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ABSTRACT:

This thesis studies the class of sensorless con-

trol methods for a Permanent Magnet Syn-

chronous Machine (PMSM) which are based

on the estimation of the back-EMF compo-

nents using the fundamental frequency model.

The problem is approached from a theoreti-

cal point of view, so first the models of the

elements in a generic PMSM drive system

are outlined together with the problem state-

ment. Field Oriented Control for a PMSM

is then introduced along with the motivation

for sensorless control. The principle of back-

EMF based sensorless control estimation is de-

scribed. Matsui Second method and an ex-

tension of this proposed by Nahid-Mobarakeh

are described and evaluated analytically and

numerically. Considerations are made on the

effects of parameters uncertainties on the pro-

posed algorithm. A model based online pa-

rameter estimation technique is described and

evaluated through simulations. The sensorless

algorithm is implemented on a test platform

and evaluated experimentally.

By signing this document, each member of the group confirms that all group
members have participated in the project work, and thereby all members
are collectively liable for the contents of the report. Furthermore, all group
members confirm that the report does not include plagiarism.

i





Preface

This thesis has been written at Aalborg University, in the autumn of 2015 by the
undersigned, Marcello D’Alessio, 10th semester student group MCE04-1021. The
experimental activity reported has been conducted at the Flexible Drive System
Laboratory of the Energy Technology Department at Aalborg University.

I would like to thank my supervisor Michael who supported and encouraged me beyond
the context of this thesis. I would like to thank Hernan and Lucian from Danfoss Drives
for their suggestions which gave me a further insight in what it means to be a professional
in this field.

The references in the report are shown in Harvard referencing style. The references are
marked with the last name of the author, as well as the year of publication, enclosed by
squared brackets [ ]. The bibliography is found at the back of the report and is sorted
alphabetically by author name. References to the origin of figures are stated in the figure
caption.

In the equations vectors are notated in bold, while scalars and Units have regular typeset.

Figures, equations and tables are referenced to with two numbers. The first number
indicates the chapter and the second indicates the number of the equation, figure or table.

The following software is used in the project:

• LATEX - for report writing

• MATLAB - for data processing and calculation of numerical solutions to non-linear
equations

• pplane8 MATLAB script - for graphical representation of non linear systems
trajectories on the phase plane

• MATLAB Simulink - for simulations of dynamic models and implementation on
dSPACE environment

• PLECS and PLECS Simulink toolbox - for simulations of power electronics

• dSPACE Controldesk - for the management and control of the experiments

Enclosed in the back of the report there is a CD containing the developed Simulink/PLECS
models, Controldesk applications, experimental data, selection of used sources, and a PDF
copy of this thesis.
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Nomenclature

α, β, b Sensorless estimator parameters

¯ψpm Ratio between the rotor flux linkage used in the estimator and the actual one

δ Torque angle

η Stator Resistance estimation gain

d
dt Differential operator or Heaviside operator

ω̂b Auxiliary speed for estimation

ω̂rf Digitally filtered estimated speed used in the speed control loop

ω̂r Speed of the estimated reference frame

θ̂r Estimated rotor position

R̂se Estimated Stator Resistance

R̂s Constant Stator Resistance parameter used in the estimator

ˆ Estimated quantities or parameters used in the estimator

iabc Machine’s line currents

vabc Machine’s line-to-neutral voltages

vs Stator space vector

ψpm Rotor’s permanent flux linkage

τ Digital Filter time constant

θm Mechanical Rotor position

θr Electrical Rotor position

θ̃r Rotor position Error

˜ Error quantities or differences between the parameters used in the estimator and
the actual ones

ζ Variable structure estimation law parameter

d Duty cycle

ed, eq Back-EMF components in the rotor ref. frame

eα, eβ Back-EMF components in the stationary ref. frame

eδ, eγ Back-EMF components in the estimated ref. frame

fv Viscous friction coefficient
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Jm Motor-Load joint moment of inertia

Ka Anti wind-up coefficient of PI controller

Kdq Park transformation matrix

Ki Integral coefficient of PI controller

Kp Proportional coefficient of PI controller

KT Torque Constant

Kαβ Clarke transformation matrix

kα, kβ Estimator coefficients

Ld d-axis inductance

Lq q-axis inductance

Ls Field Inductance

p Number of pole pairs

Rs Stator Resistance

s Laplace transform variable

Sj Switch state for gate j-th in the VSI

tAD Time taken by the microcontroller for the Analog to Digital conversion

td Dead time in the VSI

Te Electromagnetic torque

tf Turn Off time of the IGBT device in the VSI

TL Load torque

tr Turn On time of the IGBT device in the VSI

Ts Sampling Time

tVC Time taken by the microcontroller for executing the control task

vaN, vbN, vcN VSI Leg voltages

Vdc DC Link Voltage

Vd Forward voltage of the free-wheeling diode in the VSI

Vigbt Forward voltage of the IGBT device in the VSI

xe Equilibrium state

z Zeta transform variable

∗ Reference value
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List of abbreviations and
acronyms

AC Alternated Current

A/D Analog/Digital

Back-EMF Back-ElectroMotive Force

DC Direct Current

EKF Extended Kalman Filter

FOC Field Oriented Control

IGBT Insulated-Gate Bipolar Transistor

IM Induction Machine

IPMSM Interior magnets Permanent Magnet Synchronous Machine

MRAS Model Reference Adaptive System

PI Proportional Integral controller

PLL Phase Locked Loop

PMSM Permanent Magnet Synchronous Machine

PWM Pulse Width Modulation

RLS Recursive Least Square

SPMSM Surface mounted Permanent Magnet Synchronous Machine

SVM Space Vector Modulation

VSI Voltage Source Inverter

ZOH Zero Order Holder
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Introduction 1
1.1 Background

The evolution of AC electrical motor drives has been always conditioned by the application
and the design of the several types of AC electrical machines. Drive systems have seen
through the years a continuous evolution of methods and techniques in order to achieve
same or better performances, by using more economically convenient or robust types of
machines [Sen et al., 1996]. Permanent Magnet Synchronous Machines have seen a growing
interest by researchers and industry due to their high power density and efficiency. The
decreasing trend in permanent magnets prices, enhanced the range of application for this
kind of motor. A significant path of research and development for motor drive systems
has always been the purpose of sparing mechanical sensors for torque, speed and position.
Indeed many of the high performance control methods such as field oriented drive schemes,
required originally mechanical sensors for measuring the speed and the position of the
machine’s rotor. In most cases these sensors revealed themselves to be relatively expensive
and subject to additional costs with regards to maintenance and operational robustness.
[University of Newcastle, 2014] is an example of cost analysis of the integration of drive
systems which can avoid the use of mechanical sensors for a specific application. In the
examined case the original investment is amortised in less than three years.

The evolution of power electronic components, micro-controllers and electrical sensors
made it possible to devise control schemes which could avoid the use of mechanical sensors.
This class of drives is nowadays commonly referred as ”speed and position sensorless
drives” or more simply sensorless drives, meaning that there are no physical sensors for
rotor speed and/or position. Several basic open-loop control schemes (such as V/f control),
are normally not included in this definition, since it is intended that this class of drives
features closed-loop control schemes, with the difference that the output feedback is not
provided by a physical sensor, but rather by a flux/speed observer. The information
provided by a mechanical sensor is substituted by an estimation performed on the basis of
the sensed currents and voltages. In the most settings only the DC Link voltage is sensed
and the voltage signal is obtained from the control signal, output of the current controller.

1.2 PMSM sensorless control problem

A common classification for sensorless speed estimation techniques is the one depicted in
Fig. 1.1. Two examples for each category are mentioned in the figure.
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Sensorless Techniques

Observer basedBack-EMF based
Based on machine

physical proprieties

HF Signal Injection
PWM Carrier

Components

Open-loop Back-EMF

estimation

Closed-loop Back-EMF

observer

EKF
Sliding mode

observer

Figure 1.1: Classification of sensorless rotor position estimation techniques

The three main categories are classified by the different approach used for estimating the
rotor position and speed:

• The signal injection methods harvest the physical configuration of the machine, and
has the substantial advantage of being the most reliable at very low speeds and
stand-still.

• The back-emf methods estimate the speed from the back-emf components that are
calculated from the machine’s electrical variables. They have broad application in
the medium-high speed range due to their simplicity.

• The state observer methods are based on the machine seen as a nonlinear state-space
system and its observability. Non linear observers such as the Extended Kalman
Filter (EKF) or the Sliding mode observer belong to this category. They have
shown good performances but also few drawbacks such as relevant calculation times
and complexity of the initial tuning.

Concerning the Back-EMF based methods, there are several ways for calculating machine
flux components and thus estimating rotor flux’s speed and position. Commonly there
is a distinction between “open-loop” and “closed-loop” flux estimators in AC machines.
Both kinds feature a calculation of flux components from integration of machine’s model
equations, the “closed-loop” kind includes a feedback correction control resembling the
classical appearance of a model based observer, while the “open-loop” type is simply a
real-time simulation based on the machine’s model [Vas, 1998].

In [Jansen and Lorenz, 1994] the accuracy due to parameters uncertainty is discussed
for different kinds of flux observers for induction machines. The analysis of several
observer schemes concludes that in the range of operation from zero to rated speed, the
presented observers are most sensitive to stator resistance. Similar conclusions are drawn
for synchronous AC machines flux estimators in [Nahid-Mobarakeh et al., 2001]. For
PMSMs the stator resistance is the parameter most subject to variation in all the operating
range due to its dependency on the temperature [Underwood, 2006]. The magnetization
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of the permanent magnet is subjected to variations sensibly in the high speed range,
this might affect the high speed performances also for sensored drive systems [Krishnan,
2010]. This leads to an ongoing research in the field of online parameters identification
and estimation/adaptation techniques for sensorless PMSM drives.

1.3 Literature Review

Parameters identification and online estimation in AC machines is a well known topic of
research utilizing standard systems identification tools. For the reasons discussed in the
previous section, one of the prominent motivations for online parameter estimation is the
application in position estimators for sensorless operation.

Most of the examples found in the literature for online parameter estimation in PMSMs
with standard identification tools make use of speed feedback information from a physical
sensor [Underwood and Husain, 2010] [Basar et al., 2014], so that the estimation can
relay on more accurate regression models for recursive estimations. In [Abjadi et al.,
2005] a Sensorless control law combining a Sliding mode observer and an RLS estimation
for parameters, is proposed, its closed-loop stability is proven analytically and its
performances are evaluated through simulations.

Another approach to the problem is to augment a position/speed observer with additional
states for the parameters in the hypothesis that these vary slowly with regard to the
machine’s electrical subsystem. This approach is seen for a number of position/speed
nonlinear observers such as EKF or Kalman-like filters [Glumineau and de Leon Morales,
2015]. The state addition increases the complexity further of tuning the initial covariance
matrices for ensuring the convergence of the observer. A solution in between has been
proposed in [Hinkkanen et al., 2012] and [Nahid-Mobarakeh et al., 2004]. A stator
resistance observer is integrated in a Back-EMF based position estimation method, so that
low speed operation can be improved while still keeping the position estimator relatively
simple in terms of tuning and computational burden. In both the reported solutions, the
stability of the augmented observer is proven analytically and in [Hinkkanen et al., 2012]
is validated experimentally at speeds as low as 45 rpm.

1.4 Objective

The objective of the thesis is to design and implement a back-EMF model-based sensorless
position estimator for PMSM which could estimate changes in the stator resistance, in
order to improve performances in the lower speeds range. The purpose is to find a
method which could constitute a good compromise between the desire of having an online
estimation of a relevant machine parameter and the requirement of running in sensorless
operation. The performances of the algorithm are evaluated in a Field Oriented Control
(FOC) scheme with PI controllers for the axes currents and speed control. The objective
implies the overcoming of typical problems for this kind of drives such as compensation
of inverter non-linearities and system delays.

1.5 Problem Statement

The preliminary discussion and the objective definition lead to the following problem
statement:
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How is a back-EMF model based mechanical sensorless drive system for PMSMs devised
and implemented, how its performances depend on the variation of machine’s parameters
and how can it be made robust towards changes in the stator resistance through an online

estimation tool?

