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Resumé

Ved beregning af betingede Gaussiske fordelinger, stiger beregningstiden n̊ar antallet af

betingende variable g̊ar op. Det er derfor nødvendigt med nye metoder for at reducere

beregningstiden, da den datamængde vi kan indsamle konstant vokser og beregningsti-

den dermed øges.

I dag findes metoder til at beregne betingede Gaussiske fordelinger, hvor variablene

kan repræsenteres via en dekomposabel model, der er hurtigere end den simple direkte

metode, som kræver invertering af kovariance matricen for de betingende variable. I

rapporten præsenteres en ny metode som ikke benytter matrix inversion.

Den grundlæggende grafteori bliver gennemg̊aet, efterfulgt af den dekomposable flerdi-

mensionale normalfordeling og maximum likelihood estimationen af denne.

Den nye metode bliver derefter præsenteret, opdelt i tre dele. En initialisering, som

omskriver simultan fordelingen til et produkt af potentialer. Herefter en frem og tilbage

propagering hvor de enkelte variable gennemløbes. Dernæst præsenteres en general

udgave hvor hele klynger opdateres p̊a samme tid.

Slutteligt beskrives R kode implementeringen af algoritmen og R koden brugt til at

teste hastigheden ved den nye metode. Den bliver derefter holdt op mod den direkte

metode.
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Chapter 1

Introduction

When calculating conditional Gaussian distributions, the computational time goes up

with the number of conditioning variables. This creates a need to find faster ways of

obtaining the same results, as the amount of data we can collect constantly increases

thereby increasing the computational time.

The simple method of calculating conditional Gaussian Distributions involves invert-

ing a large matrix. Today there are, in the case of decomposable models, a faster

approaches.

We will present a new method that does not rely on matrix inversion, except for an

initialization. The original draft for the algorithm in this method was provided by Poul

Svante Eriksen.

Basic graph theory is first presented, which defines the terminology used later. The

decomposable multivariate normal distribution and its maximum likelihood estimation

are then presented as they form the basis for the new method. The new method is laid

out along with a more general case, which also covers an existing method. Lastly, the

implemented code for the new method and testing is presented followed by a comparison

of this and a more simple method.
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Chapter 2

Basic Graph theory

[Cowell et al., 1999][Chapter 4]

A graph G = (V,E) is a finite set V (vertices) and a set E of ordered (a, b) and

unordered {a, b} pairs (edge) of elements from V . In this report we will restrict E so

a 6= b and it only can have one pair containing both a and b. An unordered edge {a, b}
is called undirected. A graph is called undirected if all edges in E are unordered and

we say that a and b are neighbors which we write as a ∼ b. All neighbors of a vertex a

is denoted ne(a). If an edge (a, b) in E is ordered, we call the edge directed a→ b, say

that a is a parent of b and that b is a child of a. A graph is called directed if all edges

in E are directed and all parents of a vertex a is denoted pa(a).

Let A be a subset of V and let GA denote the graph restricted to A, then GA is called

a subgraph of G.

A graph G = (V,E) is called complete if all vertices are connected, i.e. for all a, b ∈
V |a 6= b, E contains a pair with a and b. A subgraph GA = (A,EA) and the subset A

are called complete if EA contains a pair with a and b for all a, b ∈ A|a 6= b. Given a

complete subgraph A, if there exists no subgraph B such that A ⊂ B and B is complete,

then A is called a clique.

The cliques (C1, . . . , Cq) of a graph is said to have a running intersection property if

they can be ordered such that for i = 1, . . . , q − 1 there is a j ∈ {Ci+1, . . . , Cq} such

that

Ci ∩ (Ci+1 ∪ . . . ∪ Cq) ⊂ Cj
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A Path from vertex c to d in a graph is a sequence of vertices a0, a1, . . . , an such that

c = a0, d = an and {ai−1, ai} ∈ E or (ai−1, ai) ∈ E for i = 1, . . . , n. If at least one

of these edges is directed ai−1 → ai it is a directed path. A n-cycle is a path where

a0 = an and is called a directed cycle if it is a directed path. We call a graph acyclic

if it contains no cycles. If a graph is directed and acyclic it is called a Directed Acyclic

Graph (DAG).

