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Abstract 

Two efficient programs for optimizing perfect plastic steel plates and reinforced concrete 
plates, subjected to static, in-plane forces, are developed. The first program deals with op-
timization of steel plates by developing a submodeling technique with the purpose of veri-
fying critical stress spots caused by numerical errors in the finite element method. The 
submodeling approach is possible to conduct as a result of the implementation of an efficient 
self-developed script in ANSYS. The second program concerns load and material optimiza-
tion of reinforced concrete structures. The reinforced concrete program is capable of dealing 
with different plate geometries, based on the restriction of nonlinear yield criterions with 
regard to reinforced concrete and concentrated reinforcement. 

Both programs concern on determining the load bearing capacity of plate structures based 
on an interaction between a stress-based finite element method and the lower bound theo-
rem. Stress-based plate, beam, and bar elements are introduced as a part of the finite ele-
ment method. The lower bound limit analyses are conducted by nonlinear optimization 
algorithms based on the interior point method, which leads to a scalar load multiplier 𝛼 
defining the load bearing capacity. For enhanced optimization performance, the nonlinear 
yield criterions in both programs are reformulated to second-order cones.  
   Finally, the efficiency of the submodeling technique to verify critical stress spots is demon-
strated by means of an example of a steel plate subjected to in-plane forces resulting in a 
geometrical stress singularity.   
    The efficiency and versatility of the reinforced concrete program is presented by examples 
of an end wall and casted u-stirrups in the load optimization, whereas a material optimiza-
tion example resulting in material reduction is presented. When considering the end wall in 
the load optimization case, it is seen that a 32.5 % higher load multiplier is obtained in 
comparison to the stringer method when the load is applied in the reinforcement. For the 
load case where the load is applied in the concrete a 15.9 % higher load multiplier is obtained 
in comparison to the approach in [1], which is a result of the implementation of nonlinear 
yield criterions for both the plate element and reinforced bar elements. In the material 
optimization, the total reinforcement volume is reduced by 30 % when applying the limit 
load, and this shows the potential of the numerical approach in the thesis. 
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Notation 

Mathematical symbols 

[  ] Rectangular matrix or square matrix 
{ } Column vector, row vector 

Latin Symbols 

A area of element 
ai, bi coordinate difference in x- and y-direction for element side i 
B number of outer boundary sides 
C constraint matrix 
Cs strength vector 
d direction vector 
E number of elements 
fc Compressive strength in concrete 
fj yield condition 
ftx, fty tensile strength in concrete 
fy yield strength 
g constraint function 
h element equilibrium matrix 
H assembled system equilibrium matrix, Hessian of Lagrangian 
k strength parameter 
l, li length of element and element side i 
Mp plastic momentum of resistance 
N shape functions 
Np plastic resistance regarding normal forces 
px, py load intensity in the x- and y-direction 
q generalized external nodal forces 
Q element nodal force vector 
R system load vector 
Rc self-weight load vector 
S number of inner boundary sides 
S diagonal matrix containing slack variables 
s number of shared sides 
sj slack variable 
v displacements, (Lagrange multipliers) 
x x-coordinate 
y y-coordinate 
We external work 
Wi Internal work 



Notation  ix
 

 
 

t thickness 
T matrix containing partial derivatives of Lagrangian 
z diagonal matrix containing the Lagrange multipliers 

Greek Symbols 

𝛼 scalar load multiplier 
β	 system stress parameter vector 
β*	 optimized system stress parameter vector 
γ	 duality gap, difference between primal and dual solution 
ε	 strain 
λ	 strain rate of each plastic strain (Lagrange multiplier) 
𝜃	 rotational angle 
μ	 barrier parameter 
Φ reinforcement degree 
σx, σy, τ in-plane stresses 

σ1, σ2 principal stresses 

ࣦ  Lagrange function 
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1. Introduction 
Reinforced concrete is the most widely used structural material in the world. A lot of con-
structions within different fields of civil engineering is nowadays build by use of reinforced 
concrete, and two typical examples of application are shown in Figure 1.1 

  

(a) Bridge pier. [2] (b) Axel towers in Copenhagen. [3] 

Figure 1.1. Examples of application of reinforced concrete. 

Different theories for mathematically deriving the strength of reinforced concrete plates have 
been presented during the history, including the theory of plasticity. Plasticity is a widely 
approved principle regarding the design of structures, especially when it comes to steel and 
reinforced concrete structures as they possess ductile properties. By utilizing the theory of 
plasticity in structural analysis, better proportioned and more economical structures can be 
designed as the theory represents reality better than the conventional elastic method [4]. 
Within the field of plasticity, the assumption of perfect plastic material behaviour has often 
been used in combination with the extremum principles in order to obtain the ultimate load 
bearing capacity of steel and reinforced concrete structures. When considering a perfect 
plastic material model, the assumption of sufficient deformation capabilities in the structure 
is valid. This assumption is necessary in order to obtain stress redistributions. The extre-
mum principles are used in both analytical and numerical mathematics, and especially nu-
merical limit state analyses have gained more attention over the last decades as a result of 
improved computers, and the invention of new optimization methods. Thus, nowadays 
highly complex structures are solved efficiently based on numerical methods. The applica-
tion of a perfect plastic material model for assessing the load bearing capacity of reinforced 
concrete plates has been treated by numerous engineers, including M.P. Nielsen, and the 
approach is widely accepted since perfect plasticity is also as a part of the Eurocodes [5]. 

In a finite element context, it has been more challenging to implement plasticity models of 
reinforced concrete plates in comparison to reinforced concrete slabs because the contribu-
tion from the concentrated reinforcement has to be included [1]. Different methods, based 
on the extremum principles, for obtaining the load bearing capacity of plates have been 
utilized, and among these is the widely used stringer method [6]. The stringer method is 
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characterized as being an idealized representation of the concentrated reinforcement [6]. In 
the stringer method, the plate is defined as a rectangular shear panel, while the orthogonal 
concentrated reinforcement is capable of obtaining normal stresses. The demand for rectan-
gular elements and the assumption of a pure shear stress state in the shear panel makes the 
stringer method disadvantageous for complex problems. 

An enhanced numerical method for conducting optimization of reinforced concrete plates is 
presented in [1]. The method is seen as a more efficient alternative to the stringer method, 
and it has proven to be more advantageous in comparison to the stringer method as the 
assumption of a pure shear stress state in the shear panels is not needed. Thereby, a much 
more refined stress distribution can be obtained, and a higher load can be applied in the 
design. The approach has proven to be more efficient than the stringer method regarding 
both the ultimate load bearing capacity and material design. However, in [1] a linear pro-
gramming approach has been presented, which is not preferable as the yield criterions are 
convex. This makes room for improvement of the method as both the yield criterion for 
concrete and reinforcement, respectively, is linearized. By implementing nonlinear yield cri-
terions in the approach, a higher load bearing capacity and more economical structures can 
be obtained. The advantages in our approach is the implementation of nonlinear criterions 
for both the reinforced concrete and concentrated reinforcement bar, which makes it possible 
to obtain a higher load bearing capacity. Furthermore, the nonlinear yield criterions are 
reformulated to second-order cones, and thereby a time-efficient optimization is obtained.  

The presented theory in [1] for optimization of reinforced concrete plates give rise to a wider 
application. By excluding the concentrated reinforcement in the formulation, and by imple-
menting von Mises yield criterion in the method as a substitution to M.P. Nielsen yield 
criterion, it is possible to develop an algorithm for optimizing steel plates defined by trian-
gular, stress-based elements. This leads to a program capable of verifying critical stress spots 
in two-dimensional plates. In the finite element method, it is frequently seen that fulfilling 
the ultimate limit state becomes a problem when designing static loaded structures by the 
theory of elasticity [1].  

 

Figure 1.2. Example of a plane structure with a critical stress singularity spot. 
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More specific, numerical errors in terms of stress singularity spots (see Figure 1.2) often 
induce stresses exceeding the elastic load bearing capacity. As a consequence, the verification 
of critical stress spots often has to be conducted by means of a nonlinear plasticity analysis 
of the entire structure, which is both time-demanding, in terms of iterations and model size, 
and furthermore unsafe. To accommodate this problem, the study aims for an efficient 
method to verify critical stress spots by the theory of plasticity. The objective of the calcu-
lation is to efficiently provide a scalar load multiplier that defines the optimal safety level. 
The advantage of the approach in this study is that only a subarea is considered and that 
the solver not only gives a lower bound solution, but it calculates the optimal stress distri-
bution. Thereby, it is possible to determine whether critical stress spots lead to structural 
collapse. 

For solving numerical plate problems with a perfect plastic material model in this study, 
the lower bound method is implemented. The lower bound method has several advantages 
over the upper bound method, including the fact that the collapse load is on the safe side. 
The element formulation is stress-based in contrast to elastic finite element formulations 
that are displacement based. A linear stress field is described in the calculations, which is 
based on a finite element discretization where each element has a certain number of stress 
parameters. As only statically underdetermined structures are considered, it gives rise to 
stress redistributions at yielding spots in the structure. In the lower bound method, it cor-
responds to that only a part of the stress parameters has to secure equilibrium, whereas the 
rest of the stress parameters are used to redistribute the load in order to obtain the maxi-
mum load bearing capacity. The calculations are based on nonlinear optimization program-
ming since M.P. Nielsen yield criterion and von Mises yield criterion are utilized.  

Thereby, the focus of the thesis is to develop a numerical tool, which enables the engineer 
to efficiently conduct verification of critical stress spots in static loaded steel plates. Sec-
ondarily, the aim is to develop an efficient program for reinforced concrete plates by imple-
menting nonlinear yield criterions. 

1.1 Material Models  

Through centuries various loading scenarios have been used to examine the response of 
materials. The purpose was to set up mathematical material models that could forecast the 
material response. In this thesis two materials are considered; namely, concrete and steel.  

1.1.1 Concrete 

Concrete is a composite material as it consists of at least two materials; namely, cement 
paste and aggregate particles. The strength and properties of concrete is obtained by mixing 
aggregate particles with cement and water, which results in a hydration process. A stiffness 
difference appears in concrete as aggregate typically has a larger stiffness compared to ce-
ment paste. This means that the stress field becomes complex when a concrete structure is 
subjected to loading. As a result of the material compound, stress concentrations occur at 
the interface between the aggregate and cement paste, which leads to formation of cracks. 
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Typically, the cracks are so small and occur at stresses much lower than the compressive 
concrete strength. The internal cracks are so small that they cannot be seen and they are 
often referred to as microcracks [7]. As a result of crack formation, concrete cannot be 
considered as an isotropic material in a mechanical point of view. 

 

Figure 1.3. Stress-strain curve for concrete subjected to uni-axial loading. Illustration from [7]. 

An example of a stress-strain curve for a concrete structure subjected to uni-axial loading 
is shown in Figure 1.3. From the figure it can be seen that the compressive strength is much 
higher in comparison to the tensile strength. The first part in the compressive zone (𝜎 < 0), 
that is going from O to A, is the elastic region, and the area beneath is the elastic energy 
absorbed in the material. When a structure is loaded beyond the elastic limit, the material 
is subjected to irreversible deformation, which is referred as plastic deformations in this 
thesis. A hardening process takes place in the transition from the elastic limit at point A to 
the peak load at point B. After the peak, the structure undergoes a softening process, which 
is a results of strength weakening because of damages inside the structure. The last stage in 
the stress-strain curve is point C where the material undergoes global crushing and failure 
has occurred [7]. When concrete is subjected to tension, a similar material behaviour is seen, 
see Figure 1.3. The tensile strength of concrete is often neglected as it is highly dependent 
on the crack formation which makes it unreliable. Thus, steel reinforcement is typically 
casted into the concrete to establish a reliable tensile strength in the structure. When com-
bining the two materials it is often referred to as a reinforced concrete, and both a ductile 
compressive and tensile strength is obtained. In both tension and compression, the concrete 
structure will absorb energy corresponding to the area under the stress-strain curve. 

1.1.2 Steel 

Steel is a common material in many structural designs, and it is characterized by having a 
ductile behaviour in both compression and tension. The first part of the stress-strain curve 
describes the elastic progression until reaching the elastic limit, see Figure 1.4.  



1.2  Applied Material Models  5
 

 
 

 

Figure 1.4. Stress-strain for steel subjected to uni-axial loading. 

When exceeding the elastic limit, steel shows plastic properties and irreversible deformations 
are obtained. Steel is characterized by the ability to increase the strain level even though 
the maximum level of stress is achieved, which is also illustrated in the figure above. 

1.2 Applied Material Models 

As the actual material behaviour is complex to describe mathematically, an idealized model 
is used in order to formulate the constitutive relations elaborated in chapter 2. Thus, the 
aim in this section is to describe and determine the material models appealing to the limit 
state analyses in this thesis. 

When optimizing a limit state problem, the basic concept is to estimate the most optimal 
solution that satisfies a number of constraints. For that purpose, it is often preferable to 
make an idealization of the actual material models. The idealization is achieved by a line-
arization of the plastic region, and it is especially convenient in a numerical perspective 
where the implementation is more straightforward compared to a full nonlinear stress-strain 
correlation. Similarly, the numerical approach is more time-efficient as hardening is not an 
issue, which is a great advantage in large scale problems. In this thesis it is chosen to idealize 
the material models for both concrete and steel, such that a perfect plastic material behav-
iour is obtained, see Figure 1.5. 

 

Figure 1.5. Perfect plastic material models for concrete and steel, respectively. 
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The perfect plastic material model is without question a coarse idealization in some respect. 
First of all, no information about the deformation is known before reaching the yield value. 
Secondly, the unloading scenario corresponds to linear elastic progression. Thus, the mate-
rial obtains the same stress level for different strain levels, which implies that the cumulative 
strain is unknown when loading and unloading the structure into the plastic region more 
than once. The potential to allow deformations going towards infinity is therefore present, 
why the perfect plastic material model is normally only used to examine the ultimate limit 
state where the deformational influence is of no interest or importance. In reality, however, 
testing have proven the perfect plastic material model as being well suited for both steel 
and reinforced concrete structures in the ultimate limit state, why this model in overall is 
seen as reasonable for the limit analyses treated in the thesis. Yet, an effective strength is 
normally added to reinforced concrete structures, which is also the case in this thesis. An 
effective strength is often added to the concrete in order to use the perfect plastic material 
model. The effective strength is a reduction factor, which downsizes the load bearing capac-
ity, and it is found by experiments that are hold against the perfect plastic material model. 
The primary reason for using the factor is to account for the deviation between the actual 
material model and the perfect plastic model. Similarly, the concrete strength is affected by 
cracks, which is also included in this factor. This implies a different reduction factor as each 
concrete strength various, see e.g. [8].  

1.3 Scope of this Study 

The scope of the thesis is to develop two engineering programs; the first program should 
enable engineers to quickly determine whether stress singularities in two-dimensional steel 
plates lead to structural collapse, whereas the other program should be capable of conduct-
ing load and material optimization of reinforced concrete plates. Both programs are based 
on the lower bound theorem. 

In the first program the aim is to set-up a stress-based finite element model based on a 
submodeling technique and the lower bound theorem. The convex optimization is solved by 
an interior point algorithm, and a load bearing capacity is obtained. On behalves of the load 
bearing capacity it is possible to conclude whether the most critical stress state in the 
submodel is allowable. 

The second program is a further development of the first program since it uses the same 
plate element formulation. By including bar and beam elements, the aim is to be capable of 
efficiently optimizing reinforced concrete structures with regard to both material and load 
optimization. 
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1.4 Overview of the Thesis 

This thesis describes the theory and application of both steel plates and reinforced concrete 
plates. The application for steel plates describes the problem posed when critical stress spots 
appear in plane structures, while the theory of reinforced concrete plates concerns load and 
material optimization. 

The theory and presumptions are presented from chapter 1 to chapter 5, while the applica-
tion of the theory is described from chapter 6 to chapter 8. 

This chapter describes the issue regarding plate structures in a numerical context. The 
actual material response when subjecting steel and reinforced concrete to loading is de-
scribed, and the chapter is concluded by describing different methods for conducting limit 
analyses.   

Chapter 2 introduces the extremum principles, which forms the basis for optimizing struc-
tures in this thesis. Furthermore, the yield conditions and the lower bound formulation are 
presented, which are fundamental for the work in the later chapters. Alternative approaches 
based on the extremum principles are also evident. 

Chapters 3 describes the finite element formulation of plate, beam, and bar elements, and 
it gives an introduction to the difference between the stiffness-based finite element method 
and the stress-based finite element method with regard to the lower bound formulation. 
Furthermore, an explanation of the equilibrium equations is given, and the assembling prin-
ciple is illustrated. 

Chapter 4 deals with the yield criterion for steel plates, reinforced concrete, and concen-
trated reinforcement, respectively. The expression for the yield criterions are later formu-
lated in terms of constraints in the optimization in order to obtain an allowable lower bound 
solution.  

Chapter 5 initiates with an explanation of the differences between the simplex method and 
interior point method, and the reason for choosing the interior point method is given. Fur-
thermore, the theory behind the path following primal-dual interior point method is derived. 
Finally, the implementation of the lower bound theorem and finite element approach in 
fmincon and Mosek is described. 

Chapter 6 describes the procedure and theory of the developed program for optimization of 
steel plates by a submodeling approach. The chapter is ended with an example of applica-
tion.  

Chapter 7 and 8 focuses on reinforced concrete plates with regard of load and material 
optimization. In both chapters the application of the program is presented by examples.    
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2. Theorems of Limit State Analysis 

2.1 Extremum Principles 

A lot of studies have taken place in the field of limit state analysis during the last century 
in order to assess the load bearing capacity of structures [7]. Common for most of the studies 
is that they are based on the extremum principles which were formulated by A. Gvozdev in 
1936. The extremum principles assume a perfect plastic material model, and this leads to 
three theorems, which are described in the followings, see Figure 2.1. 

 

Figure 2.1. Extremum principles in relation to the fundamental conditions. 

2.1.1 Lower Bound Theorem 

The lower bound theorem is restricted by static conditions and physical conditions, see 
Figure 2.1. An admissible lower bound solution has to satisfy both the static and physical 
conditions, and this leads to the following lower bound sentence 

 The structure will be able to sustain a load if there exists a stress field 
that is in equilibrium with the load, satisfies all boundary conditions, and 
is not violating the yield criterion at any point in the structure. 
 

 

When statically indeterminate structures are considered, multiple solutions exist and 
thereby multiple stress fields that satisfies the conditions. This gives rise to an optimization 
problem where the purpose is to find the largest possible collapse load. 

In the lower bound theorem, it is assumed that the structure naturally finds the optimal 
stress distribution. This implies the utmost load bearing capacity, even though the most 
optimal stress field might not be chosen. The assumption for allowing stress redistributions 
is an infinite strain capacity, why the lower bound theorem excludes itself from kinematic 
conditions and the size of the deformations. The argument for neglecting the deformations 
is often related to designs where structures are designed with respect to the ultimate limit 
state. This entails that plastic deformations appear rarely. However, using the lower bound 
method to estimate the collapse load for the ultimate limit state always leads to a load equal 
to or lower than the strength of the given structure [9]. This is simply illustrated in 0, where 
a static indeterminate beam system is calculated by means of the lower bound method. 
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From this it can be seen that only optimum (the highest load) corresponds to the collapse 
load. 

2.1.2 Upper Bound Theorem 

The upper bound theorem is based on kinematic collapse mechanisms and is restricted by 
kinematic and physical conditions, see Figure 2.1. The upper bound sentence reads  

 At all possible kinematic collapse mechanisms, the internal plastic work 
will be higher than the external work caused by the actual collapse load. 
 

 

From the sentence it can be understood that the most critical collapse mechanism is always 
found among all possible collapse mechanisms. [9] In the upper bound theory, the collapse 
mechanism resulting in the smallest possible collapse load is to be found. That leads to an 
optimization problem just as it is the case in the lower bound theorem. The upper bound 
method is thus consistently unsafe when estimating the load bearing capacity since there is 
a risk of overestimating the collapse load if the proper collapse mechanism isn’t determined. 
The upper bound theorem has a great advantage in simple hand calculations since it is often 
easy to imagine the collapse mechanisms. In contrast to the upper bound theorem, the stress 
distribution in the lower bound method is much more difficult to predict as it involves large 
optimization problems [6]. However, the upper bound method does not appeal for finite 
element implementation due to time-consuming computational costs.  

The indeterminate beam from the example in Appendix A: is likewise calculated by the 
upper bound method, and it is seen that only one solution corresponds to the lower bound 
solution. 

2.1.3  Exact Solution 

In order to obtain an exact solution in a structural term, the three fundamental conditions 
illustrated in Figure 2.1 must be satisfied. Regarding limit analysis, this implies that an 
exact solution is only obtained if the lower and upper bound solution corresponds to each 
other. This is due to the conditional difference of each approach, which only together satisfy 
all three conditions. 

The exact solution can thus be understood uniquely, since only one lower and upper bound 
solution is identical. This is also illustrated in the figure below, where the purpose is to find 
the collapse load. 
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Figure 2.2. Illustration of lower and upper bound solutions. 

As earlier mentioned the lower bound solution provides estimates of a collapse load that is 
smaller than or equal to the actual load bearing capacity, while the upper bound solution is 
vice versa. However, in practice the exact solution is not always accessible by the optimiza-
tion method applied to the problem. A duality gap can reveal the difference between the 
lower and upper bound solution and thereby the error of an accepted solution. This is further 
elaborated when considering the actual optimization algorithm later in this thesis. 

2.2 Existing Limit State Analysis Approaches 

Different approaches, based on the extremum principles, have been developed in order to 
predict the response of structures. Among these approaches are the strut-and-tie model, 
yield line method, and the stringer Method.   

The Strut-and-Tie method dates back to 1922 [10], and it is based on the lower bound 
theorem. In the strut-and-tie method the compression bars (struts) are connected to the 
tension bars (tie) in order to redistribute the load. An optimization problem regarding the 
connection of the struts and ties has to be maximized in order to obtain the collapse load. 

 

Figure 2.3. Example of a Strut-and-Tie model. Figure 2.4. Example of a Stringer model. 
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The yield-line theory, based on the upper bound theorem, was formulated by Johansen in 
1943 [11] [12]. In manual limit state analysis, the method is widely used for estimating the 
collapse load of slabs, even though it can lead to an underestimation of the load bearing 
capacity. The yield-line method can be used for calculating the collapse load of both slabs 
subjected to bending, and plates subjected to in-plane forces. Despite the wide application 
in manual limit state analysis, the method isn’t suited for finite element implementation. 

The stringer method was formulated by Lundgren in 1949, and it is based on the lower 
bound theorem [13]. In the stringer method, the rectangular fields are defined as shear 
elements, while the stringers (orthogonal concentrated reinforcement) are capable of carry-
ing normal forces. The demand for rectangular shear panels and the assumption of a pure 
shear stress state leads to an underestimating of the collapse load. Furthermore, complex 
models can’t be treated due to the geometrical restrictions in the method. An example of a 
structure modelled by the stringer method is illustrated in Figure 2.4. 

A numerical approach for optimizing plates subjected to in-plane forces was proposed in [1]. 
The approach is based on the lower bound theorem and it is considered as an enhanced 
strut-and-tie method. In the approach, the stress field is approximated in terms of triangular 
fields. Their approach has an advantage over the stringer method as the triangular stress 
fields are capable of carrying both normal stresses and shear stresses, whereas it is only 
possible to carry shear stresses in the stringer method. Another advantage of the method is 
the possibility to handle complex structures as the geometry doesn’t necessarily has to be 
of rectangular shape. The method in [1] is also emphasized in this thesis. 