1.6 Thesis Outline

The electrical and mechanical dynamical models of a generic PMSM system are introduced,
together with the model of a Voltage Source Inverter and the description of the modulation
strategy in chap. 2. In chap. 3 the principle of Field Oriented Control is introduced
along with motivation for Sensorless position estimation. The design and the tuning of
current and speed control loops is described and evaluated. In chap. 4 the back-EMF
model-based estimation principle is presented. The sensorless algorithm is presented and
evaluated through simulations. In chap. 5 the robustness and the effects of parameters
uncertainties is analysed and discussed, then the concept of the model based online
estimation of parameters is presented and evaluated through simulations. In chap. 6
a compensation technique for the Voltage Source Inverter non linearities is presented in
order to improve performances of the sensorless algorithm. In chap. 7, the experimental
setup is described and the experimental results are presented. Finally conclusions on
the whole project are drawn, together with possible directions and suggestions for future
works.

1.7 Limitations and assumptions

The following assumptions are made for the simulation models.

For what concerns the PMSM Model the following simplifying assumption are taken
into account:

• The PMSM is supposed to be a balanced three-phase system. So the voltages applied
to the machine are balanced.

• The losses in the rotor core due to parasite conduction currents are neglected.

• In the derivation of the simulation model the Stator Resistance is supposed to be
constant and isotropic, this assumption is lifted for the Resistance in the two axes
model and simulation are performed for changing values of resistance, in order to
test the online estimation algorithm.

• Magnetic saturation effects are neglected.

• All the electrical variables’ harmonics of higher order than the fundamental
frequency are neglected and the machine has sinusoidal back-EMF waveform.

For what concerns the Voltage Source Inverter:

• The switching frequency is 5kHz.

• The dead-time used in simulation is 2.5µs

• The inverter is controlled through single update control iterations. This means that
the frequency of the current sampling and of the control sequence is the same of the
PWM.
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Modelling of the PMSM
drive system 2

2.1 PMSM model

The modelled Permanent Magnet Synchronous Machine is assumed to be a symmetrical
three-phase system. The assumption makes it possible to describe the behaviour of the
machine by means of a two-axes system through the Clark and Park transformations
[Krause et al., 2013]. The concentration of the stator windings characterizes the back-emf
waveform of the machine [Underwood, 2006]. In the following, the machine taken into
account for the modelling has sinusoidal waveform back-emf.

Depending on the machine’s rotor configuration there exist several kinds of PMSMs.
The most common are the Surface mounted (SPMSM) and Interior magnets (IPMSM)
machines as shown in Fig. 2.1.

N
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(a) Surface Mounted PMSM
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S NN

N

(b) Inset Mounted PMSM

N

S
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SS N N

N

(c) Interior Mounted PMSM

N

N

N

N

S S

SS

(d) Flux Concentrating

Figure 2.1: Different typologies of PMSM [Glumineau and de Leon Morales,
2015]
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The disposition of magnets in the rotor affects the shape of the air-gap which in turn
defines the saliency of the machine. The common approach for control design for AC
machines is to derive a rotating reference frame dynamical model from the stationary three
phase windings equations. The implementation of the dynamical model in the rotational
reference frame is easier and allows to see the machine’s variables as DC quantities.

The three-phase PMSM system circuit reduced to one pole pair is represented in Fig. 2.2,
together with the reference frame axes representation that will be now introduced. The
three-phase PMSM system equations are

vabc = Rsiabc +
dψabc

dt
(2.1)

ψabc = Lsiabc +ψpmabc (2.2)

ψpmabc =

 ψpm cos(θr)
ψpm cos(θr − 2π/3)
ψpm cos(θr + 2π/3)

 (2.3)

Where θr is the electrical rotor position defined as pθm, in which θm is the mechanical
rotor angle and p is number of machine’s pole pairs. vabc and iabc are machine’s line
to neutral voltages and line currents respectively, ψpm is rotor’s permanent magnet flux
linkage. The inductance matrix Ls is the combination of the constant self and mutual
phases inductances matrix, and an inductance which depends on the rotor position [Krause
et al., 2013]. Putting the equations together and expanding the inductance matrix yields

vabc = Rsiabc +
d

dt
(Lsiabc +ψpmabc) (2.4)

Ls = Lsm + Lsr (2.5)

Lsm =

Laa Mab Mac

Mba Lbb Mbc

Mca Mcb Lcc

 (2.6)

Lsr = Lsr

 cos(2θr) cos(2θr − 2π/3) cos(2θr + 2π/3)
cos(2θr − 2π/3) cos(2θr + 2π/3) cos(2θr)
cos(2θr + 2π/3) cos(2θr) cos(2θr − 2π/3)

 (2.7)

By using the hypothesis that the motor is a balanced three phase system, it is possible
to transform the three phase model in a stationary two-phase machine model through the
Clarke reference frame transformation Eq. 2.8. Both sides of the equation are multiplied
by the Clarke transformation, the inductances matrix is also transformed in the stationary
reference frame. The transformations yields the following stationary 2 phase machine
model:

Kαβ =
2

3

[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

]
(2.8)

vαβ = Rsiαβ +
dLsαβ

dt
iαβ + Lsαβ

diαβ
dt

+
dψpmαβ

dt
(2.9)

Lsαβ = KαβLsK
−1
αβ (2.10)

The model’s inductances are expressed in Eq. 2.11 as function of the equivalent axis
inductances (Ld and Lq) which in turn depends on the geometry of the machine’s rotor.
The calculation of the impedances matrices suggests an important consequence of the
saliency of the machine. The smallest is the difference between the two axes’ inductances,
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the least the model’s inductance depends on the rotor position. In the ideal case of a
completely non-salient SPMSM, the machine inductances are equal, the inductance term
dependent on the rotor position is cancelled out.

[
vα
vβ

]
=

[
Rs + d

dt(LA + LB cos(2θr))
d
dtLB sin(2θr)

d
dtLB sin(2θr) Rs + d

dt(LA − LB cos(2θr))

] [
iα
iβ

]
+ ωrψpm

[
− sin θr

cos θr

]
LA =

Ld + Lq

2
LB =

Ld − Lq

2
(2.11)

The model of the PMSM in the rotating reference frame is in turn obtained by multiplying
the differential equations by the Stationary to Rotational Reference Frame transformation
Eq. 2.12, also known as Park transformation.

Kdq =

[
cos θr sin θr

− sin θr cos θr

]
(2.12)

The direct axis of the reference frame is aligned to the rotor (permanent magnet) flux
position θr. The model’s inductance do not depend any more on the rotor position.

vdqs = Rsidqs + Jωrψdqs +
dψdqs

dt
(2.13)

ψdqs = Lsidqs +ψpm (2.14)

ψpm =

[
ψpm

0

]
Ls =

[
Ld 0
0 Lq

]
J =

[
0 1
−1 0

]
(2.15)

Given these assumptions and premises, the motor model applies for both salient and non-
salient PMSMs, with the difference that in the rotor reference frame the resulting axes
inductances will be equal for the non salient SPMSM Ld = Lq and different for the salient
IPMSM Ld 6= Lq. By substituting Eq. 2.14 into 2.13, and expanding the equation in the
two axes, Eq. 2.16 - 2.17 are yielded

vds = Rsids + Ld
dids

dt
− ωrLqiqs (2.16)

vqs = Rsiqs + Lq
diqs

dt
+ ωrLdids + ωrψpm (2.17)

Fig. 2.2 shows the different reference frames and the physical current axes.
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Figure 2.2: Wye-Connected 3 phase PMSM diagram with the stationary and
the rotor reference frames

The equations describe the equivalent circuits for the two new axes as shown in Fig. 2.3.

+

−

vds

+−

ωrLqiqs
LdRs

ids
+

−

vqs

+
−ωrψpm

Lq

+ −

ωrLdidsRs

iqs

Figure 2.3: Rotor reference frame Equivalent Circuits

The instantaneous electrical torque Te produced by the machine is expressed as function
of the dq quantities as in Eq. 2.18, in which TL is the mechanical load torque.

Te =
3

2
p [ψpmiqs + (Ld − Lq)idsiqs] (2.18)

The rotor speed is calculated through the shaft mechanical equation 2.19 in which Jm and
fv are respectively the motor-load joint moment of inertia and the shaft viscous friction.

Te − TL =
Jm

p

dωr

dt
+
fv

p
ωr (2.19)

2.2 Voltage Source Inverter

The typical schematics for a IGBT Volage Source Inverter is represented in Fig. 2.4
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Figure 2.4: Circuit diagram of a 2-level full bridge IGBT Voltage Source
Inverter with an RL load

The most concerning issue in a power converter is the current level in the switching
devices in this case the IGBT semiconductors. In order to avoid the worst condition
possible, namely the short circuit of the two switching device on the same leg to the supply
voltage, the commands of the switching devices on the same leg are commanded with
inverted logic commands. Nevertheless as additional precaution, a dead time is applied
when a commutation occurs, ensuring that both switching devices are disconnected,
before changing the logic of the gate command. This safety measure affect the voltage
applied to the load terminals and it has to be compensated in order to enhance the drive
performances, as it will be shown in chap. 6.

The terminal line-to-line voltages applied to the machine depend on the state of the
switches and dc-link voltage (Eq. 2.20).vab

vbc

vca

 = Vdc

 1 −1 0
0 1 −1
−1 0 1

Sa

Sb

Sc

 (2.20)

With the hypothesis that the wye-connected PMSM is a balanced 3-phase system, it is
possible to write an expression for the line-to-neutral voltages applied to the machine as
function of the switching states (Eq. 2.21).van

vbn

vcn

 =
Vdc

3

 2 −1 −1
−1 2 −1
−1 −1 2

Sa

Sb

Sc

 (2.21)

Modulation Technique

The inverter is to be controlled through a modulation technique in order to control properly
the switches and apply to the machine’s terminals the desired voltages. There are many
possible methods for Pulse Width Modulation of a Voltage inverter. The method utilized
in this thesis is the Space Vector Modulation. SVM is well known for its advantages in DC-
Link exploitation, lower current harmonic production and ease of digital implementation.
It has had a determinant impact in motor drive industry, with the significant contribute
to change the standard for controlling the three phase bridge with a single modulation
strategy instead of using a separate PWM for the control of each phase [Krishnan, 2010].

The principle of SVM is indeed to consider the space vector representation of the line-to-
neutral voltages to be applied to the machine’s terminals. The space vector is a spatial
representation of the voltages in the physical magnetic-axes space. The idea is to modulate
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the voltages using the polar coordinates information of the desired voltage space vector.
The possible configurations of the voltages applied to the machine correspond to the
number of possible different combinations of the switches states. As previously mentioned
the switches on the same leg are controlled by signals with inverted logic. This means
that being the inverter states a 3 bits binary array, the possible combinations are 23 = 8.
These are the stationary space vectors which can be instantaneously applied through the
switches. The 6 active space vectors and the 2 inactive (when the switches are all open)
divide the voltage state space in 6 sectors, as it is possible to see in Fig. 2.5. It is not
possible to apply different vectors than the ones given by the switches states, but it is
possible to apply for a fraction of the switching period a sequence of 2 active vectors
so that in average the desired line-to-neutral voltage vector is applied to the machine’s
terminals during the switching period.

2V

1
(100)V

3(010)V

4 (011)V

5 (001)V 6 (101)V

7 (111)V

0 (000)V

xd

yd

2

3
dcV

Re

Im

θ

*

maxsv

*

sv

(110)

Figure 2.5: Space vector representation in the line-to-neutral machine coordi-
nates of the Voltage Source Inverter

The maximum line-to-neutral voltage which is possible to apply to the machine’s terminals
is 2/3Vdc, this means that the maximum voltage reference applicable without any
overmodulation technique is

√
3/3Vdc represented in the figure as the inner circle of the

hexagon defined by the sectors. The two zero vectors are in the origin of the diagram
since they are the equivalent to applying no voltage to the machine.