If pa(ai) for all ai in a DAG form a complete subset, the DAG is called perfect. The

numbering/sequence of the vertices a1, . . . , an in a DAG G is perfect if aj ∈ pa(ai) ⇒
i < j for all ai ∈ G. The sequence of the vertices in an undirected graph is perfect

if ne(ai) ∩ {ai+1, . . . an} for all ai ∈ G forms a complete sub-graph. Given a perfect

sequence of an undirected graph, a directed version can be obtained by directing all

edges so they go from higher to lower numbered vertices. Note that other litterateur

defines a perfect sequence/numbering as the reverse.

A subset C ⊆ V is said to be a (a, b)-separator, or separate A and B, if every path

from any a ∈ A to any b ∈ B intersects C in the undirected version of V . If no proper

subset of an (a, b)-separator C exist that also is an (a, b)-separator, then C is a minimal

(a, b)-separator.

Given two non-consecutive vertices ai aj in a n-cycle in a graph G, then if G contains

the edge (ai, aj), that edge is called a chord. We call an undirected graph chordal or

triangulated if all its n-cycles with n ≥ 4 contains a chord.

Definition 2.1 (Decomposition)

Given an undirected graph G = (V,E) and let A, B and C be three disjoint subsets of

V , then we say (A,B,C) form a decomposition of G or decompose G, if

• V = A ∪B ∪ C;

• A from B are separated by C;

• C is complete.

Note that any of the three subsets can be empty, and if A and B are non-empty subsets

the decomposition is said to be proper.

Definition 2.2 (Decomposable graph)

An undirected graph G is said to be decomposable either G is complete or there exist a

proper decomposition of G such that the subgraphs GA∪C and GB∪C are decomposable.
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With this we can now show the connection between decomposable and chordal graphs

Theorem 2.3

Given an undirected graph G the following is equivalent:

1. G is decomposable;

2. G is chordal;

3. Every minimal (a, b)-separator is complete.

Proof.

The conditions are always true for three or fewer vertices. The proof now follows by

induction. Assume that it is true if the number of vertices |V | ≥ n and consider a graph

where |V | = n+ 1.

1⇒ 2:

If G is decomposable it can either be complete, in which case G is also chordal, or

properly decomposed into GA∪C and GB∪C . These both contain less than n+ 1 vertices

and are therefore chordal, so for G not to be chordal there must be a chordless cycle

intersecting A and B. Since C is the separator, this cycle must intersect C at least

twice. However, then the cycle contains a chord since C is assumed to be complete.

2⇒ 3:

Now assume that G is chordal and we have a minimal (a, b) − separator C. If C is

a single vertex, it is complete. Assume C is not complete and contain more than one

vertex. Then select two non-adjacent vertices s1 and s2. There is a path going from a

through s1 to b and back to a through s2 since C is minimal. This forms a cycle if we

allow it to have repeated vertices. These repeated vertices and chords in the cycle are

now used to shorten the cycle, still leaving one vertex in A and one in B. This must

lead to a cycle with a length of at least 4. This must contain a chord, and as there can

be no chord from A to B, it must connect s1 and s2. Since it is not possible not have

two non-adjacent vertices in C, it is complete.

3⇒ 1:

We now suppose that every minimal (a, b)-separator is complete. If G is complete

it is decomposable, so assume there are two non-adjacent vertices a and b. We also

suppose that this result holds for every proper sub-graph of G. Let C be a minimal

(a, b)-separator that divides the vertices in G into A, B, C and D (where D is the

5



remaining vertices and might be empty). Since C is complete, (A ∪ D,B,C) form a

proper decomposition of G. For G to be decomposable, the sub-graphs GA∪D∪C and

GB∪C must also be decomposable. Let C1 be a minimal (a1, b1)-separator in GA∪D∪C ,

then it is also a minimal separator in G and by assumption complete. The same goes

for GB∪D and since these are proper sub-graphs it holds for them by assumption. We

can therefore decompose G into decomposable sub-graphs.

