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Summary

In this report we define a type inference algorithm for both a simple and linear type
system for the ψ-calculi. ψ-calculi were originally introduced by Bengtson et al. and the
type systems originally introduced by Hüttel.

The two type inference algorithms developed in this report are very similar, and
follows the same approach: we convert the typing rules for processes into constraint
generation rules. We utilise an already existing and decidable fragment of first-order
logic as the constraint language, as this ensures that we can always either find a solution
to the constraints, or determine that there is no solution. The conversion from typing
rules to constraint generation rules is relatively straight forward: instead of using a type
environment that assigns types to names, we use an environment assigning type variables
to names, and instead of checking the side conditions in the typing rules, we encode them
as constraints instead. This way, in order to determine if a process is well-typed, it is
enough to find a solution to the constraints, i.e. an assignment of types to type variables.

As the ψ-calculi is just a framework for defining process calculi, it must be instantiated
in order to be used. This requires one to define what terms, assertions, and conditions are
allowed in the particular ψ-calculus one considers. Consequently, the type systems defined
by Hüttel depends on this instantiation, and the typing rules for terms, assertions, and
conditions are thus in general undefined; there are however some requirements the rules
must adhere to. This implies, as one might expect, that the type inference rules for terms,
assertions, and conditions are in general undefined in our type inference algorithm, and
must be defined together with the instantiation of the type system. The rules can in most
cases be constructed by a similar conversion as the one we conducts for the typing rules
for processes. Defining the constraint generation rules for terms, assertions, and conditions
are however not enough. The logic we have chosen to utilise in this report, requires one to
define the axioms by which the constraints can be manipulated. In other words, relations
have no inherent meaning, and we must define the meaning of the relations through a
fixed set of constraints. We refer to these constraints as axioms. An example of such an
axiom could be

∀a : ∀b : ∀c : ((Eq(a, b) ∧ Eq(b, c))⇒ Eq(a, c))
which ensures the relation Eq becomes transitive. The axioms are required to adhere
to some simple requirements, in order to ensure that the type inference is correct. The
definition of these axioms is entirely dependent of which relations one chooses to utilise
for ones type system, and therefore they must be defined from scratch each time. One
could argue that we could have predefined for instance an equivalence relation to represent
equality with the required axioms, as this would always be the same. However such
a relation is trivial and it would provide no notable benefits to have such a relation
predefined.

We can now summarise the steps requires to instantiate the type inference algorithm:
(1) Instantiate a suitable ψ-calculus
(2) Instantiate the type system as required
(3) Derive the constraint generation rules for terms, assertions, and conditions
(4) Define the required relations and axioms

After the above steps have been completed, one have a type inference algorithm that is
proved to be correct.
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CHAPTER 1

Introduction

Since the introduction of the CCS [17] and π-calculus [18] by Milner et al., process
calculi have been a fundamental tool to describe and reason about parallel and distributed
systems. Since then, many versions of the π-calculus have been developed. For instance
the spi calculus [24] was developed by Abadi and Gordon with the purpose of describing
cryptography protocols and the distributed π-calculus [23], Dπ, was developed by Hennessy
and Riely in order to reason about dynamically evolving networks, where processes can
migrate between locations. In [7] Gardner and Wischik introduce a π-calculus that captures
the fusion of names i.e. when a process like a!x.P | a?y.Q communicate we conduct the
substitution [x�y]Q, which is the same as stating that henceforth, for P | Q, we have
x = y. These equalities thus becomes part of the process syntax, but have no semantics by
themselves. In addition many papers introduce their own version of such process calculi,
tailored specifically for the problem setting relevant to the paper. While this approach
of developing a new process calculus for every new problem setting does provide some
benefits, it also introduces an unnecessary overhead: the syntax, semantics, semantic
equivalence, and axiomatization of equivalence must be defined every time, despite being
similar to the myriad of other derivations of e.g. the π-calculus. In 2009 Bengtson et
al. formulated a new group of process calculi called the ψ-calculi [2]. The ψ-calculi is
a framework characterising many of the common aspects of the many process calculi
previously defined, where every ψ-calculus shares the same basic syntax and semantics
for processes, but the terms, assertions, and conditions used can be unique for each
instantiation of the framework. Unlike the π-calculus, ψ-calculi are allowed to use more
complex structures then just names for e.g. channels, and the assertions and conditions
allows one to make complex reasoning, e.g. in a case-structure similar to the programming
languages of the C-family. This allows one to define a ψ-calculus as required by the setting
in which the calculus is to be utilised, without having to provide the syntax and semantics
of the full calculus, but instead only the definition of terms, assertions, and conditions. In
addition one get the notion of semantic equivalence, axiomatisation of equivalence, and
other properties proved for the ψ-calculi for free.

While process calculi provide a desirable way to define parallel and distributed systems,
they provide no means of reasoning about properties of such systems. For this purpose
type systems have been commonly used. One of the first type systems for process calculi
was developed by Milner [18] for the π-calculus; the idea here was to ensure only names
of the correct type could be send along each channel, thus preventing one from sending
e.g. numbers on channels meant for strings. Since then a myriad of type systems have
been developed: In [6] Fournet, Gordon, and Maffeis define a type system, based on the
one described by Gordon and Jeffrey in [10], for the spi calculus which ensures that all
expectations are justifiable i.e. if a processes at some point expect X to hold, then we
know that we have the sufficient evidence for this; and in [15] Kobayashi et al. introduce
the concept of linearity to the π-calculus: channels may be linear meaning they can and
must only be used once, or channels can be unlimited and used arbitrarily (including
never). This allows us to, for instance, ensure that some specific communication takes
place, and that it only happens once.

Unfortunately, just as for process calculi, for each of these type systems one must also
prove a common set of theorems, like subject reduction and some form of safety. Moreover
each of these type systems was developed for a particular incarnation of some process
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2 1. INTRODUCTION

calculus, and if we would like to combine them for some common process calculus, we
would have to redefine and re-prove each theorem again. In [16] König defined a generic
type system for analysing input/output capabilities in the π-calculus; and in [14] Igarashi
and Kobayashi define a generic type system for a variation of the π-calculus that uses an
abstraction of the process as its environment and can be used for, among other things,
deadlock detection and race detection. Utilising the ψ-calculi as defined by Bengtson et
al., Hüttel defined two generic type systems for all ψ-calculi in [12, 13], the first concerning
simple type systems a la [18], the second for resource dependent type systems a la [15].
Just like the ψ-calculi framework, these type systems are partially undefined, e.g. the
typing rules for terms depends on the definition of terms in the particular ψ-calculus,
and must thus be defined together. However, as long as these definitions satisfy certain
well-defined properties subject reduction is guaranteed.

While type systems are beneficial for their ability to ensure that certain properties
holds, they do require the user to explicitly define the type of each term in order to
determine if a process is well-typed. This may be doable for small example systems, but
quickly becomes impractical for larger parallel or distributed systems. The automation of
defining the types for each term is called type inference or type reconstruction, and this is
a well-studied area. For instance most programming languages with types provides some
semblance of type inference, as no programmer wants to define and write the type of each
term in their program.

In general one can split type inference algorithms into three categories: One is to
create an original algorithm from scratch, for instance in [22] Palsberg and Schwartzbach
utilise a trace graph to generate constraints, instead of the more common approach of
using syntax-directed rules; and Flanagan et al. conduct their inference in [5] using a
minimal assignment they iteratively increase until either a solution or contradiction is
found. Another approach is to generate constraints in a known logic, and using a solver
for said logic to find a solution. This can be seen in [9, 11], where Hüttel et al. conduct
type inference for the type system defined in [6] by creating constraints in the alternating-
fixed-point-logic. The final approach is to translate the problem into another type system,
conduct inference there, and translate the solution back, as seen in [21], where Padovani
conducts type inference on session types by translating them into linear types.

However, just as for the correctness of the type systems, each of these different type
inference approaches is required to provide proofs of correctness. Since Bengtson et al. and
Hüttel successfully defined frameworks capable of encompassing many different previously
defined process calculi and type systems, the question thus becomes whether or not one
can define a general framework for type inference building on the same ideas. If successful,
one would have a complete process calculi framework, i.e. a framework for processes,
a framework for type systems, and a framework for type inference, and thus removing
some of the otherwise tedious, but required work, involved when defining a processes
calculus, type system, and type inference algorithm. Moreover, exchanging ideas and/or
incorporating ideas from other type systems becomes easier, as they will all share common
basic definitions and typing rules. To achieve this one has to consider what type inference
approach would be applicable. König gives a very general type inference algorithm for her
generic type system in [16], but does not provide any details about how to accomplish
each step; and in [14] Igarashi and Kobayashi provide a set of constraint generation rules
for their type system, that require additional rules to be defined for each instantiation,
though they do not provide a strategy for solving these constraints. For a general type
system, following their example and creating constraints, but making them easy to solve
by doing so in a known logic seems like the most sensible way to proceed. It is difficult
to create an new unique algorithm with large parts missing, and likely even harder to
find a way to instantiate the gaps in such an algorithm. And to come up with another
non-generic type system, that any instantiation could be translated into with relative ease,
would likely be impossible. On the other hand, we can generate constraints in a know
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logic by rules similar to the typing rules, as long as one manages to find a way to represent
the types and their relations in the constraint language.

Contribution and structure. In this report we define a type inference approach
for the type systems defined in [12, 13] for the ψ-calculi. To our knowledge this is the first
proposed algorithm for type inference for these type systems, and specifically:

• We propose a framework for type inference for both simple and linear type systems
in the ψ-calculi
• We prove that the proposed framework is sound
• We provide example instantiations of the type inference framework
• We provide examples of how to use the instantiated framework for type inference
• We highlight some of the problematic aspects of more advanced type systems
with regards to the proposed framework

The report is structured as follows: in Chapter 2 we introduce the ψ-calculi and ALFP;
in Chapters 3 and 4 we describe type inference for two generic type systems in the following
way: in Section 3.1 we introduce the type system defined in [12]; in Section 3.2 we define
the constraint generation and type inference for this type system; in Sections 3.3 and 3.4
we introduce two example encodings of previous type systems in the ψ-calculi and conduct
type inference for those; in Section 4.1 we introduce the type system of [13]; in Section 4.2
we describe its constraint generation and inference; in Section 4.3 we introduce an example
encoding of a previous type system in the ψ-calculi and conduct type inference for this;
in Section 4.4 we look at a failed attempt at instantiating the linearly typed ψ-calculi to
ensure termination in value-passing processes and make our own attempt at correcting it
and generating constraints for it; and finally we present our conclusion in Chapter 5.





CHAPTER 2

Preliminaries

Before presenting our work, we will use this chapter to describe some important
concepts, namely ψ-calculi in Section 2.1 and alternation-free least fixpoint logic in
Section 2.2.

2.1. ψ-calculi

ψ-calculi, as presented in [12] generalise variants of the π-calculus. A ψ-calculus has a
set of processes, ranged over by P,Q, . . . , containing occurrences of terms, ranged over by
M,N, . . . . Both processes and terms can contain names. The syntax of processes can be
seen in Table 2.1.1.

The syntax mostly resembles the π-calculus, with a few key differences: Rather than a
channel name, M in an output or input prefix can be an arbitrary term. Furthermore, in
the input construct M(λ~x)N.P , (λ~x)N is a pattern, where the variable names ~x can occur
free in N and P . Any N ′ received on channel M must match the pattern (λ~x)N , meaning
that it must be possible to get N ′ by instantiating the variable names ~x in N with terms.

We also introduce the concept of a nominal set, meaning a set whose members can be
affected by names being bound or swapped. When x is a member of a nominal set and
a is a name, we use a#x to denote that a is fresh for x. We refer to a nominal set with
internal structure as a nominal datatype. We use term substitution—X[~x := ~Y ] means
that the terms of ~Y substitute the names of ~x in X—in the nominal datatypes of ψ-calculi,
shown in Table 2.1.2. We also have a number of operations on the nominal datatypes,
seen in Table 2.1.3, which must be instantiated for each ψ-calculus.

We let names(P ) describe the names of a process P and fn(P ) describe the free names
of P .

We also introduce some requirements and definition related to the assertions. We
introduce the concept of equality for assertions denoted ', and in addition introduce some
requirement for composition of assertions as defined in Definition 2.1.1.

P ::= M(λ~x)N.P input
M N.P output
P1 | P2 parallel composition
(νn : T )P restriction of name n
∗P replication
case σ1 : P1, . . . , σk : Pk conditional
LΨM assertion process

Table 2.1.1. The syntax of the ψ-calculi

Nominal data type Variables
T terms M,N
C conditions σ
A assertions Ψ

Table 2.1.2. Nominal data types

5



6 2. PRELIMINARIES

⊗ : A×A→ A composition of assertions
↔̇ : T×T→ C channel equivalence

1 ∈ A unit assertion
�⊆ A×C entailment

Table 2.1.3. Operations on nominal data types

Definition 2.1.1 (Assertions equivalence (')). For any assertion Ψ we have Ψ ' Ψ.
For composition of assertions, the composition must adhere to the following constraints:

Ψ1 ⊗Ψ2 ' Ψ2 ⊗Ψ1 Ψ1 ⊗ (Ψ2 ⊗Ψ3) ' (Ψ1 ⊗Ψ2)⊗Ψ3

Ψ⊗ 1 ' Ψ Ψ ' Ψ′ ⇒ Ψ⊗Ψ1 ' Ψ′ ⊗Ψ1

In addition we say that an assertions Ψ is idempotent if Ψ⊗Ψ ' Ψ

Since we in general allow assertions to be combined, it is only natural to also introduce
an ordering of assertions. We define the ordering of assertions as seen in Definition 2.1.2.
The definition is rather straightforward, and should not be surprising.

Definition 2.1.2 (Ordering of assertions). We write Ψ1 ≤ Ψ2 if there exists a Ψ such
that Ψ1 ⊗Ψ ' Ψ2

Since we consider composition of assertions, we ultimately also consider decomposition
of assertions. These two notions are however not enough, and we additionally define
the assertion exclusion operator ÷ in Definition 2.1.3. This operator is representing the
removal of any and all sub-assertions Ψi in an composite assertion Ψ that involves a given
set of names. If the assertions is not composite or if all sub-assertions involve the given
set of names, the unit assertion 1 is the result.

Definition 2.1.3 (Assertion exclusion). For every assertion Ψ and name set of names
L we assume the existence of a largest sub-assertion Ψ ÷ L ≤ Ψ not containing any
occurrences of names in L

The assertion information of ψ-calculi processes can be extracted as its frame F(P ) =
〈EP ,ΨP 〉, where EP records the types of the names local to P and ΨP records the assertions
of P . These are called qualified frames. Definition 2.1.4 shows how to find the frame of a
process. We use F(P ) ⊗ F(Q) to mean 〈EP , EQ,ΨP ⊗ΨQ〉 when dom(EP )#dom(EQ),
dom(EP )#ΨQ, and dom(EQ)#ΨP , and use (νn : T )F(P ) to mean 〈n : T,EP ,ΨP 〉.

Definition 2.1.4 (Frame of a process).
F(P | Q) = F(P )⊗F(Q) F((νn : T )P ) = (νn : T )F(P )
F(LΨM) = 〈ε,Ψ〉 F(P ) = 1 otherwise

We use labelled semantics to describe ψ-calculi. Our labelled transitions are of the
form Ψ � P

α−→ P ′, where the label α is defined by the following rules:
α ::= τ |MN |MN | (ν~b : ~T )MN.

Lastly we define the function bn, defined as bn((ν~b : ~T )MN) = ~b and for any other α
bn(α) = ∅ and present the the labelled semantic rules in Table 2.1.4.
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[In] Ψ �M↔̇K

Ψ �M(λ~x)N.P KN [~x:=~L]−−−−−−→ P [~x := ~L]
[Out] Ψ �M↔̇K

Ψ �M N.P
KN−−→ P

[Com]

ΨQ ⊗Ψ � P
M(ν~a:~T )N−−−−−−−→ P ′

Ψp ⊗Ψ �Q
KN−−→ Q′

Ψ⊗ΨP ⊗ΨQ `M↔̇K
Ψ � P | Q τ−→ (ν~a : ~T )(P ′ | Q′)

~a#Q [Case] Ψ � Pi
α−→ P ′ Ψ � φi

case σ̃ : P̃ α−→ P ′

[Par] ΨQ ⊗Ψ � P
α−→ P ′

Ψ � P | Q
bn(α)#Q [Scope] Ψ � P

α−→ P ′ b#a,Ψ
Ψ � (νb : T )P α−→ (νb : T )P ′

[Open] Ψ � P
M(ν~a:~T )N−−−−−−−→ P ′

Ψ � (νb : T1)P M(ν~a:~T∪{b:T1})N−−−−−−−−−−−→ P ′
[Rep] Ψ � P | ∗P α−→ P ′

Ψ � ∗P α−→ P ′

b#a,Ψ,M and
b ∈ names(N) ∪ names(~T ) ∪ names(T1)

Table 2.1.4. Labelled sematics of the ψ-calculi

2.2. Alternation-free least fixpoint logic

We make use of the alternation-free least fixpoint logic (ALFP) as defined in [20] to
formulate the constraints used to conduct type inference. We therefore briefly present
the syntax of this logic. We assume a fixed countable set of variables X ranged over by
x, . . . and a finite ranked alphabet of predicate symbols R ranged over by R, . . .. The set
of clauses, C, is given by Table 2.2.1.

We utilise the ALFP for our constraint solving, as it constitutes a decidable fragment
of first-order logic with already existing solvers [19]. This allows us to focus solely on the
definition and generation of constraint adhering to the rules of ALFP, as the solution to
such constraints can be found using existing tools.

In the remainder of this paper, we will utilise the Succinct Solver as developed in [20,
19] for solving our ALFP constraints. In Appendices A.1 to A.3 we provide the Succinct
Solver’s solutions to the examples presented in Sections 3.4.3, 4.3.1 and 4.4.2. We do not
present any examples of the Succinct Solver encoding of the generated constraints, as this

P ::= Pre-condition
R(x1, . . . , xk) predicate
¬R(x1, . . . , xk) negation of predicate
P1 ∧ P2 conjunction
P1 ∨ P2 disjunction
∃x : P existential quantification
∀x : P universal quantification

C ::= Clause
R(x1, . . . , xk) predicate
1 true
C1 ∧ C2 conjunction
P ⇒ C implication
∀x : C universal quantification

Table 2.2.1. The syntax of the ALFP
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encoding is straight forward and follows many of the known patterns from programming
languages. For instance we encode P ∧Q as “P & Q”, P ⇒ Q as “P => Q”, ∀x : P as “A
x.(P)”, and so forth. The translation from the constraint presented in the examples to
the constraints given to the Succinct Solver is thus trivial.

Remark. According to the Succinct Solver manual [25] and [19] the Succinct Solver
V2.0 is not compatible with pre-conditions of the form ∀x : P . This implies that constraints
like ∀x : (∀y : P (y, x))⇒ Q(x) are not solvable by the Succinct Solver V2.0.



CHAPTER 3

Simply typed ψ-calculi

In this chapter we introduce the first of our two generic type systems, simply typed
ψ-calculi, in Section 3.1; present our type inference for said type system in Section 3.2;
and present two examples of instantiations of the type system and inference in Sections 3.3
and 3.4.

3.1. A type system for a simply typed ψ-calculi

We introduce the generic type system for all ψ-calculi developed in [12]. This is a
simply typed type system, resembling the earlier type systems developed for e.g. the
π-calculus. A notable difference between this type system and most others is the generality
of the type system. The type system only partially defines the required typing rules,
and utilises undefined side conditions for some rules. While this might seem problematic
it is the consequence of the generality of the ψ-calculi. The type system must thus
be instantiated together with the instantiation of the particular ψ-calculus in question.
The instantiation of the type system requires adding typing rules for terms, assertions
and conditions; defining the binary relation " for types; and defining the required side
conditions in the compositionality rules. For instance if one wanted to create a ψ-calculus
to model the π-calculus, see [2], and chose to instantiate this type system to model a
simply typed π-calculus, e.g. the type system used in [8], one would be required to define
the typing rules for terms, which in this case would simply be names, the " relation, and
the side conditions for compositionality. The side conditions would be mostly trivial as
composition is not utilised and the typing rules for assertions would not be required, as
the simple typed π-calculus does not utilise such constructs.

We now proceed to present the type system. Firstly we consider the typing contexts, or
environments, used by this type system. The environments are defined in Definition 3.1.1,
and consists of type annotations or bindings of names of the form x : T and assertions of
the form Ψ.

Definition 3.1.1 (Environments and well-formedness). Let environments, Γ, be
defined as

Γ ::= Γ, x : T | Γ,Ψ | ∅.
We say an environment Γ is well-formed, denoted Γ ` � if it is a partial function from
names to types such that if Γ = Γ1,Ψ,Γ2 and x is a name in Ψ then x ∈ dom(Γ1).

In addition to the definition of environments we define extension of environments, both
in terms of bindings and assertions as seen in Definitions 3.1.2 and 3.1.3. We combine the
two notions of extension as seen in Definition 3.1.4.

Definition 3.1.2 (Binding extension (<T )). Let Γ1 and Γ2 be environments such that
Γ1 ` �, Γ2 ` �, Γ1 = Γ10, . . . ,Γ1(k+1), and Γ2 = Γ10, u1 : T1,Γ11, u2 : T2, . . . , uk : Tk,Γ1(k+1)
for some ui : Ti. We then say Γ2 extends Γ1 with additional bindings, denoted Γ1 <T Γ2

Definition 3.1.3 (Assertion extension (<0
A)). Let Γ1 and Γ2 be environments such

that Γ2 = Γ1,Ψ. We say Γ2 extends Γ1 with an additional assertion, denoted Γ1 <
0
A Γ2.

In addition we let <A be the transitive closure of <0
A

Definition 3.1.4 (Environment extension (<)). We let the relation < denote the
least preorder containing <T ∪ <A

9
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[Comp-Ast] Γ ` Ψ1 Γ ` Ψ2
Γ ` Ψ1 ⊗Ψ2

[Comp-Cond] Γ ` σi 1 ≤ i ≤ k X
Γ ` g(σ1, . . . , σk)

[Comp-Term] Γ `Mi : Ti 1 ≤ i ≤ k X
Γ ` f(M1, . . . ,Mk) : T

Table 3.1.1. Compositionality typing rules

We now introduce the judgements for the type system. Since we have three types
of nominal data in the ψ-calculi, we also have three types of judgements as defined in
Definition 3.1.5.

Definition 3.1.5 (Type judgements). Let judgements, J , be defined as
J ::= M : T | σ | Ψ,

namely one judgement for each of the three nominal data types in the ψ-calculi. Moreover
we say JΓ is a qualified judgement of the form Γ ` J if names(J ) ⊆ dom(Γ)

As with environments we introduce the notion of extension for qualified judgements
as defined in Definition 3.1.6. Note that the extension of qualified judgements require
the actual judgement to be the same, but allows for an extension of the corresponding
environment.

Definition 3.1.6 (Judgement extension). Let J 1
Γ1

and J 2
Γ2

be qualified judgements
such that Γ1 < Γ2 and J 1 = J 2. We say J 2

Γ2
extends J 1

Γ1
denoted J 1

Γ1
< J 2

Γ2

Before we present the typing rules we present the compositionality rules as seen in
Table 3.1.1. These rules must be adhered to by the type system instantiating. In the
compositionality rules X denotes any additional side condition one would like to hold.
These side conditions must however satisfy three conditions: (1) the side conditions must
be monotone with regards to environment extensions, (2) the side conditions must be
topical, and (3) assertion typability must respect composition of environment assertions.
We refer to [12] for clarifications.

We finally present the typing rules in Table 3.1.2. It is worth mentioning again, that
there are no typing rules for either assertions or terms. These must be defined when
instantiating the type system. Although it must hold in any instantiation that Γ ` x : T if
Γ(x) = T .
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[In] Γ, ~x : ~T ` P Γ ` (λ~x)N : ~T → Uo Γ `M : Us Us " Uo
Γ `M(λ~x)N.P

[Out] Γ `M : Ts Γ ` N : To Γ ` P Ts " To

Γ `M N.P

[Par] Γ,Γ2,Ψ2 ` P1 Γ,Γ1,Ψ1 ` P2 F(P1) = 〈Γ1,Ψ1〉 F(P2) = 〈Γ2,Ψ2〉
Γ ` P1 | P2

[Res] Γ, x : T ` P
Γ ` (νx : T )P [Rep] Γ ` P

Γ ` ∗P [Ast] Γ ` Ψ
Γ ` LΨM

[Case] Γ ` σi Γ ` Pi 1 ≤ i ≤ k
Γ ` case σ1 : P1, . . . , σk : Pk

[Pat] Γ, ~x : ~T `M : U
Γ ` (λ~x)M : ~T → U

Table 3.1.2. Typing rules for the simply typed ψ-calculi

3.2. Constraint generation for simply typed ψ-calculi

In this section we define the constraints generation for the type system presented
in Section 3.1. The constraint generation is inspired by [9], and follows many of the
ideas proposed in this paper. This section only defines the constraints imposed by the
uninstantiated type system, and thus only provides a subset of the total required constraints.
In addition the constraints generated in this section all adhere to the definition of clauses
in ALFP (see Section 2.2), and the question of satisfiability is thus decidable.

We let JCK denote the encoding of term C in some formalism F to term C ′ in target
formalism F ′ such that the meaning of C and C ′ is the same. In Tables 3.2.1 to 3.2.3
we will use this notation to express the ALFP clause encoding of some constraints. The
primary utility of this convention is to reduce the otherwise unnecessary verbosity of
simple constraints, and enable us to generate constraints whose meaning is only later
defined.

The constraint generation for processes can be seen in Table 3.2.1. The constraint
generation for processes is of the form Γ ` P  φ where φ is a constraint, created as a
conjuction of many smaller constraints, that must be satisfied in order for Γ to type the

[Par] Γ,F(P2) ` P1  φ1 Γ,F(P1) ` P2  φ2
Γ ` P1 | P2  φ1 ∧ φ2

[Rep] Γ ` P  φ

Γ ` ∗P  φ
[Ass] Γ ` Ψ φ

Γ ` LΨM φ
[Res] Γ, x : τ ` P  φp

Γ ` (νx : τ)P  φp

[Out] Γ `M  τm;φm Γ ` N  τn;φn Γ ` P  φp

Γ `M N.P  φm ∧ φn ∧ φp ∧ Jτm " τnK

[In] Γ, ~x : ~τ ` P  φp Γ ` (λ~x)N  (~τ → τu);φn Γ `M  τm;φm
Γ `M(λ~x)N.P  φp ∧ φn ∧ φm ∧ Jτm " τuK

[Cas] Γ ` σi  φsi Γ ` Pi  φpi 1 ≤ i ≤ k
Γ ` case σ1 : P1, . . . , σk : Pk  

∧k
i=1 φsi ∧ φpi

Table 3.2.1. Constraint generation for processes
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[Pat] Γ, ~x : ~τ `M  τm;φm
Γ ` (λ~x)M  (~τ → τm); φm

[Var] Must be defined together with the type system

[Ast] Must be defined together with the type system

[Lal] Jτ1 " τ2K Must be defined together with the type system
Table 3.2.2. Constraint generation for terms

[Comp-Ast] Γ ` Ψ1  φ1 Γ ` Ψ2  φ2
Γ ` Ψ1 ⊗Ψ2  φ1 ∧ φ2

[Comp-Cond] Γ ` σi  φi 1 ≤ i ≤ k X  φX

Γ ` g(σ1, . . . , σk) (
∧k
i=1 φi) ∧ φX

[Comp-Term] Γ `Mi  τi;φi 1 ≤ i ≤ k X  φX

Γ ` f(M1, . . . ,Mk) τ ; (
∧k
i=1 φi) ∧ φX

Table 3.2.3. Constraint generation for compositionality

process P . We make use of the function F in the constraint generation, but as the result
of this function can be computed statically, it introduces no additional complexity.

The constraint generation for terms, as one might expect, is largely undefined. The
constraint generation is of the form Γ `M  τ ;φ where τ is the type variable assigned to
the term M and φ is the the conjunction of constraints, that must be satisfied in order for
Γ to type check the expression M : τ .

Remark. The Γ used in Γ ` P  φ should be decided for the individual type system,
but should always use type variables τ in stead of actual types.

The only rule that is independent of the instantiation of the type system is the [Pat]
rule as defined in Table 3.2.2. The table also includes the two remaining term rules that
must be defined, namely [Var] and [Ast]. It is worth mentioning that the instantiation of
these rules may lead to several rules for both terms and assertions, but we will refer to
these collections of rules as [Var] and [Ast] respectively. In addition, since the meaning
of the constraint T1 " T2 depends on the instantiated type system, the encoding of
this constraint depends on the instantiation as well. For this reason the encoding of the
constraint T1 " T2 is left undefined and must be provided together with the instantiated
type system. As for the constraint generation rules, the encoding must adhere to rules for
clauses for ALFP as defined in Section 2.2.

The last part of the constraint generation is related to compositionality of terms and
assertions as seen in Table 3.2.3. The X  φX part of both [Comp-Cond] and [Comp-Term]
refers to any additional side conditions one would require. These are thus instantiable.
For instance in [Comp-Term] one would most likely add a side condition relating the type
variables τi from the premise with the type variable τ in the conclusion.

While the generated constraints serves as a starting point, they do not explain how to
manipulate the relations. Despite what we may or may not call our relations, they have no
inherent meaning in ALFP, and all of the common logical deductions we normally apply are
nonexistent. In other words, simply presenting a conjunction of predicates does not lead
to the desired solution. Consider for instance a case where we have Jτ1 " τ2K∧ Jτ1 " τ3K.
In many type systems one would be able to make the conclusion that τ2 = τ3, since a
channel must send/receive objects of the same type. But as we have already mentioned,
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the constraint Jτ1 " τ2K does not state this; it merely state something must be true
between τ1 and τ2. Assuming we deduce that τ2 = τ3, we now have to represent τ2 = τ3.
Clearly we could make a predicate Eq(τ2, τ3), but again the predicate have no inherent
meaning—despite its name—and we have no way of determining if for instance P (τ3)
should hold if P (τ2) holds. The solution to this, is to introduce a set of axioms that
explains how to make logical and correct deductions based on the generated constraints.
While this might seem tedious it is not without advantage: we are free to determine
exactly what deductions can be made, and we are thus free to disallow otherwise common
deductions in specific cases if it should not be allowed for this case. These axioms would
have to adhere to the conditions introduced by ALFP in order to be solvable. Using this
approach we can express the above deductions as axioms in ALFP giving us

∀τ1 : ∀τ2 : ∀τ3 : (Jτ1 " τ2K ∧ Jτ1 " τ3K)⇒ Eq(τ2, τ3)
and

∀τ1 : ∀τ2 : (P (τ1) ∧ Eq(τ1, τ2))⇒ P (τ2).
In addition to the idea of axioms we introduce a special relation called Fail. This

special relations is meant to represent failure: if a solution contains no Fail-relations it is
a real solution, but if it contains any Fail-relations the solution is in fact not a solution,
but a failure. This relation can be useful in cases where we have Jτ1 " τ2K ∧ Jτ2 " τ1K.
Assuming we get these constraints for a simple type system with channels, it would
represent the fact that T1 = Ch(T2) and T2 = Ch(T1); in other words it would represent a
recursive channel type, which is not allowed. We can represent this failure-criterion with
the Fail-relation by introducing the axiom

∀τ1 : ∀τ2 : (Jτ1 " τ2K ∧ Jτ2 " τ1K)⇒ Fail(τ1, τ2).
This way, when computing a solution, we can easily determine whether or not we have
recursive channels, and we can also easily determine which channels are the problem; we
can simply refer to the environments and find the names bound to τ1 and τ2 respectively.

Remark. Whenever we refer to a solution for a constraint or a conjunction of
constraints, we assume that the solution is failure-free i.e. that there exists no Fail-relations
in the solution.

In addition to the constraint generation rules that must be defined together with the
instantiation of the type system, we require the definition of a type assigning function
�. The type assigning function � takes a solution to one’s generated constraints and
some type variable τ , and then computes the type of τ . We can only give a very general
definition of �, as the details of type assignment given a solution to some constraints
depends entirely on how the constraint and solution are defined, which in turn depends on
the type system it was generated for.

Definition 3.2.1 (Type assigning function �). Let � : 2C × TVar → Type be a
function that given a constraint solution, Φ, and a type variable τ , returns a type T
corresponding to the type τ have been given by the predicates of Φ.

We will write Φ � τ for the function application on the constraint solution Φ and type
variable τ .

We also introduce an auxiliary function L as seen in Definition 3.2.2. This function
computes a solution, if one exists, to an ALFP constraint. An example of such a function
could be the Succinct Solver [20].

Definition 3.2.2 (Constraint solution L ). Let L : C ⇀ 2C be a function that,
given a conjunction of ALFP constraints, φ, computes a solution, Φ. The solution Φ is a
minimum set of predicates such that if all the predicates in Φ hold then φ is satisfied.

We finally introduce the concept of a minimal typing environment. For most type
systems a process, term etc. can be typed in an environment containing only the free names
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of the process, term or whatever other constructs we might wish to type. There might
however be cases where an environment containing only the free names is not enough, and
for this reason we introduce the concept of a minimal typing environment. We formally
define the concept in Definition 3.2.3.

Definition 3.2.3 (Minimal environment). Let J be a judgement. We let ΓJ denote
a minimal environment such that:

(1) ΓJ ` J
(2) ∀Γ : Γ ` J ⇒ ΓJ ≤ Γ

We now utilise the type assigning function �, the solution computing function L , and
minimal environments to set forth Theorem 3.2.4 and prove it in Appendix B.1.1. Note
the five requirements of the constraint generation for terms, conditions, and assertions,
and the encoding of the compatibility predicate " .

Theorem 3.2.4. Let P be a process. For any instantiation of the type system and
constraint generation such that:

(1) For any message M , there exists a type environment Γ and type T such that
Γ `M : T , if and only if ΓM `M  τ ;φ such that L (φ) is defined, L (φ)�τ = T ,
and ∀n : τn ∈ ΓM : n : (L (φ) � τn) ∈ Γ

(2) For any condition σ, there exists a type environment Γ such that Γ ` σ, if and only
if Γσ ` σ  φ such that L (φ) is defined, and ∀n : τn ∈ Γσ : n : (L (φ) � τn) ∈ Γ

(3) For any assertion Ψ, there exists a type environment Γ such that Γ ` Ψ, if and only
if ΓΨ ` Ψ φ such that L (φ) is defined, and ∀n : τn ∈ ΓΨ : n : (L (φ) � τn) ∈ Γ

(4) For any type variables τ1 and τ2, and any constraint φ, if L (φ ∧ Jτ1 " τ2K) is
defined, then L (φ ∧ Jτ1 " τ2K) � τ1 " L (φ ∧ Jτ1 " τ2K) � τ2.

(5) For any constraint generated by a process, φ, and any type variables, τ1 and τ2,
if L (φ) � τ1 " L (φ) � τ2 then L (φ ∧ Jτ1 " τ2K) exists.

There exists a type environment Γ such that Γ ` P , if and only if ΓP ` P  φ such that
L (φ) is defined, and ∀n : τn ∈ ΓP : n : (L (φ) � τn) ∈ Γ

Having proven that our type inference works, the following two sections will show
some examples of how it might be instantiated for different ψ-calculi and instantiations of
the type system.

3.3. Explicit fusion as a ψ-calculus

In this section we present a possible encoding of the π-calculus with explicit fusion—as
introduced in [7] under the name πF -calculus—as a simply typed ψ-calculus. The πF -
calculus is similar to that of the π-calculus in the sense processes can send names to each
other, but differs on how to handle these I/O actions. In the classic π-calculus we treat
such inputs with a substitution, but in the πF -calculus we do this with explicit fusion e.g.

z!(x).P | z?(y).Q | R −→πF 〈x = y〉 | P | Q | R.
In order to encode the πF -calculus, we first define the nominal data types and its

operations as seen in Table 3.3.1, where we let N denote the set of names. In addition we
define our simple types as seen in Table 3.3.2. We only require a simple base type, unit,
and a channel type Ch T .

Secondly, for convenience, we present the syntax of the πF -calculus in Table 3.3.3. We
omit the semantics of the πF -calculus as they are similar to that of π-calculus with the
exception of adding fusions instead of substituting names.

We can now present the encoding of the πF -calculus as a ψ-calculus as presented in
Table 3.3.4.

We now only need to define the typing rules for terms, assertions, and conditions and
the corresponding constraint generation rules for inference. We define those as seen in
Tables 3.3.5 and 3.3.6. The latter of the two tables also include the encoding of τ1 " τ2.
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T: N
C: {a = b | a, b ∈ T} ∪ {a↔̇b | a, b ∈ T}
A: {{a1 = b1, . . . , an = bn} | ai, bi ∈ N , n ≥ 0}
⊗: ∪
1: ∅
�: {(Ψ, a = b) | a = b ∈ EQ(Ψ)} ∪ {(Ψ, a↔̇b) | Ψ � a = b}

Table 3.3.1. Nominal data types and operations

T ::= Type
unit unit type
Ch T channel type

Table 3.3.2. Types for the ψ-calculus encoding the πF -calculus

P ::= Process
0 inactivity
P | P parallel composition
x!x.P output
x?x.P input
(νx : T )P restriction
〈x = x〉 fusion

x Name
Table 3.3.3. The syntax of the πF -calculus

[Nil] J0K = L{a = a}M [Par] JP | QK = JP K | JQK

[Out] Jx!y.P K = x y.JP K [In] Jx?y.P K = x(λy)y.JP K

[Res] J(νx : T )P K = (νx : T )JP K [Fus] J〈x = y〉K = L{x = y}M
Table 3.3.4. Encoding of π in ψ

While having to make sure the constraints generated by the rules are enough, we also need
to make sure they satisfy the conditions imposed by ALFP. Luckily, in this case we simple
generate conjunctions of predicates for all rules, which according to Table 2.2.1 are valid
ALFP constraints.

In addition to the constraints generated by the process, we also define some axioms,
seen in Table 3.3.8. These are simply used to propagate OfChanType predicate though
type equality constraints and ensure that at least one Fail predicate will be created if and
only if no solution exists.

Finally we define the type assigning function �, as seen in Table 3.3.7.
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[Var] Γ(n) = T

Γ ` n : T

[Ast] Γ(ai) = Γ(bi) 1 ≤ i ≤ n
Γ ` {a1 = b1, . . . , an = bn}

[Con] Γ(a) = Γ(b)
Γ ` a = b

and Γ(a) = Γ(b)
Γ ` a↔̇b

Table 3.3.5. Typing rules for terms, assertions, and conditions

[Term] Γ(n) = τ

Γ ` n : τ  τ ; T

[Ast] Γ(ai) = τai Γ(bi) = τbi 1 ≤ i ≤ n
Γ ` {a1 = b1, . . . , an = bn} 

∧n
i=1 EQ(τai, τbi)

[Con] Γ(a) = τa Γ(b) = τb
Γ ` a = b EQ(τa, τb)

and Γ(a) = τa Γ(b) = τb
Γ ` a↔̇b EQ(τa, τb)

Jτ1 " τ2K OfChanType(τ1, τ2)
Table 3.3.6. Constraint generation rules for terms, assertions, and condi-
tions and the encoding of T " U in ALFP

OfChanType(τ1, τ2) ∈ Φ Φ � τ2 = T

Φ � τ1 = Ch T

@OfChanType(τ, τ ′) ∈ Φ
Φ � τ = unit

Table 3.3.7. Type assigning function

∀a : Eq(a, a)
∀a : ∀b : Eq(a, b)⇒ Eq(b, a)
∀a : ∀b : ∀c : (Eq(a, b) ∧ Eq(b, c))⇒ Eq(a, c)
∀t1 : ∀t2 : ∀t3 : ∀t4 : (OfChantype(t1, t2) ∧ Eq(t1, t3) ∧ OfChanType(t3, t4))⇒ Eq(t2, t4)
∀t1 : ∀t2 : ∀t3 : ∀t4 : (OfChantype(t1, t2) ∧ Eq(t2, t4) ∧ OfChanType(t3, t4))⇒ Eq(t1, t3)
∀t1 : ∀t2 : ∀t3 : (OfChanType(t1, t2) ∧ Eq(t1, t3))⇒ OfChanType(t3, t2)
∀t1 : ∀t2 : ∀t3 : (OfChanType(t1, t2) ∧ Eq(t2, t3))⇒ OfChanType(t1, t3)
∀t : (OfChanType(t, t)⇒ Fail(t)

Table 3.3.8. Axioms for explicit fusion

3.3.1. Example of simply typed π-calculus with explicit fusion. Let us now
consider the following process

P = x!a.x?b.0 | y?c.y!c.0 | 〈x = y〉
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which encoded in our ψ-calculus would be defined as
P = x a.x(λb)b.L{b = b}M | y(λc)c.y c.L{c = c}M | L{x = y}M,

for which we want to infer the typing environment used to type this process, if there exists
such an environment.