The reference voltage space-vector is expressed as a combination of the two adjacent active
space vectors (Vx and Vy) applied for fractions of the switching period (dx and dy), and
the two zero vectors which are applied for the residual fraction of the switching period
(d0)

vs
∗ = dxVx + dyVy + d0V0 (2.22)

|vs
∗|
[
cos θ
sin θ

]
= dx

2

3
Vdc

[
1
0

]
+ dy

2

3
Vdc

[
cos (π/3)
sin(π/3)

]
+ d0V0 (2.23)

The sum of the fractions of the switching period has to be equal to one.

dx + dy + d0 = 1 (2.24)
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From Eq. 2.22-2.24 it is possible to calculate the duty cycles for the active and the zero
vectors, as derived in Eq. 2.25-2.27. It is necessary to calculate the magnitude (|vs

∗|)
and the argument (θ = ∠vs

∗) of the voltage vector so that the duty cycles which give the
desired voltage in average can be found.

dx =
|vs
∗|
√

3

Vdc
sin(

n

3
π − θ) (2.25)

dy =
|vs
∗|
√

3

Vdc
sin(θ − n− 1

3
π) (2.26)

dz = 1− dx − dy (2.27)
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Field Oriented Control of
PMSM 3

As stated in the introduction, the purpose of sensorless drive systems is to replace the
information about the position coming from a physical sensor with the information from
the machine’s electrical variables. Normally sensorless drives are using the position
estimation in a Field Oriented drive scheme. The classical Field Oriented Control for
PMSM is presented in this chapter. This control method is based on the knowledge of
the spatial position of the machine’s magnetic fluxes. Therefore the original need for the
knowledge of the physical rotor position.

3.1 Principle

Field Oriented Control is a well known technique and has constituted in the years the
standard for speed and torque control of AC motors [Sen et al., 1996]. The main idea
or inspiration that drove to its conception was to find an abstraction that allowed for
decoupled control of torque and flux in AC machines, as much as it was normally possible
for DC motors in which the armature brushes and permanent magnet flux axis were
orthogonal by construction. The theory of reference frame transformations in AC machines
reported in chap. 1 is the instrument which makes this abstraction possible. By aligning
the reference frame to the rotor permanent magnet flux position it is possible to consider
the voltages and the currents in the machine as rotating complex vectors and evaluate
dynamically their component lying on the machine’s physical flux axis which is rotating
together with the rotor. Placing the current vector instantaneously orthogonal to the
machine’s flux will achieve fully decoupled control recreating the configuration of a DC
machine with orthogonal magnetic physical axes, represented in Fig. 3.1. It is also possible
to reduce the angle between the current vector and the machine’s flux axis, operating in
the field weakening region, as it is normally done in DC drives for higher speeds operation.

v
a

i
a

flux axis

armature

current

axis

Figure 3.1: Orthogonal Flux and Armature Current axes in a DC machine
[Wilamowski and Irwin, 2011]
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Figure 3.2: Space vector diagram with the rotor and the stationary reference
frame

Fig. 3.2 shows the angle δ between the current vector and the machine’s permanent flux
axis. The angle is also called the torque angle, since it controls the torque/flux coupling.
The current components in the rotor reference frame are:

[
ids

iqs

]
= is

[
cos δ
sin δ

]
(3.1)

The torque is controlled by placing the current vector in a position relative to the rotor
position. As said choosing as torque angle δ = 90◦ gives the maximum possible torque per
current unit and decoupled control of torque and flux. This translates in setting the d-axis
current to zero. In this thesis this approach for Field Oriented Control will be used in
the first place. The current is controlled by applying the control voltages to the machine
through the inverter. With proper control of the inverter through modulation it is possible
to control the currents by means of a linear controller, in most cases a PI controller is
used. In this thesis the reference value for the q-axis current will be generated by a closed
loop speed controller which is using the speed measured by the sensor or estimated by the
sensorless algorithm when the full sensorless scheme is applied. This is resumed in Fig.
3.3 which represents a typical scheme for sensorless Field Oriented Control with the two
orthogonal axes current loops and the speed loop in cascade.
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Figure 3.3: Block diagram for the applied FOC scheme

The design procedure is given in general for any kind of machine. The results of the design
for the experimental test system used in this thesis are reported.

3.2 Current Control Design

The current controllers are required in order to control the currents in the machine through
the Voltage Source Inverter. There is one current control loop for each of the two axes in
the rotor dq reference frame.

The requirements for the current control loop are defined as:

• The bandwidth of the current loop should be ten times bigger than the sampling
frequency. This requirement is equivalent to consider a rise time lower than 10
sampling periods (2 ms)

• The current response should have low or no overshoot, with a tolerance of maximum
5%

The transfer function for the equivalent dq machine circuits in Fig. 2.3 is obtained from
the machine’s equation in the dq reference frame (Eq. 2.16 - 2.17). It is possible to derive
a linear transfer function between the corresponding axis voltage and current if the back-
EMF coupling between the two axes is seen as a disturbance on the voltage control signal.
The coupling can either be compensated by the integral term of the PI controller itself, or
through a decoupling strategy. The model differential equations are transformed in their
Laplace equivalent with the hypothesis of zero inital conditions.

vds(s) = Rsids(s) + sLdids(s)− ωrLqiqs︸ ︷︷ ︸
ed = distrubance

(3.2)

vqs(s) = Rsiqs(s) + sLqiqs(s) + ωrLdids + ωrψpm︸ ︷︷ ︸
eq = disturbance

(3.3)
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By using the hypothesis of decoupled system or rejected back-EMF disturbance, the
following axes transfer functions are yielded:

ids(s)

vds(s)
=

1

sLd +Rs
(3.4)

iqs(s)

vqs(s)
=

1

sLq +Rs
(3.5)

There are many possibilities to design the controller on the basis of the implementation
technique. A common approach is to design the controller in the continuous Laplace
domain and then discretize it using a discrete integration method for approximating the
continuous integrator. Another possibility is to discretize the electrical system transfer
function, and take into account the discretization effects already during the design of the
controller. This approach is preferred since it allows to determine directly the stability
conditions in the zeta domain, and to take into account the system’s discrete delays. The
electrical transfer function is discretized through a Zero Order Holder.

The delay between the voltage command and the current response depends on the
experimental system configuration. Considering exclusively single update modulation
strategy with fixed switching frequency, in many systems the voltage command applied is
the one calculated in the previous iteration. These delay added to the switching period
is considered equivalent to a fixed delay of 1.5 times the switching/control period, which
the controller has to compensate for. In other applications, the PWM register is loaded in
the same switching period in which the current sampling and the algorithm calculations
occur, in this case a system delay of one switching period can be considered. These two
kinds of inverter control delay are resumed in Fig. 3.4. The current sampling and A/D
conversion occur in the time tAD, the calculations for the control algorithm take place in
the time tVC.
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Sample/

PWM Reg.
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(a) Next period PWM updating
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PWM Reg.
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c
T

d
n−1 nd

AD
t

VC
t

AD
t

VC
t

dT

(b) Same period PWM updating

Figure 3.4: Source of delay in PWM [Guangzhen et al., 2013]

The system’s discrete pulse transfer function is yielded by considering the sampled system
and the unit delay.

G(z) =
1

z
Z
{

1− e−Tss

s
G(s)

}
(3.6)
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⇓ z = eTss

G(z) =
1

z

(
1− z−1

)
Z
{
G(s)

s

}
(3.7)

=
1

z

(
1− z−1

)
Z
{

1

s [Rs + sLs]

}
(3.8)

=
1

z

(
1− z−1

) 1

Rs
Z


Rs
Ls

s
(
s+ Rs

Ls

)
 (3.9)

Transforming the continuous transfer function to discrete yields the following pulse transfer
function

G(z) =
1

z

(
1− z−1

) 1

Rs

z
(

1− e−
Rs
Ls
Ts

)
(z − 1)

(
z − e−

Rs
Ls
Ts

) (3.10)

=
1− e−

Rs
Ls
Ts

Rs

(
z − e−

Rs
Ls
Ts

)
z

(3.11)

As previously mentioned the chosen kind of controller is a PI. The RL circuit itself is
stable in open-loop but the integral compensation is necessary in order to improve the
dynamics and ensure null steady state error in case of non perfect decoupling between the
two current axes. The chosen discrete PI features a Forward Euler integrator, therefore
its discrete transfer function is

GPI(z) =
Ki Ts +Kp(z − 1)

z − 1
(3.12)

The current control loop for a generic axis is represented in Fig. 3.5.

ZOH1

z

i*

s
v

s
i
s1

sL + R
s

K
i
T

s 
+ K

p
(z-1)

(z-1)

Figure 3.5: Discrete current control loop for each axis

The controller can be written in the zero-pole-gain form in order to assist the design.

GPI(z) =
Ki Ts +Kp(z − 1)

z − 1
= Kol

z − z0

z − 1
(3.13)

Kol = Kp , z0 =
Kp −Ki Ts

Kp

The open loop transfer function is then equal to

Gol(z) = GPI(z) G(z) =
Kol(z − z0)

z − 1
G(z) (3.14)

It is now possible to place arbitrarily the controller zero and then draw the root locus of
the open loop transfer function Gol. This makes it possible to place the closed loop poles
according to the desired dynamics and requirements.
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The design procedure is carried out for the experimental system described in ch: 7. The
machine is nonsalient, so the design for one controller loop axis is valid for both the axes.
The plant transfer function with the actual parameters is reported in Eq. 3.15.

G(z) =
0.09017

z(z − 0.9838)
(3.15)

The controller zero is placed so that the slow plant pole is clamped. This is necessary in
order to make the response dynamics faster.

z0 = 0.9838 (3.16)

The root locus for the open loop transfer function with the clamped slow pole is shown in
Fig. 3.6-3.7
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Figure 3.6: Root Locus of the current control open loop transfer function
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The pole highlighted in Fig. 3.7 is the slowest for the indicated open-loop gain and thus
characterizes the system’s dynamics. This is used as first design for the current controller
loop. The design will be tuned during the experiments in order to satisfy the given
requirements.

The performance of the controller is first evaluated at standstill, injecting a DC current in
the machine’s phase windings. A double step is given so that the response of the current
controller can be evaluated without considering the effects on the dynamics due to the
charging of passive components in the inverter. The experimental controller response is
shown in Fig. 3.9-3.10.
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Figure 3.9: Experimental Step response of the current control loop
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Figure 3.10: Experimental Step response of the current control loop - detail

20



As it is possible to see in Fig. 3.10 despite the initial appearance of the current response
may suggest that the response has the desired fast dynamics and low rise-time, but the
response slows down after the first 2ms. This is due to the low frequency slow pole which
the controller should clamp but due to some imprecision in the parameters for controller
design, the slow dynamics related to the open-loop pole survive in the closed-loop response.
As it is possible to see in Fig. 3.6-3.7 and in the Uncompensated Open Loop Bode Plot in
Fig. 3.11, there is a significant margin for increasing the gain without risking instability
or overshoot outside the requirements. The PI gains are increased by a factor of 1.5 in
order to achieve a faster response and to move the surviving low-frequency pole towards
the controller zero.
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Figure 3.11: Bode Plot for the uncompensated plant sampled data system

The current controller response with the adjusted loop gain is shown in Fig. 3.12.
The requirements on the rise time are respected. Experiments have shown that further
increasing the open loop gain achieves a full compensation of the slow dynamics but implies
the underdamping of the complex poles which in turn causes excessive overshoot.
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Figure 3.12: Experimental Step response of the current control loop with
augmented open loop gain - detail

3.3 Speed Control Design

As mentioned the speed is controlled through an outer PI control loop. The bandwidth
of the speed controller is smaller than the inner current control loop. This control scheme
is commonly called cascade control. This consideration leads to the control requirements,
here listed:

• The bandwidth (rise time) of the speed control loop should be between 5-10 times
slower (higher), so that the inner loop dynamics do not affect the outer loop
behaviour. The required rise time should be between 10 and 20 ms

• The speed controller has to be able to compensate for torque variations

• The overshoot should be as low as possible, not exceeding 25%

The transfer function for the speed control loop is obtained from the mechanical equation
of the PMSM system and the expression for the electrical torque produced by the machine
(Eq. 2.18 and 2.19). The mechanical equation and the electrical torque equation are
transformed in their Laplace domain equivalent and then combined. The transfer function
from q-axis current to mechanical speed is so yielded.

Te(s) = KTiqs(s) =
3

2
pψpmiqs(s) (3.17)

Te = fvωm(s) + Jm s ωm(s) + TL︸︷︷︸
disturbance

(3.18)

ωm(s)

iqs(s)
=

Kt

Jm s+ fv
(3.19)

The load torque is considered as a disturbance for the control variable, namely the
torque/q-axis current. Also in this case it is preferred to consider the control loop as
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a sampled data system. So the control design is conducted directly in discrete.