�

The following is from [Lauritzen, 2004, Proposition 2.17]

Theorem 2.4

A undirected graph G is decomposable if and only if the vertices in G admits a perfect

numbering.

To obtain a perfect directed graph, use the perfect numbering of the undirected version

and direct all edges to go from higher to lower numbered vertices.

From this we see that G just needs to be chordal to admit a perfect numbering. To

determine whether an undirected graph is chordal a Maximum Cardinality Search can

be preformed:

Algorithm 2.5 (Maximum Cardinality Search)

• Set Output:=”G is chordal”

• Set counter i := 1

• Set L = ∅

• For all v ∈ V , set c(v) := 0

• While L 6= V :

– Set U := V \ L

– Select any vertex v ∈ U such that c(v) ≥ c(w)∀w ∈ U and label it i.

– If
∏

vi
:= ne(vi) ∩ L is not complete in (G) {

Set Output:=”G is not chordal” break}
else Set c(w) := c(w) + 1∀w ∈ ne(vi) ∩ U

– Set L := L ∪ {vi}

6



– Set i := i+ 1

• return Output

Not only does this help to figure out if G is chordal, but it also determine a perfect

numbering of G which is contained in L.

Theorem 2.6

[Tarjan and Yannakakis, 1984] If G is chordal, then the reverse numbering provided by

the Maximum Cardinality Search is a perfect numbering of G

7
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Chapter 3

Multivariate Normal Distribution

[Seber, 1984]

Let x = (x1, . . . , xd)
T be a vector of random variables. Then x is said to have a

multivariate normal distribution with mean µ (d× 1 vector) and covariance matrix Σ

(d× d matrix) if its density function is

f(x) = (2π)−d/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ Rd

We write that x ∼ Nd(µ,Σ), where µi = E[Xi], Σij = Cov[Xi, Xj] and Σii = Var[Xi] >

0.

Let x ∼ Nd(µ,Σ) and dividing x into two parts x = (xT1 ,x
T
2 )T , then we can split µ

and Σ accordingly so

µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)

The conditional properties of the normal distribution of X1 given X2 = x2 is

N (µ1|2,Σ1|2) where

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21

9



Proof.

[Lauritzen, 2004][C.1]

The following matrix equality is used later. Let

E = A−BD−1C F = D−1C G = BD−1

then (
A B

C D

)−1

=

(
E−1 −E−1G

−FE−1 D−1 + FE−1G

)
(3.1)

Which can be seen by finding the product of the matrices(
A B

C D

)
×
(

E−1 −E−1G

−FE−1 D−1 + FE−1G

)
=

(
AE−1 −BFE−1 −AE−1G+BD−1 +BFE−1G

CE−1 −DFE−1 −CE−1G+DD−1 +DFE−1G

)
=

(
(A−BF )E−1 G− (A−BF )E−1G

(C −DF )E−1 I + (DF − C)E−1G

)
=

(
EE−1 G− EE−1G

(C −DD−1C)E−1 I + (DD−1C − C)E−1G

)
=

(
I 0

0 I

)

Let Q = Σ−1 be partitioned like Σ. Using that the joint and conditional density is

proportional and that x2 is known, we get that

f(x1|x2) ∝ f(x)

= (2π)−d/2|Σ|−1/2 exp

(
−1

2

((
x1

x2

)
−
(
µ1

µ2

))T (
Q11 Q12

Q21 Q22

)((
x1

x2

)
−
(
µ1

µ2

)))

∝ exp

(
−1

2
(x1 − µ1)TQ11(x1 − µ1)− (x1 − µ1)TQ12(x2 − µ2)