2.3 Yield Conditions 

A yield criterion is a mathematical model that defines the transition from elastic to plastic 
material behaviour. The yield condition is also called a yield surface since it makes a convex 
boundary as seen in Figure 2.5. 

 𝑓(𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦) = 0   ∨ 		 𝑓(𝜎1, 𝜎2) = 0 , (2.1) 

When assuming a perfect plastic material behaviour, it leads to a yield criterion with a non-
expanding boundary. The yield criterion consists of three stress components for plane struc-
tures as indicated in Eq. (2.1).  

The yield criterion has a significant role when the extremum principles are considered in 
the limit analysis. In the lower bound limit analysis, the yield criterion is used to tell whether 
a given stress state is safe. A model is said to have an allowable stress state if all stresses 
within the model lies inside or on the yield surface, i.e. 𝑓(𝜎) ≤ 0. A visualization of the 
general considerations can be seen in the figure below. 
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Figure 2.5. General yield condition by principal stresses. 

When loading the construction into the plastic region the stress state can solely be modified 
by a stress rearrangement leading to a stress point located along or inside the yield surface. 
A load normally resulting in hardening will therefore not expand the yield surface and the 
stress point must for this reason still be located at the yield boundary. Although no expan-
sion of the yield surface can occur due to the perfect plastic material behaviour, the stress 
point will still relocate when increasing the load. 

In the upper bound theorem, the yield condition is used to describe the collapse mechanism 
for a given strain field. The plastic strain 𝜀𝑝 is expressed by von Mises flow rule where the 
strain state is described as an outward normal to the yield surface [7] 

 𝜀𝑖𝑗
𝑝 = 𝜆

𝜕𝑓
𝜕𝜎𝑖𝑗

 , (2.2) 

where the plastic multiplier ߣ has to be greater or equal to zero, i.e. 𝜆 ≥ 0. The geometrical 
interpretation of the strain vector is seen in the figure below. 

 

Figure 2.6. Flow rule. 

Most yield criterions in engineering are based on empirical test that are conducted based on 
hypotheses. 
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2.4 Lower Bound Formulation 

The lower bound method is to be applied in the limit state analysis, where the aim is to 
determine an optimized stress distribution by maximizing the intensity of the predefined 
external load. In the lower bound method two conditions have to be satisfied in order to 
obtain a feasible stress state 

 Equilibriums equations (Local equilibrium and equilibrium of stresses across ele-
ment boundaries) 

 Yield criterion 

In this case the problem is accommodated by the finite element method with stress-based 
elements. Stress-based elements are used instead of the traditional displacement-based ele-
ments since the problem is formulated as a lower bound method. In the finite element 
method, the discretized equilibrium equations are written as 

 𝑯𝛽 = 𝑹𝒄 + 𝛼𝑹	, (2.3) 

where 𝛽 is a column vector containing the variables and 𝑯 is the global, assembled equilib-
rium matrix. The external load is divided into two parts; namely, a constant part 𝑅𝑐 de-
scribing the self-weight of the structure and a part 𝑅 that is proportional to the scalar load 
multiplier 𝛼.	The global equilibrium matrix 𝐻 consists of contributions from all individual 
elements of a model. When the global equilibrium matrix 𝑯 is set up, the number of stress 
parameters should be higher than the number of equilibrium equations, which results in a 
statically underdetermined structure. 

The discretized equilibrium equations in Eq. (2.3) can be rewritten to Eq. (2.4), which is 
later written in a more conventional way 

 𝑯𝛽 − 𝛼𝑹 = 𝑹𝒄 	. (2.4) 

Two types of constraints have to be set up. The first set of constraints has the purpose of 
satisfying equilibrium equations, whereas the second set of constraints has to secure that 
the yield criterion is not violated. The constraint securing that the yield criterion is not 
violated has to be checked in a number of points in each element. For all elements in a 
structure, the yield criterion can be expressed as 

 𝑓𝑗(𝛽, 𝑘) ≤ 0, 𝑗 = 1,2,… , 𝑝 , (2.5) 

where k is the strength parameter. The nonlinear optimization problem becomes a maximi-
zation problem since the lower bound method is considered. 
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2.4.1 Load Optimization 

Load optimization has to be conducted for both the steel plates and the reinforced concrete 
plates. A scalar load multiplier ߙ has to be determined, which describes the optimal stress 
distribution in the structure. 

The nonlinear lower bound load optimization problem is expressed as  

 

maximize:     𝛼 

subject to:   𝑯𝛽 − 𝛼𝑹 = 𝑹𝒄

              𝑓𝑗(𝛽, 𝑘) ≤ 0, 𝑗 = 1,2,… , 𝑝 

(2.6) 

As it is expressed in Eq. (2.6), the maximization problem is subjected to both equality 
constraints, since the elements are formulated in terms of equilibrium equations, and ine-
quality constraint in terms of the yield criterions. 

By solving the maximization problem in Eq. (2.6) with the corresponding linear and non-
linear constraints, it is possible to obtain the optimal value for the load multiplier 𝛼 and 
the corresponding stress parameters 𝛽. 

In many cases it is convenient to convert the inequality constraints to equality constraints. 
This is done by implementing slack variables, which only takes positive values. When adding 
slack variables, the maximization problem in Eq. (2.6) takes the following form 

 

maximize:     𝛼 

subject to:   𝑯𝛽 − 𝛼𝑹 = 𝑹𝒄

               𝑓𝑗(𝛽) + 𝑠𝑗 = 0, 𝑠𝑗 ≥ 0, 𝑗 = 1,2,… , 𝑝	. 

(2.7) 

This maximization problem has to be solved in order to determine the scalar load multiplier 
and thereby the collapse load. In the mathematical optimization theory, the primal problem 
in Eq. (2.7) is reformulated in order to obtain the dual problem. The primal and dual 
problem can be related to lower and upper bound theorem, and thereby the solution can be 
obtained in terms of a gap. The mathematical expressions of the primal-dual formulation 
for load optimization of steel plates is derived in Appendix B:. 

2.4.2 Material Optimization of Reinforced Concrete Plates 

Material optimization has to be conducted for the reinforced concrete plate. The objective 
is to minimize the total amount of reinforcement volume in order to obtain a more 
economically advantegous plate structure. Similar to the load optimization, a scalar has to 
be determined, which in the case of material optimization is the sum of multiplie material 
parameters. The formulation of the material optimization, including slack variables, can be 
expressed as 
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minimize   {0𝑇 … 0𝑇 𝒘𝑇 }

⎩{
⎨
{⎧

𝛽1

⋮
𝛽𝑛

𝒅 ⎭}
⎬
}⎫

 

subject to   𝑯𝛽 = 𝑅 

                    𝑓𝑗(𝛽, 𝑑) + 𝑠𝑗 = 0, 𝑠𝑗 ≥ 0, 𝑗 = 1,2,… , 𝑝	 

                     𝑑 > 0 . 

(2.8) 

The minimization problem is subjected to both equality constraints and inequality 
constraints, where the objective is to minimize the material parameter d, which is a column 
vector consisting of the material parameters. The material parameters d are positive since 
a strength parameter by nature can’t be negative. 𝒘 is a row vector containing the material 
weighting factors, which include the relative cost of of the different material groups. The 
equality constraints ensure equilibrium between the internal work and external work. In the 
material optimization approach, the stress variables are fixed with regard to the external 
work 𝑅 in contrast to the load optimization. The inequality constraints are a funtion of 
both the stess variables and the material parameters. The application of the theory is 
presented later in the thesis by means of an example.  
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3. Finite Element Formulation 
The lower bound formulation is accommodated by using stress-based elements as a part of 
an equilibrium based finite element method. In equilibrium based finite element methods, 
the stress field is approximated and not the structural displacement field as is the case in 
displacement-based finite element methods. Stress-based elements are used instead of dis-
placement-based elements even though displacement-based elements are the most widely 
used elements within the finite element method today. The advantage of using stress-based 
elements in the limit state analysis is that the formulation of the extremum principles is 
more direct [7].  

In the optimization of steel plates only the linear triangle plate element is considered, 
whereas a combination of the plate element, bar element, and beam element is considered 
when optimizing reinforced concrete plates. 

 

Figure 3.1. Equilibrium based triangle element, bar element, and beam element. 

In the optimization of reinforced concrete, a formulation of a reinforcing bar (rebar) element 
is introduced as a tension device for concrete plates. In order to compensate for the relatively 
weak concrete tensile strength, rebars are casted into concrete to obtain a tensile strength 
capacity. Since the material behavior is assumed perfect plastic, the rebars only guarantee 
a resistance needed for the design load, whereas the size of the deformations is unknown.  

In order to set up the global equilibrium matrix 𝑯 of a structure it is necessary to express 
the equilibrium equations for a single element. In Eq. (3.1) the equilibrium equations are 
given in a compact form as 

 𝒒 = 𝒉𝛽 , (3.1) 
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where 𝒉 is the local equilibrium matrix for an element, 𝛽 is a vector containing the variables, 
and 𝒒 are the generalized nodal forces. The nodal forces can either be stresses, forces or 
moments. [1] 

When each local equilibrium element 𝒉 of a structure is formulated, it is necessary to as-
semble each element 𝒉 into the global equilibrium matrix 𝑯 just as it is the case in the 
finite element method. The assembly procedure is described later in this chapter. 

3.1 Triangle Plate Element 

A stress-based triangle plate element is formulated, and it is to be used for optimizing both 
steel plates and reinforced concrete plates. The stress state of each triangular plate element 
is described by the stresses at each element node. In contrast to the displacement-based 
methods, the nodal values are unique to each element, which means that stresses don’t 
necessarily take the same value at the same node for the adjacent element. For linear stress 
elements the admissible stress field is secured at two points on each element side. If higher 
order stress-based elements were used, an additional node should have been included along 
each element side. Furthermore, the internal equilibrium of each element must be satisfied 
in order to obtain a statically admissible solution. This is done by satisfying the equilibrium 
equations in a number of points lying within each element. For the linear stress triangle, 
the internal equilibrium equations have to be satisfied at a single point in each element as 
shown in Figure 3.1.  

The stress variation in the element is chosen to be linear, which means that the stresses 
within the element are interpolated linearly between the nodes. Each plate element consists 
of three stress parameters 𝜎𝑥, 𝜎𝑦, and 𝜏  at each node, and thereby a total number of nine 
stress parameters for each element is obtained, see Figure 3.2. 

 

Figure 3.2. Stress parameters for a plate element. 

The equilibrium equation from Eq. (3.1) is formulated for a plate element in terms of the 
following compact form 



3.1  Triangle Plate Element  19
 

 
 

 𝒒𝒑𝒍𝒂𝒕𝒆 = 𝒉𝒑𝒍𝒂𝒕𝒆𝜷𝒑𝒍𝒂𝒕𝒆. (3.2) 

The formulation in Eq. (3.2) can be extended to the following matrix form 

 

 

⎩{
⎨
{⎧

𝒒𝟏
𝒒𝟐
𝒒𝟑
𝒒𝒄⎭}

⎬
}⎫

=

⎣
⎢⎢
⎡

𝒉𝟏  
 𝒉𝟐
  𝒉𝟑

𝒉𝒄𝟏 𝒉𝒄𝟐 𝒉𝒄𝟑⎦
⎥⎥
⎤

⎩{
⎨
{⎧𝛽1

𝛽2
𝛽3⎭}

⎬
}⎫
, (3.3) 

where the subscripts 1, 2 and 3 refer to the nodes shown in Figure 3.2, and the letter 𝑐 re-
fers to the center of the element. 

The local equilibrium matrix hplate in Eq. (3.3) is a 14x9 matrix, and it has the purpose of 
satisfying all equilibrium equations, which is fundamental in the lower bound method.      
     Some of the equilibrium equations secure continuity in the stresses across element sides, 
whereas other has the purpose of securing internal element equilibrium [1]. The first twelve 
rows in the equilibrium matrix h has the purpose of securing continuity in the stresses across 
element sides, whereas the last two rows secure equilibrium between forces from intersecting 
line elements, also called internal element equilibrium. 

 

Figure 3.3. Generalized nodal forces for the stress-based plate element. 

3.1.1 Internal Element Equilibrium 

The three stress variables at each element node, as seen in Figure 3.2, has to fulfil internal 
equilibrium in the x- and y-direction as given in Eq. (3.4). 

 

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
= 𝑞𝑥 

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
= 𝑞𝑦	, 

(3.4) 
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where 𝑞𝑥 and 𝑞𝑦 are the distributed loads per unit area (body forces) in the gravitational 
direction. Since the stresses are assumed to vary linearly across the element, the stresses 
throughout the element are expressed by linear shape functions [14] 

 𝜎𝑥 = ∑ 𝑁𝑖𝜎𝑥𝑖

3

𝑖=1
, 𝜎𝑦 = ∑ 𝑁𝑖𝜎𝑦𝑖

3

𝑖=1
, 𝜏𝑥𝑦 = ∑ 𝑁𝑖𝜏𝑥𝑖

3

𝑖=1
, (3.5) 

where 𝜎𝑥𝑖, 𝜎𝑦𝑖 and 𝜏𝑥𝑦𝑖 are the stress parameters, and 𝑁𝑖 are the linear shape functions. The 
generalized nodal forces 𝑞𝑐 corresponding to local equilibrium consists of contributions from 
each element node [1] 

 𝑞𝑐 = {
𝑞𝑥
𝑞𝑦

} = 𝑞𝑐1 + 𝑞𝑐2 + 𝑞𝑐3 . (3.6) 

The stress contribution from each corner is formulated in both the x- and y-direction by 
substituting Eq. (3.5) into Eq. (3.4), and thereby the following expression is established for 
the generalized nodal forces  

 𝑞𝑐𝑖 = {
0
𝑞𝑦

} =

⎣
⎢⎢
⎡

𝑏𝑖
2𝐴

0 −
𝑎𝑖
2𝐴

0 −
𝑎𝑖
2𝐴

𝑏𝑖
2𝐴 ⎦

⎥⎥
⎤

⎩{
⎨
{⎧𝑡𝜎𝑥

𝑖

𝑡𝜎𝑦
𝑖

𝑡𝜏 𝑖 ⎭}
⎬
}⎫

= ℎ𝑐𝑖𝛽𝑖 , (3.7) 

where ℎ𝑐𝑖 is depending on the geometry of the element as 𝑎𝑖, 𝑏𝑖, and 𝐴 are included in the 
formula, see Figure 3.4. In Eq. (3.7) it is seen that 𝑞𝑥 = 0, which is due to that it is assumed 
that the gravitational force only acts in the y-direction. 

The area of the plate element A is calculated by means of the coordinates of the three 
element nodes 

 𝐴 =
1
2

det
⎣
⎢⎡

1 𝑥𝑖 𝑦𝑖
1 𝑥𝑗 𝑦𝑗

1 𝑥𝑘 𝑦𝑘⎦
⎥⎤ , (3.8) 

where i, j and k are indices 1, 2 and 3. 

The element is numbered such that side 𝑖 is opposite node 𝑖 (see Figure 3.3 and Figure 3.4), 
and the length of side 𝑙𝑖 is expressed by the vector (𝑎𝑖, 𝑏𝑖) 

 𝑎𝑖 = 𝑥𝑘 − 𝑥𝑗,   𝑏𝑖 = 𝑦𝑘 − 𝑦𝑗, 𝑙𝑖 = √𝑎𝑖
2 + 𝑏𝑖

2 . (3.9) 
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Figure 3.4. Area coordinates. 

3.1.2 Equilibrium of Stresses across Element Boundaries 

As described earlier the equilibrium of stresses across element boundaries also have to be 
secured. This regard the stresses normal to the plate sides and the shear stresses. Since the 
stresses are assumed to vary linearly, the equilibrium has to be satisfied at two points along 
an element side [1]. In this case the nodes at the side ends are chosen as reference points for 
fulfilling equilibrium, see Figure 3.3. 

The generalized nodal forces at node 𝑖 are expressed by the internal stresses at node 𝑖. At 
node 𝑖 the four generalized forces are expressed as 

 𝑞𝑖 =

⎩
{{
⎨
{{
⎧𝑞2𝜎

𝑗

𝑞2𝜏
𝑗

𝑞1𝜎
𝑘

𝑞1𝜏
𝑘 ⎭

}}
⎬
}}
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑏𝑗
2

𝑙𝑗2
𝑎𝑗

2

𝑙𝑗2
−

2𝑎𝑗𝑏𝑗

𝑙𝑗2

𝑎𝑗𝑏𝑗

𝑙𝑗2
−

𝑎𝑗𝑏𝑗

𝑙𝑗2
(𝑏𝑗

2 − 𝑎𝑗
2)

𝑙𝑗2

𝑏𝑘
2

𝑙𝑘2
𝑎𝑘

2

𝑙𝑘2
−

2𝑎𝑘𝑏𝑘
𝑙𝑘2

𝑎𝑘𝑏𝑘
𝑙𝑘2

−
𝑎𝑘𝑏𝑘
𝑙𝑘2

𝑏𝑘
2 − 𝑎𝑘

2

𝑙𝑘2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎩{
⎨
{⎧𝑡𝜎𝑥

𝑖

𝑡𝜎𝑦
𝑖

𝑡𝜏 𝑖 ⎭}
⎬
}⎫

= ℎ𝑖𝛽𝑖, (3.10) 

where 𝑎, 𝑏 and 𝑙 are given from Figure 3.4. The constants in the local equilibrium matrix ࢎ 
are made from the general continuum stress transformation equations based on equilibrium 
between forces 

 
𝜎𝑛 = 𝜎𝑥 sin2 𝜃 + 𝜎𝑦 cos2 𝜃 − 2𝜏𝑥𝑦 cos 𝜃 sin 𝜃 

𝜏𝑛𝑡 =
1
2

(𝜎𝑥 − 𝜎𝑦) sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃. 
(3.11) 

The establishment of the equilibrium matrix 𝒉𝒑𝒍𝒂𝒕𝒆 for a plate element is done by combining 
Eqs. (3.3), (3.7) and (3.10), which thereby satisfies the equilibrium equations. 
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3.1.3 Assembling of the Plate Equilibrium Matrix 

Unlike displacement-based elements, each node is unique to the element, and equilibrium is 
obtained between shared element sides by summarizing the local load contribution qi and 
thereby obtaining equality. If two element sides are united, the equality is satisfied when 
the equality constraint equals to zero, see Figure 3.5 (b). This is also the case for the outer 
boundaries, which has to be in equilibrium with the static boundary conditions.  

 

 (a) Two free elements with local node 
numbers. 

(b)   Two assembled elements with global node 
numbers. 

Figure 3.5. Before and after assembling of two plate elements. 

The stress variables located at the corners are implicit considered infinitesimal close to the 
corner nodes, see Figure 3.2. The connection between the stress variables and the generalized 
nodal forces on the element sides is made from the equilibrium matrix, see Eq. (3.10).  

The assembling principle for the global equilibrium matrix H is shown in terms of the 
example given in Figure 3.5. The equilibrium matrices for the example is as shown in Figure 
3.6. 
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 (a) Two free elements (b) Assembled elements  

Figure 3.6. Global equilibrium matrix H for example (a) and (b) given in Figure 3.5. 

The numbers in Figure 3.6 on the vertical left side and the horizontal top denotes the row 
and column number, respectively. When having a model consisting of two or more assembled 
plate elements, the total number of equilibrium equations 𝑛𝑞 becomes         

 𝑛𝑞 = 14𝐸 − 4𝑠	, (3.12) 

where E is the number of elements and s is the number of shared sides. It should be noted 
that the number of columns is constant regardless of the connection between elements, 
which means that only the number of equilibrium equations is reduced and not the number 
of stress variables. 

3.1.4 Kinematic Boundary Conditions 

Kinematic boundary conditions are implemented in the finite element structure by removing 
the equilibrium equations that correspond to given generalized nodal forces q. In the example 
given in Figure 3.5 (b), simple supports are introduced in the geometrical node 1 and 2, as 
seen in the figure below. 
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Figure 3.7. Kinematic boundary conditions for example in Figure 3.5 (b). 

For the example in Figure 3.7 the global equilibrium matrix H is reduced by removing the 
equilibrium equations related to the following generalized nodal forces; q1, q2, q3, q4, q5, q6, 
q15, and q16. The resulting equilibrium matrix H after assembling and implementing kine-
matic boundary conditions is seen in Figure 3.8.  

 

Figure 3.8. Resulting equilibrium matrix H including internal equilibrium. 

It should be noticed that m < n, where m is the number of rows and n is the number of 
columns of the equilibrium matrix. From the figure it is seen that the resulting equilibrium 
matrix consists of 16 equations and 18 stress variables, which means that the system is two 
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times statically indeterminate (18 − 16 = 2). Thereby, it is possible to make a rearrange-
ment of the stresses. 

3.1.5 Outer Boundary Conditions 

The load vector is assembled by the same principles as the global equilibrium matrix, 𝐻. 
The task in a finite element context is to apply the outer boundary load 𝑞𝑏 to the corre-
sponding equilibrium equation (see Eq. (3.1)), and thereby prescribe the equality constraints 
on the global outer boundary. The boundary load is given from the three stresses 𝜎𝑥, 𝜎𝑦 
and 𝜏𝑥𝑦, which vary linearly along the element boundary. In Figure 3.9 a simplification is 
made by showing the stress variation acting normal to an outer boundary. 

    

Figure 3.9. Boundary condition for element j. 

In Figure 3.9 the three external stresses are acting linearly on side 2, which is located on an 
outer boundary. The dashed sides, 1 and 3, are located on an inner boundary and they have 
to be in equilibrium with the adjacent elements. The nodal stress parameters that are lo-
cated at a node with one side belonging to an outer boundary have two equality constraints, 
which means that a side on a boundary produces four equality constraints, see the figure 
below. 

  

Figure 3.10. Generalized outer boundary loads for element j.  
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The boundary stresses are transformed to equality constraints by the following expression 

 {𝑞𝑏,𝑗
𝑖 } = {

𝑞𝜎,𝑗
𝑖

𝑞𝜏,𝑗
𝑖 } = [ℎ𝑏,𝑗

𝑖 ]{𝜎𝑏,𝑗
𝑖 } , (3.13) 

where i is the node number, j is the element number, 𝑞𝑏 is the generalized boundary load, 
including 𝑞𝜎 and 𝑞𝜏 , ℎ𝑏 is the boundary transformation matrix, and 𝜎𝑏 are the boundary 
stresses 𝜎𝑥, 𝜎𝑦, and 𝜏𝑥𝑦. 

 

Figure 3.11. Transformation from outer stresses to generalized forces. 

By use of the same parameters given in Figure 3.4, the transformation matrix, ℎ𝑏, referring 
to the equality constraints at node 1 on side 2 can be written as 

 [ℎ𝑏,𝑗
1 ] =

⎣
⎢⎢
⎢
⎡

𝑏2
2

𝑙22
𝑎2

2

𝑙22
−

2𝑎2𝑏2
𝑙𝑗2

𝑎2𝑏2
𝑙22

−
𝑎2𝑏2
𝑙22

(𝑏2
2 − 𝑎2

2)
𝑙22 ⎦

⎥⎥
⎥
⎤
	, (3.14) 

where the boundary stresses at node 1 are arranged as 

 {𝜎𝑏,𝑗
𝑖 }𝑇 = {𝜎𝑥,𝑏

1  𝜎𝑦,𝑏
1  𝜏𝑥𝑦,𝑏

1 }. (3.15) 

The procedure applies to node 3, which together with node 1 produces 4 equality constraints 
to the 6 stress variables on the outer boundary (side 2), see Figure 3.10.     