In order to do this we construct a minimal typing environment for the process, using
the free names of P , giving us:

Γ = x : τ1, y : τ2, a : τ3.

We can now apply our newly defined constraint generation rules to generate the relevant
constraints, to which—since we know they conform to ALFP—we can apply our solution
function L to infer the correct instantiation of the variables, if such an instantiation
exists.

Using our generation rules we get the following constraints:
OfChanType(τ1, τ3) Eq(τ4, τ4)
OfChanType(τ1, τ4) Eq(τ1, τ2)
OfChanType(τ2, τ5) Eq(τ5, τ5)

By applying L to our constraints and axioms we get
OfChanType(τ1, τ3) Eq(τ1, τ1)
OfChanType(τ1, τ4) Eq(τ2, τ2)
OfChanType(τ1, τ5) Eq(τ3, τ3)
OfChanType(τ2, τ3) Eq(τ4, τ4)
OfChanType(τ2, τ4) Eq(τ5, τ5)
OfChanType(τ2, τ5) Eq(τ1, τ2)

Eq(τ2, τ1)
Eq(τ3, τ4)
Eq(τ4, τ3)
Eq(τ3, τ5)
Eq(τ5, τ3)
Eq(τ4, τ5)
Eq(τ5, τ4)

We finally apply our type assigning function to each of our type variables in the
minimal initial environment.

x : τ1: We want to compute Φ � τ1. We investigate Φ and find OfChanType(τ1, τ3),
OfChanType(τ1, τ4), and OfChanType(τ1, τ5). By our axioms we know that τ3 =
τ4 = τ5—which is also represented as relations in Φ—and can chose any of them
and proceed. We chose OfChanType(τ1, τ3) and can conclude that Ψ � τ1 =
Ch(Ψ � τ3). We once again investigate Φ, but find no OfChanType-constraint for
τ3 and conclude Φ � τ3 = unit implying Φ � τ1 = Ch Unit.

y : τ2: We want to compute Φ � τ2. We investigate Φ and find Eq(τ2, τ1). We can
thus conclude that Φ� τ2 = Φ� τ1 = Ch unit. We could also proceed with a very
similar deduction as presented above.

a : τ3: We want to compute Φ � τ3. We investigate Φ and find no OfChanType-
constraint for τ3 and conclude Φ � τ3 = unit.

3.4. Correspondence assertions as a ψ-calculus

In this section we define constraint generation for correspondence assertions. We will
make use of a combination of the type systems as defined in [9] and [6]. The section is
divided into three subsections: In Section 3.4.1 we present the encoding of correspondence
assertions in a ψ-calculus and how to solve the generated constraints; in Section 3.4.2 we
present the problems encountered while encoding correspondence assertions, and what
restrictions we require in order for the encoding to work; and finally in Section 3.4.3 we
present an example of type inference in the constructed ψ-calculus.
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T: M as defined in Table 3.4.3
C: {M = N |M,N ∈ T}

{M = enc(∗, k) |M ∈ T, k ∈ N}
{M 6= enc(∗, k) |M ∈ T, k ∈ N}
{M as N |M,N ∈ T}
{a↔̇b | a, b ∈ N}

A: {begin `(M) |M ∈ T, ` /∈ N} ∪ {end `(M) |M ∈ T, ` /∈ N}
{~x = dec(M,k) |M ∈ T, k ∈ N , ~x ⊆ N}

⊗: undefined
1: 1
�: undefined

Table 3.4.1. Nominal data types and operations

T ::= Type
Un public data
Ch(T ) channel type
Pair(x : T, T ) dependent pair
Ok(S) ok to assume S

Table 3.4.2. Types used for correspondence encoding

3.4.1. Correspondence encoding. As previously, we only need to define the con-
straint generation for terms, assertions, and conditions, but unlike explicit fusion, the
terms we consider in this case are not just names, but messages. The nominal data types
for the ψ-calculus we use to encode correspondence assertions are shown in Table 3.4.1;
the terms are defined by formation rules as presented in Table 3.4.3; and finally the types
as seen in Table 3.4.2. The compatibility predicate is defined as follows: Ch(T ) " T
and Un " Un. The opponent type Un is used to denote public data. This data may
flow to and from the any opponent process. The purpose of a opponent process can be
summarised as:

Given a process P representing the legitimate participants making up a
system, we want to show that no opponent process O can induce P into
an unsafe state, where some expectation is unjustified. An opponent is
any process within our spi calculus, except it is not allowed to include
any expectations itself. (The opponent goal is to confuse the legitimate
participants about who is doing what.) [6]

It is worth noticing that the composition of assertions for this ψ-calculus is undefined,
but that is intentional: the syntax only allows for one assertion at a time, and disal-
lows combination. It is not possible—with the syntax we have chosen—to combine e.g.
begin `(M) and begin `(N) into for instance begin `(M,N) as this will denote something
else, namely the assertion of the pair `(M,N) and not both `(M) and `(N) individually.

Regarding the syntactical components we have chosen, we have chosen to use split
instead of e.g. exercise as defined in [9]. We did this only for convenience, and one could
just as well have chosen exercise, as each can be encoded using the other.

The two components begin `(M) and end `(M) represents assertions of the effects `(M).
We will interchangeably use effects and assertions to denote `(M) as they, for the this type
system, are synonymous. The begin `(M)-assertions is used to denote that the process
can now safely assume that `(M) holds. Correspondingly the end `(M)-assertions denotes
that a process at this point assumes `(M) holds. A straight forward notion of safety for a
process is thus: if P reduces to something like end `(M) | P ′ then P ′ = begin `(M) | P ′′.
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P ::= Process
M〈M〉 output
a(x).P input
0 inactivity
P | P parallel composition
!P replication
(νa : T )P restriction
case M ofxM : P else Q decryption
if M = N then P else Q choice
split M as (x, y) in P split
begin `(M) assert `(M)
end `(M) expectation of assertion `(M)

M ::= Message
x variable
pair(M,M) pair
{M1}M2 message encrypted with key M2
fst M first element of pair
snd M second element of pair
ok ok

a Name
x Variable

Table 3.4.3. The syntax of the π-calculus for correspondence assertions

This implies that every time the process assumes something holds, we can with certainty
conclude that the assertions holds.

The encoding of the syntax presented in Table 3.4.3 as a ψ-calculusis straightforward
and presented in Table 3.4.4. Notice that we have to enforce termination of a process
after an output, as ψ-calculi in general do not adhere to this principle, and we encode
termination as the unit assertion L1M. The unit assertion in this setting has no inherent
meaning or implications, and thus serves the same purpose as the more classical nil process
0. The only non-trivial encoding cases are [If], [Spl] and [Dec], and we will explain them
briefly. While [If] and [Spl] might at first glance seem similar, they are inherently quite
different. In [If] the check of whether M = N is purely a semantic detail and in terms
of type checking irrelevant. M might be of type T and N of type U , or they might be
of the same type. In any case we only care whether or not the processes P and Q are
well-typed—if they are, the choice will be well-typed—as determining whether or not M
and N have the same type is superfluous: even if they have the same type, we cannot
determine whether they are equal or not. For instance consider two messages with the
type Un. Since all messages can have the Un-type, there is no way the type alone is
enough. In [Spl] on the other hand, it is crucial that M and pair(x, y) share the same
type: in split we are clearly stating that M can be written as pair(x, y) and thus they
must share the same type. For this reason we utilise the condition M as N instead of the
“empty” condition M = N used in [If]. In addition we make sure that the names x and y
are correctly scoped using the (νx : Tx)(νy : Ty) component. For [Dec] we introduce the
assertions M1 = enc(∗,M2) and M1 6= enc(∗,M2), which are used to determine whether
or not M1 is encrypted using the key M2. If that is the case, we introduce the assertion
~x = dec(M1,M2) denoting that the names ~x now represent the decoding of M1 with key
M2.

We now present the typing rules for first assertions, conditions, and then terms
(messages). The typing rules for assertions are found in Table 3.4.5. The only rules of
importance are the rules [End] and [Dcr]. For the [End] rules we either require the assertion
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[Out] JM1〈M2〉K = M1M2.J0K

[In] Ja(x).P K = a(λx)x.JP K

[Nil] J0K = L1M [Par] JP | QK = JP K | JQK [Rep] J!P K = ∗JP K

[Res] J(νx : T )P K = (νx : T )JP K

[Dec] Jcase M1 of xM2 : P else QK =

(νx : T )
(
case M1 = enc(∗,M2) : (Lx = dec(M1,M2)M | JP K)

M1 6= enc(∗,M2) : JQK

)

[If] Jif M = N then P else QK = caseM = N : JP K , M 6= N : JQK

[Spl] Jsplit M as (x, y) in P K = (νx : Tx)(νy : Ty)(caseM as pair(x, y) : JP K)

[Beg] Jbegin `(M)K = Lbegin `(M)M [End] Jend `(M)K = Lend `(M)M
Table 3.4.4. Encoding of correspondence π in ψ

[One] Γ ` 1

[Dcr-1] Γ ` x : T Γ `M2 : Key(T ) Γ `M1 : Un
Γ ` x = dec(M1,M2)

[Dcr-2] Γ ` x : Un Γ `M2 : Un Γ `M1 : Un
Γ ` x = dec(M1,M2)

[Bgn] Γ ` begin `(M)

[End-1] Γ = Γ1, `(M),Γ2 fn(M) ⊆ dom(Γ1)
Γ ` end `(M)

[End-2] Γ = Γ1, x : Ok(S),Γ2 `(M) ⊆ S
Γ ` end `(M)

Remaining assertions are assumed to always be well-typed
Table 3.4.5. Typing rules for assertions

`(M) to exists in the environment Γ, or we require that there exists an ok : Ok(S) binding
in the environment Γ such that `(M) ⊆ S; in other words that the process has received
the ability to assert end `(M).

The typing rules for conditions are equally simple, and can be seen in Table 3.4.6. The
only noticeable rule is [Seq]. We use this condition in the encoding of spilt, and since we
here explicitly require the two terms to be equal, they must have the same type.

The typing rules for terms can be seen in Table 3.4.7. The rules are identical to ones
presented in [9] but with the addition of opponent type Un, as in [6]. This implies we
for most terms have two rules: either the term can be typed with its specific or more
describing type—e.g. a pair having the type Pair(x : T,U(x))—or it can be typed with
the type Un.
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[Eq] Γ `M = N

[Seq] Γ `M1 : T Γ `M2 : T
Γ `M1 as M2

[Eeq-1] Γ `M1 = enc(∗,M2)
[Eeq-2] Γ `M1 6= enc(∗,M2)

Table 3.4.6. Typing rules for conditions

[Nam] Γ ` � Γ = Γ1, a : T,Γ2
Γ ` a : T

[Enc] Γ `M : T Γ ` N : Key(T )
Γ ` {M}N : Un

[Enc-Un] Γ `M : Un Γ ` N : Un
Γ ` {M}N : Un

[Pai] Γ `M : T Γ `M ′ : T ′(M)
Γ ` pair(M,M ′) : Pair(x : T, T ′(x))

[Pai-Un] Γ `M : Un Γ `M ′ : Un
Γ ` pair(M,M ′) : Un

[Ok] Γ ` � ∀φ ∈ S : φ ∈ Γ ∨ ∃(x : Ok(R)) ∈ Γ : φ ∈ R
Γ ` ok : Ok(S)

[Ok-Un] Γ ` �
Γ ` ok : Un

[Fst] Γ `M : Pair(x : T, T ′(x))
Γ ` fst M : T

[Fst-Un] Γ `M : Un
Γ ` fst M : Un

[Snd] Γ `M : Pair(x : T, T ′(x))
Γ ` snd M : T ′(fst M)

[Snd-Un] Γ `M : Un
Γ ` snd M : Un

Table 3.4.7. Typing rules for terms (messages)

The main property of the type system is, as described in Theorem 3.4.3, that if a
process P can be typed when all its free names have the type Un, then P is robustly safe.
Safe and robustly safe are defined in Definition 3.4.1 and Definition 3.4.2 respectively.

Definition 3.4.1 (Safe process). A process P is safe if whenever P →∗ (ν~a :
~T )(end `(M) | P ′) we have P ′ ≡ (begin `(M) | P ′′) for some P ′′

Definition 3.4.2 (Robustly safe process). A process P is robustly safe if for every
opponent O we have that P | O is safe
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T Eq(a, b)
Eqa(µ1, µ2, µ3, µ4) Eqi(µ1, µ2, µ3, µ4) Eqi(µ1, µ2, µ3, µ4, µ5, µ6)
IsCha(τ1, τ2) IsKey(τ1, τ2) IsOk(τ)
IsPair(τ1, µ, τ2, τ3) CanOk(τ, ξ) IsUn(τ)
IsCha?(τ1, τ2) IsKey?(τ1, τ2) IsOk?(τ)
IsPair?(τ1, µ, τ2, τ3) CanOk?(τ, ξ)
NamVar(a) PairVar(x)
MsgPai(µ1, µ2, µ3) MsgOk(µ) MsgEnc(µ1, µ2, µ3)
MsgFst(µ1, µ2) MsgSnd(µ1, µ2) FrmlMsg(ξ, `, µ)
IsAbs(τ1, τ2, µ1, µ2, τ3) Abs(µ1, µ2, µ3)
AbsCanOk(τ, µ, ξ) AbsCanOk?(τ, µ, ξ)
AbsMsgPai(µ1, µ2, µ3, µ4) AbsMsgOk(µ1, µ2) AbsMsgEnc(µ1, µ2, µ3, µ4)
AbsMsgFst(µ1, µ2, µ3) AbsMsgSnd(µ1, µ2, µ3) AbsFrmlMsg(µ1, ξ, `, µ2)
Ins(µ1, µ2, µ3)
InsCanOk(τ, µ1, µ2, ξ) InsCanOk?(τ, µ1, µ2, ξ)
InsMsgPai(µ1, µ2, µ3, µ4, µ5) InsMsgOk(µ1, µ2, µ3) InsMsgEnc(µ1, µ2, µ3, µ4, µ5)
InsMsgFst(µ1, µ2, µ3, µ4) InsMsgSnd(µ1, µ2, µ3, µ4) InsFrmlMsg(µ1, µ2, ξ, `, µ3)

Table 3.4.8. Constraint language

Theorem 3.4.3. If x1 : Un, . . . , xk : Un ` P where {x1, . . . , xk} = fn(P ) then P is robustly
safe.

3.4.1.1. Constraint generation for terms, assertions, and conditions. Before we present
the constraint generation rules for the typing rules presented in Tables 3.4.5 to 3.4.7
we introduce the constraint language we will use, and what each of the constraints is
supposed to denote. The full constraint language can be seen in Table 3.4.8. As the rules
have to be syntax directed, we need to collapse the two rules for each term into a single
rule. We do this by following the approach presented in [11] and introduce the concept
of maybe-constraints. These constraints denote that something might be true, but not
necessarily. For instance, a pair can be typed either with a Pair(x : T,U(x)) type or an
Un type. In the constraint generation we thus introduce the constraint IsPair?(τ, · · · ) to
denote that the type τ might be a Pair-type. If we later on discover that τ also might be
channel type, i.e. we get a IsCha?(τ, · · · ) constraint, we can conclude that τ must be an
Un type, as this is the only type that can correctly type both channels and pairs. If we
never get a contradictory constraint for the IsPair?(τ, · · · ) constraint we can conclude that
τ is indeed a Pair-type.

The correspondence assertions themselves require a bit more work. If we limited the
processes to always combine an ok-term with the full term of one of the assertions, e.g.
begin `(a) | x pair(a, ok).L1M, we could handle the correspondence assertions using only a
single variable. This, however, is not the case. Consider for instance the process

(begin `(pair(a, b)) | x pair(a, ok).L1M) | · · · | x(λc)c.case c as pair(d, e) : end `(pair(d, b)).

It is clear that this process can be well-typed, assuming that the name b is known to
all parallel components. The problem thus lies in the dependent pair pair(a, ok) and the
assertion begin `(pair(a, b)). We need to make sure the type of the ok-term allows us to
substitute a for d in the receiving process. We do this by encoding the message inside
the assertion (pair(a, b)), using the MsgX predicates—here X is simply a placeholder—to
encode messages, e.g. MsgFst(µ1, µ2) predicate means that µ1 = fst µ2, and similarly
FrmlMsg(ξ, `, µ) denotes that ξ = `(µ), and then conducting our substitution on those, by
using the Abs predicate to denote that a type is an abstraction of another, and the Ins
predicates to denote that a type is an instantiation of another. The encoding of messages
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[MN-C] x ∈ N
x� x; NamVar(x); T

[MP-C] M � µm;ψm;φm N � µn;ψn;φn
pair(M,N)� µ; MsgPai(µ, µm, µn);ψm ∧ φm ∧ ψn ∧ φn

[MF-C] M � µm;ψm;φm
fst M � µ; MsgFst(µ, µm);ψm ∧ φm

[MS-C] M � µm;ψm;φm
snd M � µ; MsgSnd(µ, µm);ψm ∧ φm

[MO-C] ok� µ; MsgOk(µ); T

[ME-C] M � µm;ψm;φm N � µn;ψn;φn
{M}N � µ; MsgEnc(µ, µm, µn);ψm ∧ φm ∧ ψn ∧ φn

[FM-C] M � µ;ψ;φ
`(M)� ξ; FrmlMsg(ξ, `, µ);ψ ∧ φ

Table 3.4.9. Message and formula structure encoding constraints

is defined in Table 3.4.9, and further discussion of the difficulties of combining Ok- and
Pair-types can be found in Section 3.4.2.

We can now finally present the constraint generation rules for terms and assertions as
seen in Tables 3.4.10 and 3.4.11.

In order to solve the constraints, we need a set of axioms, that allows us to reason
about the predicates constructed during the constraint generation. We thus introduce the
set of constraints seen in Tables 3.4.13 to 3.4.15. Many of the axioms are rather simple:
for instance if Eq(a, b) and IsOk(a) then IsOk(b) and so forth. Others are slightly more
complicated, for instance the constraint

∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ ¬IsKey?(t, u2)
∧ ¬IsPair?(t, x, tf , ts) ∧ ¬IsUn(t))⇒ IsOk(t)

allows us to deduce whether or not a IsOk?(τ) constraint can be transformed from its
maybe-state to certainty-state.

We also need to define the type assigning function �, as seen in Table 3.4.16. In the
definition we make use of the functions �′, �, �, and ♦ defined in Tables 3.4.16 to 3.4.18,
for constructing abstract types, messages, abstract messages, and instantiated abstract
messages, respectively. Note that we use T to denote that any type may be used, and
IsX(τ, ~τ) to denote IsOk(τ), IsCha(τ, τ1), IsPair(τ, x, τ1, τ2), IsKey(τ, τ1), or IsUn(τ). Also
note that we use the same χ as the reconstruction of all x’s in pairs. This is because the
same pair will use one x when being sent, and another when being split. Obviously these
types need to be identical when reconstructed, so we use χ.

We are now almost ready to prove Items 1 to 5 of Theorem 3.2.4 for correspondence
assertions, but before we can do so we need Lemmas 3.4.5 to 3.4.8, which we prove in
Appendices B.1.2, B.1.3, B.1.6 and B.1.7, and to define the minimal environment.

The minimal environment used for our type inference is defined as seen in Defini-
tion 3.4.4, and in order to ensure robust safety one can simply add

∧
τn∈ran(Γ)

IsUn(τn) to

the conjunction generated by P .
The proofs of Item 4, Item 5, and Items 1 to 3 of Theorem 3.2.4 for correspondence

assertions can be found in Appendix B.1.4, Appendix B.1.5, and Appendix B.1.8. It should
be noted that we only prove that a type assignment is found if the process is robustly safe,
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[Nam-C] Γ ` � Γ(a) = τ

Γ ` a τ ; NamVar(a)

[Enc-C] Γ `M  τm;φm Γ ` N  τn;φn
Γ ` {M}N  τ ; φm ∧ φn ∧ IsUn(τ) ∧ IsKey?(τn, τm)

[Pai-C] Γ `M  τm;φm M � µ;ψm;ϕm Γ ` N  τn;φn

Γ ` pair(M,N) τ ; φm ∧ ψm ∧ ϕm ∧ φn ∧ NamVar(x) ∧ PairVar(x)∧
IsPair?(τ, x, τm, τ ′n) ∧ IsAbs?(τ ′n, τn, µ, x, τm)

[Ok-C] Γ ` � Ψi � ξi;ψi;φi Ψi ∈ Γ

Γ ` ok τ ;

IsOk?(τ) ∧ IsOkTerm(τ) ∧
∧
i(CanOk?(τ, ξi) ∧ ψi ∧ φi)∧∧

τ ′∈rng(Γ)(∀ξ′ : (IsOk(τ ′) ∧ CanOk(τ ′, ξ′))⇒ CanOk?(τ, ξ′))∧∧
τ ′∈rng(Γ)(∀ξ′ : ∀x : ∀µ : (IsOk(τ ′) ∧ InsCanOk(τ ′, x, µ, ξ′)∧

IsOk(τ))⇒ InsCanOk?(τ, x, µ, ξ′))

[Fst-C] Γ `M  τm;φm

Γ ` fst M  τ ; φm ∧ IsPair?(τm, x, τ, τ ′2) ∧ NamVar(x)∧
IsAbs?(τ ′2, τ2, µ, x, τ) ∧ PairVar(x)

[Snd-C] Γ `M  τm;φm fst M � µ;ψ1;φ1

Γ ` snd M  τ ; φm ∧ ψ1 ∧ φ1 ∧ IsPair?(τm, x, τ1, τ
′)∧

IsAbs?(τ ′, τ, µ, x, τ1) ∧ NamVar(x) ∧ PairVar(x)

[Eq-C] Γ `M = N  T

[Neq-C] Γ `M 6= N  T

[Seq-C] Γ `M  τm;φm Γ ` N  τn;φn
Γ `M as N  φm ∧ φn ∧ Eq(τm, τn)

[Eeq-C-1] Γ `M1 = enc(∗,M2) T

[Eeq-C-2] Γ `M1 6= enc(∗,M2) T

Table 3.4.10. Constraint generation for correspondence terms and condi-
tions in ψ

as defined in Definition 3.4.2, as a type assignment will not be found if the process can
only be typed if there is an Ok-type in the initial environment.

Definition 3.4.4 (Minimal correspondence environment). For any safe process P the
minimal environment ΓP used for type inference is

ΓP =
⋃

n∈fn(P )
n : τn

where all τn are distinct and unique

Lemma 3.4.5 (Message and formula encoding).
(1) For any message M , if M � µ;ψ;φ then L (ψ ∧ φ) � µ = M
(2) For any assertion `(M), if `(M)� ξ;ψ;φ then L (ψ ∧ φ) � ξ = `(M)
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[One-C] Γ ` 1 T

[Dcr-C] Γ ` x τx;φx Γ `M1  τm1;φm1 Γ `M2  τm2;φm2
Γ ` x = dec(M1,M2) IsKey?(τm2, τx) ∧ IsUn(τm1) ∧ φx ∧ φm1 ∧ φm2

[Bgn-C] Γ ` begin `(M) T

[End-C] Γ ` end `(M) 



Jfn(M) ⊆ dom(Γ)K if `(M) ∈ Γ

Jfn(M) ⊆ dom(Γ)K ∧ ψ ∧ φ∧
((
∧
x:τ∈Γ(∀ξ′ : ∀ξ′′ : ∀x : ∀µ :

((¬CanOk(τ, ξ′) ∨ ¬Eq(ξ, ξ′))∧
(¬InsCanOk(τ, x, µ, ξ′′) ∨ ¬Eqi(ξ, x, µ, ξ′′)))))⇒
FAIL(ξ))

where `(M)� ξ;ψ;φ

Table 3.4.11. Constraint generation for correspondence assertions in ψ

Jτ1 " τ2K = IsCha?(τ1, τ2)
Table 3.4.12. Encodings

Lemma 3.4.6. For all τ and φ where IsAbs(τ ′, τ, µ, x, τ ′′) ∈ L (φ), PairVar(x) ∈ L (φ),
and L (φ) � τ = Ok(S) we have L (φ) �′ τ ′ = Ok(R) and L (φ) � µ = M such that
R = S[χ�M ]

Lemma 3.4.7. For all τ ′ and φ where IsAbs(τ ′, τ, µ, x, τ ′′) ∈ L (φ), PairVar(x) ∈ L (φ),
and L (φ) �′ τ ′ = Ok(S) we have L (φ) � τ = Ok(R) and L (φ) � µ = M such that
S[M�χ] = R

Lemma 3.4.8.
(1) The relations Eq, Eqa, and Eqi-6 are equivalence-relations
(2) For all constraints φ for which Φ = L (φ), type variables a and b, if Eq(a, b) ∈ Φ

then Φ � a = Φ � b
(3) For all M � µm;ψm;ϕm and N � µn;ψn;ϕn if Φ = L (ψ{m,n} ∧ ϕ{m,n}) then

Eq(µm, µn) ∈ Φ⇒ Φ � µm = Φ � µn
(4) For all abstract message M with index χm, variable µm, and constraint φm

and abstract message N with index χn, variable µn and constraint φn if Φ =
L (φm ∧ φn) then Eqa(χm, µm, χn, µn) ∈ Φ⇒ Φ�(χm, µm) = Φ�(χn, µn)

(5) For all instantiated message M with index χm, µ′m, variable µm, and constraint
φm and message N with variable µn and constraint φn if Φ = L (φm ∧ φn) then
Eqi(µn, χm, µ′m, µm) ∈ Φ⇒ Φ♦(χm, µ′m, µm) = Φ � µn

(6) For all instantiated message M with index χm, µ′m, variable µm, and constraint
φm and instantiated message N with index χn, µ′n, variable µn, and constraint φn
if Φ = L (φm ∧ φn) then Eqi(χm, µ′m, µm, χn, µ′n, µn) ∈ Φ ⇒ Φ♦(χm, µ′m, µm) =
Φ♦(χn, µ′n, µn)
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∀a : Eq(a, a)
∀a : ∀b : Eq(a, b)⇒ Eq(b, a)
∀a : ∀b : ∀c : (Eq(a, b) ∧ Eq(b, c))⇒ Eq(a, c)
∀t1 : ∀t2 : (IsUn(t1) ∧ Eq(t1, t2))⇒ IsUn(t2)
∀t1 : ∀t2 : (IsOk?(t1) ∧ Eq(t1, t2))⇒ IsOk?(t2)
∀t1 : ∀t2 : (IsOk(t1) ∧ Eq(t1, t2))⇒ IsOk(t2)
∀t1 : ∀t2 : ∀u1 : ∀u2 : (IsCha?(t1, t2) ∧ Eq(t1, u1) ∧ Eq(t2, u2))⇒ IsCha?(u1, u2)
∀t1 : ∀t2 : ∀u1 : ∀u2 : (IsCha(t1, t2) ∧ Eq(t1, u1) ∧ Eq(t2, u2))⇒ IsCha(u1, u2)
∀t1 : ∀t2 : ∀t3 : (IsCha?(t1, t2) ∧ IsCha?(t1, t3))⇒ Eq(t2, t3)
∀t1 : ∀t2 : ∀t3 : (IsCha(t1, t2) ∧ IsCha(t1, t3))⇒ Eq(t2, t3)
∀t1 : ∀t2 : ∀u1 : ∀u2((IsKey?(t1, t2) ∧ Eq(t1, u1) ∧ Eq(t2, u2))⇒ IsKey?(u1, u2))
∀t1 : ∀t2 : ∀u1 : ∀u2((IsKey(t1, t2) ∧ Eq(t1, u1) ∧ Eq(t2, u2))⇒ IsKey(u1, u2))
∀t1 : ∀t2 : ∀u : ((IsKey?(u, t1) ∧ IsKey?(u, t2))⇒ Eq(t1, t2))
∀t1 : ∀t2 : ∀u : ((IsKey(u, t1) ∧ IsKey(u, t2))⇒ Eq(t1, t2))
∀t : ∀x : ∀u : ∀tf : ∀ts : (IsPair?(t, x, tf , ts) ∧ Eq(t, u))⇒ IsPair?(u, x, tf , ts)
∀t : ∀x : ∀u : ∀tf : ∀ts : (IsPair(t, x, tf , ts) ∧ Eq(t, u))⇒ IsPair(u, x, tf , ts)
∀t : ∀x : ∀tf : ∀uf : ∀ts : (IsPair?(t, x, tf , ts) ∧ Eq(tf , uf ))⇒ IsPair?(t, x, uf , ts)
∀t : ∀x : ∀tf : ∀uf : ∀ts : (IsPair(t, x, tf , ts) ∧ Eq(tf , uf ))⇒ IsPair(t, x, uf , ts)
∀t : ∀x : ∀u : ∀xt : ∀xu : ∀tf : ∀ts : ∀uf : ∀us : (IsPair(t, xt, tf , ts) ∧ IsPair(u, xu, uf , us) ∧ Eq(t, u))⇒

(Eq(tf , uf ) ∧ Eq(xt, xu) ∧ Eq(ts, us))
∀t : ∀x : ∀tf : ∀t′s : ∀ts : ∀a : ∀t′′s : (IsPair(t, x, tf , t′s) ∧ IsAbs(t′s, ts, a, x, t′′s) ∧ IsOk(ts))⇒ IsOk(t′s)
∀t : ∀x : ∀tf : ∀t′s : ∀ts : ∀a : ∀t′′s : (IsPair(t, x, tf , t′s) ∧ IsAbs(t′s, ts, a, x, t′′s) ∧ IsOk(t′s))⇒ IsOk(ts)
∀t : ∀xt : ∀tf : ∀ts : ∀u : ∀xu : ∀uf : ∀us : (IsPair(t, xt, tf , ts) ∧ IsPair(u, xu, uf , us) ∧ Eq(t, u) ∧ IsOk(ts))⇒

IsOk(us)
∀t : ∀x : ∀tf : ∀t′s : ∀ts : ∀a : ∀t′′s : (IsPair(t, x, tf , t′s) ∧ IsAbs(t′s, ts, a, x, t′′s) ∧ IsUn(ts))⇒ IsUn(t′s)
∀t : ∀x : ∀tf : ∀t′s : ∀ts : ∀a : ∀t′′s : (IsPair(t, x, tf , t′s) ∧ IsAbs(t′s, ts, a, x, t′′s) ∧ IsUn(t′s))⇒ IsUn(ts)
∀t : ∀xt : ∀tf : ∀ts : ∀u : ∀xu : ∀uf : ∀us : (IsPair(t, xt, tf , ts) ∧ IsPair(u, xu, uf , us) ∧ Eq(t, u) ∧ IsUn(ts))⇒

IsUn(us)
∀t : ∀x : ∀tf : ∀ts : (IsOk?(t) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(tf ) ∧ IsUn(ts))
∀t : ∀u : (IsOk?(t) ∧ IsCha?(t, u))⇒ (IsUn(t) ∧ IsUn(u))
∀t : ∀u : (IsOk?(t) ∧ IsKey?(t, u))⇒ (IsUn(t) ∧ IsUn(u))
∀t : ∀u1 : ∀u2 : (IsCha?(t, u1) ∧ IsKey?(t, u2))⇒ (IsUn(t) ∧ IsUn(u1) ∧ IsUn(u2))
∀t : ∀x : ∀u : ∀tf : ∀ts : (IsCha?(t, u) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(u) ∧ IsUn(tf ) ∧ IsUn(ts))
∀t : ∀x : ∀u :: ∀tf : ∀ts : (IsKey?(t, u) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(u) ∧ IsUn(tf ) ∧ IsUn(ts))
∀t1 : ∀t2 : ∀t3 : ∀x : (IsUn(t1) ∧ IsPair?(t1, x, t2, t3))⇒ (IsUn(t2) ∧ IsUn(t3))
∀t1 : ∀t2 : (IsUn(t1) ∧ IsCha?(t1, t2))⇒ IsUn(t2)
∀t1 : ∀t2 : (IsUn(t1) ∧ IsKey?(t1, t2))⇒ IsUn(t2)
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ ¬IsKey?(t, u2) ∧ ¬IsPair?(t, x, tf , ts) ∧ ¬IsUn(t))⇒

IsOk(t)
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (¬IsOk?(t) ∧ IsCha?(t, u1) ∧ ¬IsKey?(t, u2) ∧ ¬IsPair?(t, x, tf , ts) ∧ ¬IsUn(t))⇒

IsCha(t, u1)
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (¬IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ IsKey?(t, u2) ∧ ¬IsPair?(t, x, tf , ts) ∧ ¬IsUn(t))⇒

IsKey(t, u2)
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (¬IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ ¬IsKey?(t, u2) ∧ IsPair?(t, x, tf , ts)∧

IsAbs?(ts, t′s, a, x, tf ) ∧ ¬IsUn(t))⇒ (IsPair(t, x, tf , ts) ∧ IsAbs(ts, t′s, a, x, tf ))
(AbsCanOk?(t, x, xi) ∧ IsAbs(ta′, ta,ma, xa, ta′′) ∧ CanOk?(tc, xic) ∧ Eq(t, ta′) ∧ Eq(x, xa) ∧ Eq(ta, tc)∧

xi = xic ∧ (∀t′ : ((¬Eq(t, t′) ∨ ¬IsOkTerm(t′)) ∨ (∃x′ : ∃xi′ : Eq(x, x′)∧
Eqa(x, xi, x′, xi′) ∧ AbsCanOk?(t′, x′, xi′)))))⇒ (AbsCanOk(t, x, xi) ∧ CanOk(tc, xic))

(AbsCanOk?(t, x, xi) ∧ IsAbs(ta′, ta,ma, xa, ta′′) ∧ InsCanOk?(tic, xic, aic, xiic) ∧ Eq(t, ta′) ∧ Eq(x, xa)∧
Eq(ta, tic) ∧ xi = xiic ∧ (∀t′ : ((¬Eq(t, t′) ∨ ¬IsOkTerm(t′)) ∨ (∃x′ : ∃xi′ : Eq(x, x′)∧
Eqa(x, xi, x′, xi′) ∧ AbsCanOk?(t′, x′, xi′)))))⇒ (AbsCanOk(t, x, xi) ∧ InsCanOk(tic, xic, aic, xiic))

(IsCha(tc, t) ∧ IsOk(t) ∧ IsOkTerm(t) ∧ CanOk?(t, xi)∧
(∀t′ : ((¬Eq(t, t′) ∨ ¬IsOkTerm(t′)) ∨ (∃xi′ : Eq(xi, xi′) ∧ CanOk?(t′, xi′)))))⇒ CanOk(t, xi)

(IsCha(tc, t) ∧ IsOk(t) ∧ IsOkTerm(t) ∧ InsCanOk?(t, x, a, xi) ∧ (∀t′ : ((¬Eq(t, t′) ∨ ¬IsOkTerm(t′))∨
(∃x′ : ∃a′ : ∃xi′ : Eqi(x, a, xi, x′, a′, xi′) ∧ InsCanOk?(t′, x′, a′, xi′)))))⇒ InsCanOk(t, x, a, xi)

∀x1 : ∀x2 : ∀l : ∀m1 : ∀m2 : (FrmlMsg(x1, l,m1) ∧ FrmlMsg(x2, l,m2) ∧ Eq(m1,m2))⇒ Eq(x1, x2)
∀m : ∀m1 : ∀m2 : ∀n : ∀n1 : ∀n2 : (MsgPai(m,m1,m2) ∧MsgPai(n, n1, n2) ∧ Eq(m1, n1) ∧ Eq(m2, n2))⇒

Eq(m,n)
∀m : ∀m1 : ∀m2 : ∀n : ∀n1 : ∀n2 : (MsgEnc(m,m1,m2) ∧MsgEnc(n, n1, n2) ∧ Eq(m1, n1) ∧ Eq(m2, n2))⇒

Eq(m,n)
∀m1 : ∀m2 : (MsgOk(m1) ∧MsgOk(m2))⇒ Eq(m1,m2)
∀m1 : ∀m2 : ∀m′1 : ∀m′2 : (MsgFst(m1,m2) ∧MsgFst(m′1,m′2) ∧ Eq(m2,m

′
2))⇒ Eq(m1,m

′
1)

∀m1 : ∀m2 : ∀m′1 : ∀m′2 : (MsgSnd(m1,m2) ∧MsgSnd(m′1,m′2) ∧ Eq(m2,m
′
2))⇒ Eq(m1,m

′
1)

Table 3.4.13. Axioms for the correspondence generated constraints (I)
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(CanOk?(t, xi) ∧ IsAbs(t′, t, a, x, t′′) ∧ FrmlMsg(xi, l,m) ∧ ¬Eq(a,m))⇒
(AbsCanOk?(t′, x, xi) ∧ AbsFrmlMsg(x, xi, l,m) ∧ Abs(a, x,m))

(CanOk?(t, xi) ∧ IsAbs(t′, t, a, x, t′′) ∧ FrmlMsg(xi, l,m) ∧ Eq(a,m))⇒
(AbsCanOk?(t′, x, xi) ∧ AbsFrmlMsg(x, xi, l, x))

(InsCanOk?(t, x, a, xi) ∧ IsAbs(t′, t, aa, xa, t′′) ∧ InsFrmlMsg(x, a, xi, l,m) ∧ ¬Eq(aa,m))⇒
(AbsCanOk?(t′, xa, xi) ∧ AbsFrmlMsg(xa, xi, l,m) ∧ Abs(aa, xa, x, a,m))

(InsCanOk?(t, x, a, xi) ∧ IsAbs(t′, t, aa, xa, t′′) ∧ InsFrmlMsg(x, a, xi, l,m) ∧ Eq(aa,m))⇒
(AbsCanOk?(t′, xa, xi) ∧ AbsFrmlMsg(xa, xi, l, xa))

(AbsCanOk?(t′, x, xi) ∧ AbsFrmlMsg(x, xi, l,m) ∧ IsAbs(t′a, t, a, xa, t′′a) ∧ Eq(x, xa) ∧ ¬Eq(x,m))⇒
(InsCanOk?(t, xa, a, xi) ∧ InsFrmlMsg(xa, a, xi, l,m) ∧ Ins(xa, a,m))

(AbsCanOk?(t′, x, xi) ∧ AbsFrmlMsg(x, xi, l,m) ∧ IsAbs(t′a, t, a, xa, t′′a) ∧ Eq(x, xa) ∧ Eq(x,m))⇒
(InsCanOk?(t, xa, a, xi) ∧ InsFrmlMsg(xa, a, xi, l, a) ∧ Ins(xa, a, a))

