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Preface

This master thesis was written by Anders Bender, Dennis Bækgaard and Brian
Frost during the spring semester of 2016. The master thesis details the mo-
tivation for the articles (Appendix A & B) and the research they surround, a
summary of the process of the research, and the conclusions of the articles. The
articles were both written in the spring semester of 2016.

The first article is a combined effort between the groups is101f16 (Anders
Bender, Dennis Bækgaard and Brian Frost) and is102f16 (Benjamin Hubert,
Michael Fuglsang, Henrik Haxholm). The article focus on detecting the affec-
tive state of test participants exposed to visual stimuli. Physiological data is
collected through sensors on which machine learning is applied to detect the
affective state.

The second article is produced by us, but involves an experiment conducted
across both groups (is101f16 and is102f16). It is based upon methods and
findings from the first article and applies them in a another, more concrete
setting; that of finding usability problems based entirely on physiological data
from the affective state changes of a test participant.

0.1 Acknowledgments
We would like to thanks our supervisors Thomas Dyhre Nielsen and Anders
Bruun for guidance and constructive feedback throughout the project. We would
also like to thank is102f16 for the collaboration with the first article and the
second experiment, and lastly a thank to all the people who helped conduct the
experiments.
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1
Introduction

In later years research within HCI has shifted towards User Experience(UX)
and the actual experience of a system. User Experience is usually measured
and analyzed through methods using subjective measurements such as expert
analysis, Think-Aloud and Cued-Recall Debrief. Although well-established and
renowned, such methods are error prone with regards to subjective analysis,
leading to phenomenons such as Peak-End rule[2] and memory bias.

In recent years, more research focusing on objective measurements, gathered
through sensors, has occurred. The main idea, with the objective measurement,
is to measure the human body’s physiological response and subsequent apply
some method to estimate an affective state or user experience based on the
physiological data. This is interesting because of the potential rewards using
objective data rather than subjective data, such as reducing memory bias.

If it is possible to accurately predict a person’s affective state, and apply such
knowledge to the area usability testing, then issues like peak-end and evaluator
effect[6] could be reduced to a minimum. Furthermore, points of interest in a
usability test based on the physiological could yield valuable information to a
third-party evaluator, as it could reduce the time required to analyse a usability
test. Most research within this area has focused solely on single sensors as
data providers, and as such it would be interesting to see if machine intelligence
techniques could be used to fuse the physiological data from each sensor, to
increase the precision of predicting a persons affective state.

The focus of this thesis will therefore mainly be towards the detection of a
user experience through physiological data, and the appliance of that knowledge
to a usability test context to examine its practicability.
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2
Research Papers

This chapter presents two research papers, both produced during our Master
Thesis semester. The first paper and experiment for the first is produced in
collaboration with another master thesis group (is102f16), whereas the second
paper is produced entirely by us, and the experiment is produced in collabora-
tion with is102f16.

The first paper is a combined effort where a large study with a large scale test
was conducted. The aim was to classify the affective state from test participants,
using images as stimuli and multiple sensors. Physiological data was collected
through custom software written by us, allowing synchronization of data from
all sensors. The test participants also reported arousal and valence values for
the stimuli, which was used to is test the validity of the classifier.

The second paper builds upon the first, and aims to use its results in a
more specific manner: to detecting usability problems from physiological data.
Based on the assumptions from related work, that usability problems induce a
negative affective state, often discretized as frustration, our aim was to identify
such states and thereby usability problems.

Below is a short summary of each paper along with its research questions.
Followed by that, is a methodical reflection, wherein we discuss our findings and
methods. Each paper can be found in its full length in the Appendix.

2.1 Research paper 1
Title: Real-time Measurement of User Experience

Hypothesis:

• H1: There is a statistically significant correlation between subjective Self-
Assessment Manikin (SAM) ratings and physiological measurements from
consumer-grade sensors.

• H2: Statistically, fusion of consumer-grade sensors has a significantly
higher prediction rate than each sensor individually.
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2.1. RESEARCH PAPER 1

Summary: This paper was created in complete collaboration the group is102f16,
both paper and experiment. The primary motivation for this paper was to in-
vestigate to what degree user experience can be detected using physiological
sensors. It further describes the role which short-lived emotions takes in user
experience and its part in HCI. The paper elaborates Scherer’s[8] models for
emotions and Ekman’s basic emotions[4], to concretize what the different eval-
uation techniques, such as Self-Assessment Manikin (SAM) and Positive And
Negative Affect Schedule (PANAS)[3], actually measures. It leads to a division
of the methods which we define as:

• Dimensional Techniques focuses on the subjective feeling component often
described with valence and arousal.

• Discrete Techniques focuses on an emotion as a whole such as disgust,
fear, sadness, joy etc.

To test our hypotheses, an experiment was conducted. In the experiment, 49 test
participants were using a simple program while physiological data was recorded
from a Kinect, EEG, GSR, and HR-sensor. The simple program showed pictures
from International Affective Picture System (IAPS)[1] and asks the user to give
a SAM rating of how they feel. The physiological data was transformed into
features based on various studies found in the literature. These features, and
the SAM rating, are used in a Support Vector Machine (SVM) both for single
sensors, and together with the decision fusion techniques: voting and stacking.

In conclusion, we partly proved H1 by finding that individual sensor and sensor
fusion can achieve significantly higher accuracy than best-case guessing at all
the grouping, except for voting which did not achieve significance in Valence
3. Furthermore we partly proved H2 by showing that using the fusion method
stacking we could achieve significantly better accuracy than than using a single
sensor with the exception of HR, Face, and GSR on Arousal 3, and Face on
Valence 2 High.

2.1.1 Methodical Reflection:
An area within our study which require further investigation is that of context.
Context is a broad term and involves many controllable and uncontrollable vari-
ables, for instance; the mood[8] of a test participants are in before and under
the experiment, the lighting and temperature in the room, the particular setup
of the experiment, etc. We acknowledge that the above can affect how partic-
ipants interact with the setup, and particularly how they react to the stimuli.
The impact of context on our results is unknown, however it is a limitation
of this study which we are aware of, but given the scope of this paper 1 the
implications of its impact was no considered further.

Self-Assessment Manikin, the method we used during experiments to get
ratings from participants on how they experienced the stimuli, can give unre-
liable results. For one, the method is highly subjective: test participants can
lie, misunderstand the method, or simply have widely different frames of ref-
erence. It is particularly the two latter cases that has been scrutinized. Being
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moderately calm might be answered differently between participants, and each
participant might have difficulties mapping correctly to the scales if stimuli with
increasingly extreme connotations are presented. In extension to this we did not
consider the type of people we recruited, this is important because Foglia et.
al [5] states that GSR signals have different traits for persons who are extrovert
than for people who are introvert. This might also be the case with the other
sensors.

The classification algorithm we used is an “off-the-shelf” SVM, but other so-
lutions might yield better results. But due to the scope of the study we are
conducting, it is not the intention to find the optimal techniques which could
be used. The results achieved could most likely be improved by using better
techniques, but finding the optimal technique with the optimal parameters for
each sensor is beyond the scope of this paper.

2.2 Motivational considerations between paper
1 and 2

Paper 1 showed that sensors can to some degree predict a users affective state,
however, it seem to drop at higher resolution. Arousal 3 and Valence 3 only
achieved 66.0% and 67.1% on average, and would probably drop lower as the
resolution gets higher. This would probably result in a 9-point SAM not having
a very high accuracy, while also requiring a significant amount of training data
to be able to predict reliably. However, since we have shown that we are able
to, to some degree, predict the affective state of a person in low resolution, a
natural step would be to use the technique in a context which did not require
a high resolution. An interesting prospect for this would be the detection of
usability errors. In a naive and discrete assumption, it can be argued that test
participants only varies between two states, a normal state, and a frustration
state. Additionally, this study is more oriented on actual practical use rather
than scientific proof of concept. This can benefit the community as a whole and
help companies conducting usability evaluations to perform these with higher
efficiency and/or accuracy. The second paper will focus on detecting usability
problems using physiology data collected from consumer graded sensors.

2.3 Research paper 2
Title: Usability Problem Detection from Affective State using Consumer Graded
Sensors

Summary: The primary motivation for paper 2 came from the findings of
paper 1. We found it was possible, to some degree, to assess the affective state
of a person. The idea was to take this framework, and build upon it by applying
it in a more real-life scenario with more natural stimuli. Our second paper
explores this idea by attempting to find usability problems from the affective
state changes in users while they interact with a software system.

In paper, 1 it was found that increasing the resolution in terms of affective
states would be harder, which meant usability problems would be a beneficial
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area to look at because it surrounds negative experiences. Related work was
reviewed to find common affective states which were involved with usability
problems. Affective states included “stress”, “anger”, “irritation” and “frus-
tration”. We opted for all these to be a degree of “frustration”. Related work
revealed that email-related tasks were particularly good at inducing frustration
for users[7]. This was the basis for the program which was developed as the
framework for exposing users to stimuli. We created an email client simulation
which had seeded usability problems, which became active only when their as-
sociated task was active. There was a total of 11 tasks, of which 7 contained
usability errors. This email client was developed in collaboration with is102f16
because we shared the experiment for both of our individual research. Dur-
ing the test, synchronized physiological data was collected in the form of EEG,
GSR, HR and Facial data. A total of 39 people completed the test, of which 4
were excluded due to faulty sensor data.

Novelty detection was used to find usability problems which were defined
as outliers from the “normal physiological behaviour” of the user. A one-class
SVM was trained on two initial tasks, which contained no seeded usability prob-
lems, and as such was presumed without usability problems. One sensor fusion
technique was used in the form of voting.

The result of the paper is largely analytic and explorative in nature. These
results are discussed, and especially insights into why they turned out the way
they did, is reflected upon. Averages over the entire data set is presented, but
it was also explored how the best candidates and worst candidates performed,
and the differences between them. This gives interesting insights into which
directions to take new research with in this field.

2.3.1 Change of direction
The aim for the second paper, was to apply knowledge gained from the previous
work in a more practical setting. Initially the article had a hypothesis defined
as:

• H1: There is a statistically significant improvement using sensor fusion
to detect usability problems compared to using individual sensors.

However it was discarded due to the fact that the article would be more in-
teresting as an explorative study, due to the lack of other similar studies, with
focus on analyzing the different findings and results more than a study focusing
on getting a specific end-results. The main goal for the article instead became
to examine the outcome we got from using sensors, machine learning and sensor
fusion to detect usability problems, in order give pointers to what we believe
the applications for this could be, based on our findings.

2.3.2 Methodical Reflection:
Test and experiment

The experiment setup was controlled to the best of our abilities and conducted
inside a usability lab. A changing variable we deliberately constructed in the
system, was to randomize the order in which tasks are presented to the user,
i.e. the order differs between test participants. This obviously leave us with the
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same concerns as in paper 1, that context has not thoroughly been investigated
and taken into consideration. As with the first paper, this was simply dismissed
as a limitation and scope of this paper.

The experiment itself has also proved to be a problem even though it was
thoroughly thought through. It consisted of four phases, we would use the first
and last phase, and the second and third was for the other group. The phases
were:

• 1. Usability test

• 2. Waiting period (0min, 30min, 60min)

• 3. Cued recall

• 4. Cued recall debrief

The first phase involves attaching sensors to the test participant and per-
forming the usability test. The second phase had test participants waiting for a
period or time. The third phase involved re-attaching sensors and having them
watch a screen recording of them performing the usability test. The fourth and
last phase was a cued recall debrief session, where points of interests selected
from visual inspection of GSR graphs were investigated with the participant
and a researcher.

Our test was quite long, and the premises of it being doable with the amount
of participants we wanted, was that we could interleave different participants.
When one participant was taking the usability test, another participant would
be waiting for 30-60 minutes before coming back for cued recall. Unfortunately,
it turned out to be quite difficult to manage such a time plan. Partly because
the test sometimes took longer than the wait time needed, and partly because
the setup time varied a from person to person. Sometimes it would take 30
seconds to attach the EEG, sometimes it would take 10-20 minutes. This was
unacceptable for the other group, because their validity of the experiment was
based around the wait time having to be exact. This in turn meant we could
only do 4-5 people a day, instead of 8 people a day. This along with the fact
that sometimes people simply did not show up, meant that the testing period
took significantly longer than anticipated. Further we also collected cued recall
debrief data in the form of SAM questionnaires, however, it turned out those
were not needed because the way they were collected did not fit the purposes we
could use them for. We collected SAM for points of interest in a GSR graph, but
what we really needed was to collect SAM data for each event/usability error
or task, such that we could have validated our programs implemented errors
actually also was perceived as usability errors.

