.4 Discussion on Earlier Work

A lot of educational languages and tools was researched during the earlier work. The ones that made it

was because they were found subjectively significant in some way. The three chosen for the experiment

seemed at the time as good candidates to represent their respective paradigm. From all the research

and through doing the earlier work, Scratch seems to be a very good candidate for a first language,

especially for younger novices. The reasons are the fact that it fits a mental model a lot of children are

already familiar with if they have played with toys such as LEGO. It is accessible in the sense that it fits

a large audience because there is room for everyone, if one likes to draw then one can go far with the

sprites and a little bit of programming. If one wants to go deeper into the more technical part, one can

use sprites provided by the Scratch website and focus entirely on the programming. At last, it is also

motivating because of a lot of fun can be had both in creating games but also socially, e.g. one can ask

others to try a created game and get a conversation going with those people.

8

One thing to keep in mind, is that when talking about programming in a primary school setting, the goal

is for the students to learn computational thinking and not to program in and of itself. Programming is

a tool used to teach that skill to the students. This is an important distinction because not all students

are going to end up having any use for programming itself, but computational thinking is a good way of

thinking to know for everyone. Here, again, Scratch is well fitting because of its use of the LEGO model

and its verbosity. This results in a language that is visually easy to follow. If one student just follows

what the teacher says and reads what they do, it could be possible for them to obtain the computational

thinking skill, without having to write a single line of code. All in all, Scratch is a good starting point

for learning computational thinking and programming.

9

Chapter 4

Related Work

Research done in the area of novice programming have been around for some time, but research specif-

ically aimed at the transition from visual-based programming to text-based programming is relatively

limited. The reason for this is the fact that the focus has been on the novices and how to make it eas-

ier for them to learn programming [2]. Kelleher and Pausch, 2005 [2], presents a taxonomy of said

novice friendly programming languages and environments in their paper. They also present a long list

of novice friendly programming languages and environments and where they fit in the taxonomy ac-

cording to where the primary focus lies of the environment or language. Even though the languages and

environments are categorized according to their primary focus, many of them span multiple parts of the

taxonomy. It feels a bit like the more parts of the taxonomy a language or environment fits, the better

a novice friendly tool it is. As long as the parts the tool spans are integrated nicely with each other.

The paper was released in 2005 meaning that Scratch was not released when the paper was. If Scratch is

compared to the taxonomy as it is presented in the paper, it could nearly fit in every part of the taxonomy,

which indicates that it is a very good tool for novices.

One thing the authors touch on in their paper is that even though a lot of the challenges of programming

has been dealt with through the languages and environments, some still exists. Most of them however,

have done it in such a way that the novice has an easier time focusing on the logic and structures rather

than dealing with the syntax of the language. Some of them takes inspiration from commercial general

purpose programming languages to ease a possible transition to such a language. Others have taken an

approach where the constructs are more like natural language trying to make it easier to read by novices

possibly making it harder to transition. They state that a lot of research and development have been

focused on novices, but maybe its time to research and develop for the intermediates who have been

through the novice step. So they question what has to be done for the transition from a novice language

or environment to a commercial general purpose programming language.

Meerbaum-Salant et al. 2015 [3] have researched how students who previously have taken a course on

CS concepts with Scratch faired in comparison to students who had not, when learning either Java or

C#. 120 students participated and all of them was in the age range of 15 to 16 years old. They were split

between five different classes, where two consisted entirely of students who had not tried to program

10

before and the rest consisted of a mix between people who had and had not tried it before. The concepts

which was taught through the course was: variables, conditional execution, bounded repeated execution,

and conditional repeated execution. Both quantitative and qualitative approaches were employed, quan-

titative results from eight tests that was given to the students and qualitative results from observations

and interviews.

The quantitative results, after the first six tests, showed that the only concept were a significant differ-

ence was found between the two groups was for repeated execution (bounded and conditional) in favor

of the ones who had tried Scratch. After the eighth test a significant difference was only found at the

highest level of understanding concepts in favor of the experienced students.

The qualitative results showed that the experienced student had a familiarity with concepts which re-

sulted in them having an easier time recognizing and understanding what was going on. A minor prob-

lem related to this was found, since the experienced students only could relate concepts to how they used

them in Scratch, e.g. they saw variables as a means for counting points in a game.

Another result was that they found that the teaching process was shortened and that there was a reduction

in how hard it was for the teachers to teach a certain concept. Through interviews with the students they

found that the experienced ones were highly motivated which was confirmed through interviews with

the teachers, who also stated that they worked harder.

In the end, they concluded that there were not a significant difference in the grades between the par-

ticipants who knew Scratch and those who did not, but that knowing Scratch improves the learning of

difficult concepts.

Where the previous paper explored how students with experience in Scratch faired when learning a text-

based programming language, Matsuzawa et al. 2015 [4], tries to bridge the gap between going from

a block-based programming language directly to a text-based programming language. They do this by

introducing a system they call BlockEditor which can translate bidirectionally between Block (the block-

based programming language they use) and Java. They evaluate the system through an empirical study,

with 100 participating students not majoring in computer science. The study spanned over the course of

15 weeks, where a number of tasks were given to the students each weak. Each task fit into one of three

different categories; Block task, where they must use blocks to build a program, Java task, where they

must use Java to build a program and Any, where they can choose which one to use themselves.

They found that about 80 % of the students gradually migrated from BlockEditor to Java, 10 % rarely, if

ever, used BlockEditor and the last 10 % almost always used BlockEditor. They also observed that the

biggest migration happened when the students got a task where the solution was reaching 400 lines of

code, which became difficult to manage when using blocks to program.

They conclude that the results show that a block-based language can successfully act as scaffolding for

students learning a text-based programming language.