The closed loop transfer function of the current control loop is considered in the design
of the controller. In order to simplify the analysis, it is assumed that the slow pole of the
electrical inner system is fully compensated by the controller zero. The result achieved
in the current response rise-time allows for this consideration. The block diagram for the
speed control loop is represented in Fig. 3.13.
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Figure 3.13: Block diagram for the speed control loop

A delay of one sample is considered in order to account for all the system’s delays. Using
the same approach as for the current loop design, the pulse transfer function of the sampled
data mechanical system is obtained.

Gmech(z) =
1− e−

fv
Jm

Ts

fv

(
z − e−

fv
Jm

Ts

) (3.20)

The system itself is stable and has only small steady state error if regulated in negative
feedback. However the PI controller is necessary in order to improve the response dynamics
and to effectively compensate the torque disturbances in the control loop. The chosen
controller is of the same typology as in the current loop. The open loop includes the
transfer function of the current control loop GiqCL(z). The overall open-loop transfer
function is shown in Eq. 3.21.

GmechOL(z) =
Kiω Ts +Kpω(z − 1)

z − 1

1

z
GiqCL(z) Gmech(z) (3.21)

The transfer functions relative to the mechanical system of the experimental setup
described in chap. 7 is reported in Eq. 3.22 together with the current control loop
transfer function in Eq. 3.23, as designed in section 3.2. Since the viscous friction is small
with regards to the moment of inertia, the mechanical pole corresponds to an integrator
pole in z = 1.

Gmech(z) =
0.01007

z − 1
(3.22)

GiqCL(z) =
0.3259

z2 − z + 0.3259
(3.23)

Again it is possible to place the controller zero arbitrarily in order to accelerate the slow
mechanical dynamics, and then adjust the open-loop gain through root locus analysis, so
that the closed loop poles can be set as required.

The zero is placed close to the integrator so that it can compensate the phase delay at
the low frequencies.

z0 = 0.995 (3.24)

The root locus plot for the overall open loop transfer function is shown in Fig. 3.14
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Figure 3.14: Root locus for the speed control open-loop transfer function

A conservative choice of a small gain can satisfy all the requirements.
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detail
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The PI gains are calculated from the chosen open loop gain, as it was done for the current
control loop. The designed controller leads to the following step response for the speed
control loop which is shown to meet the design requirements in Fig. 3.16.
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Figure 3.16: Step Response of the speed control closed loop transfer function

3.4 Anti Integral Wind-up

Due to the modulation limit in the power converter, described in chap. 2, the control
variable commanded in the current control loop may be subjected to physical limits.
Other than this the control should always respect the particular hardware limitations for
each application. In order to avoid any possible issue, the controller outputs are limited
within a prefixed saturation limit. When the control variable goes beyond these saturation
limits, the well known phenomenon of Integral Wind-up occurs. During the time in which
the control variable remains within the saturation limits, the integral term continues to
grow until the error changes sign. At the time this happens the integral term is still very
high and this will lead to an oscillatory response until it ´´discharges” fully. The solution
is to reset or compensate the integral term while the control variable is within saturation
limits.

The Integral Wind-up compensation scheme in Fig. 3.17 is used both in the speed and
in the currents loops. The solution is based on the back-calculation of the integral term
compensation from the saturated control variable [Zakladu, 2005].
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Figure 3.17: Back-calculation tracking anti-windup scheme

The anti wind-up gain Ka needs to be higher than the Integral gain Ki, so that it can
effectively compensate the integrator charge when the control variable is saturated. In this
thesis it is chosen for every control loop an anti wind-up gain equal to twice the Integral
gain Ka = 2 Ki.
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Back-EMF based Sensorless
Control of PMSM 4

In this chapter the concept of back-EMF based sensorless control for PMSM is presented.
Then two different methods are presented and explained along with an analytical analysis
of stability and robustness. Finally performances are evaluated through simulations and
experiments.

4.1 Principle

As seen in chap. 3, the Field Oriented Control scheme needs a precise information about
the rotor position. The standard solution is to get the mechanical position of the rotor from
a sensor. A sensorless strategy should be able to get an information about the position
of the rotor from the electrical variables. As seen in Eq. 2.11 - 2.17 the model equations
of PMSM both in the stationary and the rotating reference frame show that the back-
EMF is the only electrical variable that instantaneously depends on the rotor’s electrical
speed and position. By using the information coming from current sensors and the voltage
commands calculated in the Field Oriented Control scheme, it is possible to estimate the
back-EMF components on the basis of the machine’s equations calculation. Rotor position
and speed are then estimated from the back-EMF components. The estimation strategy
is represented in a simplified way in Fig. 4.1.

PMSM

Model

back-EMF

estimation

Speed and 

position

estimation

ˆ
rθ

rω̂

Figure 4.1: Simplified Block Diagram representation of back-EMF based
sensorless estimation

For the stationary reference frame case, by estimating the components of the back-emf,
reported in Eq. 4.1, it is possible to get an information about the speed and the rotor
position. [

eα
eβ

]
= ωrψpm

[
− sin θr

cos θr

]
(4.1)

This kind of estimators commonly calculates the position and the speed of the rotor
by evaluating the argument and the module of the estimated back-EMF vector in polar
coordinates [Vas, 1998]. If the rotating reference frame model is considered, it is possible to
estimate the position and the speed by means of an estimated reference frame rotating at
the estimated speed and in which the back-EMF components are function of the position
error between the estimated rotor angle and the actual one. From the αβ stationary frame
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machine model, it is possible to derive the model of the machine in the estimated reference
frame expressed as function of the dq reference frame inductances [Morimoto et al., 2002].[

vδ
vγ

]
=

[
Rs + d

dtLd −ωrLq

ωrLd Rs + d
dtLq

] [
iδ
iγ

]
+

[
eδ
eγ

]
(4.2)[

eδ
eγ

]
= ωrψpm

[
− sin θ̃r

cos θ̃r

]
+ La

d

dt

[
iδ
iγ

]
+ ωrLb

[
iδ
iγ

]
+ (ω̂r − ωr)Lc

[
iδ
iγ

]
(4.3)

The variables vectors in the stationary coordinates are rotated by the estimated rotor
angle expressed as function of the position error, θ̂r = θr + θ̃r. The δγ components of the
back-EMF in the estimated reference frame are function of the estimated speed ω̂r and
the position error θ̃r. The three additional inductances matrix are derived from the vector
rotation of the axes inductances in the estimated reference frame

La =

[
−(Ld − Lq) sin2 θ̃r (Ld − Lq) sin θ̃r · cos θ̃r

(Ld − Lq) sin θ̃r · cos θ̃r (Ld − Lq) sin2 θ̃r

]
Lb =

[
−(Ld − Lq) sin θ̃r · cos θ̃r −(Ld − Lq) sin2 θ̃r

−(Ld − Lq) sin2 θ̃r (Ld − Lq) sin θ̃r · cos θ̃r

]
(4.4)

Lc =

[
(Ld − Lq) sin θ̃r · cos θ̃r −Ld cos2 θ̃r − Lq sin2 θ̃r

Ld sin2 θ̃r + Lq cos2 θ̃r −(Ld − Lq) sin θ̃r · cos θ̃r

]
Fig. 4.2 shows the estimated reference frame, the actual rotor reference frame and the
relative position error θ̃r
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Figure 4.2: Estimated reference frame and rotor reference frame

Beyond the conventional direct axis lying on the rotor’s magnetic axis, the estimated
reference frame and the corresponding angle error are shown. The angle error shown in
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the picture affects crucially the performances of every sensorless control method since it
causes an imprecise field orientation as it has been discussed in chap. 3.

The imperfect field orientation affects also the electromagnetic torque expressed as
function of the estimated axes currents. Due to the position error, the components lying
on the rotor reference frame dq axes are merely projection of the estimated currents. Eq.
2.18 becomes Eq. 4.6

Te =
3

2
p
[
ψpm(iγ cos θ̃r + iδ sin θ̃r) + (Ld − Lq)(iδ cos θ̃r + iγ sin θ̃r)(iδ sin θ̃r + iγ cos θ̃r)

]
(4.5)

=
3

2
p

[
ψpm(iγ cos θ̃r + iδ sin θ̃r) + (Ld − Lq)

(
iδiγ +

i2δ + i2γ
2

sin 2θ̃r

)]
(4.6)

Eq. 4.2 - 4.3, the generic model in the estimated reference frame, allow for a first important
consideration. In both the stationary and rotational frame based back-EMF estimators,
there is a significant difference of the position error impact on the estimated components
of the back-EMF, between machines with low or no saliency (ideally SPMSMs) and
machines with higher saliency (IPMSMs). This consideration is intuitively explainable
by thinking at the non-salient machines which have regular air gap and whose inductance
is approximately invariant with regards to the rotor position. In this case the error in
the instantaneous position estimation does not propagate recursively in the back-EMF
components estimation since all the machine’s parameters are isotropic.

The main difference between the estimators in the stationary reference frame and the ones
in the estimated rotating reference frame is that, being the former ones AC filters, they
introduce a phase delay in the estimated variables while the latter ones introduce only a
negligible delay, since they are DC estimation based on DC signals. This phenomenon is
well known for the stationary class of flux estimators and is also called “integral drift”
[Eskola, 2006]. Other than this the stationary estimators output an absolute estimation of
the rotor position while the rotating reference frame estimators extrapolate information
about the rotor position error, so they need to be combined with another estimation. In
this thesis only methods based on the rotating reference frame will be considered since
the introduced phase delay may affect the performances of the online estimation method
presented in the next chapter.

The model in the estimated reference frame is normally considered too complicated in
order too be used as estimation law, and many estimation algorithms assume that the
estimation error for both speed and position has negligible contribute to the back-EMF
estimation even in salient machines. This assumption can result in unstable operation
for IPMSMs sensorless algorithms if the estimation of the back-EMF components is not
improved with some dependency on the machine’s saliency effects [Lee and Ha, 2012].

The back-EMF can not provide itself a reliable speed estimation at low speeds, since
the voltage applied to the machine mostly compensates for the voltage drops in stator
resistance and inductance at low speeds. In order to enhance performances the injection
of high frequency current signals has been proposed in order to improve the estimation
at near zero speeds by taking advantage of the machine’s anisotropy. In this thesis these
methods are not considered as it is desired to overcome the problem only by means of the
fundamental frequency operation, so that the methods described can suit applications in
which acoustic noise and torque ripples caused by the HF signal injection are undesired.
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4.2 Extended Matsui Second Method

In this thesis a method for sensorless position estimation is considered. It is based on the
back-emf component estimation with the help of a rotating reference frame model.

The method originally proposed in [Matsui, 1996], and discussed in [Nahid-Mobarakeh
et al., 2004] and [Eskola, 2006] is analysed. This method is commonly known as Second
Matsui Method or Current Model Matsui Method and it is well known among the back-
EMF based methods in the estimated reference frame. All the effects of saliency are not
considered in the model used for the estimation. This assumption is taken for the ease of
analysis and since the used experimental system features an SPMSM.

Following analytical and simulation results, the sensorless algorithm is implemented on
the provided experimental setup, described in chap. 7, which features an SPMSM.

The original Matsui method presented in [Matsui, 1996], was called “current model
estimator”. The reason for the name lies in the estimation technique used for the back-
EMF components through the estimated reference frame machine model. The back-EMF
components are evaluated by tracking the measured currents with an estimation which is
based on the integration of the model’s equations. The difference between the estimated
current and the measured one will give the estimated back-EMF components.

Two fundamental hypotheses make the derivation of the method rather uncomplicated.

• All the machine parameters in the model are initially guessed correct. The voltage
references from the current controller are supposed to be exactly the voltages applied
to the machine’s terminal.

• The inital position error θ̂r is considered really small, meaning that it is possible to
approximate through First Order Taylor’s development the trigonometric functions
of the position error and to neglect the effects of saliency which make the model in
Eq. 4.2-4.3 complicated.