Specific to this test, the program developed is also a factor to consider when
looking at the results. We attempted to make a program with no usability errors,
but as research has shown since the dawn of HCI, this is nearly impossible. We
experienced problems with the computer used for the test, where the program
would have unexpected latency and unresponsiveness when using the keyboard
and mouse. This was not intentional, and hence not a seeded usability problem.
The user might however, still perceive the unresponsiveness of the program as
a usability problem, which was the case in at least one test, discovered dur-
ing cued recall debrief sessions. Further we found small areas of the program
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that could be considered cosmetic usability problems, however, as we did not
try and estimate severity, this was left out in the evaluation. Other concerns
became evident when considering how each individual seeded problem was per-
ceived by the test participant. Some problems were perceived immediately, e.g.
participants were paying attention when error feedback was given, while others
problems were not. In particular, tasks that required test participants to use
the keyboard, usually draws their attention to it, and away from any feedback
signifying that an error has occurred. An implication that follows from this, is
that it becomes harder to determine exactly when a test participant experiences
a particular seeded problem.

The experiment could also considered different hardware sensors. It is pos-
sible to collect GSR data from the chest area, and heart rate data from the
ears. This would free the dominant hand from sensors which would make the
test participant use the system unencumbered, rather than having one hand
disabled during the test.

Frustration models

One of the biggest complications during this study is the lack of uniform agree-
ment on how emotional responses, in particular frustration, develops on a phys-
iological level. While there has been quite a few studies surrounding estimating
frustration from physiological data, the way they do it, and how they “label”
frustration is very different. The biggest difference lies in the assumption of the
duration of the emotion. Some researchers, like us, believe the assumption that
emotions are short lived and instantaneous in nature. Others believe they are
long, which can be anything from 10-20 seconds to over 100 seconds or more.
While researchers generally tend to get good results, it has to do with the use
case of the study. Do you look for a general increase in average amplitude of
a GSR signal or do you look for actual spikes in amplitude? How you define
this has a fundamental impact on the results you get. In our case, it was dif-
ficult to select a model which satisfied all our constraints, especially because
the experiment was designed prior the investigation of frustration as a physi-
ological response. On one hand, we had a system which has “events”, stimuli
designed to be frustrating, within a task. These events can be exposed to the
user in quick succession, depending on how fast the user provokes the event, e.g.
clicking delete and nothing happens and doing it immediately again. A model
which caters to the assumption that frustration lasts a long time, will conflict
with the collected data, because it can overlap multiple events. Then it has to
be considered if an outlier is caused by both events combined or an individual
event.

Further there is no uniform theory on how frustrating events develop over
time as there are multiple exposures. It is generally acknowledged that a reaction
stimuli, positive or negative, is strongest the first time it is experienced. Further
if a person can anticipate a stimuli, the expectation of it may also reduce the
reaction. But is this the case with frustrating events in a running system as
well? It is not too far stretched to imagine a person having a software related
problem, and the first time you’ll be slightly annoyed, if the problem persists
the irritation that you cannot fix it also increase. That case could argue for a
frustration curve which is steadily going upwards, but not having spikes. On the
other hand, if a person has written an entire document in a word processor and
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it crashes, it could lead to a massive “spike” of frustration. While the reaction
is labeled the same, the way it is experienced is very different. One is slow and
steady, the other is instantaneous and violent.

Due to the complexity of how to measure the data, and the resulting complex
results of an explorative model also forced us to multiple times consider our
hypothesis. Because the concept of frustration as physiological data has multiple
layers of complexity, it is hard to reduce it to one number, or one result. Having
it being a single number would simply be to simplistic, compared to the model.
This ruled out many of the initial hypothesis revolving around significance of
the result of our classifiers. In the end we found the most fitting thing to do
was not having a hypothesis, simply because the study is explorative in nature,
and the result is insights of how researchers can deal with the complex nature
of classifying frustration in a running program.

Novelty detection

The method used in this paper is novelty detection using a one-class SVM.
The primary requirements for achieving good performance, i.e. good predictive
power, is to ensure that training data contains as few anomalies as possible. The
difficulty associated with ensuring this can vary depending on the kind of data
considered, but in our case, where we consider physiological data, is is not trivial.
We attempt to minimize the risk of training on data containing anomalies by
considering only data from the first two tasks, containing no seeded problems.
However, we cannot be certain that this data never contains any anomalies, as
identifying anomalies is what we are attempting in the first place. This is to
say, that our ability to identify anomalies is at most as good as the data we
train on. In order to ensure a better set of training data, it would be better
to create a larger set of tasks, and verify those tasks and the software they are
conducted in as being usability error free. The robustness of such a set of tasks
would be better if such initial evaluation had been done.

A recurring concern, also present during the first paper and our 9th semester
project, is that of finding the correct parameters and features for the classifi-
cation algorithm. In an attempt to mitigate these concerns, we performed grid
searching, i.e. a near-exhaustive search, on parameters. However, doing so is
considerably time consuming and dependent on chosen features. This means,
that although we can search for optimal parameters for a set of features, a new
search has to be performed if a new set of features are considered. This is to say,
that validating if a set of features yields good results, e.g. many true-positives
and few false-positives, is considerably time consuming. Features suggested in
related work are disparate, i.e. varying time-spans and extracted from various
statistics, and we have not been able to find conclusive indications as to which
features should be used. It is also debatable how robust the model is given we
search for the optimal solutions. We have the best model for a specific set of
features, for a specific set of data. It is not guaranteed that we construct a
general model, that can be used across different persons.
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3
Answer to hypotheses and research question

3.1 Paper 1

In this paper it was explored that it is possible to gather physiological data
through sensors, and further use this data to predict subjective SAM ratings
with individual sensors as well as using fusion techniques. Participants were
subjected to stimuli in the form of IAPS pictures, presented in a self developed
application. They also reported subjective SAM values after each stimulus.
Synced physiological data was collected in another application, and the sensors
used were GSR, EEG, Pulse Sensors as well as a Kinect. A SVM was selected
as the classification technique and fusion techniques were stacking and voting.

In paper one there was the following hypotheses:

• H1: Physiological measurements from consumer-grade sensors using a
classification technique can achieve significantly higher accuracy than naive
guessing when predicting subjective SAM ratings.

• H2: Statistically, fusion of consumer-grade sensors has a significantly
higher prediction rate than each sensor individually.

H1 was partly confirmed prediction using sensor and sensor fusion was sig-
nificantly better than best case guessing in all cases beside voting on the valence
3 grouping. The second hypothesis propose that using machine learning fusion
techniques for multiple sensors are better than using a single sensor. Results
show that the technique “voting” is not substantially better than single sensors
and other methods, however the technique “stacking” performs significantly
better than most methods. This confirms the second hypothesis.

Even though the results showed that using sensors it better than random
guessing, the appliance of using this over traditional methods seem to unreliable
or even unfeasible at even a 3-point SAM rating. However since we showed
some ability to predict the the affective state of a person at a low resolution,
applying this technique to areas which does not require the same resolution as
user experience could be interesting.
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3.2 Paper 2
The paper had the following research questions:

Is it possible to detect usability problems from physiological data gathered
during testing?

Could a combination of physiological data gathered from multiple sensors
possibly increase the reliability of such detections?

The results showed that it is possible to detect usability to some degree.
The HR, GSR and Kinect showed reasonable result when measuring how many
correctly detect usability problems in regards to much data which was falsely
detected. However the EEG seemed to act more unreliable and less accurate
than the other sensors.

Voting was done both conservatively and aggressively. The conservative
approach showed robust results at voting 1 and 2. Whereas the aggressive
approach had considerable more noise making it useless at voting 1 but showed
reasonable results at voting 2 and 3.

These results yield no conclusive results it does, however, it propose to some
interesting uses for the method. This includes assisting third-party evaluators
in finding usability problems. This is due to the fact that a classifier with a low
Nu value can predict points of interest with reasonable rate and low noise. This
could potentially enable the evaluators to find some of the usability problems
without too much video analysis.
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Objectives: Emotions are an important part of UX, but tradi-
tional evaluation methods makes them prone to bias. Literature
shows an increase in attempts to evaluate emotions using sen-
sors. This work attempts to use sensor fusion techniques on
physiological data gathered from consumer-grade hardware
to predict subjective SAM ratings. Methods: IAPS pictures
were used to induce affective states, and subjective emotional
responses were evaluated using SAM. SAM ratings were sep-
arated into groupings with a single division and groupings
with two divides. Physiological data was collected using EEG,
GSR, ECG, and facial tracking. The test had 49 participants
(21 female and 28 males, aged 19-33 (mean 22.22; standard
deviation 2.75). Data from each individual sensor were used to
train a SVM for classifying arousal and valence. Furthermore,
two decision fusion techniques were used: weighted voting
and stacking. Results: Accuracies for a single divide group-
ing ranged from 74.5% to 84.8% and on groupings with two
divides, from 57.8% to 67.1%. These results were significantly
better than naive guessing, which ranged from 58.8% to 66.1%
on single divide groupings, and 49.3% to 49.8% on two divide
groupings. While the weighted voting technique performed
slightly worse than all the machines trained on individual sen-
sors, the stacking technique proved to be significantly better.
Conclusion: We found that it is possible to predict subjective
SAM ratings using physiological sensors. Furthermore, the
accuracy can be increased by using sensor fusion, if the right
fusion technique is chosen. It was found that using stacking
achieved significantly better results than voting.

ACM Classification Keywords
H.1.2 User/Machine Systems: Human information processing;
I.4.8 Scene Analysis: Sensor fusion; I.5.2 Design Method-
ology: Feature evaluation and selection; I.5.4 Applications:
Signal processing
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be pursued due to agreement with the authors.
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INTRODUCTION
Emotions are an important part of User Experience (UX), but
despite affect and emotion being key indicators for quality of
UX, Bargas-Avila and Hornbæk [6] found a predominant lack
of research towards measuring emotions. Further, despite UX
being an integral part of Human Computer Interaction (HCI),
literature [66, 47, 31, 4] shows discrepancy when defining
UX. In this work we refer to the International Standard Or-
ganization (ISO 9241-210:2010) [31] which defines UX as
“a person’s perception and responses resulting from the use
and/or anticipated use of a product, system or service”.

As with UX, the HCI body of literature contains many differ-
ent definitions of emotion[20, 61] where Scherer [62] provides
a palpable one. According to Scherer, an emotion is a response
to an event with interrelated, synchronized changes of five or-
ganismic subsystems. Scherer differentiates between emotions
and moods, where emotions are short-lived, massive responses
to specific actions, and moods are low impact diffuse affect
states that may emerge without relation to specific events and
may extend for longer periods, such as being cheerful or de-
pressed. In this work, we focus on emotions, in particular
physiologically manifested emotional reactions.

Among the commonly conducted methods for evaluating emo-
tions are questionnaires, interviews, think-aloud, and expert
ratings [6]. However, due to the short duration of emotions,
these methods are heavily affected by cognitive limitations
such as the peak-end effect [14], where the most impactful
moment and the end of an event are the most memorable, caus-
ing memory bias. Such limitations can be alleviated by using
techniques such as Cued-Recall Debrief [9].

An alternative approach is to measure physiological responses
caused by emotions, in real-time. Recently, the use of phys-
iological measurements to evaluate emotions has increased
in HCI [68]. Physiological measurements are objective in na-
ture, and using this as a basis for evaluating emotions should
decrease the effect of memory bias, since the measurements
can be recorded as physiological responses occur. Usually,
a single sensor is used to take physiological measurements,
but a single sensor can only capture limited physiological re-
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sponses, possibly leaving out information. Furthermore, if the
sensors used are consumer-grade (inexpensive and accessible
hardware), it will not be possible to take measurements at the
same level of detail as industrial-grade hardware.

Recent research [10, 50, 32] fuse multiple sensors using Ma-
chine Learning (ML) techniques with the intent of producing
better results than using a single sensor.

Having established the importance of emotions in HCI re-
search in general and more so within UX, our aim in this work
is to provide a reliable and accessible method for evaluating
emotional reactions through physiological measurements. In
particular, our method uses inexpensive consumer-grade hard-
ware, assuring accessibility. We aim to be able to reliably
group emotional reactions using well-known ML techniques,
ensuring an easily reproducible setup to be used in various
UX experiments. We do not aim to identify individual and
particular emotions, such as each basic emotions [20], we will
instead predict on the subjective feeling component found in
Scherer’s definition of an emotion. Using such an approach
enables UX researchers to mitigate subjectivity bias inher-
ent in expert evaluations and possibly the evaluator effect
during usability testing [29]. In particular, we imagine our
setup could contribute in usability testing scenarios where re-
searchers could objectively identify moments where subjects
experienced negative emotional affection which might indicate
usability problems.

While similar attempts have been made in recent research [10,
50, 32], we differentiate our work by using well-established
ML techniques in order to try and improve the result from
single accessible consumer-grade physiological sensors. As
mentioned, we hope our results can help researchers get closer
to a foundation for more specific use-cases, such as usability
testing or other techniques which can draw advantages from
the use of physiological measurements, such as Cued-Recall
Debrief [9].

EVALUATION OF EMOTIONS
In this section we elaborate on the previous mentioned five
organismic subsystems by Scherer [62]:

• Cognitive component: evaluation of the objects and events
triggering an emotion, and the subjective processing of that
context such as "what impact does the event have to the
person’s current objectives?"