Where both of the aforementioned papers have been in the area of using a visual-based language as

a stepping stone, research have been done regarding using a “simple” general purpose programming

language as a stepping stone as well. Both L. Mannila et al. 2007 [5] and Radenski, 2006 [6] have done

research in this area and both uses Python as their simple language. Radenski uses Python in a CS1

setting and also proposes a way to make the CS1 course more attractive to people. The author chose

11

Python because of its simplicity compared to commercial languages. Java is used as an example of how

commercial languages can be to complex for novices because of it requiring everything to be enclosed in

a class. Which results in the exposure of a lot of unknown concepts to the novice. This can again result

in a lot of confusion for the novice for a long time, depending on when each concept is introduced.

All of this is not part of Python, which can be programmed without classes (or even functions), so it

makes educators able to focus on basic constructs in programming. Although the need for learning a

commercial language as they are used in the industry is recognized. This results in the proposal of

a “Python First, Java Second” approach to teaching, where Java is taught in the CS2 course. This is

proposed instead of using the “object-first” approach which has gained popularity among educators.

L. Mannila et al. compares the use of Python against Java in an introductory course in a high school

setting. They also follow some of the students that have learned Python into their time at university

where they are taught Java to see if knowing Python have caused them problems. They compared the

two languages by analyzing programs written by 60 students in total, 30 programs written in Java and 30

written in Python. They found that two of the 30 Python programs contained syntax errors compared to

Java where 19 was found. They also found 17 notable errors in regards to logic in the Python programs

and 40 in the Java programs. They argue that the difference in syntax errors is not a surprise as Python

is marketed as a language with a simple and clear syntax. They found the difference in the amount

of errors regarding logic more interesting. They hypothesize that because Java has such a verbose and

complex syntax, novices might get caught up in writing correct code to such an extent that the algorithm

becomes a secondary concern. The second part of the study was done by following up on eight students,

who was learning Java at the university. They where each had to translate a Python program to a Java

program, which was followed by semi-structured interviews. They found that the students did not have

a lot of problems with transitioning to Java, only the Java libraries such as I/O was found problematic.

Some of the students stated that the reason for a relative easy transition, was because they already knew

how to program, they just needed to learn the new syntax.

12

Chapter 5

Programming Languages

This chapter analyse which programming language(s) would be a natural text-based programming lan-

guage to transition to if one already knows Scratch. To do this, Scratch is described in the sense as to

how it differs from mainstream text-based programming languages such as C/C++, C#, Java and so on.

In the end, a discussion on a selection of mainstream text-based programming languages is presented

based on how well they cope with the differences compared to Scratch.

5.1 Scratch

Scratch is a visual- and block-based programming language and environment (henceforth, just lan-

guage). In that way it already differs a lot compared to a text-based programming language, but the

focus of this section is to determine specific features of the environment, which is not normally present

compared to using a text editor, and language specific properties. Scratch is can be seen as a game

engine and therefore contains elements specific to games. These are ignored to an extent to which it is

possible.

5.1.1 Environment

• Blocks in different categories. Because of these the user is always aware of what can be done,

which means they do not have to look “keywords” or functions up, they are readily available all

the time.

• The block structure itself, since the user is never in doubt about what block fits where.

• The user is able to execute individual collections of blocks, instead of compiling the whole pro-

gram to see if the piece works as it should.

• The user is able to get an idea of what a block do by its color coding.

• The current values of variables and lists can be shown in the interface without printing.

13

5.1.2 Language Properties

• It is weakly typed.

• Limited scope, a variable is either global or specific for a sprite, but variables can not be create in

e.g. a loop for then to disappear when the loop is exited.

• It is verbose. An example could be an assignment which would normally look something like

“x = 2”, whereas in Scratch it is “set x to 2”.

• It has events.

5.2 Languages

The languages discussed in this section are Java, C/C++, C# and Python1. All of these are viable choices,

e.g. Java has already been used for researching the transition as seen in Chapter 4.

None of the differences from the environment is applicable if one is only using a text editor to write code

in the mentioned languages, so the focus is on the language properties.

5.2.1 Java/C#

Java and C# are combined as they have a similar syntax in the eyes of a novice. The biggest difference

between these two languages and the rest is that the object orientation is far more prevalent. Both

requires that a class is present to get started, which might confuse a novice who only has experience

with Scratch because of the unknown keywords. This also provides a couple of extra layers of scope to

keep in mind and global variables is not necessarily intuitive to create, which might be a problem for

users who are used to using them.

They are both strongly typed languages and supports events, but that is a minor point as events might

not be nearly as useful for a novice when the game element is removed.

5.2.2 C/C++

Both of these are imperative in nature, in the sense that one is not required to use classes or to know

about them to start programming in these languages (only applicable to C++). They are strongly typed

and global variables are easy to create, as they are just variables outside of all brackets.

These two languages also have a similar problem as Java/C#, in the sense that they require a main

function to run, which again might confuse a user who has not seen a function before. There is also

the problem of prototyping, i.e. everything has to be declared before it is used, which might be pose a

problem for someone who is used to placing code where ever that person desires.
1As of the writing of this report they are the top five on the Tiobe index: http://www.tiobe.com/tiobe_index

14

5.2.3 Python

This language is imperative in the same sense as C++ is. It is also the only weakly typed language and

the only one which does not use brackets to indicate scope. It does not require a main function or a class

to get started. It has the same problem as C/C++ regarding prototyping.

15

Chapter 6

Problem Formulation

In Chapter 4, research done by Meerbaum-Salant et al. hinted at that students with and without experi-

ence with Scratch performed similarly at the end of a programming course where they were either taught

Java or C#. Although they found that the teaching process was shortened. Matsuzawa et al. successfully

made a system which could translate bidirectionally between a block-based programming language and

Java.