(Abs(a, b, c) ∧MsgPai(m,m1,m2) ∧ Eq(c,m) ∧ Eq(a,m1) ∧ Eq(a,m2))⇒
AbsMsgPai(b,m, b, b)

(Abs(a, b, c) ∧MsgPai(m,m1,m2) ∧ Eq(c,m) ∧ Eq(a,m1) ∧ ¬Eq(a,m2))⇒
(AbsMsgPai(b,m, b,m2) ∧ Abs(a, b,m2))

(Abs(a, b, c) ∧MsgPai(m,m1,m2) ∧ Eq(c,m) ∧ ¬Eq(a,m1) ∧ Eq(a,m2))⇒
(AbsMsgPai(b,m,m1, b) ∧ Abs(a, b,m1))

(Abs(a, b, c) ∧MsgPai(m,m1,m2) ∧ Eq(c,m) ∧ ¬Eq(a,m1) ∧ ¬Eq(a,m2))⇒
(AbsMsgPai(b,m,m1,m2) ∧ Abs(a, b,m1) ∧ Abs(a, b,m2))

(Abs(a, b, c) ∧MsgEnc(m,m1,m2) ∧ Eq(c,m) ∧ Eq(a,m1) ∧ Eq(a,m2))⇒
AbsMsgEnc(b,m, b, b)

(Abs(a, b, c) ∧MsgEnc(m,m1,m2) ∧ Eq(c,m) ∧ Eq(a,m1) ∧ ¬Eq(a,m2))⇒
(AbsMsgEnc(b,m, b,m2) ∧ Abs(a, b,m2))

(Abs(a, b, c) ∧MsgEnc(m,m1,m2) ∧ Eq(c,m) ∧ ¬Eq(a,m1) ∧ Eq(a,m2))⇒
(AbsMsgEnc(b,m,m1, b) ∧ Abs(a, b,m1))

(Abs(a, b, c) ∧MsgEnc(m,m1,m2) ∧ Eq(c,m) ∧ ¬Eq(a,m1) ∧ ¬Eq(a,m2))⇒
(AbsMsgEnc(b,m,m1,m2) ∧ Abs(a, b,m1) ∧ Abs(a, b,m2))

(Abs(a, b, c) ∧MsgFst(m,m′) ∧ Eq(c,m) ∧ Eq(a,m′))⇒ AbsMsgFst(b,m, b)
(Abs(a, b, c) ∧MsgFst(m,m′) ∧ Eq(c,m) ∧ ¬Eq(a,m′))⇒ (AbsMsgFst(b,m,m′) ∧ Abs(a, b,m′))
(Abs(a, b, c) ∧MsgSnd(m,m′) ∧ Eq(c,m) ∧ Eq(a,m′))⇒ AbsMsgSnd(b,m, b)
(Abs(a, b, c) ∧MsgSnd(m,m′) ∧ Eq(c,m) ∧ ¬Eq(a,m′))⇒ (AbsMsgSnd(b,m,m′) ∧ Abs(a, b,m′))
(Abs(a, b, c) ∧MsgOk(m) ∧ Eq(c,m) ∧ Eq(a,m))⇒ AbsMsgOk(b, b)
(Abs(a, b, c) ∧MsgOk(m) ∧ Eq(c,m) ∧ ¬Eq(a,m))⇒ AbsMsgOk(b,m)
(FrmlMsg(xi, l,m) ∧ InsFrmlMsg(x′,m′, xi′, l,m′′) ∧ Eqi(m,x′,m′,m′′))⇒ Eqi(xi, x′,m′, xi′)
(NamVar(n) ∧ NamVar(n′) ∧ Eq(n, n′) ∧ ¬Eq(n′, x))⇒ Eqi(n, x,m, n′)
(MsgPai(m′1,m′2,m′3) ∧ InsMsgPai(m1,m2,m3,m4,m5) ∧ Eqi(m′2,m1,m2,m4)∧

Eqi(m′3,m1,m2,m5))⇒ Eqi(m′1,m1,m2,m3)
(MsgEnc(m′1,m′2,m′3) ∧ InsMsgEnc(m1,m2,m3,m4,m5) ∧ Eqi(m′2,m1,m2,m4)∧

Eqi(m′3,m1,m2,m5))⇒ Eqi(m′1,m1,m2,m3)
(MsgFst(m′1,m′2) ∧ InsMsgFst(m1,m2,m3,m4) ∧ Eqi(m′2,m1,m2,m4))⇒ Eqi(m′1,m1,m2,m3)
(MsgSnd(m′1,m′2) ∧ InsMsgSnd(m1,m2,m3,m4) ∧ Eqi(m′2,m1,m2,m4))⇒ Eqi(m′1,m1,m2,m3)
(MsgOk(m′1) ∧ InsMsgOk(m1,m2,m3) ∧ Eqi(m′1,m1,m2,m3))⇒ Eqi(m′1,m1,m2,m3)
(Eqi(x, a,m, x′, a′,m′) ∧ InsFrmlMsg(x1, a1, xi1, l,m) ∧ InsFrmlMsg(x2, a2, xi2, l,m

′) ∧ Eq(x, x1) ∧ Eq(a, a1)∧
Eq(x′, x2) ∧ Eq(a′, a2))⇒ Eqi(x, a, xi1, x′, a′, xi2)

(NamVar(m) ∧ NamVar(m′) ∧ Eq(m,m′) ∧ NamVar(x) ∧ ¬Eq(m,x) ∧ NamVar(x′) ∧ ¬Eq(m,x′)∧
NamVar(a) ∧ NamVar(a′))⇒ Eqi(x, a,m, x′, a′,m′)

(Eqi(x1, a1,m1, x
′
1, a
′
1,m

′
1) ∧ Eqi(x2, a2,m2, x

′
2, a
′
2,m

′
2) ∧ Eq(x1, x2) ∧ Eq(x′1, x′2) ∧ Eq(a1, a2)∧

Eq(a′1, a′2) ∧ InsMsgPai(x, a,m,m1,m2) ∧ Eq(x, x1) ∧ Eq(a, a1) ∧ InsMsgPai(x′, a′,m′,m1,m2)∧
Eq(x′, x′1) ∧ Eq(a′, a′1))⇒ Eqi(x, a,m, x′, a′,m′)

(Eqi(x1, a1,m1, x
′
1, a
′
1,m

′
1) ∧ Eqi(x2, a2,m2, x

′
2, a
′
2,m

′
2) ∧ Eq(x1, x2) ∧ Eq(x′1, x′2) ∧ Eq(a1, a2)∧

Eq(a′1, a′2) ∧ InsMsgEnc(x, a,m,m1,m2) ∧ Eq(x, x1) ∧ Eq(a, a1) ∧ InsMsgEnc(x′, a′,m′,m1,m2)∧
Eq(x′, x′1) ∧ Eq(a′, a′1))⇒ Eqi(x, a,m, x′, a′,m′)

(Eqi(x1, a1,m1, x
′
1, a
′
1,m

′
1) ∧ InsMsgFst(x, a,m,m1) ∧ Eq(x, x1) ∧ Eq(a, a1) ∧ InsMsgFst(x′, a′,m′,m′1)∧

Eq(x′, x′1) ∧ Eq(a′, a′1))⇒ Eqi(x, a,m, x′, a′,m′)
(Eqi(x1, a1,m1, x

′
1, a
′
1,m

′
1) ∧ InsMsgSnd(x, a,m,m1) ∧ Eq(x, x1) ∧ Eq(a, a1) ∧ InsMsgSnd(x′, a′,m′,m′1)∧

Eq(x′, x′1) ∧ Eq(a′, a′1))⇒ Eqi(x, a,m, x′, a′,m′)
(NamVar(m) ∧ NamVar(m′) ∧ Eq(m,m′) ∧ NamVar(x) ∧ NamVar(x′) ∧ Eq(x, x′))⇒ Eqa(x,m, x′,m′)
(Eqa(x1,m1, x

′
1,m

′
1) ∧ Eqa(x2,m2, x

′
2,m

′
2) ∧ Eq(x1, x2) ∧ Eq(x′1, x′2) ∧ AbsMsgPai(x,m,m1,m2)∧

Eq(x, x1) ∧ AbsMsgPai(x′,m′,m′1,m′2) ∧ Eq(x′, x′1))⇒ Eqa(x,m, x′,m′)
(Eqa(x1,m1, x

′
1,m

′
1) ∧ Eqa(x2,m2, x

′
2,m

′
2) ∧ Eq(x1, x2) ∧ Eq(x′1, x′2) ∧ AbsMsgEnc(x,m,m1,m2)∧

Eq(x, x1) ∧ AbsMsgEnc(x′,m′,m′1,m′2) ∧ Eq(x′, x′1))⇒ Eqa(x,m, x′,m′)
(Eqa(x1,m1, x

′
1,m

′
1) ∧ AbsMsgFst(x,m,m1) ∧ Eq(x, x1) ∧ AbsMsgFst(x′,m′,m′1) ∧ Eq(x′, x′1))⇒

Eqa(x,m, x′,m′)
(Eqa(x1,m1, x

′
1,m

′
1) ∧ AbsMsgSnd(x,m,m1) ∧ Eq(x, x1) ∧ AbsMsgSnd(x′,m′,m′1) ∧ Eq(x′, x′1))⇒

Eqa(x,m, x′,m′)

Table 3.4.14. Axioms for the correspondence generated constraints (II)
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(Abs(a, b, c, d, e) ∧ InsMsgPai(c, d,m,m1,m2) ∧ Eq(e,m) ∧ Eq(a,m1) ∧ Eq(a,m2))⇒
AbsMsgPai(b,m, b, b)

(Abs(a, b, c, d, e) ∧ InsMsgPai(c, d,m,m1,m2) ∧ Eq(e,m) ∧ Eq(a,m1) ∧ ¬Eq(a,m2))⇒
(AbsMsgPai(b,m, b,m2) ∧ Abs(a, b, c, d,m2))

(Abs(a, b, c, d, e) ∧ InsMsgPai(c, d,m,m1,m2) ∧ Eq(e,m) ∧ ¬Eq(a,m1) ∧ Eq(a,m2))⇒
(AbsMsgPai(b,m,m1, b) ∧ Abs(a, b, c, d,m1))

(Abs(a, b, c, d, e) ∧ InsMsgPai(c, d,m,m1,m2) ∧ Eq(e,m) ∧ ¬Eq(a,m1) ∧ ¬Eq(a,m2))⇒
(AbsMsgPai(b,m,m1,m2) ∧ Abs(a, b, c, d,m1) ∧ Abs(a, b, c, d,m2))

(Abs(a, b, c, d, e) ∧ InsMsgEnc(c, d,m,m1,m2) ∧ Eq(e,m) ∧ Eq(a,m1) ∧ Eq(a,m2))⇒
AbsMsgEnc(b,m, b, b)

(Abs(a, b, c, d, e) ∧ InsMsgEnc(c, d,m,m1,m2) ∧ Eq(e,m) ∧ Eq(a,m1) ∧ ¬Eq(a,m2))⇒
(AbsMsgEnc(b,m, b,m2) ∧ Abs(a, b, c, d,m2))

(Abs(a, b, c, d, e) ∧ InsMsgEnc(c, d,m,m1,m2) ∧ Eq(e,m) ∧ ¬Eq(a,m1) ∧ Eq(a,m2))⇒
(AbsMsgEnc(b,m,m1, b) ∧ Abs(a, b, c, d,m1))

(Abs(a, b, c, d, e) ∧ InsMsgEnc(c, d,m,m1,m2) ∧ Eq(e,m) ∧ ¬Eq(a,m1) ∧ ¬Eq(a,m2))⇒
(AbsMsgEnc(b,m,m1,m2) ∧ Abs(a, b, c, d,m1) ∧ Abs(a, b, c, d,m2))

(Abs(a, b, c, d, e) ∧ InsMsgFst(f, g,m,m′) ∧ Eq(c, f) ∧ Eq(d, g) ∧ Eq(e,m) ∧ Eq(a,m′))⇒
AbsMsgFst(b,m, b)

(Abs(a, b, c, d, e) ∧ InsMsgFst(f, g,m,m′) ∧ Eq(c, f) ∧ Eq(d, g) ∧ Eq(e,m) ∧ ¬Eq(a,m′))⇒
(AbsMsgFst(b,m,m′) ∧ Abs(a, b, c, d,m′))

(Abs(a, b, c, d, e) ∧ InsMsgSnd(f, g,m,m′) ∧ Eq(c, f) ∧ Eq(d, g) ∧ Eq(e,m) ∧ Eq(a,m′))⇒
AbsMsgSnd(b,m, b)

(Abs(a, b, c, d, e) ∧ InsMsgSnd(f, g,m,m′) ∧ Eq(c, f) ∧ Eq(d, g) ∧ Eq(e,m) ∧ ¬Eq(a,m′))⇒
(AbsMsgSnd(b,m,m′) ∧ Abs(a, b, c, d,m′))

(Abs(a, b, c, d, e) ∧ InsMsgOk(f, g,m) ∧ Eq(c, f) ∧ Eq(d, g) ∧ Eq(e,m) ∧ Eq(a,m))⇒
AbsMsgOk(b, b)

(Abs(a, b, c, d, e) ∧ InsMsgOk(f, g,m) ∧ Eq(c, f) ∧ Eq(d, g) ∧ Eq(e,m) ∧ ¬Eq(a,m))⇒
AbsMsgOk(b,m)

(Ins(x, a,m) ∧ AbsMsgPai(b, c, d, e) ∧ Eq(x, b) ∧ Eq(m, c) ∧ Eq(x, d) ∧ Eq(x, e))⇒
(InsMsgPai(x, a,m, a, a) ∧ Ins(x, a, a))

(Ins(x, a,m) ∧ AbsMsgPai(b, c, d, e) ∧ Eq(x, b) ∧ Eq(m, c) ∧ Eq(x, d) ∧ ¬Eq(x, e))⇒
(InsMsgPai(x, a,m, a, e) ∧ Ins(x, a, a) ∧ Ins(x, a, e))

(Ins(x, a,m) ∧ AbsMsgPai(b, c, d, e) ∧ Eq(x, b) ∧ Eq(m, c) ∧ ¬Eq(x, d) ∧ Eq(x, e))⇒
(InsMsgPai(x, a,m, d, a) ∧ Ins(x, a, d) ∧ Ins(x, a, a))

(Ins(x, a,m) ∧ AbsMsgPai(b, c, d, e) ∧ Eq(x, b) ∧ Eq(m, c) ∧ Eq(x, d) ∧ Eq(x, e))⇒
(InsMsgPai(x, a,m, d, e) ∧ Ins(x, a, d) ∧ Ins(x, a, e))

(Ins(x, a,m) ∧ AbsMsgEnc(b, c, d, e) ∧ Eq(x, b) ∧ Eq(m, c) ∧ Eq(x, d) ∧ Eq(x, e))⇒
(InsMsgEnc(x, a,m, a, a) ∧ Ins(x, a, a))

(Ins(x, a,m) ∧ AbsMsgEnc(b, c, d, e) ∧ Eq(x, b) ∧ Eq(m, c) ∧ Eq(x, d) ∧ ¬Eq(x, e))⇒
(InsMsgEnc(x, a,m, a, e) ∧ Ins(x, a, a) ∧ Ins(x, a, e))

(Ins(x, a,m) ∧ AbsMsgEnc(b, c, d, e) ∧ Eq(x, b) ∧ Eq(m, c) ∧ ¬Eq(x, d) ∧ Eq(x, e))⇒
(InsMsgEnc(x, a,m, d, a) ∧ Ins(x, a, d) ∧ Ins(x, a, a))

(Ins(x, a,m) ∧ AbsMsgEnc(b, c, d, e) ∧ Eq(x, b) ∧ Eq(m, c) ∧ Eq(x, d) ∧ Eq(x, e))⇒
(InsMsgEnc(x, a,m, d, e) ∧ Ins(x, a, d) ∧ Ins(x, a, e))

(Ins(x, a,m) ∧ AbsMsgFst(b, n, n′) ∧ Eq(x, b) ∧ Eq(m,n) ∧ Eq(x, n′))⇒
(InsMsgFst(x, a, n, a) ∧ Ins(x, a, a))

(Ins(x, a,m) ∧ AbsMsgFst(b, n, n′) ∧ Eq(x, b) ∧ Eq(m,n) ∧ ¬Eq(x, n′))⇒
(InsMsgFst(x, a, n, n′) ∧ Ins(x, a, n′))

(Ins(x, a,m) ∧ AbsMsgSnd(b, n, n′) ∧ Eq(x, b) ∧ Eq(m,n) ∧ Eq(x, n′))⇒
(InsMsgSnd(x, a, n, a) ∧ Ins(x, a, a))

(Ins(x, a,m) ∧ AbsMsgSnd(b, n, n′) ∧ Eq(x, b) ∧ Eq(m,n) ∧ ¬Eq(x, n′))⇒
(InsMsgSnd(x, a, n, n′) ∧ Ins(x, a, n′))

(Ins(x, a,m) ∧ AbsMsgOk(b, n) ∧ Eq(x, b) ∧ Eq(m,n) ∧ Eq(x, n))⇒ InsMsgOk(x, a, a)
(Ins(x, a,m) ∧ AbsMsgOk(b, n) ∧ Eq(x, b) ∧ Eq(m,n) ∧ ¬Eq(x, n))⇒ InsMsgOk(x, a, n)

Table 3.4.15. Axioms for the correspondence generated constraints (III)
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IsPair(τ, x, τ1, τ2) ∈ Φ Φ � τ1 = T Φ �′ (x, τ2) = U

Φ � τ = Pair(χ : T,U)

∃τ ′ : IsKey(τ, τ ′) ∈ Φ Φ � τ ′ = T

Φ � τ = Key(T )

∃τ ′ : IsCha(τ, τ ′) ∈ Φ Φ � τ ′ = T

Φ � τ = Ch(T )

IsOk(τ) ∈ Φ S = {Φ � ξ | CanOk(τ, ξ) ∈ Φ} ∪ {Φ♦(x, µ, ξ) | InsCanOk(τ, x, µ, ξ) ∈ Φ}
Φ � τ = Ok(S)

@~τ : IsX(τ, ~τ) ∈ Φ
Φ � τ = T

T � τ = T
IsUn(τ) ∈ Φ
Φ � τ = Un

@~τ : IsX(τ, ~τ) ∈ Φ
Φ �′ (x, τ) = T

IsOk(τ) ∈ Φ S = {Φ�(x, ξ) | AbsCanOk(τ, x, ξ) ∈ Φ}
Φ �′ (x, τ) = Ok(S)

IsUn(τ) ∈ Φ
Φ �′ (x, τ) = Un

Table 3.4.16. Reconstuction of types

NamVar(µ) ∈ Φ PairVar(µ) /∈ Φ
Φ � µ = µ

PairVar(µ) ∈ Φ
Φ � µ = χ

MsgPai(µ1, µ2, µ3) ∈ Φ Φ � µ2 = M2 Φ � µ3 = M3
Φ � µ1 = pair(M2,M3)

MsgFst(µ1, µ2) ∈ Φ Φ � µ2 = M

Φ � µ1 = fst M

MsgSnd(µ1, µ2) ∈ Φ Φ � µ2 = M

Φ � µ1 = snd M

MsgOk(µ) ∈ Φ
Φ � µ = ok

MsgEnc(µ1, µ2, µ3) ∈ Φ Φ � µ2 = M2 Φ � µ3 = M3
Φ � µ1 = {M2}M3

FrmlMsg(ξ, `, µ) ∈ Φ Φ � µ = M

Φ � ξ = `(M)

Table 3.4.17. Reconstruction of terms



30 3. SIMPLY TYPED ψ-CALCULI

NamVar(µ2) ∈ Φ PairVar(µ2) /∈ Φ
Φ�(µ1, µ2) = µ2

PairVar(µ2) ∈ Φ
Φ�(µ1, µ2) = χ

AbsMsgPai(µ1, µ2, µ3, µ4) ∈ Φ Φ�(µ1, µ3) = M3 Φ�(µ1, µ4) = M4
Φ�(µ1, µ2) = pair(M3,M4)

AbsMsgFst(µ1, µ2, µ3) ∈ Φ Φ�(µ1, µ3) = M

Ψ�(µ1, µ2) = fst M

AbsMsgSnd(µ1, µ2, µ3) ∈ Φ Φ�(µ1, µ3) = M

Ψ�(µ1, µ2) = snd M

AbsMsgOk(µ1, µ2) ∈ Φ
Φ�(µ1, µ2) = µ2

AbsMsgEnc(µ1, µ2, µ3, µ4) ∈ Φ Φ�(µ1, µ3) = M3 Φ�(µ1, µ4) = M4
Φ�(µ1, µ2) = {M3}M4

AbsFrmlMsg(µ1, ξ, `, µ2) ∈ Φ Φ�(µ1, µ2) = M

Φ�(µ1, ξ) = `(M)

NamVar(µ3) ∈ Φ PairVar(µ3) /∈ Φ
Φ♦(µ1, µ2, µ3) = µ3

PairVar(µ3) ∈ Φ
Φ♦(µ1, µ2, µ3) = χ

InsMsgPai(µ1, µ2, µ3, µ4, µ5) ∈ Φ Φ♦(µ1, µ2, µ4) = M4 Φ♦(µ1, µ2, µ5) = M5
Φ♦(µ1, µ2, µ3) = pair(M4,M5)

InsMsgFst(µ1, µ2, µ3, µ4) ∈ Φ Φ♦(µ1, µ2, µ4) = M

Ψ♦(µ1, µ2, µ3) = fst M

InsMsgSnd(µ1, µ2, µ3, µ4) ∈ Φ Φ♦(µ1, µ2, µ4) = M

Ψ♦(µ1, µ2, µ3) = snd M

InsMsgOk(µ1, µ2, µ3) ∈ Φ
Φ♦(µ1, µ2, µ3) = µ3

InsMsgEnc(µ1, µ2, µ3, µ4, µ5) ∈ Φ Φ♦(µ1, µ2, µ4) = M3 Φ♦(µ1, µ2, µ5) = M5
Φ♦(µ1, µ2, µ3) = {M4}M5

InsFrmlMsg(µ1, µ2, ξ, `, µ3) ∈ Φ Φ♦(µ1, µ2, µ3) = M

Φ♦(µ1, µ2, ξ) = `(M)

Table 3.4.18. Reconstruction of abstract and instantiated terms
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3.4.2. Problems and limitations. We will now show why generation constraints for
correspondence types using the ALFP is so difficult, and what we have done to circumvent
these difficulties. We will also describe certain kinds of processes, which we are not able
to provide type inference for.

3.4.2.1. Pairs. We have not managed to create a full type inference for every process,
as we have not found a general way of representing dependent types. The main issue with
representing dependent types is how to generate an encoding of T based on an encoding of
T ′ or vice versa, when having a constraint T = T ′{M�x}. The difficulty in this is that the
ALFP does not allow ∃-qualifiers on the right side of an implication, since we otherwise
could simply create axioms like
∀t1 : ∀t′1 : ∀t2 : ∀x : ∀µ : ((IsCha(t1, t2) ∧ Jt1 = t′1{µ�x}K)⇒ ∃t′2 : (IsCha(t′1, t′2) ∧ Jt2 = t′2{µ�x}K))

But since this is not allowed, and ALFP requires a fixed set of names, we cannot simply
create axioms that recursively create an encoding of the other type.

The problem becomes clearly visible when considering the encoding of messages in
Ok-types: assume we have some effect begin `(pair(a, b)) and the following process

c pair(a, pair(b, ok)).L1M.

The message encoding of `(pair(a, b)) will be done at constraint-generation-time. However,
it should be clear that the type of c must be

Ch(Pair(χ1 : Un,Pair(χ2 : Un,Ok(`(pair(χ1, χ2)))))).
This will require the encoding of the effect `(pair(χ1, χ2)) which we do not have, and since
we are not allowed to create a new effect variable ξ and message variable µ for this, we
are unable to encode this “double-abstracted” Ok-type. In addition we would have to be
able to encode all the partial and full instantiations of this Ok-type as well, as required by
the receiving process. Assuming the receiving process looks like
c(λy)y.(νy1 : τ1, y2 : τ2, y3 : τ3)case y as pair(y1, pair(y2, y3)) : c′ pair(y1, pair(y2, ok)).L1M,

then obviously the type of τ3 must be Ok(`(pair(y1, y2))) which again cannot be generated at
constraint-generation-time, and the type assigned to the type variable τok in the necessary
constraint IsPair(τ2,ok, χ

′, τ2, τok) would have to be Pair(χ′ : Un,Ok(`(pair(y1, χ
′)))) which

again would require a non-constraint-generation-time produced encoding, namely the
encoding of `(pair(y1, χ

′)).
For this reason we chose to restrict the right-hand-side of pairs to only containing

elements which have the types Un or Ok. This means that one cannot have pairs, channels,
keys and so forth as the right-hand-side element of pairs, and this limits the levels of
abstraction to one. We could also have chosen to consider any other fixed number of
abstraction levels, but since none of them allows for an unlimited level of abstraction, one
is enough to illustrate the idea. While this may at first seem rather restrictive, we believe
it still provides enough expressive power to be useful. For instance [9] showed that the
correspondence type system we consider is more powerful than the simpler versions, which
only consider latent effects. Following the idea presented in this paper, we could encode
latent effects like

JM N.1K = M pair(N, ok).1
JM(λ~x)N.P K = M(λ~x)N.(νp : τp, q : τq)(case N as pair(p, q) : P [p�N ]).

This encoding would satisfy the criteria, and we can thus conclude that despite the
limitations introduced, we can still fully express type systems such as the latent effects.

In order to deal with the abstraction for Ok-types we introduce two new sets of
constraints for Ok-types and messages, namely the sets of constraints prefixed by Ins and
Abs respectively. The Abs-constraints are used to denote an abstract Ok-type and its
corresponding abstracted effects, while the Ins-constraints denotes an instantiation of an
abstraction. The idea behind these constraints is to construct the new effects—either the
abstraction or instantiation—using an index consisting of either what we abstract, or what
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we instantiate. Since each pair has its own abstraction variable, we know these indices
will be unique and thus enough. Would one want to allow for two levels of abstraction,
one would use a “double index” consisting of the possible combinations of abstraction and
instantiation.

We can summarise the two new sets of constraints as seen below. We do not include
all cases, but the idea should be clear from the examples below. Moreover we assume the
variable µ denotes the message M , τ denotes the type T , and ξ the effect E.

Constraint Meaning
CanOk?(τ, ξ) The type T is allowed to include the effect E
AbsCanOk?(τ, x, ξ) The type T is allowed to include the effect

E[x�M ] some message M
InsCanOk?(τ, x, µ, ξ) The type T is allowed to include the effect

E[M�x]
MsgPai(µ, µ1, µ2) The message pair(M1,M2)
AbsMsgPai(x, µ, µ1, µ2) The message pair(M1[x�M ′],M2[x�M ′]) for

some message M ′

InsMsgPai(x, µ′, µ, µ1, µ2) The message pair(M1[M
′
�x],M2[M

′
�x])

It is worth noticing that the seemingly arbitrary message we abstract away for x in the
Abs constraint is in fact not arbitrary. Whenever we generate a new abstraction—in other
words whenever we have a pair containing an ok-term on the right-hand-side—we also
construct the constraint Abs(M,x,M ′) which denotes “construct the message M ′[x�M ]”.
Since we only do this once for each pair, and each pairs abstraction-variable is unique it is
enough to index the abstraction with x. In the case of Ins this is not good enough: we
could have several receivers of the same abstraction and each would generate their own
unique instantiation.

3.4.2.2. Sending oks. Another problem one has to consider is if a channel is used more
than once. If we know that all channels are just used once, for a single communication,
then we can freely assign all of the assertions of the sender to the resulting Ok-type inside
the Ch-type. However if the channel is used twice we cannot do this simple assignment.
Consider for instance the the following processes, where we assume that assertions are
scoped by parenthesis:

P1 = (begin `(x) | p pair(x, ok).L1M) | · · · | (begin `(y) | p pair(y, ok).L1M),

P2 = (begin `(pair(x1, x2)) | p pair(x1, ok).L1M) | · · ·
| (begin `(pair(y1, y2)) | p pair(y1, ok).L1M),

P3 = (begin `(x) | p pair(x, ok).L1M) | · · ·
| (begin `(pair(y1, y2)) | begin `(y1) | p pair(y1, ok).L1M).

Let us consider what channel-type we should assign to p in each of the cases. For P1 we
can easily see that both usages of p is to send a pair with the type Pair(χ : Un,Ok(`(χ))).
This is true as the message in the assertions `(x) and `(y) is also the element on the
left-hand-side of the corresponding pairs, and thus are abstracted away in the Pair-type.
Since both usages of p are sending something of the same type, we can thus conclude
that p : Ch(Pair(χ : Un,Ok(`(χ)))). P2 is similar, but we here reach a disagreement
between the two usages of the channel: for the left-hand-side we can conclude the type
of the pair is Pair(χ : Un,Ok(`(pair(χ, x2)))) and for the right-hand-side we instead have
Pair(χ : Un,Ok(`(pair(χ, y2)))). It is clear that these two assertions are not the same;
while they are identical in structure they differ in the names in the effect namely x2 and
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y2 respectively. Since the two Ok-types are not identical we are left with no choice but
assigning the type Ch(Pair(χ : Un,Ok(∅))) to p and hope the assertions are not needed by
the receivers. Finally for P3 we have a combination of the two previous cases. Clearly for
the left-hand-side we are sending something of the type Pair(χ : Un,Ok(`(χ))) and for the
right-hand-side we are sending something of the type Pair(χ : Un,Ok(`(pair(χ, y2)), `(χ))).
By comparing the Ok-types within the pairs, we can see that they agree on one assertions,
namely `(χ). We thus conclude that the type of p should allow the senders to send pairs
containing the common or shared assertions, and we have p : Ch(Pair(χ : Un,Ok(`(χ)))).
The right-hand-side is thus only allowed to include a subset of all its possible assertions,
and we can hope the remaining were not required by the receiver.

The way we deal with figuring out which effects a channel is allowed to send, is to find
all the instances of it being used to output something, and only allow the effect, which are
available in all those environments.

Unfortunately, as the constraint generation rules [In-C] and [Out-C] do not keep track
of whether a channel is sending or receiving, so we need to make this information available
in another way. We therefore have decided to make a restriction to what one is allowed to
output in a process. We disallow all processes to forward a name which has a Ok-type, and
thus only allow ok-terms to have an Ok-type in an output. We illustrate this restriction
with some examples as seen below. For simplicity we abuse the notation slightly.

begin `(x) | x ok.L1M | x(λa)a.y a.L1M Disallowed
begin `(x) | x ok.L1M | x(λa)a.y ok.L1M Allowed

begin `(x) | x pair(x, ok).L1M | x(λa)a.a as (b, c).y c.L1M Disallowed
begin `(x) | x pair(x, ok).L1M | x(λa)a.a as (b, c).y ok.L1M Allowed

begin `(x) | x pair(x, ok).L1M | x(λa)a.a as (b, c).y pair(b, c).L1M Disallowed
begin `(x) | x pair(x, ok).L1M | x(λa)a.a as (b, c).y pair(b, ok).L1M Allowed

We introduce this restriction as it allow us to know that any output of an Ok-type comes
from an ok-term and any input of an Ok-type is bound to a name. We can use this
difference when dealing with the above mentioned problem of determining the common
effects between several senders.

3.4.3. Example of type inference. Let us consider the process

P = (begin `(pair(x, y)) | p pair(x, ok).L1M) |
p(λc)c.(νd : τ11, e : τ12)(case c as pair(d, e) : q pair(y, ok).L1M |
q(λf)f.(νg : τ17, h : τ18)(case f as pair(g, h) : end `(pair(d, g))))

with the initial minimal environment

Γ = x : τ3, y : τ4, p : τ5, q : τ6.

Using the constraint generation presented above we get a conjunction of the following
simple1 constraints

1simple as in they are just predicates
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IsCha?(τ5, τ7) IsPair?(τ7, x1, τ3, τ
′
8) Eq(τ10, τ13)

IsCha?(τ5, τ10) IsPair?(τ13, x2, τ11, τ
′
12) Eq(τ16, τ19)

IsCha?(τ6, τ14) IsPair?(τ14, x3, τ4, τ
′
15) NamVar(x1)

IsCha?(τ6, τ16) IsPair?(τ19, x4, τ17, τ
′
18) NamVar(x2)

IsOk?(τ8) IsAbs?(τ ′8, τ8, x, x1, τ3) NamVar(x3)
IsOk?(τ15) IsAbs?(τ ′12, τ12, d, x2, τ11) NamVar(x4)
CanOk?(τ8, ξ1) IsAbs?(τ ′15, τ15, y, x3, τ4) NamVar(x)
IsOkTerm(τ8) IsAbs?(τ ′18, τ18, g, x4, τ17) NamVar(y)
IsOkTerm(τ15) FrmlMsg(ξ1, `, µ1) NamVar(g)
MsgPai(µ1, x, y) FrmlMsg(ξ2, `, µ2) NamVar(d)
MsgPai(µ2, d, g)

and the following complex2 constraints

∧
τ∈{τ3,τ4,τ5,τ6}

(∀ξ′ : (IsOk(τ) ∧ CanOk(τ, ξ′))⇒ CanOk?(τ8, ξ
′))∧

(∀ξ′ : ∀χ : ∀µ : (IsOk(τ) ∧ InsCanOk(τ, χ, µ, ξ′) ∧ IsOk(τ8))
⇒ InsCanOk?(τ8, χ, µ, ξ

′))∧
τ∈{τ3,τ4,τ5,τ6,τ10,τ11,τ12}

(∀ξ′ : (IsOk(τ) ∧ CanOk(τ, ξ′))⇒ CanOk?(τ15, ξ
′))∧

(∀ξ′ : ∀χ : ∀µ : (IsOk(τ) ∧ InsCanOk(τ, χ, µ, ξ′) ∧ IsOk(τ15))
⇒ InsCanOk?(τ15, χ, µ, ξ

′))

(
∧
τ∈{τ3,τ4,τ5,τ6,τ10,τ11,τ12,τ16,τ17,τ18}

(∀ξ′ : ∀ξ′′ : ∀χ,∀µ :
((¬CanOk(τ, ξ′) ∨ Eq(ξ2, ξ

′))∧
(¬InsCanOk(τ, χ, µ, ξ) ∨ ¬Eqi(ξ2, χ, µ, ξ

′′)))))
⇒ FAIL(ξ)

By using the axioms defined above and using the Succinct Solver as our L -function
we arrive at the solution presented in Appendix A.1. Since the solution is a very large set
of predicates we will not present it in its full length here, and merely refer to the relevant
aspects of it as we proceed.

Remark. Since the Succinct Solver disallows ∀x : P in pres the axioms of row-group
10 of Table 3.4.13 and the constraint generated by [End-C] cannot be encoded. We thus,
for this example, simplify the axioms to

(IsOk(τ) ∧ CanOk?(τ, ξ))⇒ CanOk(τ, ξ)

(IsOk(τ) ∧ AbsCanOk?(τ, χ, ξ))⇒ AbsCanOk(τ, χ, ξ)
and manually check the [End-C] constraint. We can rewrite the axioms for this very simple
example, as we can easily verify that the channel is only used by one sender and receiver.

We first and foremost conclude that we arrive at a solution which in itself implies there
exists some typing of the process, and it is thus well-typed. Secondly, we can conclude
that since `(pair(x, y)) 6= `(pair(d, g)) the typing is not just an assignment of the type Un
to all type variables τ—this can also be verified easily be looking at the IsUn-relation in
the solution.

Now that we have computed the solution L (φ) = Φ for our constraints, we can utilise
Φ together with � to infer the types of our initial environment. We derive the result
manually, but this could easily be automated as well.

2complex as in they are not just predicates
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x : τ3 and y : τ4: We now try to compute Φ � τ3 and Φ � τ4. We first investigate
Φ for any IsX-constraints for the type variables, but for both τ3 and τ4 we have
no IsX constraints. We can thus, by definition of � assign any type to τ3 and τ4.
For simplicity we choose Un as this type is natural choice for an arbitrary type.
We thus get Φ � τ3 = Φ � τ4 = Un.

p : τ5: For τ5 we have three IsX constraints, namely: IsCha(τ5, τ10), IsCha(τ5, τ7),
and IsCha(τ5, τ13). Luckily, by the axioms, we know that implies τ10 = τ7 = τ13
which we can easily verify by the solution; it contains Eq(τ13, τ10), Eq(τ7, τ10),
and Eq(τ7, τ13). Thus we are free to chose any of τ7, τ10, and τ13 to proceed; we
choose τ7. By � we can thus conclude Φ � τ5 = Ch(Φ � τ7). Again we are here
presented with several versions of the same constraint, and we will not mention
them all. We arbitrarily choose one and proceed: IsPair(τ7, x1, τ11, τ

′
8). We thus

know Φ � τ7 = Pair(χ : Φ � τ11,Φ �′ τ ′8). We have no IsX constraint for τ11 so we
conclude Φ � τ11 = Un. For τ ′8 we have IsOk(τ ′8) and AbsCanOk(τ ′8, x1, ξ1), and
we conclude Φ �′ τ ′8 = Ok(Φ�(x1, ξ1)). In order to compute Φ�(x1, ξ1) we need
an AbsFrmlMsg-constraint indexed by x1, ξ1, in our case AbsFrmlMsg(x1, ξ1, `, µ1).
We thus proceed to find a message-constraint indexed by x1, µ1 and we have
AbsMsgPai(x1, µ1, x1, y). Since both NamVar(x1) and NamVar(y) our construc-
tion of the message is complete. We also have PairVar(x1) and we conclude
Φ�(x1, ξ1) = `(pair(χ, y)) implying Φ �′ τ ′8 = Ok(`(pair(χ, y))) which in turn
gives us Φ � τ7 = Pair(χ : Un,Ok(`(pair(χ, y)))) and we finally conclude that
Φ � τ5 = Ch(Pair(χ : Un,Ok(`(pair(χ, y))))).

q : τ6: This case is very similar to the case for p : τ5, and follows the same line of
construction. For this reason we simply provide the final result immediately:
Φ � τ6 = Ch(Pair(χ : Un,Ok(`(pair(d, χ))))).

Our typing environment Γ instantiated using Φ and � is thus
Γ = a : Ch(Un)

b : Un
x : Un
y : Un
p : Ch(Pair(χ : Un,Ok(`(pair(χ, y)))))
q : Ch(Pair(χ : Un,Ok(`(pair(d, χ)))))

which is exactly what one would expect.





CHAPTER 4

Linearly typed ψ-calculi

In this chapter we present our second generic type system, linearly typed ψ-calculi, in
Section 4.1; describe our type inference in Section 4.2; and present two instantiations of
the type system and inference in Sections 4.3 and 4.4.

4.1. A type system for a linearly typed ψ-calculi

We introduce the generic linear type system for the ψ-calculi first presented in [13]. This
linear type system shares many of the same aspects as the simple type system introduced
in Section 3.1, in particular the requirement of an instantiation and the compatibility
relation " and all rules for type inference for terms, conditions, and assertions.

As previously we let the types of the type system be members of a nominal data type,
as they may contain names. Moreover we define equality up to Kleene equality as defined
in Definitions 4.1.1 and 4.1.2.

Definition 4.1.1 (Types). We assume a set of types T and the types to be members
of a nominal data type.

Definition 4.1.2 (Type Kleene equality). We write T1
.= T2 of either both T1 and T2

are undefined or if T1 = T2

Unlike for the simple types we defined previously, we in the case of the linear types
define our types to be a type structure. We define this structure together with a partial
binary operator ‘+’ for the types as seen in Definition 4.1.3. These operators will be
utilised in order to decompose linear types into smaller entities.