This hypothesis lead to the following simplified model in the estimated reference frame

diδ
dt

=
1

Ld

vδ −Rsiδ + ω̂rLqiγ + ωrψpm sin θ̃r︸ ︷︷ ︸
eδ

 (4.7)

diγ
dt

=
1

Lq

vγ −Rsiγ − ω̂rLdiδ − ωrψpm cos θ̃r︸ ︷︷ ︸
eγ

 (4.8)

By considering the Forward Euler discretization of the state space model of the machine,
it is ideally possible to evaluate the value of the next sample of the currents by knowing
the derivative and the value of the previous sample (Eq. 4.9-4.10).

iδ(k + 1) = iδ(k) + Ts
diδ
dt

(k) (4.9)

iγ(k + 1) = iγ(k) + Ts
diγ
dt

(k) (4.10)

The hypothesis on the small initial position error allows for considering null the back-emf
component lying on the δ axis eδ = 0. This consideration leads to the state space model
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used for the estimation of the current derivative.

dîδ
dt

=
1

L̂d

(
vδ − R̂siδ + ω̂rL̂qiγ

)
(4.11)

dîγ
dt

=
1

L̂q

(
vγ − R̂siγ − ω̂rL̂diδ − ω̂b

ˆψpm cos θ̃r

)
(4.12)

The hat symbol on the parameters indicates that they are the supposed parameters used
in the estimator. ω̂b is the estimated speed of the flux in the estimation model. Eq. 4.11-
4.12 are discretized and used for calculating the estimated current derivative at the k-th
sample. Then the estimated current in the next sample is calculated from the estimated
derivative and the measured current for the same sample, as shown in Eq. 4.11-4.12.

îδ(k + 1) = iδ(k) + Ts
dîδ
dt

(k) (4.13)

îγ(k + 1) = iγ(k) + Ts
dîγ
dt

(k) (4.14)

By using the two initial hypotheses on parameters precision and small position error it is
possible to approximate the current error as a function of the two back-EMF components
in the estimated reference frame. Subtracting Eq. 4.9 and 4.10 from Eq. 4.13 and 4.14
yields Eq. 4.15 and 4.16

ĩδ(k + 1) = îδ(k + 1)− iδ(k + 1) = − Ts

Ld
eδ ≈ −

Ts

Ld
ψpmωrθ̃r (4.15)

ĩγ(k + 1) = îγ(k + 1)− iγ(k + 1) =
Ts

Lq
(eγ − ω̂bψpm) ≈ Ts

Lq
ψpm(ωr − ω̂b) (4.16)

As mentioned, assuming small position error, the trigonometric functions of the error are
approximated with first order Taylor approximation, i.e. sin θ̃r ≈ θ̃r and cos θ̃r ≈ 1.
The speed is estimated through Eq. 4.17 and 4.18, using a combination of the information
from the γ axis current error and an information about the position error coming from
the δ axis error.

ω̂b(k + 1) =ω̂b(k) + kαĩγ(k + 1) (4.17)

ω̂r(k + 1) =ω̂b(k + 1) + kβ ĩδ(k + 1) (4.18)

With kα = Ld
Ts
α and kβ =

Lq

Ts
β. ω̂b is used as auxiliary speed for the estimation, and is

calculated from the γ axis current error, ω̂r is the estimated speed, calculated through
the auxiliary speed and the correction of the position error which is in turn calculated
from the δ axis current error. The position estimation is calculated by integrating the
estimated speed (Eq. 4.19).

θ̂r(k + 1) = θ̂r(k) + Ts ω̂r(k + 1) (4.19)
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The whole sensorless method is resumed in Fig. 4.3.
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Figure 4.3: Block diagram for the Second Matsui Method [Eskola, 2006]

The diagram shows that the estimated speed is filtered by a digital low pass filter before it
is used in the digital speed loop. The digital filter is necessary in any practical application.
A first order low pass digital filter is designed in appendix A. The filter cut-off frequency
is set to 15 Hz through experiments.

It is possible to notice that the auxiliary estimated speed ω̂b is used in Eq. 4.12 instead
of the final estimated speed ω̂r. This is done so that Eq. 4.17 becomes a discrete low-pass
filter rather than a discrete integrator. With proper estimator parameters the auxiliary
estimated speed rapidly converges to the speed calculated from the estimated back-emf
components.

Substituting Eq. 4.16 and 4.15 into Eq. 4.17 and 4.18 respectively yields the following
discrete sensorless control law for speed estimation:

ω̂b(k + 1) = (1− αψpm)ω̂b(k) + αψpm cos θ̃rωr(k) (4.20)

ω̂r(k + 1) = ω̂b(k + 1) + βêδ(k) (4.21)

Eq. 4.20 resembles a Discrete Low Pass Filter (cf. appendix A, Eq. A.8), so that the
auxiliary speed ω̂b converges quickly to the speed estimated on the γ axis, i.e. ωr cos θ̃r

4.2.1 Closed-Loop Convergence Conditions

The stability analysis for the whole closed loop system is conducted so that it possible
to obtain the convergence criteria for the estimator parameters α and β. The stability
analysis is based on the first (also called indirect) Lyapunov’s method [Slotine et al., 1991].

An important simplification is made in order to derive the convergence conditions. It is
supposed that the machine is controlled in a field oriented control scheme with maximum
torque per ampere density for a non-salient machine, i.e. iδ = 0. This assumption
simplifies Eq. 4.6 making it easier to derive analytical solutions to the differential equation.
In addition the Load Torque is considered to be dependent on the shaft’s speed and to be
null at zero speed (the hypothesis is consistent with the static and viscous friction effects)

The dynamics of the position error are defined in Eq. 4.22

d θ̃r

dt
= ω̂r − ωr (4.22)

With the consideration made on the sensorless estimation algorithm for the auxiliary speed
filtering in Eq. 4.20 it is possible to substitute the converged auxiliary speed ω̂b = ωr cos θ̃r
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in Eq. 4.21. The following expression for the estimated speed as function of the position
error and the actual speed is yielded.

ω̂r = ωr cos θ̃r + βψpmωr sin θ̃r (4.23)

The expression found for the estimated speed, Eq. 4.23, is combined in Eq. 4.22 in
order to yield the closed loop non-linear system with the state vector x = [θ̃r ωr]

T .
The mechanical equation for the PMSM system, Eq. 2.19, is used together with the
electromagnetic torque expression with the estimated electrical quantities (Eq. 4.6) in
order to study the dynamics of the closed-loop system with the estimated speed and the
position error. {

dθ̃r
dt = ωr cos θ̃r + βψpmωr sin θ̃r − ωr

J
p
dωr
dt = 3

2p ψpmiγ cos θ̃r − TL(ωr
p )

(4.24)

The principle of the first Lyapunov’s method is to find the equilibria of the non-linear
system and prove local asymptotic stability of the linearised subsystems. This will prove
the local stability of the non-linear system in the proximity of the equilibria. The idea is
to make stable the equlibria in which the estimator has the expected behaviour so that it
is converging to the actual value of the estimated quantity.

The method relates the stability of the linearized subystems to the local stability of the
non-linear system as here listed.

• If all the eigenvalues of the linearized system have the real part strictly negative
(i.e. the linearized system is strictly stable), then it is possible to conclude that the
corresponding equilibrium is asymptotically stable.

• if at least one eigenvalue of the linearized system has strictly positive real part (i.e.
the linearized system is unstable), then the corresponding equilibrium is unstable.

• In case the eigenvalues of the linearized system have negative or null real part (i.e.
the linearized system is marginally stable), it is not possible to conclude anything
on the behaviour of the nonlinear system in the proximity of the corresponding
equilibrium.

The equilibria are yielded by finding the solutions to the non-linear system Eq. 4.24, while
imposing the equilibrium condition, i.e. dx

dt = 0

{
0 = ωr(cos θ̃r + βψpm sin θ̃r − 1)

0 = 3
2p ψpmiγ cos θ̃r − TL

(4.25)

The first two equilibria are found in Eq. 4.25 by first considering the partial solution
ωr1 = ωr2 = 0. Since the load torque has to be zero at stand still, then the position error
has to be ˜θr1,2 = ±π

2 + 2kπ

{
0 = ωr

TL(0) = 0 = 3
2p ψpmiγ cos θ̃r

(4.26)
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The other two equilibria are found by solving the trigonometric equation in Eq. 4.25, with
the half angle tangent substitutions, Eq. 4.27 and 4.28.

sin θ̃r =
2 tan θ̃r

2

1 + tan2 θ̃r
2

(4.27)

cos θ̃r =
1− tan2 θ̃r

2

1 + tan2 θ̃r
2

(4.28)

cos θ̃r + βψpm sin θ̃r − 1 = 0 (4.29)

1− tan2 θ̃r
2 + βψpm2 tan θ̃r

2

1 + tan2 θ̃r
2

− 1 = 0 (4.30)

The remaining two solutions to the equations are easily found.

tan
θ̃r

2

(
β ψpm − tan

θ̃r

2

)
= 0 (4.31)

θ̃r3 = 2kπ , θ̃r4 = 2 arctan(β ψpm) + 2kπ (4.32)

ωr3 = f(TL) = f

(
3

2
pψpmiγ

)
= ω◦r , ωr4 = f

(
3

2
pψpmiγ cos θ̃r4

)
= ω+

r (4.33)

The four equilibria are resumed in Tab. 4.1

xe ωre θ̃re

xe1 0 π
2 + 2kπ

xe2 0 −π
2 + 2kπ

xe3 ω◦r 2kπ
xe4 ω+

r 2 arctan(β ψpm) + 2kπ

Table 4.1: Equilibria of the closed loop non-linear system

Obviously the best equilibrium is xe3. Therefore it is desired that the system trajectories
converge always to this point.

The stability of the four linearized subsystems corresponding to the 4 equilibria is now
studied. The Jacobian of the non-linear system Eq. 4.24 is calculated in Eq. 4.34

∂f(x)

∂x
=

[
ωre(βψpm cos θ̃re − sin θ̃re) cos θ̃re + βψpm sin θ̃re − 1

−3
2
p2

J ψpmiγ sin θ̃re − p
J
d TL(ωre)
dωr

]
(4.34)

The generic linearized subsystem is defined as in Eq. 4.35

dx

dt
=

(
∂f(x)

∂x

)
x=xe

(x− xe) (4.35)

The four linearized subsystems are yielded by substituting the equilibria in Eq. 4.34.(
∂f(x)

∂x

)
x=xe1

=

[
0 βψpm − 1

−3
2
p2

J ψpmiγ − p
J TL0

]
(4.36)
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(
∂f(x)

∂x

)
x=xe2

=

[
0 −βψpm − 1

3
2
p2

J ψpmiγ − p
J TL0

]
(4.37)

(
∂f(x)

∂x

)
x=xe3

=

[
βψpmω

◦
r 0

0 − p
J
d TL(ω◦

r )
dωr

]
(4.38)

(
∂f(x)

∂x

)
x=xe4

=

[
−βψpmω

+
r 0

−3
2
p2

J ψpmiγ sin θr4 − p
J
d TL(ω+

r )
dωr

]
(4.39)

The estimator parameter β is chosen as in Eq. 4.40.

β =
−b sgn(ω̂r)

ˆψpm

(4.40)

The stability conditions of the single parameter b are obtained through Routh-Hurwitz
criterion for the 4 linearized subsystems in app. B. They are resumed in Fig. 4.4.
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Figure 4.4: Stability of the 4 equilibria, function of the sensorless parameter b,
with [Nahid-Mobarakeh et al., 2004]

It is possible to see that, in order to keep the desired equilibrium xe3 stable, b has to be
positive. Then according to Fig. 4.4 other two possible undesired equilibria can be stable,
depending on b being lower or higher than 1. Considerations on the domain of attraction
of the desired equilibrium are made for both cases.

The domain of convergence of the estimator is studied analytically through phase-plane
analysis [Slotine et al., 1991] for the two aforementioned cases. The system trajectories
for different estimator parameters are shown in the phase portraits in Fig. 4.5-4.6. The
solutions were calculated numerically and plotted in the state-space together. The circles
indicate the initial conditions from which the trajectories start. The red dots indicate the
system equilibria previously found. The parameters used in the calculations are the ones
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of the experimental system described in chap. 7. The operating conditions are such that
the actual rotor electrical speed is 100 rad/s.
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Figure 4.5: Phase portrait of the closed loop non-linear system for b=5

Fig. 4.5 shows that the system converges properly to the desired equilibrium for position
errors below a certain threshold(≈ π

2 ). The domain of attraction of the undesired
equilibrium is too large for being accepted.
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Figure 4.6: Phase portrait of the closed loop non-linear system for b=0.7

Fig. 4.6 shows that the domain of attraction of the desired equilibrium xe3 is larger than
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the previous case with b > 1. In this case, initial position errors up to a certain threshold
(≈ π) still allow the system trajectories to converge to the desired equilibrium. Even
if the domain of attraction of the desired solution is larger than the previous case, the
limited convergence to the desired equilibrium of the estimator, may still be unacceptable
in terms of robustness.