From L. Mannila et al. 2007 and Radenski, 2006, it was suggested that a novice should learn a “simple”

programming language before moving on to a commercial general purpose programming language. Both

used Python as their language of choise. If that principle is used in conjunction with what the other did,

learning chain, for learning programming, becomes Scratch->Python->Java or C#. With these results in

mind and the results found in Chapter 5, which supports the choise of Python, some problems can be

formulated:

• Can a system be created that gradually changes from a block-based programming to text-based

programming based on the user’s skill, without the need to choose between the two interfaces?

– Is it possible to make the block-based programming language with similar functionality as

Scratch?

– Is it possible to make that text-based programming language Python?

– Does it, in itself, shorten the teaching process further?

* What can be done to shorten it even further?

16

Part II

Problem Solution

17

Chapter 7

Concept and Inspiration

7.1 Concept

The idea for the solution is to create an environment which resembles Scratch as closely as possible and

then adding the additional functionality to gradually change from visual-based programming to text-

based programming. The solution presented in this report is a prototype of that, meaning that there are

some differences compared to Scratch and how it works. The reason for this is to get an idea about how

viable this kind of environment is in a learning setting, before implementing the full solution.

The core concept of the solution is to gradually “evolve” the different blocks into more detailed blocks

resembling the text-based language more and more. An example of this can be seen in Figure 7.1, where

a sketch of how adding elements to a list could evolve, going from how it looks in Scratch to blocks

representing Python syntax. Another element to notice in the figure is the final evolution where it turns

into a “custom line”-block. This is a evolution step that every block has. The “custom line”-block is a

block where the user can write their own line of code. This means that when a user have learned the

syntax for a functionality through its evolution, they can begin to write it themselves instead of dragging

and dropping blocks.

Figure 7.1: Sketch of block evolution.

When a block evolves it does not only change its resemblance to Python syntax, it is also split into

multiple blocks. This is done to force the novice to drag and drop each element that a full block is

made up of, to make them aware of each of those elements when it comes to writing the syntax by hand.

Beyond that, it is also intended to make it more cumbersome. The idea behind this is to give the user

an appreciation for the ability to write their own code when they gain access to the “custom line”-block,

which is hopefully a quicker way of creating code compared to dragging and dropping.

18

7.2 Inspiration

The inspiration for the solution described earlier comes from a couple of different places. The first one

is Scratch, both for its block design but also for one of its drawbacks. The drawback is the fact that it

becomes quite cumbersome to work with when one have a basic grasp on programming constructs. To

get a better understanding of different construct and how they interact with each other, one often have to

write relative large programs compared to making a sprite dance. This often results in the need of more

than a couple of variables. Working with more than a couple of variables in Scratch can get cumbersome

quickly, both from personal experience but also from observations done by Magnus Toftdal Lund from

Coding Pirates1. This is where the idea of a “custom line”-block come from, because it makes one able

to initialize variables through blocks instead of using the Scratch approach.

The second place is from Matsuzawa et al. 2015 [4], also presented in Chapter 4. They used a system

that can translate bidirectionally between block-based programming and Java. This gave the inspiration

for the final evolution of each block, before they evolve into a “custom line”-block, and how the block

should use and present the syntax of the target language, i.e. Python in this case. The reason for this

is the fact that switching between two environments seems unintuitive instead of having everything in a

single environment.

The third and last place is from DrRacket2. DrRacket includes “languages levels” where each language

level is a subset of the complete Racket language gradually introducing more advanced features until the

user has access to the complete language. This inspired the use of evolving blocks in the solution. The

reason for this is the fact that each language level takes the novice one step closer to the full language

where something similar is needed to get a user from Scratch to Python syntax.

1Coding Pirates is an organization where children can come and learn game programming through Scratch or Unity,
https://codingpirates.dk.

2https://racket-lang.org/

19

Chapter 8

Design

8.1 Design - Graphical User Interface

The graphical user interface of the environment is shown in Figure 8.11. In the top left part are two

buttons, “Run” and “Options”. “Run” executes the constructed program and “Options” opens a new

window where the evolution of all the blocks are set. Below is the text box which is handling the

program inputs and outputs. This is also the place where a warning is showed if there is an error in the

constructed code.

On the right hand side is the programming area, which is split into two parts. The left part is the area

where a user drags new blocks from and also chooses which category of blocks they want to have access

to at the moment. The category is chosen by clicking one of the four large square in the top of this area.

The right part is the construction area, where blocks are placed to create the program.

Even though the solution in this report is a prototype, the layout of the graphical user interface is aimed

to match the layout of Scratch as close as possible. Only four categories of blocks are available in this

environment compared to the ten in Scratch. This is because all the draw related blocks are not present

in the prototype. Because of the missing draw related blocks, the area which contains a canvas for sprites

in Scratch, have been replaced with a text box to give the user access to some kind of I/O.

One thing to notice is the distance between the left and right part in the programming area, which is

quite big in the screen shot. The reason for this is the fact that when a block is split into multiple blocks

each block is placed next to each other horizontally. An example of this is shown in Figure 8.2. This is

done so that a user is still able to see the syntax when programming, even if the block is evolved.
1The window is actually larger than depicted, but for the purpose of saving space it have been resized to only show the

essential parts

20

Figure 8.1: GUI of Scratch to Python environment.

Figure 8.2: Distance comparison between non-evolved block VS. evolved block.