3.1.6 Assembling of Load Vector  

The load vector R is assembled with respect to all the equalities that have to be fulfilled in 
the finite element formulation. The load vector contains the three different equality con-
straints, which are determined from Eq. (3.7), (3.10) and (3.13). The equalities have to be 
inserted in the appropriate rows in order to satisfy all the equilibrium equations. The as-
sembling of the load vector can then be summarized by 
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 {𝑅} = ∑{𝑞𝑏,𝑗}
𝐵

𝑗=1
+ ∑{𝑞𝑐,𝑘}

𝐸

𝑘=1
+ ∑{𝑞𝑖,𝑙}

𝑆

𝑙=1
, (3.16) 

where R is the global load vector/equality constraints, B is the number of outer boundary 
nodes, E is the number of elements, and S is the number of inner boundary sides. 

3.2 Bar and Beam Element 

A formulation of a beam and bar element (rebar element) is introduced with the main 
purpose of acting as a tension device in concrete plates. In a finite element perspective, the 
rebar element is a combination of a bar and beam element, and thus the rebar element holds 
both beam and bar properties. Since concrete is assumed having no tensile strength, the 
purpose is to obtain all the tensile stresses in the reinforcement, whereas the compressive 
stresses have to be obtained in the concrete.  

 

Figure 3.12. External and internal generalized nodal forces for a rebar element. 

The forces in the formulated concrete structure are transferred by an interaction between 
the plate elements and the rebar elements. The rebar element must ensure equilibrium 
between adjacent plate elements as well as adjacent rebar elements. In order to secure 
interaction between two adjacent rebar elements external generalized forces are introduced, 
whereas equilibrium between rebar elements and plate elements is secured by the internal 
generalized forces. The external generalized forces acting on the rebar element are equivalent 
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to the well-known displacement-based element formulation, where three degrees of freedom 
are acting at each node, see Figure 3.12.  

To obtain equilibrium in the rebar element ten equality constraints for each rebar element 
has to be fulfilled, where the 6 equality constraint corresponds to the interaction between 
the adjacent rebar elements, and the last 4 equality constraints corresponds to the interac-
tion between rebar and plate elements, see Figure 3.12.  

3.2.1 Equilibrium across Rebar Element Boundaries  

Since the force varies linearly along the plate element boundary, the normal force has a 
quadratic variation and the moment has a cubic variation. The normal force in the bar 
element is interpolated by an equally spaced 3-point arrangement with two nodes, see Figure 
3.13.  

 

Figure 3.13. Quadratic bar element with generalized nodal forces. 

The moment in the beam element is interpolated by an equally spaced 4-point arrangement 
with 2-nodes, see Figure 3.14. 

 

Figure 3.14. Cubic beam element with generalized nodal forces. 

To fulfil the continuity requirements of the stress variation over the entire element, the 
quadratic stress variation is described through three stress variables, which is related to a 
2nd order polynomial. Similarly, the cubic stress variation is described through four stress 
variables, which is related to a 3rd order polynomial. 
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(a) Variation of normal stresses through bar 
element 

(b) Variation of moment through beam  
element. 

Figure 3.15. Variation of normal stresses and moments. 

The quadratic interpolation fits a parabola to the points (𝑥1, 𝑁1), (𝑥2,𝑁2), and (𝑥3, 𝑁3), 
where x is the position and N is the normal force acting in the bar. The cubic interpolation 
fits 3th order polynomial to the points (𝑥1, 𝑀1), (𝑥2, 𝑀2), (𝑥3,𝑁3) and (𝑥4, 𝑁4). The quad-
ratic and cubic shape function are made from Lagrange’s interpolation formula, which in 
the physical coordinate system is expressed by 

 

𝑞𝑁(𝑥) = ∑ 𝐿𝑖(𝑥)𝑁𝑖

3

𝑖=1
 

𝑞𝑀(𝑥) = ∑ 𝐿𝑖(𝑥)𝑀𝑖

4

𝑖=1
, 

(3.17) 

where 𝐿𝑖 is the Lagrange shape function expressed in physical coordinates.  

The generalized axial stresses 𝑞𝜏  are determined by the first derivative of the internal normal 
stresses, which in the physical coordinates can be determined from Eq. (3.18).  

 𝑞𝜏(𝑥) =
𝑑
𝑑𝑥

𝑞𝑁(𝑥) (3.18) 

In order to have a proper interaction between beam elements, it is necessary to formulate 
the internal distribution. Due to the cubic varying moment, the shear force 𝑞𝑉  must be 
quadratic. The variation of shear stresses is determined by the first derivative of the mo-
ment. In the physical coordinate system it can be expressed as  

 𝑞𝑉 (𝑥) =
𝑑
𝑑𝑥

𝑞𝑀(𝑥). (3.19) 

Equally the generalized transverse load is of a linear varying form due to the moment vari-
ation and it can be determined by the second derivative, which in the physical coordinate 
system can be expressed from   

 𝑞𝜎(𝑥) =
𝑑2

𝑑2𝑥
𝑞𝑀(𝑥). (3.20) 
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The equilibrium matrix which ensure equilibrium between the bar element, beam element 
and plate element is in compact form expressed by 

 𝑞𝑏𝑒𝑎𝑚 = ℎ𝑏𝑒𝑎𝑚𝛽𝑏𝑒𝑎𝑚, (3.21) 

where 𝑞𝑏𝑒𝑎𝑚 is a vector with generalized forces, and ℎ𝑏𝑒𝑎𝑚 is a matrix that ensures equilib-
rium between internal and external stresses. The equilibrium matrix, ℎ𝑏𝑒𝑎𝑚, is divided into 
two parts, in which the first part only includes the generalized forces from Eq. (3.18) and 
Eq. (3.20). The two equations express the equilibrium between bar elements, beam elements 
and plate elements. 
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(3.22) 

The other part includes the nodal forces from Eq. (3.17) and Eq. (3.19) and ensures equi-
librium between beam/bar elements. 
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 (3.23) 

The rotation is obtained in the concrete by directly transferring the stresses perpendicular 
to beam in the plate generalized nodal forces.  

Finally, moments and shear stresses in the beam are small in order to fulfil the static bound-
ary condition, why it is assumed to be negligible to control yielding due to shear stresses. 
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3.2.2 Assembling of the Concrete Equilibrium Matrix 

The assembling procedure when including rebar elements is similar to the procedure de-
scribed earlier in this chapter. An example of assembling a rebar element with a plate 
element is seen in the figure below. 

 

Figure 3.16. Principle of assembling a rebar element with a plate element. 

The generalized nodal forces, 𝑞𝜎 and 𝑞𝜏 , in the inter element equilibrium node for the rebar 
element has to be added up with the corresponding nodal forces for the plate element. The 
sum of the generalized nodal forces in the inter element equilibrium node has to equal zero. 
Two rebar elements are assembled with by adding the three external generalized nodal forces 
with the corresponding forces in the adjacent rebar element.  The total number of equations 
𝑛𝑞 describing the rebar nodal forces becomes         

 𝑛𝑞 = 6𝑁𝑟 − 3𝑠𝑛	, (3.24) 

where 𝑁𝑟 is the number of rebar elements, and 𝑠𝑛 is the number of shared nodes. It should 
be noted that the number of columns is constant regardless of the connection between ele-
ments, which means that only the number of equilibrium equations is reduced and not the 
number of normal force and moment variables. 
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4. Yield Criterions 
The objective function in the lower bound formulation in section 2.4 is constrained by a 
yield criterion, which has to be fulfilled in order to obtain an allowable lower bound solution. 
Hence, this chapter presents the criterions used to define the limit of steel plates and rein-
forced concrete plates with regard to load optimization and material optimization.  

4.1 Yield Criterion for Reinforced Concrete Plates 

In order to optimize reinforced concrete plates, a yield criterion is needed to describe the 
capacity of the composite material. [5] M.P. Nielsen suggested a yield criterion that defines 
the shear capacity of reinforced concrete plates with respect to normal stresses. Fundamental 
for the understanding of the criterion is the assumption of zero tensile capacity in the con-
crete, perfect plastic material behaviour of the reinforcement, and no shear capacity in the 
reinforcement. For the concrete this implies that the yield condition in a plane of principal 
stresses can be visualized as a modified Coulomb material, see Figure 4.1. 

 

Figure 4.1. In-plane yield condition of concrete by principal stresses (𝒇𝒄 is the compressive 
strength). 

Reinforcement in concrete is needed since a pure shear stress state will result in cracking 
since the tensile strength of concrete is assumed zero, see Figure 4.2. 

 

Figure 4.2. Pure shear stress state transformed to pure tension/compression by Mohr’s Circle. 

Hence, the plate structure needs reinforcement, which is most clearly seen by the shear 
stress example. The inclusion of reinforcement to concrete provides either an isotropic or 
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anisotropic tensile strength to the material. This tensile strength of the composite concrete 
material is given by 

 𝑓𝑡
𝑥 =

𝐴𝑥𝑓𝑦

𝑡
   ∧   𝑓𝑡

𝑦 =
𝐴𝑦𝑓𝑦

𝑡
,  (4.1) 

where 𝐴𝑥 and 𝐴𝑦 are the areas of reinforcement per length unit, 𝑓𝑦 is the yield stress of the 
reinforcement, and t is the thickness of the concrete. In reality, the reinforcement adds a 
compressive strength to the plate structure as well, but as this contribution in many cases 
is small compared to the compressive strength of concrete it is chosen to be neglected. The 
plane yield condition of reinforced concrete plates is illustrated in Figure 4.3. 

 

Figure 4.3. In plane yield condition of reinforced concrete plates. 

Consequently, the normal stresses must be located within the following intervals 

 −𝑓𝑐 ≤ 𝜎𝑥   ≤ 𝑓𝑡
𝑥 (4.2) 

 −𝑓𝑐 ≤ 𝜎𝑦  ≤ 𝑓𝑡
𝑦 (4.3) 

In a finite element aspect, the stress-based elements are assumed to have both compressive 
and tensile properties. An illustration of the element is seen in Figure 4.4. 

 

Figure 4.4. Plate element with properties from composite material. 

In order to formulate the three-dimensional M.P. Nielsen yield surface, the shear capacity, 
𝜏𝑥𝑦, has to be described as a function of the normal stresses, 𝜎𝑥 and 𝜎𝑦, that are located 
inside the contour of Figure 4.3. By realizing that the three-dimensional yield surface can 
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only be described by two functions, it is possible to use the expressions for principal stresses 
to derive M.P. Nielsen yield criterion 

 −(𝑓𝑡
𝑥 − 𝜎𝑥)(𝑓𝑡

𝑦 − 𝜎𝑦) + 𝜏𝑥𝑦
2 ≤ 0 (4.4) 

 −(𝑓𝑐 + 𝜎𝑥)(𝑓𝑐 + 𝜎𝑦) + 𝜏𝑥𝑦
2 ≤ 0 . (4.5) 

If considering the above equations, it can be seen that the constraints restrict each other 
with respect to the allowable shear capacity. 

 

Figure 4.5. M.P. Nielsen’s yield criterion for reinforced concrete plates. Illustration from [1]. 

The full derivation of Eq. (4.4) and (4.5) can be seen in e.g. [5], and it is important to notice 
that the above equations are only allowed for reinforcement degrees, Φ, less than 0.3. 

 Φ =
𝐴𝑥𝑓𝑦

𝑡𝑓𝑐
 ∧ 

𝐴𝑦𝑓𝑦

𝑡𝑓𝑐
≤ 0,3 (4.6) 

When Φ  0.3, a bound for the shear capacity needs to be added to the system 

 −0.5𝑓𝑐 ≤  𝜏𝑥𝑦  ≤ 0.5𝑓𝑐 , (4.7) 

which can be seen as a simplification of the high reinforcement degree. This limit is needed 
as the shear capacity is only related to the concrete as a start. Hence, for small reinforcement 
degrees, Φ ≤ 0.3, the influence is considered small and therefore no limit is introduced. 

4.2 Yield Criterion for Concentrated Reinforcement 

The concentrated reinforcement capacity in reinforced concrete plates is established by a 
yield locus that accounts for the plastic bending moment and the normal force (MN-rela-
tion). The limit of the plastic MN-relation is given by the following two expressions [15] 

 𝑓(𝑀, 𝑁) = (
𝑀
𝑀𝑝

) + (
𝑁
𝑁𝑝

)
2

− 1 = 0 (4.8) 

 
𝑓(𝑀, 𝑁) = (

𝑀
𝑀𝑝

) − (
𝑁
𝑁𝑝

)
2

+ 1 = 0 , (4.9) 
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where 𝑀𝑝 and 𝑁𝑝, denotes the plastic resistance with respect to the moment and the plastic 
normal force capacity, respectively. The full derivation of the above equation can be seen in 
[16], and common is that shear is not accounted for in the concentrated reinforcement as 
the shear capacity is considered despairingly small. This is further explained in [5].  

The corresponding elastic limit is given by 

 𝑓(𝑀, 𝑁) = ± (
𝑀
𝑀𝑒𝑙

) ± (
𝑁
𝑁𝑒𝑙

) − 1 = 0 , (4.10) 

where 𝑀𝑒𝑙 and 𝑁𝑒𝑙 are the elastic moment and normal force capacity, respectively. 

The fractions in Eq. (4.9) and (4.10) are restricted to be located in the interval of 

 −1 ≤ (
𝑀
𝑀𝑝

) ∧ (
𝑁
𝑁𝑝

) ∧ (
𝑀
𝑀𝑒𝑙

) ∧ (
𝑁
𝑁𝑒𝑙

) ≤ 1 . (4.11) 

An illustration of the plastic and elastic limit is shown in Figure 4.6 a). As perfect plasticity 
is assumed for the limit state problems, optimization of the reinforced concrete plates nat-
urally follows the plastic limit. For that reason, the moment and normal force values acting 
on the beam and bar elements must be located inside or along the plastic yield surface. 
Hence, the cross-sections of the reinforcement have a stress distribution dictated by the 
yield function, which depends on the observation point. This is illustrated in Figure 4.6 b). 

(a) Elastic and plastic yield locus (b) Stress distributions at plastic limit 

Figure 4.6. Yield criterion for reinforcement in concrete plates. 

4.3 Yield Criterion for Steel Plates 

A perfect plastic material behaviour is considered for the steel plates and thereby the as-
sumption of sufficient deformation capabilities in the structure is valid. The assumption is 
necessary in order to obtain stress redistributions and a limit for this distribution must be 
defined, that is, the von Mises yield criterion. This criterion is well known for suiting a 
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ductile material behaviour and is often expressed by the so-called von Mises stress ߪ௩, which 
in a plane case is defined as 

 𝜎𝑣 = √𝜎𝑥
2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦

2 + 3𝜎𝑥𝑦
2 , (4.12) 

and for principal stress states by 

 𝜎𝑣 = √𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 . (4.13) 

Optimization of the steel plates must obey von Mises yield criterion, which means that every 
stress state in the optimized structure has to be located in the feasible domain of the convex 
yield locus. 

 

(a) Principal stress state (b) Generalized stress state 

Figure 4.7. von Mises yield criterion. 

If the limit is violated no information is known about the stress state and it is considered 
inadmissible. By taking the material yield strength into account it is possible to define a 
function that can be utilized in the optimization 

 𝑓(𝜎, 𝑌𝑠) = 𝜎𝑣 − 𝑌𝑠 ≤ 0 , (4.14) 

where 𝑌𝑠 defines the initial yield strength of the material. 
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5. Numerical Limit State Analysis 
Optimization is a well-known problem in calculus, which for centuries has been studied with 
great interest. As many other mathematical topics, the invention of computers made a 
significant breakthrough in the way of conducting optimization, and nowadays highly com-
plex problems are optimized by numerical methods. Thus, the lower bound limit analysis 
problems presented in section 2.4 can be optimized using one of several numerical ap-
proaches.  

5.1 Interior Point Method versus Simplex Method 

The yield criterions associated with each limit analysis is defined in chapter 4, and common 
for all optimization problems treated in this thesis, is the nonlinearity due to a convex yield 
surface. The nonlinear aspect is worth noticing as the numerical approach is chosen on this 
behalf. Within the field of mathematical optimization two optimization approaches are 
widely used; namely, the simplex method and the interior point method. The simplex 
method was developed by Dantzig in 1947 and is strictly related to linear problems, while 
the interior point method invented by Karmarkar in 1984 [17] can be seen as a solving type 
capable of handling both linear and nonlinear problems. Thus, an interior point method 
requires no linearization of a convex yield surface unlike the simplex method. The search of 
optimum is diverse, and the major difference is found in the way the methods traverses the 
feasible region.  

 

a) Interior Point Method b) Simplex Method 

Figure 5.1 Searching principle for the interior point method and simplex method. 

As illustrated in Figure 5.1, the simplex method traverses along linearized boundaries, 
whereas the interior point method traverses the interior region by the restriction of a de-
creasing barrier term, which is further elaborated later in this chapter. Previously studies 



40  5  Numerical Limit State Analysis 

 

 

have proven that the interior point method is effective in limit analyses as the number of 
iterations is only minimal affected by the size of the problem, see e.g. [18]. 

The yield criterion is linearized by a few number of linear constraints in Figure 5.1 b), and 
it would require a higher degree of discretization to obtain a more accurate optimum. This 
would lead to more iteration steps if utilizing the simplex method, and thereby more com-
putational time. Consequently, the interior point method is found to be more suitable for 
optimizing the limit state problems in this thesis. 

5.2 Path-following Interior Point Method 

A number of interior point methods has been developed, and the choice of algorithm for a 
given problem depends on the problem type. [15] In this section the path-following interior 
point method is covered since it is suitable for large scale optimizations. The derivation is 
accomplished by standard notation for nonlinear problems as the limit state problem in this 
thesis can be transformed to this notation. When considering the path-following interior 
point method three major topics are fundamental for the understanding 

 the barrier term, 
 the method of Lagrange multipliers and the Lagrange function, 
 Newton’s method. 

In order to make the notation more general and help understanding the numerical imple-
mentation issue, it is chosen to reformulate the original equations from section 2.4 to the 
following problem 

 maximize  𝐛𝐓𝐲 .  (5.1) 
 

 subjected to 𝐀𝐲 = 𝐜.         (Equilibrium) (5.2) 

  𝐟 (𝐲) ≤ 𝟎 ,.      (Yield Criterion) (5.3) 

where the above notation corresponds to the lower bound formulation of the load optimiza-
tion problem in section 2.4 since 

 

𝐛 = [𝟎 1]T 

𝐲 = [𝛃 α] 

𝐀 = [𝐇 − 𝐑] 

𝐜 = 𝐑𝐜 . 

(5.4) 

The first operation in obtaining the optimum solution is to convert the yield criterion ine-
quality constraint in Eq. (5.3) into an equality constraint by introducing a slack variable, 
s, for each inequality constraint  

 𝐟 (𝐲) + 𝑠𝑗 = 𝟎 ,      𝑠𝑗 ≥ 0, 𝑗 = 1,2,… , 𝑝 . (5.5) 

The value of the slack variable, s, expresses the additional stress capacity before reaching 
yielding. This operation is solely allowed by the restriction of a non-negative slack variable.  
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5.2.1 Barrier Term 

[15] Fiacco and McCormick developed a barrier term, which has the purpose of replacing 
the inequality constraints (𝑠 ≥ 0)  by a penalizing term in the objective function. The ob-
jective function including the barrier term is given as 

 𝐛T𝐲 + 𝜇 ∑ 𝑙𝑜𝑔 (𝑠𝑗)
𝑘

𝑖=1
, 𝜇 > 0 , (5.6) 

where 𝜇 denotes a decreasing barrier parameter greater than zero. The parameter is worth 
noticing since the additional logarithmic expression will imply that the objective decreases, 
when the slack variable approaches zero. To visualize this fact, the logarithmic expression 
is illustrated in the figure below.  

 

Figure 5.2. Illustration of the log contribution to the objective function. 

The issue with the barrier term is that if the constrained optimum is located at the bound-
ary, meaning that one or more slack variables are equal to zero at optimum, then the 
logarithmic expression will prevent the objective from reaching optimum. Thus, the barrier 
parameter ߤ is needed in order to balance the contribution of the true objective function in 
Eq. (5.1), with that of the barrier term in Eq. (5.6). This implies that ߤ determines the 
quantity of the barrier term, which must go towards zero such that the objective function 
corresponds to the original objective expression at the optimum solution. [15] Seen from a 
visual point of view it implies that as ߤ decreases, the feasible domain expands and eventu-
ally corresponds to the entire feasible domain, see e.g. Figure 5.1 a).  

The total expression in Eq. (5.6) has to be maximized, and it leads to an algorithm favouring 
feasible stress points located as far away from the yield surface as possible. This fact leads 
to a more optimal search direction that converges towards optimum faster than starting by 
considering the entire space. 

5.2.2 Lagrange Multipliers 

The method of Lagrange multipliers is an optimization strategy for finding maximum and 
minimum of an equality constrained object function. The method was named after Joseph 
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Louis Lagrange, and can be applied in both simple hand calculations and numerical meth-
ods. In a numerical manner the purpose is to establish the so-called Lagrange function by 
the use of Lagrange multipliers from which the optimum solution can be found afterwards. 
However, in order to understand the Lagrange function, the Lagrange multipliers is firstly 
presented. 

The method of Lagrange multipliers relies on the intuition that the objective function has 
reached maximum when its gradient vector is parallel to the gradient vector of an equality 
constraint function. Thus, the method is based on the insight of gradient vectors, which in 
multivariable calculus always provide a direction and magnitude of a vector perpendicular 
to a given function at the considered point. The directions must be the same when reaching 
the optimum solution. In a simple case with a function 𝑓(𝑥, 𝑦) constrained by another func-
tion 𝑔(𝑥, 𝑦) this would lead to 

 ∇𝑓(𝑥, 𝑦) = [
𝑓𝑥′(𝑥, 𝑦)
𝑓𝑦′(𝑥, 𝑦)] ‖ ∇𝑔(𝑥, 𝑦) = [

𝑔𝑥′(𝑥, 𝑦)
𝑔𝑦′(𝑥, 𝑦)].  

The principle is illustrated in Figure 5.3. 

 

Figure 5.3. Parallel gradient vectors 𝜵𝒇(𝒙) and 𝛁𝒈(𝒙). 

In order to verify that the vectors are parallel, a new variable is introduced; namely, the 
Lagrange multiplier, ߣ. Lagrange multipliers are needed due to the obvious issue that a 
gradient vector for an objective function and the gradient vector for a constraint function 
might be parallel, but have different magnitudes. However, if the vectors are parallel it is 
possible to find a scalar, which multiplied with one of the vectors equals the other vector. 
This implies that if considering the above example once again, the following expression must 
be satisfied when having reaching optimum 

 [
𝑓𝑥′(𝑥, 𝑦)
𝑓𝑦′(𝑥, 𝑦)] − 𝜆 [

𝑔𝑥
′ (𝑥, 𝑦)

𝑔𝑦
′ (𝑥, 𝑦)] = [00] ,  
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where ߣ is the Lagrange multiplier that verifies whether the vectors are parallel. The phys-
ical aspect of the multipliers has already been explained in section Appendix B: and thus, 
the Lagrange function can now be established. 