4.2.2 Globally converging estimator

The position estimator should globally converge to the desired equilibrium.
[Nahid-Mobarakeh et al., 2004] proposes a variable structure observer law for the speed
estimator. The idea is to tweak the estimator gain β according to the current state of the
system, so that the undesired equilibria are made unstable in what it would normally be
their domain of convergence.

It is possible to see from Fig. 4.6 that when the equilibrium xe2 is stable (i.e. 0 <
b < 1), the equilibrium xe4 is a saddle point located in the second quadrant of the
bidimensional state space, in a specific limited area. Following Eq. 4.32 and 4.40,
θ̃r4 = −2 arctan(b · sgn(ω̂r)), for 0 < b < 1 the position error will be −π

2 < θ̃r4 < 0.

Similarly, in Fig. 4.5 it is shown that when the equilibrium xe4 is stable (i.e. b > 1), it
is located in a specific area within the fourth quadrant, since for b > 1 the position error
will be θ̃r4 < −π

2 .

The two areas are highlighted respectively in green and in red in Fig. 4.7, which represents
the entire phase plane, divided in different regions according to the sign of the back-EMF
components, reported in Eq. 4.41 and 4.42 for convenience.

eδ = ωr sin θ̃r (4.41)

eγ = ωr cos θ̃r (4.42)
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Figure 4.7: The θ̃r-ωr phase plane divided in areas by which sign the back-EMF
components can have

It is possible to approximately know in which quadrant is the state of the system, by
evaluating the sign of the estimated back-EMF components calculated in the algorithm.
This information makes it possible to tweak the gain of the estimator so that the undesired
equilibrium is globally made unstable. This will lead the system to converge globally to
the desired equilibrium.
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The estimator law changes from Eq. 4.21 to the variable structure estimation law of Eq.
4.43.

ω̂r(k + 1) = ω̂b(k + 1) + β · f(êδ(k), êγ(k)) · êδ(k) (4.43)

Based on the consideration previously made on the system’s trajectories in the θ̃r-ωr phase
plane shown in Fig. 4.7, the following conditions are outlined for the variable structure
estimation law.

• It must always keep the desired equilibrium xe3 stable, so the estimator gain should
always be positive.

• It must make the undesired state xe4 unstable when the system is in its domain of
attraction, so the estimator gain should be changed to a value comprised between 0
and 1 whenever the system is in the red area.

• It must ensure that the system does not converge to the other undesired equilibria
xe2 which is between the two regions, so the estimator gain should be changed to a
value greater than 1, whenever it is inside the green area and thus sufficiently far
from the undesired equilibrium xe4.

The conditions are resumed in Eq. 4.44{
b · f(êδ, êγ) < 1, ∀(θ̃r, ωr) ∈ Red area

b · f(êδ, êγ) > 1, ∀(θ̃r, ωr) ∈ Green area
(4.44)

The variable structure estimation law proposed in [Nahid-Mobarakeh et al., 2004] which
satisfies the previous conditions is the following:

f(êδ, êγ) = 1− ζ · sgn(êδ), with 0 < ζ < 1 (4.45)

The estimation law is dependent only on the estimated δ-axis component and requires in
addition just the calculation of its sign.
The globally converging estimation law is resumed in Eq. 4.46

{
ω̂b(k + 1) = (1− αψpm)ω̂b(k) + αψpm cos θ̃rωr(k)

ω̂r(k + 1) = ω̂b(k + 1) + β(1− ζ · sgn(êδ(k))) · êδ(k)
(4.46)

with

0 <α <
1

ψpm

0 <ζ < 1 (4.47)

β =− b

ˆψpm

· sgn(ω̂r)

The conditions set on the parameters in Eq. 4.47 are obtained from the discussed
convergence conditions and from the definition of the variable structure estimation law of
Eq. 4.44
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The phase-plane analysis of the variable structure estimation laws verifies the global
convergence of the algorithm to the desired equilibrium, as it is shown in Fig. 4.8. The
chosen parameters satisfy the conditions of Eq. 4.47.
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Figure 4.8: Phase portrait of the closed loop non-linear system with the globally
converging estimator for b = 2 and ζ = 0.75
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4.3 Results of simulations

The globally converging algorithm is now evaluated through simulation assuming that
there are no parameters uncertainties. Measurement noise is introduced in the currents
by adding to each current 1% of the phase current value multiplied by a random generated
white noise. The parameters used in all the simulations are the ones from the experimental
system described in 7.

The estimator parameter are the ones used also for the numerical analysis.
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Figure 4.9: Simulation results for a start with π
4 initial position error at no load

condition

The results of the simulation at no load condition is shown in Fig. 4.9. It is possible
to notice how the estimator converges to zero position error from the initial condition.
The position error is then only slightly influenced by the transients with the maximum
perturbation at the moment of speed reversal.
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Figure 4.10: Simulation results for a start with π
4 initial position error and load

torque pulsation at 3s
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The results with load torque pulsation show a similar behaviour with the obvious influence
of the torque pulsation which is reflected on the error. In steady state the estimator is
anyway able to converge to the desired equilibrium.
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Parameters uncertainties
and Online Estimation of

stator resistance 5
5.1 Robustness analysis and effects of parameters

uncertainties

The robustness of the second Matsui method is discussed analysing the effects of
parameters uncertainties on the stability and the solutions of the position estimator
described in the previous section.

In the following it will be considered the simplified case of an SPMSM, i.e. Ld = Lq = Ls.
The effects of parameters uncertainties on the current model estimator for salient machines
are analysed in [Nahid-Mobarakeh et al., 2001], using a machine model similar to the one
outlined in Eq. 4.2-4.3.

The parameters errors are defined as follows:

R̃s = R̂s −Rs (5.1)

L̃s = L̂s − Ls (5.2)

¯ψpm =
ˆψpm

ψpm
(5.3)

Assuming that the parameters used in the estimator model are different from the actual
ones, the expressions of the current errors in Eq. 4.15 and 4.16 change into Eq. 5.4 and
5.5

Ls

Ts
ĩδ = ωrψpm sin θ̃r + L̃siγω̂r − R̃siδ (5.4)

Ls

Ts
ĩγ = ωrψpm cos θ̃r − ψpmω̂b − L̃siδω̂r − R̃siγ (5.5)

ω̂r =
1

ˆψpm

Ls

Ts
ĩγ + β

Ls

Ts
ĩδ (5.6)

Substituting Eq. 5.4 and 5.5 into 5.6 yields
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ω̂r =
1

ˆψpm

(
ωrψpm cos θr − R̃siγ + β ˆψpmωrψpm sin θ̃r

)
+

1

ˆψpm

ω̂r

(
β ˆψpmL̃siγ

)
(5.7)

Through simple manipulations, an expression for the estimated speed as function of the
parameters uncertainties is found

ω̂r =
ωr

(
cos θ̃r + β ˆψpm sin θ̃r

)
− R̃siγ

ψpm

ˆψpm

ψpm
− β ˆψpm

L̃siγ
ψpm

(5.8)

Remembering from Eq. 4.32 that
˜θr4
2 = arctan(β ˆψpm) for convenience it is defined that

arctan(−β ˆψpm) = ρ. In addition the following positions are defined for the terms which
depend on the parameters uncertainties

R̃siγ
ψpm

= hR (5.9)

L̃siγ
ψpm

= DL (5.10)

With all the previous considerations, the perturbed expression for the estimated speed is
obtained in few steps

ω̂r =
ωr

(
cos θ̃r − sin ρ

cos ρ sin θ̃r

)
− hR

¯ψpm +DL
sin ρ
cos ρ

=
ωr

(
cos ρ cos θ̃r − sin ρ sin θ̃r

)
− hR cos ρ

¯ψpm cos ρ+DL sin ρ

=
ωr cos

(
θ̃r + ρ

)
− hR cos ρ

¯ψpm cos ρ+DL sin ρ
(5.11)

The expression for the estimated speed is substituted in the system of Eq. 4.24, in order
to evaluate the effects of parameters uncertainties on the closed loop system

 dθ̃r
dt =

ωr(cos(θ̃r+ρ)− ¯ψpm cos ρ−DL sin ρ)−hR cos ρ
¯ψpm cos ρ+DL sin ρ

J
p
dωr
dt = 3

2p ψpmiγ cos θ̃r − TL(ωr
p )

(5.12)

5.1.1 Uncertainty on the inductance

There is often an uncertainty on the inductance parameter, mainly due to the non-linear
phenomenon of magnetic saturation and the non-perfect isotropy of any practical machine.
In this case only the uncertainty on the inductance is considered, so R̃s = 0 and ¯ψpm = 1.
Eq. 5.12 becomes

dθ̃r

dt
=
ωr

(
cos(θ̃r + ρ)− cos ρ−DL sin ρ

)
cos ρ+DL sin ρ

(5.13)
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The presence of the uncertainties terms will move the system equilibrium previously found
for the ideal case. θ̃r = 0 will not be any more a solution for the equilibrium equation
5.13, so also the desired equlibrium will present a position error.

The simulation results of the estimator with a +50% Inductance uncertainty are shown
in Fig. 5.5.
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Figure 5.1: Simulation results for a start with π
4 initial position error and

uncertainty on the inductance parameter of L̃s = 0.5 Ls

As it is possible to see from the plot of position error, the desired equilibrium presents
now a deviation from the ideal case with zero position error. Indeed also in steady state
the position error is slightly different from zero.

5.1.2 Uncertainty on rotor permanent magnet flux linkage

In this case only the uncertainty due to the rotor permanent magnet flux linkage parameter
is considered, thus ¯ψpm 6= 1 and R̃s = 0, L̃s = 0 The following expression for the error
dynamics follows from Eq. 5.12:

dθ̃r

dt
=
ωr(cos(θ̃r + ρ)− ¯ψpm cos ρ)

¯ψpm cos ρ
(5.14)

As in the previous case the term ¯ψpm will cause a shift between the ideal desired equilibrium
and the practical one due to the uncertainty. It is possible to notice that, differently from
the other parameters uncertainties, the one due to the permanent magnet flux does not
depend on the torque producing current. A similar consideration was made also in [Eskola,
2006].

The simulation results of the estimator with a +10% Inductance uncertainty are shown
in Fig. 5.2.
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Figure 5.2: Simulation results for a start with π
4 initial position error and

uncertainty on the permanent magnet flux parameter of ˜̄ψpm = 1.1

The plot shows that the uncertainty due to the permanent magnet flux is more significant
during steady state with regards to the the transients and to the inductance case.
Only 10% error can cause an error of 0.1π. The relative low sensitivity during
transient, especially during the speed reversal, confirms the analytical consideration of
the uncertainty not being dependent on the torque producing current.

5.1.3 Uncertainty on Stator resistance

In this case only the uncertainty due to the rotor permanent magnet flux linkage parameter
is considered, thus R̃s 6= 0 and ¯ψpm = 1, L̃s = 0 The following expression for the error
dynamics follows from Eq. 5.12:{

dθ̃r
dt = ωr(cos(θ̃r+ρ)−cos ρ)−hR cos ρ

cos ρ
J
p
dωr
dt = 3

2p ψpmiγ cos θ̃r − TL(ωr
p )

(5.15)

In this case both the equations of the closed-loop non-linear system are reported. The
Resistance mismatch will still cause a shift from the desired ideal equilibrium, even
dependent on the load current, but differently from the other cases, the presence of the
uncertainty due to the stator resistance, the term hR, may cause an interesting non-linear
phenomenon. In the previous cases the dynamics of the error were purely function of
a combination of trigonometric functions. More specifically they allow for a solution,
meaning that the system will eventually end in an equilibrium.
In this case instead, the additional term hR may be always larger in absolute value than
the other term. This will keep the derivative of the position error of the same sign, thus
discarding any possibility of an equilibrium. Considering the mechanical equation of the
closed loop system in Eq. 5.13, it is possible to understand that also the speed will be
oscillating. The trajectory of the system will then be a limit cycle on the phase plane,
making the system only marginally stable with undesired oscillations.