8.2 Design - Blocks

There are three types of blocks overall. The ones which can connect to other blocks vertically, the ones

which can connect horizontally to other blocks and the ones which can be part of other blocks. An

example of this is shown in Figure 8.3. The “repeat”-block can only connect horizontally, the “input”-

block containing “10” can only connect vertically, and the “variable”-block with the variable called “x”

can only be part of other blocks. Scratch only has the first and third type of block, the second one is

inspired by how Blockly2 connects blocks horizontally.
2Blockly is a block-based language developed by Google, https://developers.google.com/blockly/.

21

Figure 8.3: Types of blocks (The orange is a variable called “x”).

8.2.1 I/O

There are three blocks in the I/O category. They are shown in Figure 8.4 together with their evolution

steps. The blocks in this category are the ones which differs the most from their Scratch equivalents.

The reason for this is the fact that Scratch uses its sprites to communicate with the user which is not

possible when there are no sprites. Hence, why they show the Python syntax from the start.

Figure 8.4: Evolution of I/O.

8.2.2 Operators

The block in this category can be seen in Figure 8.1, in the screen shot of the graphical user interface.

The evolution steps for the “+”-block is shown in Figure 8.5, and the same pattern is used for all of the

blocks in this category.

Figure 8.5: Evolution of operators.

22

8.2.3 Data

The blocks in this category also deviates a little from their Scratch equivalents. Scratch uses a drop down

list when selecting which variable the block should affect, whereas the blocks in this category accepts

a variable block instead. An example of this is shown in Figure 8.6. This is done to keep the blocks

consistent and to make it easier to split them into multiple blocks. The evolution steps for the blocks in

this category is shown in Figure 8.7.

(a) Variable assignment in Scratch. (b) Variable assignment in solution.

Figure 8.6: Example of difference in data blocks.

Figure 8.7: Evolution of data.

23

Chapter 9

Implementation

The implementation of the tool presented in this report is written in Python together with tkinter as the

GUI library. This chaper describes the classes and some of the code for the solution. All code that is

related to the appearance of blocks have been omitted, as it would take up to much space.

9.1 Classes

In Figure 9.1 a UML-inspired diagram can be seen which shows how the different classes used to create

“programming”-blocks and spawners are connected. The spawners are the blocks seen on the left side

of the line in the programming area of the graphical user interface. They have no functionality beyond

creating copies of themselves which can be used for coding.

There are some differences in the diagram compared to what would normally be in a UML diagram.

One difference is the boxes containing curly brackets. These represents all blocks in the solution which

derives from the class pointed at by the box. The reason for this is the fact that the amount of blocks is

to large to fit into the diagram. An example of a block in the “{Blocks connecting vertically}”-box is the

“print()”-block, or the “repeat”-block. An example of blocks in the “{Blocks connecting horizontally}”-

box are the “(”-block and “)”-block from when the “print()”-block is split into multiple blocks. Examples

of blocks in the “{Blocks connecting inside}”-box are all the blocks under the “Operators”-category.

Another difference is the “BlockSpawner”-box, as it is not a subclass to all other blocks. Instead its

superclass is dynamically chosen depending on what block the spawner, which is part of the “{Block

Spawners}”-box, has to spawn.

In addition to the classes presented in Figure 9.1 are two more classes which are essential. The “GUI”-

and the “BlockManager”-class. The “GUI”-class handles the graphical user interface of the program

and makes sure that the evolution of the blocks are at their correct stage. The “BlockManager”-class

handles the connection between blocks which are not yet connected.

24

Figure 9.1: UML-inspired diagram of the classes to create blocks.

9.2 BlockCreation

The “BlockCreation”-class initializes all variables that each of the three classes of blocks must have and

subscribes to the events which each of them has to listen for. It also contains the basic functionality for

drawing and maintaining the appearance of blocks. The one exception is drawing and maintaining the

fields where users can input their own values or place blocks of the “Blocks connecting inside”-type.

This is all handled by the “ValueField”-class.

As this class mainly deals with the appearance of blocks, most of its code is omitted as mentioned in

the introduction to this chapter. Even though this is the case, the class contains some important non-

appearance related elements as well. The first of which is presented in Listing 9.1. The listing presents

a part of the constructor for this class.

1 class BlockCreation:

2 def __init__(self, canvas, blockId, spawnPosX, spawnPosY,

isBlockContainer=False):

3 self.canvas = canvas

4 self.blockId = blockId

5 self.position = [spawnPosX, spawnPosY]

6 self.isBlockContainer = isBlockContainer

7

8 self.items = list()

9 self.bbox = list()

25

10

11 BlockManager.AddBlock(self.blockId, self)

12

13 self.canConnectSouth = False

14 self.connectedSouth = None

15 self.connectorPosSouth = None

16 ...

Listing 9.1: Partial constructor for the “BlockCreation”-class

The constructor does not contain the most exciting code, but knowing about it is needed when discussing

the other classes. Lines 3 through 9 as:

• canvas: Is a handle to the canvas, in the graphical user interface, where all the blocks are drawn

• blockId: Is the unique ID for the Block. This is used by the “BlockManager”-class to identify the

blocks from each other

• position: Is the coordinates to the block’s upper left corner.

• isBlockContainer: Determines if the block object is a block which can contain other blocks. If

it can, the southern connector has to be moved to accommodate for the visuals showing that the

block can contain other blocks

• items: Is a list of all the items that make up the block’s appearance, be it text-items, rectangle-

items or polygon-items. The only exception are the items which make up the value fields. They

are handled in their own class.

• bbox: Is a list that contains the coordinates to the bounding box of the block. These coordinates

are used to determine if two blocks are overlapping

The method call on line 11, adds a reference to the block itself together with its ID, so that the “BlockManager”-

class is aware about its existence. Lines 13 through 15 are all related to how the block can connect.

Each of the three variables exists in a north, east, west and value field-related version as well. The

“canConnect...”-variables are all set to false from the beginning, but are changed accordingly in the

subclasses. The “connected...”-variables are handles to the block which are connected to that direction.