5.2.3 Lagrangian Function 

The idea of the Lagrange function or Lagrangian is to define a single function describing 
the entire problem. Thus, an  incorporation of the constraint functions into the objective 
function is achieved by multiplying a Lagrange multiplier, ߣ, with each constraint equation. 
The Lagrangian is established as follows 

 ℒ(𝐲, 𝐬, 𝛌, 𝛎) = 𝐛T𝐲 + 𝜇 ∑ log(𝑠𝑗)
k

i=1
− 𝛌T(𝐟(𝐲) + 𝐬) − 𝐯T(𝐜 − 𝐀𝐲) , (5.7) 

where 𝜆 and 𝑣 denotes the earlier mentioned Lagrange multipliers. More specific, ߣ, can be 
seen as the magnitude of the plastic strains in the upper bound solution formulated in 
section Appendix B:. Likewise, 𝑣, can be seen as the magnitude of the plastic displacements 
in the upper bound solution. 

The Lagrangian in Eq. (5.8) is differentiated with respect to all the variables to obtain the 
first order optimality conditions elaborated in section Appendix B:  

 ∇ℒ(𝐲, 𝐬, 𝛌, 𝐯) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

∂ℒ
∂𝐲
∂ℒ
∂𝐬
∂ℒ
∂𝛌
∂ℒ
∂𝐯⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡

∇y𝐟(𝐲)𝛌 − 𝐀T𝐯 − 𝐛
𝐒𝛌 − μ𝐞
𝐟(𝐲) + 𝐬
𝐜 − 𝐀𝐲 ⎦

⎥
⎥
⎤

=
⎣
⎢
⎡

𝟎
𝟎
𝟎
𝟎⎦
⎥
⎤, (5.8) 

where e is a vector of ones. The optimum solution is reached when the equations equal a 
zero vector. An iteration process is therefore needed in order to find the variables providing 
this solution. 

5.2.4 Newton’s Method 

Newton’s method is often used within mathematical optimization for numerically solving 
nonlinear expressions. The iterations in the method end when a proper solution is obtained. 
The solution is achieved by using first order Taylor series expansion from which an inverse 
operation is used to find new increments that updates the variables as each iteration pro-
ceeds. For the sake of convenience, a simple case with a single variable problem is firstly 
considered, where the task is to satisfy the following equation  

 𝑓(𝑦) = 0   

The function has to be once continuously differentiable in order to use Newton’s method. 
Newton’s method uses first order Taylor series expansion to approximate the increment that 
is required to fulfil the above expression  
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 𝑓(𝑦𝑘) ≈ 𝑓(𝑦𝑘−1) + ∆𝑑 ⋅ 𝑓′(𝑦𝑘−1) ,  

where k denotes the iteration number, 𝑓(𝑦𝑘−1) is a known solution, and ∆݀ denotes the 
increments required to obtain a zero solution, that is, 𝑦𝑘 − 𝑦𝑘−1. This process is illustrated 
in the figure below.       

 

Figure 5.4. Principle of Newton’s Method with one variable. 

The 𝑓(𝑦𝑘) is set to zero since the optimum solution must converge against that. The incre-
ment ݀∆ is solved by the following expression for each iteration 

 0 = 𝑓(𝑦𝑘−1) + ∆𝑑 ⋅ 𝑓′(𝑦𝑘−1) → ∆𝑑 = −
𝑓(𝑦𝑘−1)
𝑓′(𝑦𝑘−1)

.  

Each iteration provides a new increment, which in simple case is added to the previous 
variable value 

 𝑦𝑘 = 𝑦𝑘−1 + ∆𝑑 .  

With this clarified it is possible to convert this iteration principle into the Lagrange problem 
given in Eq. (5.7) 

 𝟎 = ∇ℒ(𝒚, 𝒔, 𝝀, 𝒗) + ∆𝒅 ⋅ ∇2ℒ(𝒚, 𝒔, 𝝀, 𝒗), (5.9) 

which can be rewritten as 

 ∆𝐝 =
−∇ℒ(𝐲, 𝐬, 𝛌, 𝐯)
∇2ℒ(𝐲, 𝐬, 𝛌, 𝐯)

, (5.10) 

where the partial derivatives of the Lagrange function form the Hessian matrix in Eq. (5.11) 
and thus, Eq. (5.10) is actually an inverse operation. 

 ∇2ℒ(𝐲, 𝐬, 𝛌, 𝐯) =

⎣
⎢⎢
⎡

𝐇 𝟎 ∇y𝐟(𝐲) −𝐀T

𝟎 𝐳 𝐒 𝟎
∇y𝐟(𝐲)T 𝐈 𝟎 𝟎

−𝐀 𝟎 𝟎 𝟎 ⎦
⎥⎥
⎤

(5.11) 

z is a diagonal matrix of ߣ, and I provides an unit matrix. The H-matrix is given as 

 𝐇 = ∑ 𝛌 ∇yy
2 𝐟(𝐲) . (5.12) 
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The equilibrium equations play no role in this matrix because the second derivatives are all 
zeros. When conducting the inverse operation, a direction vector ∆𝒅 containing increments 
of all the variables and the Lagrange multipliers is found to 

 ∆𝒅 = [∆𝒚 ∆𝒔𝑇 ∆𝝀𝑇 ∆𝒗𝑇 ]𝑇 . (5.13) 

From this the new variables are updated by the following expressions 

 

𝐲k = 𝐲𝐤−1 + ∆𝐲 ⋅ 𝜂 

𝐬k = 𝐬k−1 + ∆𝐬 ⋅ 𝜂 

𝛌k = 𝛌k−1 + ∆𝛌 ⋅ 𝜂 

𝛎k = 𝛎𝐤−1 + ∆𝛎 ⋅ 𝜂	, 

(5.14) 

where the iteration number is denoted by k, and ߟ is an appropriate step length ensuring 
that ࢙ and ࣅ stay positive. 
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5.3 Numerical implementation in MATLAB – fmincon  

The formulated lower bound problem in Eq. (2.6) is to be implemented numerically into 
MATLAB and Mosek since the optimization algorithms in these two software programs are 
based on the interior point method.  

MATLAB offers an optimization toolbox that provides functions capable of solving linear, 
quadratic, integer and nonlinear problems. [19] The functions can be used to obtain param-
eters that minimize or maximize objective functions. Both discrete and continuous problems 
can be solved for finding optimal solutions. 

The fmincon function in MATLAB is used for optimizing the lower bound problems in 
section 2.4. fmincon is a function that is capable of finding minimum and maximum of 
constrained nonlinear multivariable functions. By default, the minimization problem in 
MATLAB has to be specified by 

 min
𝑥

𝑓(𝑥) such that

⎩
{{
⎨
{{
⎧ 𝑐(𝑥) ≤ 0

𝑐𝑒𝑞(𝑥) = 0
𝐴 ⋅ 𝑥 ≤ 𝑏

𝐴𝑒𝑞 ⋅ 𝑥 = 𝑏𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 ,

(5.15) 

where 𝑓(𝑥) is a scalar objective function, 𝑐(𝑥) and 𝑐𝑒𝑞(𝑥) are nonlinear inequality and equal-
ity constraints, respectively. 𝐴 and 𝐴𝑒𝑞 are linear inequality and equality constraints, and 
lb and ub are the bounds. The objective function 𝑓(𝑥) can either be linear or nonlinear.  

In fmincon it is possible to use four different solvers and among these is the interior point 
algorithm. The interior point algorithm is the default solver, and it is the one used for 
solving the lower bound formulation. The algorithm is capable of handling both large1, 
sparse problems and small dense problems, and that is why it is preferable compared to the 
other solvers. [20] One of the benefits of using the interior point algorithm is that it can 
recover from NaN (Not a Number) or Inf (Infinite numbers). By using the interior point 
algorithm in MATLAB, the user is not demanded to formulate key concepts in the method, 
such as the Lagrange function, hessian matrices nor establishing Newton’s method as itera-
tion process to secure first order optimality since it is already implemented in the function. 
Thus, the user is only required to provide input to the function. 

  

                                         
1 Large scale problems are based on linear algebra that doesn’t need to use full matrices. 
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5.3.1 Barrier Function and Solving Methods 

The original problem that has to be solved by the fmincon interior point algorithm is ex-
pressed by 

 minimize  −𝒇(𝒙) .   
 

 subjected to 𝐡(𝐱) = 𝟎.         (Equilibrium) (5.16) 

  𝐠(𝐱) ≤ 𝟎 ,.        (Yield Criterion)  

where h(x) are the equality constraints and g(x) are inequality constraints. The problem in 
Eq. (5.16) is reformulated by introducing a logarithmic term, also called a barrier function 

 minimize  −(𝒇𝝁(𝒙, 𝒔) − 𝝁 ∑ 𝐥𝐧(𝒔𝒊)𝐢
), 𝒔𝒊 ≥ 𝟎 .   

 

 subjected to 𝐡(𝐱) = 𝟎.         (Equilibrium) (5.17) 

  𝐠(𝐱) + 𝐬 ,.        (Yield Criterion)  

where ߤ is a barrier parameter that has to be greater than zero (𝜇 > 0). For each inequality 
constraint g there is a slack variable s. Each slack variable has to be greater than zero (𝑠 >
0). When ߤ decreases, the objective function 𝑓𝜇 approaches 𝑓 . By reformulating the problem 
in Eq. (5.16) to the problem in Eq. (5.17) only equality constraints are considered which 
are much easier to solve than the original inequality constraints. 

fmincon uses one of two types of step at each iteration to solve the minimization problem 
in Eq. (5.17) 

 Newton’s step 
 CG (conjugate gradient) step 

By default, fmincon uses Newton’s step, but if it is not possible then a conjugate gradients 
(CG) step is used instead. Newton’s step solves the first order optimality conditions (KKT-
conditions) as described in section Appendix B: by a linear approximation. 

5.3.2 Including Gradient and Hessian 

In the fmincon algorithm in MATLAB it is possible to include the gradient and hessian of 
for objective function and for the nonlinear constraints. By default, the gradient and hessian 
are calculated numerically by approximated methods. The disadvantage is that the solvers 
return an approximated hessian that in some cases is far from the true hessian. As an 
alternative to the approximated methods it is possible for the user to provide a function 
that is able to calculate the partial derivatives analytically [21]. The analytical approach to 
the gradient and hessian typically leads to a faster, robust and more accurate solution to 
the problem.  
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fmincon Hessian 
The Hessian of the nonlinear constraints can be calculated by selecting one of the following 
algorithms in the interior point algorithm in fmincon 

 ‘bfgs’ (Broyden–Fletcher–Goldfarb–Shanno algorithm) 
 ‘lbfgs’ (Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) 
 ‘fin-diff grads’ 
 ‘HessianFcn’ 

 ‘bfgs’, ‘lbfgs’ and ‘fin-diff-grads’ are three different ways of calculating an approximated 
Hessian matrix, whereas ‘HessianFnc’ is a user-defined approach. The default way of calcu-
lating the Hessian to the nonlinear constraints in fmincon is by ‘bfgs’, which calculates the 
Hessian by a dense quasi-Newton approximation. The second approach, ‘lbfgs’, is also a 
quasi-Newton approach but it is more suited for limited-memory, large-scale problems as is 
the case with the lower bound formulation. By choosing the ‘fin-diff-grads’, the Hessian 
matrix is calculated by a Hessian-times-vector product by finite differences of the gradients. 

The ‘HessianFcn’ is the only non-approximated way of calculating the Hessian matrix, but 
the user has to define the Gradient and Hessian analytically [22]. Fewer iterations are typ-
ically needed to solve the problem when the analytical approach is implemented. In the 
interior point algorithm, the Hessian of Lagrangian includes the Lagrange multipliers and 
the Hessian corresponding to the nonlinear constraints. The Hessian for the nonlinear con-
straint functions has to be developed as a separate function but it still has to be able to 
include the Lagrange multipliers.  

The relative memory usage compared to the relative efficiency for each Hessian approach is 
seen in Table 5.1. 

Table 5.1. Different Hessian approaches for ‘interior point’ in fmincon [23] 

Hessian Relative Memory Usage Relative Efficiency 
'bfgs' (default) High (for large problems) High
'lbfgs' Low to Moderate Moderate
'fin-diff-grads' Low Moderate
'HessianFcn' (depends on user-defined code) High (depends on your code)

 

The memory usage of the user provided partial derivatives depends on the programmed 
code. For the lower bound problem, the ‘bfgs’ isn’t recommended since it is not suitable for 
large-scale problems. Generally, the ‘lbfgs’ and user-defined approaches are the most effi-
cient when calculation time and accuracy is considered in combination. 
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5.4 Numerical implementation in Mosek (SOCP) 

The lower bound load formulation for steel plates and reinforced concrete plates can also be 
optimized by means of the interior point optimizer in Mosek as an alternative to fmincon. 
Mosek is an efficient software for solving large-scale sparse problems, especially when it 
comes to second-order cone programming. Therefore, the lower bound formulation has to 
be expressed in terms of constraints describing second-order cones. 

5.4.1 Second-Order Cone Programming (SOCP) 

During the history it has been shown that the interior point method was effective in solving 
problems with convex constraints. The discovery gave rise to that the method could be 
extended to new algorithms, and among these is the second-order cone programming 
(SOCP) [7]. The constraints in SOCP are defined by a number of cones.  

 

Figure 5.5. Second-order cone with three variables (𝒙𝟏 ≥ √𝒙𝟐
𝟐 + 𝒙𝟑

𝟐) 

The most general constraints in SOCP are the Quadratic Cone (QC) 

 𝑥1 ≥ √∑ 𝑥𝑗
2

𝑛

𝑗=2
	, (5.18) 

and the Rotated Quadratic Cone (RQC) 

 2𝑥1𝑥2 ≥ ∑ 𝑥𝑗
2

𝑛

𝑗=3
 ; 𝑥1, 𝑥2 ≥ 0 . (5.19) 

When considering limit state analysis of reinforced concrete plates, M.P. Nielsen’s yield 
criterion is effective since the formulation is already expressed as two cones. In this study, 
von Mises yield criterion is formulated such that it corresponds to the quadratic cone (QC) 
in Eq. (5.18), whereas M.P. Nielsen’s yield criterion and the MN-relation for reinforcement 
is formulated such that it corresponds to the rotated quadratic cone in Eq. (5.19). By refor-
mulating von Mises, Nielsen’s yield criterion and the MN-relation, it gives rise that Mosek 
can be implemented to solve the lower bound problem. The reformulation of the yield cri-
terions is derived in Appendix E:. 
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5.4.2 Mosek Optimization Procedure 

Mosek is a software package capable of efficiently optimizing linear and nonlinear problems. 
The optimization is in this case based on second-order programming and the well-known 
primal-dual formulation as described in section 5.2. Besides optimization, Mosek is capable 
of utilizing some pre-steps that makes the algorithm faster and numerically more stable. A 
general procedure for conducting an optimization in Mosek is as follows [24] 

 Presolve (reduces the problem size) 
 Dualizer (choosing whether to run primal or dual solution) 
 Scaling (scales the unknown variables) 
 Optimize (solves the problem) 

In the presolve stage, Mosek reduces the problem size by e.g. removing redundant equations 
before optimizing. This is because some constraint equations may be linearly dependent, 
and by removing those, a more efficient and stable optimization can be obtained. This issue 
has also been treated in [25]. 

Another relevant feature that is included in Mosek is the possibility to scale different vari-
ables. If the value of a variable is large or small, say 1.0𝑒 + 11 or 1.0𝑒 − 9, some optimization 
algorithms struggle to converge and inaccurate results may be obtained. This is because 
computers are based on finite precision and some important digits may be truncated [24]. 
A well-scaled problem is preferable, which means that the variables should have more or 
less the same magnitude. The scaling issue can be circumvented in Mosek and a better 
numerical stability is obtained. The scaling possibility feature isn’t implemented in e.g. 
fmincon. 

Different examples on optimizing steel and reinforced concrete plates in Mosek is presented 
later in the report. 
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6. Program for Verification of Critical 
Stress Spots 
In the finite element method, numerical errors induce critical stress spots that can make it 
a challenge to fulfill the ultimate limit state when designing static loaded steel plates by the 
theory of elasticity. More specific, stress concentrations and stress singularity spots often 
induce stresses exceeding the elastic load bearing capacity. Critical stress spots are common 
in finite element analyses as a result of concentrated loads, concentrated supports, poor 
mesh discretization, and concave geometrical corners. As a consequence, the stress spots 
often lead to oversized designs due to high local stresses that in fact don’t appear in reality. 
The stresses can be verified in terms of conducting a nonlinear analysis of the entire struc-
ture, but this is time-demanding, in terms of both iterations and model size, and furthermore 
it is unsafe. 

  

Figure 6.1. Examples of critical stress spots in plates. 

To accommodate this problem, an efficient program for verifying the influence of critical 
stress spots in two-dimensional plates has successfully been developed. The same approach 
could have been made in the tree-dimensional case. Furthermore, a paper regarding the 
submodelling program has been elaborated, which is presented in Appendix I:. 

The developed program relies on the intuition that a subarea enclosing the critical stress 
spot is examined based on perfect plastic material behaviour. The assumption of the material 
behaviour is needed as the subarea is investigated by a lower bound limit state analysis. 
The limit analysis provides a load bearing capacity for the enclosed region by allowing a 
redistribution of the stresses. The capacity is defined by a scalar load multiplier, α, that is 
optimized by different optimization approaches in this thesis. The scalar load multiplier is 
an indicator of the load bearing capacity of the structure in comparison to the originally 
applied load. A scalar value greater than 1.0 implies that yielding will not occur in the 
considered region. Thus, a verification of the problem size is found by considering only a 
small domain of the entire structure. Besides dealing with submodels, the program is also 
capable of optimizing global models in order to obtain the load bearing capacity, see Ap-
pendix F.1  Full Plate Model Optimization. 
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The advantage of using our submodeling approach is that the load multiplier is always on 
the safe side since the capacity is only verified in a restricted part of the model. By only 
considering a subarea, yielding can be specified to only involve a defined part of the struc-
ture. This is of great advantage in comparison to nonlinear analyses of global models, where 
the capacity is defined as the point when yielding in the entire cross section is obtained. 
Another advantage of our approach in comparison to numerical analyses based on a nonlin-
ear material behaviour, is the convergence path as illustrated in Figure 6.2.  

 

Figure 6.2. Convergence path for nonlinear and lower bound convergence. 

Nonlinear analyses produce an exact solution in the plasticity analysis based on the given 
mesh of the considered model. This can lead to a load multiplier that is on the unsafe side 
and thereby an overestimation of the load bearing capacity if a proper mesh is not assigned. 
The load bearing capacity in our approach will always be located on the safe side as the 
lower bound theorem is utilized.  
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6.1 Procedure for Stress Verification  

In this study the approach for verification of critical stress spots in static loaded plates is 
based on an interaction between ANSYS Workbench and MATLAB. Instead of ANSYS 
Workbench an arbitrary finite element software could have been used.    
  The overall proces of the program, from creating a global model to obtaining a submodel 
solution, is exemplified in Figure 6.3. 

 

Figure 6.3. Overall process of the program. 

In the first steps, ANSYS Workbench is used to solve a global user-defined model by means 
of a displacement-based finite element method. By solving the global model, it is possible 
to conclude whether critical stress spots appear. A submodel area is defined by only consid-
ering a specific region of the domain. In this region the problematic stress spots are solely 
located, why the problem is significantly reduced regarding calculation time and numerical 
errors. The submodel is exported to MATLAB by an interaction with ANSYS Workbench 
that includes a direct transformation from a displacement-based mesh utilized in ANSYS to 
a stress-based mesh generated in MATLAB. The problem is solved in MATLAB where a 
nonlinear load optimization is conducted based on the interior point method. The optimi-
zation results in a scalar load multiplier 𝛼 verifying the problem size.  
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6.2 Submodeling Technique 

In order to verify critical stress spots, the user has to discretize a global problem to a 
submodel that encloses the critical region. The submodeling technique is well known within 
finite element analysis where the aim is to obtain more accurate stress results in specific 
regions. In order to conduct a submodel analysis a global model is needed and the corre-
sponding solution. The global model has a coarse mesh, whereas the mesh of the submodel 
is fine to obtain accuracy. By making a coarse global model, the computational cost is 
minimal.  

 

Figure 6.4. Technical terms within the field of submodeling. 

The solution from the global model is used as boundary conditions for the defined submodel. 
All the boundary conditions are imported to a separate defined finite element submodel 
with a refined mesh as illustrated in Figure 6.4.  

For the submodeling approach in this study, the stresses from the global model are interpo-
lated and applied on the cut boundary of the submodel. There is no need for the cut bound-
ary to coincide with the element boundaries in the global model, which is of great advantage. 
Another advantage is the ability to assign arbitrary mesh types and elements for the global 
model in the submodel approach. 

6.3 Submodeling in ANSYS Workbench 

ANSYS Workbench is used for two purposes in this study. Firstly, ANSYS is used to solve 
a global plate model and secondly to create a submodel for the upcoming limit analysis in 
MATLAB. The global model in ANSYS is solved by using displacement-based elements (see 
Figure 6.5) where the structural stresses are related to the nodal displacements.  
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(a) Global model (b) Submodel 

Figure 6.5. Example of the submodeling principle in this study. 

After solving the global model, a custom made APDL-script is implemented in ANSYS 
Workbench in order to create a submodel and to export the submodel topology and bound-
ary conditions for the 2D stress-based element formulated in MATLAB.  

 

Figure 6.6. Input windows in the APDL-script. 

The submodel is made by a user-defined stress path in ANSYS. An APDL-script is necessary 
to implement since ANSYS Workbench isn’t able to export boundary stresses and the to-
pology for a submodel by default. 

In order to conduct a lower bound limit analysis in the developed program, the following 
parameters need to be exported from ANSYS Workbench: 

 node coordinates 
 element topology 
 plate thickness 
 stress components at cut boundary 
 density 
 gravitational acceleration and direction 
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6.3.1 Submodel Geometries 

In the developed program, the submodel can either be defined from a circular or a square 
cut boundary, see Figure 6.6 and Figure 6.7.  

 

(a) Global model with circular submodel 
selection 

(b) Global model with rectangular submodel 
selection 

Figure 6.7. Example of different submodel geometries. 

The size and mesh of the two submodel geometries are user-defined, which is done by typing 
the specifications in the imported APDL-script in ANSYS Workbench. The rectangular 
submodel is defined based on the coordinates of the center in global Cartesian coordinates 
and the length and width, whereas the circular submodel is defined by the circle radius and 
coordinates to the center, see Figure 6.6. 

6.3.2 Export of Cut Boundary Stresses 

The submodel is based on a stress path that can be placed anywhere in the model independ-
ent of the global node and element position as earlier described.  

                      
(a) Circular submodel (b) Rectangular submodel 

Figure 6.8. Example of normal stress distribution along a stress path on the submodel 
boundary. 

A linear elastic analysis is conducted in ANSYS Workbench for a global model and from 
the analysis it is possible to obtain the stress state for the global model. After conducting 
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the linear analysis, the three stress components at each node on the cut boundary are inter-
polated to perform the lower bound limit analysis in MATLAB. The stresses from the stress 
path are used as boundary conditions in the limit state analysis in MATLAB. 

6.3.3 Mesh Generation for the Submodel 

The principle of making submodels is that the global model has to be meshed coarsely, 
whereas the mesh of the submodel has to be fine. The mesh of the submodel is assigned 
based on a user defined edge sizing of the cut boundary. The edge sizing is based on the 
number of divisions chosen for the path operation, see Figure 6.6. This makes it possible to 
directly apply the shear and normal stresses calculated from the displacement -based ele-
ments into the boundary nodes in the stress-based model. This is due to that the stresses 
are assumed to vary linearly over the element edges and that the stress-based elements are 
located at the same position as the displacement -calculated path stresses.  

The fine submodel mesh is created with ANSYS Workbench by means of the input in the 
APDL-script where the mesh is assembled from CST-elements since triangular stress-based 
elements use the same topology. By having the same element geometry and number of nodes 
on the displacement -based CST-elements as the stress-based elements, it is possible to 
directly import node coordinates and element topology from ANSYS to the program in 
MATLAB. 