The simulation results of the estimator with a +200% Stator Resistance uncertainty are
shown in Fig. 5.2.
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Figure 5.3: Simulation results for a start with π
4 initial position error and

uncertainty on the stator resistance parameter of R̃s = 200%Rs

It is possible to notice the expected behaviour with the speed oscillating around zero and
the detail of the error showing the continue progression in the same direction.

[Nahid-Mobarakeh et al., 2001] analyses more in detail this particular phenomenon, finding
also a condition on the uncertainty for avoiding it to happen. The whole point of this
analysis is to find the importance of reducing the error of the stator resistance which could
be fatal to the sensorless control algorithm.

5.2 Online estimation of stator resistance

The principle of Model Reference Adaptive control is depicted in Fig. 5.4. The idea is to
run in real time a simulation of the controlled process and adapt one or more parameters
in order to reduce and bring to zero the error between the measured quantity and the
estimated one. Also the Second Matsui method, described in the previous chapter, can
be considered an MRAS approach to the estimation of the back-EMF components.

Figure 5.4: Block diagram of the principle of MRAS [Nahid-Mobarakeh et al.,
2004]
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The idea of augmenting with an additional state an observer in order to estimate an
additional parameter belongs to many advanced control technique such as Kalman Filter.
As mentioned in chap. 1, the derivation of stability criteria for these kinds of augmented
non-linear observer might be quite complicated. MRAS can be an easier approach.

In the same reference of the globally converging estimator, [Nahid-Mobarakeh et al., 2004],
a simpler MRAS estimation technique for the stator resistance is outlined. The current on
the γ-axis is estimated through a real-time calculation of the γ-axis equation as reported
in Eq. 5.16, while the value of the estimated resistance is adjusted as in Eq. 5.17 through
a static gain and the current estimation error.

L
d

dt
ˆiγR = −R̂se

ˆiγR − Lω̂riδ − ˆψpm + vγ (5.16)

d

dt
R̃se = −η( ˆiγR − iγ) (5.17)

Referring to Fig. 5.4, Eq. 5.16 is the model, while Eq. 5.17 is the estimator.

The stability and convergence condition for the closed loop system augmented with the
state R̃se is found to be as in Eq. 5.18 [Nahid-Mobarakeh et al., 2004]. With this conditions
the state R̃se = 0 is a stable equilibrium.

b > 0

(5.18)

η · iγ < 0

The performances of the system augmented with the resistance estimator are evaluated
through simulation.

The machine’s stator resistance is stepped up at the istant t = 12 in the machine model
by 25% of its value.
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Figure 5.5: Simulation results for a sudden step up in stator Resistance equal
to 25%Rs

The estimator is able to track the changes in the resistance and to bring the error to 0.
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Voltage Compensation for
Inverter non-linearities 6

6.1 Losses characterisation

As mentioned in chap. 2, the switching devices of the voltage source inverter present a
commutation delay every time the gate signal is commuted. This delay is known with the
name of dead time, during which both the two devices on the same leg are disconnected
from the voltage source. If the two devices on the same leg are conducting at the same
time, the DC voltage source will be shorted, generating a large current flowing through
the converter and the load. This kind of fault is known with the name of shoot through
fault. An ideal converter with ideal devices would use two perfectly complementary signals
to control the gates of the two switching devices on the same leg. Considering a practical
converter with practical switch devices, the switches will commute after a certain amount
of time due to the transients of the switching devices. Here comes the need for a time
delay which has to be significantly larger than these on/off transitions times, in order to
keep a reasonable safety margin.

From this consideration it can be intuitively inferred that the voltage drop in the inverter
is mostly due to the dead time rather than to the commutation time. The voltage drop
will now be analysed through quantitative considerations starting from the topology of
the single leg of the converter, reported in Fig. 6.1. Once the voltage drops are defined,
a method for compensating them will be outlined.

S
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V
dc

S
a

i
a

V
d

V
igbt

Figure 6.1: Topology of one leg of the Voltage Source Inverter
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In the figure Vigbt is the forward voltage of the inverter’s IGBTs, while Vd is the one relative
to the free-wheeling diode. In the following vaN will refer to the voltage on the leg a of the
converter referred to the negative of the DC-Link. According to the sign of the current
in the phase-load connection and the signal which controls the switch, the converter leg
topology may translate into 4 different conduction paths which will determine the voltage
output on the leg terminal, as shown in Fig. 6.2.
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Figure 6.2: Conduction paths of the single leg of the Voltage Source Inverter
according to the sign of the current and the gate signals

Fig. 6.2a and 6.2b show the paths which are conducting during dead time. When both
the gate signals are negative during dead time, the lower or the upper free-wheeling diode
is conducting, according to the current being respectively positive or negative. It must
be noted that the active diodes keep conducting also after the gate signals of the parallel
switch go high, so in these cases the forward voltage seen on the leg will be the one of the
diodes.
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Figure 6.3: Voltage losses for a practical switching device [Krishnan, 2010]

The transitions between the conducting paths and the voltage drops are represented for
one switching period in Fig. 6.3. The representation includes the dead time td and the
turn on/off transient times (rise time tr and fall time tf).

The difference between the desired voltage to be output on the leg and the actual one
obtained after the drops is also represented in the figure. The integral of the voltage
drops against the switching time is the actual average voltage loss which is not delivered
as intended through the modulation. The average voltage loss is calculated considering
the area of the rectangles of the voltage difference between ideal and practical output.

∆vaN =

{
tf−td−tr

Ts
(Vdc − Vigbt + Vd) + −toff

Ts
Vd + toff−Ts

Ts
Vigbt ia > 0

tf+td−tr
Ts

(Vdc − Vigbt + Vd) + Ts−toff
Ts

Vd + toff
Ts
Vigbt ia < 0

(6.1)

From Eq. 6.1 it is possible to evaluate the contribute of each parameter to the average
voltage loss. The first term depends exclusively on the physical characteristics of the
devices, while the other two terms depend also on the operational conditions, namely the
duty cycle. For lower duty cycles the weight of the losses related to the output voltage is
higher than for greater duty cycles. This means that for higher output voltages the average
voltage loss in the switching period is not as significant as for lower output voltages.
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The parameters which depend on the physical characteristics of the devices are not
constant and vary with temperature and load current. This means that a precise
compensation for all the losses is not possible due to the complexity of modelling the
physical characteristics. In practice the voltage drop due to the dead time is significantly
more consistent than the one due to the on/off transition times. The requirement of using
a dead time which is significantly larger that the transition times for safety reasons allows
for the assumption of neglecting the voltage drops due to the transition times.

6.2 Compensation Strategy

With the average voltage losses defined for both positive and negative currents as in Eq.
6.1, it is possible to determine a compensation strategy.

The adopted compensation method is used in several examples in the literature for motor
drives, and also for sensorless applications as in [Inoue et al., 2009]

The idea is to compensate in each leg the reference voltages fed to the modulation
algorithm, for the losses identified in Eq. 6.1 according to the sign of the phase current.
This is done by adding an additional term to the reference as expressed in Eq. 6.2vaN

∗

vbN
∗

vcN
∗

 =

vaN

vbN

vcN

−∆vjN

f(ia)
f(ib)
f(ic)

 (6.2)

The correction term ∆vjn is obtained on the basis of the considerations made on the
average losses. The voltage drop due to devices transients is neglected and the forward
voltage drop is evaluated for an average 0.5 duty cycle.

∆vjn =

{
−td
Ts

(Vdc − Vigbt + Vd)− Vigbt+Vd

2 ij > 0
+td
Ts

(Vdc − Vigbt + Vd) +
Vigbt+Vd

2 ij < 0
(6.3)

There are now two possibilities for what concerns the transition between positive and
negative currents. One approach would be to keep the discontinuity of the definition,
using a sign function for selecting the correction term. The preferred approach is instead
to use a smoother function in the proximity of 0, so that the correction factor can be
closer to the actual losses at a lower current (load), especially in light of the choice of
approximating the losses to the theoretical case of average duty cycle. The two approaches
are represented in Fig. 6.4 and Eq. 6.4-6.5
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Figure 6.4: Diagram of the two possible f(i) [Inoue et al., 2009]
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Approach a: f(i) = sgn(i) (6.4)

Approach b: f(i) =

{
1
k · i i < |k|
sgn(i) i ≥ |k|

(6.5)

The parameter k is arbitrarily chosen equal to 0.5A.
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Experimental Results 7
In this chapter an experimental evaluation of the sensorless control algorithm is performed.
The position and the speed are measured additionally through an encoder so that the
results can be compared with the ones obtained with the sensorless control algorithm.
First the experimental system on which the experiments were performed is described,
then the algorithm is tested through few simple tests.

7.1 Experimental system

The experimental system used in this thesis is one of the available set-ups of the Flexible
Drive System Laboratory of the Energy Technology Department at Aalborg University.
It features a dSPACE DS1103 microcontroller system, configured to control at the same
time a PMSM and an IM drive system. In this configuration the PMSM and the IM are
mounted on the same shaft and the latter is used to act as a mechanical load for the
PMSM.

The set-up is shown in Fig. 7.1 , while its schematic diagram is shown in Fig. 7.2. The
technical spcecifications are shown in Tab. 7.1.

Figure 7.1: The experimental set-up used in this thesis [AAU E.T. Department,
2014]
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Figure 7.2: Schematic diagram of the experimental set-up

Siemens PMSM ROTEC 1FT6084-8SH7

Rated speed n 4500 rpm
Number of pole pairs p 4
Rated torque Mn 20 Nm
Rated power Pn 24.5 A
Torque constant KT 1.01 Nm/A
Winding Resistance Rs 0.19 Ω
Field Inductance Ls 2.2 mH
Magnetic Flux ψpm 0.123 Wb

Danfoss FC302 VSI 15 kW

Rated input voltage Vin 380− 500 V
Rated output voltage Vout 0− 500 V
Rated input current Iin 29 A
Rated output current Iout 32 A
Dead Time td 2.5 µs
Switching Frequency fs 5 kHz
Output voltage frequency fout 0− 1000 Hz

Mechanical system

Drive shaft Inertia Jm 0.0146 kg ·m2

Viscous Damping fv 0.00167 Ns/m
dSPACE 1103

Sampling and Update frequency fs 5 kHz

Table 7.1: Technical specifications of the experimental system

As it is possible to see in Fig. 7.2, the AC machines are supplied through two Danfoss
2-levels FC302 Voltage Source Inverters. Both two inverters are controlled by the same
dSPACE 1103 unit. dSPACE 1103 is a mixed RISC/DSP digital microcontroller, capable
of running real-time control application thanks to its powerful floating point processor, able

58



to handle at the same time all the I/O communications. The dSPACE system includes a
code-generation tool able to program the unit from Matlab/Simulink models, and the
Control Desk environment which allows the real-time supervision of the experiments
through virtual instruments and scopes. The set-up features an SPMSM which is
consistent with the simplification assumptions made in the derivation of the sensorless
control algorithm. The parameters for the set-up were partially obtained experimentally
and partially obtained from previous publications based on the same set-up as [Basar
et al., 2014].

The parameters used in the experiments are listed in Tab. 7.2.

Field Oriented Control

Current Proportional Gain Kp 1.79 [-]
Current Integral Gain Ki 147.7 [-]
Speed Proportional Gain Kpω 1.41 [-]
Speed Integral Gain Kiω 46.1 [-]
D-axis current reference id

∗ 2 A
Variable Structure Estimator

Auxiliary speed filter gain α 7.3 [-]
Estimated speed correction gain b 2 [-]
Variable structure estimator gain ζ 0.75 [-]

Table 7.2: Settings of the parameters used in the experiments

It must be noted that during the experiments the current reference for the d-axis is set to a
value different than 0. Even though this is not the current command which gives the most
torque per current density for a SPMSM, it is common to see in practical applications
of sensorless control methods an injection of current in the d-axis, up to 10-15% of rated
current. Experiments have shown that this expedient reduces considerably ripples in
speed and position estimation. [Calligaro and Petrella, 2012] proposes an analysis of
the phenomenon concluding that the injection of a current in the d-axis can produce a
damping effect on the estimation noise.
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7.2 No load test

In this test, the sensorless algorithm is tested at no load, the machine is started from stand
still and accelerated through incrementing speed step commands. Once the machine has
reached through several steps the speed of 600 rpm, the test continues decelerating the
machine until it performs a speed reversal and runs at negative speeds. The parameters
for the controller and the estimator are the ones discussed in the previous chapters.