Finally, the “connectorPos...”-variables contains the coordinates a block should move to/from depending

on the direction connected to.

The constructor itself does not call the draw method to draw the block. This is done by a call to the

“CreateBlock”-method. Its method signature is shown in Listing 9.2. The “master”-parameter is a

handle to the window in which the canvas lies. The “fillColor”-parameter determines the color of the

block. The rest of the parameters are used to determine which elements is and is not part of the block. As

an example if the method is called with (..., "", true, "+", true, ""), one gets the non-evolved “+”-operator

block, which can be seen on the left side in Figure 8.5.

26

1 def CreateBlock(self, master, fillColor, startText, addValueField1,

middleText, addValueField2, endText)

Listing 9.2: Signature of the “CreateBlock”-method

9.3 BlockMove

The “BlockMove”-class contains the basic functionality for moving blocks, where each subclass extends

that functionality further depending on the specific need for that subclass. The starting point for moving

happens when a user clicks on a block with their mouse. The method called when that happens is

presented in Listing 9.3. The “event”-parameter contains information about where on the canvas the

event happened. This information is saved on line 2 and 3 and is used later as a reference point for the

mouse position when moving. The “hasMoved”-variable is set to false, as the block has not yet moved.

The reason for this is the fact that a block should move before detaching from a connected block, not

just when it is clicked.

1 def OnObjectClick(self, event):

2 self.oldMouseX = event.x

3 self.oldMouseY = event.y

4 self.hasMoved = False

Listing 9.3: BlockMove OnObjectClick

After the user has clicked, the user can hold and drag the mouse to move the block around. The code for

that is presented in Listing 9.4. On line 4 and 5 the difference between the current mouse position and

the old mouse position is calculated to get the distance that a block has to move on the x- and y-axis to

follow the mouse cursor. On line 7 the “MoveDxDy”-method is called. This method moves every item

that is part of the block, updates the position of the block and makes sure that connected blocks follow

the moved block accordingly. On line 9 and 10 the current mouse position is saved to be used with the

next call to the method.

1 def OnObjectMove(self, event):

2 self.hasMoved = True

3

4 dx = event.x-self.oldMouseX

5 dy = event.y-self.oldMouseY

6

7 self.MoveDxDy(dx, dy)

8

9 self.oldMouseX = event.x

10 self.oldMouseY = event.y

Listing 9.4: BlockMove OnObjectMove

27

9.4 BlockEastWest, BlockNorthSouth, BlockCenter and BlockContainer

The “BlockEastWest”-, “BlockNorthSouth”- and “BlockCenter”-class are all structured the same way,

but with small differences in the code. Therefore, only code from one of these is presented and the

differences are pointed out. The first thing that is done in each class is to extend the “OnObjectMove”-

method from the “BlockMove”-class. The code extension from the “BlockEastWest”-class is presented

in Listing 9.5. To start with on line 2, the method is recalled to the superclass of the class to actually

move the block. The rest is related to attaching and detaching to other blocks. On line 4 and 5 the block

detaches from the block it is connected to if there is any. This is where the first difference is between

the three classes, as each of them checks different directions depending on their class. The “’Detach”-

method removes the connection between the current block and the block to which it is connected making

them both able to establish connections with other blocks in the future.

On line 7 all items which is overlapping with the bounding box of the block is found. This includes the

items which makes up the block as well. That is the reason why the conditions used on line 9 and 12 is

present. The “GetNumberOfItems”-method gets the number of items the block is made up of, including

those which make up the value fields if there are any. If there are any overlapping block, the block which

is currently being moved is moved to the front layer of the canvas, to avoid it disappearing behind other

blocks.

On line 12 it is also checked if the current block can connect to other blocks. Here is the second

difference between the three classes as each of them checks different directions. If the block can connect

in the specified direction and there are overlapping blocks, then a new set of overlapping blocks is found.

Instead of finding overlapping blocks based on the entire bounding box of the block, they are instead

found by using one of the edges of the block. The reason for doing this is to make it more precise to

choose which block to connect to for the user. The edge used to make the choosing more precise are

different in each of the three classes.

On line 14 and 16 the “isFit”-variable is set. The variable is used when the user releases the mouse

button. If the “BlockManager”-class determines there is a fit, then the variable is set to true, else false.

Additionally, if there is a fit, the “BlockManager”-class saves that internally and it can then be accessed

later if the user decides that the current block should connect to the current fit. Here can the last dif-

ference for this method be found for the three classes, as each of them uses a different version of the

“CheckFit...”-method.

1 def OnObjectMove(self, event):

2 super(BlockEastWest,self).OnObjectMove(event)

3

4 if self.connectedWest != None:

5 self.Detach

6

7 overlappers = self.canvas.find_overlapping(self.bbox[0],

self.bbox[1], self.bbox[2], self.bbox[3])

8

28

9 if len(overlappers) > len(self.GetNumberOfItems()):

10 self.PutOnTop()

11

12 if self.canConnectWest and len(overlappers) >

len(self.GetNumberOfItems()):

13 overlappers =

self.canvas.find_overlapping(self.bbox[0]-self.connectorPointOffset[1],

self.bbox[1],

self.bbox[0]-self.connectorPointOffset[1], self.bbox[3])

14 self.isFit = BlockManager.CheckFitEastWest(overlappers,

self, self.canvas)

15 else:

16 self.isFit = False

Listing 9.5: BlockEastWest, OnObjectMove

When the user is finished moving the block and releases the mouse button, the “OnObjectRelease”-

method is called. The method is presented in Listing 9.6. The first thing the method does is to check if

the block has been moved or clicked. If it has been clicked then nothing should happen and the method

returns. The rest of the method is executed if the current block has moved and there is something

overlapping with it which it can connect with. On line 6 the two blocks are connected coding wise and

on lines 8 through 11 the two blocks are connected visually.