           

            

(a) Circular submodel (b) Rectangular submodel 

Figure 6.9. Examples of submodel mesh. 

In the APDL-script, the mesh of the submodel is set to be free, but a mapped mesh can also 
be assigned if the submodel geometry allows it. 

6.4 Parameters Influencing the Load Multiplier 

When conducting the submodel analysis, the user has to be aware of the parameters that 
influence the scalar load multiplier 𝛼 in the limit analysis 

 mesh of the global model 
 size of the submodel 
 mesh of the submodel. 
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The mesh of the global model has a large influence on the load multiplier since the imported 
stresses depend on the mesh of the global model. A study of the global mesh influence on 
the load multiplier is seen in Appendix G.4  Study of Cut Boundary Stresses. In order to 
obtain the most accurate value for the load multiplier, the global model mesh should consist 
of higher order elements as concluded in the appendix. A study of the submodel size is 
shown in Appendix G.1  Study of Submodel Size. From the appendix it is concluded that a 
larger subarea results in a higher load multiplier. Thereby, the load multiplier is always on 
the safe side when the optimization is conducted for a submodel rather than a global model.  

If a fine mesh is assigned a more accurate scalar load multiplier is obtained, but it also 
increases the problem size and thereby the calculation time, see Appendix G.2  Study of 
Submodel Mesh Refinement. The influence of refining the submodel mesh is not as signifi-
cant factor as applying an appropriate global model mesh and choosing a proper size of the 
submodel. Thereby, when conducting a submodel optimization the load multiplier is an 
interaction between the size and mesh of the submodel, and the mesh of the global model.  

6.5 Example of Application – Plate with Stress Singularity  

A plate with a hole is evaluated to exemplify the application of the submodeling program, 
see Figure 6.10. Stress singularities appears as a result of the concave corner in the structure. 
The plate is subjected to a transverse force of 5 kN at the right side, and a fixed support is 
defined for the left edge. The plate has a thickness of 10 mm. 

 

Figure 6.10. Free body diagram of the considered plate structure. 

The plate is made of steel and the yield strength is assigned to 235 MPa. 
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6.5.1 Linear Elastic Stress Analysis in ANSYS Workbench  

A linear elastic stress analysis has been conducted in ANSYS Workbench based on the 
boundary conditions shown in Figure 6.10. The mesh of the model consists of Q8-elements 
as seen in Figure 6.11. 

 

Figure 6.11. Plot of mesh and resulting von Mises stresses. 

From the linear elastic stress analysis in ANSYS Workbench it is seen that the highest von 
Mises stresses are obtained in the region of the sharp corner, whereas the stresses are much 
lower in the remaining part of the plate. 

(a) Principal stresses. (b) Generalized stresses including 𝝈𝒙,𝝈𝒚-plane. 

Figure 6.12. Plot of von Mises yield criterion and stress states for the global model. 

By plotting the stresses of each node of the global model, as seen in Figure 6.12, it is seen 
that only a single stress state is critical as it is located outside the yield criterion. Since the 
structure has a lot of capacity, the stresses at the critical areas can be redistributed such 
that an optimized stress state is obtained. 

6.5.2 Submodeling 

In order to redistribute the stresses, a circular subregion with a radius of 20 mm is sliced, 
in which the redistribution of stresses has to be conducted. By choosing a radius of 20 mm 
it means that the upcoming load multiplier corresponds to that yielding is only allowable 

2
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up to 20 mm from the singularity spot. This is advantageous in comparison to a nonlinear 
analysis in ANSYS, as the entire structure needs to be considered.   

 

Figure 6.13. Global model with selected subregion. 

For the submodel area a mesh is generated in ANSYS Workbench by means of the APDL-
script. The external force is applied in the submodel at the nodes located on the cut bound-
ary, see Figure 6.14. 

 

Figure 6.14. Submodel mesh.  

The model consists of 630 elements, and a refinement is performed at the edges near the 
singularity spot. The submodel is statically indeterminate, which gives rise to stress redis-
tributions. 

6.5.3 Verification of Critical Stress Spots 

The scalar load multiplier 𝛼 is to be calculated for the submodel in order to clarify whether 
the given stress state results in structural collapse. 
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Figure 6.15. von Mises stress of optimized submodel. 

The scalar load multiplier 𝛼 is calculated to 2.32. As the load multiplier is above 1.0, it can 
be concluded that the applied force doesn’t result in collapse, even though the elastic anal-
ysis shows critical stresses for the global model.   
   By plotting the stress states and von Mises yield criterion, as seen in Figure 6.16, it is 
seen that an allowable stress field is obtained.  

  

(a) Principal Stresses. (b) Generalized stresses with 𝝈𝒙,𝝈𝒚-plane. 

Figure 6.16. von Mises yield criterion and principal and generalized stress states of optimized 
submodel. 

The developed submodel program can also be used for structures with stress concentrations 
and singularities regarding concentrated supports and forces, and not only geometrical sin-
gularities as it is the case in this example. 
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7. Load Optimization of Reinforced 
Concrete Plates 
A program concerning load and material optimization of reinforced concrete plates has been 
developed. The elaboration of the load optimization part is presented in this chapter, while 
the material optimization is examined in the subsequent chapter. The intention with the 
following chapter is to compare the numerical approach presented in this thesis with well-
known design approaches, such as the stringer method. Furthermore, the capability of the 
numerical approach is explained and demonstrated by examples. 

The numerical method employed in this thesis is a modification of an earlier presented 
approach that is based on the lower bound formulation, see section 2.4. The formulation is 
based on a statically admissible solution and a non-violated yield criterion. The formulation 
of the elements and the yield criterions, in this approach, can be recalled from chapter 3 
and chapter 4. As the optimization involves different element types, a proper interaction 
between the elements is validated, and it is presented by examples in Appendix H:. The 
approach in this thesis contributes to a nonlinear yield criterion, and likewise, a nonlinear 
relation between the moment and normal force in a rebar element, in comparison to the 
method presented in [1]. Furthermore, the lower bound problem is solved by second order 
cone optimization in Mosek, which is found as a rather unexplored approach regarding 
optimization of reinforced concrete plates.  

7.1 Problem Formulation 

The problem formulation in this chapter is similar to the formulation for steel plates as the 
task is to maximize the scalar load multiplier by the restriction of a statically admissible 
solution, and a yield criterion. However, the problem is more complex in a numerical point 
of view as different element types are considered, and additional constraint equations are 
introduced. The lower bound formulation for optimizing reinforced concrete plates is stated 
as a summary of the derivation in the previous chapters 

maximize 

 𝛼	 (7.1) 

subjected to 

 Hβ − αR = Rc	 (7.2) 
 

 −(ftx − σx)(ft
y − σy) + τxy

2 ≤ 0 (7.3) 
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 −(fc + σx)(fc + σy) + τxy
2 ≤ 0 (7.4) 
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− 1 ≤ 0	 (7.5) 
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)
2

+ 1 ≥ 0	 (7.6) 

 

 −fc ≤ σx ≤ ftx	 (7.7) 
 

 −fc ≤ σy ≤ ft
y	 (7.8) 

 

 −1 ≤
M
Mp

∧
N
Np

≤ 1 .	 (7.9) 

In case of higher reinforcement degrees (Φ ≥ 0,3) a limit is added to the shear stresses at 

 ∣𝜏𝑥𝑦∣ ≤ 0.5𝜈𝑓𝑐.	 (7.10) 

As the problem is solved by cone optimization a reformulation of the yield criterions in Eq. 
(7.3), (7.4), (7.5) and (7.6) has been necessary, see Appendix E:. 

7.2 Example – End Wall Exposed to Wind Load 

In the following example, a load optimization is conducted for an end wall exposed to wind 
load, see Figure 7.1. The structure has previously been examined by the stringer method, 
see [1], [6] and [25], where a load multiplier of ߙ = 72.25 was obtained. The aim is to compare 
previously obtained results with the numerical solution presented in this thesis.  

 

Figure 7.1. End wall exposed to wind from left. 
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The base of the end wall is considered rigid, and a compressive force is applied at the left 
side, while a tensile force acts at the right side of the wall. The thickness of the structure is 
200 mm, which is relatively small compared to the width and height. Thus, the wall can be 
analysed as a plane structure. The material properties of the reinforced concrete and con-
centrated reinforcement appear in Figure 7.1. 

The model is implemented in MATLAB by a discretization as seen in the figure below. The 
finite element discretization of the end wall is made by dividing each shear field from the 
study in [6] into four triangular elements. This provides a total of 76 triangular elements 
and 13 rebar elements. In order to compare with the stringer method, the load is distributed 
into the horizontal rebar elements as illustrated in Figure 7.2. 

 

Figure 7.2. Finite element discretization of plate model in MATLAB. 

Two load cases are considered in this example. In the first load case, the forces are applied 
in the rebar elements at each side of the structure, while the second load case investigates 
the structural response when the forces are applied in the concrete. 

7.2.1 Application of Forces in Rebars 

By performing a load optimization in the developed program, a load multiplier of 𝛼 = 107.14 
is obtained when the load is applied in the rebar elements. The stress distribution corre-
sponding to the load multiplier is illustrated in Figure 7.3. 
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(a) Normal stress in the  

x-direction 
(b) Normal stress in the 

y-direction
(c) Shear stress 

Figure 7.3. Stress distribution of the optimized structure. 

From the figures above it is clear, that normal stresses are introduced in the concrete plates, 
which is not possible in the stringer method. Furthermore, it can be noticed that the stress 
capacity is still available in the concrete when considering all three generalized stresses. This 
implies that collapse has occurred as a result of failure in a concentrated reinforcement bar. 
Both observations are seen in the figures below.  

(a) M.P. Nielsen yield criterion including  
optimized stress states. 

(b) MN-relation for the reinforcement  
including normal force and moments. 

Figure 7.4. Yield criterions for reinforced concrete plates and rebars. 

The influence of the nonlinearity in M.P. Nielsen yield criterion is not significant in this 
case as the concentrated reinforcements are critical. However, for structures where the con-
crete is having more influence on the load multiplier, the nonlinear yield surface could pro-
vide a larger load multiplier in comparison to the use of a linear yield criterion. 

It can be concluded that the presented method provides a load multiplier that is 32.5 % 
higher than the obtained by the stringer method. 
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7.2.2 Application of Forces in the Concrete 

By performing a load optimization in the developed program, a load multiplier of 𝛼 = 123.8 
is obtained when the load is applied in the concrete elements. The stress distribution corre-
sponding to the load multiplier is illustrated in Figure 7.7. 

 
(a) Normal stress in the  

x-direction 
(b) Normal stress in the 

y-direction
(c) Shear stress 

Figure 7.5. Stress distribution of the optimized structure. 

The corresponding stress states, normal forces, and moments are illustrated in the figure 
below. 

 

(a) M.P. Nielsen yield criterion including  
optimized stress states. 

(b) MN-relation for the reinforcement  
including normal force and moments. 

Figure 7.6. Yield criterions for reinforced concrete plates and rebars. 

By applying the external force in the concrete it is seen that the obtained load multiplier is 
15.9 % higher in comparison to the approach presented in [1]. The value of the load multi-
plier seems reasonable as nonlinear yield criterions are implemented for both the reinforced 
concrete and rebar elements, which is not the case in [1].   
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7.3 Example – Plate with Curved Reinforcement 

In the following example a u-stirrup casted into a concrete plate is considered, see Figure 
7.7. The main purpose is to show the importance and capabilities by giving the concentrated 
reinforcement beam properties. The transverse beam forces in the u-stirrup (or rebar ele-
ment) has to be transferred to the neighboring plate elements, which results in compression 
in the concrete. It has to be pointed out that the analysis only severs the purpose of showing 
the capability by the numerical method as u-stirrups can cause local stresses exceeding the 
compressive strength in the concrete. Uncritical analyses of such cases can lead to collapse, 
which is described at the end of the example. 

 

Figure 7.7. Plate system with U-stirrups. 

The finite element model is established by applying a load of 𝑇 = 100 𝑁 at the two ends of 
the u-stirrup, while the plate elements between the stirrup are supported in the vertical 
direction, see Figure 7.7. Furthermore, the tensile strength in the concrete is defined as 𝑓𝑡 =
0.01 MPa due to convergence issues.  

 

Figure 7.8. Finite element discretization of plate model in MATLAB. 
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The model is implemented in MATLAB by discretizing the model as seen in Figure 7.8. The 
discretized mode consists of 430 reinforced concrete elements and 29 rebar element describ-
ing the u-stirrups. 

By performing a load optimization in the developed program, a load multiplier of 𝛼 = 1152 
is obtained. The principal stress distribution corresponding to the load multiplier is illus-
trated in Figure 7.9 and Figure 7.10. 

Figure 7.9. Principal stresses, 𝜎1. Figure 7.10. Principal stresses, 𝜎2. 

The corresponding principal directions are illustrated in Figure 7.11. 

 

Figure 7.11. Principal directions. 

In Figure 7.9 and Figure 7.10 it can be seen that no stresses occur outside the u-stirrup, which 
means that the applied tensile forces are carried as pressure in the concrete, solely. Further-
more, it can be seen that the compressive stresses in the concrete is growing towards the 
stirrup ends, and that the principal direction is pointing slightly towards the top of the 
stirrup. This is as expected since the concrete can carry higher shear stresses under com-
pression, and thereby transfer higher tangential forces from stirrup to the plate element. 
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(a) M.P. Nielsen yield criterion including  
optimized stress states. 

(b) MN-relation for the reinforcement  
including normal force and moments. 

Figure 7.12. Yield criterions for reinforced concrete plates and rebars. 

The load multiplier corresponds to yielding in the u-stirrup, which is also seen in the figure 
above. 

 
𝑇 ⋅ ߙ

𝐴𝑠𝑡𝑖𝑟𝑟𝑢𝑝
=

100 𝑁 ⋅ 1152
491 𝑚𝑚2 = 235 𝑀𝑃𝑎 = 𝑓𝑦.  

Thus, yielding occurs in the stirrup when the tensile force is 115 kN. Additionally, the 
moment capacity is reached at multiple points along the u-stirrup due to the transverse 
loading of the rebar element. 

7.3.1 Analytical Concrete Pressure 

The internal concrete pressure can be calculated analytically according to [8] if the projec-
tion perpendicular to the rebar element is assumed equal to the tensile stress in the u-stir-
rup element 

 𝑓𝑐 =
2𝑇
𝑑𝐷

=
2 ⋅ 115 ⋅ 103𝑁

25 𝑚𝑚 ⋅ 200 𝑚𝑚
= 46 𝑀𝑃𝑎,  

where d is the cross-sectional diameter of the u-stirrup, and D is the diameter of the curved 
reinforcement. Thus, the concrete pressure is actually higher than the uniaxial compressive 
strength in the concrete, which was described in the beginning of this example. More specific, 
the limit analysis distributes the pressure along the entire area of the plate instead of the 
area acting over the u-stirrup, solely. This can lead to high local stresses and potential 
collapse, see Figure 7.13. 
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(a) Splitting collapse. (b) Local collapse. 

Figure 7.13. Different collapse forms. 
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8. Reinforced Concrete Plates – Material 
Optimization 
The optimal cost of structures is found as a combination of several factors that are all 
weighted in a total cost function. The purpose of performing material optimization of 
reinforced concrete plates is to reduce the material amount as this cost is overriding. A 
major component in this regard is the material costs, which is treated in this chapter. Yet, 
material optimization has become quite important in other fields, such as production, where 
the time costs are highly related to the material design at various fronts. As an example, a 
growing problem in the industry is the tendency to oversize reinforcement, which often 
causes space and production problems as the reinforced concrete elements are not well-
proportioned in terms of plate thickness and the ammount of reinforcement. 

 

Figure 8.1. Distributed reinforcement in a concrete plate. 

The fundamental difference between load and material optimization is that the material 
strength is fixed at load optimization, wheras the material strenghts are defined variables 
in the material optimization. The material optimization is performed by the lower bound 
approach and in overall the aim is to reduce different material variables, e.g. 

 minimize the reinforcement in the plate elements 
 minimize the concentrated reinforcement 
 proportion of concrete mixture to meet the applied load configuration and thereby 

minimizing the cost of mixture (w/c) ratio 

In this thesis it is chosen to demonstrate the main principle of conducting material 
optimization. Thus, the optimization solely concerns minimization of the reinforcement. 

8.1 Problem Formulation 

In order to conduct material optimization of reinforced concrete plates, the problem needs 
to be defined by a formulation that satisfies the lower bound approach. The general formu-
lation can be recalled as (see section 2.4) 

minimize: 

 𝑤𝑇 𝑑 . (8.1) 
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where d is a vector containing the design variables. The objective function is restricted by 
a statically admissible stress field and a yield criterion, respectively. The constraints are 
expressed as equality constraints 

 𝑯𝜷 = 𝑹 (8.2) 

 −(Φ𝑥𝑓𝑐 − 𝜎𝑥)(Φ𝑦𝑓𝑐 − 𝜎𝑦) + 𝜏𝑥𝑦
2 + 𝑠 = 0, (8.3) 

 −(𝑓𝑐 + 𝜎𝑥)(𝑓𝑐 + 𝜎𝑦) + 𝜏𝑥𝑦
2 + 𝑠 = 0, (8.4) 

where s is a non-negative slack variable. Similarly, the d-vector in Eq. (8.1) consists of non-
negative variables since a geometrical parameter by nature can’t be negative. The stress 
variables in the yield criterion needs to be located within the following bounds 

 −𝑓𝑐 ≤ 𝜎𝑥 ≤ 𝑓𝑡
𝑥 (8.5) 

 −𝑓𝑐 ≤ 𝜎𝑦 ≤ 𝑓𝑡
𝑦 (8.6) 

The concentrated reinforcement is restricted by a linear MN-relation, which is expressed in 
Eq. (8.7) and Eq. (8.8). 

 −1 <
𝑁𝑖
𝐴𝑓𝑦

< 1 (8.7) 

 −1 <
𝑀𝑖

𝑊𝑝𝑙𝑓𝑦
< 1 (8.8) 

 

Figure 8.2. Linearized MN-relation. 

Hence, the objective is to minimize the d-vector containing the material parameters. It can 
be noticed that the material parameters are multiplied with a scalar weight, w, that is 
further elaborated with the objective function in the following section.  

8.2 Weighted Object Function 

As explained in the introduction to this chapter, a cost function is normally used when 
conducting material optimization. The principle of a cost function is that each material 
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variable can be multiplied with a weighting factor. In that way many aspects can be in-
cluded, and certain variables can be preferred over others by assigning a higher weighting 
in comparison to the remaining variables. Thus, the weighting sytem can be chosen in many 
different configurations in order to control the design variables. The price and volume are 
one of many factors that are typically taken into account. 

In this thesis, the aim is to reduce the total reinforcement volume of a given concrete struc-
ture. The total reinforcement volume is a sum of the contribution from the equally spaced 
reinforcement in the plate, and the contribution from the concentrated reinforcement. Any 
difference in construction cost with regards to the two types of reinforcement isn’t taken 
into account. The two types of reinforcement casted into the concrete plate is described in 
the object function by the following expression 

 𝑑 = [Φ    A1 …An]T, (8.9) 

where the equally space reinforcement is described in terms of the reinforcement degree, Φ, 
and the remaining variables 𝐴𝑛 are related to the concentrated reinforcement. The 
reinforcement degree is assumed to be isotropically distributed in both directions, Φ𝑥 = Φ𝑦. 
The weightning part is formulated so that the object function expresses the total steel 
volume in the plate 

 𝑤 = [𝑓𝑐⋅𝑡
𝑓𝑦

⋅ 𝐴𝑝𝑙𝑎𝑡𝑒    𝐿1 … 𝐿𝑛]. (8.10) 

Thereby, the total volume of the plate is expressed as 

 𝑤𝑇 𝑑 = 𝑉𝑡𝑜𝑡𝑎𝑙. (8.11) 

The weighting sytem can in fact be chosen by many different configurations in order to 
optimize the design variables. 

8.3 Example – End Wall Exposed to Wind Load 

In this section an example of a material optimization is presented by considering the same 
structure as it was the case for the load optimization in section 7.2. The considered material 
is divided into two different groups, including the rebar elements and the equally spaced 
reinforcement in the plate elements. The reinforcement in the plate is considered to be 
isotropic, where the reinforcement degree is optimized in the vertical and horizontal 
direction in terms of the same reinforcement degree, Φ. The rebars are constrained by a 
linear MN-relation, which in this example has shown to be a god approximation since the 
moments are small, see section 7.2. The load and the initial stress configuration are equal 
to the ultimate load bearing capacity from section 7.2. This means that the applied load in 
the upcoming example is a product of the optimized load multiplier, 𝛼 = 107, and the actual 
wind load.  The loads are applied as concentrated forces in the rebars.  
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Figure 8.3. Illustration of end wall exposed to wind from left. 

The structure is discretized as seen in Figure 7.2 by having 76 triangular plate elements and 
13 rebar elements. 

In order to weight the two different material groups properly, a scalar value is multiplied 
with the different material parameters to define the total volume of reinforcement in the 
plate. The object function can be formulated by 

 
𝑤𝑇 𝑑 = [𝐿1 𝐿2 … … . . 𝐿13   (𝑓𝑐⋅𝑡

𝑓𝑦
⋅ 𝐴𝑝𝑙𝑎𝑡𝑒)]

⎩
{{
⎨
{{
⎧ 𝐴1

…
…

𝐴13
Φ ⎭

}}
⎬
}}
⎫

, 
(8.12) 

where 𝐴𝑖 is the cross-sectional area of the rebars, 𝐿𝑖 is the length of the continuous rebar 
elements, and Φ is the reinforcement degree for the isotropic case. By weighting the different 
material parameters as shown in Eq. (8.12), the objective function can be understood as a 
sum of the total reinforcement volume. Due to the demand for positive material parameters, 
the initial values of the reinforcement degree and rebar area are as defined in Figure 8.3.  

By performing a material optimization in the developed program, a cross-sectional area 
distribtion of the rebars is obtained as seen in the figure below. 
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Figure 8.4. Optimized rebar cross-sectional area. 

The total volume of the rebar reinforcement is 𝑉𝑟 = 2.55 ⋅ 107𝑚𝑚3, which is a reduction of 
36% in comparison to the original concentrated reinforcement. The optimized isotropic 
reinforcement degree is found to Φ = 0.033, which gives a tensile strength for the reinforced 
concrete plate of 𝑓𝑡 = 0.49 MPa, and a total reinforcement volume in the plate of 𝑉𝑝 = 1,96 ⋅
107𝑚𝑚3. The isotropic reinforcement is reduced by 22%, and summarized with the reduction 
of the rebar volume, a total reinforcement reduction of 30% is achieved. The resulting 
normal stress distribution in the rebar is as seen in Figure 8.5. 

 

Figure 8.5. Normal stress variation in the rebars.  