• Neurophysiological component: regulation of the bodily
system such as changes in heart rate and sweat production.

• Motivational component: preparation and direction of ac-
tion, a subconsciously bodily reactions such as switching
attention, or physically moving away from the event.

• Motor expression component: communication of reaction
and behavioural interaction that in contrast to the motiva-
tional component are intentional and/or controllable.

• Subjective feeling component: internal state and
organism-environment interaction that a subject experience,
expressed as a combination of intensity, duration, valence,
arousal, and tension.

Common methods used to evaluate and quantify emotions
are questionnaire, interview, and think-aloud where subjects

try to describe their emotions. Another common method is
expert rating where experts attempt to interpret a subject’s
behaviour and emotions based on observable features such
as the motor expressions component and partly the motiva-
tional component. Such methods are well established within
HCI research [6], and referred to as traditional methods in this
work. An example that use these methods to evaluate a test
subject’s emotions is Ekman [20] who distinguishes between
six basic emotions: anger, disgust, fear, joy, sadness, and sur-
prise. Another example is the Positive And Negative Affect
Schedule (PANAS) [15] which consists of a labeled list of emo-
tions with corresponding Likert scale [51] values. Techniques
like PANAS or basic emotions are based on discrete values
and describe emotions separately. We refer to techniques that
evaluate emotions discretely as discrete techniques.

Other techniques are based on the subjective feeling com-
ponent, and often uses valence and arousal as quantifiers.
Self-Assessment Manikin (SAM) [8], which measures the
magnitude of feelings in valence, arousal, and sometimes dom-
inance, is such a technique. We refer to these techniques based
on dimensional feelings to be dimensional techniques.

The use of sensors to measure physiological responses is an
increasingly popular approach in the field of HCI. Examples
are; Mandryk and Atkins [45], who identified feelings in sub-
jects playing computer games; Lin et al. [41], who identified
joy, anger, sadness, and pleasure while subjects were listening
to music. Using this approach, researchers either use a single
sensor, or a combination of multiple sensors which we distin-
guish between as sensor and sensor fusion respectively. Using
sensors, researchers are able to objectively measure the neu-
rophysiological component, motivational component, and
the motor expression component of an emotion in real time.

This work focuses on using physiological sensors to detect
the neurophysiological-, motivational-, and motor expression
components. Additionally, the subjective feeling compo-
nent is measured using traditional methods, and mapped to
arousal/valence.

RELATED WORK
This research operates on three levels of the area of quantify-
ing emotions. (1) Traditional methods which contains well
established methods. (2) Methods that uses sensors to quantify
some part of an emotion. (3) Methods that uses sensor fusion
to quantify some part of an emotion. All of these levels, will
be constrained to an HCI context.

Traditional
Lot of research includes a traditional method to quantify emo-
tions. In 1995, Peter J. Lang [35] studied the effects of induc-
ing affective valence and arousal on test subjects. He used
the International Affective Picture System (IAPS) [7] picture
database, in which the pictures have undergone average SAM
value labelling over many test subjects. The pictures span over
a wide array of possible SAM value combinations. He found
a significant linear trend with the startle reflex (eye blinks),
which was most active during low-valence exposures, and least
active when exposed to positive stimuli [35].
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Silver et al. [1] looked at how humans perceive emotions
through text over an instant messenger. They had 80 partici-
pants in two evenly divided groups text each other for thirty
minutes. After the test session each test participant completed
three questionnaires with Likert scales. The questionnaires
included the participants own estimation of how well they
conveyed their emotions to the other test participant, which
strategies they used to convey their own emotions, and their
perception of the other person’s mood.

Sensor
In recent years, studies, involving more objective measures us-
ing physiological sensor data, have gained momentum. Liapis
et al. [38] conducted a study with a GSR to detect stress in sub-
jects. In their test, they incorporated 5 tasks with frustrating
elements based on responses from 15 average computer users.
These tasks were completed by 31 test participants while they
had their skin response recorded. They had promising classifi-
cation results of 90.8% average on individual tasks, and 98.8%
average over all tasks.

In a recent article from 2014, Gupta et al. [25] classified affec-
tive state using EEG data. They used the DEAP [34] affective
database, which consists of stimuli labelled using SAM, and
corresponding physiological data. The stimuli used in DEAP
was one-minute excerpts from music videos. Using SVM and
RVM to to classify the affective state, they achieved accuracy
just above 60% on two class (high/low) system in arousal,
valence and dominance.

Sensor Fusion
Koelstra et al. [34] created the DEAP affective database in
2012. Aside from creating the large database, they also at-
tempted affective classification on both arousal and valence.
This was done using EEG as an individual sensor, and also
fusing EEG with other types of data signals. The results were
compared, and they found that sensor fusion provided partly a
better F-score when classifying arousal and valence, ranging
from 0 to a 0.044 increase in F-score.

Jraidi et al. [32] focuses on classifying interaction experience
trends, stress, confusion, frustration, and boredom. The test
participants had to complete series of tasks, and fill out a self-
report on whether they flowed, were stuck or dropped out of
the task, and their stress, confusion, frustration, and boredom
levels. EEG, GSR and HR were captured during the test and
used for classification.

Sensor fusion has also been used to classify both inter and intra
subject, as seen in Calvo et al. [10] where results show a sub-
stantial lower classification accuracy inter subjects compared
to intra subjects. They used a EMG, GSR, and ECG to gath-
ered the sensor data, and followed the Clynes protocol [59]
to evoke an emotional response in the subjects. Classification
was made using different techniques including SVM, LLR,
Functional Tree, Bayes Net and MLP. The results from an
individual day on intra person showed above 90% accuracy
whereas the combined inter person only showed just above
40% accuracy.

Hypotheses and Contribution
The related work reveals that the quantification of emotions
has been done using many different methods and contexts. It
also showed that fusion has the ability to produce good results,
but so has a single sensor, which raises the question if fusion
is worth pursuing. Therefore in this article two hypotheses
will be examined:

H1: Physiological measurements from consumer-grade sen-
sors using a classification technique can achieve signifi-
cantly higher accuracy than naive guessing when predicting
subjective SAM ratings.
H2: Statistically, fusion of consumer-grade sensors has a
significantly higher prediction rate than each sensor individ-
ually.

H1 creates a benchmark for our classification results, while
also verifying the validity of using consumer-grade equipment
to objectively collect physiological data. H2 determining
whether or not sensor fusion can be used to increase accuracy
when prediction subjective SAM ratings, from physiological
sensor data.

METHOD
In order to reject or confirm our hypotheses, we established
an experiment where participants were subjected to various
imagery stimuli. During the test, we collected subjective va-
lence/arousal ratings using SAM for each image, and physio-
logical measurements using various sensors. The SAM ratings
for each image will be used as ground truth. This data was then
used to train Support Vector Machines (SVM) to be able to
classify subjective SAM ratings, both for individually sensors
and using fusion.

Stimuli
For the experiment, we used the IAPS [7] image database
consisting of approximately 1200 images. IAPS has been
extensively studied and labeled with arousal/valence control
values. Figure 1 shows the spread of the image-set plotted in a
graph. We use three groupings of the pictures: negative, posi-
tive, and neutral. They are based on extremes found in IAPS
due to its ´´boomerang-shape”[49]. The negative groups, red
circle in Figure 1, represents the pictures with low valence and
high arousal.The neutral group, grey circle in Figure 1, repre-
sent the picture with the median valence (5) and low arousal.
The positive group, green circle in Figure 1, represents the pic-
ture with high valence and high arousal.The 30 images were
selected (marked with blue) from the extremes were selected
to create easier grouping more suitable for classification. A
list of the selected images can be found in the Appendix.

Hardware
The hardware used for the experiment was an Emotiv
Epoc [21] for Electroencephalograph (EEG) for recording
brain activity, a Mindplace ThoughtStream [53] for Galvanic
Skin Response (GSR), an Arduino with a pulse-sensor [42]
to measure heart rate (HR) and a Kinect V2 [17] for track-
ing facial traits. Emotiv Epoc contains 16 electrodes, two of
which are only used for reference. It produces a raw EEG
signal and has a sampling rate of ∼128 Hz[22]. Mindplace
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Figure 1. Spread of the IAPS image-set. Negative, positive and neutral
extremes, are encircled in a red, green, and grey ring respectively. Blue
marks indicate the arousal/valence plot of 30 selected images used as
stimuli (10 in each cluster).

ThoughtStream measure skin conductivity and has a sampling
rate of ∼20 Hz. With modified software [2] the pulse-sensor
software was modified to send beats per minute (BPM), inter-
beat interval (IBI) and raw signal with a sampling rate of ∼50
Hz. The Kinect V2 measures many bodily features with a
sampling rate of ∼30 Hz[17]. All devices are consumer grade
hardware.

Participants
49 tests were conducted with 49 participants (21 female and
28 males, aged 19-33 (mean 22.22; standard deviation 2.75).
The participants were students recruited from Information
technology (27), Informatics (7), Sociology (3), Psychology
engineering (3), Economics (1), Organizational learning (1),
Digital Concept Development (2), and Computer science (2)
from Aalborg University as well as Pedagogy (1) and Occu-
pational therapist (2) from University College of Northern
Denmark. Participants had no prior knowledge of the test or
the system. The Informatics and Information technology stu-
dents received a reduction of their curriculum for participating
in the test.

TEST SETUP
The tests was conducted Monday-Friday in the Usability Lab
at Cassiopeia, Aalborg University [33]. All participants were
instructed in the general format of the experiment, and asked
to sign an informed consent form before participation. The
participants were then asked to fill out a questionnaire contain-
ing general questions such as name, age, and education. After
the questionnaire the participants were given a more detailed
elaboration of the experiment. This included how they should
report their emotional state using SAM for each stimulus, as
well as information on the hardware we would be using. All
hardware was attached, with the GSR and HR sensors being
attached to their non-dominant hand. The test participants

Figure 2. An example of the sensor setup used on the test participants.
As he uses his right hand to control the trackpad, the Thoughtstream
and Pulse Sensor are attached to his left palm and left index finger
respectively. Furthermore, the Kinect can be seen above the monitor
aimed at the test participants face.The test participant can also be seen
wearing the Epoc device on his head.

Initial
rest period Rest period Stimuli loop

Runs 30 times

Stimuli
picture is

shown

Arousal & valence
interface

3 minutes

20−30 seconds 7 seconds

Until test subject clicks next

Figure 3. Flow chart of the test.

were instructed to remain motionless throughout the experi-
ment, to limit the amount of data contamination from bodily
movements.

Test procedure
The test participants starts by entering his/her name in the ap-
plication. When the test participant is ready, the test is started
by pressing the next button. This signals for the collection of
physiological data to begin, alongside the test-application with
stimuli. The test starts with a relaxation period of 3 minutes
after which a stimuli loop initiates, see Figure 3. The stimuli
loop is a self-contained part of the test, and happens once for
each stimulus. The loop consist of a 20 seconds relaxation
period along with a random interval of 0-10 seconds. The
randomness is to prevent the test participants from getting
familiar with a fixed time interval between each stimuli expo-
sure. Then a stimulus/picture is shown, and a time period of 7
seconds elapse before the interface to select arousal/valence
values appears. The number 7 has been selected to allow for
the immediate physiological reaction to take place. The next
relaxation period is not initiated before the test participant has
submitted both arousal and valence. The stimuli loop starts
over with a new stimulus for each 30 individual stimuli. The
order of the stimuli was randomized for each individual.
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Class A2L / V2L A2H / V2H A3 / V3
0 1,2,3,4 1,2,3,4,5 1,2,3
1 5,6,7,8,9 6,7,8,9 4,5,6
2 - - 7,8,9

Table 1. The class label groups and their names. A is for arousal, V is
for valence.

CLASSIFICATION
In order to validate our hypotheses, classification is done for
data from each sensor separately and combined. We will in
this paper use SVM, since previous work [63, 65, 26] shows
that SVM is a commonly used classifier which has shown
good results.

Data Points and Class labeling
The data from each test participant will be extracted from the
participants physiological response to each image. From this
features will be created to the given image. This is defined as
a data point. The data point will be labelled with a class label
corresponding to the SAM values selected by the participant.
Given the small size of our data set (30 data points per test
subject), we opt to group the SAM responses in order to give
the classifier enough training data for each class label. The
groups will consist of either one or two divides. These divides
and their respective names can be seen in Table 1, with A and
V meaning Arousal or Valence, and L and H meaning low or
high value for the divider. Organizing the responses into these
divides increases the amount of data points representing each
class label while decreasing the total amount of class labels to
classify.

Classifier and parameters
We use one of the free libraries implementing SVMs, specifi-
cally LibSVMSharp [23] which is a wrapper for LibSVM [11].
The SVM produces a model that can predict class labels, and
has been trained on some training data representing the class
labels [13]. In order to separate non-linear data the SVM can
use a kernel function, and each kernel function has a set of
hyperparameters which can influence classification accuracy.
LibSVM offers four different kernel functions. In order to
get the best results, we search for each kernel, optimizing the
hyperparameters C and γ by using the grid-search mentioned
in [13], to prevent overfitting the model, which otherwise
might lower classification accuracy.