1 def OnObjectRelease(self, event):

2 if not self.hasMoved:

3 return

4

5 if self.isFit:

6 self.Attach()

7

8 fromCoords = self.canvas.coords(self.connectorPosWest)

9 toCoords =

self.canvas.coords(self.connectedWest.connectorPosEast)

10

11 self.MoveDxDy(toCoords[0]-fromCoords[0],

toCoords[1]-fromCoords[1])

Listing 9.6: BlockEastWest, OnObjectRelease

The “BlockContainer”-class is derived from the “BlockNorthSouth”-class and it encapsulates other

blocks connected to it vertically. An example of this kind of block is the standard “repeat”-block. The

class itself adds functionality for creating and maintaining the visualization of the encapsulation of other

blocks. The “BlockContainerBottom”-class adds the visuals of the bottom to the “BlockContainer”-

class. It is also a connectible block in and of itself, which handles the blocks connected to the “Block-

Container” outside of its encapsulation.

29

9.5 Blocks

As all the classes for the different blocks follows the same structure, only one is presented in this section.

The block which presented is the non-evolved block for assigning a value to a variable and its code can

be seen in Listing 9.7. On the first line one can see which class it derives from. In this case it is the

“BlockNorthSouth”-class, but it depends on which direction the block has to connect. On line 5 and 6

the individual directions that the block should be able to connect in are set. The two variables in this case

makes sure that the block can connect to other blocks which has an available connection to the south and

other blocks can connect to its connection to the south. On line 8 the call to the “CreateBlock”-method

is made with the relevant parameter for this block specifically. The final part of the class contains the

code generation which is specific for each block.

1 class SetVar(BlockNorthSouth):

2 def __init__(self, master, canvas, blockId, spawnPosX, spawnPosY,

oldMouseX, oldMouseY, isBlockContainer=False):

3 super(SetVar, self).__init__(canvas, blockId, spawnPosX,

spawnPosY, oldMouseX, oldMouseY, isBlockContainer)

4

5 self.canConnectNorth = True

6 self.canConnectSouth = True

7

8 self.CreateBlock(master, "#EE7D16", "set", True, "to",

True, "")

9

10 def CodeGeneration(self):

11 code = ("\t"*self.GetNumberOfTabs()) +

self.valueField1.GetInput() + " = " +

self.valueField2.GetInput() + "\n"

12

13 if self.connectedSouth != None:

14 return code + self.connectedSouth.GenerateCode()

15

16 return code

Listing 9.7: SetVar

9.6 BlockSpawner

The “BlockSpawner”-class inherits from each block dynamically. The code is presented in Listing 9.8

where it can be seen that the class itself is wrapped in a function which has a parameter for the superclass

and returns the created class. The class overrides all move related functionality, as the spawner has to

stay in place. The interesting part happens on line 11 where it simulates a mouse click. The reason

for this is the fact that each block spawner which inherits from this class, spawns a block which it the

30

one the user actually want to move. The spawned block is spawned on top of the block spawner, which

makes the simulated click hit the new block and results in all the mouse movement being related to the

new block instead of the spawner. An example of this is presented in Listing 9.9, where the code for

the spawner which spawns the “SetVar”-block can be seen. Lines 5 and 6 are there to prevent that other

blocks can connect to the spawners.

1 def CreateBlockSpawner(base):

2 class BlockSpawner(base):

3 #def __init__(self, canvas, blockId, x, y,

isBlockContainer = False):

4 #super(BlockSpawner, self).__init__(canvas,

blockId, x, y, isBlockContainer)

5

6 def OnObjectClick(self, event):

7 self.oldMouseX = event.x

8 self.oldMouseY = event.y

9

10 def OnObjectMove(self, event):

11 self.canvas.event_generate(’<Button-1>’,

when="tail", x=self.oldMouseX, y=self.oldMouseY)

12

13 def OnObjectRelease(self, event):

14 pass

15

16 return BlockSpawner

Listing 9.8: BlockSpawner

1 class SetVarSpawner(CreateBlockSpawner(SetVar)):

2 def __init__(self, master, canvas, x, y, isBlockContainer = False):

3 super(SetVarSpawner, self).__init__(master, canvas,

"SetVarSpawner", x, y, 0, 0, isBlockContainer)

4

5 self.canConnectSouth = False

6 self.canConnectNorth = False

7

8 def OnObjectMove(self, event):

9 SetVar(self.master, self.canvas,

"id"+str(BlockManager.GetNextId()), self.position[0],

self.position[1], self.oldMouseX, self.oldMouseY)

10 super(SetVarSpawner, self).OnObjectMove(event)

Listing 9.9: SetVarSpawner

31

Chapter 10

Experiments

In this chapter an experiment is presented. The goal of the experiment is to get an idea about how quickly

people get a hang of the environment. Therefore, are two participants chosen which are on somewhat

opposite sides of the spectrum when it comes to programming skills. This is also a pilot test for further

experimentation, as it is hard to say how much time a participant uses, on each task, so a point the right

direction is needed.

10.0.1 Participants

The experiment was done by two people. A female at the age of 20 and a male at the age of 14. Before

they were asked to participate in the experiment they were asked about their programming capabilities.

The female stated that she had taken a programming course in high school, where they were taught the

basics of programming using the language C++. She then stated that even though she had been through

the course, she never got the hang of writing and thinking in code, but she could read and understand it

to a certain degree.

The male stated that he had participated in a coding event at his local library, where he spent a couple

of hours with Scratch programming a “Snake”-like game. He also stated that he have no experience in

writing code himself, only knowledge about what the different blocks in scratch do.