If a more representative material optimization should be performed, multiple load cases 
should be included in the algorithm. In order to achieve a further reinforcement reduction, 
the model could be divided into subareas with inclusion of anisotropic reinforcement. 
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9. Conclusion 
An efficient program for verification of critical stress spots in steel plates has successfully 
been developed. The program is based on a submodeling principle and the lower bound limit 
analysis. In the lower bound limit analysis, stress-based elements are used to calculate the 
scalar load multiplier 𝛼 in order to specify whether a stress state leads to structural collapse. 
The program appears to be very efficient since only a submodel is considered and only few 
steps are needed in the overall process. Furthermore, the results are always on the safe side 
as the lower bound method is implemented, and only a submodel is considered.   
   By implementing the efficient self-developed script in ANSYS, it is possible to export all 
the needed finite element information to set up the lower bound problem for the submodel. 
The maximization of the lower bound problem is solved by means of nonlinear programming 
theory using interior point solvers in MATLAB and Mosek. Especially the second order cone 
programming in Mosek has proven to be very efficient in optimizing large scale problems. 
    The efficiency of the program has been presented by an example of a plate subjected to 
a geometrical stress singularity. The developed submodel program is versatile since it can 
be used for structures subjected to both stress concentrations, and stress singularities re-
garding concentrated supports and forces, and not only geometrical singularities as it is the 
case in the example. 

A finite element program capable of conducting limit state analyses of reinforced concrete 
plates is likewise developed. The program is based on the lower bound theorem where bar 
and beam elements have been introduced. A load optimization example has been presented 
in terms of an end wall, and the efficiency of the load optimization program has been shown 
as the method provides a load multiplier that is 32.5 % higher in comparison to the stringer 
method when the force is applied in the rebar elements. When the load is applied in the 
concrete a 15.9 % higher load multiplier is obtained in comparison to the approach presented 
in [1], which is seen as a result of the implementation of nonlinear yield criterions. 

Furthermore, the beam properties of a rebar element are demonstrated by means of an 
example where a u-stirrup is considered. The example shows the transfer of beam forces in 
the u-stirrup to the neighbouring plate elements. It is also seen that the moments aren’t 
violating the nonlinear MN-relation. 

The material optimization in the developed program is based on a weighting system with 
the purpose of reducing the total amount of reinforcement when considering both the dis-
tributed reinforcement and concentrated reinforcement, respectively. Finally, the program 
is used to conduct a material optimization of the end wall, which resulted in a total rein-
forcement reduction of 30 %. The material reduction was obtained on behalves of the limit 
load from the previous, structure, which illustrates principle and potential of the numerical 
approach. 
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Appendix A: Upper and Lower Bound 
Solution of a Statically Indeterminate 
Beam 
In this appendix a one-time indeterminate beam system is considered. The purpose is to 
show how a coincided solution can be found regarding the upper and lower bound theorem. 
The considered system is clamped in the left end and simple supported in the right end. 
The system is exposed to two vertical forces 𝑃 , each acting 16𝐿 from the middle of the span. 
As seen in the figure, the system is discretized by four nodes. 

 

Figure 9.1. one-time indeterminate beam system. 

Upper Bound solution  
The upper bound solutions are found by considering all possible collapse mechanisms be-
tween the nodes A, B, C, and D. The collapse mechanisms are sketched in the figure below.  

 

Figure 9.2. Collapse mechanisms for the indeterminate beam. 
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From this simple discretized system three collapse mechanisms must be investigated, and 
the most critical collapse mode is to be compared with the optimum solution in the lower 
bound solution. The upper bound solution is based on the following consideration from 
which the critical load can be found by solving. 

 𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑊𝑜𝑢𝑡𝑒𝑟  

 

Figure 9.3. Collapse mechanism. 

Collapse between node A and B. 

 2𝜃 ⋅ 𝑀𝑃 + 3𝜃 ⋅ 𝑀𝑃 =
1
3

𝑝𝑙 ⋅ 2𝜃 +
1
3

𝑝𝑙 ⋅ 𝜃 → 𝑃 = 5
𝑀𝑃
𝐿

  

Collapse between node B and C. 

 𝜃 ⋅ 𝑀𝑃 + 2𝜃 ⋅ 𝑀𝑃 =
1
3

𝑝𝑙 ⋅ 𝜃 → 9
𝑀𝑃
𝐿

  

Collapse between node A and C. 

 𝜃 ⋅ 𝑀𝑃 + 3𝜃 ⋅ 𝑀𝑃 =
1
3

𝑝𝑙 ⋅ 𝜃 +
1
3

𝑝𝑙 ⋅ 2𝜃 → 𝑃 = 4
𝑀𝑃
𝐿

  

The most critical collapse form is therefore between node A and C, which will be compared 
with the optimal lower bound solution. 

Lower Bound Solution 
The optimum lower bound solution is found by the force method. Thus the so-called 𝑀0 
and 𝑀1 moment diagram are found and used to find the optimal stress field. 

 



82  Appendix A:  Upper and Lower Bound Solution of a Statically Indeterminate Beam 

 

 

 

Figure 9.4. M0 and M1 diagram. 

Moment equations Isolate 𝑝 when 𝑥1 = 0 Isolate ݔଵ when 𝑝 = 0

𝑀𝐴 = 0 + 𝑥1 ⋅ 1 = ±𝑀𝑃  𝑝 = 0 𝑥1 = ±𝑀𝑃  

𝑀𝐵 =
1
3

𝑝𝑙 + 𝑥1 ⋅
2
3

= ±𝑀𝑃  𝑝 = ±
3𝑀𝑃

𝐿
 𝑥1 = ±

3
2

𝑀𝑃  

𝑀𝐶 =
1
3

𝑝𝑙 + 𝑥1 ⋅
1
3

= ±𝑀𝑃  𝑝 = ±
3𝑀𝑃

𝐿
 𝑥1 = ±3𝑀𝑃  

𝑀𝐷 = 0 + 0 = ±𝑀𝑃  𝑝 = 0 𝑥1 = 0 

The highest load the system can obtain by the lower bound method is now found by plotting 
the above 𝑝 and 𝑥1 values. 

 

Figure 9.5. Search for lower bound optimum solution. 

From Figure 9.5 it is seen that the optimum load is 𝑝 = 4 𝑀𝑃
𝐿 , which corresponds to the load 

of the most critical collapse mechanism found by the upper bound method. 
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Appendix B: Primal-dual Formulation for 
Load Optimization 
Duality Theory 

The duality theorem is a mathematical optimization theory that makes it possible to con-
sider an optimization problem from two perspectives, either the primal problem or the dual 
problem. The duality theorem is useful with respect to the accuracy when calculating the 
scalar load multiplier. A duality theory between the lower and upper bound methods can 
be expressed just as it is the case with the duality in the field of linear programming. 

In order to formulate the dual problem, the primal problem in Eq. (2.7) has to be linearized, 
which is done by use of the first-order Taylor expansion of the nonlinear yield criterion 
around points ߚ∗ lying on the yield surface 

 𝑓(𝛽) ≅ 𝑓(𝛽∗) + ∇𝑓𝑇(𝛽 − 𝛽∗) . (B.1) 

On the yield surface 𝑓(𝛽∗) = 0 and hereby the linearized yield criterion can be expressed as 

𝑓𝑇𝛽  + 𝑠 = ∇𝑓𝑇𝛽∗	. (B.2) 

The linearized lower bound load optimization problem is expressed as 

 

maximize:     𝛼 

subject to:   𝑯𝛽 = 𝛼𝑅 + 𝑅𝑐

𝒇𝑇                𝛽 + 𝑠 = ∇𝒇𝑇 𝛽∗,  

               𝑠 ≥ 0,  

(B.3) 

By performing several mathematical operations, it is possible to express the dual to the 
problem in Eq. (B.3) [18] 

 

minimize:     (∇𝒇𝑇 𝛽∗)𝑇 𝜆 − 𝑅𝑐
𝑇 𝑣 

subject to:   ∇𝒇𝜆 − 𝑯𝑇 𝑣 = 0

              ܴܶ𝑣 = 1  

               𝜆 ≥ 0,  

(B.4) 

where 𝜆 is a vector containing the magnitude or strain rate of each plastic strain, and 
therefore it is associated with the yield criterion. The number of plastic strains corresponds 
to the number of nonlinear constraints. The plastic strain rate is expressed by the normality 
rule 

 𝜀𝑖𝑗
𝑝 = 𝜆

𝜕𝑓
𝜕𝛽𝑖𝑗

 (B.5) 

In the dual problem in Eq. (B.4) v denotes the displacements, or velocities, when the struc-
ture collapses. The displacements, v, are i.e. associated with the upper bound formulation 
of the load optimization for the discrete problem. 
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The external and internal work have to be in equilibrium and each of these are given by 

 𝑊 𝑒 = (𝛼𝑅𝑇 + 𝑅𝑐
𝑇 )𝑣, 𝑊 𝑖 = (∇𝑓𝑇 𝛽∗)𝑇 𝜆 (B.6) 

By setting the internal work equal to the external work and solving with respect to 𝛼, it is 
possible to obtain the scalar collapse load factor 𝛼 

 𝛼 = min
𝑣,𝜆

(
 (∇𝑓𝑇 𝛽∗)𝑇 𝜆 − 𝑅𝑐

𝑇 𝑣
𝑅𝑇 𝑣

). (B.7) 

The displacements v, that are calculated based on the dual formulation, can have different 
interpretations depending on the finite element discretization. In the mixed finite element 
formulation, the interpretation of the displacements v is straightforward as they define the 
displacements in the nodes of the assembled mesh [18]. In this project a finite element 
discretization with rigorous equilibrium elements is formulated such that stress discontinu-
ities are permitted as long as normal and tangential stresses across element interfaces are 
continuous in the lower bound solution. The permission of stress discontinuities in the lower 
bound solution means that velocity discontinuities are kinematically admissible in the upper 
bound method [18]. In the mixed finite element formulation, the stresses and displacements 
are therefore obtained directly in each node of the assembled mesh, whereas in the rigorous 
finite element formulation the allowance of stress discontinuity is compensated by a set of 
inter-element conditions and a number of overall equilibrium conditions. This means that 
the displacement field should be made with certain reservations.   

Optimality Conditions 

The optimality conditions for the lower bound formulation are explained in the following 
section. It includes a derivation and a physical interpretation of the optimization problem. 
The optimality conditions are expressed by the duality theorem by considering both the 
upper and lower bound formulation.   

From mechanics of constitutive modelling it is known that an exact solution to the limit 
analysis is reached when the kinematical solution is equal to the statically solution.  

Recalling that the dual feasibility conditions for the linearized lower bound problem are 
given by 

 𝑯𝜷 = 𝛼𝑹 + 𝑹𝒄 , (B.8) 

 𝛁𝒇𝑻𝜷 + 𝒔 = 𝛁𝒇𝑻 𝜷∗, (B.9) 

 𝒔 ≥ 𝟎 . (B.10) 

The corresponding primal feasibilities are 

 𝛁𝒇𝝀 − 𝑯𝑻 𝒗 = 𝟎 (B.11) 

 𝑹𝑻𝒗 = 1 (B.12) 

 𝛌 ≥ 𝟎, (B.13) 
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The difference between the primal and dual solution is expressed by a duality gap, 𝛾 

 𝛾 = (𝛁𝒇𝜷∗)𝑻𝝀 − 𝑹𝒄
𝑻𝒗 − 𝛼 = 0 (B.14) 

The zero duality gap from Eq. (B.14) is rewritten by the feasibility conditions in Eq. (B.8) 
and (B.9)  

 

𝛾 = (𝛁𝒇𝜷∗ + 𝒔)𝑻𝝀 − (𝑯𝜷 − 𝛼𝑹)𝑻𝒗 − 𝛼 

				ൌ ࣅࢀ࢙  ࣅࢌ൫સࢀࢼ െ ൯࢜ࢀࡴ  ࢜ࢀࡾ൫ߙ െ ൯ 

				ൌ  ࣅࢀ࢙

(B.15)  

 

The last expression in Eq. (B.15)  has to be equal to zero, which leads to 

 𝒔𝒋𝝀𝒋 = 𝟎, 𝑗 = 1,2,… , 𝑝 (B.16) 

where 𝜆 and s both have to be greater than or equal to zero. The condition in Eq. (B.16) is 
also known as the complementary slackness. If a stress state on the yield surface is consid-
ered, the value for the slackness s will be equal to zero (𝑠𝑗 = 0), whereas the strain rate 𝜆 
is positive (𝜆 > 0) and Eq. (B.16) is thereby fulfilled. An opposite effect is seen when a 
stress state within the yield surface is considered.  

In matrix notation Eq. (B.16) is stated as 

 𝑺𝝀 = 𝟎 , (B.17)  

where 𝐒 = diag(𝐬). 

Thus, the full set of optimality constraints is expresses as 

 𝑯𝜷 = 𝜶𝑹 + 𝑹𝒄 (B.18) 

 𝒇(𝜷) + 𝒔 = 𝟎 (B.19) 

 𝛁𝒇𝝀 − 𝑯𝑻 𝒗 = 𝟎 (B.20) 

 𝑹𝑻𝒗 = 1 (B.21) 

 𝑺𝝀 = 𝟎 (B.22) 

From the optimality conditions it is seen that Eq. (B.18) and (B.19) correspond to the 
constraints from the original optimization problem in Eq. (2.7) with a nonlinear yield crite-
rion. The optimality conditions in Eq. (B.20) and (B.21) correspond to the constraints in 
the dual problem for the linearized lower bound formulation in Eq. (B.4). The constraints 
in the optimality conditions are supplemented with the condition that the product of s and 
𝜆 has to be equal to zero as seen in Eq. (B.22). When considered in a mathematical per-
spective, the optimality conditions are known as the first-order Kuhn-Tucker optimality 
conditions. 
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Appendix C: Example of Path Following 
Interior Point Method 
In this appendix, an example of the path following interior point method is to be shown in 
order to illustrate the principles behind the method. The path following method is based on 
the primal and dual linear programming formulation. [15] 

An example of a primal dual problem is formulated in Table C.1 where 𝑧𝑗 denotes the slack 
variables for the dual problem. 𝑥𝑗 are the variables for the primal solution and 𝜋𝑗 are the 
variables for the dual solution. 

Table C.1. Primal dual formulation. 

Primal model  Dual model 
Maximize 𝑧𝑝 = 2𝑥1 + 3𝑥2 Minimize       𝑧𝐷 = 8𝜋1 + 6𝜋2 
Subject to      2𝑥1 + 𝑥2 + 𝑥3 = 8 Subject to      2𝜋1 + 𝜋2 − 𝑧1 = 2 
 𝑥1 + 2𝑥2 + 𝑥4 = 6  𝜋1 + 2𝜋2 − 𝑧2 = 3 
 𝑥𝑗 ≥ 0, 𝑗 = 1, … ,4  𝜋1 − 𝑧3 = 0 
   𝜋2 − 𝑧4 = 0 
   𝑧𝑗 ≥ 0, 𝑗 = 1,… ,4 

The primal formulation from Table C.1 is rewritten to a dual formulation based on the 
principle in Table C.2. 

Table C.2. Formulas for rewriting a primal formulation to a dual formulation. 

Primal  Dual 
Maximize 𝑧𝑝 = 𝑐𝑥 Minimize       𝑧𝐷 = 𝜋𝑏 
Subject to      𝐴𝑥 = 𝑏 Subject to      𝜋𝐴 − 𝑧 = 𝑐 
 𝑥 ≥ 0  𝜋1 + 2𝜋2 − 𝑧2 = 3 

The primal formulation consists of m equations and n variables, which are all expressed as 
equality constraints. Since the problem is an equality problem, there is no restriction in the 
sign of the dual variables 𝜋.  

The iterations of the primal and dual solutions are shown in Figure 9.6, where #1 denotes 
the first iteration step that lies within the feasible region. The solution converges towards 
the extremum point for each iteration as seen in the figure. This is due to that the primal 
and dual solution variables (𝑥𝑗 and 𝑧𝑗) are modified for each iteration until primal feasibility, 
dual feasibility and complementary slackness are satisfied to a certain degree [15]. It is 
possible to determine the degree of satisfaction by a gap that expresses the difference in the 
object function for the primal and dual solution, respectively.  
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a) Progress of primal solution. b) Progress of dual solution. 

Figure 9.6. Progress of primal and dual solutions. 

From the figure it can be seen that the primal solution corresponds to a maximization 
problem, whereas the dual problem corresponds to a minimization problem. 
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Appendix D: Steel Plate Optimization – 
fmincon Study 
The appendix investigates the different fmincon options in order to conclude at which set-
ting the interior point algorithm optimizes most efficiently.  

The study is based on a global plate model as seen in Figure 9.7. The plate is subjected to 
a tensional force of 4 kN at both the left and the right edge. The plate is constrained from 
moving in both the vertical and horizontal direction at the bottom edge. The plate has a 
thickness of 1 mm and is made of steel with a yield strength of 235 MPa.  

 

           

(a) Global model. (b) Triangluar mesh with 640 element. 

Figure 9.7. Free body diagram and mesh of considered plate model. 

In all of the analyses, the mesh is assigned as seen in Figure 9.7 with 640 elements and the 
load multiplier 𝛼 is used as the representative value for comparison. 

For all the upcoming comparisons the interior point algorithm is chosen in fmincon since 
large scale problems are considered. In the interior point algorithm, it is possible to choose 
between different Hessian approximations or to implement a user-supplied. The following 
five different ways of optimizing are investigated in fmincon when the interior point algo-
rithm is chosen: 

 Hessian approach Subalgorithm 
1. lfbgs (large-scale), ldl-factorization 
2. lfbgs (large-scale), cg (conjugate-gradient-dense hessian) 
3. Fin-diff-grads cg (conjugate-gradient-dense hessian) 
4. User-supplied ldl-factorization 
5. User-supplied cg (conjugate-gradient-dense hessian) 

For each of the Hessian approaches a subalgorithm has to be chosen, which has the function 
of determining how the iteration step is calculated. In fmincon two different subalgorithms 
can be chosen; namely, ldl and cg. Both of the algorithms are to be investigated for the 
hessian approximations and the user-supplied hessian matrix. 
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It also has to be mentioned that the Hessian user-supplied approaches highly depend on the 
self-developed script, and it can be optimized more than how it is now. This could make the 
approach faster. 

In the following analyses, the stopping criteria is chosen to 100 iterations, which means that 
the iterations stop when the 100th iteration is reached. The gradients are also user-supplied, 
both for the hessian approximation methods and for the user-supplied hessian.  
   Both the number of iterations to reach the converged value and the calculation time is 
considered in the analyses. This is because some methods may use a lower number of itera-
tions to converge, but the calculation time may be higher. All of the analyses are calculated 
on a laptop with the following operating system and hardware specifications:  

MacBookPro8,1 
Windows 7 Ultimate 64-bit 
Intel® Core™ i5-2415M CPU @2.30 GHz 
4.00 GB RAM 
Intel(R) HD Graphics 3000 

The convergence of the object function α for each of the five approaches is seen in Figure 

9.8. 

 

Figure 9.8 Convergence of the object function. 

All of the five methods converges towards the proper α-value. The lfbgs (ldl) method uses 
the fewest number of iterations to obtain the converged α-value, but this doesn’t necessarily 
make it the fastest approach. It can also be seen that the fin-diff-grad (cg) method converges 
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slowly in the beginning but it obtains the optimized value at a lower iteration value than 
the lfbgs (cg) method. 

The first study investigates the elapsed time to complete 100 iterations of each approach. 
This study only says something about the elapsed time and not the accuracy. 

 

Figure 9.9. Study of elapsed time. 

From the study it can be seen that the lfbgs (cg) method is the fastest to reach 100 iterations 
followed by the lfbgs (ldl). Even though lfbgs (cg) is fastest it isn’t the most accurate method 
as seen in Figure 9.10 and Figure 9.8. However, lfbgs (ldl) is very effective since it doesn’t 
take long time and since the accuracy is very high as seen in the following graph. 

 

Figure 9.10. Accuracy Study. 
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The lfbgs (cg) method should be used with precaution since an accurate result takes many 
iterations. An explanation of the efficiency of lfbgs (ldl) is seen in Figure 9.11 and Figure 
9.12.  

 

Figure 9.11. Maximum constraint violation at different iterations. 

The ldl-method violates the constraints the most and that is why it is so effective. The 
largest violation takes place in the preliminary iterations for lfbgs and the violation is often 
negligible since the violation at the last step of the iteration is almost zero. 

 

Figure 9.12. Maximum Constraint Violation and α-value for iteration with lbfgs and ldl-solver. 

It is also seen in Figure 9.12 that the increment in the object function α is largest at the 
iterations where the violation is highest. 
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Figure 9.13. Maximum Constraint Violation for each solver. 

As illustrated in Figure 9.13, the LDL-factorization method should be used with precaution 
and the constraint violation should be checked at the last iteration step. 

Another measure of convergence is the first-order optimality conditions (KKT-Conditions). 
The optimality conditions should be fulfilled such that it equals to zero when the result has 
converged.  

 

Figure 9.14. First Order Optimality Constraint. 

From Figure 9.14 it can be seen that once again the lfbgs (ldl)-solver is the most effective, 
and it should also be noted that a relatively high first order optimality value is obtained for 
the user-supplied (ldl) method at the iteration where the constraint is violated the most. 
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Figure 9.15. Cumulated Function Evaluations. 

At each iteration the objective function has to be evaluated at least once. From the figure 
above it can be seen that the fin-diff-grads (cg) method takes many function evaluation, but 
it doesn’t necessarily make it a slow approach. It can also be seen from Figure 9.15 that the 
number of function evaluations is lower for the lfbgs method than for the user-supplied 
hessian approach. 

Conclusion 

Based on the study it can be concluded that the lfbgs is the fastest method. From the study 
it can also be concluded that the most effective method is the lfbgs method with ldl-factor-
ization, even though it should be used with precaution since it can violate the constraint by 
a relatively high value. The ldl-factorization is effective since it violates the constraints and 
thereby reaches the optimal result fastest.   
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Appendix E: Reformulation of Yield 
Criterions to Second-Order Cones 
This appendix concerns reformulation of yield criterions to second-order cones with the 
purpose of implementing the constraints in Mosek. von Mises yield criterion has to be ex-
pressed in terms of a quadratic cone (QC), whereas M.P. Nielsen’s yield criterion and the 
MN-relation for reinforcement has to be expressed as rotated quadratic cones (RQC). 

E.1  Reformulation of von Mises Yield Criterion 

Von Mises yield criterion is for general plane stress defined as 

 √𝜎𝑥
2 + 𝜎𝑦

2 − 𝜎𝑥𝜎𝑦 + 3𝜏𝑥𝑦
2 − 𝑘 ≤ 0 , (E.23) 

where k is a strength parameter defining the yield stress. 

Eq. (E.23) is rewritten such that Eq. (E.24) is obtained. 

 √1
2

((𝜎𝑥 − 𝜎𝑦)2 + 𝜎𝑥
2 + 𝜎𝑦

2) + 3𝜏𝑥𝑦
2 − 𝑘 ≤ 0 (E.24) 

It is more convenient to rename the stress parameters in Eq. (E.24) such that  

 𝜎𝑥 = 𝑥1, 𝜎2 = 𝑥2, 𝜏𝑥𝑦 = 𝑥3, 𝑥4 = 𝑥1 − 𝑥2 , (E.25) 

and thereby Eq. (E.24) equals to the following expression 

 √1
2

(𝑥1
2 + 𝑥2

2 + 𝑥4
2) + 3𝑥3

2 ≤ 𝑘 , (E.26) 

which is expanded to 

 𝑘 ≥ √1
2

𝑥1
2 +

1
2

𝑥2
2 +

1
2

𝑥4
2 + 3𝑥3

2 (E.27) 

New parameters 𝑥5, 𝑥6, 𝑥7, 𝑥8 and 𝑥9 are defined by taking the square root in order to obtain 
the yield criterion on the form expressed in Eq. (5.18) 

 

𝑥5 =
1√
2

𝑥1,   𝑥6 =
1√
2

𝑥2, 𝑥7 =
1√
2

𝑥4 

𝑥8 =
√

3 ⋅ 𝑥3    →   𝑥3 − √1
3
 𝑥8 = 0 

𝑥9 = 𝑘 

(E.28) 

Von Mises criterion is expressed by the following quadratic cone constraint 

 𝑥9 ≥ √𝑥5
2 + 𝑥6

2 + 𝑥7
2 + 𝑥8

2 . (E.29) 
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By implementing the above formulated expression in Mosek, the lower bound problem can 
be solved and a scalar load multiplier can be obtained. 