)
∝ exp

(
−1

2
xT1Q11x1 + xT1 (Q11µ1 −Q12(x2 − µ2))

)

From this we see that Σ1|2 = Q−1
11 . Knowing this and taking the linear term for x1 we

10



get

Q11µ1|2 =Q11µ1 −Q12(x2 − µ2)

Q11µ1|2 =Q11(µ1 −Q−1
11Q12(x2 − µ2))

µ1|2 =µ1 −Q−1
11Q12(x2 − µ2)

Using (3.1) we get the result

Σ1|2 = Q−1
11

= (E−1)−1

= Σ11 −Σ12Σ
−1
22 Σ21

µ1|2 =µ1 −Q−1
11Q12(x2 − µ2)

=µ1 + (E−1)−1E−1G(x2 − µ2)

=µ1 + Σ12Σ
−1
22 (x2 − µ2)

�

3.1 Maximum Likelihood Estimation

[Seber, 1984][sec:3.2.1]

Let x1,x2, . . . ,xn be i.i.d. with xi ∼ Nd(µ,Σ) and n > d. Now we will show that

the Maximum Likelihood Estimates (MLE) of µ and Σ are the same as the observed

sample mean and sample covariance matrix

µ̂ =
1

n

n∑
i=1

xi

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T

The joint distribution of x1,x2, . . . ,xn taken as a function of µ and Σ is the likelihood

11



L(µ,Σ) =
1√

(2π)nd|Σ|n
exp

(
−1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

We rewrite the log likelihood by using the trace property tr(ABC) = tr(BCA) and

k = −1
2
nd log(2π)

l(µ,Σ) =k − 1

2
n log |Σ| − 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ)

=k − 1

2
n log |Σ| − 1

2

n∑
i=1

tr
(
(xi − µ)TΣ−1(xi − µ)

)
=k − 1

2
n log |Σ| − 1

2
tr

(
Σ−1

n∑
i=1

(xi − µ)(xi − µ)T

)

Now we want to find the µ that maximizes l(µ,Σ). Looking at the remaining part∑n
i=1(xi − µ)(xi − µ)T , which is none negative, and knowing Σ−1 > 0, since Σ > 0,

we want to minimize this. We write

n∑
i=1

(xi − µ)(xi − µ)T

=
n∑
i=1

(xi − µ̂+ µ̂− µ)(xi − µ̂+ µ̂− µ)T

=
n∑
i=1

(xi − µ̂)(xi − µ̂)T +
n∑
i=1

(µ̂− µ)(µ̂− µ)T + 2(µ̂− µ)
n∑
i=1

(xi − µ̂)︸ ︷︷ ︸
0

=
n∑
i=1

(xi − µ̂)(xi − µ̂)T + n(µ̂− µ)(µ̂− µ)T

Looking at this along with Σ−1 we see that

tr
(
Σ−1(xi − µ̂)(xi − µ̂)T

)
= (xi − µ̂)Σ−1(xi − µ̂)T ≥ 0

tr
(
Σ−1(µ̂− µ)(µ̂− µ)T

)
= (µ̂− µ)Σ−1(µ̂− µ)T ≥ 0

12



which is minimized, along with l(µ,Σ) being maximized, when µ := µ̂. Next we want

to find what Σ > 0 will maximize

l(µ̂,Σ) = k − 1

2
n log |Σ| − 1

2
tr

(
Σ−1

n∑
i=1

(xi − µ̂)(xi − µ̂)T

)

= k − 1

2
n

(
log |Σ|+ tr

(
Σ−1

∑n
i=1(xi − µ̂)(xi − µ̂)T

n

))

From [Seber, 1984][A.7.1] we get that this is uniquely maximized when

Σ :=

∑n
i=1(xi − µ̂)(xi − µ̂)T

n
= Σ̂ (3.2)

This method is called ordinary least squares. When µ is unknown and µ̂ is used instead

we get a biased estimate. In which case we use n
n−1

Σ̂ to obtain an unbiased estimate.