Definition 4.1.3 (Type structure). A type structure is a set of types T together with a
partial binary operator + on T such that T1+T2

.= T2+T1 and (T1+T2)+T3
.= T1+(T2+T3)

for all T1, T2, T3 ∈ T.

As we are now dealing with type structures for which we can add information to the
type, we can also order the types. This ordering is rather straightforward and is presented
in Definition 4.1.4. In addition to this ordering we introduce the concept of unlimited
types. The unlimited types are the types which we can add together with themselves and
the result is exactly the same as the initial type. We formalise this in Definition 4.1.5.

Definition 4.1.4 (Ordering of types). We write T1 ≤ T2 if either T1 = T2 or there
exists a T such that T1 + T = T2.

Definition 4.1.5 (Unlimited types). A type T is unlimited if T + T = T i.e. if T is
idempotent under addition

Since we now have defined our types, we can proceed to define the type environments
for the linear types. We define the linear type environments in Definition 4.1.6 where we
once again let the type environments be partial functions from names to types, but unlike
the simple type environments the linear type environments do not contain any assertions.
We will handle the assertions separately. It is also worth noticing that we allow types to
contain type environments of their own, thus providing a foundation for dependent types.
Consider for instance the type A = Pair(x : T,U) from Section 3.4. By allowing types to
have their own environments the type could be written as A = Pair(x, U) together with
the environment ΓA = x : T .

37
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Definition 4.1.6 (Type environment). A type environment, Γ, is a partial function
from names to types. We write environments as a : T1, b : T2, . . .. We allow types to
contain type environments and for any type T we let ΓT denote the type environment
associated with T .

As previously, we also introduce the concept of well-formed environments. The defini-
tion of well-formed environments—Definition 4.1.7—is very similar to the one presented in
Definition 3.1.1. The most notable difference is the requirement that the type environment
of the types in the environment are well-formed with regards to the surrounding environ-
ment; they cannot assign different types to the same names, and if a name is utilised in
a type it must either be typed within the type’s type environment or the surrounding
environment. Using the example type from before, and assuming we use the environment
Γ as the surrounding environment, we would thus require either Γ(x) = ΓA(x) = T or
x /∈ dom(Γ) and ΓA(x) = T .

Definition 4.1.7 (Well-formed environment). A type environment Γ is well-formed if
whenever Γ = x : T,Γ′ then

(1) x /∈ dom(Γ′)
(2) ∀y ∈ dom(ΓT ) ∩ dom(Γ) : ΓT (y) = Γ(y)
(3) ∀z ∈ names(T ) \ dom(ΓT ) : z ∈ dom(Γ′)

Moreover we also introduce the concept of well-formedness for assertions. Since
assertions themselves does not give rise to a meaningful well-formedness property, we
define well-formedness for assertions with respect to a type environment as seen in
Definition 4.1.8. Ensuring that our assertions are well-formed with respect to our given
environment, ensures that we are not asserting anything about names we do not know.
From this point on, we generally always assume Γ♥Ψ for any Γ and Ψ unless stating
otherwise.

Definition 4.1.8 (Well-formed assertion). An assertion Ψ is well-formed with regards
to an type environment Γ, denoted Γ♥Ψ, if names(Ψ) ⊆ dom(Γ)

We now proceed to define composition, and thus in some sense also decomposition, of
environments and define unlimited environments. In order for two environments to be
composable we require that the types of any names they share must be composable i.e. if
Γ1(a) = T1 and Γ2(a) = T2 then in order for Γ1 + Γ2 to be defined, T1 +T2 must be defined
and this type is the type assigned to a in the composed environment. This is formalised
in Definition 4.1.9. An unlimited environment as we define them in Definition 4.1.10, just
as for types, is an environment that can be composed with itself and the result is identical
to the initial environment.

Definition 4.1.9 (Type environment addition). Let Γ1 and Γ2 be type environments.
The sum of Γ1 and Γ2 is defined as the type environment Γ1 + Γ2 such that

(Γ1 + Γ2)(x) =


Γ1(x) x ∈ dom(Γ1) \ dom(Γ2)
Γ2(x) x ∈ dom(Γ2) \ dom(Γ1)
Γ1(x) + Γ2(x) otherwise

and Γ1 + Γ2 must be well-formed if Γ1 and Γ2 are.

Definition 4.1.10 (Unlimited type environments). A type environment Γ is unlimited
if Γ = Γ + Γ

Again, just as for assertions and types, we can introduce an ordering of the environments.
We do this in Definition 4.1.11.

Definition 4.1.11 (Ordering of environments). We write Γ1 ≤ Γ2 if there exists a Γ
such that Γ1 + Γ = Γ2
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We can now introduce the type judgements used by the type system. We have three
kinds of judgements, namely one for assertions, terms, and processes respectively. We
define the judgements as seen in Definition 4.1.12.

Definition 4.1.12 (Type judgements for assertions, terms, and processes). The type
judgement for assertions is of the form

Γ,Ψ′ ` Ψ
The type judgement for conditions is of the form

Γ,Ψ ` σ
The type judgement for terms is of the form

Γ,Ψ `M : T
The type judgement for processes is of the form

Γ,Ψ ` P
We write Γ,Ψ ` J for an arbitrary judgement.

As we can order the environments, and since we have just defined the type of judgements
used, we can introduce the notion of a minimal type judgement. A minimal type judgement
is a type judgement for which there exists no smaller environment for which the term,
process, or assertion can be well-typed. We formalise this in Definition 4.1.13.

Definition 4.1.13 (Minimal type judgement). Let Γ be and environment, Ψ an
assertion, M some term, and T some type. We say the type judgement Γ,Ψ `M : T is
minimal, denoted Γ,Ψ `min M : T , if for every Γ′ ≤ Γ and Ψ′ ≤ Ψ we have Γ′,Ψ′ 0M : T

Finally we introduce the compatibility relation " in Definition 4.1.14. This relation
serves the same purpose as it did in the simple type system introduced in Section 3.1,
namely it describes the relationship between the type of the channel and the type of the
information send on the channel.

Definition 4.1.14 (Compatibility relation). We introduce the predicates " , "−,
and "+ to describe which types of values can be carried by channels of a given type. We
distinguish between input capability "− and output capability "+. If T1 "− T2 and
T1 "+ T2 we write T1 " T2.

4.1.1. Criteria for type rules.
Assertion invariance. As assertions are identified up to ' this must also be the case

for the type system. This implies that if we have a valid judgement Γ,Ψ ` J and Ψ ' Ψ′
then the judgement Γ,Ψ′ ` J must also be valid.

The empty assertion. In ψ-calculi the empty assertion 1 serves as the empty process.
We therefore require the following typing rule for the empty assertion

[T-One] Γ ` 1 where Γ is unlimited.
This rule ensures the empty assertion can only be typed in an environment where no
limited resources remain.

Substitutivity. We require that the substitution property for judgements holds for any
instantiation of the type system. The substitution property for judgements is defined as
seen in Definition 4.1.15.

Definition 4.1.15 (Substitution property for judgements). Suppose Γ + ~x : ~T ,Ψ ` J
with ~x ∩ dom(Γ) = ∅, fn(J ) ⊆ ~x, and Γi,Ψi ` Mi : Ti for all i ∈ [1, |~x|]. Then Γ0,Ψ0 `
J [~x := ~M ] where

Γ0 = Γ +
∑

1≤i≤|~x|
Γi

and
Ψ0 = Ψ⊗

⊗
1≤i≤|~x|

Ψi
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[T-In]

Γ1 + ~x : ~T ,Ψ1 ` P
Γ2,Ψ2 `min (λ~x)N : ~T → Uo
Γ3,Ψ3 `min M : Us

Γ,Ψ `M(λ~x)N.P where
Us "− Uo
Γ = Γ1 + Γ2 + Γ3
Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3

[T-Out]

Γ1,Ψ1 `min M : Ts
Γ2,Ψ2 `min N : To
Γ3,Ψ3 ` P

Γ,Ψ `M N.P
where

Ts "+ To
Γ = Γ1 + Γ2 + Γ3
Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3

[T-Par]

Γ1 + ΓP2 ,Ψ1 ⊗Ψ′P2
` P1

Γ2 + ΓP1 ,Ψ2 ⊗Ψ′P1
` P2

Γ,Ψ ` P1 | P2
where

Γ = Γ1 + Γ2
Ψ = Ψ1 ⊗Ψ2
F(P1) = (ΓP1 ,ΨP1)
F(P2) = (ΓP2 ,ΨP2)
Ψ′P1
≤ ΨP1

Ψ′P2
≤ ΨP2

[T-Rep] Γ,Ψ ` P
Γ,Ψ ` ∗P where Γ is unlimited

Ψ idempotent

[T-Res] Γ + x : T,Ψ ` P
Γ,Ψ÷ x ` (νx : T )P [T-Ass] Γ,Ψ′ ` Ψ

Γ,Ψ′ ` LΨM

[T-Cas] Γ,Ψ ` σi Γ,Ψ ` Pi 1 ≤ i ≤ k
Γ,Ψ ` case σ1 : P1, . . . , σk : Pk

[T-Wea] Γ,Ψ1 ` P C(P,Ψ1)
Γ,Ψ1 ⊗Ψ2 ` P

[T-Pat] Γ, ~x : ~T ,Ψ ` N : U
Γ,Ψ ` (λ~x)N : (~T → U)

Table 4.1.1. Typing rules for linearly typed ψ-calculi

4.1.2. Typing rules. We are now in a position to introduce the typing rules for
the linear type system for ψ-calculi. The typing rules are defined in Table 4.1.1, and we
proceed briefly explain the reasoning behind them. For more information we refer to [13].

In [T-Par] we distribute the bindings according to the rules of context split. The rule
is in spirit similar to the one presented in Table 3.1.2, and frame is defined the same way.
But we here use Ψ′P1

≤ ΨP1 and thus allow, but do not require, the parallel components to
utilise assertions from the other parallel components. In [T-Res] we make sure to remove
any and all assertions involving the restricted name. We do this since the name is not
known outside the scope, and consequently the assertions involving this name become
partially unknown and thus unusable. Finally [T-Wea] allows us to add assertions to a
typing assuming the assertion used to satisfy P satisfies some condition C with regards to
the processes P .

4.2. Constraint generation for linearly typed ψ-calculi

Just as we did in Section 3.2 we need to convert the typing rules into constraint
generation rules. The generation rules we present in this section are very similar to the
ones found in the aforementioned section. The main difference lies in the fact that we
now have type environment and assertions as two different parts of the type check, and
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the requirement of minimal type checks. Before we can present the constraint generation
rules, we require the definition of a predicate Њ that takes a type environment Γ in which
each name is assigned a type variable, and then returns a new environment Γ′ such that
dom(Γ) = dom(Γ′) and ran(Γ) ∩ ran(Γ′) = ∅ i.e. the predicates ensures we have a copy
of the input environment where each assigned type variable has been changed to some
hitherto unused variable. We formalise this in Definition 4.2.1.

Definition 4.2.1 (Fresh environment Њ(Γ)). Let Γ be an environment such that
dom(Γ) ⊆ N and ran(Γ) ⊆ TVar. Then we say that Њ(Γ) = Γ′ if dom(Γ) = dom(Γ′),
ran(Γ) ∩ ran(Γ′) = ∅, and ran(Γ′) is fresh i.e. hitherto unused in the constraint generation

We use this new predicate Њ in our constraint generation to simulate the context
split. Instead of splitting the environment—as we at constraint generation time cannot
know which binds belongs where nor can we know how to split the types—we instead
create a new copy of the environment. We can then afterwards compare the types assigned
to a name in each of the environments, and then determine if a split was possible and
assuming it is, how the types must have been in the complete environment. In order for
this approach to work we need to introduce an additional type similar to the unit assertion
1; this type is going to represent when a name is not bound in an environment. Before we
formally define this type as seen in Definition 4.2.3, we would like to give some intuition
to its uses in a small example below.

Because of the rule [T-Wea] and the use of Ψ′ ≤ Ψ in [T-Par] we cannot know, during
the constraint generation, what assertion we will be using in the typing of a process. We
therefore encode these assertions using constraints and assertion variables, denoted by ψ.
This means we need a new definition of frame, F ′, seen in Definition 4.2.2, in which we
use the same definitions of L and � as in Section 3.2.

Definition 4.2.2 (Constraint Frame, F ′). Given a process P , F ′(P ) = 〈Γ, ψ, φ〉 if
• F(P ) = 〈Γ,Ψ〉
• L (φ) � ψ = Ψ

We now present the constraint generation rules, based on the typing rules of Table 4.1.1.
They are of the form Γ `M  τ ;ψ;φ, where τ is a type variable representing the type of
the term M , ψ is an assertion variable, representing the assertion used to type M and φ
is the conjunction of constraints that must be satisfied in order for Γ, ψ `M : τ to hold.
The constraint generation rules are similar to the ones presented previously in Table 3.2.1
in Section 3.2. The main difference between the two, are the usages if"− and"+ instead
of " , the encoding of not only types, but assertions, and the incorporation of [T-Wea]
into each of the other rules. This is a necessity as [T-Wea] is not syntax directed, and
we therefore cannot at constraint generation time know where to apply this rule. Let us
consider a simplified version of the [T-Par] constraint generation case. Assume we have
the processes a b.1 | a c.1 and type variable environment Γ. As mentioned above we now
simulate the context split using Њ and we have Γ1 = Њ(Γ) and Γ2 = Њ(Γ). Assuming
we generate constraints using Γ1 ` a b.1  φ1 and Γ2 ` a c.1  φ2 it should be quite
clear that the name c does not appear in any of the constraints φ1 while the name b does
not appear in φ2. For this reason we can assign the empty type ε to c in Γ1 and b in Γ2
giving us Γ1 = a : τ1

a , b : τ1
b , c : ε and Γ2 = a : τ2

a , b : ε, c : τ2
c . Since we would like ε to

represent the notion “this name should not appear in this environment”, we can conclude
that Γ1 + Γ2 = a : (τ1

a + τ2
a ), b : (τ1

b + ε), c : (ε+ τ2
c ) = a : (τ1

a + τ2
a ), b : τ1

b , c : τ2
c .

Definition 4.2.3 (Empty type (ε)). Let ε be the type such that for any other type T
we have T + ε = T

In Table 4.2.1, the constraints are represented as encodings, which will have to be con-
verted into ALFP when the constraint generation is instantiated for a specific type system.
The meaning of most of the encodings is obvious, with Jif C(P,ψ′) then Weak(ψ,ψ′) else ψ =
ψ′K being the only exception. This encoding is meant to represent a possible use of [T-Wea].
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[C-In]

ΓM `M  τm;ψm;φm
ΓN ` (λ~x)N  (~τ → τn);ψn;φn
ΓP , ~x : ~τ ` P  ψp;φp

Γ `M(λ~x)N.P  ψ;φm ∧ φn ∧ φp
∧Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP (x)=τ4

Jτ1 = τ2 + τ3 + τ4K

∧Jif C(M(λ~x)N.P, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K

where
ΓM = Њ(Γ)
ΓN = Њ(Γ)
ΓP = Њ(Γ)

[C-Out]

ΓM `M  τm;ψm;φm
ΓN ` N  τn;ψn;φn
ΓP ` P  ψp;φp

Γ `M N.P  ψ;φm ∧ φn ∧ φp
∧Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "+ τnK∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP (x)=τ4

Jτ1 = τ2 + τ3 + τ4K

∧Jif C(M N.P, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K

where
ΓM = Њ(Γ)
ΓN = Њ(Γ)
ΓP = Њ(Γ)

[C-Par]

ΓP ,ΓQ ` P  ψp;φp
ΓQ,ΓP ` Q ψq;φq

Γ ` P | Q ψ;φp ∧ φq ∧ φp ∧ φq ∧ Jψ′ = ψ′p ⊗ ψ′qK
∧Jψp = ψ′p ⊗ ψq ′K ∧ Jψq ′ ≤ ψqK
∧Jψq = ψ′q ⊗ ψp′K ∧ Jψp′ ≤ ψpK∧
Γ(x)=τ1

ΓP (x)=τ2
ΓQ(x)=τ3

Jτ1 = τ2 + τ3K

∧Jif C(P | Q,ψ′) then Weak(ψ,ψ′) else ψ = ψ′K

where

ΓP = Њ(Γ)
ΓQ = Њ(Γ)
F ′(P ) = 〈ΓP , ψp, φp〉
F ′(Q) = 〈ΓQ, ψq, φq〉

[C-Rep]
Γ ` P  ψ′;φp

Γ ` ∗P  ψ;φp ∧ Jψ′ = ψ′ ⊗ ψ′K∧
τ∈ran(Γ)

Jτ = τ + τK

∧Jif C(∗P,ψ′) then Weak(ψ,ψ′) else ψ = ψ′K

[C-Res]
Γ, x : τ ` P  ψp;φp

Γ ` (νx : τ)P  ψ;φp ∧ Jψ′ = ψp ÷ xK
∧Jif C((νx : τ)P,ψ′) then Weak(ψ,ψ′) else ψ = ψ′K

[C-Ass]
Γ ` Ψ ψa;φa

Γ ` LΨM ψ;φa ∧ Jif C(LΨM, ψa) then Weak(ψ,ψa) else ψ = ψaK

[C-Cas]

Γ ` σi  ψsi;φsi
Γ ` Pi  ψpi;φpi

Γ ` case σ1 : P1, . . . , σk : Pk  ψ;
∧
i(φsi ∧ φpi)

∧Jψs1 = · · · = ψsk = ψp1 = · · · = ψpk = ψ′K
∧Jif C(case σ1 : P1, . . . , σk : Pk, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K

where 1 ≤ i ≤ k

[C-Pat] Γ, ~x : ~τ `M  τm;ψm;φm
Γ ` (λ~x)M  (~τ → τm);ψm;φm

Table 4.2.1. Constraint generation for linear types

Since we do not know when [T-Wea] may be used, we need to consider the possibility of it
occurring between every syntax-directed rule, which is why the above encoding is found in
all the rules.

Criteria for constraint generation. If we are to prove anything about our type inference,
we need to define certain criteria regarding how to instantiate it. These greatly resemble the
one seen in Theorem 3.2.4, but instead of just an encoding of Jτ1 " τ2K we have multiple
different encodings. In order to ensure that the constraints generated in Table 4.2.1 are
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enough, we need to ensure that a solution to such constraints, L (φ), and the instantiation
function, �, not only models the constraints, but also respect the operators +, ⊗, ÷, and
so forth. We thus for instance require that “for any constraint generated by a process,
φ, and any assertion variables, ψ1, . . . , ψn, if L (φ) � ψ1 = L (φ) � ψ2 ⊗ · · · ⊗L (φ) � ψn
then L (φ∧ Jψ1 = ψ2⊗ · · · ⊗ψnK) exists”. The complete list of criteria is listed below, and
should not be surprising.

(1) For any term M , there exist a type environment Γ, an assertion Ψ, and a type
T such that Γ,Ψ `min M : T if and only if ΓM ` M  τ ;ψ;φ such that
L (φ) is defined, L (φ) � τ = T , L (φ) � ψ = Ψ, dom(Γ) = {x | x : τx ∈
ΓM and L (φ) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φ) � ΓM (x)

(2) For any condition σ, there exists a type environment Γ and an assertion Ψ
such that Γ,Ψ ` σ, if and only if Γσ ` σ  ψ;φ such that L (φ) is defined,
L (φ) � ψ = Ψ and dom(Γ) = {x | x : τx ∈ Γσ and L (φ) � τx 6= ε} and for all
x ∈ dom(Γ), Γ(x) = L (φ) � Γσ(x)

(3) For any assertion Ψ, there exists a type environment Γ and an assertion Ψ′
such that Γ,Ψ′ ` Ψ, if and only if ΓΨ ` Ψ  ψ;φ such that L (φ) is defined,
L (φ) � ψ = Ψ′ and dom(Γ) = {x | x : τx ∈ ΓΨ and L (φ) � τx 6= ε} and for all
x ∈ dom(Γ), Γ(x) = L (φ) � ΓΨ(x)

(4) For any type variables τ1 and τ2, and any constraint φ, if L (φ ∧ Jτ1 "− τ2K) is
defined, then L (φ ∧ Jτ1 "− τ2K) � τ1 "− L (φ ∧ Jτ1 "− τ2K) � τ2.

(5) For any constraint generated by a process, φ, and any type variables, τ1 and τ2,
if L (φ) � τ1 "− L (φ) � τ2 then L (φ ∧ Jτ1 "− τ2K) exists.

(6) For any type variables τ1 and τ2, and any constraint φ, if L (φ ∧ Jτ1 "+ τ2K) is
defined, then L (φ ∧ Jτ1 "+ τ2K) � τ1 "+ L (φ ∧ Jτ1 "+ τ2K) � τ2.

(7) For any constraint generated by a process, φ, and any type variables, τ1 and τ2,
if L (φ) � τ1 "+ L (φ) � τ2 then L (φ ∧ Jτ1 "+ τ2K) exists.

(8) For any type variables τ1, . . . , τn, and any constraint φ, if L (φ∧Jτ1 = τ2+· · ·+τnK)
is defined, then L (φ ∧ Jτ1 = τ2 + · · ·+ τnK) � τ1 = L (φ ∧ Jτ1 = τ2 + · · ·+ τnK) �
τ2 + · · ·+ L (φ ∧ Jτ1 = τ2 + · · ·+ τnK) � τn.

(9) For any constraint generated by a process, φ, and any type variables, τ1, . . . , τn,
if L (φ) � τ1 = L (φ) � τ2 + · · · + L (φ) � τn then L (φ ∧ Jτ1 = τ2 + · · · + τnK)
exists.

(10) For any assertion variables ψ1, . . . , ψn, and any constraint φ, if L (φ ∧ Jψ1 =
ψ2⊗ · · ·⊗ψnK) is defined, then L (φ∧ Jψ1 = ψ2⊗ · · ·⊗ψnK)�ψ1 = L (φ∧ Jψ1 =
ψ2 ⊗ · · · ⊗ ψnK) � ψ2 ⊗ · · · ⊗L (φ ∧ Jψ1 = ψ2 ⊗ · · · ⊗ ψnK) � ψn.

(11) For any constraint generated by a process, φ, and any assertion variables,
ψ1, . . . , ψn, if L (φ) � ψ1 = L (φ) � ψ2 ⊗ · · · ⊗ L (φ) � ψn then L (φ ∧ Jψ1 =
ψ2 ⊗ · · · ⊗ ψnK) exists.

(12) For any assertion variables ψ1 and ψ2, and any constraint φ, if L (φ∧ Jψ1 ≤ ψ2K)
is defined, then L (φ ∧ Jψ1 ≤ ψ2K) � ψ1 ≤ L (φ ∧ Jψ1 ≤ ψ2K) � ψ2.

(13) For any constraint generated by a process, φ, and any assertion variables, ψ1 and
ψ2, if L (φ) � ψ1 ≤ L (φ) � ψ2 then L (φ ∧ Jψ1 ≤ ψ2K) exists.

(14) For any assertion variables ψ1, . . . , ψn, and any constraint φ, if L (φ ∧ Jψ1 =
· · · = ψnK) is defined, then L (φ ∧ Jψ1 = · · · = ψnK) � ψ1 = · · · = L (φ ∧ Jψ1 =
· · · = ψnK) � ψn.

(15) For any constraint generated by a process, φ, and any assertion variables,
ψ1, . . . , ψn, if L (φ) � ψ1 = · · · = L (φ) � ψn then L (φ ∧ Jψ1 = · · · = ψnK)
exists.

(16) For any assertion variables ψ1 and ψ2, any x ∈ N , and any constraint φ, if
L (φ∧ Jψ1 = ψ2÷xK) is defined, then L (φ∧ Jψ1 = ψ2÷xK)�ψ1 = L (φ∧ Jψ1 =
ψ2 ÷ xK) � ψ2 ÷ x.

(17) For any constraint generated by a process, φ, any assertion variables, ψ1 and ψ2,
and any x ∈ N , if L (φ)�ψ1 = L (φ)�ψ2÷x then L (φ∧ Jψ1 = ψ2÷xK) exists.
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(18) For any assertion variables ψ1 and ψ2, any process P , and any constraint φ,
if L (φ ∧ Jif C(P,ψ1) then Weak(ψ2, ψ1) else ψ2 = ψ1K) is defined, then either
C(P,L (φ ∧ Jif C(P,ψ1) then Weak(ψ2, ψ1) else ψ2 = ψ1K) � ψ1) holds and L (φ ∧
Jif C(P,ψ1) then Weak(ψ2, ψ1) else ψ2 = ψ1K)�ψ1 = L (φ∧Jψ1 = ψ2÷xK)�ψ2⊗
Ψ3 for some Ψ3 allowed by [T-Weak] or L (φ∧Jif C(P,ψ1) then Weak(ψ2, ψ1) else ψ2 =
ψ1K) � ψ1 = L (φ ∧ Jψ1 = ψ2 ÷ xK) � ψ2.

(19) For any constraint generated by a process, φ, any assertion variables, ψ1 and ψ2,
and any process P , if either C(P,L (φ ∧ Jif C(P,ψ1) then Weak(ψ2, ψ1) else ψ2 =
ψ1K)�ψ1) holds and L (φ∧ Jif C(P,ψ1) then Weak(ψ2, ψ1) else ψ2 = ψ1K)�ψ1 =
L (φ ∧ Jψ1 = ψ2 ÷ xK) � ψ2 ⊗ Ψ3 for some Ψ3 allowed by [T-Weak] or L (φ ∧
Jif C(P,ψ1) then Weak(ψ2, ψ1) else ψ2 = ψ1K) � ψ1 = L (φ ∧ Jψ1 = ψ2 ÷ xK) � ψ2
then L (φ ∧ Jψ1 = ψ2 ÷ xK) exists.

Now that these criteria have been established, we put forth Theorem 4.2.4 and
prove it for any instantiation of the type generation which satisfies the above criteria in
Appendix B.2.

Theorem 4.2.4. For any process P , there exists a type environment Γ and an assertion
Ψ such that Γ,Ψ ` P , if and only if ΓP ` P  ψ;φ such that L (φ) is defined, L (φ)ψ�Ψ,
and dom(Γ) = {x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) =
L (φ) � ΓP (x)

4.3. Simple linear types as a ψ-calculus

In this section we present an encoding of the simple linearly typed π-calculus as a
typed ψ-calculus. We choose the type system originally introduced by Kobayashi et al. in
[15]. The type system is simple in the regard that we only have channel types and denote
non-channels by channel types with no capabilities i.e. they cannot be used for either input
or output. In addition each type is associated with a multiplicity: either the type has the
multiplicity 1 which denotes that it can (and must) be used exactly once or it can have
the multiplicity ω which allows the channel to be used freely (or not even used at all).

The nominal data types and operations, the type system, the syntax of the π-calculus,
and finally the encoding of the π-calculus as a ψ-calculus are presented in Tables 4.3.1
to 4.3.4.

We also need to define the typing rules for terms, assertions, and conditions. However,
since we have no assertions—aside from 1—there are no additional typing rules for
assertions. For conditions we have simply written b in the [If]-encoding, and the actual
typing rules would depend on what one is allowed to write in b. For this example however
this is of little importance, and we will simply leave the typing rules for conditions
undefined. Finally for terms we have only a single simple rule as shown in Table 4.3.5. For
simplicity we also include the constraint generation rule for variables in the same table.

We now proceed to define the required constraint encodings as seen in Table 4.3.6.
Since we have no assertions for this simple type system, all constraints related to assertions
are simply ignored.

The last required definition, namely the one for the type and assertions reconstruction
function is defined by the rules seen in Table 4.3.7. It is worth noticing there are no

T: N
C: {a↔̇b | a, b ∈ T}
A: 1
⊗: undefined
1: 1
�: undefined

Table 4.3.1. Nominal data types and operations
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T ::= Type
pmT channel type

p ::= Capability
∅ no capability
{!} output capability
{?} input capability
{!, ?} both input and output capability

m ::= Multiplicity
1 linear
ω unlimited

Table 4.3.2. Types for the ψ-calculus encoding the πF -calculus

P ::= Process
0 inactivity
P | P parallel composition
x!~x.P output
x?~x.P input
(νx : T )P restriction
∗x?~x replicated input
if b then P1 else P2 if-then-else construct

x Name
Table 4.3.3. The syntax of the simple linearly typed π-calculus

[Nil] J0K = L1M [Par] JP | QK = JP K | JQK

[Out] Jx!~y.P K = x~y.JP K [In] Jx?~y.P K = x(λ~y)~y.JP K

[Res] J(νx : T )P K = (νx : T )JP K

[If] Jif b then P1 else P2K = case b : JP1K , ¬b : JP2K
Table 4.3.4. Encoding of π in ψ

[Var] Γ(n) = T

Γ ` n : T

[Ast] undefined

[Con] undefined

[Var-C] Γ(n) = τ

Γ ` n : τ  τ ;ψ; T
Table 4.3.5. Typing rules for terms, assertions, and conditions

reconstruction rules for assertions as we have no assertions in this simple type system. The
remaining rules are straight forward and should not require any additional explanations.
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Jτ1 "− τ2K = In(τ1, τ2) Jτ1 "+ τ2K = Out(τ1, τ2)
Jτ1 = τ2 + τ3K = Add2(τ1, τ2, τ3) Jτ1 = τ2 + τ3 + τ4K = Add3(τ1, τ2, τ3, τ4)

Table 4.3.6. Constraint encoding

Emp(τ) /∈ Ψ Φ
cap
� τ = p Φ

mul
� τ = m Φ

val
� τ = T

Φ � τ = pmT

Emp(τ) ∈ Ψ
Φ � τ = ε

@In(τ, τ ′) ∈ Φ @Out(τ, τ ′′) ∈ Φ

Φ
cap
� τ = ∅

In(τ, τ ′) ∈ Φ @Out(τ, τ ′′) ∈ Φ

Φ
cap
� τ = {?}

@In(τ, τ ′) ∈ Φ Out(τ, τ ′′) ∈ Φ

Φ
cap
� τ = {!}

In(τ, τ ′) ∈ Φ Out(τ, τ ′′) ∈ Φ

Φ
cap
� τ = {!, ?}

In(τ, τ ′) ∈ Φ Φ � τ ′ = T

Φ
val
� τ = T

@Un(τ) ∈ Φ

Φ
mul
� τ = 1

Out(τ, τ ′) ∈ Φ Φ � τ ′ = T

Φ
val
� τ = T

Un(τ) ∈ Φ

Φ
mul
� τ = ω

@In(τ, τ ′) ∈ Φ @Out(τ, τ ′′) ∈ Φ

Φ
val
� τ = ε

Table 4.3.7. Type and assertions reconstruction function

We now only need to define the axioms used to derive the solution to the constraints
and thus the ability to infer the types. We present the axioms in Table 4.3.8. We introduce
the constraints NotEmp and Emp to denote if we are allowed to assign the type ε to a type
variable. For instance if we assume we have some process a(λx)x.P where x /∈ names(P )
we could accidentally end up assigning the empty type to x, since we never generate any
type constraints for x. This would however be a mistake; recall that we use ε to denote
that a name should not appear in an environment, and obviously x should appear in the
environment. Not only should x appear in the environment used to type check P , it should
appear in at least one chain of environments all the way down to a 1. This is the case as we
cannot remove names arbitrarily from environments. The constraint NotEmp(τ) denotes
that ε cannot be assigned to the type variable τ whereas Emp(τ) allows this assignment.
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∀a : Eq(a, a)
∀a : ∀b : Eq(a, b)⇒ Eq(b, a)
∀a : ∀b : ∀c : (Eq(a, b) ∧ Eq(b, c))⇒ Eq(a, c)
∀t : ∀t1 : ∀t2 : (In(t, t1) ∧ In(t, t2))⇒ Eq(t1, t2)
∀t : ∀t1 : ∀t2 : (Out(t, t1) ∧ Out(t, t2))⇒ Eq(t1, t2)
∀t : ∀t1 : ∀t2 : (In(t, t1) ∧ Out(t, t2))⇒ Eq(t1, t2)
∀t1 : ∀t2 : ∀t′ : (In(t1, t′) ∧ Eq(t1, t2))⇒ In(t2, t′)
∀t1 : ∀t2 : ∀t′ : (Out(t1, t′) ∧ Eq(t1, t2))⇒ Out(t2, t′)
∀t1 : ∀t2 : (NotEmp(t1) ∧ Eq(t1, t2))⇒ NotEmp(t2)
∀t : ∀t′ : In(t, t′)⇒ NotEmp(t′)
∀t : ∀t′ : Out(t, t′)⇒ NotEmp(t′)
∀t1 : ∀t2 : ∀t3 : (Add2(t1, t2, t3) ∧ NotEmp(t2))⇒ NotEmp(t1)
∀t1 : ∀t2 : ∀t3 : (Add2(t1, t2, t3) ∧ NotEmp(t3))⇒ NotEmp(t1)
∀t1 : ∀t2 : ∀t3 : ∀t4 : (Add2(t1, t2, t3) ∧ NotEmp(t1) ∧ ¬NotEmp(t2))⇒ NotEmp(t3)
∀t1 : ∀t2 : ∀t3 : ∀t4 : (Add3(t1, t2, t3, t4) ∧ NotEmp(t2))⇒ NotEmp(t1)
∀t1 : ∀t2 : ∀t3 : ∀t4 : (Add3(t1, t2, t3, t4) ∧ NotEmp(t3))⇒ NotEmp(t1)
∀t1 : ∀t2 : ∀t3 : ∀t4 : (Add3(t1, t2, t3, t4) ∧ NotEmp(t4))⇒ NotEmp(t1)
∀t1 : ∀t2 : ∀t3 : ∀t4 : (Add3(t1, t2, t3, t4) ∧ NotEmp(t1)

∧¬NotEmp(t2) ∧ ¬NotEmp(t3))⇒ NotEmp(t4)
∀t1 : ∀t2 : ∀t3 : ∀t : (Add2(t1, t2, t3) ∧ In(t2, t))⇒ In(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t : (Add2(t1, t2, t3) ∧ In(t3, t))⇒ In(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t : (Add2(t1, t2, t3) ∧ Out(t2, t))⇒ Out(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t : (Add2(t1, t2, t3) ∧ Out(t3, t))⇒ Out(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t4 : ∀t : (Add3(t1, t2, t3, t4) ∧ In(t2, t))⇒ In(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t4 : ∀t : (Add3(t1, t2, t3, t4) ∧ In(t3, t))⇒ In(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t4 : ∀t : (Add3(t1, t2, t3, t4) ∧ In(t4, t))⇒ In(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t4 : ∀t : (Add3(t1, t2, t3, t4) ∧ Out(t2, t))⇒ Out(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t4 : ∀t : (Add3(t1, t2, t3, t4) ∧ Out(t3, t))⇒ Out(t1, t)
∀t1 : ∀t2 : ∀t3 : ∀t4 : ∀t : (Add3(t1, t2, t3, t4) ∧ Out(t4, t))⇒ Out(t1, t)
∀t : ∀t1 : ∀t2 : (In(t, t1) ∧ In(t, t2) ∧ t1 6= t2)⇒ Un(t)
∀t : ∀t1 : ∀t2 : (Out(t, t1) ∧ Out(t, t2) ∧ t1 6= t2)⇒ Un(t)
∀t : Add2(t, t, t)⇒ Un(t)
∀t : Add3(t, t, t, t)⇒ Un(t)
∀t : ((∀t′ : ¬In(t, t′)) ∧ (∀t′ : ¬Out(t, t′)) ∧ ¬NotEmp(t))⇒ Emp(t)
∀t1 : ∀t2 : (In(t1, t2) ∧ Eq(t1, t2))⇒ Fail(t1)
∀t1 : ∀t2 : (Out(t1, t2) ∧ Eq(t1, t2))⇒ Fail(t1)

Table 4.3.8. Axioms for simple linearly types

4.3.1. Example. Let us now consider the simple process

P = x y.L1M | x(λa)a.a b.a c.L1M | y(λd)d.y(λe)e.L1M

for which we wish to conduct type inference.
In order to do this we first construct the minimal typing environment for the process,

using the free names of P , giving us

Γ = x : τ1, y : τ2, b : τ3, c : τ4.

Using the constraint generation rules of Tables 4.2.1 and 4.3.5 we generate the following
constraints:
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Using the axioms of Table 4.3.8 we construct the solution found in Appendix A.2. In
the solution we let t_abc_xyz denote the variable τxyzabc . We can now use this solution,
which we shall denote Φ and the function � to determine the types assigned to the type
variables τ1, τ2, τ3, and τ4.

x : τ1: In order to compute Ψ� τ1 we need to compute Φ
cap
� τ1, Φ

mul
� τ1, and Φ

val
� τ1.

cap
� : Since we have In(τ1, τ5) ∈ Φ and Out(τ1, τ

12
2 ) ∈ Φ we can conclude that

Φ
cap
� τ1 = {!, ?}.

mul
� : Since we have no Un(τ1) in Φ we can conclude Φ

mul
� τ1 = 1.

val
� : Since we have In(τ1, τ5) ∈ Φ we need to compute Φ� τ5. This computation
follows the same pattern, and we, for simplicity, immediately present the
result, namely Φ � τ5 = {!}ω(∅1ε). This implies that Φ

val
� τ1 = {!}ω(∅1ε).

Since we have computed the capabilities, multiplicity, and value type of τ1 we
can conclude that Φ � τ1 = {!, ?}1({!}ω(∅1ε))

y : τ2: In order to compute Ψ� τ2 we need to compute Φ
cap
� τ2, Φ

mul
� τ2, and Φ

val
� τ2.

cap
� : Since we have In(τ2, τ6) ∈ Φ and Out(τ2, τ

2332
4 ) ∈ Φ we can conclude that

Φ
cap
� τ2 = {!, ?}.

mul
� : Since we have Un(τ2) ∈ Φ we can conclude Φ

mul
� τ1 = ω.

val
� : Since we have In(τ2, τ6) ∈ Φ we need to compute Φ� τ6. This computation
follows the same pattern, and we, for simplicity, immediately present the
result, namely Φ � τ6 = ∅1ε. This implies that Φ

val
� τ2 = ∅1ε.

Since we have computed the capabilities, multiplicity, and value type of τ2 we
can conclude that Φ � τ2 = {!, ?}ω(∅1ε)

b : τ3: This computation is similar to the above, and since we have no In, Out, or
Un constraints for τ3 we can easily conclude Φ � τ3 = ∅1ε

c : τ4: This computation is similar to the above, and since we have no In, Out, or
Un constraints for τ4 we can easily conclude Φ � τ4 = ∅1ε
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[T-In]

Γ1 + ~x : ~T ,Ψ1 ` P
Γ2,Ψ2 `min (λ~x)N : ~T → Uo
Γ3,Ψ3 `min M : Us

Γ,Ψ `M(λ~x)N.P where

Us "− Uo
"− (Ψ,Ψ1,Ψ2,Ψ3)
Γ = Γ1 + Γ2 + Γ3
Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3

[T-Out]

Γ1,Ψ1 `min M : Ts
Γ2,Ψ2 `min N : To
Γ3,Ψ3 ` P

Γ,Ψ `M N.P
where

Ts "+ To
"+ (Ψ,Ψ1,Ψ2,Ψ3)
Γ = Γ1 + Γ2 + Γ3
Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3

Table 4.4.1. New typing rules for linearly typed ψ-calculi

4.4. Ensuring termination for value-passing as a ψ-calculus

In [13] Hüttel attempts to create an instantiation of the linearly typed ψ-calculi to
ensure termination in value-passing processes inspired by [3], but we have found that this
instantiation does not work, allowing the typing

a : Ch1, b : Ch1, c : 1, 3 ` ∗a(λx)x.b x.L1M | ∗b(λy)y.a y.L1M | a c.L1M,

even though the process obviously does not terminate. One reason it does not work is
because the definition of ⊗: m ⊗ chan(m) = n for n > m and n ⊗ k = max(n, k) is not
associative—(chan(1) ⊗ 1) ⊗ 2 ≤ 2 and chan(1) ⊗ (1 ⊗ 2) is undefined—as required by
the definition of ψ-calculi. The replicated input rule he presents also cannot be derived
from the typing rules for replication and input, and in addition cannot be used to ensure
termination in the same way as in [3]. Finally, the proposition supposed to prove that the
type system ensures termination would also hold for a type system, which types everything
with the same type, which would obviously not ensure termination.