E.2  Reformulation of M.P. Nielsen’s Yield Criterion 

M.P. Nielsen’s yield criterion for reinforced concrete plates is recalled as 

 −(𝑓𝑡
𝑥 − 𝜎𝑥)(𝑓𝑡

𝑦 − 𝜎𝑦) + 𝜏𝑥𝑦
2 ≤ 0 (E.30) 

 −(𝑓𝑐 + 𝜎𝑥)(𝑓𝑐 + 𝜎𝑦) + 𝜏𝑥𝑦
2 ≤ 0. (E.31) 

In order to reformulate the expression for Nielsen’s yield criterion, four new variables 
𝛼1, 𝛼2, 𝛼3 and 𝛼4 are introduced 

 𝛼1 =
1√
2

(𝑓𝑡𝑥 − 𝜎𝑥) (E.32) 

 𝛼2 =
1√
2

(𝑓𝑡𝑦 − 𝜎𝑦) (E.33) 

 𝛼3 =
1√
2

(𝑓𝑐 + 𝜎𝑥) (E.34) 

 𝛼4 =
1√
2

(𝑓𝑐 + 𝜎𝑦) (E.35) 

𝛼1 and 𝛼2 are related to Eq. (E.30), while 𝛼3 and 𝛼4 decribes the cone in Eq. (E.31). The 
expression for the rotated quadratic cone (RQC) becomes 

 2𝛼1𝛼2 ≥ 𝜏𝑥𝑦
2      ;    𝛼1, 𝛼2 ≥ 0 (E.36) 

 2𝛼3𝛼4 ≥ 𝜏𝑥𝑦
2      ;    𝛼3, 𝛼4 ≥ 0 . (E.37) 

From the above two equations it is possible to optimize the lower bound concrete formula-
tion by the use of second-order cone programming in Mosek. 

E.3  Reformulation of the Nonlinear MN-relation 

The MN-relation for reinforcement is recalled as 

 (
𝑀
𝑀𝑝

) + (
𝑁
𝑁𝑝

)
2

− 1 ≤ 0 (E.38) 

 
(

𝑀
𝑀𝑝

) − (
𝑁
𝑁𝑝

)
2

+ 1 ≤ 0 . (E.39) 

The expression in Eq. (E.38) is reformulated to a rotated quadratic (RQC) cone by the 
following procedure 

 (
𝑁
𝑁𝑝

)
2

≤ 1 − (
𝑀
𝑀𝑝

)  
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𝑁2

𝑁𝑝
2 ≤ 1 − (

𝑀
𝑀𝑝

) 

𝑁2 ≤ 𝑁𝑝
2 − (

𝑀𝑁2

𝑀𝑝
) 

𝑁2 ≤ (1 −
𝑀
𝑀𝑝

)𝑁𝑝
2. 

Thereby the first rotated cone is derived. 

The second cone is a reformulation of the expression in Eq. (E.39)  

 

(
𝑀
𝑀𝑝

) − (
𝑁
𝑁𝑝

)
2

+ 1 ≥ 0 

(
𝑀
𝑀𝑝

) + 1 ≥ (
𝑁
𝑁𝑝

)
2

 

(
𝑀
𝑀𝑝

) + 1 ≥
𝑁2

𝑁𝑝
2 

(
𝑀
𝑀𝑝

+ 1)𝑁𝑝
2 ≥ 𝑁2. 

 

Thereby the second cone is derived. 

Four new parameters 𝛼1, 𝛼2, 𝛼3 and 𝛼4 have to be introduced in order to obtain the form 
for the second-order cone in Eq. (5.19). The first two parameters 𝛼1and 𝛼2 are related to 
the first cone, whereas 𝛼3 and 𝛼4 are related to the second cone. 

 2𝛼1𝛼2 ≥ 𝑁2	, 𝛼1 =
1√
2

(1 −
𝑀
𝑀𝑝

) , 𝛼2 =
1√
2

𝑁𝑝
2 (E.40) 

 2𝛼3𝛼4 ≥ 𝑁2	, 𝛼3 =
1√
2

(1 +
𝑀
𝑀𝑝

) , 𝛼4 =
1√
2

𝑁𝑝
2 (E.41) 

Based on the above two expressions it is possible to optimize the lower bound formulation 
in terms of second-order cones in Mosek. 
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Appendix F: Program for Global Steel 
Plate Optimization 

F.1  Full Plate Model Optimization 

In the developed program it is possible to optimize a full/global model as long as the global 
model in ANSYS is meshed with CST elements. This is because the nodal stresses can be 
imported directly to the MATLAB program since CST elements and the used triangular 
stress-based elements have the same geometry. 

The procedure for optimizing a global steel plate model is illustrated in the figure below. 

 

Figure 9.16. Overall process of the model approach. 

F.2  Convergence Study of a Global Model 

A convergence study has been conducted for a global model in order to validate the devel-
oped MATLAB optimization program. In the study, a full plate model is investigated since 
the optimization algorithm is the same whether considering submodels or global models. 
The convergence study for the global model is based on two different approaches  

 Displacement based nonlinear analysis in ANSYS Workbench 
 Stress-based analysis in MATLAB based on the lower bound limit formulation 
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A full nonlinear displacement-based analysis in ANSYS is to be compared with a stress-
based analysis in the developed MATLAB program. By comparing a displacement-based 
nonlinear analysis in ANSYS with the stress-based analysis in the MATLAB program, it is 
possible to see whether the load multiplier converges towards the same value. Thereby, it 
is possible to validate the developed MATLAB program.  

The considered model is shown in the figure below. The plate is subjected to a tensional 
pressure of 30 MPa at the left edge. The plate is constrained in the vertical direction at the 
bottom edge, whereas the right edge is constrained in the horizontal direction. The plate 
has a thickness of 1 mm and is made of steel with a yield strength of 235 MPa. 

 

Figure 9.17. Considered global model 

In the nonlinear analysis in ANSYS a perfect plastic material behaviour has been assigned 
by choosing a bilinear material model with a tangent modulus of zero. The nonlinear analysis 
in ANSYS calculates an exact solution for the critical load, corresponding to the assigned 
mesh. 

Four different convergence studies have been conducted and has to be compared. This in-
cludes two analyses in ANSYS and two in MATLAB.  

1. MATLAB with export of loads and geometry from ANSYS 
2. MATLAB with export of geometry from ANSYS only 
3. ANSYS nonlinear analysis with CST elements 
4. ANSYS nonlinear analysis with LST elements 

The first analysis in MATLAB is made by solving a global model in ANSYS and thereby 
exporting the boundary conditions and geometry to the MATLAB program. The second 
analysis in MATLAB is conducted by exporting only the topology from ANSYS, while the 
boundary conditions are assigned manually, and not by importing from ANSYS.  

In the ANSYS studies two different elements are used; CST and LST elements, respectively. 
CST elements are used to directly compare with the MATLAB program since the MATLAB 
results are based on the exported stresses from a global CST model. A convergence study is 
also conducted for a global model with LST elements since it produces more accurate results. 
The plate model from Figure 9.17 is meshed by assigning a triangular mapped mesh that is 
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based on the chosen element size. Four different meshes are considered as shown in Figure 
9.18. When the element size halves, the total number of elements quadruples, whereas the 
calculation time more than quadruples. This is why the limit in the study is 1536 elements.  

 
(a) 24 elements 

 
(b) 96 elements 

 
(c) 384 elements 

 
(d) 1536 elements 

Figure 9.18. Mesh types. 

Boundary conditions have been assigned in the optimization program corresponding to the 
model in Figure 9.17. This is done by eliminating equilibrium equations corresponding to 
the constrained nodes. Loads have been assigned as stresses on the boundary. The boundary 
conditions that are applied for the four different convergence study models are seen in the 
figure below, where the red nodes illustrate the loads, whereas the blue nodes show the 
support. 

 
(a) 24 elements 

 
(b) 96 elements 

 
(c) 384 elements 

 
(d) 1536 elements 

Figure 9.19. Boundary conditions as applied in the MATLAB program. 
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The results from the convergence studies are presented in Table F.3.  

Table F.3. Results from the convergence study. 

Element Size 
[mm] 

No of 
Elements CST/LST 

α 
ANSYS CST 

α 
ANSYS LST 

α 
MATLAB (lbfgs)

α 
MATLAB Manual 

20  24  3.787  3.073  *  * 

10  96  3.250  2.773  2.393  2.033 

5  384  2.820  2.653  2.641  2.437 

2.5  1536  2.740  2.613  2.588  2.450 

* value not possible to obtain 

The critical load multipliers 𝛼 from the above table is shown on the graph in Figure 9.20.  

 

Figure 9.20. Convergence study results for ANSYS and MATLAB analyses. 

From the study it can be seen that all four cases converge towards the same value. The 
MATLAB results converges by having the lowest 𝛼-value for the lowest number of elements 
and increases as the number of elements increases. This is not the case with the nonlinear 
analysis in ANSYS, which makes the result on the insecure side, unless a very fine mesh is 
assigned. This makes the MATLAB analysis preferable compared to the nonlinear analysis 
in ANSYS. 

From the analysis it can also be seen that the MATLAB analysis with manually selected 
stresses of 30 MPa gives a lower load multiplier than the MATLAB analysis with imported 
boundary stresses. For the particular case a global model meshed with CST elements gives 
a result on the insecure side. 
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Appendix G: Verification of Critical 
Stress Spots in Steel Plates – Studies 

G.1  Study of Submodel Size 

In the study, the influence of the submodel size on the load multiplier is investigated. The 
considered model is shown in Figure 9.21. The plate is subjected to a tensional pressure of 
25 MPa at the left edge. The plate is constrained in the vertical direction at the bottom 
edge, whereas the right edge is constrained in the horizontal direction. The plate has a 
thickness of 1 mm and is made of steel with a yield strength of 235 MPa. 

     

      

(a) Global model (b) Solution to the global model 

Figure 9.21. Considered global model 

As seen in Figure 9.21 (b) the maximum von Mises stress is approximately 224 MPa.  

In the investigation a square submodel is considered around the critical spot at the concave 
sharp edge. The global model is meshed with Q8 elements as seen in the above figure. The 
mesh for the upcoming submodels is more or less the same since the number of edge divisions 
is the same. The size of the square submodel varies in order to investigate whether a larger 
submodel leads to a higher load multiplier. 

The study investigates submodels with lengths/widths from 10 to 35 mm. 
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Table G.4. Submodel size and optimized submodels. 

Global model with submodel 
selection 

Optimized Submodel Solution 
Size of 
Submodel 

 

10 x 10 mm

  

15 x 15 mm

 

20 x 20 mm

25 x 25 mm
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30 x 30 mm

 

35 x 35 mm

Table G.5. Load multipliers for different submodel sizes. 

Length/Width
[mm] 

No of 
Elements

 ߙ
MATLAB MOSEK

10  336  1.3524 

15  362  1.5280 

20  364  1.8642 

25  316  2.0502 

30  374  2.2558 

35  360  2.4246 

It is seen that the load mulitplier ߙ increases as the submodel area increases. In order to 
understand the tendency, the normal stress in the x-direction on the cut boundary is plotted 
as illustrated in Figure 9.23. The stresses are exported by defining the same number of 
sample points for each submodel cut boundary and in this case 124 sample points are 
considered overall. The distance between two sample points for two different submodels 
isn’t the same since the submodel size varies, but the distance between two sampling points 
in the same submodel is the same. Thereby, it is possible to compare stresses on the cut 
boundary between different submodels.   
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(a) Global model with the six different 

submodel areas 
(b) Direction of considered stress path 

Figure 9.22. Submodel areas and stress path direction. 

The boundary stresses for the six different models is illustrated in the figure below. It is 
seen that the cut boundary stresses increase as the submodel size decreases. The stress 
distribution also changes as the submodel boundary moves towards the singularity spot.  

 

Figure 9.23. Normal stress distribution in the x-direction along the cut boundary. 

An example of the normal stress distribution in the x-direction along the cut boundary for 
a submodel size of 10mm is shown in the figure below. 
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Figure 9.24. Normal Stress distribution in the x-direction along the cut boundary for the submodel 
of 10 mm. 

From the study it can be concluded that a larger submodel area leads to a higher load 
multiplier 𝛼. This is due to the fact that the boundary condition stresses changes as the 
submodel size increases or decreases.  
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G.2  Study of Submodel Mesh Refinement 

In the study, the influence of the submodel mesh on the load multiplier is investigated. The 
considered model is shown in Figure 9.25. The plate is subjected to a tensional pressure of 
150 MPa at the right edge, whereas the left edge is constrained in both the horizontal and 
vertical direction. The plate has a thickness of 1 mm and is made of steel with a yield 
strength of 235 MPa. 

    
(a) Global model (b) Solution to the global model 

Figure 9.25. Considered global model 

The global model is solved using Q8-elements and the maximum von Mises stress is approx-
imately 250 MPa as seen in Figure 9.25 (b). 

In the investigation a rectangular submodel is considered around the critical spot at the 
upper concave sharp edge. Different mesh refinements are investigated for the upcoming 
submodels. The size of the square submodel equals to 25x25 mm for all the submodels in 
order to investigate the mesh influence on the scalar load multiplier. 

 

Figure 9.26. Global model with submodel selection. 

The results from the different analyses are seen in the following table.   

Submodel Mesh Optimized Submodel Solution 
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Submodel - No of Elements = 208

Submodel - No of Elements = 496

Submodel - No of Elements = 656



108  Appendix G:  Verification of Critical Stress Spots in Steel Plates – Studies 

 

 

 

 

 

The results are scheduled in the following table 

Table G.6. Load multipliers for different submodel mesh. 

Number of Division
No of 

Elements
  ߙ

MATLAB MOSEK

4  32  0.8434 

6  122  1.2635 

8  208  1.2499 

10  364  1.2867 

12  496  1.2726 

14  656  1.2716 

16  818  1.2618 

18  1118  1.2716 

20  1330  1.2767 

The results from the above table is sketched in the following graph.  

Submodel - No of Elements = 818

Submodel - No of Elements = 1118
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Figure 9.27. Load multiplier corresponding to varying number of elements of the submodel 

The graph in Figure 9.27 shows that the load multiplier converges as a higher number of 
elements is assigned to the submodel. It should be mentioned that the analyses are associ-
ated with minimal uncertainties in the value for the load multiplier since the submodel is 
supported at different locations at each analysis. Another reason for the slightly variation 
is that the outer stresses are interpolated at different locations on the cut boundary which 
results in minimal deviations in the stress values and thereby the load multiplier. 

From the study it can be concluded that a fine meshed submodel leads to the most accurate 
load multiplier, but the difference in multiplier between having a coarse submodel and fine 
submodel mesh isn’t that significant. 
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G.3  Study of Boundary Stresses in ANSYS   

In the following ANSYS Workbench study, the boundary stresses are investigated when the 
mesh is refined. This is done in order to compare the deviation from the exact value, which 
in this case corresponds to the applied pressure. This study will therefore give a better 
understanding of the submodel cut boundary stresses.   
   The considered plate model is shown in Figure 9.28. The plate is subjected to a tensional 
pressure of 1 MPa at the left edge. The plate is constrained in the vertical direction at the 
bottom edge, whereas the right edge is constrained in the horizontal direction. The plate 
has a thickness of 1 mm and is made of steel with a yield strength of 235 MPa. 

                    
(a) Global model (b) Considered Boundary 

Figure 9.28. Free body diagram considered global model. 

In the investigation, stresses at the considered boundary, illustrated in Figure 9.28 (b), are 
to be compared for six different Q8-based meshes. The square element size varies from 10 
mm to 0.3125 mm, which corresponds to that the global model have meshes from 48 ele-
ments to 49152 elements as seen in Figure 9.29. This makes it possible to investigate the 
mesh importance with respect to the stresses.  

 
48 elements 

 
192 elements 

 
768 elements 

 
3072 elements 

 
12288 elements 

 
49152 elements 

Figure 9.29. Six different meshes for the global model. 
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In the analysis, the left boundary edge is divided into 49 segments, which means that there 
are 50 sampling points. Both normal and shear stresses are compared. The normal stresses 
in the x-direction should be corresponding to the applied pressure on the considered edge. 
Any deviation from the applied pressure is considered as an uncertainty as a result of nu-
merical errors. 

 

Figure 9.30. Normal stresses in the x-direction. 

From the above graph it is seen that the results are more equally distributed towards the 
applied pressure of 1 MPa when the mesh becomes finer. For the global model with an 
element size of 10 mm, the deviation from the exact value goes up to almost 4 % at some 
points.  

 

Figure 9.31. Normal stresses in the y-direction. 
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The normal stresses in the y-direction aren’t deviating much when the mesh becomes finer.  

The shear stress at the considered edge should be equal to zero and this is more or less the 
case when the mesh is really fine as illustrated in the figure below. For the mesh with an 
element size of 10 mm, the deviation from the exact value is more than 4 % at certain 
locations as seen in the graph below. 

 

Figure 9.32. Shear stress distribution. 

From the study it can be concluded that a finer mesh results in more accurate stress values, 
which can also be related to the submodeling approach in the MATLAB program. Therefore, 
the mesh of the global model has to be as fine as possible in the submodel approach. 
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G.4  Study of Cut Boundary Stresses for different Global 
Meshes 

In the study, the influence of the global model mesh on the submodel load multiplier 𝛼 is 
investigated. This is done by considering two different models. The first model is character-
ized by having a stress singularity spot, whereas the second model has a stress concentration 
spot.   

Non-filleted model (Stress Singularities) 

The considered two-dimensional structure is shown in Figure 9.33. The plate is subjected to 
a tensional pressure of 25 MPa at the left edge, whereas the right edge is constrained in the 
horizontal direction and the bottom edge is constrained in the vertical direction. The plate 
has a thickness of 1 mm and is made of steel with a yield strength of 235 MPa. 

 

Figure 9.33. Free body diagram of global model. 

In the investigation a rectangular submodel is considered around the critical spot at the 
concave corner as seen in Figure 9.34. The rectangular submodel measures 20x20mm.  

              
(a) Global model with CST or LST elements (b) Global model with Q4 or Q8 elements 

Figure 9.34. Considered global model 

Different element types are investigated when solving the global plate model. Q4, Q8, CST 
and LST elements are used respectively as indicated in Figure 9.34. This is done in order to 
illustrate the difference in the load multiplier when different global meshes are assigned. 
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The global model that is meshed with triangular elements in Figure 9.34 (a) has 384 ele-
ments, whereas the global model meshed with square elements in Figure 9.34 (b) has a total 
of 192 elements.   

The mesh of the submodel for each analysis contains 818 triangular stress-based elements. 
By having the same submodel mesh a true comparison can be conducted. 

 

Figure 9.35. Submodel mesh 

The results from the four analyses is seen in the table below. 

Table G.7. Global model solutions and optimized submodel solutions for different element types. 

Element Type of 
Global Model 

Global Model Solution –  
von Mises Stress 

Optimized Submodel Solution 

Q4 

Q8 

Submodel - No of Elements = 818
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CST 

 

LST 

 

The results from the analyses are listed in the table below. 

Table 9.8. Maximum von Mises stress and load multiplier for the global model with different mesh 
elements 

Element Type Maximum von Mises
[MPa] 

𝛼 
MATLAB MOSEK 

Q4  148.82 1.7469

Q8  223.67 1.8235

CST  117.25 1.7874

LST  187.51 1.8116

The results are also illustrated in the following two graphs. 

 

Figure 9.36. Maximum von Mises Stress for the global model with different mesh 
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Figure 9.37. Load multiplier for global model with different mesh 

From the above graphs it can be seen that the global model that is meshed with Q8 elements 
results in the highest load multiplier in the load optimization. When considering the maxi-
mum von Mises stress it is seen that the Q8 elements results in the highest value followed 
by LST, Q4 and CST elements.  

In order to understand why the results are as they are, the three stress component at the 
cut boundary has to be evaluated. In the following figures a comparison of the two normal 
stresses and the shear stress has been investigated.  

 

Figure 9.38. Normal stress distribution in the x-direction at the cut boundary 

  

 

Q4, 1.7469

Q8, 1.8235

CST, 1.7874

LST, 1.8116

1.74

1.75

1.76

1.77

1.78

1.79

1.8

1.81

1.82

1.83

0 1 2 3 4 5

Lo
ad

 M
u
lt
ip
lie
r 
, α

‐10

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

N
o
rm

al
 S
tr
es
s 
σ
x
[M

P
a]

Length [mm]

Q4 Q8 CST LST



Appendix G:  Verification of Critical Stress Spots in Steel Plates – Studies  117
 

 
 

 

Figure 9.39. Normal stress distribution in the y-direction at the cut boundary 

 

Figure 9.40. Shear stress distribution at the cut boundary 

In the comparison it is seen that the cut boundary stresses don’t have the same value. 
Especially CST elements have a large deviation compared to the other elements. The higher 
order elements produce the most similar stress components.  

From the analysis of the model with stress singularity spot it can be concluded that the 
difference in the stress distribution is leading to the difference in the load multiplier. It is 
recommended to use Q8 or LST elements in the global mesh since they produce the most 
accurate stress values.  
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Filleted Model (Stress Concentrations) 

The considered model is shown in Figure 9.41. The only difference is the filleted edge. The 
plate is subjected to a tensional pressure of 25 MPa at the right edge, whereas the left edge 
is constrained in both the horizontal and vertical direction. The plate has a thickness of 1 
mm and is made of steel with a yield strength of 235 MPa. 

 

Figure 9.41. Free body diagram of global model 

In the investigation a rectangular submodel is considered around the critical spot at the 
concave corner as seen in Figure 9.42. The rectangular submodel measures 20x20mm.  

            
(a) Global model with CST or LST elements (b) Global model with Q4 or Q8 elements 

Figure 9.42 Considered global model 

Different element types are investigated when solving the global plate model. Q4, Q8, CST 
and LST elements are used, respectively, as indicated in Figure 9.42. It is not possible to 
assign two similar meshes when using square and triangle elements, respectively. The two 
different global meshes are shown in Figure 9.42. The triangular (CST and LST) mesh 
model contains 440 elements, whereas the square mesh (Q4 and Q8) model contains 233 
elements. 

The mesh of the submodel for each analysis contains 494 triangular stress-based elements. 
By having the same submodel mesh a true comparison can be conducted. 
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Figure 9.43. Submodel mesh 

The conducted analyses for the four elements is shown in the table below. 

Element Type 
for Global Model 

Global Model Solution –  
von Mises Stress 

Optimized Submodel Solution 

Q4 

 

Q8 

CST 
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LST 

 

The results are listed in the table below. 

Table 9.9. Maximum von Mises stress and load multiplier for a global model with different mesh 
elements 

Element Type 
Maximum von Mises

[MPa] 
𝛼 

MATLAB MOSEK 

Q4  181.05  1.8902 

Q8  188.60  1.8922 

CST  157.71  1.9437 

LST  188.14  1.8766 

The results are also illustrated in the following two graphs. 

 

Figure 9.44. Maximum von Mises Stress for the global model with different mesh. 
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Figure 9.45. Load multiplier for the global model with different mesh. 

It can be seen that the order of highest von Mises stresses is the same as in the example 
with the nonfilleted plate. The order of the load multiplier is in return completely different. 
A global model with CST elements gives by far the highest load multiplier. 