10.0.2 Procedure

The participant was seated in front of a computer which was running the solution. They were then given

an explanation of the purpose of the solution and was told how the experiment was going to proceed.

They were handed a copy of the task sheet and was asked to think out loud. They were also told that

they should not hesitate to ask if they encountered any problems such as not understanding the task

description or being unable to complete a task. Then they were told to begin doing the tasks. When they

were finished an informal discussion about the solution ensued, after which the experiment was over.

Each experiment took between 35-40 minutes to complete.

32

10.0.3 Tasks

As these two experiments are meant as pilot experiments, the number of different blocks used for the

tasks have been kept at a low amount. Another reason is that to test the evolution system the same blocks

had to be used over and over until they evolved in to custom line-blocks. There are six tasks in total.

The first task they had to complete was:

• Create a loop that runs 5 times

• Inside that loop, print "Hello!" (You can find the block under the I/O category)

• Press the "Run"-button

This task part of the experiment to be an easily solved task to give the participants a bit of momentum.

The evolutions performed after the completion of the task was:

• print block evolved to level 2

The second task was:

• Create a variable called name

• Print "What is your name?"

• Set the name variable to the input() block (You can find the block under the I/O category)

• Print the name variable

• Press the "Run"-button

The evolutions performed after the completion of the task was:

• print block evolved to custom line

• input block evolved to level 2

• set variable block evolved to level 2

The third task was:

• Create a variable called x

• Set the variable x to "aa"

• Create a loop which repeats until x equals "q"

33

• Inside the loop, use the input block to tell the user "Enter q to quit" and save the input in the

variable x

• Outside of the loop, clear the output window using the clear screen() block (You can find the block

under the I/O category)

• Print "You quit the game"

• Press the "Run"-button

The evolutions performed after the completion of the task was:

• input block evolved to level 3

• set variable block evolved to level 4

• repeat until block evolved to level 2

• clear screen block evolved to level 2

The fourth task was:

• Create a variable called countTo and set it to 0

• Create a variable called counter and set it to 0

• Ask the user how far they want the program to count and save the answer in countTo

• Create a while loop that runs while the counter is less than countTo

• Inside the loop, print the variable counter

• Add 1 to the variable counter by using the "+" operator block (You can find the block under the

Operators category)

• Press the "Run"-button

The evolutions performed after the completion of the task was:

• input block evolved to custom line

• set variable block evolved to custom line

• repeat until block evolved to level 3

• Change block containers to ordinary blocks and add scope block

• All blocks in the Operators category evolved to level 2

34

• if block evolved to level 2

The fifth task was:

• Create a variable called x and set it to 0

• Create a while loop which runs as long as the user does not input q

• Inside the loop, ask for the user to input a number and save it in the variable x

• Use the if block to determine if the number is higher or lower than 10 (You can find the block

under the Control category)

• If it is higher, print "The number is higher than 10"

• If it is lower, print "The number is lower than 10"

• Outside of the loop, print "Good job"

• Press the "Run"-button

The evolutions performed after the completion of the task was:

• repeat until block evolved to custom line

• if block evolved to custom line

The sixth and last task was:

• Create a variable correctNumber and set it to a number of your choosing

• Create a variable guess and set it to 0

• Create a while loop which runs while guess is different than correctNumber

• Inside the loop, save input from the user into the variable guess

• Check if guess is less or greater than correctNumber

• If it is greater, print "Your guess is greater than the number"

• If it is less, print "Your guess is less than the number"

• Outside the loop, print "You guessed my number"

• Press the "Run"-button

35

10.1 Results

The findings from this small pilot experiment were as follows. First of all, a couple of additional tasks

using the same constructs are required, at least for some constructs. There were no problems with the

pace at which the print() block evolved, which is also a quite simple thing to write yourself. On the other

hand, a bit more time with the repeat until/while block would have been preferred. The experienced

participant did not have any problems with the pace of which it evolved, but the inexperienced one

seemed to have some problems with understanding the concept behind the loop. This caused him some

problems when he had to construct the logic for the loops by himself. Also, in regards to blocks that

change name in a evolved state, it has to be explained to the user that the block with the old name no

longer exists, as it is not stated anywhere in the solution that e.g. “repeat until” becomes “while”.

Second of all, some of the more simple evolutionary steps can be skipped. Specifically the step before

splitting the block up into multiple blocks if nothing major have happened to it in the step before. The

example found in this experiment is the set variable block which can be seen in Figure 8.7. The third

evolution is not that big of a difference to the second one, so skipping that one is a possibility.

Third of all, there was some confusion regarding the custom line block and how to put variables into it.

It was easily solved because they just had to know that they could write the name directly as part of the

line.

The fourth finding, was that replacing the container part of the container blocks with a scope block, did

not make the participants write tabs inside the custom line blocks, they both resorted to using the scope

block when possible.

The fifth and last finding, was that there should be a custom text block, which can contain multiple lines

of user written code, because having to drag and drop each line of ones code, seemed cumbersome still.

Beyond these five findings, it went well. Both participants got to the part where they could write some

of the code without help.

One comment which both participants gave, was that the blocks was to small on the screen. It was

sometimes hard for them to grab the blocks and moving to other places.

36

Part III

Conclusion

37

Chapter 11

Conclusion and Discussion

Throughout this report I have presented a tool for transitioning from Scratch to Python. Scratch was cho-

sen because of research done in earlier work. It was also because other researchers have used Scratch as

a starting point for novices for then to have them transition to a general purpose programming language.