Since this instantiation does not work, we have instead attempted to make our own
instantiation to ensure termination, but found it very tricky. The idea behind the type
system is to assign a level to each type, and only in- and output on a channel guarded by
replicated input on another, if the first channel has a lower level than the one used in the
replicated input. Since we needed a way for the type system to know when an input or
output directly followed replication, and to be able to ensure a correlation between the
assertion used to type the channel being used and the rest of the process in an input or
output. We also needed to prevent replicated output, parallel composition at so forth,
so processes like ∗a(λb)b.P | ∗a c.Q could not be typed. The first we managed to do in
the instantiation using a relation, " (Ψ,Ψ1,Ψ2,Ψ3), on the assertions. The relation is
similar to T " U for types, and is used to describe the relationship between the assertions
for the type check of the process with the input/out, the channel, the term, and the
remaining process respectively. As a result, we have altered the typing rules for input and
output slightly, so that they now make use of this new relation, and we present those in
Table 4.4.1. It is worth mentioning that the addition of this relation have no effect on the
proofs of safety and subject reduction seen in [13]. As for preventing replication before
anything other than input, e.g. preventing ∗(P | Q), we resort to make a restriction on the
syntax for this particular ψ-calculus, preventing such processes. While it might be possible
to enforce this restriction using the type system itself, we have been unable to achieve this
and thus simply disallow such processes instead. We therefore for the remainder of this
section assume that replication can only occur before an input process i.e. as ∗a(λx)x.P .
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We can then define an instantiation of the type system that ensures termination. The
idea is to assign a level to each type such that channels only send types with a level that is
at most equal to their own, and ensure that any channel used for input or output guarded
by a replicated input would have a lower level than the one used for the replicated input.

We have a set of types defined by
T ::= Chn | n

Where Chn is the type of channels allowed to send names of type m for m ≤ n. We also
define type addition as T + T = T for all types T .

We then define the assertions used in this type system here:
Ψ ::= [n,m] | ∗[n,m] | chan(n) where n,m ∈ N.

We use [n,m] to assert a process which is not immediately preceded by and does not start
with a replication wherein all types have a level of at most m, we use ∗[n,m] to assert a
process which is immediately preceded by or starts with a replication wherein all types
have a level of at most m, and we use chan(n) to type channels of type Chn. In addition
we use of r[n,m] to denote that an assertion can be either [n,m] or ∗[n,m].

We then define our assertion compatibility predicate in Definition 4.4.1. It ensures that
when ∗[n,m] is used to assert input the r1[n1,m1] used to assert the rest of the process
has a lower level m1 than the chan(n3) used to assert the channel the input is received on.
The compatibility predicate for types, seen in Definition 4.4.2, ensures that channels only
send names with a level smaller or equal to their own.

Definition 4.4.1 (Assertion " ). We define the compatibility of assertions like this:
"− (∗[n,m], r[n1,m1], [n2,m2], chan(n3)) if m1 < n3
"− ([n,m], r[n1,m1], [n2,m2], chan(n3))
"+ ([n,m], r[n1,m1], [n2,m2], chan(n3))

Definition 4.4.2 (Type " ). We define the compatibility of types like this:
Chm " n where m ≥ n

The last thing we need to define before we present the typing rules for terms assertions
and conditions is assertion composition, seen in Definition 4.4.3. These are designed to
ensure that ∗[n,m]⊗ ∗[n,m] = ∗[n,m] and [n,m]⊗ [n,m] is not defined, but that these
can otherwise be used the same ways.

Definition 4.4.3 (Assertion composition). Let assertion composition be defined as

[n,m] =



chan(n1)⊗ chan(n2) n1, n2 ≤ m

chan(n1)⊗ r2[n2,m2]
m2 ≤ m,
n1 ≤ m,
n2 ≤ m2

r1[n1,m1]⊗ r2[n2,m2]
m1,m2 ≤ m,
ni ≤ mi,
r1[n1,m1] 6= r2[n2,m2]

∗[n,m] =



chan(n1)⊗ chan(n2) n1, n2 ≤ m

chan(n1)⊗ r2[n2,m2]
m2 ≤ m,
n1 ≤ m,
n2 ≤ m2

r1[n1,m1]⊗ r2[n2,m2] m1,m2 ≤ m,
ni ≤ mi,
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[Nam] Γ, [n,m] ` x : T if Γ(x) = T

[Cha] Γ, chan(n) ` a : Chn if Γ(a) = Chn

[Com] Γ, [n,m] `Mi : ni 1 ≤ i ≤ | ~M |
Γ, [n,m] ` f( ~M) : n

if ni ≤ n for 1 ≤ i ≤ | ~M |

Table 4.4.2. Typing rules for terms, assertions, and conditions

[C-In]

ΓM `M  τm;ψm;φm
ΓN ` (λ~x)N  (~τ → τn);ψn;φn
ΓP , ~x : ~τ ` P  ψp;φp

Γ `M(λ~x)N.P  ψ;φm ∧ φn ∧ φp
∧Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP (x)=τ4

Jτ1 = τ2 + τ3 + τ4K

∧Jif C(M(λ~x)N.P, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K
∧J"− (ψ,ψp, ψn, ψm)K

where
ΓM = Њ(Γ)
ΓN = Њ(Γ)
ΓP = Њ(Γ)

[C-Out]

ΓM `M  τm;ψm;φm
ΓN ` N  τn;ψn;φn
ΓP ` P  ψp;φp

Γ `M N.P  ψ;φm ∧ φn ∧ φp
∧Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "+ τnK∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP (x)=τ4

Jτ1 = τ2 + τ3 + τ4K

∧Jif C(M N.P, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K
∧J"+ (ψ,ψp, ψn, ψm)K

where
ΓM = Њ(Γ)
ΓN = Њ(Γ)
ΓP = Њ(Γ)

Table 4.4.3. New constraint generation rules for linearly typed ψ-calculi

Finally we present our typing rules for terms in Table 4.4.2. They resemble the ones
seen in [13] a great deal.

We can now put forth Theorem 4.4.4 and prove it in Appendix B.2.2.

Theorem 4.4.4 (Termination). If there exists a Γ and Ψ such that Γ,Ψ ` P then P
terminates

4.4.1. Constraint encoding. Before we can present the encoding of the constraints
generated by the constraint generation rules of Table 4.2.1, we first need to define the
constraint generation rules for terms and the new input and output rules. The constraint
generation rules for input and output are identical to the ones defined in Table 4.2.1
with the exception of the introduction of the new side condition " (Ψ,Ψ1,Ψ2,Ψ3). The
constraint generation rules for terms are equally straight forward. We present the new
constraint generation rules for input and output, and the constraint generation rules for
terms in Tables 4.4.3 and 4.4.4 respectively.
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[C-Var]
Γ(x) = τ

Γ ` x τ ;ψ; Ass(ψ, ρ, η, µ) ∧ Lin(ρ)
∧(Chan(τ)⇒ (AssChan(ψ) ∧ Eq(τ, η)))
∧(AssChan(ψ)⇒ Chan(τ))

[C-Com]
Γ `Mi  τi;ψi;φi 1 ≤ i ≤ | ~M |

Γ ` f( ~M) τ ;ψ;
∧
i
φi

∧Ass(ψ, ρ, η, µ) ∧ Eq(η, τ)
∧
∧
i(∀ρi : ∀ηi : ∀µi : (Ass(ψi, ρi, ηi, µi)⇒ LessEq(ηi, η)))

Table 4.4.4. Constraint generation rules for terms

Ass(ψ, ρ, η, µ) AssChan(ψ) Rep(ρ) Lin(ρ)
Chan(τ) Val(τ) Less(a, b) LessEq(a, b)
Eq
Table 4.4.5. Constraint language for termination

We now proceed to define the constraint language we will utilise as seen in Table 4.4.5,
and explain what the relations will denote. For assertions, as we in linearly typed ψ-
calculi have to encode those, we make use of the following constraints: Ass(ψ, ρ, η, µ) and
AssChan(ψ). The relation Ass(ψ, ρ, η, µ) denotes that the assertion variable ψ represents the
assertion ρ[η, µ]. The relation AssChan(ψ) denotes that the corresponding Ass(ψ, ρ, η, µ)-
relation is to be read as chan(η) instead of ρ[η, µ]. For the multiplicity variables ρ we utilise
the relations Rep(ρ) and Lin(ρ) to denote whether ρ is ∗ or nothing. We once again let τ
denote type variables and for the types we make use of the two relations Chan(τ) and Val(τ)
to denote either τ is of the form Chn or n for some n ∈ N. For the variables that denote
numbers i.e. τ , η, and µ we utilise the relations Less(a, b) and LessEq(a, b) to denote “a < b”
and “a ≤ b” respectively. Lastly, as previously we let Eq(a, b) denote that two variables
are equal, and we will include axioms to ensure that the relation Eq will be an equivalence
relation and that it carries information correctly e.g. Val(τ1) ∧ Eq(τ1, τ2)⇒ Val(τ2) and so
forth.

In Table 4.4.6 we present the encoding of the constraints generated by the constraint
generation rules for processes as presented in Tables 4.2.1 and 4.4.3.

These encodings and axioms should not be surprising, when one considers the meaning
of the predicates. One side effect of these axioms, which may seem a bit odd is that
because an Eq(τ, η) predicate is generated in [C-Var] and [C-Com], the axiom ∀τ1 : ∀τ2 :
((Chan(τ1)∧ Eq(τ1, τ2))⇒ Chan(τ2)) creates a Chan(η) predicate, even though it obviously
makes no sense to have a ρ[Chη, µ] assertion. But we can simply define � in a way that
does not allow such a predicate, as seen in Table 4.4.8. Since ρ does not appear in any
of the criteria from Section 4.1.1 it does not matter whether L (φ) � ρ = Chn. Only the
reconstruction of the type- and assertion variables matters, and these will obviously not
be influenced by Chan(ρ). The type reconstruction rules are otherwise as expected, with
level
� using Less and LessEq to find the minimum possible value for levels of types and in
assertions.
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J"− (ψ,ψ1, ψ2, ψ3)K =
Ass(ψ, ρ, η, µ) ∧ Ass(ψ1, ρ1, η1, µ1) ∧ Ass(ψ2, ρ2, η2, µ2) ∧ Ass(ψ3, ρ3, η3, µ3)∧
(Rep(ρ)⇒ (Rep(ρ3) ∧ Less(µ1, η3))) ∧ (Lin(ρ)⇒ Lin(ρ3)) ∧ Lin(ρ2)∧
AssChan(ψ3)

J"+ (ψ,ψ1, ψ2, ψ3)K =
Ass(ψ, ρ, η, µ) ∧ Ass(ψ1, ρ1, η1, µ1) ∧ Ass(ψ2, ρ2, η2, µ2) ∧ Ass(ψ3, ρ3, η3, µ3)∧
Lin(ρ) ∧ Lin(ρ2) ∧ Lin(ρ3) ∧ AssChan(ψ3)

Jτ1 "− τ2K =
Chan(τ1) ∧ Val(τ2) ∧ LessEq(τ2, τ1)

Jτ1 "+ τ2K =
Chan(τ1) ∧ Val(τ2) ∧ LessEq(τ2, τ1)

Jτ1 = τ2 + τ3K =
Eq(τ1, τ2) ∧ Eq(τ2, τ3)

Jτ1 = τ2 + τ3 + τ4K =
Eq(τ1, τ2) ∧ Eq(τ2, τ3) ∧ Eq(τ3, τ4)

Jψ1 ≤ ψ2K =
Eq(ψ1, ψ2)

Jψ1 = ψ2 ÷ xK =
Eq(ψ1, ψ2)

Jif C(P,ψ2) then Weak(ψ1, ψ2) else . . .K =
Eq(ψ1, ψ2)

Jψ1 = ψ2 ⊗ ψ3K =
Ass(ψ1, ρ1, η1, µ1) ∧ Ass(ψ2, ρ2, η2, µ2) ∧ Ass(ψ3, ρ3, η3, µ3)∧
LessEq(µ2, µ1) ∧ LessEq(µ3, µ1) ∧ LessEq(η2, µ2)∧
LessEq(η3, µ3) ∧ ((Eq(ρ2, ρ3) ∧ Eq(η2, η3) ∧ Eq(µ2, µ3))⇒ Rep(ρ1))
(AssChan(ψ1)⇒ Fail(ψ1))

Jψ1 = ψ2 ⊗ ψ3 ⊗ ψ4K =
Ass(ψ1, ρ1, η1, µ1) ∧ Ass(ψ2, ρ2, η2, µ2) ∧ Ass(ψ3, ρ3, η3, µ3) ∧ Ass(ψ4, ρ4, η4, µ4)∧
LessEq(µ2, µ1) ∧ LessEq(µ3, µ1) ∧ LessEq(µ4, µ1)
LessEq(η2, µ2) ∧ LessEq(η3, µ3) ∧ LessEq(η4, µ4)
(AssChan(ψ1)⇒ Fail(ψ1))

Table 4.4.6. Constraint encoding
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∀a : Eq(a, a)
∀a : ∀b : Eq(a, b)⇒ Eq(b, a)
∀a : ∀b : ∀c : (Eq(a, b) ∧ Eq(b, c))⇒ Eq(a, c)

∀ψ : ∀ρ1 : ∀ρ2 : ∀η1 : ∀η2 : ∀µ2 : ∀µ3 :
((Ass(ψ, ρ1, η1, µ1) ∧ Ass(ψ, ρ2, η2, µ2))⇒

(Eq(ρ1, ρ2) ∧ Eq(η1, η2) ∧ Eq(µ1, µ2)))

∀ψ1 : ∀ψ2 : (Eq(ψ1, ψ2)⇒
(∀ρ1 : ∀ρ2 : ∀η1 : ∀η2 : ∀µ2 : ∀µ3 :

(Ass(ψ1, ρ1, η1, µ1) ∧ Ass(ψ2, ρ2, η2, µ2))⇒
(Eq(ρ1, ρ2) ∧ Eq(η1, η2) ∧ Eq(µ1, µ2))))

∀ψ1 : ∀ψ2 : ((AssChan(ψ1) ∧ Eq(ψ1, ψ2))⇒ AssChan(ψ2))
∀ρ1 : ∀ρ2 : ((Lin(ρ1) ∧ Eq(ρ1, ρ2))⇒ Lin(ρ2))
∀ρ1 : ∀ρ2 : ((Rep(ρ1) ∧ Eq(ρ1, ρ2))⇒ Rep(ρ2))
∀τ1 : ∀τ2 : ((Chan(τ1) ∧ Eq(τ1, τ2))⇒ Chan(τ2))
∀τ1 : ∀τ2 : ((Val(τ1) ∧ Eq(τ1, τ2))⇒ Val(τ2))
∀ρ1 : ∀ρ2 : ((Rep(ρ1) ∧ Rep(ρ2))⇒ Eq(ρ1, ρ2))
∀ρ1 : ∀ρ2 : ((Lin(ρ1) ∧ Lin(ρ2))⇒ Eq(ρ1, ρ2))

∀a : ∀b : ∀c : ((Less(a, b) ∧ Eq(a, c))⇒ Less(c, b))
∀a : ∀b : ∀c : ((Less(a, b) ∧ Eq(b, c))⇒ Less(a, c))
∀a : ∀b : ∀c : ((Less(a, b) ∧ Less(b, c))⇒ Less(a, c))
∀a : ∀b : ∀c : ((Less(a, b) ∧ LessEq(b, c))⇒ Less(a, c))
∀a : ∀b : ∀c : ((Less(a, b) ∧ LessEq(b, a))⇒ Fail(a)

∀a : ∀b : ∀c : ((LessEq(a, b) ∧ LessEq(b, c))⇒ LessEq(a, c))
∀a : ∀b : ∀c : ((LessEq(a, b) ∧ Eq(b, c))⇒ LessEq(a, c))
∀a : ∀b : ∀c : ((LessEq(a, b) ∧ Eq(a, c))⇒ LessEq(c, b))
∀a : ∀b : ((LessEq(a, b) ∧ LessEq(b, a))⇒ Eq(a, b))

∀a : ∀b : ((Less(a, b) ∧ Less(b, a))⇒ Fail(a, b))
∀ρ : ((Rep(ρ) ∧ Lin(ρ))⇒ Fail(ρ))
∀τ : ((Chan(τ) ∧ Val(τ))⇒ Fail(τ)

Table 4.4.7. Axioms
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Φ
level
� τ = n Val(τ) ∈ Φ

Φ � τ = n

Φ
level
� τ = n Chan(τ) ∈ Φ

Φ � τ = Chn

Φ
level
� µ = n Ass(ψ, ρ, η, µ) ∈ Φ AssChan(ψ) ∈ Φ

Φ � ψ = chan(n)

Φ
level
� η ≤ n ≤ m Φ

level
� µ = m Ass(ψ, ρ, η, µ) ∈ Φ Lin(ρ) ∈ Φ

Φ � ψ = [n,m]

Φ
level
� η ≤ n ≤ m Φ

level
� µ = m Ass(ψ, ρ, η, µ) ∈ Φ Rep(ρ) ∈ Φ

Φ � ψ = ∗[n,m]

@b : Less(b, a) ∈ Φ or LessEq(b, a) ∈ Φ where Eq(b, a) /∈ Φ

Φ
level
� a = 0

∃b : Less(b, a) ∈ Φ or LessEq(b, a) ∈ Φ

n = max

m
∣∣∣∣∣∣ ∃b : LessEq(b, a) ∈ Φ and m = Φ

level
� b or

Less(b, a) ∈ Φ and m = 1 + Φ
level
� b




Φ
level
� a = n

Table 4.4.8. Type and assertions reconstruction function
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4.4.2. Example. We now show an example of type inference on the simple process

P = ∗a(λ~x)x..b x. | a c..

In order to generate constraints, we provide the environment Γ = a : τ1, b : τ2, c : τ3. We
use the constraint generating rules to get a conjunction of the following constraints:

Ass(ψ1, ρ18, η18, µ18) Ass(ψ11, ρ19, η19, µ19) Ass(ψ12, ρ20, η20, µ20)
LessEq(µ19, µ18) LessEq(µ20, µ18) LessEq(η19, µ19)
LessEq(η20, µ20)
(Eq(ρ19, ρ20) ∧ Eq(η19, η20) ∧ Eq(µ19, µ20))⇒ Rep(ρ18)
AssChan(ψ1)⇒ Fail(ψ1) Ass(ψ23, ρ21, η21, µ21) Ass(ψ13, ρ22, η22, µ22)
Ass(ψ14, ρ23, η23, µ23) LessEq(µ22, µ21) LessEq(µ23, µ21)
LessEq(η22, µ22) LessEq(η23, µ23)
(Eq(ρ22, ρ23) ∧ Eq(η22, η23) ∧ Eq(µ22, µ23))⇒ Rep(ρ21)
AssChan(ψ23)⇒ Fail(ψ23) Ass(ψ17, ρ24, η24, µ24) Ass(ψ11, ρ25, η25, µ25)
Ass(ψ13, ρ26, η26, µ26) LessEq(µ25, µ24) LessEq(µ26, µ24)
LessEq(η25, µ25) LessEq(η26, µ26)
(Eq(ρ25, ρ26) ∧ Eq(η25, η26) ∧ Eq(µ25, µ26))⇒ Rep(ρ24)
AssChan(ψ17)⇒ Fail(ψ17) Eq(ψ17, ψ1) Eq(ψ12, ψ15)
Eq(ψ14, ψ16) Eq(τ1, τ11) Eq(τ11 , τ12)
Eq(τ2, τ21) Eq(τ21 , τ22) Eq(τ3, τ31)
Eq(τ31 , τ32) Ass(ψ2, ρ27, η27, µ27) Ass(ψ2, ρ28, η28, µ28)
Ass(ψ2, ρ29, η29, µ29) LessEq(µ28, µ27) LessEq(µ29, µ27)
LessEq(η28, µ28) LessEq(η29, µ29)
(Eq(ρ28, ρ29) ∧ Eq(η28, η29) ∧ Eq(µ28, µ29))⇒ Rep(ρ27)
AssChan(ψ2)⇒ Fail(ψ2) Eq(ψ1, ψ2) Ass(ψ3, ρ3, η3, µ3)
Val(τ111)⇒ Ass(ψ3, ρ1, η1, µ1) Lin(ρ3)
Chan(τ111)⇒ (Ass(ψ3, ρ2, η2, µ2) ∧ AssChan(ψ3) ∧ Eq(τ111 , η2))
AssChan(ψ3)⇒ Chan(τ111) Ass(ψ4, ρ4, η4, µ4) Lin(ρ4)
Val(τ4)⇒ Ass(ψ4, ρ5, η5, µ5)
Chan(τ4)⇒ (Ass(ψ4, ρ6, η6, µ6) ∧ AssChan(ψ4) ∧ Eq(τ4, η6))
AssChan(ψ4)⇒ Chan(τ4) Ass(ψ5, ρ30, η30, µ30) Ass(ψ3, ρ31, η31, µ31)
Ass(ψ4, ρ32, η32, µ32) Ass(ψ6, ρ33, η33, µ33) LessEq(µ31, µ30)
LessEq(µ32, µ30) LessEq(µ33, µ30) AssChan(ψ5)⇒ Fail(ψ5)
Chan(τ111) Val(τ4) LessEq(τ4, τ111)
Eq(τ11 , τ111) Eq(τ111 , τ112) Eq(τ112 , τ113)
Eq(τ21 , τ211) Eq(τ211 , τ212) Eq(τ212 , τ213)
Eq(τ31 , τ311) Eq(τ311 , τ312) Eq(τ312 , τ313)
Eq(ψ5, ψ2) Ass(ψ2, ρ42, η42, µ42) Ass(ψ6, ρ43, η43, µ43)
Ass(ψ4, ρ44, η44, µ44) Ass(ψ3, ρ45, η45, µ45) Rep(ρ42)⇒ Less(µ43, η45)
Lin(ρ42)⇒ Lin(ρ45) AssChan(ψ3) Ass(ψ7, ρ7, η7, µ7)
Val(τ2131)⇒ Ass(ψ7, ρ8, η8, µ8) Lin(ρ7)
Chan(τ2131)⇒ (Ass(ψ7, ρ9, η9, µ9) ∧ AssChan(ψ7) ∧ Eq(τ2131 , η9))
AssChan(ψ7)⇒ Chan(τ2131) Ass(ψ8, ρ10, η10, µ10) Lin(ρ10)
Val(τ4132)⇒ Ass(ψ8, ρ11, η11, µ11)
Chan(τ4132)⇒ (Ass(ψ8, ρ12, η12, µ12) ∧ AssChan(ψ8) ∧ Eq(τ4132 , η12)))
AssChan(ψ8)⇒ Chan(τ4132) Ass(ψ10, ρ34, η34, µ34) Ass(ψ7, ρ35, η35, µ35)
Ass(ψ8, ρ36, η36, µ36) Ass(ψ9, ρ37, η37, µ37) LessEq(µ35, µ34)
LessEq(µ36, µ34) LessEq(µ37, µ34) AssChan(ψ10)⇒ Fail(ψ10)
Chan(τ2131) Val(τ4132) LessEq(τ4132 , τ2131)
Eq(τ113 , τ1131) Eq(τ1131 , τ1132) Eq(τ1132 , τ1133)
Eq(τ213 , τ2131) Eq(τ2131 , τ2132) Eq(τ2132 , τ2133)
Eq(τ313 , τ3131) Eq(τ3131 , τ3132) Eq(τ3132 , τ3133)
Eq(τ4, τ4131) Eq(τ4131 , τ4132) Eq(τ4132 , τ4133)



4.4. ENSURING TERMINATION FOR VALUE-PASSING AS A ψ-CALCULUS 57

Eq(ψ6, ψ10) Ass(ψ6, ρ46, η46, µ46) Ass(ψ9, ρ47, η47, µ47)
Ass(ψ8, ρ48, η48, µ48) Ass(ψ7, ρ49, η49, µ49) Lin(ρ46)
Lin(ρ48) Lin(ρ49) AssChan(ψ7)
Val(τ1211)⇒ Ass(ψ19, ρ14, η14, µ14) Ass(ψ19, ρ13, η13, µ13) Lin(ρ13)
Chan(τ1211)⇒ (Ass(ψ19, ρ15, η15, µ15) ∧ AssChan(ψ19) ∧ Eq(τ1211 , η15))
AssChan(ψ19)⇒ Chan(τ1211) Ass(ψ20, ρ16, η16, µ16) Lin(ρ16)
Val(τ3212)⇒ Ass(ψ20, ρ17, η17, µ17)
Chan(τ3212)⇒ (Ass(ψ20, ρ18, η18, µ18) ∧ AssChan(ψ20) ∧ Eq(τ3212 , η18))
(AssChan(ψ20)⇒ Chan(τ3212)) Ass(ψ22, ρ38, η38, µ38) Ass(ψ19, ρ39, η39, µ39)
Ass(ψ20, ρ40, η40, µ40) Ass(ψ21, ρ41, η41, µ41) LessEq(µ39, µ38)
LessEq(µ40, µ38) LessEq(µ41, µ38) AssChan(ψ22)⇒ Fail(ψ22)
Chan(τ1211) Val(τ3212) LessEq(τ3212 , τ1211)
Eq(τ121 , τ1211) Eq(τ1211 , τ1212) Eq(τ1212 , τ1213)
Eq(τ221 , τ2211) Eq(τ2211 , τ2212) Eq(τ2212 , τ2213)
Eq(τ321 , τ3211) Eq(τ3211 , τ3212) Eq(τ3212 , τ3213)
Eq(ψ22, ψ18) Ass(ψ18, ρ50, η50, µ50) Ass(ψ21, ρ51, η51, µ51)
Ass(ψ20, ρ52, η52, µ52) Ass(ψ19, ρ53, η53, µ53) Lin(ρ50)
Lin(ρ52) Lin(ρ53) AssChan(ψ7)
Val(τ4) Eq(ψ23, ψ18) Eq(τ12 , τ121)
Eq(τ22 , τ221) Eq(τ32 , τ321)

Using the axioms found in Table 4.4.7 we construct the solution found in Appendix A.3.
In the solution we let t_x_y denote τxy , s_x denote φx, r_x denote ρx, n_x denote ηx,
and m_x denote µx. We now use the solution found to reconstruct the types τ1, τ2, and
τ3 together with the initial assertion ψ17. Due to a small error in the constraint generation,
this assertion will be replicated, whereas it would under normal circumstances have been
linear.

a : τ1: We want to compute the type of τ1. We first investigate the solution Φ to
determine whether tau1 is a channel or a value. We find Chan(τ1). We now need
to compute Φ

level
� τ1. We now need to determine if there exists any variable

with a value less than or equal to τ1. We once again investiagte the solution
and find: Less(µ46, τ1), Less(µ33, τ1), Less(µ34, τ1), Less(µ43, τ1), LessEq(τ4131 , τ1),
LessEq(τ4133 , τ1), LessEq(τ3, τ1), LessEq(τ311 , τ1), LessEq(τ3213 , τ1), LessEq(τ312 , τ1),
LessEq(τ3211 , τ1), LessEq(τ313 , τ1), LessEq(τ32 , τ1), LessEq(τ3131 , τ1), LessEq(τ321 , τ1),
LessEq(τ3132 , τ1), LessEq(τ31 , τ1), LessEq(τ3133 , τ1), LessEq(τ3212 , τ1), LessEq(τ4132 , τ1),
and LessEq(τ4, τ1). We thus have to compute the value of all of these variables,
and select the maximum of those. We proceed by computing Φ

level
� µ46. We once

again need to determine if there exists any values less than or equal to µ46. As
before we investigate the solution, but find that all values less than or equal to
µ46 are not larger than any other values, and by

level
� we have µ46 = max({0}) = 0.

We apply a similar approach for the remaining variables and get µ33 = 0, µ34 = 0,
µ43 = 0, τ131

4 = 0, τ4133 = 0, τ3 = 0, τ311 = 0, τ3213 = 0, τ312 = 0, τ3211 = 0,
τ313 = 0, τ32 = 0, τ3131 = 0, τ321 = 0, τ3132 = 0, τ31 = 0, τ3133 = 0, τ3212 = 0,
τ4132 = 0, τ4 = 0. We thus have Φ

level
� τ1 = max({1, 0}) = 1. We can finally

conclude Φ � τ1 = Ch1.
b : τ2: This computation is similar to the one for a : τ1. For simplciity we immediately

present the result, namely Φ � τ2 = Ch0.
c : τ3: During the computation for a : τ1 we derived that Φ � τ3 = 0.
ψ17: To compute Φ � ψ17 we need to find its corresponding Ass-relation. We

invesitgate Φ and find Ass(ψ17, ρ24, η24, µ24). We now determine if the assertion
is linear or replicated. We investigate Φ and find Rep(ρ24) and we conclude the
assertion is replicated. We need to compute Φ

level
� η24 and Φ

level
� µ24. By a
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similar approach as for a : τ1 we get Φ
level
� η24 = 0 and Φ

level
� µ24 = 1, implying

Φ � ψ17 = ∗[0, 1].



CHAPTER 5

Conclusion

In this report we succeeded in creating general type inference algorithms for both
generic type systems considered, and also proved the algorithms to be correct. We used
the approach of constraint generation where we used the ALFP as the constraint language,
since this is a decidable fragment of first order logic. While successful, we had serious
problems using the algorithms on more complicated instantiations of the type systems, as
we discovered ALFP was not a suitable language for certain conditions. For instance, the
dependent types caused problems because the ALFP does not allow the creation of new
names/variables while solving, requiring any encoding of a type T ′ defined as T ′ = T [a�b]
to utilise only names used in the encoding of T . While this may in some cases be enough
to infer whether a solution exists or not, it becomes increasingly problematic when one
wants to use the solution to reconstruct the type T ′. We managed a partial solution to
this problem, as detailed in Section 3.4.2. It is possible that one can incorporate ideas
such as the ones presented by Felty and Miller in [4] to correctly handle fully dependent
types with no restrictions.

We also found that using ALFP when attempting to find the optimum solution rather
than just an arbitrary solution was problematic. If we consider a type system like [1]
in which we can always type a process—in this case by simply assign the type Pub to
everything—the question is not simply whether there exists a typing or not, but instead
what is the most strict typing we can use? Strictness in case of [1] would be proportional
to how many secret types we have in our typing. This was problematic as ALFP is not
able to compare e.g. the number of times names appears in a specific relation.

Lastly we also discovered that the stratification requirements from the ALFP become
problematic when one have circular dependencies in ones constraints. Stratification
becomes problematic as it states that the rank of any query must be less than or equal
to the rank of the assertions, and the rank of negative queries must be less than the
rank of the assertions. Thus it easily becomes impossible to formulate cyclic constraints
involving negative queries, as we for instance cannot have ¬P ⇒ Q and ¬Q⇒ P . This
implies that if we have for instance that a type is either linear or unlimited and we assume
we have two predicates on type variables denoting this, we cannot construct constraints
that ensures that either Lin(τ) or Un(τ) as these constraint will utilise a negative query
on the counterpart (similar to the example above). The problem can also arise if we
know ¬P ⇒ Q, but in another constraint we have (. . . ∧ Q ∧ . . . ) ⇒ (. . . ∧ P ∧ . . . ).
Clearly rank(P ) < rank(Q) by the first constraint, but rank(Q) ≤ rank(P ) by the second
constraint. Obviously no assignment of natural numbers to P and Q can satisfy this.

Results. We created a method of generating ALFP constraints for type inference
for two generic type systems—simply typed ψ-calculi and linearly typed ψ-calculi—and
proved that these methods worked. We showed examples of instantiations of the generic
type systems and type inference, and proved that the instantiations of the type inference
worked. We also looked at the attempt at creating a linearly typed ψ-calculus to mimic
the type system by Deng and Sangiorgi [3] as presented by Hüttel in [13], but found
several problems with this instantiation. We have detailed the problems and presented a
possible solution to this in Section 4.4. We have not formally proved the correctness of
you proposed solution due to time constraints.

59
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Future work. As detailed above, we found it difficult to use ALFP to find solutions
for a number of instantiations of the generic type systems, and it would therefore most likely
be a sensible idea to consider alternative logics as constraint languages. In addition, since
all the concepts used in the generic constraint generation for both type systems can be used
for any language, it might be possible to replace ∧ with a different symbol for conjunction,
thereby allowing different logics to express constraints for different instantiations of the
type systems depending on what is best suited. This might make it easier to deal with
issues like dependent types or optimisation of solutions.

In addition we would want to formally prove that the constraints and axioms presented
in Section 4.4.1 are in fact enough to correctly infer the types for the corresponding type
system.
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APPENDIX A

Succinct Solver solutions

A.1. Succinct Solver solution for the example in Section 3.4.3

The Universe:
(t1, t2, t5, t7, t10, t6, t14, t16, t13, t19, x1, t3, t8’,
x2, t11, t12’, x3, t4, t15’, x4, t17, t18’, t8, x, t12, d, t15, y, t18,
g, xi1, l, m1)

Relation LAL/2:
(t6, t19), (t6, t16), (t6, t14), (t5, t13), (t5, t10), (t5, t7),
(t1, t2),

Relation EQ/2: (m1, m1), (l, l), (xi1, xi1), (g, g), (t18, t18), (y, y),
(t15, t15), (d, d), (t12, t12), (x, x), (t8, t8), (t18’, t18’),
(t17, t4), (t17, t17), (x4, x3), (x4, x4), (t15’, t15’), (t4, t17),
(t4, t4), (x3, x4), (x3, x3), (t12’, t12’), (t11, t3), (t11, t11),
(x2, x1), (x2, x2), (t8’, t8’), (t3, t11), (t3, t3), (x1, x2), (x1, x1),
(t13, t7), (t13, t10), (t13, t13), (t19, t14), (t19, t16), (t19, t19),
(t1, t1), (t5, t5), (t6, t6), (t2, t2), (t7, t13), (t7, t7), (t7, t10),
(t14, t19), (t14, t14), (t14, t16), (t16, t14), (t16, t16), (t16, t19),
(t10, t7), (t10, t10), (t10, t13),

Relation IsPair_/4:
(t10, x1, t11, t8’), (t10, x1, t3, t8’), (t10, x2, t3, t12’),
(t10, x2, t11, t12’), (t16, x3, t17, t15’), (t16, x3, t4, t15’),
(t16, x4, t4, t18’), (t16, x4, t17, t18’), (t19, x3, t17, t15’),
(t19, x3, t4, t15’), (t19, x4, t4, t18’), (t19, x4, t17, t18’),
(t14, x4, t4, t18’), (t14, x4, t17, t18’), (t14, x3, t17, t15’),
(t14, x3, t4, t15’), (t13, x1, t11, t8’), (t13, x1, t3, t8’),
(t13, x2, t3, t12’), (t13, x2, t11, t12’), (t7, x2, t3, t12’),
(t7, x2, t11, t12’), (t7, x1, t11, t8’), (t7, x1, t3, t8’),

Relation IsAbs/5:
(t18’, t18, g, x4, t17), (t15’, t15, y, x3, t4), (t12’, t12, d, x2, t11),
(t8’, t8, x, x1, t3),

Relation IsOk_/1:
(t15), (t8),

Relation CanOk_/2:
(t8, xi1),

Relation FrmlMsg/3:
(xi1, l, m1),

Relation MsgPai/3:
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(m1, x, y),

Relation IsOk/1:
(t18), (t18’), (t15’), (t12), (t12’), (t8’), (t8), (t15),

Relation CanOk/2:
(t8, xi1),

Relation ICO/4:
(t8, x1, x, xi1), (t18, x4, g, xi1), (t15, x3, y, xi1), (t15, x2, d, xi1),
(t12, x2, d, xi1),

Relation IsPair/4:
(t16, x3, t4, t15’), (t16, x3, t17, t15’), (t16, x4, t4, t18’),
(t16, x4, t17, t18’), (t19, x3, t4, t15’), (t19, x3, t17, t15’),
(t19, x4, t4, t18’), (t19, x4, t17, t18’), (t14, x3, t17, t15’),
(t14, x3, t4, t15’), (t14, x4, t4, t18’), (t14, x4, t17, t18’),
(t10, x1, t3, t8’), (t10, x1, t11, t8’), (t10, x2, t3, t12’),
(t10, x2, t11, t12’), (t13, x1, t3, t8’), (t13, x1, t11, t8’),
(t13, x2, t3, t12’), (t13, x2, t11, t12’), (t7, x1, t11, t8’),
(t7, x1, t3, t8’), (t7, x2, t3, t12’), (t7, x2, t11, t12’),

Relation IsCha_/2:
(t1, t2), (t5, t13), (t5, t7), (t5, t10), (t6, t19), (t6, t14),
(t6, t16),

Relation IsCha/2:
(t6, t16), (t6, t14), (t6, t19), (t5, t10), (t5, t7), (t5, t13),
(t1, t2),

Relation IsKey_/2:

Relation IsKey/2:

Relation IsUn/1:

Relation MsgEnc/3:

Relation ACO/3:
(t12’, x2, xi1), (t18’, x4, xi1), (t15’, x3, xi1),
(t8’, x1, xi1),

Relation AFM/4:
(x2, xi1, l, m1), (x4, xi1, l, m1), (x3, xi1, l, m1),
(x1, xi1, l, m1),

Relation Abs/3:
(x, x1, y), (x, x1, m1),

Relation AMP/4:
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(x4, m1, d, x4), (x2, m1, x2, y), (x3, m1, d, x3),
(x1, m1, x1, y),

Relation AME/4:

Relation IFM/5:
(x1, x, xi1, l, m1), (x3, y, xi1, l, m1), (x4, g, xi1, l, m1),
(x2, d, xi1, l, m1),

Relation Abs/5:
(d, x2, x2, d, y), (d, x2, x2, d, m1), (x, x1, x1, x, y),
(x, x1, x1, x, m1), (g, x4, x4, g, d), (g, x4, x4, g, m1),
(y, x3, x2, d, d), (y, x3, x2, d, m1), (y, x3, x3, y, d),
(y, x3, x3, y, m1),

Relation IMP/5:
(x4, g, m1, d, g), (x3, y, m1, d, y), (x2, d, m1, d, y),
(x1, x, m1, x, y),

Relation Ins/3:
(x1, x, y), (x1, x, m1), (x2, d, y), (x2, d, m1), (x3, y, d),
(x3, y, m1), (x4, g, d), (x4, g, m1),

Relation IsAbs-03412/5:
(t18’, x4, t17, t18, g), (t15’, x3, t4, t15, y), (t12’, x2, t11, t12, d),
(t8’, x1, t3, t8, x),

Relation LAL-10/2:
(t13, t5), (t19, t6), (t16, t6), (t14, t6), (t10, t5), (t7, t5), (t2, t1),

Relation IsKey_-10/2:

Relation IsAbs-10234/5:
(t18, t18’, g, x4, t17), (t15, t15’, y, x3, t4), (t12, t12’, d, x2, t11),
(t8, t8’, x, x1, t3),