In order to understand why the results are as they are, the three stress component at the 
cut boundary has to be evaluated. In the following figures a comparison of the two normal 
stresses and the shear stress has been investigated.  

 

Figure 9.46. Normal stress distribution in the x-direction at the cut boundary. 
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Figure 9.47. Normal stress distribution in the y-direction at the cut boundary. 

 

Figure 9.48. Shear stress distribution at the cut boundary. 

When comparing the three stress components for the different meshes it can be seen that 
the stress distribution is very similar for the two normal stresses whereas the shear stress 
deviates much more. The higher order elements have very similar distribution in all three 
cases and that is why the load multiplier is almost identical. Once again it is not recom-
mended to use CST elements in the analysis since it gives a poor stress distribution and can 
lead to that the load multiplier is higher than it really is even though it is a lower bound 
analysis. Therefore, higher order elements are recommended to obtain an accurate solution, 
and especially Q8 elements. 
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Appendix H: Interaction of Elements 
The upcoming appendix is used to demonstrate a correct interaction between the elements 
used for the optimization of reinforced concrete plates. The elements are recalled as a stress-
based triangular element describing the behaviour of concrete, and a rebar element describ-
ing the concentrated reinforcement. Fundamental load cases are considered in order to 
demonstrate the interaction, which implies a load case resulting in pure shear stress states, 
and an example with compression. The material properties do not reflect realistic plate 
systems as the purpose is to solely validate a proper interaction.  

H.1  Example with Pure Shear Stress States 

The example investigates a reinforced concrete plate with concentrated reinforcement along 
all edges as illustrated in the figure below. The idea is to load a rebar element such that a 
state of pure shear is obtained when assigning equal compressive and tensile strengths. The 
reinforcement properties are assigned such that collapse is not caused by failure in the rebar 
elements firstly, and thus collapse must occur in the concrete by a state of pure shear if the 
interaction between the elements are defined properly. The geometry, material properties, 
and boundary conditions can be seen in the figure below.   

 

Figure 9.49. Illustration of plate model. 

The model is implemented in MATLAB by discretizing the model as seen in the figure 
below.  
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Figure 9.50. Finite element discretization of plate model in MATLAB. 

When optimizing the structure, the load multiplier 𝛼 is found to 400, and the concrete is 
thereby exposed to a state of pure shear as illustrated below. 

 

Figure 9.51. Shear plot from MATLAB 

The normal force distribution is as seen in the figure below. 
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Figure 9.52. Normal forces in MATLAB 

If integrating above the normal forces a shear stress corresponding to 5 MPa is likewise 
obtained.  
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H.2 Compressive Stress State 

The second example examines a reinforced concrete plate with concentrated reinforcement 
located at the lower boundary of the plate. The plate is fixed at the bottom edge in the 
concrete, and forces are applied at the top of the structure as seen in the figure below. 

 

Figure 9.53. Free body diagram of the considered  

The model is discretised in MATLAB by assigning 16 elements with the topology as seen in 
the figure below. 

 

Figure 9.54. Discretization of the reinforced concrete model.  

The forces and supports have to be assigned corresponding to the exact generalized forces. 
The numbering of the respective generalized forces for the plate elements is as seen in the 
figure below.  
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Figure 9.55. Equation numbers of the generalized forces for the triangular plate elements. 

The forces are applied at equations: 79, 81, 93, 95, 105, 107, 117, 119, as seen in the figure 
above. The structure is supported by removing the following equilibrium equation: 3, 4, 5, 
6, 23, 24, 25, 26, 39, 40, 41, 42, 55, 56, 57, 58. 

By optimizing the structure in terms of second order cones in Mosek or by the nonlinear 
interior point optimizer in fmincon, a stress distributions field is obtained as seen in the 
figures below. 
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Figure 9.56. Stress distributions in the reinforced concrete plate. 

From the stress plots it can be seen that only normal stresses in the y-direction appears as 
expected. The stress value for the normal stress is furthermore equal to 25 MPa, which is 
also defined as the compressive strength of the structures. This can also be seen in the figure 
below. 

 

Figure 9.57. Stress states in the M.P. Nielsen yield criterion. 

The value of the normal forces and moments in the reinforced bar in the bottom of the 
structure is zero as expected. 

Thereby, a proper interaction between the reinforced bar element and the concrete elements 
is illustrated. 
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A Program for Verification of Critical Stress Spots in Static  
Loaded Plates by the Lower Bound Limit Analysis 

Ermin Sehovic, Rasmus Urhøj Hansen & Bo Rasmussen 

Department of Civil Engineering, Aalborg University Esbjerg, 6700 Esbjerg, Denmark 

 

Abstract 

An efficient program for verification of critical stress spots in perfect plastic steel plates subjected to 
static, in-plane forces is developed. The program is an interaction between ANSYS Workbench and 
MATLAB, in which ANSYS discretizes the problem to a submodel enclosing the critical region. 
Subsequently, the submodel is exported to MATLAB where a stress-based element is established for 
the submodel. A lower bound limit analysis is conducted by a nonlinear optimization algorithm based 
on the interior point method, which leads to a scalar load multiplier 𝛼 defining the maximum load 
bearing capacity.            
     Finally, the efficiency of the submodeling technique to verify critical stress spots is demonstrated 
by means of examples of plates subjected to in-plane forces resulting in either stress concentrations 
or stress singularities. 

Keyword: Critical Stress Spots; Submodeling; Finite Element Method; Load optimization; Static load-
ing 

 

1. Introduction 

In the finite element method it is frequently seen that fulfilling the ultimate limit state becomes a 
problem when designing static loaded plane structures by the theory of elasticity [1]. More specific, 
stress concentration and stress singularity spots (see Figure 9.58) often induce stresses exceeding the 
elastic load bearing capacity. As a consequence, the engineer often ignores the critical stress spots by 
the support of engineering experience instead of verifying the capacity by means of e.g. conducting a 
nonlinear plasticity analysis. The ignorance of the stress state in the yield region can potentially lead 
to structural collapse, and in some cases a documentation of the stresses is required to proceed with 
a project. 

 

Figure 9.58. Example of a plane structure with a critical stress singularity spot. 
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To accommodate this problem, the study aims for an efficient method to verify critical stress 
spots by use of the theory of plasticity. Two objectives are therefore underlying for the 
investigation. First of all, the calculation has to provide a scalar load multiplier defining the 
optimal safety level, and secondly, the study has to strive towards developing a time-efficient 
program in comparison to the ones on the market today.  

Calculation of the ultimate load bearing capacity of steel structures is often based on the assumption 
of a perfect plastic material model, which is also the case in this study. When considering a perfect 
plastic material model, the assumption of sufficient deformation capabilities in the structure is valid. 
This assumption is necessary in order to obtain stress redistributions.  

When calculating the ultimate load bearing capacity either the upper bound theorem or lower bound 
theorem can be applied. The upper bound theorem is based on feasible collapse mechanisms where 
the load is minimal, whereas the lower bound theorem is based on a stress distribution that is in 
equilibrium and where the highest possible load bearing capacity is to be determined. 

For solving numerical plate problems with a perfect plastic material model in this study, the lower 
bound method is implemented. The lower bound method has several advantages over the upper 
bound method, including the fact that the collapse load is on the safe side. The element formulation 
is stress-based in contrast to most elastic finite element formulations that are stiffness-based. In the 
calculations a linear stress field is described based on a finite element discretization where each 
element has a certain number of stress parameters. As only statically underdetermined structures are 
considered, it gives rise to stress redistributions at yielding spots in the structure. In the lower bound 
method, it corresponds to that only a part of the stress parameters has to secure equilibrium, whereas 
the rest of the stress parameters are used to redistribute the load in order to obtain the maximum 
load bearing capacity. The calculations are based on nonlinear optimization programming since von 
Mises yield criterion is used. The triangular plate element with linear stress variation that is used in 
this study was also used before in soil mechanics (Sloan, 1988 [14]) and linear optimization of concrete 
plates (Poulsen & Damkilde, 2000 [1]). 

The advantage of the approach in this study is that only a subarea is considered and that the solver 
not only gives a lower bound solution, but it calculates the optimal stress distribution. Thereby, it is 
possible to determine whether critical stress spots lead to structural collapse.  

Nomenclature 

A area of element 
ai, bi coordinate difference in x- and y-direction for element side i 
C constraint matrix 
Cs strength vector 
fy yield stress 
h element equilibrium matrix 
H assembled system equilibrium matrix 
l, li length of element and element side i 
px, py load intensity in the x- and y-direction 
Q element nodal force vector 
R system load vector 
Rc self-weight load vector 
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T thickness 
Β	 element stress parameter vector 
	ߙ scalar load multiplier 
βs	 system stress parameter vector 

σx, σy, τ 

in-plane stresses 

 

2. Method for Verification of Stress Spots 

In this study the approach of verification of critical stress spots in static loaded plates is based on an 
interaction between ANSYS Workbench and MATLAB. Instead of ANSYS Workbench an arbitrary 
finite element software could have been used.    
  The overall proces of the program, from creating a global model to obtaining a submodel solution, 
is exemplified in Figure 9.59. 

 

Figure 9.59. Overall process of the program. 
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In the first steps, ANSYS Workbench is used to solve a global user-defined model by means of a 
stiffness-based finite element method. By solving the global model, it is possible to conclude whether 
critical stress spots appear. To make the calculation more efficient the problem is discretized by a 
submodel considering only a specific region of the domain. In this region the problematic stress spots 
are solely located, why the problem is significantly reduced regarding calculation time and numerical 
errors.  

The submodel is exported to MATLAB by an interaction with ANSYS Workbench that includes a 
direct transformation from a stiffness-based mesh utilized in ANSYS to a stress-based mesh generated 
in MATLAB. The problem is solved in MATLAB where a nonlinear load optimization is conducted 
by the interior point method. The optimization results in a scalar load multiplier 𝛼. 

3. Submodeling of Plates 

In order to verify critical stress spots, the user has to discretize the global problem to a submodel 
that encloses the critical region. ANSYS Workbench is used to solve a global plate model and to 
create a submodel for the upcoming limit analysis in MATLAB. The global model in ANSYS is solved 
using stiffness-based elements where the structural stresses are related to the nodal displacements. 
After solving the global model, an APDL-script is implemented in ANSYS Workbench in order to 
create a submodel and to export the submodeling topology and boundary conditions for the 2D stress-
based element formulated in MATLAB.  

 

Figure 9.60. Example of the submodeling principle. 

In order to conduct a lower bound limit analysis in the developed program, the following parameters 
are exported from ANSYS Workbench: 

 node coordinates 
 element topology 
 plate thickness 
 stress components at cut boundary 
 density 
 gravitational acceleration and direction 

3.1 Submodeling Procedure 

The submodel is created based on a stress path that can be placed anywhere in the model independent 
of the global node and element position.   
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   In the developed program, the submodel can either be defined from a circular or a square cut 
boundary as seen in Figure 9.61. 

  
(a) Circular submodel (b) Rectangular submodel 

Figure 9.61. Principles illustrations of submodel geometries. 

The size of the two submodel geometries is user-defined, which is done by importing an APDL-script 
in ANSYS Workbench. The rectangular submodel is defined based on the coordinates of the center 
in global Cartesian coordinates, and the length and width, whereas the circular submodel is defined 
by the circle radius and coordinates to the center.   
    When selecting the subarea, the user has to be aware of mainly two parameters that influences 
the scalar load multiplier 𝛼 in the limit analysis: 

 Size of subarea 
 Mesh of subarea 

By defining a large subarea, a high scalar load multiplier is obtained, but the problem size also 
increases. If a fine mesh is assigned a more accurate scalar load multiplier is obtained, but it also 
increases the problem size and thereby the calculation time. Thereby, the load multiplier is an inter-
action between the size and the mesh of the submodel. 

3.2 Mesh Generation for Submodel 

The principle of making submodels is that the global model has to be meshed coarsely, whereas the 
mesh of the submodel has to be much more fine. The mesh of the submodel is made from a user 
defined edge sizing that is based on the number of division chosen for the path operation. This makes 
it possible to directly use the shear and normal stresses calculated for the stiffness-based elements in 
the stress-based element boundary nodes. This is due to that the stresses are assumed to vary linearly 
over the element edges, and that the stress-based elements are located at the same position as the 
stiffness-calculated path stresses. The fine submodel mesh is created with ANSYS Workbench by 
means of the input in the APDL-script where the mesh is assembled from CST-elements since trian-
gular stress-based elements use the same topology. By having the same element geometry and number 
of nodes on the stiffness-based CST-elements as the stress-based elements, it is possible to directly 
import node coordinates and element topology from ANSYS to the program in MATLAB. 

3.3 Export of Cut Boundary Stresses 

A linear elastic analysis is conducted in ANSYS Workbench for a global model and from the analysis 
it is possible to obtain the stress state for the global model. After conducting the linear analysis, the 
stresses at the cut boundary are obtained by making a ANSYS finite element software only the three 
stress components at each node on the cut boundary is needed to perform the lower bound limit 
analysis in MATLAB. The stresses from the stress path are used as boundary conditions in the limit 
state analysis in MATLAB.  
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(a) Circular submodel (b) Rectangular submodel 

Figure 9.62. Example of stress paths with normal stresses along the submodel boundary, corre-
sponding to the submodels in Figure 6.9. 

4. Limit State Analysis 

4.1 Lower Bound Formulation 

The lower bound method is to be applied in the limit state analysis, where the aim is to determine 
an optimized stress distribution by maximizing the intensity of the predefined external load. In the 
lower bound method two conditions have to be satisfied in order to obtain a feasible stress state 

 Equilibriums equations (Local equilibrium and equilibrium of stresses across element bound-
aries) 

 Yield criterion 

In this case the problem is accommodated by the finite element method with stress-based elements. 
Stress-based elements are used instead of the traditional stiffness-based elements since the problem 
is formulated as a lower bound method. In the finite element method, the discretized equilibrium 
equations are written as 

 𝑯𝛽 = 𝑹𝒄 + 𝛼𝑹	, (I.42) 

where 𝛽 is a column vector containing the stress parameters and 𝑯 is the global, assembled equilib-
rium matrix. The external load is divided into two parts, namely a constant part 𝑹𝒄 describing the 
self-weight of the structure and a part 𝑹 that is proportional to the scalar load multiplier 𝛼.	The 
global equilibrium matrix 𝑯 consists of contributions from all individual elements of a model. When 
the global equilibrium matrix 𝑯 is set up, the number of stress parameters have to be higher than 
the number of equilibrium equations, which results in a statically underdetermined structure. 

Eq. (I.42) can be rewritten to (I.43), which is later written in a more conventional way. 

 𝑯𝛽 − 𝛼𝑹 = 𝑹𝒄 (I.43) 

Two types of constraints have to be set up. The first set of constraints has the purpose of satisfying 
equilibrium equations, whereas the second set of constraints has to secure that von Mises yield crite-
rion is not violated. The constraint securing that the yield criteria is not violated has to be checked 
in a number of points in each element. For all elements in a structure, the yield criteria can be 
expressed as 

 𝑓𝑗(𝛽) ≤ 0, 𝑗 = 1,2,… , 𝑝 . (I.44) 
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The nonlinear optimization problem becomes a maximization problem since the lower bound method 
is considered. A scalar load multiplier 𝛼 has to be determined, which results in the optimal stress 
distribution of the structure.   
   The nonlinear lower bound load optimization problem is expressed as 

 

maximize:     𝛼 

subject to:   𝑯𝛽 − 𝛼𝑹 = 𝑹𝒄

               𝑓𝑗(𝛽) ≤ 0, 𝑗 = 1,2,… , 𝑝 

(I.45) 

As it is expressed in Eq. (I.45), the maximization problem is subjected to both equality constraints 
since the elements are formulated by linear stress variation, and inequality constraint since von Mises 
yield criteria is convex.   
   By solving the maximization problem in Eq. (I.45) with the corresponding linear and nonlinear 
constraints, it is possible obtain the optimal value for the load multiplier 𝛼 and the corresponding 
stress parameters 𝛽. 

4.2 Finite Element Formulation 

The lower bound formulation is accommodated using linear triangle, stress-based elements as a part 
of an equilibrium based finite element method. Due to the triangular form of the plate element any 
irregular geometries can be modelled. In the program the stress-based element mesh and static bound-
ary condition are automatically generated, created based on the information made by the ANSYS 
Workbench APDL-script. 

 

Figure 9.63. Triangle stress-based element. 

The stress state of each element is described by the stresses at each element node. The stress variation 
in the element is assumed to vary linearly across the element and the equilibrium is satisfied in two 
points along each element side. From this assumption it is possible to directly re-formulate the sub-
model boundary stresses to generalized nodal forces, q. Furthermore, the internal equilibrium of each 
element must be satisfied in order to obtain a statically admissible solution. This is done by satisfying 
the equilibrium equations in a single point lying within each element. 

The lower bound load maximization problem in Eq. (I.45) includes the global equilibrium matrix H 
that has to be set up. In order to set up the global equilibrium matrix 𝑯 it is first of all necessary 
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to express the equilibrium equations of a single element. In Eq. (I.46) the equilibrium equations are 
given in a compact form as 

 𝒒 = 𝒉𝛽, (I.46) 

where 𝒉 is the local equilibrium matrix for an element, 𝛽 is a vector containing the stress parameters, 
and 𝒒 are the generalized external nodal forces. [1]  
   When each local equilibrium element 𝒉 of a structure is formulated, it is necessary to assemble 
each element 𝒉 into the global equilibrium matrix 𝑯 just as it is the case in the finite element 
method. Based on the equilibrium matrix 𝑯 it is possible to solve the maximization problem.  

4.3 von Mises Yield Criterion in 2D 

The paper is based on ductile steel plates that obeys von Mises yield criterion. A perfect-plastic 
material is considered and thereby the assumption of sufficient deformation capabilities in the struc-
ture is valid. The assumption is necessary in order to obtain stress redistributions.   

           
(a) Perfect-plastic material behaviour (b) Von Mises yield criterion 

Figure 9.64. Material model and yield criterion. 

Given that the material behaviour is perfectly-plastic the stress state 𝑓(𝜎) must be either below or 
equal to the elastic limit. If the limit is violated no information is known about the stress state, why 
it is considered inadmissible.   
   The problem solver for the lower bound formulation is for self-same reason described by the non-
linear convex constraint given by 

 𝑓(𝜎) = 𝜎𝑣𝑜𝑛 𝑚𝑖𝑠𝑒𝑠 − 𝑌𝑠 ≤ 0, (I.47) 

where ௦ܻ defines the initial yield strength of the material and the von Mises stress can be found by  

 𝜎𝑣𝑜𝑛 𝑚𝑖𝑠𝑒𝑠 = 𝑓(𝛽𝑖, 𝛽𝑗, 𝛽𝑖𝑗) = √𝛽𝑖
2 − 𝛽𝑖𝛽𝑗 + 𝛽𝑗

2 + 3𝛽𝑖𝑗. (I.48) 

When loading the construction into the plastic region the stress state can solely be modified by a 
stress rearrangement leading to a stress point located along or inside the yield surface. A load nor-
mally resulting in hardening will therefore not expand the yield surface and the stress point must for 
this reason still be located at the yield boundary that is shown in Figure 9.64. Although no expansion 
of the yield surface can occur due to the material behaviour, the stress point will still relocate ac-
cording to the hardening rules as the load increases and the stresses are redistributing. [26] 
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5. Examples of Application 

Two examples of application of the program is shown in the following sections. 

5.1 L-Plates subjected to a tensional Pressure 

The first example of application evaluates two similar L-formed 2D plates as seen in Figure 9.65. The 
geometrical difference between the two considered plate models is the fillet at the concave corner. By 
having a model with a sharp corner and a similar model with a filleted corner, it is possible to show 
the application of models with stress singularities and stress concentrations, respectively. Both plates 
are subjected to a tensional pressure of 30 MPa at the left edge. The plates are constrained in the 
vertical direction at the bottom edge, whereas the right edge is constrained in the horizontal direction. 
The plates have a thickness of 1 mm. 

 
(a) Nonfilleted plate (b) Filleted plate 

Figure 9.65. Free Body Diagram of Models (all dimensions in mm) 

The plates are made of steel and the yield strength is assigned to 235 MPa. 

5.1.1 Linear Elastic Stress Analysis in ANSYS Workbench 

An elastic stress analysis has been conducted in ANSYS Workbench based on the boundary condi-
tions shown in Figure 9.65. The models are meshed coarsely with Q8-elements as seen in Figure 9.66. 

(a) Nonfilleted plate (b) Filleted plate 

Figure 9.66. Plot of mesh and resulting von Mises stresses. 

From the linear elastic stress analysis in ANSYS Workbench it is seen that the highest von Mises 
stresses are obtained in the region of the sharp corner and filleted corner, respectively, whereas the 
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stresses are much lower in the remaining part of the plate. This is due to stress singularities and 
stress concentrations, respectively. 

(a) Nonfilleted plate (b) Filleted plate 

Figure 9.67. Plot of von Mises yield criterion and principal stress states for global model. 

By plotting the principal stresses of each node of the global model as seen inFigure 9.67, it is seen 
that only a single stress state is critical for the nonfilleted model, whereas several nodes have stresses 
exceeding the yield criterion when considering the filleted plate. Since both models have a lot of 
capacity, the stresses at the critical areas can be redistributed such that an optimized allowable stress 
state is obtained. 

5.1.2 Submodeling 

In order to redistribute the stresses of the two considered models a circular and rectangular region is 
sliced, respectively. This is done to show that the program is able to handle both circular and rec-
tangular subareas. 

(a) Nonfilleted plate (b) Filleted plate 

Figure 9.68. Global model with selected submodel Area. 

For the submodel area a mesh is generated in ANSYS Workbench by means of an APDL-script. The 
external force is applied in the submodel at the nodes located on the cut boundary, see Figure 9.68. 
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(a) Submodel of nonfilleted plate (b) Submodel of filleted plate 

Figure 9.69. Submodel Mesh.  

Both submodels are statically underdetermined, which gives rise to stress redistributions. 

5.1.3 Verification of Critical Stress Spots 

The scalar load multiplier 𝛼 is to be calculated for the submodels in order to clarify whether the 
given stress state results in structural collapse.   

(a) Nonfilleted plate (b) Filleted plate 

Figure 9.70. von Mises stress of optimized submodel. 

The scalar load factor 𝛼 is above 1.0 and thereby it can be concluded that the applied force doesn’t 
result in collapse for neither models, even though the elastic analysis shows critical stresses for the 
global model. 

  
By plotting the principal stress states, as seen in Figure 9.71, it is seen that all stress states in the 
submodel satisfies von Mises yield criterion.  



Appendix I:  Appended Paper  141
 

 
 

(a) Nonfilleted plate (b) Filleted plate 

Figure 9.71. Principal stress state of optimized submodel. 

6. Conclusions 

A program that is able to verify critical stress spots in plates has been developed based on a sub-
modeling principle, and lower bound limit analysis. In the lower bound limit analysis stress-based 
elements are used to calculate the scalar load multiplier 𝛼 in order to specify whether a stress state 
leads to structural collapse. The program appears to be very efficient since only a submodel is con-
sidered and only few steps are needed in the overall process.   
   By implementing an APDL-script in ANSYS Workbench, it is possible to export all the needed 
finite element information to set up the lower bound problem for the submodel. The maximization 
of the lower bound problem is conducted by means of nonlinear programming using an interior point 
solver in either MATLAB or MOSEK.   
   The generality and efficiency of the program has been presented by examples of plates subjected 
to stress singularities and stress concentrations, respectively. 
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