Checking the quality of a set of hyperparameters can be done
by looking at how good the model is at classifying. Since
the classification will focus on intra-subject and not inter-
subject, meaning data from one person may only be used
to train and classify on that specific person, a technique to
maximize the usage of the data is required. A method to do
so is cross-validation. Cross-validation divides the data into
n equal sized folds. The SVM then uses n-1 fold to train
from and uses the last fold to predict on. The cross-validation
implementation [12] in LibSVM includes random shuffling
of the data. For the sake of reproducibility, a deterministic
cross-validation has been implemented. This cross-validation
is a simple Leave-One-Out (LOO) cross-validation, meaning
one response (data point) is used for prediction, while the

remaining responses are used for training. This is done for
each data point in the whole set of data points and the accuracy
of the classifier is done by calculating the percentage of correct
predictions across the whole set.

Fusion techniques
Fusion is the inclusion of multiple sets of data to reach a
common result. Two areas of fusion are feature fusion and
decision fusion [46]. Feature fusion is when features from
multiple sets of data are combined into a single feature vector.
Decision fusion is when using the results computed from each
set of data, to compute a new common result. Due to our
limited data size, doing feature fusion could result in the curse
of dimensionality [64]. The curse of dimensionality is when
the ratio of features to training data is so high that the model
risk of getting overfitted, resulting in bad predictions. As such
we opt to only use decision fusion.

The two methods of decision fusion this paper will focus on
is [46]:

• Stacking: using the results of from each SVM for a single
sensor as a set of features of a new classifier which then is
trained to predict from the single machines answers.

• Weighted Voting: is used when the classifiers has uneven
performances. Meaning that a SVM from a single sensor
have votes equal to its performance. The class label with
the most votes is the final result.

These new decision fusion classifiers will be referenced as
meta classifiers.

Since the GSR is only capable of classifying on arousal, we
exclude this sensor from the fusions classifying valence. For
stacking an SVM is created, and trained on the results from the
machines for the sensors. Voting takes the answers from the
other machines, weighted by the cross-validation performance,
and select the class most voted for. Additional it is important
to mention that the training set and prediction set is separated
at all times. Meaning that when doing fusion, the SVMs for
the single sensors is trained on n-1 folds, and the results are
from these folds when used for the fusion techniques.

FEATURE SELECTION
The features selected are heavily influenced by others’ previ-
ous work, given the scope of this project. Tables 2-5 indicate
the features as well as the source of the features we use, how
the source used them, if it was for arousal and/or valence,
as well as the time-window (i.e. timespan) they used for the
feature.

EEG Features
EEG data is frequently used when measuring emotions, how-
ever other literature often uses electrodes[34, 24, 40] which
are not available in our Emotive EPOC. Further, differences in
activity in the left and right parts of the brain encodes informa-
tion about the affective state, and emotional and affective data
has been found in the mid- and pre-frontal part of the brain [58,
16]. From this we find the most interesting electrodes offered
to us by the EPOC to be F3, F4, AF3 and AF4 as per the
10-20 system [44]. A common method for extracting features
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from EEG data is by considering the band powers of a Power
Spectral Density (PSD) [43, 65, 25, 41]. The PSD of a signal
can be calculated by using a Fast-Fourier transform and is a
representation of sine waves that could make up the signal. In
brain computer interfaces, the power of individual frequency
bands are often used, and Lin et al. [41] achieved promising
results using the hemispheric asymmetry index. The asym-
metry index can be found by subtracting the powers of two
asymmetric electrodes (e.g. F3 and F4). Band frequencies
are defined differently by different sources, in this paper we
use the definitions used by Lin et al., where we only differ by
defining the γ upper limit as 45 Hz instead of 50 Hz, since the
EPOC signal is filtered to 0.2 Hz to 45 Hz [22]:

• Delta (δ ) = 1-3 Hz
• Theta (θ ) = 4-7 Hz
• Alpha (α) = 8-13 Hz
• Beta (β ) = 14-30 Hz
• Gamma (γ) = 31-45 Hz

The time interval to consider when extracting features also
varies from paper to paper. Due to the nature of our test setup,
we can use event related potentials (ERP) to specify the time
span we extract features from. There are several different time
spans in ERP, for both positive and negative waves in the sig-
nal. Positive waves are referred to as P# and negative waves
N#, with the number indicating the latency with regards to
stimuli induction. The time definitions of the different events
related to emotions also differ [67, 27, 60], however, they seem
to agree that some emotional reaction can be found around
P300 which is found between 350 ms and 700 ms after stim-
ulus, and late positive potential (LPP) between 350 ms and
1000 ms. Since the Shannon-Nyquist theorem [28] states that
the amount of samples needed is double the highest frequency,
we need at least 90 samples for each Fast-Fourier transfor-
mation. Since the capture frequency of the EPOC is 128 Hz,
the time between readings is 7.8125 ms, meaning to get 90
samples, a minimum of 703.125 ms is needed. A time span
of 350 ms to 1060 ms allow the calculation of PSD as well
as being within the emotion-relevant part of the signal, and
as such this is the timespan used for feature extraction. The
resulting features can be found in Table 2.

EEG Features
Source A V Data captured Timespan (ms)

[41, 27, 16, 58] x x AF3-AF4 (δ ) 350 - 1060
[41, 27, 16, 58] x x AF3-AF4 (θ ) 350 - 1060
[41, 27, 16, 58] x x AF3-AF4 (α) 350 - 1060
[41, 27, 16, 58] x x AF3-AF4 (β ) 350 - 1060
[41, 27, 16, 58] x x AF3-AF4 (γ) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (δ ) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (θ ) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (α) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (β ) 350 - 1060
[41, 27, 16, 58] x x F3-F4 (γ) 350 - 1060

Table 2. Timespan is in milliseconds, after stimuli. A indicates the fea-
ture can be used to classify arousal and V indicates the same for valence.
Only features using electrodes accessible with the Emotiv EPOC were
used.

GSR Features
[37, 3] suggests that an emotional reaction becomes visible
in the signal approximately 2-4 seconds after onset of stimuli,
and usually the response itself has a 4-5 second half recovery
time[37]. Since our test setup reveals valence/arousal indica-
tors for the test participant to interact with after 7 seconds, we
limit the timespan to 2-7 seconds, in an attempt to eliminate
noise produced by test participants interacting with the setup.
This is due to the interaction with the computer interfering
with the ThoughtStream signal. [38] suggests using statisti-
cal features such as mean, min, max, standard deviation as
features from a GSR signal. In order to remove artifacts a
15-point median filter is applied. The resulting features can be
seen in Table 3.

GSR Features
Source A V Data captured Timespan (ms)
[37, 38] x SD of filtered signal 2000 - 7000
[37, 38] x Mean of filtered signal 2000 - 7000
[37, 38] x Max of filtered signal 2000 - 7000
[37, 38] x Min of filtered signal 2000 - 7000

Table 3. Timespan is in milliseconds, after stimuli. A indicates the fea-
ture can be used to classify arousal and V indicates the same for valence.

Heart Features
The data from the Pulse Sensor will be transformed into
three different measures; heart rate (HR), heart rate variability
(HRV) and inter-beat interval (IBI) [34, 56, 55]. HR and IBI
is calculated by the modified Arduino software for the pulse
sensor, and HRV is given by the difference of two adjacent
IBI’s. The pulse sensor measurements have shown the abil-
ity to both be used as a feature to classify valence, but also
arousal. Heart rate has been shown to have a correlation with
valence [36], where HRV features [57] has shown good pro-
duced results with both valence and arousal. The onset of an
emotional reaction can according to [30, 5] happen 4 seconds
after stimuli, and have a three second duration. The resulting
features can be seen in Table 4.

HR Features
Source A V Data captured Timespan (ms)
[57, 55] x x IBI mean 4000 - 7000

[57] x x IBI std 4000 - 7000
[57] x x HRV RMSSD 4000 - 7000
[36] x HR Max 4000 - 7000
[39] x HR Mean 4000 - 7000

Table 4. Timespan is in milliseconds, after stimuli. A indicates the fea-
ture can be used to classify arousal and V indicates the same for valence.

Facial Features
With the Kinect, data was captured in the form of Face Shape
Animations [52] (FSA). FSA data tracks a subset of the Action
Units (AU) in the Facial Action Coding System [19] (FACS)
for both the left and right side of the face. [18] showed that
an unconscious facial reaction happens from 500-1000 ms
after stimuli onset. Mehu and Scherer [48] investigated the
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correlations between facial behaviour in the form of AU, and
the emotional dimensions of valence and arousal. From their
features we select the ones that have statistical significant
correlations with valence and arousal, and overlap with the
set of AU measurable by the Kinect. Since Mehu and Scherer
used AU without differentiating between the left and right
sides of the face, we use the average of the feature values from
the left and right side of the face. The resulting features can
be seen in Table 5.

Facial Features
Source A V Data captured Timespan (ms)

[48] x Mean of 5 & 6 500 - 1000
[48] x Mean of 13 & 14 500 - 1000
[48] x Mean of 15 & 16 500 - 1000
[48] x SD of 5 & 6 500 - 1000
[48] x SD of 13 & 14 500 - 1000
[48] x SD of 15 & 16 500 - 1000
[48] x Mean of 11 & 12 500 - 1000
[48] x SD of 11 & 12 500 - 1000

Table 5. Facial features. Timespan is in milliseconds, after stimuli. A
indicates the feature can be used to classify arousal and V indicates the
same for valence. The numbers in the data captured column correspond
to Kinect FaceShapeAnimation [52].

RESULTS
An ANOVA was performed on the accuracies for each test sub-
ject for each machine type. 14 test participants were removed
from the set due to either lacking data because of temporary
sensor failure, or having a SAM reporting which did not con-
tain enough differences. Test subjects where not all machines
were able to compute results were filtered out (e.g. when there
was a hole in the data due to sensor failure). The accuracies
for naive guesses were computed as for a machine which al-
ways suggested the most frequent class. The resulting average
accuracy to be found in Tables 6 and 7 for arousal and valence
respectively.

Using a Tukey HSD post-hoc analysis, mean differences and
significance levels were calculated between the fusion methods
and non-fusion methods and also for naive guessing. Table 9
shows results for stacking, Table 10 shows results for voting
and Table 8 shows results for naive guessing.

From Table 8 we see that naive guessing performs significantly
worse than all other machines, except for Voting on V3.

Tables 9 and 10 show that, while voting only performs signifi-
cantly better than naive guessing, Stacking performs signifi-
cantly better than almost all other machines.

CONCLUSION
In this paper we explored the idea that it is possible to gather
physiological data through sensors and use this data to predict
subjective SAM ratings with individual sensors and using
fusion techniques. Participants were subjected to stimuli in
the form of IAPS pictures and reported subjective SAM values
after each stimulus. Physiological data was collected using
GSR, EEG and Pulse Sensors as well as Kinect, and an SVM
was selected as the classification technique.

Arousal Results
A2L A2H A3

EEG .751 (SD .070) .763 (SD .062) .578 (SD .085)
HR .745 (SD .057) .756 (SD .076) .598 (SD .081)

FACE .738 (SD .079) .760 (SD .082) .611 (SD .107)
GSR .754 (SD .074) .766 (SD .063) .595 (SD .094)

NAIVE .596 (SD .068) .636 (SD .091) .493 (SD .093)

Stacking .848 (SD .056) .838 (SD .054) .660 (SD .113)
Voting .739 (SD .100) .755 (SD .080) .606 (SD .106)

Table 6. Average accuracy for each classification method, test subject
and class label group for arousal.

Valence Results
V2L V2H V3

EEG .755 (SD .077) .763 (SD .084) .587 (SD .109)
HR .750 (SD .056) .765 (SD .071) .601 (SD .082)

FACE .751 (SD .093) .781 (SD .085) .595 (SD .105)
NAIVE .588 (SD .065) .661 (SD .098) .498 (SD .089)

Stacking .836 (SD .066) .827 (SD .075) .671 (SD .101)
Voting .724 (SD .106) .740 (SD .093) .561 (SD .127)

Table 7. Average accuracy for each classification method, test subject
and class label group for valence.

The results show accuracies for the machines on class group-
ings with one split range from 74.5% to 84.8% and on group-
ings with two splits, from 57.8% to 67.1%. Naive guessing
showed less accuracy than any of the other machines, with
accuracies from 58.8% to 66.1% in single split groupings, and
49.3% to 49.8% in two split groupings. Stacking showed the
highest accuracy consistently.

Comparing the results with our hypotheses we find that:

H1: Physiological measurements from consumer-grade sen-
sors using a classification technique can achieve significantly
higher accuracy than naive guessing when predicting subjec-
tive SAM ratings.