A.2. Succinct Solver solution for the example in Section 4.3.1

The Universe:
(t_1, t_1_1, t_1_2, t_1_3, t_2, t_2_1, t_2_2, t_2_3, t_3, t_3_1, t_3_2,
t_3_3, t_4, t_4_1, t_4_2, t_4_3, t_1_11, t_2_12, t_1_12, t_1_13, t_2_11,
t_2_13, t_3_11, t_3_12, t_3_13, t_4_11, t_4_12, t_4_13, t_1_21, t_5,
t_1_22, t_1_23, t_2_21, t_2_22, t_2_23, t_3_21, t_3_22, t_3_23, t_4_21,
t_4_22, t_4_23, t_5_231, t_3_232, t_1_231, t_1_232, t_1_233, t_2_231,
t_2_232, t_2_233, t_3_231, t_3_233, t_4_231, t_4_232, t_4_233, t_5_232,
t_5_233, t_5_2331, t_4_2332, t_1_2331, t_1_2332, t_1_2333, t_2_2331,
t_2_2332, t_2_2333, t_3_2331, t_3_2332, t_3_2333, t_4_2331, t_4_2333,
t_5_2332, t_5_2333, t_2_31, t_6, t_1_31, t_1_32, t_1_33, t_2_32, t_2_33,
t_3_31, t_3_32, t_3_33, t_4_31, t_4_32, t_4_33, t_2_331, t_7, t_1_331,
t_1_332, t_1_333, t_2_332, t_2_333, t_3_331, t_3_332, t_3_333, t_4_331,
t_4_332, t_4_333, t_6_331, t_6_332, t_6_333)
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Relation ADD3/4:
(t_6, t_6_331, t_6_332, t_6_333), (t_4_33, t_4_331, t_4_332, t_4_333),
(t_3_33, t_3_331, t_3_332, t_3_333), (t_2_33, t_2_331, t_2_332, t_2_333),
(t_1_33, t_1_331, t_1_332, t_1_333), (t_4_3, t_4_31, t_4_32, t_4_33),
(t_3_3, t_3_31, t_3_32, t_3_33), (t_2_3, t_2_31, t_2_32, t_2_33),
(t_1_3, t_1_31, t_1_32, t_1_33), (t_5_233, t_5_2331, t_5_2332, t_5_2333),
(t_4_233, t_4_2331, t_4_2332, t_4_2333),
(t_3_233, t_3_2331, t_3_2332, t_3_2333),
(t_2_233, t_2_2331, t_2_2332, t_2_2333),
(t_1_233, t_1_2331, t_1_2332, t_1_2333),
(t_5, t_5_231, t_5_232, t_5_233), (t_4_23, t_4_231, t_4_232, t_4_233),
(t_3_23, t_3_231, t_3_232, t_3_233), (t_2_23, t_2_231, t_2_232, t_2_233),
(t_1_23, t_1_231, t_1_232, t_1_233), (t_4_2, t_4_21, t_4_22, t_4_23),
(t_3_2, t_3_21, t_3_22, t_3_23), (t_2_2, t_2_21, t_2_22, t_2_23),
(t_1_2, t_1_21, t_1_22, t_1_23), (t_4_1, t_4_11, t_4_12, t_4_13),
(t_3_1, t_3_11, t_3_12, t_3_13), (t_2_1, t_2_11, t_2_12, t_2_13),
(t_1_1, t_1_11, t_1_12, t_1_13), (t_4, t_4_1, t_4_2, t_4_3),
(t_3, t_3_1, t_3_2, t_3_3), (t_2, t_2_1, t_2_2, t_2_3),
(t_1, t_1_1, t_1_2, t_1_3),

Relation OUT/2:
(t_2, t_4_2332), (t_2, t_3_232), (t_2_1, t_4_2332), (t_2_1, t_3_232),
(t_2_12, t_4_2332), (t_2_12, t_3_232), (t_1, t_2_12), (t_1_1, t_2_12),
(t_5, t_4_2332), (t_5, t_3_232), (t_5_233, t_4_2332), (t_5_2331, t_4_2332),
(t_5_231, t_3_232), (t_1_11, t_2_12),

Relation IN/2:
(t_2, t_6), (t_2, t_7), (t_1, t_5), (t_1_2, t_5), (t_2_3, t_7), (t_2_3, t_6),
(t_2_33, t_7), (t_2_331, t_7), (t_2_31, t_6), (t_1_21, t_5),

Relation EQ/2:
(t_6_333, t_6_333), (t_6_332, t_6_332), (t_6_331, t_6_331),
(t_4_333, t_4_333), (t_4_332, t_4_332), (t_4_331, t_4_331),
(t_3_333, t_3_333), (t_3_332, t_3_332), (t_3_331, t_3_331),
(t_2_333, t_2_333), (t_2_332, t_2_332), (t_1_333, t_1_333),
(t_1_332, t_1_332), (t_1_331, t_1_331), (t_7, t_4_2332),
(t_7, t_3_232), (t_7, t_6), (t_7, t_7), (t_2_331, t_2_331),
(t_4_33, t_4_33), (t_4_32, t_4_32), (t_4_31, t_4_31), (t_3_33, t_3_33),
(t_3_32, t_3_32), (t_3_31, t_3_31), (t_2_33, t_2_33), (t_2_32, t_2_32),
(t_1_33, t_1_33), (t_1_32, t_1_32), (t_1_31, t_1_31), (t_6, t_4_2332),
(t_6, t_3_232), (t_6, t_7), (t_6, t_6), (t_2_31, t_2_31),
(t_5_2333, t_5_2333), (t_5_2332, t_5_2332),
(t_4_2333, t_4_2333), (t_4_2331, t_4_2331), (t_3_2333, t_3_2333),
(t_3_2332, t_3_2332), (t_3_2331, t_3_2331), (t_2_2333, t_2_2333),
(t_2_2332, t_2_2332), (t_2_2331, t_2_2331), (t_1_2333, t_1_2333),
(t_1_2332, t_1_2332), (t_1_2331, t_1_2331), (t_4_2332, t_6),
(t_4_2332, t_3_232), (t_4_2332, t_7), (t_4_2332, t_4_2332),
(t_5_2331, t_5_2331), (t_5_233, t_5_233), (t_5_232, t_5_232),
(t_4_233, t_4_233), (t_4_232, t_4_232), (t_4_231, t_4_231),
(t_3_233, t_3_233), (t_3_231, t_3_231), (t_2_233, t_2_233),
(t_2_232, t_2_232), (t_2_231, t_2_231), (t_1_233, t_1_233),
(t_1_232, t_1_232), (t_1_231, t_1_231), (t_3_232, t_4_2332),
(t_3_232, t_7), (t_3_232, t_6), (t_3_232, t_3_232),
(t_5_231, t_5_231), (t_4_23, t_4_23), (t_4_22, t_4_22),
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(t_4_21, t_4_21), (t_3_23, t_3_23), (t_3_22, t_3_22),
(t_3_21, t_3_21), (t_2_23, t_2_23), (t_2_22, t_2_22), (t_2_21, t_2_21),
(t_1_23, t_1_23), (t_1_22, t_1_22), (t_5, t_2_12), (t_5, t_5),
(t_1_21, t_1_21), (t_4_13, t_4_13), (t_4_12, t_4_12), (t_4_11, t_4_11),
(t_3_13, t_3_13), (t_3_12, t_3_12), (t_3_11, t_3_11), (t_2_13, t_2_13),
(t_2_11, t_2_11), (t_1_13, t_1_13), (t_1_12, t_1_12), (t_2_12, t_5),
(t_2_12, t_2_12), (t_1_11, t_1_11), (t_4_3, t_4_3), (t_4_2, t_4_2),
(t_4_1, t_4_1), (t_4, t_4), (t_3_3, t_3_3), (t_3_2, t_3_2), (t_3_1, t_3_1),
(t_3, t_3), (t_2_3, t_2_3), (t_2_2, t_2_2), (t_2_1, t_2_1), (t_2, t_2),
(t_1_3, t_1_3), (t_1_2, t_1_2), (t_1_1, t_1_1), (t_1, t_1),

Relation NOTEMP/1:
(t_2_12), (t_5), (t_7), (t_3_232), (t_4_2332), (t_6),

Relation UN/1:
(t_5), (t_2_12), (t_2_1), (t_2_3), (t_2),

Relation ADD2/3:

A.3. Succinct Solver solution for the example in Section 4.4.2

The Universe:
(s1, r18, n18, m18, s11, r19, n19, m19, s12, r20, n20, m20, s23, r21, n21,
m21, s13, r22, n22, m22, s14, r23, n23, m23, s17, r24, n24, m24, r25, n25,
m25, r26, n26, m26, s15, s16, t1, t1_1, t1_2, t2, t2_1, t2_2, t3, t3_1,
t3_2, s2, r27, n27, m27, r28, n28, m28, r29, n29, m29, s3, r3, n3, m3,
t1_11, r1, n1, m1, r2, n2, m2, s4, r4, n4, m4, t4, r5, n5, m5, r6, n6, m6,
s5, r30, n30, m30, r31, n31, m31, r32, n32, m32, s6, r33, n33, m33, t1_12,
t1_13, t2_11, t2_12, t2_13, t3_11, t3_12, t3_13, r42, n42, m42, r43, n43,
m43, r44, n44, m44, r45, n45, m45, s7, r7, n7, m7, t2_131, r8, n8, m8, r9,
n9, m9, s8, r10, n10, m10, t4_132, r11, n11, m11, r12, n12, m12, s10, r34,
n34, m34, r35, n35, m35, r36, n36, m36, s9, r37, n37, m37, t1_131, t1_132,
t1_133, t2_132, t2_133, t3_131, t3_132, t3_133, t4_131, t4_133, r46, n46,
m46, r47, n47, m47, r48, n48, m48, r49, n49, m49, s19, r13, n13, m13,
t1_211, r14, n14, m14, r15, n15, m15, s20, r16, n16, m16, t3_212, r17,
n17, m17, s22, r38, n38, m38, r39, n39, m39, r40, n40, m40, s21, r41, n41,
m41, t1_21, t1_212, t1_213, t2_21, t2_211, t2_212, t2_213, t3_21, t3_211,
t3_213, s18, r50, n50, m50, r51, n51, m51, r52, n52, m52, r53, n53, m53)

Relation ASS/4:
(s18, r50, n50, m50), (s21, r51, n51, m51), (s21, r41, n41, m41),
(s22, r38, n38, m38), (s20, r52, n52, m52), (s20, r17, n17, m17),
(s20, r40, n40, m40), (s20, r16, n16, m16), (s19, r53, n53, m53),
(s19, r15, n15, m15), (s19, r39, n39, m39), (s19, r13, n13, m13),
(s9, r47, n47, m47), (s9, r37, n37, m37), (s10, r34, n34, m34),
(s8, r48, n48, m48), (s8, r11, n11, m11), (s8, r36, n36, m36),
(s8, r10, n10, m10), (s7, r49, n49, m49), (s7, r9, n9, m9),
(s7, r35, n35, m35), (s7, r7, n7, m7), (s6, r46, n46, m46),
(s6, r43, n43, m43), (s6, r33, n33, m33), (s5, r30, n30, m30),
(s4, r44, n44, m44), (s4, r5, n5, m5), (s4, r32, n32, m32), (s4, r4, n4, m4),
(s3, r45, n45, m45), (s3, r2, n2, m2), (s3, r31, n31, m31), (s3, r3, n3, m3),
(s2, r42, n42, m42), (s2, r29, n29, m29), (s2, r28, n28, m28),
(s2, r27, n27, m27), (s17, r24, n24, m24), (s14, r23, n23, m23),
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(s13, r26, n26, m26), (s13, r22, n22, m22), (s23, r21, n21, m21),
(s12, r20, n20, m20), (s11, r25, n25, m25), (s11, r19, n19, m19),
(s1, r18, n18, m18),

Relation LESSEQ/2:
(m24, m42), (m24, m24), (m24, m28), (m24, m18), (m24, m29), (m24, m30),
(m24, m27), (m42, m42), (m42, m24), (m42, m28), (m42, m18), (m42, m29),
(m42, m30), (m42, m27), (m18, m42), (m18, m24), ...

Relation EQ/2:
(m53, m13), (m53, m39), (m53, m15), (m53, m53), (n53, n3), (n53, n31),
(n53, n45), (n53, n13), (n53, n39), (n53, t1), (n53, t1_11),
(n53, t1_211), (n53, t1_12), (n53, t1_21), (n53, t1_13), (n53, t1_212),
(n53, n2), ...

Relation REP/1:
(r42), (r24), (r28), (r18), (r29), (r30), (r27),

Relation ASSCHAN/1:
(s19), (s7), (s3),

Relation FAIL/1:

Relation LIN/1:
(r45), (r31), (r2), (r44), (r32), (r5), (r33), (r43), (r34), (r11), (r36),
(r9), (r35), (r38), (r21), (r17), (r40), (r15), (r39), (r53), (r52),
(r50), (r16), (r13), (r49), (r48), (r46), (r10), (r7), (r4), (r3),

Relation VAL/1:
(t4_133), (t4_131), (t3), (t3_11), (t3_213), (t3_12), (t3_211), (t3_13),
(t3_2), (t3_131), (t3_21), (t3_132), (t3_1), (t3_133), (t3_212), (t4_132),
(t4),

Relation CHAN/1:
(t2_213), (t2_12), (t2_2), (t2_13), (t2_212), (t2_132), (t2_1), (t2_133),
(t2_211), (n9), (t2_21), (n49), (t2), (n35), (t2_11), (n7), (n2), (t1_2),
(t1_131), (n15), (t1_132), (t1_213), (t1_133), (t1_13), (n53), (t1_1),
(n39), (t1_12), (n13), (t1_212), (n45), (t1), (n31), (t1_21), (n3),
(t1_211), (t2_131), (t1_11),

Relation LESS/2:
(m46, t1_12), (m46, t1_13), (m46, t1_212), (m46, n2), (m46, t1_2),
(m46, t1_131), (m46, n15), (m46, t1_132), (m46, t1_213), (m46, t1_133),
(m46, t1_211), (m46, n53), (m46, t1_1), (m46, n39), (m46, t1_11), (m46, n13),
(m46, t1), (m46, n31), (m46, t1_21), (m46, n3), (m46, n45), (m33, t1_12),
(m33, t1_13), (m33, t1_212), (m33, n2), (m33, t1_2), (m33, t1_131),
(m33, n15), (m33, t1_132), (m33, t1_213), (m33, t1_133), (m33, t1_211),
(m33, n53), (m33, t1_1), (m33, n39), (m33, t1_11), (m33, n13), (m33, t1),
(m33, n31), (m33, t1_21), (m33, n3), (m33, n45), (m34, t1_12), (m34, t1_13),
(m34, t1_212), (m34, n2), (m34, t1_2), (m34, t1_131), (m34, n15),
(m34, t1_132), (m34, t1_213), (m34, t1_133), (m34, t1_211), (m34, n53),
(m34, t1_1), (m34, n39), (m34, t1_11), (m34, n13), (m34, t1), (m34, n31),
(m34, t1_21), (m34, n3), (m34, n45), (m43, t1_12), (m43, t1_13),
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(m43, t1_212), (m43, n2), (m43, t1_2), (m43, t1_131), (m43, n15),
(m43, t1_132), (m43, t1_213), (m43, t1_133), (m43, t1_211), (m43, n53),
(m43, t1_1), (m43, n39), (m43, t1_11), (m43, n13), (m43, t1), (m43, n31),
(m43, t1_21), (m43, n3), (m43, n45),

Relation FAIL/2:





APPENDIX B

Proofs

B.1. Proofs for Chapter 3

B.1.1. Proof of Theorem 3.2.4.
To prove Theorem 3.2.4 we prove first that if there exists a Γ such that Γ ` P , then

ΓP ` P  φ such that L (φ) is defined, and ∀n : τn ∈ ΓP : n : (L (φ) � τn) ∈ Γ, and then
that if

⋃
n∈fn(P ) n : τn ` P  φ and φ is satisfiable, then there exists a Γ such that Γ ` P

and ∀n : τn ∈ ΓP : n : (L (φ) � τn) ∈ Γ.
If there exists a type environment Γ such that Γ ` P , then ΓP ` P  φ such that

L (φ) is defined, and ∀n : τn ∈ ΓP : n : (L (φ)� τn) ∈ Γ. We prove this through induction
in the typing rules from Table 3.1.2:

In: By the case we have P = M(λ~x)N.P ′ and we use [In-C] to generate constraints,
giving us: ΓP `M  τm;φm, ΓP ` (λ~x)N  (~τ → τu);φn, ΓP , ~x : ~τ ` P ′  φp,
and Jτm " τuK. By Item 1 of Theorem 3.2.4 and the induction hypothesis—as
Γ ` M : Us, Γ ` (λ~x)N : ~T → Uo, Γ, ~x : ~T ` P ′—we know that L (φm) is
defined, L (φm) � τm = Us, L (φn) is defined, L (φn) � (~τ → τu) = (~T → Uo),
L (φp) is defined, and ∀n : τn ∈ ΓP , ~x : ~τ : n : (L (φp) � τn) ∈ Γ, ~x, ~T . Moreover
as Us " Uo, we know from Item 5 that Jτm " τuK is satisfiable and by the
case we know the constraints φm, φn, and φp are not contradictory, and we
thus conclude L (φp ∧ φn ∧ φm ∧ Jτm " τuK) is defined and, since ∀n : τn ∈
ΓP , ~x : ~τ : n : (L (φp) � τn) ∈ Γ, ~x, ~T and φp ∧ φn ∧ φm ∧ Jτm " τuK ⇒ φp,
∀n : τn ∈ ΓP : n : (L (φ) � τn) ∈ Γ.

Out: By the case we have P = M N.P ′ and we use [Out-C] to generate constraints,
giving us: ΓP `M  τm;φm, ΓP ` N  τn;φn, ΓP ` P ′  φp, and Jτm " τnK.
By Item 1 of Theorem 3.2.4 and the induction hypothesis—as Γ `M : Ts, Γ `
N : To, Γ ` P ′—we know L (φm) is defined, L (φm)� τm = Ts, L (φn) is defined,
L (φn) � τn = To, L (φp) is defined, and ∀n : τn ∈ ΓP : n : (L (φp) � τn) ∈ Γ.
Moreover as Ts " To, we know from Item 5 that Jτm " τnK is satisfiable
and by the case we know the constraints φm, φn, and φp are not contradictory,
and we thus conclude L (φm ∧ φn ∧ φp ∧ Jτm " τnK) is defined and, since
φm ∧ φn ∧ φp ∧ Jτm " τnK ⇒ φp and ∀n : τn ∈ ΓP : n : (L (φp) � τn) ∈ Γ,
∀n : τn ∈ ΓP : n : (L (φ) � τn) ∈ Γ.

Par: Trivial
Res: Trivial
Rep: Trivial
Ast: Trivial
Case: By the case we have P = case σ1 : P1, . . . , σk : Pk and we use [Case-C] to

generate constraints, giving us: ΓP ` σi  φsi and ΓP ` Pi  φpi for 1 ≤ i ≤ k.
By Item 2 of Theorem 3.2.4 and the induction hypothesis—as Γ ` σi and Γ ` Pi
for 1 ≤ i ≤ k—we know that for 1 ≤ i ≤ k, L (φsi) and L (φpi) are defined,
∀n : τn ∈ Γσ : n : (L (φsi) � τ) ∈ Γ, and ∀n : τn ∈ Γσ : n : (L (φpi) � τ) ∈ Γ. By
the case we know none of the constraints φsi and φpi are contradictory and we thus
conclude L (

∧k
i=1(φsi ∧ φpi)) is defined and ∀n : τn ∈ Γσ : n : (L (φ) � τn) ∈ Γ.

Pat: By the case we have P = (λ~x)M and we use [Pat-C] to generate constraints,
giving us: ΓP , ~x : ~τ `M  τm;φm. By Item 1 of Theorem 3.2.4—as Γ, ~x : ~T `
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M : U—we have L (φm) is defined, L (φm) � τm = U , and ∀n : τn ∈ ΓP , ~x : ~τ :
n : (L (φm) � τn) ∈ Γ, ~x, ~T , and the result follows.

There exists a Γ such that Γ ` P , if
⋃
n∈fn(P ) n : τn ` P  φ and φ is satisfiable.

Firstly we observe that the constraint generation rules and the type checking rules treat
the environments identically. By this we mean that whenever e.g. a typing rule add a
name to the environment, the constraint generation rule does the same, and vice versa.
By letting the type variables assigned to a name in the constraint generation environment
correspond the the type assigned to the same name in the type checking environment, it is
obvious that the environments are manipulated identically in both derivations. Moreover
we observe that the only constraint generated is the constraint Jτ1 " τ2K in the [In-C] and
[Out-C] rules (as terms, conditions, and assertions are undefined). We know from Item 4,
that this means that L (φ)�τm " L (φ)�τn and L (φ)�τm " L (φ)�τu, as required in
the typing rules. We can thus conclude that if we successfully generate/derive constraints,
we have the constraints corresponding to the side conditions of [In-T] and [Out-T] and if
those are satisfiable we can successfully derive the type check, as the derivation of the two,
because of the environments, are identical and the side conditions for the type check are
satisfied.

B.1.2. Proof of Lemma 3.4.5.

For any message M , if M � µ;ψ;φ then L (ψ ∧ φ) � µ = M . And for any
assertion `(M), if `(M)� ξ;ψ;φ then L (ψ ∧ φ) � ξ = `(M).

We first prove that for any message M , if M � µ;φ;ψ then L (ψ ∧ φ) � µ = M by
structural induction on M :

M = x for some x ∈ N :: In this case we know that ψ = NamVar(x) and φ = T.
This means that NamVar(x) ∈ L (ψ ∧ φ) and therefore L (ψ ∧ φ) � µ = x.

M = ok: In this case we know that ψ = MsgOk(µ) and ψ = T. This means that
MsgOk(µ) ∈ L (ψ ∧ φ) and therefore L (ψ ∧ φ) � µ = ok.

M = pair(M1,M2): In this case we know that M1 � µ1;ψ1;φ1, M2 � µ2;ψ2;φ2,
ψ = MsgPai(µ, µ1, µ2), and φ = ψ1 ∧ φ1 ∧ ψ2 ∧ φ2.

From the induction hypothesis we get that, since φ = ψ1∧φ1∧ψ2∧φ2, meaning
that L (ψ ∧ φ) is also a solution for ψ1 ∧ φ1 and ψ2 ∧ φ2, L (ψ ∧ φ) � µ1 = M1
and L (ψ ∧ φ) � µ2 = M2.

Since MsgPai(µ, µ1, µ2) ∈ L (ψ ∧ φ) we therefore get L (ψ ∧ φ) � µ =
pair(M1,M2).

M = {M1}M2: Similar to above
M = fst M ′: In this case we know that M ′ � µ′;ψ′;φ′, ψ = MsgFst(µ, µ′) and
φ = ψ′ ∧ φ′.

From the induction hypothesis we gen that, since φ = ψ′ ∧ φ′, meaning that
L (ψ ∧ φ) is also a solution for ψ′ ∧ φ′, L (ψ ∧ φ) � µ′ = M ′.

Since MsgFst(µ, µ′) ∈ L (ψ ∧ φ), we therefore get L (ψ ∧ φ) � µ = fst M ′.
M = snd M ′: Similar to above

We then prove that for any assertion `(M), if `(M)� ξ;ψ;φ then L (ψ∧φ)�ξ = `(M):
Since `(M) � ξ;ψ;φ, we know from rule [FM-C], that M � µ;ψm;φm, ψ =

FrmlMsg(ξ, `, µ), and φ = ψm ∧ φm.
As proved above, since φ = ψm ∧ φm, meaning that L (ψ ∧ φ) is also a solution for

ψm ∧ φm, L (ψ ∧ φ) � µ = M .
Since FrmlMsg(ξ, `, µ) ∈ L (ψ ∧ φ), we therefore get L (ψ ∧ φ) � ξ = `(M).

B.1.3. Proof of Lemma 3.4.8.
(1) The relations Eq, Eqa, and Eqi-6 are equivalence-relations
(2) For all constraints φ for which Φ = L (φ), type variables a and b, if

Eq(a, b) ∈ Φ then Φ � a = Φ � b
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(3) For all M � µm;ψm;ϕm and N � µn;ψn;ϕn if Φ = L (ψ{m,n}∧ϕ{m,n}) then
Eq(µm, µn) ∈ Φ⇒ Φ � µm = Φ � µn

(4) For all abstract message M with index χm, variable µm, and constraint
φm and abstract message N with index χn, variable µn and constraint φn
if Φ = L (φm∧φn) then Eqa(χm, µm, χn, µn) ∈ Φ⇒ Φ�(χm, µm) = Φ�(χn, µn)

(5) For all instantiated message M with index χm, µ
′
m, variable µm, and

constraint φm and message N with variable µn and constraint φn if
Φ = L (φm ∧ φn) then Eqi(µn, χm, µ′m, µm) ∈ Φ⇒ Φ♦(χm, µ′m, µm) = Φ � µn

(6) For all instantiated message M with index χm, µ
′
m, variable µm, and

constraint φm and instantiated message N with index χn, µ
′
n, variable

µn, and constraint φn if Φ = L (φm ∧φn) then Eqi(χm, µ′m, µm, χn, µ′n, µn) ∈
Φ⇒ Φ♦(χm, µ′m, µm) = Φ♦(χn, µ′n, µn)

We prove each of the cases individually.

(1) We consider each of the three relations:
Eq: Follows directly from row-group 1 of Table 3.4.13
Eqi-6: We consider each of the five axioms of row-group 4 in Table 3.4.14 indi-

vidually. We first consider the case where x = m as this case is immediately
disallowed by the axiom. The reasoning is simple: if x = m then surely the
message should have been a and not m, since the constraint is capturing the
message m for which we have instantiated x with a and thus the message
would have been x, a, a instead of x, a,m. We now proceed to prove the
three required properties for all valid selections of x, a, and m by induction
in definition of Eqi where the ordering of the cases correspond to the order
in which the axioms appear in Table 3.4.14. We can do this, as the axioms
can be read as derivation where P ⇒ Q denotes the derivation rule P

Q .
(a) We prove the three required properties

Eqi(x, a,m, x, a,m) for all x, a, and m: For all the cases where
we have x 6= m the result follows by the Eq case: since Eq is an
equivalence relation, then surely Eq(m,m), Eq(x, x), and Eq(a, a)
for all m and a and any valid x, giving us Eqi(x, a,m, x, a,m) as
expected

Eqi(x, a,m, x′, a′,m′)⇒ Eqi(x′, a′,m′, x, a,m): Similar to the case
above: since Eq is an equivalence relation we know that if Eq(a, a′)
then Eq(a′, a) for any a and a′

Eqi(x, a,m, x′, a′,m′) ∧ Eqi(x′, a′,m′, x′′, a′′,m′′)⇒ Eqi(x, a,m, x′′, a′′,m′′):
Similar to the case above: since Eq is an equivalence relation we
know that if Eq(a, a′) and Eq(a′, a′′) then Eq(a, a′′) for any a, a′,
and a′′

(b) We prove the three required properties
Eqi(x, a,m, x, a,m) for all x, a, and m: Given an instantiated mes-

sage InsMsgPai(x, a,m,m1,m2) we know, by the induction hypoth-
esis, that Eqi(x, a,m1, x, a,m1) and Eqi(x, a,m2, x, a,m2). More-
over by the fact that Eq is an equivalence relation, we know that
Eq(x, x), Eq(a, a), Eq(m,m), Eq(m1,m1), and Eq(m2,m2). This,
by the axiom, gives us Eqi(x, a,m, x, a,m) and the result follows

Eqi(x, a,m, x′, a′,m′)⇒ Eqi(x′, a′,m′, x, a,m): Similar to the case
above: since Eq is an equivalence relation we know that if Eq(a, a′)
then Eq(a′, a) for any a and a′

Eqi(x, a,m, x′, a′,m′) ∧ Eqi(x′, a′,m′, x′′, a′′,m′′)⇒ Eqi(x, a,m, x′′, a′′,m′′):
Similar to the case above: since Eq is an equivalence relation we
know that if Eq(a, a′) and Eq(a′, a′′) then Eq(a, a′′) for any a, a′,
and a′′

(c) Similar to the case above
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(d) Similar to the case above
(e) Similar to the case above

Eqa: Similar to the case above
(2) We assume we have some φ for which L (φ) = Φ such that for some type variables

τ1 and τ2 we have Eq(τ1, τ2) ∈ Φ. We know proceed to prove that Φ� τ1 = Φ� τ2
by structural induction in Φ � τ1.

Un: Assume Φ � τ1 = Un. This implies, by definition of �, that we must have
some IsUn(τ1) constraint in Φ, and by row-group 2 of Table 3.4.13 we have
IsUn(τ2) ∈ Φ. By row-group 9 of the same table, we clearly have that there
can be no other type assignment of τ2 in Φ as all transitions from IsX? to
IsX requires the absence of a IsUn(τ2) constraint, which we have just argued
exists.

Ok(S): Assume Φ � τ1 = Ok(S). In a similar way to the case above can we
deduce that there must exist some IsOk(τ2) ∈ Φ. We now need to argue that
for every CanOk(τ1, ξ), InsCanOk(τ1, χ, µ, ξ), and AbsCanOk(τ1, χξ) there
exists a CanOk(τ2, ξ

′) for which Eq(ξ, xi′), InsCanOk(τ2, χ
′, µ′, ξ′) for which

Eqi(χ, µ, ξ, χ′µ′, ξ′), and AbsCanOk(τ2, χ
′, ξ′) for which Eqa(χ, ξ, χ′, ξ′). In

order to do this, we investigate where we introduces new Eq-relations:
(a) If τ1 = τ2 i.e. they are the same variable
(b) If we have IsCha(τ, τ1) ∧ IsCha(τ, τ2)
(c) If we have IsKey(τ, τ1) ∧ IsKey(τ, τ2)
(d) If we have IsPair(τ, χ, τ1, τ

′) ∧ IsPair(τ, χ, τ2, τ
′)

(e) If we have IsPair(τ, χ, τ ′, τ1) ∧ IsPair(τ, χ, τ ′, τ2)
For (1) the result follows trivially. For (2) we can apply the two last axioms
of row-group 10, and we know that S only contains the effects for which
both τ1 and τ2 already have CanOk?s and InsCanOk?s that satisfy Eq(ξ, ξ′)
or Eqi(χ, µ, ξ, χ′, µ′, ξ′) and the result follows. For (3) we can deduce S = ∅
as the only place we transform CanOk?, InsCanOk?, and AbsCanOk? to their
definitive versions is in row-group 10 of Table 3.4.13, and none of these
axioms are applicable in this case. We thus conclude the result must hold,
since there are no CanOk, InsCanOk, or AbsCanOk for τ1. For (4) we can
use a similar argumentation as for (3). For (5) we can apply the two first
axioms of row-group 10, and we know that S only contains the effects for
which both τ1 and τ2 already have AbsCanOk?s that satisfy Eqa(χ, ξ, χ′, ξ′)
and the result follows.

Ch(T ): Assume Φ� τ1 = Ch(T ). This implies, by definition of �, we must have
some IsCha(τ1, τ

′
1) constraint in Φ for which Φ � τ ′1 = T . By row-group 3 of

Table 3.4.13 and the assumption that Eq(τ1, τ2) we know, since Eq(τ ′1, τ ′1) by
row-group 1, there must exists some IsCha(τ2, τ

′
1) constraint in Φ. In addition,

by row-group 9, we know there cannot exists any other IsX-constraint for τ2,
implying that Φ � τ2 = Ch(Φ � τ ′1) = Ch(T ) = Φ � τ1

Key(T ): Similar to the case above
Pair(χ : T,U): Similar to the case above

(3) By Lemma 3.4.5 we know that if M � µ;ψ;ϕ then L (ψ ∧ ϕ) � µ = M . This
implies that Φ � µm = M and Φ � µn = N . We now proceed to show that
if Eq(µm, µn) then M = N by induction on M seen in row-group 1 and 11 of
Table 3.4.13. The first case encompass all the axioms from row-group 1.
M ∈ N : From the definition of � we know that this means that NamVar(µm) ∈

L (ψ ∧ ϕ). This means that the only way Eq(µm, µn) could have been
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generated is by using one of the following axioms:
∀a.Eq(a, a)
∀a : ∀b : Eq(a, b)⇒ Eq(b, a)
∀a : ∀b : ∀c : (Eq(a, b) ∧ Eq(b, c))⇒ Eq(a, c)
∀t : ∀x : ∀u : ∀xt : ∀xu : ∀tf : ∀ts : ∀uf : ∀us : (IsPair(t, xt, tf , ts) ∧ IsPair(u, xu, uf , us)

∧Eq(t, u))⇒ (Eq(tf , uf ) ∧ Eq(xt, xu) ∧ Eq(ts, us))
If the first axiom was used, it is obvious that M = N , and if the second
or third axioms were used, it would require other Eq prefixes to have been
generated previously, which would have to be generated using one of the
other two axioms. If the fourth axiom was used then we know that whenever
we generate IsPair?(τ1, x, τ2, τ3) we also generate PairVar(x). This means
that PairVar(xt) ∈ Φ and PairVar(xu) ∈ Φ, and therefore either Φ � µm =
µm = Φ � µn = µn or Φ � µm = χ = Φ � µn.

M = pair(M1,M2): Here we know from the definition of�, that MsgPai(µm, µ1
m, µ

2
m) ∈

L (ψ ∧ ϕ). This mean that Eq(µm, µn) must have been generated using the
axiom

∀m : ∀m1 : ∀m2 : ∀n : ∀n1 : ∀n2 : (MsgPai(m,m1,m2) ∧MsgPai(n, n1, n2)∧
Eq(m1, n1) ∧ Eq(m2, n2))⇒ Eq(m,n) .

In this case we have MsgPai(µn, µ1
n, µ

2
n), Eq(µm, µn), Eq(µ1

m, µ
1
n), and Eq(µ2

m, µ
2
n).

By the induction hypothesis we have Φ � µ1
n = Φ � µ1

m = M1 and Φ � µ2
n =

Φ � µ2
m = M2. By definition of � we thus have Φ � µn = pair(M1,M2).

M = {M1}M2: Similar to the case above
M = ok: Similar to the case above
M = fst M ′: Similar to the case above
M = snd M ′: Similar to the case above

(4) We prove this case by induction on Φ�(χm, µm).
Φ�(χm, µm) ∈ N : In this case we know from the definition of �, that have

NamVar(m) ∈ Φ. This means that Eqa(χm, µm, χn, µn) must have been gen-
erated using the axiom (NamVar(m)∧NamVar(m′)∧Eq(m,m′)∧NamVar(x)∧
NamVar(x′) ∧ Eq(x, x′))⇒ Eqa(x,m, x′,m′). This means that NamVar(µn),
Eq(µm, µn), NamVar(χm), NamVar(χn), and Eq(χm, χn). Since Eq(µm, µn) ∈
Φ, we know that Φ � µm = Φ � µn, as in they are the exact same name.

Φ�(χm, µm) = pair(M1,M2): Here we know from the definition of�, that there
exist µ1

m and µ2
m such that AbsMsgPai(χm, µm, µ1

m, µ
2
m), Φ�(χm, µ1

m) = M1,
and Φ�(χm, µ2

m) = M2. This means that Eqa(χm, µm, χn, µn) must have
been generated using the axiom

(Eqa(x1,m1, x
′
1,m

′
1) ∧ Eqa(x2,m2, x

′
2,m

′
2) ∧ Eq(x1, x2) ∧ Eq(x′1, x′2)

∧AbsMsgPai(x,m,m1,m2) ∧ Eq(x, x1) ∧ AbsMsgPai(x′,m′,m′1,m′2) ∧ Eq(x′, x′1))
⇒ Eqa(x,m, x′,m′)

In this case we have AbsMsgPai(χn, µn, µ1
n, µ

2
n), Eqa(χm, µ1

m, χn, µ
1
n), Eqa(χm, µ2

m, χn, µ
2
n),

and Eqa(χm, µm, χn, µn). By the induction hypothesis we have Φ�(χn, µ1
n) =

Φ�(χm, µ1
m) = M1 and Φ�(χn, µ2

n) = Φ�(χm, µ2
m) = M2. By definition of

� and AbsMsgPai(χn, µn, µ1
n, µ

2
n) we have Φ�(χn, µn) = pair(M1,M2).

Φ�(χm, µm) = {M1}M2: Similar to the case above
Φ�(χm, µm) = fst M ′: Similar to the case above
Φ�(χm, µm) = snd M ′: Similar to the case above

(5) We prove this case by induction on Φ♦(χm, µ′m, µm).
Φ♦(χm, µ′m, µm) ∈ N : In this case we know from the definition of ♦, that

NamVar(µm) ∈ Φ. This means that the only way Eqi(µn, χm, µ′m, µm) could
have been generated is by using the axiom (NamVar(n) ∧ NamVar(n′) ∧
Eq(n, n′) ∧ ¬Eq(n′, x))⇒ Eqi(n, x,m, n′). In this case we have NamVar(µn),
Eq(µn, µm), and ¬Eq(µm, χm). As mentioned previously, the latter of the
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constraints is to prevent nonsense instantiated messages like χ, µ, χ, which
should obviously be χ, µ, µ. By the three former constraints we can deduce
that µm = µn, and thus Φ � µn = µn = µm = Φ♦(χm, µ′m, µm).

Φ♦(χm, µ′m, µm) = pair(M1,M2): Here we know from the definition of ♦, that
there exist µ1

m and µ2
m such that InsMsgPai(χm, µ′m, µm, µ1

m, µ
2
m), Φ♦(χm, µ′m, µ1

m) =
M1, and, Φ♦(χm, µ′m, µ2

m) = M2. This means that Eqi(µn, χm, µ′m, µm) must
have been generated using the axiom

(MsgPai(m′1,m′2,m′3) ∧ InsMsgPai(m1,m2,m3,m4,m5) ∧ Eqi(m′2,m1,m2,m4)∧
Eqi(m′3,m1,m2,m5))⇒ Eqi(m′1,m1,m2,m3)

In this case we have MsgPai(µn, µ1
n,mu

2
n), Eqi(µ1

n, χm, µ
′
m, µ

1
m), Eqi(µ2

n, χm, µ
′
m, µ

2
m),

and Eqi(µn, χm, µ′m, µm). By the induction hypothesis we have Φ � µ1
n =

Φ♦(χm, µ′m, µ1
m) = M1 and Φ � µ2

n = Φ♦(χm, µ′m, µ2
m) = M2. By definition

of � and by MsgPai(µn, µ1
n, µ

2
n) we can conclude Φ � µn = pair(M1,M2).

Φ♦(χm, µ′m, µm) = fst M : Similar to the case above
Φ♦(χm, µ′m, µm) = snd M : Similar to the case above
Φ♦(χm, µ′m, µm) = {M1}M2: Similar to the case above

(6) Similar to the two previous cases

B.1.4. Proof of Item 4 of Theorem 3.2.4 for correspondence assertions.

Let τ1 and τ2 be type variables and φ be a constraint. If there exists a
solution to L (φ ∧ Jτ1 " τ2K), then L (φ ∧ Jτ1 " τ2K) � τ1 " L (φ ∧ Jτ1 " τ2K) � τ2.

Due to the definition of " , we need to show that either L (φ ∧ Jτ1 " τ2K) � τ1 =
Ch(L (φ ∧ Jτ1 " τ2K)) � τ2) or L (φ ∧ Jτ1 " τ2K) � τ1 = L (φ ∧ Jτ1 " τ2K) � τ2 = Un.