7.2.1 Start and incremental speed steps

In the graphs in Fig. 7.3, it can be seen how the machine is starting from stand still
until it reaches 600 rpm through several steps of different amplitude. A good response in
both steady and dynamic states is noticeable. The id current follows the reference given,
while, on the other hand iq differs from zero during mechanical transients. When there are
changes in speed due to inertia, peaks in the iq values appear. The graph of the Torque
is shown in order to verify that there is no load.
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Figure 7.3: Experimental results for no load start and incrementing speed test
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Figure 7.4: Position estimation and measurement comparison with relative
error for several increasing speeds

In the graphs in Fig. 7.4, it can be seen how the position error oscillates less as the speed
increases and how the steady state error remains constant with a value, based on the
previously made considerations on parameters uncertainties.
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7.2.2 Decresing Speed and Speed reversal
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Figure 7.5: Experimental results for no load decrementing steps and speed
reversal test

In the graphs in Fig. 7.5, it can be seen how the machine is decelerated from the starting
speed of 600 rpm through several steps of different amplitude. As in the previous test, a
good response in both steady and dynamic states is noticeable. The id current follows the
reference given, while, on the other hand iq differs from zero during mechanical transients.
When there are changes in speed due to inertia, peaks in the iq values appear.
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Figure 7.6: Position estimation and measurement comparison with relative
error during speed reversal and for negative speed
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In the graphs in Fig. 7.6, it can be seen how the position error diverges during the speed
reversal but the globally stable algorithm is able to track the change and bring the error
back to fluctuate around 0. As in the previous case the steady state error is a constant
value depending on parameters inaccuracies.

7.3 Test with load

In these tests, the sensorless algorithm is tested with some load. In the first test the
machine is run at the constant speed of 800 rpm while the load torque is brought to
half the rated one through steps of 2Nm. In the second test the machine is stepped in
the mid speed range from 400 rpm up to 1200 rpm, and then back to 400 rpm while
half rated torque load is applied. The tests show the performances during transients and
steady state of the algorithm in terms of position error. Unfortunately since it was not
possible to implement successfully the online estimation strategy for the parameters, it is
not possible to prove experimentally that a correction of parameters uncertainties would
affect positively the position error

7.3.1 Test with constant speed
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Figure 7.7: Experimental results for constant speed test with stepping load

The graphs in Fig. 7.7 show that the speed control is able to compensate for the torque
step disturbance. From the diagram of angle comparison and position error in Fig. 7.8 it
is possible to see that as the load increases, also the position error increases. As it was
shown in chap. 5, the parameters uncertainties affect the position error also through the
torque generating current.
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Figure 7.8: Position estimation and measurement comparison with relative
error during constant load test
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7.3.2 Test with constant load torque
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Figure 7.9: Experimental results for constant load test
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Figure 7.10: Position estimation and measurement comparison with relative
error during constant load test
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The last tests confirms what seen in the previous ones. The speed control is able to follow
the speed reference, compensating for the constant load torque disturbance. The steady
state position error is constant throughout the whole test since it depends mainly on the
load current which remains constant.
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Conclusion & Future Work 8
8.1 Conclusion

The thesis starts with a description of the concept of sensorless control for AC machines
and its applications. The discussion is restricted to Permanent Magnet Synchronous
Machines (PMSMs) and continues with a classification of the different classes of sensorless
control methods with a brief overview of each class’s proprieties. Through a literature
review the most common issues with each class are outlined together with proposed
solutions. It is decided to study the effects of parameter uncertainties and the possibilities
of using an online parameter estimation tool for the methods which use model based
observation of back-EMF components for estimating rotor position.

After its definition the problem is tackled from a theoretical point of view. First the
generic models for each component of a PMSM drive system are derived and outlined.
The model of the PMSM in the rotor and in the stationary two-phase is derived through
Park and Clarke transformations from the stationary three phase model. The Space
Vector Modulation (SVM) strategy is outlined and chosen for controlling the Voltage
Source Inverter (VSI) of the PMSM drive system.

The principle of Field Oriented Control for PMSM is then described together with practical
and graphical representation of the concept of field orientation. The Field oriented control
scheme used in this thesis is given and the design procedure is entirely carried out for the
system used in the experiments. First the current control loops are designed, followed by
the speed control loop. It is decided to carry out the control design for both control lops
directly in discrete for a successive straightforward implementation. The design is done
through root locus analysis in the z plane. The control loops include an anti wind-up
protection in order to reduce oscillations in case of saturation of the control variables.

The principle of rotor position estimation from back-EMF components is outlined. The
fundamental distinction from methods based on the stationary αβ model and the ones
based on a rotating reference frame model is given. It is chosen to study the methods
based on rotating reference frame model. Therefore the model of a PMSM in a rotating
estimated reference frame, the δγ reference frame, is derived from the αβ model through
Park transformation, by expressing the rotor position angle as function of the position
error. The effects of machine saliency on the complexity of the model are stressed. The
second Matsui method is then introduced and described. Its closed loop convergence
is studied analytically and numerically through the indirect Lyapunov method, so that
stability criteria can be derived for the estimator parameters. Four equilibria are found
and the convergences/stability of these are studied through phase plane analysis. The
extension to the method proposed by Nahid-Mobarakeh, a variable structure estimation
law which makes it globally convergent, is introduced. The performances of the sensorless
control algorithm are first evaluated through simulations which confirm the analytical
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results.

The effects of parameter uncertainties are analysed and a Model Reference Adaptive
System (MRAS) online estimation tool for the stator resistance is introduced and evaluated
through simulations.

In order to improve the experimental performances, a strategy for compensating the
voltage drops in the VSI due to the dead time and devices’ forward voltages is introduced
and implemented on the experimental platform. Finally the performances of the sensorless
control method are evaluated experimentally on a SPMSM drive system. The experimental
results confirm the analytical and numerical results for what concerns the convergence
criteria and effects of parameters uncertainties resulting in a position error in steady
state. It is showed that the position error increases as the machine is pulling more load,
this can be explained with the effects of parameters uncertainties which depend on the
torque current. Unfortunately it was not possible to fully implement the online estimation
tool which was the strategy intended to reduce the error.

8.2 Future Works

Troubleshooting the practical implementation of the online estimation tool should be the
first step for any further work on the project. It is important in order to evaluate if the
online estimation strategy is valid for practical application. In addition other strategies
for reducing the position error during operation with load should be considered. Solutions
using a Phase Locked Loop (PLL) are possible improvement for the used sensorless method
as proposed in [Eskola, 2006], together with solution which do not use static gains for
the estimator but dynamic ones for improving the transient response. In this sense
the relationships between the estimator performances and the bandwidth of the speed
controller should be studied.
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Appendices
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Digital Filter design A
As pointed out in chap. 4, in any practical application a Low Pass digital filter for the
estimated speed feedback is necessary in order to reduce the effects of system’s noise on
the speed controller.

The Low Pass filter is obtained through the discretization of a generic first order
continuous low pass filter. The filter transfer function is discretized through backward
Euler approximation of the differential operator.

The continuous Low Pass filter transfer function is given in Eq. A.1

H(s) =
y(s)

u(s)
=

1

τs+ 1
(A.1)

τ is the filter time constant. The differential equation is yielded from the transfer function

y(s)τs+ y(s) = u(s) (A.2)

The Laplace operator s is considered as a differential operator, which is approximated
through the backward Euler method as shown in Eq. A.3.

s =
z − 1

Tsz
(A.3)

Ts is the discrete sampling time which is related to the filter cut-off frequency by
τ = 1

2πf−3db
. This yields the expression for the filter in the z-domain and in the discrete

form in time domain.

y(z)τ
z − 1

Tsz
+ y(z) = u(z) (A.4)

y(z)τz − y(z)τ + y(z)Tsz = u(z)Tsz (A.5)

y(z)z = y(z)
τ

τ + Ts
+ u(z)z

Ts

τ + Ts
(A.6)

⇓ Z−1

y(k + 1) = y(k)
τ

τ + Ts
+ u(k + 1)

Ts

τ + Ts
(A.7)

Eq. A.7 is normally written as in Eq. A.8 so that the bandwidth of the digital filter is
normalized to the sampling time.

y(k + 1) = y(k)(1− a) + u(k + 1)a (A.8)
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a =
Ts

τ + Ts
(A.9)

The filter cutoff frequency is chosen to be 15 Hz which corresponds to a time constant of
about 10 ms.
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Stability Analysis for
Second Matsui method

speed estimator B
The stability of the 4 linear subsystems (Eq. 4.36-4.39) is analysed.

xe1 subsystem

The characteristic polynomial of the state matrix is calculated.

det

(
λI −

(
∂f(x)

∂x

)
x=xe1

)
= λ

(
λ+

p

J
TL0

)
+

3

2

p2

J
ψpmiγ(βψpm − 1) (B.1)

The Routh-Hurwitz criterion for stability demands that all the coefficients are positive.
Therefore iγ(βψpm − 1) > 0. With the hypothesis of a positive load torque (i.e. iγ > 0)
and using the chosen estimator gain β as in Eq. 4.40, then the following stability condition
applies.

(b sgn(ω̂r) + 1) < 0 (B.2)

xe2 subsystem

The characteristic polynomial of the state matrix is calculated.

det

(
λI −

(
∂f(x)

∂x

)
x=xe2

)
= λ

(
λ+

p

J
TL0

)
+

3

2

p2

J
ψpmiγ(βψpm + 1) (B.3)

The Routh-Hurwitz criterion for stability demands that all the coefficients are positive.
Therefore iγ(βψpm + 1) > 0. With the hypothesis of a positive load torque (i.e. iγ > 0)
and using the chosen estimator gain β as in Eq. 4.40, then the following stability condition
applies.

(b sgn(ω̂r)− 1) < 0 (B.4)

xe3 subsystem

The characteristic polynomial of the state matrix is calculated.

det

(
λI −

(
∂f(x)

∂x

)
x=xe3

)
= (λ− βψpmω

◦
r )

(
λ+

p

J

dTL(ω◦r )

dωr

)
(B.5)
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= λ2 + λ

(
p

J

dTL(ω◦r )

dωr
+ b|ω◦r |

)
+ b|ω◦r |

p

J

dTL(ω◦r )

dωr
(B.6)

The Routh-Hurwitz criterion for stability demands that all the coefficients are positive.
With the hypothesis of a positive load torque derivative with respect to speed and using
the chosen estimator gain β as in Eq. 4.40, then the following stability condition applies.

b > 0 (B.7)

xe4 subsystem

The characteristic polynomial of the state matrix is calculated.

det

(
λI −

(
∂f(x)

∂x

)
x=xe4

)
=
(
λ+ βψpmω

+
r

)(
λ+

p

J

dTL(ω+
r )

dωr

)
(B.8)

= λ2 + λ

(
p

J

dTL(ω+
r )

dωr
− b ω+

r · sgn(ω+
r cos θ̃e4)

)
− b ω+

r · sgn(ω+
r cos θ̃e4)

p

J

dTL(ω+
r )

dωr

(B.9)

= λ2 + λ

(
p

J

dTL(ω+
r )

dωr
− b |ω+

r | · sgn(cos θ̃e4)

)
− b |ω+

r | · sgn(cos θ̃e4)
p

J

dTL(ω+
r )

dωr

(B.10)

The Routh-Hurwitz criterion for stability demands that all the coefficients are positive.
With the hypothesis of a positive load torque derivative with respect to speed and using
the chosen estimator gain β as in Eq. 4.40, then the following stability condition applies.

b · sgn(cos 2 arctan(−b)) < 0 (B.11)

The sign of b · sgn(cos 2 arctan(−b)) is plotted for different values of b in Fig. B.1
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Figure B.1: Sign of b · sgn(cos 2 arctan(−b))
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Fig. B.1 shows that the stability condition in Eq. B.11 is equivalent to the condition
stated in Eq. B.12

− 1 < b < 0 ∨ b > 1 (B.12)
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