As seen in Table 8, naive guessing is significantly worse in
all cases except Voting in the V3 group. This result conforms
with the hypothesis.

H2: Statistically, fusion of consumer-grade sensors has a sig-
nificantly higher prediction rate than each sensor individually.

Tables 9 and 10 show that while voting is not a substantial
improvement to most of the other methods, stacking is signif-
icantly better than most methods. This result conforms with
the hypothesis.

Future work
While this work shows promising results classifying positive,
negative and neutral affective states, more work is required
to ensure similar results when using less tailored stimuli. We
choose to show the most extreme cases of the IAPS pictures,
but it is not an indicative set of stimuli in a real world sce-
nario. It is also important to note that all features selected
for classifying, are mainly based on a discrete stimuli expo-
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Naive Guessing vs others
A2L A2H A3 V2L V2H V3

Stacking -.252*** -.202*** -.167*** -.248*** -.165*** -.173***
Voting -.144*** -.119*** -.113*** -.136*** -.079** -.062
EEG -.155*** -.127*** -.085** -.168*** -.102*** -.088**
HR -.149*** -.120*** -.105*** -.162*** -.104*** -.103***

FACE -.143*** -.124*** -.118*** -.163*** -.119*** -.097**
GSR -.158*** -.130*** -.102*** - - -

Table 8. Differences in mean accuracy between naive guessing and machines as results of ANOVA with Tukey’s HSD.
* indicates p < 0.05
** indicates p < 0.01
*** indicates p < 0.001

Stacking vs others
A2L A2H A3 V2L V2H V3

Voting .108*** .083*** .055 .112*** .086*** .110***
EEG .097*** .075*** .082** .081*** .064** .084**
HR .103*** .082*** .062 .086*** .062** .070*

FACE .109*** .078*** .050 .085*** .046 .076*
GSR .094*** .072*** .066 - - -

NAIVE .252*** .202*** .167*** .248*** .165*** .173***

Table 9. Differences in mean accuracy between stacking and machines as results of ANOVA with Tukey’s HSD.
* indicates p < 0.05
** indicates p < 0.01
*** indicates p < 0.001

Voting vs others
A2L A2H A3 V2L V2H V3

Stacking -.108*** -.083*** -.055 -.112*** -.086*** -.110***
EEG -.011 -.009 .028 -.032 -.023 -.026
HR -.006 -.001 .008 -.026 -.025 -.040

FACE .001 -.005 -.005 -.027 -.040 -.035
GSR -.014 -.012 .011 - - -

NAIVE .144*** .119*** .113*** .136*** .079** .062

Table 10. Differences in mean accuracy between voting and machines as results of ANOVA with Tukey’s HSD.
* indicates p < 0.05
** indicates p < 0.01
*** indicates p < 0.001
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sure and the direct latency and physiological response time
expected for that type of stimuli. Real world scenarios would
more likely be in the form of software applications or product
evaluation, which could induce a less prominent reaction as
well as be reactions which span over time. It would be benefi-
cial to focus research on these types of scenarios, as usability
testing as a whole is the actual goal of objective physiological
emotional classification. In this paper it was also chosen to
not focus on the contextual implications from the test partici-
pants. Talya Miron-Shatz et al.[54] found that an entire days
worth of events were combined into a single memory with an
emotional experience, rather than remembering all events with
their respective emotional experience - much like the peak-end
effect. It would be interesting to explore this area in detail and
control this effect, such that it can be verified to which extent
this effect has an impact on otherwise controlled test settings.
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APPENDIX

Selected IAPS images
2039, 2440, 3000, 3010, 3060, 3080, 3170, 3500, 3530, 4220, 4290, 4659,
4660, 5130, 6230, 6350, 7010, 7020, 7031, 7060, 7110, 7175, 8030, 8080,
8185, 8190, 8492, 8501, 9360, 9410.

Emotiv Epoc
Available electrodes (10-20 System): AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4
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ABSTRACT
Objectives: Traditional usability testing focuses on perfor-
mance metics such as task completion time and effort required.
Further it requires third-party expert subjective evaluations to
estimate problems, and label their severity. This paper attempts
to take an approach were usability problems are detected from
a users affective state, using physiological sensors and ma-
chine learning. Methods: A self developed email client, and
usability problems were deliberately seeded into it. 35 test par-
ticipants (18 male, 17 female) had to solve 11 tasks, of which 7
had usability problems of varying severity. Novelty detection
was used to find affective state outliers, using a one-class SVM
as classfier. Results: Average case classification result did
not yield results much better than random guessing, due high
variance in results. However, promising results were found
when considering the five best, and circumstances as to why
this is, is discussed. Conclusion: We explored the idea that it
was possible to find usability problems from a test participants
affective state. It was possible, but the more aggresive the
classifier was tuned, the more noise, i.e. false-positives, was
included in the prediction result set.

ACM Classification Keywords
H.1.2 User/Machine Systems: Human information processing;
I.4.8 Scene Analysis: Sensor fusion; I.5.2 Design Method-
ology: Feature evaluation and selection; I.5.4 Applications:
Signal processing
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HCI; UX; Interprocess communication; ECG; EEG; HRV;
EDA; FFT; SVM; Arousal / Valence model; Self-Assesment
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INTRODUCTION
Usability testing has long been an important aspect of soft-
ware development, and according to Rubin et al. [52] usability
testing is user centered tests that focuses on three main groups.
Informing Design, which concerns the usefulness and learning
rate of a program, elimination of design problems and frus-
tration, which not only focuses on removing design problems

The content of this article is freely available, but publication (with reference) may only
be pursued due to agreement with the authors.

and bugs, but is also about establishing a good relation to the
customer, and lastly improving profitability, which is centered
around reducing maintenance and increasing sales. The sec-
ond group, elimination of design problems and frustration, is
often measured with methods involving third party observers.
These observers has to, as objectively as possible, note if a test
person is encountering a usability problem. However, such
observations are subjective and can lead to the evaluator ef-
fect[54], which states that the results from the evaluations are
different from individual to individual. Strategies such as think
aloud [23] can help observers better gauge a user’s thoughts,
and to some extent affective state, while experiencing usabil-
ity problems. However it does not formalize the capturing
of affective state in particular and is inherently a third-party
subjective evaluation.

A user’s affective state could reveal valuable information about
a product, and in particular where usability problems might
occur. According to Lang et al. [4], three categories exists for
capturing a user’s affective state: affective self-report, observ-
able behaviour and physiological reactivity. Self-report covers
methods such as Self-Assessment Manikin(SAM). SAM con-
sists or two Likert-scales, allowing users to reporting valence
and arousal. Sometimes a third scale for reporting dominance
is also used. Strategies such as think aloud fall within the ob-
servable behaviour category. Methods within self-report and
observable behaviour are encumbered by several shortcom-
ings. Observable behavior, because third party evaluators are
giving subjective opinions based off their own estimations and
analysis, and self-report because of effects like the peak-end
memory bias [7]. The peak-end memory bias is the concept
that the most dominant experience, good or bad, and the last
experience will be remembered, possibly leaving out impor-
tant information. The last category involves methods that
measure human physiology, and are regarded as highly objec-
tive. This presents the question: could physiological reactions
possibly tell something about the affective state of a person,
and thereby where usability problems are located? Physio-
logical measuring has shown at several occasions that it can,
to some degree, be used to predict a persons affective state,
and thus has interesting propositions to offer to the traditional
evaluation methods [53, 28, 49].

An example of a study that uses this idea was made by Bruun
et al. [5], who made a usability case-study based on a web-
site, coupled with physiological data. A number of usability
problems were found in a prior empirical study based on the
same website, from which they created three tasks for the
participants to complete. They recorded physiological data us-
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ing galvanic skin response (GSR) which measures sweat [40],
and an eye-tracker detecting the gaze of the participant. They
formalized a method and a formula for associating the physio-
logical data with the discrete negative affect state frustration.
As mentioned in multiple studies, e.g. [5, 21], frustration is
well-studied and manifests whenever expectations or rewards
are not met in a timely manner, or when a goal is compromised
in one way or another. These traits match the signature of a
usability problem. Bruun et al. also conducted cued-recall de-
brief sessions, where participants reviewed video clips found
from GSR peaks, and filled out SAM scales relating to the
clip. They found a correlation between peaks in GSR and
SAM-ratings, however were unable to confirm a relationship
between the severity of a usability problem and the level of
frustration experienced.

We are inspired and motivated to further investigate the area of
using physiological data within usability testing. We believe
our contributing could be valuable alongside the existing re-
search, such as Brunn et al. [5], that attempts to close the gap
between users and usability evaluators by minimizing subjec-
tivity. Furthermore, we want to investigate if using multiple
sensors could lead to further improvements. If successful, it
could become an important tool for usability evaluators, by
finding points of interest based on physiological data. We
aim to use consumer grade sensors in order to make our setup
more accessible, should other researchers find the interest to
reproduce it. We couple physiological data from various sen-
sors with established Machine Learning(ML) techniques as
the method for detecting points of interest, potentially locating
usability problems.

RELATED WORK
The related work explored in this paper focuses on two dif-
ferent areas in the field of human-computer interaction(HCI).
(1) Traditional methods used for usability testing and user
experience evaluation. (2) Then an exploration of the use of
sensors in HCI, after which it further details the use of sensors
in a usability testing domain.

Traditional methods
Several attempts have been made to improve both efficiency
and the accuracy of usability testing. Kjeldskov and Stage’s In-
stant Data Analysis (IDA) method aims to significantly reduce
the effort and time required during post-analysis of data when
identifying usability problems [25]. Compared to traditional
video data analysis techniques, they found that in only 10%
or the normal time used, they were able to identify 85% of
critical usability problems. Jonathan J. et al. [23] found the
IDA method compelling for its reduction in time and effort
required, but mentions several shortcomings to take into con-
sideration of using it over a traditional method, in particular
the still-present evaluator effect.

The “evaluator effect” can significantly impact how and which
usability problems are found and categorized [54]. The evalu-
ator effect is the phenomenon that a set of evaluators will indi-
vidually only find a subset of all usability problems. Hertzum
et al. [20] found that not only do usability experts identify
substantially different usability problems, they also disagree

on how they should be categorized in severity. Based on their
findings, Hertzum et al. suggested that several evaluators
and domain experts should participate in evaluating critical
software.

Think-Aloud sessions can help evaluators extract the thought-
process and affective state of test participant while they interact
with the system during a test. In think-aloud sessions, the
test participant verbalizes how they interact with the system
and how they feel while doing so. Several studies have been
made, investigating the efficiency and accuracy of think-aloud
protocols, i.e. how the subject should be interrogated during
testing [58]. However, no matter how refined such methods
become, they are inherently subjective.

Identifying usability problems on a physiological, or psycho-
logical level, has been shown to be just as difficult. In a shift
towards a focus on user experience, attempts are made to
identify usability problems from the perspective of how test
participants are affected by the experience of interacting with
a system. In other words, the affective state of a test partici-
pant might reveal potential problems within a software system.
Jussi P.P. Jokinen [24] investigated how frustration plays a
key-role in how individuals interact with a system. Likewise,
Lazar et al. [21] found that text-processing and email-related
tasks induce the highest amount of frustration for a user in
a work environment. Lastly, Jeff Sauro suggests a revised
usability problem severity scale based on how irritated test
participants become [22].

Sensors and usability testing
Sensors have been used in various studies within the field of
HCI, serving as input devices to detecting the well-being of a
person. Moreover some studies try and predict a test partici-
pants emotions or affective state in different test scenarios. An
example could be Schmidt et al. [32], who used an electroen-
cephalogram (EEG) to identify valence and intensity, where
they found some correlation with different parts of the brain.
And Zhai et al. [57] used GSR, blood volume pulse (BVP),
pupil diameter (PD) and skin temperature to measure if a per-
son was stressed or not, where they achieved a 90% accuracy
with a support vector machine (SVM) and 11 features.

While still a relatively unexplored area within HCI research,
physiological sensors are increasingly being applied in usabil-
ity experiments. Elling et al. [12] investigated the relationship
between what users verbalized during think-aloud sessions and
where their gaze was at (i.e. used eye-tracking equipment), to
both scrutinize the think-aloud method and to complement it.
Similarly, Pätsch et al. [46] complimented think-aloud recall
sessions using GSR sensor data.

In 2003, Ward et al.[50] made two different designs of the
same website, one that followed best practices, and one which
tried to break them. They had 20 test participants do tasks for
10 minutes, the first minute was used for a baseline GSR and
HR reading which the remaining 9 minutes were compared
to. They looked at changes in skin conductivity, heart rate
beats per minute and finger blood volume. They compared the
ill-designed website results and the proper designed website
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results. They found an increase in both heart rate beats per
minute and skin conductivity, but not in finger blood volume.