Since Jτ1 " τ2K = IsCha?(τ1, τ2), we look at the axioms involving IsCha?(τ1, τ2). The
axioms:

∀t : ∀u : (IsOk?(t) ∧ IsCha?(t, u))⇒ (IsUn(t) ∧ IsUn(u))
∀t : ∀u1 : ∀u2 : (IsCha?(t, u1) ∧ IsKey?(t, u2))⇒ (IsUn(t) ∧ IsUn(u1) ∧ IsUn(u2))
∀t : ∀x : ∀u : ∀tf : ∀ts : (IsCha?(t, u) ∧ IsPair?(t, x, tf , ts))⇒

(IsUn(t) ∧ IsUn(u) ∧ IsUn(tf ) ∧ IsUn(ts))
∀t1 : ∀t2 : (IsUn(t) ∧ IsCha?(t1, t2))⇒ IsUn(t2)
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (¬IsOk?(t) ∧ IsCha?(t, u1) ∧ ¬IsKey?(t, u2)

∧¬IsPair?(t, x, tf , ts) ∧ ¬IsUn(t))⇒ IsCha(t, u1)

mean that if IsCha?(τ1, τ2) then either IsCha(τ1, τ2) or IsUn(τ1) and IsUn(τ2).
In the first case L (φ ∧ Jτ1 " τ2K) � τ1 = Ch(L (φ ∧ Jτ1 " τ2K)) � τ2), and in the

second case L (φ ∧ Jτ1 " τ2K) � τ1 = L (φ ∧ Jτ1 " τ2K) � τ2 = Un, proving the lemma.

B.1.5. Proof of Item 5 of Theorem 3.2.4 for correspondence assertions.

For any constraint generated by a process, φ, and any type variables, τ1
and τ2, if L (φ) � τ1 " L (φ) � τ2 then L (φ ∧ Jτ1 " τ2K) exists.

The only way to generate Fail predicates is through a ((
∧
x:τ∈Γ(∀ξ′ : ∀ξ′′ : ∀x : ∀µ :

((¬CanOk(τ, ξ′) ∨ ¬Eq(ξ, ξ′)) ∧
(¬InsCanOk(τ, x, µ, ξ′′) ∨ ¬Eqi(ξ, x, µ, ξ′′)))))⇒
FAIL(ξ)) constraint generated by [End-C]. The only way this constraint would cause
L (φ ∧ Jτ1 " τ2K) to include a FAIL predicate when L (φ) does not is if IsCha?(τ1, τ2)
prevented an IsOk(τ) and therefore also a CanOk(τ, ξ′) or InsCanOk(τ, x, µ, ξ′′) predicate
from being generated because of the axiom ∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (IsOk?(t) ∧
¬IsCha?(t, u1)∧¬IsKey?(t, u2)∧¬IsPair?(t, x, tf , ts)∧¬IsUn(t))⇒ IsOk(t). But that would
require that τ = τ1 and IsOk(τ1) ∈ L (φ), which in turn would mean that L (φ) � τ1 =
Ok(S), making it impossible that L (φ) � τ1 " L (φ) � τ2.
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B.1.6. Proof of Lemma 3.4.6.

For all τ and φ where IsAbs(τ ′, τ, a, x, τ ′′) ∈ L (φ) and L (φ) � τ = Ok(S) we
have L (φ) �′ τ ′ = Ok(R) such that R = S[χ�a]

For each `(M) in S we have two cases: either a CanOk(τ, ξ) or an InsCanOk(τ, x, a, ξ)
for some x, a, and ξ, using either � or ♦ have given rise to `(M). These two cases
represent the case where `(M) is directly in the environment or the case where we have
some x : Ok(S′) in the environment where `(M) ∈ S′. The two cases are very similar, and
only differ in the aspect that we use the “index” x, a for the InsCanOk-case. We thus only
proceed to prove the case without the “index”, but it can be directly translated to the
other case by adding the x, a-index and by prepending all relations with the Ins-prefix.

By the case we have `(M) ∈ S is created by a CanOk(τ, ξ) and its corresponding
FrmlMsg(ξ, `, µ) constraint such that L (φ)� ξ = `(M). In addition we have the constraint
IsAbs(τ ′, τ, x, a, τ ′′). For simplicity we assume L (φ)�m = M for anym, e.g. L (φ)�a = A
and so forth. By the axioms of row-group 1 of Table 3.4.14 we have two cases: either
Eq(µ, a) or ¬Eq(µ, a):

• If Eq(µ, a) we have `(M) = `(A) by Lemma 3.4.8 and since we are to replace all
occurrences of a with x we simply get AbsFrmlMsg(x, ξ, `, x) which by definition
of �, since PairVar(x) ∈ L (φ), gives us L (φ)�(x, ξ) = `(χ) and thus `(χ) ∈ R
by �′ as expected.
• If ¬Eq(µ, a) we have `(M) 6= `(A) and we get AbsFrmlMsg(x, ξ, `, µ)∧Abs(a, x, µ).
We now have to prove that Abs(a, x, µ) represent the recursive substitution of
a for x in the message µ, which would lead to L (φ)�(x, ξ) = `(M [χ�a]) as
expected.

We now proceed to prove that Abs(a, x, µ) indeed behaves as the recursive
substitution [χ�a] on the message M . For this we have five cases corresponding to
the five types of messages, namely: MsgOk(µ), MsgFst(µ1, µ2), MsgSnd(µ1, µ2),
MsgEnc(µ1, µ2, µ3), and MsgPai(µ1, µ2, µ3). For each of those cases we either
have two or four sub-cases. As each of the five cases proceed in a similar way, we
will only present the case for MsgPai(µ1, µ2, µ3) as seen below. The proof is done
by induction on the length of the constraint-chain.

By the case we have IsAbs(a, x, µ) and MsgPai(µ, µ1, µ2) such that L (φ)�µ =
pair(M1,M2). We now proceed to each of the four sub-cases:

Eq(a, µ1) and Eq(a, µ2): For this case, by the axioms in row-group 2 of Ta-
ble 3.4.14, we get AbsMsgPai(x, µ, x, x) which by �, since PairVar(x) ∈ L (φ),
gives us L (φ)�(x, µ) = pair(χ, χ) and clearly pair(χ, χ) = pair(A,A)[χ�A]
and the result follows.

Eq(a, µ1) and ¬Eq(a, µ2): For this case, by the axioms in row-group 2 of Ta-
ble 3.4.14, we get AbsMsgPai(x, µ, x, µ2)∧Abs(a, x, µ2). By the induction hy-
pothesis we know we have some AbsX(x, µ2, . . . ) such that L (φ)�(x, µ2) =
M2[χ�A]. Thus by definition of � we know L (φ)�(x, µ) = pair(χ,M2[χ�A])
and clearly pair(χ,M2[χ�A]) = pair(A,M2)[χ�A] and the result follows.

¬Eq(a, µ1) and Eq(a, µ2): Similar to the case above.
¬Eq(a, µ1) and ¬Eq(a, µ2): For this case, by the axioms in row-group 2 of Ta-

ble 3.4.14, we get AbsMsgPai(x, µ, µ1, µ2) ∧ Abs(a, x, µ1) ∧ Abs(a, x, µ2). By
the induction hypothesis we know we have some AbsX(x, µ1, . . . ) such that
L (φ)�(x, µ1) = M1[χ�A] and AbsX(x, µ2, . . . ) such that L (φ)�(x, µ2) =
M2[χ�A]. Thus by definition of� we know L (φ)�(x, µ) = pair(M1[χ�A],M2[χ�A])
and clearly pair(M1[χ�A],M2[χ�A]) = pair(M1,M2)[χ�A] and the result fol-
lows.

B.1.7. Proof of Lemma 3.4.7.
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For all τ ′ and φ where IsAbs(τ ′, τ, a, x, τ ′′) ∈ L (φ) and L (φ) �′ τ ′ = Ok(S) we
have L (φ) � τ = Ok(R) such that S[a�χ] = R

For each `(M) in S we must have an AbsCanOk(τ ′, x, ξ) and AbsFrmlMsg(x, ξ, `, µ) for
some x, µ, and ξ for which L (φ)�(x, ξ) = `(M). In addition we have the constraint
IsAbs(τ ′, τ, x, a, τ ′′). For simplicity we assume L (φ)�m = M for anym, e.g. L (φ)�a = A
and so forth. By the axioms of row-group 1 of Table 3.4.14 we have two cases: either
Eq(µ, x) or ¬Eq(µ, x):

• If Eq(µ, x) we have `(M) = `(x) by Lemma 3.4.8 and since we are to replace all
occurrences of x with A we simply get InsCanOk(t, x, a, ξ)∧InsFrmlMsg(x, ξ, `, a)∧
Ins(x, a, a). Assuming—we prove this below—that Ins(x, a, a) represents the
recursive substitution [a�χ], we will get, by definition of ♦, L (φ)♦(x, a, ξ) = `(A)
and thus `(A) ∈ R by � as expected.
• If ¬Eq(µ, x) we have `(M) 6= `(x) and we get InsCanOk(t, x, a, ξ)∧InsFrmlMsg(x, ξ, `, µ)∧

Ins(x, a, µ). Assuming—we prove this below—that Ins(x, a, µ) represents the recur-
sive substitution [a�χ], we will get, by definition of ♦, L (φ)♦(x, a, ξ) = `(M [A�χ])
and thus `(M [A�χ]) ∈ R by � as expected.

We now proceed to prove that Ins(x, a, µ) indeed behaves as the recursive
substitution [a�χ] on the message M . For this we have five cases correspond-
ing to the five types of messages, namely: AbsMsgOk(x, µ), AbsMsgFst(x, µ1, µ2),
AbsMsgSnd(x, µ1, µ2), AbsMsgEnc(x, µ1, µ2, µ3), and AbsMsgPai(x, µ1, µ2, µ3). For
each of those cases we either have two or four sub-cases. As each of the five cases
proceed in a similar way, we will only present the case for AbsMsgPai(x, µ1, µ2, µ3)
as seen below. The proof is done by induction on the length of the constraint-chain.

By the case we have Ins(x, a, µ) and AbsMsgPai(x, µ, µ1, µ2) such that L (φ)�(x, µ) =
pair(M1,M2). We now proceed to each of the four sub-cases:

Eq(x, µ1) and Eq(x, µ2): For this case, by the axioms in row-group 2 of Ta-
ble 3.4.15, we get InsMsgPai(x, a, µ, a, a) ∧ Ins(x, a, a) which by ♦ gives us
L (φ)♦(x, a, µ) = pair(A,A) and clearly pair(A,A) = pair(χ, χ)[A�χ] and the
result follows.

Eq(x, µ1) and ¬Eq(x, µ2): For this case, by the axioms in row-group 2 of Ta-
ble 3.4.15, we get InsMsgPai(x, a, µ, a, µ2)∧ Ins(x, a, a)∧ Ins(x, a, µ2). By the
induction hypothesis we know we have some InsX(x, a, µ2, . . . ) such that
L (φ)♦(x, a, µ2) = M2[A�χ]. Thus by definition of ♦ we know L (φ)♦(x, a, µ) =
pair(A,M2[A�χ]) and clearly pair(A,M2[A�χ]) = pair(χ,M2)[A�χ] and the
result follows.

¬Eq(x, µ1) and Eq(x, µ2): Similar to the case above.
¬Eq(x, µ1) and ¬Eq(x, µ2): For this case, by the axioms in row-group 2 of

Table 3.4.15, we get InsMsgPai(x, a, µ, µ1, µ2) ∧ Ins(x, a, a) ∧ Ins(x, a, µ1) ∧
Ins(x, a, µ2). By the induction hypothesis we know we have some InsX(x, a, µ1, . . . )
such that L (φ)♦(x, a, µ1) = M1[A�χ] and InsX(x, a, µ2, . . . ) such that
L (φ)♦(x, a, µ2) = M2[A�χ]. Thus by definition of ♦ we know L (φ)♦(x, a, µ) =
pair(M1[A�χ],M2[A�χ]) and clearly pair(M1[A�χ],M2[A�χ]) = pair(M1,M2)[A�χ]
and the result follows.

B.1.8. Proof of Items 1 to 3 of Theorem 3.2.4 for correspondence asser-
tions.

We prove these three together, since they are very similar criteria for terms, conditions
and assertions. We first prove the implication one way for all three criteria, and then the
other way for all three.
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If there exists a type environment Γ and type T such that Γ `M : T , then
ΓM ` M  τ ;φ and L (φ) is defined, L (φ) � τ = T , and ∀n : τn ∈ ΓM : n :
(L (φ) � τn) ∈ Γ

If there exists a type environment Γ and condition σ, such that Γ ` σ, then
Γσ ` σ  φ and L (φ) is defined and ∀n : τn ∈ Γσ : n : (L (φ) � τn) ∈ Γ

And if there exists a type environment Γ and condition Ψ, such that Γ ` Ψ,
then ΓΨ ` σ  φ and L (φ) is defined and ∀n : τn ∈ ΓΨ : n : (L (φ) � τn) ∈ Γ

We make the following two observations: Firstly, Obs. 1, if for any two constraints
φ1 and φ2, and for some type inference environment Γp we have ∀(x : τ) ∈ Γp : (x :
L (φ1) � τ) ∈ Γ and ∀(x : τ) ∈ Γp : (x : L (φ2) � τ) ∈ Γ for some environment Γ, then
L (φ1 ∧φ2) must be defined and ∀τ ∈ ran(Γp) : L (φ1)� τ = L (φ2)� τ = L (φ1 ∧φ2)� τ .
We can show this by investigation the possible cases:

L (φ1) � τ = T and L (φ1) � τ = T : Both constraints agree on the type assign-
ment of τ and the result follows

L (φ1) � τ = U for any U and L (φ1) � τ = T : We can simply let U = T and
the result follows

L (φ1) � τ = U for any U and L (φ1) � τ = T for any T : As U and T can be
any type, we chose one such that U = T

L (φ1) � τ = U and L (φ1) � τ = T where U 6= T : Not possible, as this violate
the assumption of ∀(x : τ) ∈ Γp : (x : L (φ1) � τ) ∈ Γ and (x : τ) ∈ Γp : (x :
L (φ2) � τ) ∈ Γ.

Secondly, Obs. 2, if L (φ)�τ = T for some τ and T , then by the axioms of Table 3.4.13
we know:

T = U : L (φ ∧ IsUn(τ)) � τ = Un
T = Un: L (φ ∧ IsX?(τ, . . . )) � τ = Un
T = Ok(S): L (φ ∧ IsOk?(τ)) � τ = T
T = Key(U): If L (φ) � τ ′ = U then L (φ ∧ IsKey?(τ, τ ′)) � τ = T
T = Ch(U): If L (φ) � τ ′ = U then L (φ ∧ IsCha?(τ, τ ′)) � τ = T
T = Pair(x : U1, U2): If L (φ)�τ1 = U1 and L (φ)�τ2 = U2 then L (φ∧IsPair?(τ, x, τ1, τ2))�
τ = T

Finally, since Γ `M , Γ ` σ, or Γ ` Ψ by the case, we will let Γc be the type inference
environment defined as

⋃
(x:T )∈Γ x : τx where every τx is unique, and prove the cases for

Γ′ = Γc. We use this to prove the theorem by induction in M , σ, and Ψ. We also structure
each case into three sub-cases corresponding to the three statement that must be proven.

Nam: The result follows directly from the definition of Γc and �.
Enc: We consider each of the two relevant typing rules

Not Un: For this case we know from the induction hypothesis that Γc `
M  τm;φm, L (φm) is defined, L (φm) � τm = T , ∀(x : τ) ∈ Γc : (x :
L (φm)� τ) ∈ Γ, Γc ` N  τn;φn, L (φn) is defined, L (φn)� τn = Key(T ),
and ∀(x : τ) ∈ Γc : (x : L (φn) � τ) ∈ Γ. We now prove each of the three
statements:
(1) We first conclude L (φm ∧ φn) is defined. This follows directly from

Obs. 1. We now proceed to include each of the generated constraints,
and argue that for each conjunction the resulting constraint still has a
well-defined solution.
For φm∧φn∧ IsKey?(τn, τm) we can conclude that since L (φn∧φm)�
τn = Key(T ) then either we have IsKey(τn, τ ′m) in φn ∧ φm for which
L (φn ∧ φm) � τ ′m = T or we have no IsX(τn, . . . ) in φn ∧ φm. In
the former case, by the axioms of row-group 9 of Table 3.4.13, we
deduce we must have some IsKey?(τn, τ ′m) constraint in φn ∧ φm for
which L (φn ∧ φm) � τ ′m = T . Thus by the axioms in row-group
4 of the same table we know this implies Eq(τm, τ ′m). However as
L (φn ∧ φm) � τm = T and L (φn ∧ φm) � τ ′m = T we can conclude
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the constraint Eq(τm, τ ′m) is satisfied and thus since τ ′m = τm, and by
extension T = T , we can conclude that L (φm ∧ φn ∧ IsKey?(τn, τm))
must be defined. In the latter case, where we have no IsX(τn, . . . )
constraint in φn∧φm we can conclude that L (φm∧φn∧IsKey?(τn, τm))
must be defined by the axioms of row-group 9 of Table 3.4.13 such that
L (φm ∧ φn ∧ IsKey(τn, τm))� τn = Key(L (φm ∧ φn ∧ IsKey(τn, τm))�
τm) = Key(T ).
For φm ∧ φn ∧ IsKey?(τn, τm) ∧ IsUn(τ) we trivially conclude L (φm ∧
φn ∧ IsKey?(τn, τm) ∧ IsUn(τ)) is defined, since τ /∈ names(φn ∧ φm)
implying L (φm∧φn∧ IsKey?(τn, τm))�τ = U for any U , thus allowing
L (φm ∧ φn ∧ IsKey?(τn, τm) ∧ IsUn(τ)) � τ = Un.

(2) Follows directly from the above, the constraint IsUn(τ), and Obs. 2
(3) Since L (φm)� τm = T and L (φn)� τn = Key(T ), we know by Obs. 1

and Obs. 2 that L (φm∧φn∧ IsKey?(τn, τm)∧ IsUn(τ))� τn = Key(T ),
L (φm ∧ φn ∧ IsKey?(τn, τm) ∧ IsUn(τ)) � τm = T , and L (φm ∧ φn ∧
IsKey?(τn, τm) ∧ IsUn(τ)) � τ = Un. The remaining type variables
follows from Obs. 1

Un: Similar to the case above
Pai: Not Un: For this case we know from the induction hypothesis that Γc `

M  τm;φm, L (φm) is defined, L (φm) � τm = T , ∀(x : τ) ∈ Γc : (x :
L (φm) � τ) ∈ Γ, Γc ` N  τn;φn, L (φn) is defined, L (φn) � τn = U(M),
and ∀(x : τ) ∈ Γc : (x : L (φn) � τ) ∈ Γ. We also know from Lemma 3.4.5
that L (ψm ∧ ϕm) � µ = M . We have limited U(M) to being either Ok(S)
or Un. We also know from Lemma 3.4.6 that if U(M) = Ok(S) then
L (φm ∧ ψm ∧ ϕm ∧ φn ∧ NamVar(x) ∧ PairVar(x) ∧ IsPair?(τ, x, τm, τ ′n) ∧
IsAbs?(τ ′n, τn, µ, x, τm))� τ ′n = Ok(S[χ�M ]) = U(χ). And the axiom ∀t : ∀x :
∀tf : ∀t′s : ∀ts : ∀a : ∀t′′s : (IsPair(t, x, tf , t′s)∧IsAbs(t′s, ts, a, x, t′′s)∧IsUn(ts))⇒
IsUn(t′s) says that if U(M) = Un then L (φm ∧ψm ∧ϕm ∧φn ∧NamVar(x)∧
PairVar(x) ∧ IsPair?(τ, x, τm, τ ′n) ∧ IsAbs?(τ ′n, τn, µ, x, τm)) � τ ′n = Un
(1) From Obs. 1 we get that L (φm ∧ψm ∧ϕm ∧φn) is defined. Since x is

fresh for φm∧ψm∧ϕm∧φn, adding NamVar(x) and PairVar(x) cannot
prevent a solution from being found. Since τ and τ ′n are fresh for
φm∧ψm∧ϕm∧φn∧NamVar(x)∧PairVar(x) there is no reason we can-
not create a solution such that L (φm ∧ ψm ∧ ϕm ∧ φn ∧ NamVar(x) ∧
PairVar(x)) � τ = Pair(x : L φm ∧ ψm ∧ ϕm ∧ φn ∧ NamVar(x)) �

τm,L (φm∧ψm∧ϕm∧φn∧NamVar(x)∧PairVar(x))�τ ′n and L (φm∧
ψm∧ϕm∧φn∧NamVar(x)∧PairVar(x))�τ ′n = L (φm∧ψm∧ϕm∧φn∧
NamVar(x)∧PairVar(x))�τn[χ�L (φm ∧ ψm ∧ ϕm ∧ φn ∧ NamVar(x) ∧ PairVar(x)) � µ]
making this a solution L (φm∧ψm∧ϕm∧φn∧NamVar(x)∧PairVar(x)
∧ IsPair?(τ, x, τm, τ ′n) ∧ IsAbs?(τ ′n, τn, µ, x, τm)).

(2) Since IsPair?(τ, x, τm, τ ′n) ∈ φ and τ is fresh, L (φ) � τ = Pair(x :
L (φ) � τm,L (φ) � τ ′n), and as shown above, L (φ) � τm = T and
L (φ) � τ ′n = U(χ)

(3) Follows directly from Obs. 1 and the fact that τ is fresh
Un: Similar to the case above

Ok: We consider each of the two relevant typing rules
Not Un: For this case we know Γc ` �, and since Ψi � ξi;ψi;ϕi, we get from

Item 4 that L (ψi ∧ ϕi) � ξi = Ψi for each i.
(1) Since ψi and ϕi are message encodings, and have no influence on

the satisfiability of the other constraints and since generating more
CanOk?(τ, ξ′) and InsCanOk(τ, x, µ, ξ′) prefixes cannot possibly lead
to FAIL(ξ) prefixes, we can conclude by Obs. 1 and the fact that
τ is fresh for

∧
i
(ψi ∧ ϕi), that L (IsOk?(τ) ∧

∧
i(CanOk?(τ, ξi) ∧ ψi ∧
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φi) ∧
∧
τ ′∈rng(Γ)(∀ξ′ : (IsOk(τ ′) ∧ CanOk(τ ′, ξ′)) ⇒ CanOk?(τ, ξ′)) ∧∧

τ ′∈rng(Γ)(∀ξ′ : ∀x : ∀µ : (IsOk(τ ′)∧InsCanOk(τ ′, x, µ, ξ′)∧ IsOk(τ))⇒
InsCanOk(τ, x, µ, ξ′))) is defined

(2) Since τ is a fresh type variable, and since the constraint generation
rules for effects do not generate any IsX? constraints, we know that
IsOk?(τ), CanOk?(τ, ξi), and InsCanOk(τ, x, µ, ξ′), by the axioms ∀t :
∀u1 : ∀u2 : ∀µ : ∀tf : ∀ts : (IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ ¬IsKey?(t, u2) ∧
¬IsPair?(t, µ, tf , ts) ∧ ¬IsUn(t)) ⇒ IsOk(t) and ∀t : ∀ξ : (IsOk(t) ∧
CanOk?(t, ξ)) ⇒ CanOk(t, ξ), will give rise to IsOk(τ), CanOk(τ, ξi),
and InsCanOk(τ, x, µ, ξ′) in L (

∧
i(CanOk?(τ, ξi)∧φi∧ψi∧ϕi)∧IsOk?(τ)),

and thus the derivation L (
∧
i(CanOk?(τ, ξi)∧φi∧ψi∧ϕi)∧IsOk?(τ))�

τ = Ok(
⋃
i `i(Mi)) where S ⊆

⋃
i `i(Mi).

(3) Follows directly from Obs. 1 and the fact that τ is fresh
Un: Similar to the case above

Fst: We consider each of the two relevant typing rules
Not Un: For this case we know Γc `M  τmφm, L (φm) is defined, L (φm)�
τm = Pair(T,U), and ∀(x : τ) ∈ Γc : (x : L (φm) � τ) ∈ Γ.
(1) similar to case Pai
(2) By the definition of �, as seen in Table 3.4.16, we know that L (φm)�

τm = Pair(T,U) is derived from either (1) no IsX-constraint exists
in L (φm) for τm or because there exists a IsPair(τm, µm, τ1

m, τ
2
m) con-

straint in L (φm). In the case where IsPair(τm, µm, τ1
m, τ

2
m) ∈ L (φm)

we get Eq(τ, τm1 ) by the axioms of table Table 3.4.13, implying L (φm∧
IsPair?(τm, µ, τ, τ2)) � τ = T , and for the case with no IsPair(. . . )-
constraint, by definition of �, we can trivially make the derivation
L (φm ∧ IsPair?(τm, µ, τ, τ2)) � τ = T .

(3) Follows directly from the fact τ and τ2 are fresh, Obs. 1, and Obs. 2
Un: Similar to the case above

Snd: As we have two rules for this case, we consider both:
Not Un: We know that Γc `M  τm;φm, L (φm) is defined, L (φm)� τm =

pair(χ : T, T ′(χ)), M1 � µ;ψ;ϕ, and ∀(x : τ) ∈ Γc : (x : L (φm) � τ) ∈
Γ. Since L (φm) � τm = pair(χ : T, T ′(χ)), we know that there exists
some τ2

m, τ
3
m such that IsPair(τm, x, τ2

m, τ
3
m). This implies L (φm ∧ ψ ∧ ϕ ∧

IsPair?(τm, µ, τ ′, τ)) is defined. By the axioms in Table 3.4.13, in particular
row-group 5, we can deduce Eq(τ ′, τ2

m), and since L (φm) � τ2
m = U by

Lemma 3.4.7 and ∀t : ∀x : ∀tf : ∀t′s : ∀ts : ∀a : ∀t′′s : (IsPair(t, x, tf , t′s) ∧
IsAbs(t′s, ts, a, x, t′′s)∧ IsUn(ts))⇒ IsUn(t′s) we can conclude that L (φ)� τ =
L (φ) � τ ′[snd M�χ], and so by the induction hypothesis we can conclude
L (φm ∧ψ ∧ϕ∧ IsPair?(τm, µ, τ ′, τ))� τ = T ′(snd M) and the result follows.

Un: similar to above
Eq: Trivial
Neq: Trivial
Seq: For this case we have Γc `M  τm;φm, L (φm) is defined, L (φm)� τm = T ,
∀(x : τ) ∈ Γc : (x : L (φm) � τ) ∈ Γ, Γc ` N  τn;φn, L (φn) is defined,
L (φn) � τn = T , and ∀(x : τ) ∈ Γc : (x : L (φm) � τ) ∈ Γ.
(1) Follows directly from Obs. 1, L (φm) � τm = T , and L (φn) � τn = T
(2) Follows directly from the above case and Obs. 1

Eeq: Trivial
One: Trivial
Dcr: Similar to the case for [Enc-C]
Bgn: Trivial
End: For this case must consider two sub-cases as defined by [End-C]:

`(M) ∈ Γc: For this case we know `(M) ∈ Γc.
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(1) Since Γ ` � we know that fn(M) ⊆ dom(Γ) implying fn(M) ⊆ dom(Γc)
and the result follows

(2) Since Jfn(M) ⊆ dom(Γc)K is the only constraint, then by definition
of � we have L (φ) � τ = T for any T implying ∀n : τn ∈ Γc : n :
(L (φ) � τn) ∈ Γ

Otherwise: For this case we know `(M) /∈ Γc.
(1) Since Γ ` � we know that fn(M) ⊆ dom(Γ) implying fn(M) ⊆ dom(Γc).

Assuming the process initially was well-formed, we know Γ = Γ1, x :
Ok(S),Γ2 for which `(M) ∈ S, we must have x : τx ∈ Γc for which
L (φ+ ε) � τx = Ok(S). We let ε represent the constraint generated
further down the constraint generation tree. In this derivation we utilise
CanOk(τx, ξ) and InsCanOk(τ, χ, µ, ξ) constraints for which there exists
one such that either L (φ+ε)�ξ = `(M) or L (φ+ε)♦(χ, µ, ξ) = `(M).
In both cases the constraint generated by [End-C] does not imply Fail(ξ).

(2) Since Jfn(M) ⊆ dom(Γc)K is the only constraint, then by definition
of � we have L (φ) � τ = T for any T implying ∀n : τn ∈ Γc : n :
(L (φ) � τn) ∈ Γ

If Γ `M  τ ;φ such that L (φ) is defined and Γ′ = assertions(Γ)∪{x : L (φ)�τ |
x : τ ∈ Γ} then Γ′ `M : L (φ) � τ

If Γ ` σ  φ such that L (φ) is defined and Γ′ = assertions(Γ) ∪ {x : L (φ) � τ |
x : τ ∈ Γ} then Γ′ ` σ

And if Γ ` Ψ  φ such that L (φ) is defined and Γ′ = assertions(Γ) ∪ {x :
L (φ) � τ | x : τ ∈ Γ} then Γ′ ` Ψ

We prove this through induction in the constraint generation rules for messages,
conditions, and assertions:

[Nam-C]: Here we have that M = a and φ = T. From the rule we get Γ ` � and
Γ(a) = τ . It obviously follows from this that Γ′ ` � and Γ′(a) = L (T) � τ , and
therefore, according to [Nam], Γ′ ` a : (L (T)� τ) for any assignment of L (T)� τ .

[Enc-C]: Here we have that M = {M ′}N , Γ ` M ′  τM ′ ;φM ′ , Γ ` N  τN ;φN ,
and φ = φ′M ∧ φN ∧ IsUn(τ)∧ IsKey?(τN , τM ′). From the induction hypothesis we
get that, since φ⇒ φM ′ and φ⇒ φN , meaning that L (φ) is also a solution to
φM ′ and φN , and thus Γ′ ` M ′ : (L (φ) � τM ′) and Γ′ ` N : (L (φ) � τN ). We
now consider the two remaining constraints:
• Since φ⇒ IsUn(τ) we know L (φ)� τ = Un, as is required in both [Enc] and
[Enc-Un].
• Since φ⇒ IsKey?(τN , τM ′), we need to consider the following axioms:

∀t : ∀u : (IsOk?(t) ∧ IsKey?(t, u))⇒ (IsUn(t) ∧ IsUn(u))
∀t : ∀u1 : ∀u2 : (IsCha?(t, u1) ∧ IsKey?(t, u2))⇒ (IsUn(t) ∧ IsUn(u1) ∧ IsUn(u2))
∀t : ∀u : ∀µ : ∀tf : ∀ts : (IsKey?(t, u) ∧ IsPair?(t, x, tf , ts))⇒

(IsUn(t) ∧ IsUn(u) ∧ IsUn(tf ) ∧ IsUn(ts))
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (¬IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ IsKey?(t, u2)∧

¬IsPair?(t, x, tf , ts) ∧ ¬IsUn(t))⇒ IsKey(t, u2)

Together they mean that either L (φ) � τM ′ = L (φ) � τN = Un or L (φ) �
τN = Key(L (φ) � τM ′) corresponding to [Enc-Un] and [Enc] respectively.

[Pai-C]: Here we have that M = pair(M1,M2), Γ ` M1  τ1;φ1, M1 � µ;ψ1, ϕ1,
Γ `M2  τ2;φ2. Moreover we generate NamVar(x), PairVar(x), IsPair?(τ, x, τ1, τ

′
2),

and IsAbs?(τ ′2, τ2, µ, x, τ1).
By the induction hypothesis we have that, since φ⇒ φ1 and φ⇒ φ2, meaning

that L (φ) is also a solution to φ1 and φ2, and thus Γ′ `M1 : (L (φ) � τ1) and
Γ′ `M2 : (L (φ) � τ2).
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Since φ⇒ IsPair?(τ, µ, τ1, τ2) we look at the following axioms:
∀t : ∀x : ∀tf : ∀ts : (IsOk?(t) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(tf ) ∧ IsUn(ts))
∀t : ∀u : ∀x : ∀tf : ∀ts : (IsCha?(t, u) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(u)∧

IsUn(tf ) ∧ IsUn(ts))
∀t : ∀u : ∀x : ∀tf : ∀ts : (IsKey?(t, u) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(u)∧

IsUn(tf ) ∧ IsUn(ts))
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (¬IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ ¬IsKey?(t, u2)∧

IsPair?(t, x, tf , ts) ∧ IsAbs?(ts, t′s, a, x, tf ) ∧ ¬IsUn(t))⇒
(IsPair(t, x, tf , ts) ∧ IsAbs(ts, t′s, a, x, tf ))
Together these constraints imply that either L (φ)�τ = L (φ)�τ1 = L (φ)�τ2 =
Un or L (φ) � τ = Pair(χ : L (φ) � τ1,L (φ) � τ ′2), corresponding to rule [Pai-Un]
and [Pai] respectively. By row-group 6 from Table 3.4.13 and by Lemma 3.4.6
we know that L (φ) � τ ′2 = L (φ) � τ2[χ�M ], and the conditions from [Pai] are
satisfied.

[Ok-C]: Here we have that M = ok, Γ ` �, for all Ψi ∈ Γ : Ψi � ξi : ψi, φi,
and φ = IsOk?(τ) ∧ IsOkTerm(τ) ∧

∧
i
(CanOk?(τ, ξi) ∧ ψi ∧ φi) ∧

∧
τ ′∈rng(Γ)(∀ξ′ :

(IsOk(τ ′)∧CanOk(τ ′, ξ′))⇒ CanOk?(τ, ξ′))∧
∧
τ ′∈rng(Γ)(∀ξ′ : ∀x : ∀µ : (IsOk(τ ′)∧

InsCanOk(τ ′, x, µ, ξ′) ∧ IsOk(τ))⇒ InsCanOk?(τ, x, µ, ξ′)).
Since, Γ ` �, obviously Γ′ ` �, as required in both [Ok] and [Ok-Un]. By

row-group 7 and 9 of Table 3.4.13 we know that either L (φ) � τ = Un or
L (φ) � τ = Ok(S) for some S, corresponding to either [Ok-Un] or [Ok]. By φ
we know that we generate a CanOk?(τ, ξ) or InsCanOk?(τ, x, µ, ξ) for all possible
effects that might be in S. By row-group 10 of Table 3.4.13 we know that we
only convert CanOk?(τ, ξ) and InsCanOk?(τ, x, µ, ξ) to the definitive versions if
all possible senders of a certain channel agree of the effect ξ. Thus if we have
CanOk(τ, ξ) or InsCanOk(τ, x, µ, ξ) we know that it is safe to include L (φ) � ξ
or L (φ)♦(x, µ, ξ) to S, and thus Γ′ `M : (L (φ) � τ).

[Fst-C]: Here we have that M = fst M , Γ ` M  τM ;φM , and φ = φM ∧
IsPair?(τM , x, τ, τ ′2) ∧ NamVar(x) ∧ IsAbs?(τ ′2, τ2, µ, x, τ) ∧ PairVar(x).

By the induction hypothesis we have that, since φ⇒ φM meaning that L (φ)
is also a solution to φM , and thus Γ′ `M : (L (φ) � τM ).

Since φ⇒ IsPair?(τM , x, τ, τ2) we look at the following axioms:
∀t : ∀x : ∀tf : ∀ts : (IsOk?(t) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(tf ) ∧ IsUn(ts))
∀t : ∀u : ∀x : ∀tf : ∀ts : (IsCha?(t, u) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(u)∧

IsUn(tf ) ∧ IsUn(ts))
∀t : ∀u : ∀x : ∀tf : ∀ts : (IsKey?(t, u) ∧ IsPair?(t, x, tf , ts))⇒ (IsUn(t) ∧ IsUn(u)∧

IsUn(tf ) ∧ IsUn(ts))
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (¬IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ ¬IsKey?(t, u2)∧

IsPair?(t, x, tf , ts) ∧ IsAbs?(ts, t′s, a, x, tf ) ∧ ¬IsUn(t))⇒
(IsPair(t, x, tf , ts) ∧ IsAbs(ts, t′s, a, x, tf ))
Together they mean that either L (φ) � τM = L (φ) � τ = L (φ) � τ2 = Un or
L (φ) � τM = Pair(χ : L (φ) � τ,L (φ) � τ ′2), corresponding to rule [Fst-Un] and
[Fst] respectively.

[Snd-C]: Here we have that M = snd N , Γ ` N  τn;φn, fst N � µ;ψ1;φ1,
and φ = φm ∧ψ1 ∧ φ1 ∧ IsPair?(τn, x, τ1, τ

′)∧ IsAbs?(τ ′, τ, µ, x, τ1)∧NamVar(x)∧
PairVar(x).

By the induction hypothesis, since φ⇒ φm and L (φ) is also a solution to φm,
and thus Γ′ ` N : (L (φ) � τn). By row-group 7 and 9 of Table 3.4.13 we know
that either L (φ) � τn = Un or L (φ) � τn = Pair(χ : L (φ) � τ1,L (φ) � τ ′). If
L (φ)� τn = Un then by the same axioms we have L (φ)� τ = Un corresponding
to [Snd-Un]. If however L (φ) � τn = Pair(χ : L (φ) � τ1,L (φ) �′ τ ′), then we
know N = pair(N1, N2)—by row-group 9—and by a similar argumentation as in
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the case for [Pai-C], we know L (φ) � τ ′ = L (φ) � τ [χ�N1]. By the restrictions
made to processes, and by row-group 6 we can deduce either L (φ) �′ τ ′ = Un or
L (φ)�′ τ ′ = Ok(S) for some S. In the former case, namely Un, the result follows
immediately as Un = Un[a�b] for any a and b, corresponding to [Snd-Un]. For
the case of Ok(S) we refer to the axioms in row-group 1 of Table 3.4.14, which
by Lemma 3.4.7 and Lemma 3.4.5 ensures that L (φ) � τ = L (φ) �′ τ [fst N�χ]
which corresponds to [Snd].

[Eq-C]: Trivial
[Neq-C]: Trivial
[Seq-C]: Here we have that σ = M as N , Γ `M  τm;φm, Γ ` N  τn;φn, and
φ = φm ∧ φn ∧ Eq(τm, τn).

By Item 1 of of Theorem 3.2.4, since φ ⇒ φm and φ ⇒ φn and L (φ) is
also a solution for both of them, we thus have Γ′ ` M : (L (φ) � τm) and
Γ′ ` N : (L (φ)� τn). According to Lemma 3.4.8, since φ⇒ Eq(τm, τn), we know
L (φ) � τm = L (φ) � τn, and the result follows.

[Eeq-C]: Trivial
[One-C]: Trivial
[Dcr-C]: Here we have that Ψ = ‘x = dec(M1,M2)’, Γ ` x  τx;φx, Γ ` M1  
τm1;φm1, Γ `M2  τm2;φm2, and φ = IsKey?(τm2, τx) ∧ IsUn(τm1) ∧ φx ∧ φm1 ∧
φm2.

By Item 1 of Theorem 3.2.4, since φ⇒ φx, φ⇒ φm1, and φ⇒ φm2 and L (φ)
is a solution to those constraints, Γ′ ` x : (L (φ) � τx), Γ′ `M1 : (L (φ) � τm1),
and Γ′ `M2 : (L (φ) � τm2). We now consider the two generated constraints:
• Since φ⇒ IsUn(τm1), we have L (φ) � τm1 = Un as expected.
• Since φ⇒ IsKey?(τm2, τx) we look at the following axioms:

∀t : ∀u : (IsOk?(t) ∧ IsKey?(t, u))⇒ (IsUn(t) ∧ IsUn(u))
∀t : ∀u1 : ∀u2 : (IsCha?(t, u1) ∧ IsKey?(t, u2))⇒ (IsUn(t) ∧ IsUn(u1) ∧ IsUn(u2))
∀t : ∀u : ∀µ : ∀tf : ∀ts : (IsKey?(t, u) ∧ IsPair?(t, µ, tf , ts))⇒

(IsUn(t) ∧ IsUn(u) ∧ IsUn(tf ) ∧ IsUn(ts))
∀t : ∀x : ∀u1 : ∀u2 : ∀tf : ∀ts : (¬IsOk?(t) ∧ ¬IsCha?(t, u1) ∧ IsKey?(t, u2)∧

¬IsPair?(t, x, tf , ts) ∧ ¬IsUn(t))⇒ IsKey(t, u2)
Together they mean that either L (φ) � τm2 = L (φ) � τx = Un or L (φ) �
τm2 = Key(L (φ) � τx), corresponding to [Dcr-2] and [Dcr-1] respectively.