The target language of Python was influenced by other researchers as well. Someone used Python as a

stepping stone to a commercial general purpose programming language, suggesting that the steps taken

in learning programming could be Python->Java. The tool presented in this report, fits nicely within sug-

gesting, extending it to become Scratch->Python->Java. Another reason the Python as a target language

was because of the analysis made in this report where I analyzed different programming languages for

their similarities with Scratch. The tool presented in this report is a prototype of a final product. Even

though this is the case, the prototype itself is a finished product as one are able to program in it and

it was able to be used for a small pilot experiment. It also shows that it is possible for system to be

created which gradually changes from block-based programming to text-based programming. Even if

the prototype was not that similar to Scratch, it shows that there is a potential for such a system to exist.

Combine it with a 2D engine which can work in a part of the window and the system is closer to being

realizable.

Regarding shortening the teaching process of learning programming. If it is compared to Scratch the

ideal final product should be equal, but the tool does nothing beyond that, so if the tool is compared to

Scratch it does not shorten the teaching process. However, I do think it does something in helping a

novice transitioning from a visual-based programming language to a text-based one.

The results of the experiments point at that there are still some tweaking to do regarding the design of

the evolution steps. Some of them does is possibly not as intuitive as they can be. Both in regards to

how the scope is handled and evolved, but also the way text fields are at the same place as where a block

can connect to. Taking additional inspiration from Blockly might be a way to solve it.

The experiment itself also requires some work, as it is now it tests to few features and there is also to few

tasks. If these two things are implemented a problem may arise due to the required time it would then

take a participant to complete the experiment. Hence, why the ideal full solution is probably best tested

38

in a classroom setting. Where the users keeps coming back to it and have the time to get acquainted with

each evolution of the blocks.

39

Chapter 12

Future Work

For future work I would like to make the final product and then make enough experiments to be able to

say something meaningful about the tool. There is a long way to the final product though, below is a list

of missing features:

• Save and load feature

• Maybe an import functionality which can import a Scratch file

• A better options menu for selecting the evolution for each block. Specifically I would like a tool tip

which shows an image of how the block currently looks and how it will look if a specifik option

is selected. This would make it so that one can fiddle around with the tool without necessarily

needing a teacher at ones side

• 2D engine and the blocks to match it, with sprites and so on, to make it feel more like Scratch.

One possibility is PyGame, which is a 2D engine for Python. This is the tool some teaching

organizations turn to when their members are finished with Scratch

• Additional blocks, e.g. a block for creating a function in this tool and some way of making it

parameterized

• Maybe even adding blocks to create classes.

• The ability to delete blocks after they have entered the canvas

In regards to more experiments. How I would like proceed is to first gather more empirical evidence

using the prototype. Then implement the full solution, followed by testing it in a classroom setting. Also

to get participants which are more in the targeted age range for this tool. The problem being that it is

not very relevant if one already are done with scratch. The reason for this is that there is potential for

the user getting bored, as it is just the “same old” and they might not want to sit through lots of tasks

to get to where it begins to become interesting. The optimal stage to introduce this tool is a bit before

40

one is finished with Scratch, or at least that is where the evolution idea would probably be most handy.

Because then as they are finishing up with Scratch they have gained access to Python.

On thing that should also be mentioned is that the tool does not necessarily has to be for the school room

only. I just think it would be a good place to test and tweak it. When the testing and tweaking have

been finished it would be nice if it could reach all the novices that want to transition. That means that

people have to be aware of the tool and its existence. One way to promote it could be to piggyback of

the success of the hour of code initiative, and market it as the next step, after a novice has completed the

hour of code.

41

Bibliography

[1] H. Geertsen, J. M. B. Christiansen, S. Kurtev, and T. Aagaard, “Comparative analysis of educational

programming languages and environments,” 2015. 3, 3.3

[2] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of programming

environments and languages for novice programmers,” ACM Computing Surveys (CSUR), vol. 37,

no. 2, pp. 83–137, 2005. 4

[3] M. Armoni, O. Meerbaum-Salant, and M. Ben-Ari, “From scratch to “real” programming,” ACM

Transactions on Computing Education (TOCE), vol. 14, no. 4, p. 25, 2015. 4

[4] Y. Matsuzawa, T. Ohata, M. Sugiura, and S. Sakai, “Language migration in non-cs introductory

programming through mutual language translation environment,” in Proceedings of the 46th ACM

Technical Symposium on Computer Science Education, pp. 185–190, ACM, 2015. 4, 7.2

[5] L. Mannila, M. Peltomäki, and T. Salakoski, “What about a simple language? analyzing the dif-

ficulties in learning to program,” Computer Science Education, vol. 16, no. 3, pp. 211–227, 2006.

4

[6] A. Radenski, “Python first: A lab-based digital introduction to computer science,” in ACM SIGCSE

Bulletin, vol. 38, pp. 197–201, ACM, 2006. 4

42

43

	Preface
	Resume
	Introduction
	Initial Questions

	I Problem Analysis
	Earlier Work
	Earlier Work, Overview
	Earlier Work, Analysis
	Problems with Programming
	Other Problems

	Earlier Work, Language Comparison
	Discussion on Earlier Work

	Related Work
	Programming Languages
	Scratch
	Environment
	Language Properties

	Languages
	Java/C#
	C/C++
	Python

	Problem Formulation

	II Problem Solution
	Concept and Inspiration
	Concept
	Inspiration

	Design
	Design - Graphical User Interface
	Design - Blocks
	I/O
	Operators
	Data

	Implementation
	Classes
	BlockCreation
	BlockMove
	BlockEastWest, BlockNorthSouth, BlockCenter and BlockContainer
	Blocks
	BlockSpawner

	Experiments
	Participants
	Procedure
	Tasks

	Results

	III Conclusion
	Conclusion and Discussion
	Future Work
	Bibliography