In 2014 Liapis et. al [28] created PhysiOBS, a post-test data
processing tool to help usability test evaluators speed up the
analysis process of a usability test. It does this by giving
the evaluator the ability to label specific areas with emotions,
showing both screen and face camera in one window, as well
as physiological data collected from different sensors. It also
offers indicators for what task users is doing at the given
time. Aggarwal et al. [45] used an Emotiv EPOC(EEG) and
the vendor-supplied software to detect frustration in a user
experience test with three seeded events. While they do not
present conclusive results, they claim to be able to pinpoint
moments of frustration experience by test participants during
usability testing.

It is evident from recent research and trends within the HCI
community, that revisions of the traditional usability evalua-
tion methods are being explored to ease the task of analyzing
the results from a test. Current methods mostly rely on experts
and their subjective analytic abilities with a strong emphasis
on performance-based metrics, and state-of-the-art research is
pushing for more objective and user-centric analysis.

RESEARCH QUESTION
The focus of this paper is to explore the possibility of using
physiological data within usability testing. We argue that this
is a relatively unexplored territory within HCI - at least no
predominant or popular methods seem to exist. Since research
within the area is still active, we take this to indicate an interest
in finding such a method - we want to contribute to this search.

We propose a method using physiological data directly from
participants during testing. Multiple consumer grade sensors
are used to gather physiological data on which machine learn-
ing techniques are applied to predict changes in the affective
state of the user and from that determine if a usability problem
is present in the system under test. The study is explorative
in nature because of the limited research already conducted
within this field. The focus will be to identify specific areas of
interest for researchers in terms of using sensors and affective
state changes to find usability problems.

Using the above approach, we state the following questions:

Is it possible to detect usability problems from physiological
data gathered during testing?

Could a combination of physiological data gathered from
multiple sensors possibly increase the reliability of such detec-
tions?

Due to the explorative nature of this study, we do not expect
to be able to give definitive answers to the above, but rather
provide valuable insights and discussions into how different
approaches to analyzing the data can give different results.

METHOD
In this section, we explain the methods and practices we apply
in order to answer our research question. In particular, an ex-
periment was conducted and its setup will be explained, along

with applied ML techniques used to analyse physiological data
collected during experiments.

Experiment
Our experiment is a traditional usability test setup: a software
application is tested by a test participant, solving pre-defined
tasks. However, unlike a traditional usability test setup, we
attach physiological sensors onto the test participant. The
test participant then is then exposed to a software application
that - intentionally but unknown to the test participant - has
usability problems of critical or catastrophic severity seeded
into it. Furthermore, no test conductor was present in the room
while the test was ongoing. The experiment was conducted
inside a usability lab, located at Aalborg University [26].

Problem-seeded test application
In order to control the kind of seeded problems, and at which
moments they should be present for the user, we developed a
software application, into which we could embed such prob-
lems. This application is mimicking the functionality of a
subset of features found in “real-world” equivalent applica-
tions, but with controllable seeded usability problems. Many
choices could be made as to the kind of software application
it should mimic, but research shows that some domains within
software applications are more likely to induce stress and frus-
tration in the user, compared to other domains. As mentioned
under Related Work, Lazar et al. [21] found that email- and
text-related work tends to induce the highest amounts of frus-
tration in users. We use this discovery as inspiration to develop
a “mock” email application, i.e it does not send any emails but
simulates during so.

The application was built upon a self developed framework
which facilitated seeding usability problems and creating a
set of tasks for the user to complete. The application is kept
simple with few features to decrease the risk of introducing
unintentionally usability problems, while still having the basic
functionalities of a normal email application. The usability
problems associated with a specific task were only active
when a the given task was active, i.e. the participant would not
encounter the problem if the corresponding task was not active.
The program has a total of 11 tasks of which 7 contained a
seeded usability problem. All tasks were randomized for each
test participant except the first two which contained no seeded
problems, with the intention of using them as training data
for novelty detection. Each task and their associated usability
problem can be seen in Table 1.
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task name description seeded problem
1. Add attachment Add an attachment to a

mail
Program appears to be
processing for 2 seconds,
then fails with an error.
This happens three times,
before the attachment can
be completed.

2. Add contact Add a new contact to the
contacts catalogue

The “Add Contact” but-
ton will not work for the
first three clicks

3. Send Draft Find a draft, either by
creating a mail and draft-
ing it or selecting a pre-
created draft, and send it

An exception will show
when they try to open the
draft, making it impossi-
ble to send

4. Create a draft Create a draft with the
body: “Rød grød med
fløde”

The keyboard layout
changes to American,
making it impossible to
type the Danish character
“ø”

5. Write a mail Create a mail with the
body: “Hi, my name is
x and I am participating
in a usability test”

At random intervals the
caret will move while
writing the mail

6. Remove Con-
tact

Remove a specific con-
tact from the contacts cat-
alogue

When clicking “Delete”,
the entire window will
change to a black box

7. Write mail 2 Write a mail with the
body text “Hello, I am
having a birthday party
10 days from now, and
this is your invitation!”

The window for writing
a mail is unavailable, and
the title changes to “Not
responding...”

8. Send a mail Send a mail with any text,
to two contacts

None

9. Save a draft Create a mail, and draft it None
10. Reply to mail Reply to a mail None
11. Write and
delete mail

Write a mail containing
any text, draft it and then
delete it

None

Table 1. Usability problems descriptions

In addition to seeding problems into the application, we imple-
mented the ability to log specific moments, i.e. timestamp, for
important events. Events are moments such as “user clicked
button” and “task X completed”. This offers us a reference
log for when we expect physiological anomalies to manifest
from a stimuli.

Hardware
The hardware used for the experiment is an Emotiv Epoc [13]
for Electroencephalograph (EEG) to record brain activity, a
Mindplace Thoughtstream [39] for Galvanic Skin Response
(GSR), an Arduino with a pulse-sensor [31] with modified
software [48] to measure heart rate (HR) and a Kinect V2[9]
for tracking facial changes. All devices are low-cost consumer
grade hardware as compared to high end medical hardware.

Participants
A total of 39 people participated in the test, but 4 were removed
due to malfunctions in the hardware resulting in too much loss
of data. The remaining 35 participants were 18 males, aged 20-
29 SD 2.39, 17 females aged 19-26 SD 2.20. The participants
were students recruited from various educations; Informations

Technology(11), Computer Science(6), Occupational Thera-
pist(1), Informatics(6), Sociology(2), Economics(1), Software
Engineering(1), IT Design(2), Medicine(1), German(1), Ped-
agogue(1), and High School(2). All participants filled out a
Big-Five[18] which revealed no bias in terms of personality.
The distribution in intro-/extroversion is the only one relevant
to us, because it has an impact on how some physiological
responses manifests it self like GSR[16], the spread was AVG
29.49, SD 7.96. Some individuals were very far away from
the average. The tests were conducted from the 13th of April,
2016, to the 30th of April 2016.

Procedure
The test was performed in collaboration with another mas-
ter’s degree group (is102f16) from Aalborg University. The
usability test follows a traditional laboratory test as closely
as possible with some deviations, and was conducted one par-
ticipant at a time. One of the deviations was the absence of
a test conductor. This was done to avoid chatter between the
test participant and the conductor, which would create con-
siderable noise on some of the sensors that were equipped on
the test participant. Before starting the usability test, the test
participants were informed that they were to take a standard
usability test while wearing sensors. They were also asked to
sign a consent form and complete a questionnaire asking for
general information such as age, sex etc. The participants were
instructed in how to use the test program, which included how
to see the current task, and how to indicate whether or not they
could complete the given task, which was reported through the
task wizard. The task wizard shows a task in plain text, which
the user should try to complete. The participant could choose
to continue to the next task at any given moment by pressing
either a green button for a successful completion, or a red but-
ton to signify they were unable to complete the task. Before
starting the test, all hardware was attached to the participant
and verified in terms of connectivity. The EEG was connected
to the head according to the 10-20 system[34], and the GSR
and pulse sensor were attached to their non-dominant hand.
After the sensors had been properly attached, participants were
asked to remain calm during a 3-minute resting period. This
is to ensure physiological reactions such as elevated heart rate,
e.g. from moving around or higher stress levels because of the
unusual situation, can to back to their normal state. After the
initial resting period, the participant started using the program
and began solving the tasks.

Usability problem detection
While frustration has not been mapped thoroughly to physio-
logical responses, some studies have explored measuring frus-
tration with sensors one way or another, usually in the form of
“frustration”, “irritation”, “stress” or a degree of “anger”[51],
[35], [33], [11]. In this study, all of these are considered “frus-
tration” and we expect this affective state to be experienced
by test participants whenever they are exposed to a usabil-
ity problem. We expect such an affective change to deviate
from the “normal state” data, and thereby be detectable by our
classification tools.

Frustration, and similar discrete emotions, can be mapped
to and expressed via the dimensional model of valence and
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Figure 1. The division of the test data parts. The first section is the
relaxation period of 180 seconds. The second section is two normal tasks
of which the test participants “normal state” / baseline is modeled. The
last section is the rest of the test, and the section in which frustration is
expected in the form of anomalies.

arousal. Frustration could be expressed as medium to high
arousal and negative valence. This is to say, that it is our
goal to detect anomalies expressing such values of arousal and
valence. We argue that it is reasonable to simplify this prob-
lem, by expecting test participants to only express contempt
or negative valence, during the test because of the seeded
problems. In other words, we argue that test participants ex-
perience only neutral stimuli, or stimuli inducing frustration
and thereby negative valence. By this assumption, we aim to
capture moments of elevated arousal, from which we infer it
to be negative valence and thus frustration. Such moments of
frustration could indicate a usability problem.

Before predicting and detecting moments of frustration, we
must establish certain criteria to be fulfilled in order for them to
classified as such. We consider a particular section within the
experiment to be normal, i.e. containing no usability problems,
during which we do not expect test participants to exhibit
physiological states that are related to frustration or similar
negative affective states. We refer to this normal section as
the baseline. The baseline is established in the beginning of
the test during the two first tasks, after the initial relaxation
period, and before the third task begins, see Figure 1. This is
because the two first tasks are always chosen from a set of tasks
containing no seeded usability problems. All physiological
measurements collected within this section are assumed to
not contain any frustrating responses. From the baseline, we
extract various statistical measurements, in the form of feature
vectors. A feature vector is just a set of numbers such as
standard deviation, mean, min and max to a specific data
point. The feature vectors are used to train the classifier. The
classifier can then compare new unseen data to the trained
data, and determine if the new data is within the boundaries of
what can be called “normal” or if it is an anomaly.

Feature selection
Investigating related work for relevant features for capturing
frustration, many disparate methods are proposed, however,
we choose to be inspired by the following discoveries.

Poel et al. [51] created “Affective Pacman” which induced frus-
tration into the player while allowing synchronous recording
of EEG data. After applying a short-term fourier transform and
analyzing band-power, they found a significant difference in

power, between the normal condition and frustrated conditions
in the delta and theta bands.

Trogo et al. [35] studied the affective state of students. More
specifically they looked at boredom, confusion, engagement
and frustration. A simple application with Berg’s Card Sorting
Task[3] was used as stimuli. They used the following features
on a raw EEG signal: mean, standard deviation, mean of
absolute first and second differences and standardized mean
of absolute first and second differences.

Harper et al. [33] investigated the frustration induced from
the dynamic content of Web 2.0 websites. They used GSR
to measure frustration levels and found them from peaks in
smoothed GSR graphs.

Dang et al. [55] used a game to induce stress and had a robot
react to the stress levels and try to support the test participant.
They used heart rate information in form of heart beats per
minute to deduce the stress level.

In Edge et al. [11] bipolar test participants were studied where
anger is a fundamental emotion in the disorder. They investi-
gated frustration and irritation as a subset of anger with heart
rate variability.

Kosunen et al. [56] also used a heart rate sensor. They found
statistic significant features for frustration with intervals of
500-1200ms, to be interbeat-interval(IBI) mean and IBI low
frequency/high frequency band power, but also had IBI stan-
dard deviation.

Dimberg et al. [10] found unconscious facial reactions hap-
pens in the interval 500-1000 ms. Scherer used “Facial Action
Coding System” to define and measure facial expressions dur-
ing an enacted emotion, of which anger and irritation was
investigated on an arousal/valence scale [38].

Limitations of current research
While frustration can be measured, no golden-standard method
has been proposed for doing so. As an example, Zhai et al. [27]
suggests that reactions in GSR can be seen 2-4 seconds after
stimuli, and remain observable 3-5 seconds thereafter. This
is to say, that in order to capture reactions in GSR, we have
to consider at least data within those boundaries. However,
Ghaderi et al. [17] proposes durations as long as 100-300
seconds. Likewise, Niemic [43] suggests durations of up to 15
seconds for EEG. While such durations could indeed capture
the occurrence of some stimuli, it would prove difficult in
our situation as such durations would likely cover more than
just one event. This suggests emotional responses such as
frustration, in terms of researches, can have very different
lifetimes depending on the target of research and use case.