[Bgn-C]: Trivial
[End-C]: Here we have Ψ = end `(M) and `(M) � ξ;ψ;ϕ. By the case we have

two sub-cases.
Effect in environment: For this case we have φ = ψ∧ϕ∧Jfn(M) ⊆ dom(Γ)K

and `(M) ∈ Γ. Since φ ⇒ Jfn(M) ⊆ dom(Γ)K we know fn(M) ⊆ dom(Γ)
thus satisfying the conditions of [End-1].

Effect not in environment: For this case we have φ = ψ ∧ ϕ ∧ Jfn(M) ⊆
dom(Γ)K ∧ ((

∧
x:τ∈Γ(∀ξ′ : ∀ξ′′ : ∀x : ∀µ : ((¬CanOk(τ, ξ′) ∨ ¬Eq(ξ, ξ′)) ∧

(¬InsCanOk(τ, x, µ, ξ′′) ∨ ¬Eqi(ξ, x, µ, ξ′′))))) ⇒ FAIL(ξ)). Clearly this con-
straint cannot be satisfied on its own. However, since we only consider
robustly safe processes, we know that if this constraint is satisfied, then
there exists some constraints ε which are generated for the remainder
of the processes, such that we have either CanOk(τ, ξ′) ∈ L (φ ∧ ε) or
InsCanOk(τ, χ, µ, ξ′) ∈ L (φ ∧ ε). Moreover by φ we know that we have
Eq(ξ, ξ′) or Eqi(ξ, χ, µ, ξ′) respectively. By Lemma 3.4.8 we know this im-
plies L (φ ∧ ε) � ξ′ = L (φ ∧ ε) � ξ or L (φ ∧ ε)♦(χ, µ, ξ′) = L (φ ∧ ε) � ξ.
Since φ ⇒ ψ ∧ ϕ and by Lemma 3.4.5 we know L (φ ∧ ε) � ξ = `(M).
This implies that L (φ ∧ ε) � τ = Ok(S) for which `(M) ∈ S. Finally,
since φ⇒ Jfn(M) ⊆ dom(Γ)K we know fn(M) ⊆ dom(Γ) thus satisfying the
conditions of [End-2].
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B.2. Proofs for Chapter 4

B.2.1. Proof of Theorem 4.2.4.
For any process P , there exists a type environment Γ and an assertion Ψ

such that Γ,Ψ ` P , if and only if ΓP ` P  ψ;φ such that L (φ) is defined,
L (φ) � ψ = Ψ, and dom(Γ) = {x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all
x ∈ dom(Γ), Γ(x) = L (φ) � ΓP (x)

We prove this by first proving that if Γ,Ψ ` P , then ΓP ` P  ψ;φ such that L (φ)
is defined, L (φ) � ψ = Ψ, and dom(Γ) = {x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all
x ∈ dom(Γ), Γ(x) = L (φ) � ΓP (x). We prove this by structural induction in P :

[T-In]: In this case we know that P = M(λ~x)N..P ′ and we use [C-In] to generate
constraints, giving us ΓM ` M  τm;ψm;φm,ΓN ` (λ~x)N  (~τ → τn);ψn;φn,
ΓP ′ , ~x : ~τ ` P ′  ψp;φp, and
phi =
phim ∧
phin ∧
phip ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK ∧

∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP ′ (x)=τ4

Jτ1 = τ2 + τ3 + τ4K ∧

Jif C(M(λ~x)N..P ′, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K.
From the induction hypothesis and the first criterion we get that, since

Γ1 + ~x : ~T ,Ψ1 ` P , Γ2,Ψ2 `min (λ~x)N : ~T → Uo, Γ3,Ψ3 `min M : Us, ΓM `
M  τm;ψm;φm, ΓN ` (λ~x)N  (~τ → τn);ψn;φn, ΓP ′ , ~x : ~τ ` P ′  ψp;φp,
we know that L (φp) is defined, L (φp)ψ � Ψ1, dom(Γ1 + ~x : ~T ) = {x | x : τx ∈
ΓP ′ , ~x : ~τ and L (φp) � τx 6= ε} and for all x ∈ dom(Γ1 + ~x : ~T ), Γ1 + ~x : ~T (x) =
L (φp)�ΓP ′ , ~x : ~τ(x), L (φn) is defined, L (φn)�τn = Uo, for all iL (φn)�τi = Ti
L (φn) � ψn = Ψ2, dom(Γ2) = {x | x : τx ∈ ΓN and L (φn) � τx 6= ε} and for all
x ∈ dom(Γ2), Γ2(x) = L (φn)�ΓN (x), and L (φm) is defined, L (φm)� τm = Us,
L (φm) � ψm = Ψ3, dom(Γ3) = {x | x : τx ∈ ΓM and L (φm) � τx 6= ε} and for
all x ∈ dom(Γ3), Γ3(x) = L (φm) � ΓM (x).

We now prove that a solution L (φ) exists. Aside from ~tau, φm, φn, and
φp do not discuss the same variables at all, and, since L (φm) exists, L (φn)
exists, L (φp) exists, and for all τi, L (φn) � τi = Ti = L (φp) � τi, L (φm ∧ φn ∧
φp) must exist. Since L (φp)ψ � Ψ1, L (φn) � ψn = Ψ2, L (φm) � ψm = Ψ3,
and ψ′ is fresh variable not occurring in φm, φn, or φp, there is no reason we
cannot have L (φm ∧ φn ∧ φp) � φ′ = Ψ,which means that, by criterion 11,
since Ψ = Ψ1 ⊗ Ψ2 ⊗ Ψ3, L (φm ∧ φn ∧ φp ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK) exists.
Since L (φm) � τm = Us and L (φn) � τn = Uo and Us "− Uo we also know
that L (φm ∧ φn ∧ φp ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK) exists. Since
dom(Γ1 + ~x : ~T ) = {x | x : τx ∈ ΓP ′ , ~x : ~τ and L (φp) � τx 6= ε} and for all
x ∈ dom(Γ1 + ~x : ~T ), Γ1 + ~x : ~T (x) = L (φp) � ΓP ′ , ~x : ~τ(x), we know that

L (φp) � ΓP ′(x) =
{

Γ1(x) if x ∈ dom(Γ1)
ε otherwise

Since dom(Γ2) = {x | x : τx ∈ ΓN and L (φn) � τx 6= ε} and for all x ∈ dom(Γ2),
Γ2(x) = L (φn) � ΓN (x)

L (φn) � ΓN (x) =
{

Γ2(x) if x ∈ dom(Γ2)
ε otherwise
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And since dom(Γ3) = {x | x : τx ∈ ΓM and L (φm) � τx 6= ε} and for all
x ∈ dom(Γ3), Γ3(x) = L (φm) � ΓM (x),

L (φm) � ΓM (x) =
{

Γ3(x) if x ∈ dom(Γ3)
ε otherwise

Since all the variables in the range of ΓP are fresh for φm ∧ φn ∧ φp ∧ Jψ′ =
ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK, there is nothing preventing us from constructing a
solution L (φm ∧ φn ∧ φp ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK) such that for all
x : τx ∈ ΓP , L (φm ∧ φn ∧ φp ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK) � τx = Γ(x).
Since Γ = Γ1 + Γ2 + Γ3 and ε + T = T for all T , we then get from criterion
9, that L (φm ∧ φn ∧ φp ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK ∧

∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP ′ (x)=τ4

Jτ1 =

τ2 + τ3 + τ4K) exists. Finally, since ψ is fresh for φm ∧ φn ∧ φp ∧ Jψ′ = ψm ⊗ψn ⊗
ψpK ∧ Jτm "− τnK ∧

∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP ′ (x)=τ4

Jτ1 = τ2 + τ3 + τ4K, there is nothing preventing us

from creating a solution such that L (φm ∧ φn ∧ φp ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧
Jτm "− τnK ∧

∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP ′ (x)=τ4

Jτ1 = τ2 + τ3 + τ4K) � ψ = L (φm ∧ φn ∧ φp ∧ Jψ′ =

ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK ∧
∧

Γ(x)=τ1
ΓM (x)=τ2
ΓN (x)=τ3
ΓP ′ (x)=τ4

Jτ1 = τ2 + τ3 + τ4K) � ψ′, meaning

that L (φm ∧ φn ∧ φp ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK ∧
∧

Γ(x)=τ1
ΓM (x)=τ2
ΓN (x)=τ3
ΓP ′ (x)=τ4

Jτ1 =

τ2 + τ3 + τ4K ∧ Jif C(M(λ~x)N..P ′, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K) is defined.
It should be obvious that in the above solution, L (φ)�ψ = Ψ, and dom(Γ) =

{x | x : τx ∈ ΓP and L (φ)�τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φ)�ΓP (x)
[T-Out]: Similar to above
[T-Par]: In this case we know that P = P1 | P2 and we use [C-Par] to generate

constraints, giving us Γ′1,Γ′′1 ` P1  ψ1;φ1, Γ′2,Γ′′2 ` P2  ψ2;φ2, F ′(P1) =
〈Γ′′1, ψ1, φ1〉, F ′(P2) = 〈Γ′′2, ψ2, φ2〉, and φ = φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K ∧
Jψ1 = ψ′1 ⊗ ψ′2K ∧ Jψ′2 ≤ ψ2K ∧ Jψ2 = ψ′2 ⊗ ψ′1K ∧ Jψ′1 ≤ ψ′1K ∧

∧
ΓP (x)=τ1
Γ′

1(x)=τ2
Γ′

2(x)=τ3

Jτ1 =

τ2 + τ3K ∧ Jif C(P1 | P2, ψ
′) then Weak(ψ,ψ′) else ψ = ψ′K.

From the induction hypothesis we get that, since Γ1 + ΓP2 ,Ψ1 ⊗Ψ′P2
` P1,

Γ2 + ΓP1 ,Ψ2 ⊗ Ψ′P1
` P2, Γ′1,Γ′′1 ` P1  ψ1;φ1, and Γ′2,Γ′′2 ` P2  ψ2;φ2, we

know that L (φ1) is defined, L (φ1) � ψ1 = Ψ1 ⊗ Ψ′P2
, and dom(Γ1 + ΓP2) =

{x | x : τx ∈ Γ′1,Γ′′1 and L (φ1) � τx 6= ε} and for all x ∈ dom(Γ1 + ΓP2),
Γ1 + ΓP2(x) = L (φ1)�Γ′1,Γ′′1(x), and L (φ2) is defined, L (φ2)�ψ2 = Ψ2⊗Ψ′P1

,
and dom(Γ2 + ΓP1) = {x | x : τx ∈ Γ′2,Γ′′2 and L (φ2) � τx 6= ε} and for all
x ∈ dom(Γ2 + ΓP1), Γ2 + ΓP1(x) = L (φ2) � Γ′2,Γ′′2(x).

We now prove that a solution L (φ) exists. The only variables discussed by
both φ1 and φ2 are the ones in ran(Γ′′1)∪ran(Γ′′2). Since We know that Γ2+ΓP1 ` P2
we know that for any x : T ∈ ΓP1 the same x : T has been introduced in the
derivation of Γ1 + ΓP2 ,Ψ1 ⊗ Ψ′P2

. This means we know from the induction
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hypothesis, that since there must exist Γ1′ and Ψ1′ such that Γ1′ ,Ψ1′ ` (νx : T )P ′1
and Γ1′′ ` (νx : τ)P ′1  ψ1′ ;φ1′ L (φ1′) � τ = T and since x is new cannot
have been mentioned earlier in P1, L (φ1) � τ = T . In addition, since for all
x ∈ dom(Γ2 + ΓP1), Γ2 + ΓP1(x) = L (φ2) � Γ′2,Γ′′2(x), and ΓP1(x) = T , we have
L (φ1) � τ = L (φ2) � τ . This means that there exists a solution L (φ1 ∧ φ2),
and since all the names of φ1 and φ2 are fresh for φ1 ∧ φ2 and each other,
L (φ1∧φ2∧φ1∧φ2) exists. Since ψ′, ψ′1, and ψ′2 are fresh for φ1∧φ2∧φ1∧φ2 we
can say that L (φ1 ∧φ2 ∧φ1 ∧φ2)�ψ′ = Ψ, L (φ1 ∧φ2 ∧φ1 ∧φ2)�ψ′1 = Ψ1, and
L (φ1∧φ2∧φ1∧φ2)�ψ′2 = Ψ2. Then we know from criterion 11 that L (φ1∧φ2∧
φ1∧φ2∧Jψ′ = ψ′1⊗ψ′2K) exists. Since ψ′2 is fresh for φ1∧φ2∧φ1∧φ2∧Jψ′ = ψ′1⊗ψ′2K
we can say that L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K) � ψ′2 = Ψ′P2

and since
L (φ1)�ψ1 = Ψ1⊗ΨP2 and ψ1 is not mentioned in φ2∧φ1∧φ2∧ Jψ′ = ψ′1⊗ψ′2K,
L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K) � ψ1 = Ψ1 ⊗ΨP2 . We therefore get from
criterion 11, that L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K∧ Jψ1 = ψ′1 ⊗ ψ′2K) exists.
Since we know from the definition of F ′ that L (φ2)�ψ2 = ΨP2 and ψ2 is fresh for
φ1∧φ2∧φ1∧Jψ′ = ψ′1⊗ψ′2K∧Jψ1 = ψ′1⊗ψ′2K we know that L (φ1∧φ2∧φ1∧φ2∧Jψ′ =
ψ′1 ⊗ ψ′2K ∧ Jψ1 = ψ′1 ⊗ ψ′2K) � ψ2 = ΨP2 , and we therefore get from criterion
13 that L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K ∧ Jψ1 = ψ′1 ⊗ ψ′2K ∧ Jψ′2 ≤ ψ2K)
exists. From similar arguments, we know that L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ =
ψ′1 ⊗ ψ′2K ∧ Jψ1 = ψ′1 ⊗ ψ′2K ∧ Jψ′2 ≤ ψ2K ∧ Jψ2 = ψ′2 ⊗ ψ′1K ∧ Jψ′1 ≤ ψ′1K) exists.
Since dom(Γ1 + ΓP2) = {x | x : τx ∈ Γ′1,Γ′′1 and L (φ1) � τx 6= ε} and for all
x ∈ dom(Γ1 + ΓP2), Γ1 + ΓP2(x) = L (φ1) � Γ′1,Γ′′1(x) we know that

L (φ1)Γ′1,Γ′′1(x) =
{

Γ1 + ΓP2(x) if x ∈ dom(Γ1 + ΓP2)
ε otherwise

And Since dom(Γ2 + ΓP1) = {x | x : τx ∈ Γ′2,Γ′′2 and L (φ2) � τx 6= ε} and for all
x ∈ dom(Γ2 + ΓP1), Γ2 + ΓP1(x) = L (φ2) � Γ′2,Γ′′2(x) we know that

L (φ2)Γ′2,Γ′′2(x) =
{

Γ2 + ΓP1(x) if x ∈ dom(Γ2 + ΓP1)
ε otherwise

Since all the variables in ran(ΓP ) are fresh for φ1∧φ2∧φ1∧φ2∧ Jψ′ = ψ′1⊗ψ′2K∧
Jψ1 = ψ′1 ⊗ ψ′2K ∧ Jψ′2 ≤ ψ2K ∧ Jψ2 = ψ′2 ⊗ ψ′1K ∧ Jψ′1 ≤ ψ′1K there is no reason
we cannot construct a solution L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K ∧ Jψ1 =
ψ′1⊗ψ′2K∧Jψ′2 ≤ ψ2K∧Jψ2 = ψ′2⊗ψ′1K∧Jψ′1 ≤ ψ′1K) such that for all x : τx ∈ ΓP ,
L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K ∧ Jψ1 = ψ′1 ⊗ ψ′2K ∧ Jψ′2 ≤ ψ2K ∧ Jψ2 =
ψ′2⊗ψ′1K∧Jψ′1 ≤ ψ′1K)�τx = Γ(x). Since Γ = Γ1 +Γ2 and T+ε = T , we get from
criterion 9 that L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K ∧ Jψ1 = ψ′1 ⊗ ψ′2K ∧ Jψ′2 ≤
ψ2K∧ Jψ2 = ψ′2⊗ψ′1K∧ Jψ′1 ≤ ψ′1K∧

∧
ΓP (x)=τ1
Γ′

1(x)=τ2
Γ′

2(x)=τ3

Jτ1 = τ2 + τ3K) exists. Finally, since

ψ is fresh for φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K ∧ Jψ1 = ψ′1 ⊗ ψ′2K ∧ Jψ′2 ≤
ψ2K ∧ Jψ2 = ψ′2 ⊗ ψ′1K ∧ Jψ′1 ≤ ψ′1K ∧

∧
ΓP (x)=τ1
Γ′

1(x)=τ2
Γ′

2(x)=τ3

Jτ1 = τ2 + τ3K we can say that

L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K ∧ Jψ1 = ψ′1 ⊗ ψ′2K ∧ Jψ′2 ≤ ψ2K ∧ Jψ2 =
ψ′2 ⊗ ψ′1K ∧ Jψ′1 ≤ ψ′1K ∧

∧
ΓP (x)=τ1
Γ′

1(x)=τ2
Γ′

2(x)=τ3

Jτ1 = τ2 + τ3K) � φ = Ψ, in which case we know

from criterion 19 that L (φ1 ∧ φ2 ∧ φ1 ∧ φ2 ∧ Jψ′ = ψ′1 ⊗ ψ′2K ∧ Jψ1 = ψ′1 ⊗ ψ′2K ∧
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Jψ′2 ≤ ψ2K ∧ Jψ2 = ψ′2 ⊗ ψ′1K ∧ Jψ′1 ≤ ψ′1K ∧
∧

ΓP (x)=τ1
Γ′

1(x)=τ2
Γ′

2(x)=τ3

Jτ1 = τ2 + τ3K ∧ Jif C(P1 |

P2, ψ
′) then Weak(ψ,ψ′) else ψ = ψ′K) exists.

It should be obvious that in the above solution L (φ)ψ�Ψ, and dom(Γ) = {x |
x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φ) � ΓP (x).

[T-Rep]: In this case we know that P = ∗P ′, and we use [C-Rep] to generate
constraints, giving us ΓP ` P ′  ψ′;φp and φ = φp∧Jψ′ = ψ′⊗ψ′K∧

∧
τ∈ran(ΓP )

Jτ =

τ + τK ∧ Jif C(∗P ′, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K.
From the induction hypothesis, since Γ,Ψ ` P ′ and ΓP ` P ′  ψ′;φp, we

know that L (φp) is defined, L (φp) � ψ′ = Ψ, and dom(Γ) = {x | x : τx ∈
ΓP and L (φp) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φp) � ΓP (x).

We now prove that L (φ) exists. We already know from the induction
hypothesis that L (φp) exists, and since L (φp) � ψ′ = Ψ and Ψ is idempotent,
obviously L (φp ∧ Jψ′ = ψ′ ⊗ ψ′K) = L (φp). Since dom(Γ) = {x | x : τx ∈
ΓP and L (φp) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φp) � ΓP (x), we
know that

L (φp) � ΓP (x) =
{

Γ(x) if x ∈ dom(Γ)
ε otherwise

We also know that Γ is unlimited, and ε+ ε = ε. This means that ∀τ ∈ ran(ΓP ) :
τ = τ + τ , and therefore L (φp ∧ Jψ′ = ψ′ ⊗ ψ′K ∧

∧
τ∈ran(ΓP )

Jτ = τ + τK) = L (φp).

Finally, since ψ is fresh for φp ∧ Jψ′ = ψ′ ⊗ ψ′K ∧
∧

τ∈ran(ΓP )
Jτ = τ + τK we can

easily construct a solution L (φp ∧ Jψ′ = ψ′ ⊗ ψ′K ∧
∧

τ∈ran(ΓP )
Jτ = τ + τK) such

that L (φp ∧ Jψ′ = ψ′⊗ψ′K∧
∧

τ∈ran(ΓP )
Jτ = τ + τK)�ψ = L (φp ∧ Jψ′ = ψ′⊗ψ′K∧∧

τ∈ran(ΓP )
Jτ = τ + τK)�ψ′ = Ψ, and therefore, by criterion 9, we get that L (φp ∧

Jψ′ = ψ′⊗ψ′K∧
∧

τ∈ran(ΓP )
Jτ = τ+τK∧Jif C(∗P ′, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K)

exists.
It should be obvious that in the above solution L (φ)�ψ = Ψ, and dom(Γ) =

{x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φ) �
ΓP (x).

[T-Res]: In this case P = (νx : T )P ′, we use τ to represent T in the constraint
generation, and we use [C-Res] to generate constraints, giving us ΓP , x : τ ` P ′  
ψp;φp and φ = φp ∧ Jψ′ = ψp÷xK∧ Jif C((νx : τ)P,ψ′) then Weak(ψ,ψ′) else ψ =
ψ′K.

From the induction hypothesis, since Γ + x : T,Ψ ` P and ΓP , x : τ ` P ′  
ψp;φp, we know that L (φp) is defined, L (φp)ψp � Ψ, and dom(Γ + x : T ) =
{x′ | x′ : τx ∈ ΓP , x : τ and L (φp) � τx 6= ε} and for all x′ ∈ dom(Γ + x : T ),
Γ + x : T (x′) = L (φp) � ΓP , x : τ(x′).

We will now prove that a solution L (φ) exists. We know from above that
L (φp) exists. Since ψ′ is fresh for φp there is no reason we cannot create a
solution L (φp) such that L (φp)�ψ′ = L (φp)�ψp÷ x, meaning that according
to criterion 17 L (φp∧Jψ′ = ψp÷xK) exists. Since ψ is fresh for φp∧Jψ′ = ψp÷xK,
we can create a solution L (φp ∧ Jψ′ = ψp ÷ xK) such that L (φp ∧ Jψ′ = ψp ÷
xK) � ψ = L (φp ∧ Jψ′ = ψp ÷ xK) � ψ′, meaning that according to criterion 19,
L (φp ∧ Jψ′ = ψp ÷ xK ∧ Jif C((νx : τ)P,ψ′) then Weak(ψ,ψ′) else ψ = ψ′K) exists.

It should be obvious that in the above solution L (φ)�ψ = Ψ, and dom(Γ) =
{x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φ) �
ΓP (x).
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[T-Ass]: In this case P = LΨ′M and we use [C-Ass] to generate constraints, giving us
ΓP ` Ψ′  ψa;φa and φ = φa ∧ Jif C(LΨM, ψa) then Weak(ψ,ψa) else ψ = ψaK.

From criterion 3, since Γ,Ψ ` Ψ′ and ΓP ` Ψ′  ψa;φa, we know that L (φa)
is defined, L (φa) � ψa = Ψ and dom(Γ) = {x | x : τx ∈ ΓP and L (φa) � τx 6= ε}
and for all x ∈ dom(Γ), Γ(x) = L (φa) � ΓP (x).

We now prove that L (φ) exists. We already know from above that L (φa)
exists. And since ψ is fresh fer φa, we can construct a solution L (φa) such
that L (φa) � ψ = L (φa) � ψa. This means that, according to criterion 19,
L (φa ∧ Jif C(LΨM, ψa) then Weak(ψ,ψa) else ψ = ψaK) exists.

It should be obvious that in the above solution L (φ)�ψ = Ψ, and dom(Γ) =
{x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φ) �
ΓP (x).

[T-Cas]: In this case P = case σ1 : P1, . . . , σk : Pk and we use [C-Cas] to generate
constraints, giving us ΓP ` σi  ψsi;φsi and ΓP ` Pi  ψpi;φpi for all i such
that 1 ≤ i ≤ k and φ =

∧
1≤i≤k

(φsi ∧ φpi) ∧ Jψs1 = · · · = ψsk = ψp1 = · · · = ψpk =

ψ′K ∧ Jif C(case σ1 : P1, . . . , σk : Pk, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K.
From the induction hypothesis and criterion 2, since Γ,Ψ ` σi, Γ,Ψ `

Pi 1 ≤ i ≤ k, ΓP ` σi  ψsi;φsi, and ΓP ` Pi  ψpi;φpi for all i
such that 1 ≤ i ≤ k, we get that L (φsi) is defined, L (φsi) � ψsi = Ψ and
dom(Γ) = {x | x : τx ∈ ΓP and L (φsi) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) =
L (φsi) � ΓP (x) and L (φpi) is defined, L (φpi) � ψpi = Ψ and dom(Γ) = {x | x :
τx ∈ ΓP and L (φpi) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φpi) � ΓP (x)
for all i such that 1 ≤ i ≤ k.

We now prove that there exists a solution L (φ). We know that L (φsi) and
L (φpi) exist for all i such that 1 ≤ i ≤ k. The only variables shared by these is
ran(ΓP ). But because dom(Γ) = {x | x : τx ∈ ΓP and L (φsi)�τx 6= ε}, for all x ∈
dom(Γ), Γ(x) = L (φsi)�ΓP (x), dom(Γ) = {x | x : τx ∈ ΓP and L (φpi)�τx 6= ε},
and for all x ∈ dom(Γ), Γ(x) = L (φpi) � ΓP (x) for all i such that 1 ≤ i ≤ k, we
know that

L (φsi) � ΓP (x) =
{

Γ(x) if x ∈ dom(Γ)
ε otherwise

and

L (φpi) � ΓP (x) =
{

Γ(x) if x ∈ dom(Γ)
ε otherwise

This means that for all x in dom(ΓP ), L (φs1)�ΓP (x) = · · · = L (φsk)�ΓP (x) =
L (φp1) � ΓP (x) = · · · = L (φpk) � ΓP (x). Therefore there must exist a solution
L (

∧
1≤i≤k

(φsi∧φpi)). Since L (φs1)�ψs1 = · · · = L (φsk)�ψsk = L (φp1)�ψp1 =

· · · = L (φpk) � ψpk there must, according to criterion 15, exist a solution
L (

∧
1≤i≤k

(φsi ∧ φpi) ∧ Jψs1 = · · · = ψsk = ψp1 = · · · = ψpk = ψ′K). Finally, since

ψ is fresh for
∧

1≤i≤k
(φsi ∧ φpi) ∧ Jψs1 = · · · = ψsk = ψp1 = · · · = ψpk = ψ′K,

there is not reason we cannot create a solution L (
∧

1≤i≤k
(φsi ∧ φpi) ∧ Jψs1 =

· · · = ψsk = ψp1 = · · · = ψpk = ψ′K) such that L (
∧

1≤i≤k
(φsi ∧ φpi) ∧ Jψs1 =

· · · = ψsk = ψp1 = · · · = ψpk = ψ′K) � ψ = L (
∧

1≤i≤k
(φsi ∧ φpi) ∧ Jψs1 = · · · =

ψsk = ψp1 = · · · = ψpk = ψ′K) � ψ′, meaning that according to criterion 19
L (

∧
1≤i≤k

(φsi ∧ φpi) ∧ Jψs1 = · · · = ψsk = ψp1 = · · · = ψpk = ψ′K ∧ Jif C(case σ1 :

P1, . . . , σk : Pk, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K) exists.
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It should be obvious that in the above solution L (φ)�ψ = Ψ, and dom(Γ) =
{x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) = L (φ) �
ΓP (x).

[T-Wea]: In this case we know that there must be another typing rule used on P
above [T-Weak], and we use the corresponding constraint generation rule to gener-
ate constraints. But instead of setting L (φ)�ψ = L (φ)�ψ′ like in the previous
cases, this time L (φ)�ψ = L (φ)�ψ′⊗Ψ2. Since ψ is never mentioned in any part
of φ other than Jif C(case σ1 : P1, . . . , σk : Pk, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K
and C(P,Ψ1), this is a solution L (ψ), and it should be obvious that in this
solution L (φ) � ψ = Ψ, and dom(Γ) = {x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and
for all x ∈ dom(Γ), Γ(x) = L (φ) � ΓP (x).

We then prove that if ΓP ` P  ψ;φ such that L (φ) is defined, L (φ) � ψ = Ψ,
and dom(Γ) = {x | x : τx ∈ ΓP and L (φ) � τx 6= ε} and for all x ∈ dom(Γ), Γ(x) =
L (φ) � ΓP (x), then Γ,Ψ ` P . We do this by induction in the constraint generation rules
of Table 4.2.1:

[C-In]: In this case we know that P = M(λ~x)N.P ′, ΓM ` M  τm;ψm;φm,
ΓN ` (λ~x)N  (~τ → τn);ψn;φn, Γ′P , ~x : ~τ ` P  ψp;φp, and φ = φm ∧
φn ∧ φp ∧ Jψ′ = ψm ⊗ ψn ⊗ ψpK ∧ Jτm "− τnK

∧
Γ(x)=τ1

ΓM (x)=τ2
ΓN (x)=τ3
ΓP (x)=τ4

Jτ1 = τ2 + τ3 + τ4K ∧

Jif C(M(λ~x)N..P, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K.
From the induction hypothesis and criterion 1 we get that, since L (φ) is also a

solution to φm, φn, and φp, we have a Γ′M , TM , and ΨM such that L (φ)�τm = TM ,
L (φ) � ψm = Ψm, dom(Γ′M ) = {x | x : τx ∈ ΓM and L (φ) � τx 6= ε}, for all
x ∈ dom(Γ′M ), Γ′M (x) = L (φ) � ΓM (x), and Γ′M ,ΨM ` M : T , we have a
Γ′N , ~T , TN and ΨN such that for all τi in ~τ L (φ) � τi = Ti, L (φ) � τn = TN ,
L (φ) � ψm = ΨN , dom(Γ′N ) = {x | x : τx ∈ ΓN and L (φ) � τx 6= ε}, for all
x ∈ dom(Γ′N ), Γ′N (x) = L (φ) � ΓN (x), and Γ′N ,ΨN ` (λ~x)N : ~T → TN , and we
have Γ′P ′ and ΨP ′ such that L (φ) � ψp = ΨP ′ , dom(Γ′P ′) = {x | x : τx ∈ ΓP ′ , ~x :
~T and L (φ)� τx 6= ε}, for all x ∈ dom(Γ′P ′), Γ′P ′(x) = L (φ)�ΓP ′ , ~x : ~T (x), and
Γ′P ′ ,Ψ′P ` P ′.

We know from criterion 4 that TM "− TN , from criterion 10 that L (φ)�ψ′ =
ΨM ⊗ΨN ⊗ΨP ′ , and from criterion 8 that for all x ∈ dom(ΓP ), L (φ)�ΓP (x) =
L (φ) � ΓM (x)⊗L (φ) � ΓN (x)⊗L (φ) � ΓP ′(x). This means that, according
to [C-In], Γ,L (φ)�ψ′ ` P and depending on whether L (φ)�ψ′ = L (φ)�ψ or
C(P,L (φ) � ψ′) and L (φ) � ψ = L (φ) � ψ′ ⊗Ψ1 we either use [T-Weak] or do
not. From this we can conclude that Γ,Ψ ` P .

[C-Out]: Similar to the case above
[C-Par]: In this case we know that P = P ′ | Q, ΓP ′ ,ΓQ ` P ′  ψp;φp, ΓQ,ΓP

′ `
Q  ψq;φq, F ′(P ′) = ΓP ′

, ψp, φp, F ′(Q) = ΓQ, ψq, φq, and φ = φp ∧ φq ∧ φp ∧
φq ∧ Jψ′ = ψ′p ⊗ ψ′qK ∧ Jψp = ψ′p ⊗ ψq ′K ∧ Jψq ′ ≤ ψqK ∧ Jψq = ψ′q ⊗ ψp′K ∧ Jψp′ ≤
ψpK

∧
ΓP (x)=τ1
ΓP ′ (x)=τ2
ΓQ(x)=τ3

Jτ1 = τ2 + τ3K ∧ Jif C(P | Q,ψ′) then Weak(ψ,ψ′) else ψ = ψ′K.

From the induction hypothesis we know that, since L (φ) is also a solution
to φp and φq, we have a Γ′P ′ , ΨP ′ , Γ′Q, and ΨQ such that L (φ) � ψp = ΨP , and
dom(Γ′P ′) = {x | x : τx ∈ ΓP ′ ,ΓQ and L (φ) � τx 6= ε}, for all x ∈ dom(Γ′P ′),
Γ′P ′(x) = L (φ)�ΓP ′ ,ΓQ(x), and Γ,Ψ ` P and L (φ)�ψq = ΨQ, and dom(Γ′Q) =
{x | x : τx ∈ ΓQ,ΓP

′ and L (φ) � τx 6= ε}, for all x ∈ dom(Γ′Q), Γ′Q(x) =
L (φ)�ΓQ,ΓP

′(x), and Γ,Ψ ` P . We now know from criterion 8, that for all x in
dom(ΓP ), L (φ)�ΓP (x) = L (φ)�ΓP ′(x)⊗L (φ)�ΓQ(x), from criterion 10 that
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L (φ)�ψ′ = L (φ)�ψ′p⊗L (φ)�ψ′q, L (φ)�ψp = L (φ)�ψ′p⊗L (φ)�ψq ′, and
L (φ)�ψq = L (φ)�ψ′q ⊗L (φ)�ψp′, and from criterion 12 that L (φ)�ψq ′ ≤
L (φ) � ψq and L (φ) � ψp′ ≤ L (φ) � ψp. This means that Γ,L (φ) � ψ′ ` P
and depending on whether L (φ) � ψ′ = L (φ) � ψ or C(P,L (φ) � ψ′) and
L (φ)�ψ = L (φ)�ψ′ ⊗Ψ1 we either use [T-Weak] or do not. From this we can
conclude that Γ,Ψ ` P .

[C-Rep]: In this case we know that P = ∗P ′, ΓP ′ ` P ′  ψp;φp, and φ = φp∧Jψ′ =
ψ′ ⊗ ψ′K ∧

∧
τ∈ran(ΓP ′ )

Jτ = τ + τK ∧ Jif C(∗P ′, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K.

From the induction hypothesis we know that since L (φ) is also a solution to
φp, we have a Γ′P ′ and Ψ′P ′ such that L (φ)�ψp = Ψ′P ′ , dom(Γ′P ′) = {x | x : τx ∈
ΓP ′ and L (φ)τx 6= ε}, for all x ∈ dom(Γ′P ′) we have Γ′P ′(x) = L (φ) � τx, and
finally Γ′P ′ ,Ψ′P ′ ` P ′. Moreover we know ΓP ′ = Γ′P ′ by the case. By criterion 8 we
know that for all x ∈ dom(ΓP ′) we have L (φ)�ΓP ′(x) = L (φ)�ΓP ′(x)+L (φ)�
ΓP ′(x) implying that ΓP ′ is unlimited. Moreover by criterion 10 we can conclude
that L (φ) � ψ′ = L (φ) � ψ′ ⊗L (φ) � ψ′ implying that ψ′ is idempotent. This,
according to [T-Rep] implies that Γ,L (φ) � ψ′ ` ∗P ′ and depending on whether
L (φ) � ψ′ = L (φ) � ψ or C(P,L (φ) � ψ′) and L (φ) � ψ = L (φ) � ψ′ ⊗Ψ1 we
either use [T-Wea] or do not. From this we can conclude that Γ,Ψ ` P .

[C-Res]: In this case we know that P = (νx : τ)P ′, ΓP ′ , x : τ ` P ′  ψp;φp, and
φ = φp ∧ Jψ′ = ψp ÷ xK ∧ Jif C((νx : τ)P ′, ψ′) then Weak(ψ,ψ′) else ψ = ψ′K.

From the induction hypothesis we know that since L (φ) is also a solution to
φp, we have a Γ′P ′ and Ψ′P ′ such that L (φ) � ψp = Ψ′P ′ , dom(Γ′P ′) = {y | y : τy ∈
ΓP ′ , x : τ and L (φ)τy 6= ε}, for all y ∈ dom(Γ′P ′) we have Γ′P ′(y) = L (φ) � τy,
and finally Γ′P ′ ,Ψ′P ′ ` P ′. Moreover we know ΓP ′ , x : τ = Γ′P ′ by the case. By
criterion 16 we know that L (φ) � ψ = L (φ) � ψp ÷ x. This, according to
[T-Res] implies that Γ, x : τL (φ) � ψ′ ` (νx : τ)P ′ and depending on whether
L (φ) � ψ′ = L (φ) � ψ or C(P,L (φ) � ψ′) and L (φ) � ψ = L (φ) � ψ′ ⊗Ψ1 we
either use [T-Wea] or do not. From this we can conclude that Γ,Ψ ` P .

[C-Ass]: Similar to the case above
[C-Cas]: Similar to the case above

B.2.2. Proof of Theorem 4.4.4.
If there exists a Γ and Ψ such that Γ,Ψ ` P then P terminates
To prove this we take inspiration from [3] and start by defining the weight of a process

in an environment, wt(Γ, P ). This refers to the vector 〈n1, n2, . . . , nk〉 where k is the
maximum n such that there exists an x such that x : Chn ∈ Γ and for each 1 ≤ i ≤ k there
are ni outputs on channels with type Chi inP that are not guarded by a replication. We
say that 〈n11, n21, . . . , nk1〉 < 〈n12, n22, . . . , nk2〉 if there exists an i ≤ k such that ni1 < ni2
and for all i < j ≤ k nj1 = nj2. wt(Γ, P ) is formally defined in Definition B.2.1, where we
use ~0 to denote the vector in which all ni = 0 and ~0i to denote the vector in which ni = 1
and all other nj = 0.

Definition B.2.1 (Weight (wt)). Given a Process P and an environment Γ we define
wt(Γ, P ) in the following way:

wt(Γ, L1M) = ~0 wt(Γ, a x.P ) = wt(Γ, P ) +~0n where Γ(a) = Chn
wt(Γ, ∗P ) = ~0 wt(Γ, P | Q) = wt(Γ, P ) + wt(Γ, Q)
wt(Γ, a(λ~x)x.P ) = wt(Γ, P ) wt(Γ, (νa : T )P ) = wt(Γ + a : T, P )

wt(Γ, case σ1 : P1, . . . , σk : Pk) = max(wt(Γ, P1), . . . , wt(Γ, Pk))

We then show that if Ψ � P
τ−→ P ′ and Γ,Ψ′ ` P then wt(Γ, P ) > wt(Γ, P ′). Since

replication, according to the definition of assertion compatibility, must be directly followed
by an input, after which all in- and output must have a lower level than that input, we
know that any for replicated process starting with an input on a channel with level i, the
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remainder of the process must have a lower weight than ~0i and we therefore have that if
P1

ax−→ P2, Γ1,Ψ1 ` P1, and Γ1(a) = Chn then wt(Γ1, P2) < wt(Γ1, P1)+~0n. And obviously

if P1
a(ν~b:~T )x−−−−−→ P2, Γ1,Ψ1 ` P1, and Γ1(a) = Chn then wt(Γ1, P2) ≤ wt(Γ1, P1) − ~0n.

Therefore if Ψ � P
τ−→ P ′ and Γ,Ψ′ ` P then wt(Γ, P ) > wt(Γ, P ′).

We now prove that if there exists a Γ and Ψ such that Γ,Ψ ` P then P terminates
through induction in wt(Γ, P ):

wt(Γ, P ) = ~0:: In this case the process has no output capabilities, and has therefore
terminated.

wt(Γ, P ) > ~0:: As we observed above, for all P ′ such that Ψ′�P
τ−→ P ′, wt(Γ, P ) >

wt(Γ, P ′). And since for this type system all Γ are unlimited, we know that
there exists a Ψ′′ such that Γ,Ψ′′ ` P ′, and we use the induction hypothesis to
determine that P ′ terminates, and therefore P terminates.
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