Our previous work[2] showed promising results using descrip-
tive statistics, e.g. mean, median and standard deviation. As
with our previous work, we attempt to capture affective state
changes at stimuli exposure. As mentioned, the usability
problems we deliberately seeded into the test program are
of significant severity, and we do not consider problems of
cosmetic nature. Further as the seeded problems can appear
within rather short time spans of each other, shorter assump-
tions of emotions fits the granularity of this study’s use case.
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EEG Features
Source Data captured Timespan (ms)

[30, 19, 8, 44] AF3-AF4 (δ ) 350 - 1060
[30, 19, 8, 44] AF3-AF4 (θ ) 350 - 1060
[30, 19, 8, 44] AF3-AF4 (α) 350 - 1060
[30, 19, 8, 44] AF3-AF4 (β ) 350 - 1060
[30, 19, 8, 44] AF3-AF4 (γ) 350 - 1060
[30, 19, 8, 44] F3-F4 (δ ) 350 - 1060
[30, 19, 8, 44] F3-F4 (θ ) 350 - 1060
[30, 19, 8, 44] F3-F4 (α) 350 - 1060
[30, 19, 8, 44] F3-F4 (β ) 350 - 1060
[30, 19, 8, 44] F3-F4 (γ) 350 - 1060

GSR Features
Source Data captured Timespan (ms)
[27, 29] SD of filtered signal 2000 - 7000
[27, 29] Mean of filtered signal 2000 - 7000
[27, 29] Max of filtered signal 2000 - 7000
[27, 29] Min of filtered signal 2000 - 7000

HR Features
Source Data captured Timespan (ms)
[42, 41] IBI mean 4000 - 7000

[42] IBI std 4000 - 7000
[42] HRV RMSSD 4000 - 7000

Facial Features
Source Data captured Timespan (ms)

[38] Mean of “eyes closed” 500 - 1000
[38] SD of “eyes closed” 500 - 1000

Table 2. Timespans are in milliseconds, after some time t.

We are inclined to believe the assumption, that a stimuli will
have an immediate emotional reaction and a corresponding
physiological reaction. As such, we choose to use the same
features as our previous work, with the shortest time durations
that literature supports in terms of a reaction to measurable
physiological changes.

Features, latency and duration
Based on our previous work [1], with the intent of capturing
short-term fleeting affective changes, we define the following
latencies and time-spans to consider for each individual sen-
sor. We consider affective state changes in GSR to manifest
themselves 2 seconds after the experience occurred which in-
duced the stimuli, and is noticeable within a time-frame of 5
seconds thereafter, see Table 2. EEG is considerably different,
manifesting after 350 milliseconds, lasting 710 milliseconds,
see Table 2. Reactions to stimuli can be seen manifesting in
heart-rates after 4 seconds, and lasts for 3 seconds, see Table2.
Lastly face changes has a delay of 500 milliseconds and lasts
for 500 milliseconds, see Table 2.

Similar time-frames are also suggested by [44], which states
that reactions lasts for 5 seconds. However, it also suggested
that data within 10-15 seconds should be considered - a factor
of 2.5. As stated, the duration of a response is up for discus-

sion, but in order to consider the fact that emotions potentially
spread of a longer duration of time, we also consider windows
which are 2.5 times larger, for each sensor. This means that
for GSR the window considered would be 10 seconds instead
of 5, and similar applies for all sensors.

CLASSIFICATION
The use case of this article, is to help third-party evaluators
find usability problems in a usability test. In a usability test,
the goal is to find usability problems, in other words the us-
ability problems are unknown prior discovery. This is relevant
for a classifier, because different strategies exist for different
types of data. In this case, we do not have “usability-problem
labeled” data on which we can train the classifier to detect
problems which are similar. Because of this, a classifier which
can detect anomalies from a training set which does not con-
tain anomalies is required. Additionally a usability tests in
general consists of normal usage and only a portion of the
entire system will contain usability problems. In other words,
the majority of the physiological data collected can be con-
sidered expected normal responses, and only the portions of
the system where a usability problem is present will result in
anomalies. The field of novelty detection[47] is well suited
for this particular kind of data.

There are many different methods which can be applied when
working with novelty detection[47], and choosing the right one
is not a trivial task. The different methods can be divided into
five subgroups: probabilistic, distance based, domain based,
reconstruction based, and information theoretic. Manevitz et
al. [36] showed that a one-class SVM achieved on average
better results than other classification techniques as neural
networks, naive bayes, nearest neighbor and prototype over
a series of datasets. This paper use a one-class SVM as the
classifier. The goal of the classification in this paper is to
explore the one-class SVM’s behaviour when used to detect
usability problems.

One-class SVM
The one-class SVM is a domain based algorithm used for
novelty detection, meaning it creates a boundary given its
training data. Unseen data to be classified is then labelled as a
normality or anomaly depending on its position relative to the
boundary. This can be seen on Figure 2.

Since the one-class SVM is sensitive[36] to its parameter set-
tings, a grid search is performed on the parameter Gamma and
the kernel. The library LibSVMSharp[14] is used. It is a C#
wrapper for LibSVM[6] which is a widely used SVM library
which also contains a one-class SVM implementation. The
main reason LibSVMSharp is used over the native LibSVM
is because it can be used in conjunction with the developed
software used to collect and handle data, which is written in
C#.

Prediction & Scoring
We create a one-class SVM for each of the sensors, where
each of the SVMs trains on the data from the first two tasks,
which contain no usability errors e.g. no anomalies. The
model created can then be used to predict on the remaining
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Figure 2. The circle “Normal State”(blue circle) which is formed based
on the training data(white dots). Unseen data will be labaled as normal-
ity if it is inside the boundary and an anomaly if outside.

Figure 3. Figure showing creation of a point of interest(blue area) from
an anomaly(red line).

data which has been collected when usability errors were
present. A one-class SVM will label a given data point with a
binary answer. “1” for a normality, and “-1” for an anomaly.
This results in a collection of data points labeled as either a
normality or an anomaly. When an anomaly is found, an area
of 2.5 seconds prior and after the anomaly is marked to create
a point of interest, as seen in Figure 3. A point of interest
spans 5 seconds in order to create a relevant time-snippet
for a third-party evaluator to look at, rather than having a
1 millisecond span of time. To decide whether an anomaly
correctly corresponds to a usability error e.g. that it hits a
usability error, some assumptions have to be made for the
events. To do so we group tasks 1, 3, 6 and 7, based on the
assumption that they induce a reaction at known moments. The
reasoning behind this, is that all three tasks present obtrusive
visual feedback at the time of the error. Further in case of task
3, there is also audio feedback. Task 3 displays an exception
error message whenever the user attempts to open a draft,
task 6 turns the current window black, task 7 displays a “not
responding” window whenever the user attempts to write an
email and task 1 displays an error message after 2 seconds.
Tasks 3 and 7 in particular are considered “full stops”, and it is
not possible for the user in any way to successfully complete
them. It is possible to complete tasks 1 and 6, but requires
the user to re-attempt 3 times before success. We group them
equally as instant error feedback.

Tasks 2, 4 and 5 we group as not instant. All three tasks
requires the user to notice that an error occurred, or that the
action was not successfully performed. During task 2, the user
has to notice that the contact was not added, task 4 is first
noticed when the user realizes that incorrect characters appear
on-screen and task 5 again requires the user to notice that the

Figure 4. Each vertical blue line is an individual event, e.g. “Caret
Moved”. The combination of these make up the “non-instant usability
error”. The grey line is an “instant usability error”, which consists only
of the event it self. The points of interest(blue areas) depict a hit on a
instant event an non-instant event, and also a miss.

caret has moved. While task 4 and 5 could induce an instant
reaction, we cannot know for certain that this is the case, as
they might be looking at the keyboard while the error occurs
and first discover it, when they look up to verify what they
have written.

Given tasks’ events in the experiment is grouped into “instant
error feedback” and “non-instant error feedback”, two strate-
gies has to be used. For instant error feedback the usability
error is said to have been experienced by the participant at the
specific time the error happened. In other words, if the error
happens at time t, then the participant is also exposed to the
event at time t. For non-instant error feedback the usability
error is said to have been experienced during the timespan
of the first event to the last event which are related to the
task. This is illustrated in Figure 4. To evaluate if an event
is correctly found by the machine the two types of events are
considered again. The events which contain instant feedback
is classified as a hit, if the points of interest covers the time
at which the event happens. For events which do not contain
instant feedback the event will be hit, if the point of interest
hits inside the area of the collection of events. Both of these
examples is illustrated in Figure 4.

Given the one-class SVM’s sensitivity, a scoring function is
used to optimize the gamma value in the grid search. It is
defined as:

CovScore =
2×EventsHitRate× (1−FalseCoverRate)

EventsHitRate+(1−FalseCoverRate)

Where EventHitRate(EHR) describes how many of the existing
events have been hit by an anomaly e.g.:

EHR =
Di f f erentEventsHit

TotalNumberO f Events

, and FalseCoverRate(FCR) is the rate of which the area out-
side events that has been covered e.g:

FCR =
NonEventAreaCovered

TotalNonEventArea
Machines which have a low EHR and/or high FCR would
make the function approach zero, while having a high EHR
and low FCR will make the function approach 1, which is the
ideal result. Meaning this function rewards hitting as many
different events higher than hitting the same multiple times,
while also considering the rate of FCR.

In other words the Nu value dictates the aggressiveness of the
classifier, e.g how big the normal state is given its training
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Figure 5. The figure shows how the boundary changes at different Nu
values

data. A high value results in an aggressive classifier and a
low values result in a conservative classifier, as illustrated in
Figure 5. Different level of aggressions will be examined to
establish its impact. This is done using a line search, keeping
all the parameters constant, except the in the following range:

Nu = {0.01,0.02, ..,1}
, and analyzing the difference in the result.

RESULTS
The mean length of each test, excluding the two first tasks used
for training, were 11.8 minutes, with a standard deviation of
4.4 minutes - the longest being 28.3 minutes and the shortest
5.8 minutes. Our system produces on average of 17.0 (SD 4.0)
events for each usability test.
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Figure 6. GSR showing events hit percent and unwanted area covered. Nu
value shade: 0 = green, 1 = red

Having performed a grid search to find optimal settings for our
one-class SVM classification, we performed the mentioned
Nu-value line search. Figures 6,8 and 9 shows the result of this
as scatter plots of EHR and FCR for each sensor. Nu values
range from low/green to high/red, ranging from 0.01 to 1.00
in 0.01 intervals, yielding 100 different settings and results for
each test participant. All test participants are represented in
each graph, and Nu-values with a thick border is the average
of each Nu-value across all test participants.
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Figure 7. EEG showing events hit percent and unwanted area covered. Nu
value shade: 0 = green, 1 = red
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Figure 8. Heart rate showing events hit percent and unwanted area covered.
Nu value shade: 0 = green, 1 = red

Sensors likeness and differences
Looking at Figures 6, 7, 8 and 9, as well as Table 3, it can be
seen that choosing a higher Nu-value for your classifier can
yield interesting propositions if the classifier should cover as
many problems as possible while minimizing the area wrongly
covered. In other words if one’s aim is to hit all events, a
high Nu-value must be chosen, but comes with the trade-off
of placing more anomalies outside events. While the GSR
and the HR both have a smooth curve through the averages of
which indicates a stable classifier, but the Kinect seem to be
more unstable in its relation between EHR and FCR. However
Kinect seems to regain some of its stability with higher Nu
values. As shown in 3 and seen in Figure 7, the EEG devi-
ate from the other sensor by already at low Nu-values doing
a very aggressive prediction approach and creating useless
predictions at Nu-values above 0.5.
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Figure 9. Kinect showing events hit percent and unwanted area covered. Nu
value shade: 0 = green, 1 = red

All the graph reveals that across all the test participants no
golden Nu-value presents itself. A conservative setting could
be chosen, to ensure that little false area is covered, while
still detecting some usability problems. On the other hand, a
higher and more “aggressive” value could be chosen in attempt
to detect as many problems as possible, with the trade-off of
alse receiving many false-positives. Figures 6, 7, 8 and 9 and
Table 3 shows that the HR, Kinect and GSR manages to have a
reasonable across EHR given the FCR the different Nu values,
which shows a robustness to the result.

Investigating the best results
We find it interesting to consider the best performing test
participants to see if there difference to be found between
them and the rest. If such differences are found this would be a
valuable informations for future studies, because a preliminary
screening could help select the people who would be give
the best persons for such research. Figure 10. Tabel 4 shows
average statistics for both the five best, and the best performing
across all test participants on the GSR sensor. The best are
calculated from summed EHR for all of the Nu-value to a
given test participant.

A noticeable difference for the five best scoring test subjects is
their average from the introvert/extrovert which is on average
25,4, SD 2,2. Where the total average is 29.49 which is lower,
however the standard deviation is 7.96 which is quite high
fluctuation. This is an interesting result because as mentioned
in [16], the introvert has shown more ´´peaky traces” when
measuring GSR data. But since it is only the five best nothing
conclusive can be said, it however could be interesting an
interesting topic for further investigation.

Figure 11 shows depicts a test with the points of inter-
est created by the GSR from the best test participant,
according to EHR. Even though the test participant achieved a
EHR at 92.3% while only having a FCR at 37.7%. However

GSR
Nu EHR FCR
0.01 4.5% 1.9%
0.05 15.9% 7.8%
0.25 39.1% 25.4%
0.50 68.8% 49.2%
0.75 88.8% 74.1%
1.00 99.9% 99.8%

EEG
Nu EHR FCR
0.01 23.3% 18.1%
0.05 35.7% 22.6%
0.25 72.0% 63.1%
0.50 84.6% 82.2%
0.75 90.4% 90.6%
1.00 93.9% 94.9%

Kinect
Nu EHR FCR
0.01 16.9% 9.0%
0.05 29.7% 28.1%
0.25 64.2% 54.7%
0.50 86.7% 73.1%
0.75 97.8% 89.4%
1.00 99.7% 96.3%

Heart rate
Nu EHR FCR
0.01 11.1% 4.4%
0.05 25.8% 14.7%
0.25 63.6% 46.4%
0.50 86.8% 68.5%
0.75 97.0% 85.9%
1.00 99.9% 99.3%

Table 3. Average statistics for each sensor

looking at Figure 11 the points of interest seems more
arbitrary than definitive detecting.

0 500000 1000000 1500000 2000000

G
S
R

Figure 11. Figure showing the detected points of interest(blue) by the GSR
from the best test participant at Nu value 0.5. The green area represent the
two first task and the grey line and areas represent the events.

SENSOR FUSION
Sensor fusion is a substantial field of area within MI, but
can essentially be reduced to decision fusion and feature fu-
sion [37]. Feature fusing revolves around combing a set of
features in some way or another. Decision fusion revolves
around fusing outcomes from classifiers. We choose decision
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Figure 10. Five best performing test participants using GSR as sensor. Nu
value shade: 0 = green, 1 = red

fusion to use the results found from the individual sensors. The
simplest technique from the decision fusion domain is voting,
which is a naive technique where each sensor vote whether or
not an anomaly is present, and if a certain amount of sensors
agrees, a point of interest is created. This technique also does
not require any training to happen beforehand, which suits the
premise of this study.

Choice of Nu-value for individual sensor
Two approaches will be tried. The first approach is the aggres-
sive approach, which is to select the Nu parameter for each
sensor which fits the case of having the largest precision in
regard to achieving the low FCR. The idea is that individually,
each sensor has not achieved a high EHR while having a low
FCR, as shown in Table 3, but the accumulated answers from
the sensors might achieve a higher EHR while remaining at
the same FCR as the individual sensors.

The second approach is the conservative approach, that based
on Figures 6,7,8 and 9, it is possible to a reasonable degree, to
choose a Nu parameter which has a large EHR while having
a relatively low FCR. The main idea for this, contrary to the
aggressive approach, is that if the threshold for the amount of
sensors which has to agree to create a point of interest is high,
some of the false positives should be removed and ideally
would the EHR stay high. The selection of Nu values is done
by hand-picking, such that they best fit each approach, based
on Figures 6,7,8 and 9. The Nu value for each sensor can
be seen in Table 5, for both the conservative and aggressive
approach.

Voting Results
The voting was done for the two approach, together with a
different thresholds for how many machines should agree to
create a point of interest. The thresholds were 1, 2, 3, and 4.
Where 1 is the union answer from all the sensor machines, 2
being if at least two sensors agrees, 3 being if at least three sen-
sors agrees, and 4 being the intersection of all the machines to

Avegrage for GSR for five best performing

Nu EHR FCR
0.01 6.4% 3.0%
0.05 24.6% 9.0%
0.25 66.5% 30.0%
0.50 87.6% 53.5%
0.75 98.7% 75.1%
1.00 100.0% 100.0%

GSR for best performing

Nu EHR FCR
0.01 7.7% 1.1%
0.05 30.8% 4.3%
0.25 76.9% 25.3%
0.50 92.3% 37.7%
0.75 100.0% 51.2%
1.00 100.0% 100.0%

Table 4. Average stats for top five, and top performing test participants
on GSR

Aggressive approach

GSR EEG Heart Rate Kinect
0.09 0.01 0.05 0.01

Conservative approach

GSR EEG Heart Rate Kinect
0.45 0.30 0.35 0.35

Table 5. Nu value settings for each sensors, for each of the two ap-
proaches

a given time t, before creating a point of interest, as illustrated
in Figure 12

As seen in Figure 13, the results from the aggressive approach
for threshold 2 and 3 yielded reasonable results. Voting 2
achieved 92.2% EHR while having 79% FCR data wrongly
and 3 had 74.9% EHR and 60.5% FCR. The result on threshold
2 are better than EEG which only achieved approximately 85%
EHR in the 80% FCR range, and it also performed better than
the Kinect and EEG for threshold 3, however it did not show
any improvements from the GSR and HR results. An average
of the results can also be seen in Table 6

Figure 12. The figure shows the different thresholds being satisfied for
voting. t1 depict the situation where two sensors agree, t2 depict three, t3
depict one and t4 depict for all four
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Voting - Aggressive

Figure 13. Showing voting based on an aggressive scoring function. The
lightest blue shade is 1 vote, and the darkest is 4 votes. The two shades in
between are voting 2 and 3.
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Figure 14. Showing voting based on a conservative scoring function. The
lightest blue shade is 1 vote, and the darkest is 4 votes. The two shades in
between are voting 2 and 3.

The conservative approach showed good tendencies at thresh-
old 1 and 2, where 2 had 21.8% EHR and 12.3% FCR, as
seen in Figure 14. Results are better than the EEG and Kinect
in the conservative aspect, however it does not seem to gain
any significant advantages compared to the HR and GSR. As
expected, the results from threshold 3 and 4 revealed little to
no points of interest, and threshold 1 showed a bad EHR to
FCR ratio. The results from the conservative approach can
also be seen in Table 6.

Both approaches showed improvements compared to EEG and
Kinect, but it did not give any decidedly results for good or
worse compared to HR and GSR. Even though voting did not
yield any better results than HR and GSR, it seem to have
opted the stability across the four sensors. If this were to be

Conservative Approach

Votes EHR FCR
1 53.7% 38.4%
2 21.8% 12.3%
3 5.5% 2.3%
4 0.6% 0.1%

Aggressive Approach

Votes EHR FCR
1 99.2% 92.1%
2 92.1% 79.0%
3 74.9% 60.5%
4 36.2% 27.3%

Table 6. Average statistics for voting

used in a real usability test voting could potentially be used to
keep the stability of the result at a reasonable level.

CONCLUSION & DISCUSSION
HR, Kinect, EEG and GSR were all tested individually across
different Nu values, results showed that EEG performed the
worst but the GSR and HR showed encouraging results. It
was also establish that choosing a higher Nu-values grants a
higher EHR and FCR, and from Figure 6, 7, 8 and 9 it can be
seen that a good ratio of EHR and FCR are kept showing good
robustness of the machines. We imagine a use-case where few
usability problem are identified to a reasonable certainty, with
a low Nu-value, used as a preliminary usability test, before
more elaborate usability testing is performed. It can also be
used to choose a higher Nu-value to give a higher EHR but
this comes with the trade-off of getting more FCR.

From Figures 6,8, and 9, it is apparent that some test partici-
pants perform better than the average. This lead to an investi-
gation into how results would look for only those. Choosing
the five best performing test participants across all four sen-
sors yielded results seen in Figure 10. From Figure 10, we
see significantly better average results and individual results,
compared to averages over all test participants. Compared
with averages over all participants, we see a large differences.
While it may not be apparently surprising, we still found it
a interesting point of focus. By looking at the best five test
participants on the GSR, we found that they in average had a
lower value on the introvert/extrovert category in Big5.

Because the tasks were not time framed, the data can be differ-
ently stretched, but with the same amount of events. Looking
at the available training data, the five best used an average of
2.8 minutes versus 4.1 minutes for the five worst. This suggest
that there is no difference in the predictive power against the
training set between the worst and the best. However, looking
at the total test duration, minus the training tasks, the five best
results used on average 19 minutes versus the five worsts 13.8
minutes. This difference in time could mean that it is impor-
tant to allow enough unobtrusive experiences to occur between
usability errors, such that the physiological responses return
to normal. In our test case, the events may actually happen
too fast after each other, which could potentially mean some
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of the false-positives or noise we get, are in fact true positives
but just outside our assumption of the emotional time-frame.

While there is a lot of literature on this subject, few explore
the development of frustration on a physiological level over
time. Multiple studies attempts to classify frustration, however
their use cases and context varies. Some studies considers a
duration of 100 seconds or more[17], while others considers
durations of 15 seconds[35]. In this paper the most pessimistic
option was selected; after a stimuli there is a physiological
delay followed by a measurable reaction which last a short
duration. This, however, implies that frustration is not a con-
tinues reaction over time while using a system, but rather a
reaction to a specific event with a time limit for how long it
“lasts in the body”. However, such physiological reactions may
in fact be unfolding differently - frustration could be increasing
in amplitude over time from the beginning of a stimuli. That
is, at the start of a frustrating event a user may not produce
physiological spikes large enough to be detectable with our
current setup, but over time as the frustrating event persists the
physiological reaction will increase up until a point where it is
detectable. This would lead to a situation where an anomaly
may be detected X seconds from a stimuli, but in fact the
negative affective state started some time before that. A more
specific model for how such affective states unfold and for
how long will increase the performance of our, and similar
setups, and a study into this is highly relevant.

Further it is also assumed that any anomaly within our test is
caused by the system, and not an uncontrolled variable from
outside the system. The reality is, however, that there is many
areas which we cannot control in the experiment. This could
be noise from outside the test laboratory, hunger, or a stray
thought of a family member passing away. Naturally this can
create noise, because a test participant might be shocked by
the noise, or be in a more negative mood if hungry, which in
turn potentially could impact how the test participant perceive
the program. It could also be argued that the entire setup with
sensors, and the type of test is not entirely compatible. In
order to do a usability test, a user has to interact with a system
of some kind. This almost always requires actions from the
user, which in turn cause activity in the brain/muscles. This
activity is unwanted in terms of the data collected from sensors,
because it usually implies noise compared to the affective state
changes which are wished to be collected. In order to truly
make this setup compatible, it would require some filters which
could remove this noise effectively. The question is, if it is
ever truly going to be controllable, and in turn if it will ever be
feasible enough to measure the affective state in the resolution
that physiological data provide. The more resolution, the more
of the unwanted data is going to be present and have to be
dealt with.

We find the above largely unexplored, and as such leaves a lot
of assumptions to be made. This in turn creates a natural skep-
ticism of the validity of our results. While they may be valid
within the assumptions and limitations of the experiment, they
are not presented as a general model of detecting frustration.
They are, however, a step in the right direction in terms of
studying the affective state of a user while using a real-world

system and another consideration to be made when trying to
overcome the complex task of mapping affective states to phys-
iological data. A natural path to explore would be removing
the complexity of having sensor fusion, and instead focus on
improving the understanding of how specific sensors captured
data relates to affective states more generally. If such a model
is ever conceived, it would be interesting to explore the idea
of using ML to detect affective state changes in greater detail.

The results of this paper does, however, propose some use
of the result found in this paper. It is possible to select a
setting for the classifier, which detect a few amount usability
problems with a fairly low amount of noise, which can be
used to evaluating usability problems fast and with less effort
than a traditional test. With the trade-off of only finding a
few of the problems. It would be interesting to examine if
this still hold true in a large test with only a few usability
problems. This could help filter away some errors early in
the process, and focus on other problems when a larger more
complete usability evaluation is conducted. The method in
general would most likely never remove the human aspect
from detecting usability problem in a system, but it would be
a tool to look into the inner workings of a person, and help
avoid some of the limitations related to usability evaluation.

Future work
One of the most promising areas to continue research within
usability problem detection through physiological measured
affective state, is the means to detect the affective state change.
One could imagine the potential in also being able to detect if
a user is having a pleasant experience with a product.

Our study has revolved around fusing multiple sensors, and
while one method may work particularly well with a GSR, it
may prove worse or even bad to use with an EEG. It could be
interesting to investigate the results of various ML techniques
across sensors. Additionally, a further exploration into the
feature space could also be conducted. Especially models
such as DASM12[30] for the EEG, but would require better
hardware.

Further research also has to be done with regards to the emo-
tional “baggage” people arrive with. The personality type of
a user change the way their physiological response is, such
as the difference between introvert and extrovert GSR behav-
ior [15]. As such, it would be natural to hypothesize that other
emotional and contextual influences such as being hungry or
having “a bad day” may influence the physiological patterns as
well. A thorough study to elaborate the considerations needed
and consequences of such baggage would be beneficial to the
field of study as a whole.

Considering the five best performing test participants, we
hypothesis that some similar circumstance may be present.
We find it interesting to investigate even further, as it could
reveal important information into how to gather physiological
data such that it yields better results. We propose future work
that investigates length of relaxation period, size of training
data among other things.
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