3.1.1 Conditional MLE

Let x = (xTA,x
T
B)T ∼ Nd(µ,Σ), then the MLE are

µ̂ =

(
µ̂A
µ̂B

)
and Σ̂ =

(
Σ̂AA Σ̂AB

Σ̂BA Σ̂BB

)

This is used when looking at XA|XB ∼ N (µA|B,ΣA|B) and determining the MLE of

µA|B and ΣA|B, as this can be done by estimating each part, which were found by the

MLE from a sample and properties of the multivariate normal.

µ̂A|B = µ̂A + Σ̂ABΣ̂−1
BB(xB − µ̂B)

Σ̂A|B = Σ̂AA − Σ̂ABΣ̂−1
BBΣ̂BA

Here Σ̂A|B can be rewritten to obtain a similar result as in the unconditional case. Let

the estimated regression coefficients be Σ̂ABΣ̂−1
BB = β̂T

13



Σ̂A|B = Σ̂AA − β̂T Σ̂BA

= Σ̂AA + β̂T Σ̂BBΣ̂−1
BBΣ̂BA − 2β̂T Σ̂BA

= Σ̂AA + β̂T Σ̂BBβ̂ − 2β̂T Σ̂BA

=
1

n

n∑
i=1

[
(xAi − µ̂A)(xAi − µ̂A)T + β̂T (xBi − µ̂B)(xBi − µ̂B)T β̂ − 2β̂T (xBi − µ̂B)(xAi − µ̂A)T

]
=

1

n

n∑
i=1

[
(xAi − µ̂A)− β̂T (xBi − µ̂B)

] [
(xAi − µ̂A)− β̂T (xBi − µ̂B)

]T
=

1

n

n∑
i=1

[
xAi − µ̂A|B

] [
xAi − µ̂A|B

]T
(3.3)

14



Chapter 4

Obtaining conditional distributions

When needing to find the exact conditional distribution of a multivariate normal dis-

tribution different methods can be used. One can try to calculate it directly using

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21

This method suffers when the dimension of x2 becomes larger, as computing the inverse

of Σ22 has polynomial growth. Using a simple naive method it takes O(n3) time to

compute the inverse of a n× n matrix. Other methods have been developed and today

it can be done in O(n2.3728639) [Gall, 2014].

Another way is to use the Junction Tree Algorithm (JTA) [Paskin, 2003], which requires

the variables to be represented by a junction tree that they can if and only if they admit

a perfect numbering[Cowell et al., 1999][Ch.4].

We will now present a new method that takes the same requirements as the JTA. After

that a general case will be presented, that covers both the new method and the JTA.

4.1 A new method

In this section, we will show a method to obtain conditional distributions of unobserved

variables given observed variables. The dependencies between the variables must be

15



such that they may be represented by a DAG with a perfect numbering. This method

is divided into three main steps; Initialization, forward propagation and backward prop-

agation.

4.1.1 Initialization

Given the variables X1, . . . , Xn let them be ordered such that they form a perfect

sequence when we assume a decomposable model. This can be obtained by running

the maximum cardinality search algorithm. As such we may represent the model by a

DAG.

Thus the joint density is given by

f(x) =
n∏
i=1

f(xi|xpa(i))

Let Cov(Xi, Xpa(i)) = Σ{i},pa(i) := Σi,pa(i), then f(xi|xpa(i)) have mean µ̄i and variance

τ 2
i :

µ̄i = µi + Σi,pa(i)Σ
−1
pa(i),pa(i)(xpa(i) − µpa(i))

= µi −Σi,pa(i)Σ
−1
pa(i),pa(i)µpa(i)︸ ︷︷ ︸
αi

+ Σi,pa(i)Σ
−1
pa(i),pa(i)︸ ︷︷ ︸

βT
i

xpa(i)

τ 2
i = Var(Xi)−Σi,pa(i)Σ

−1
pa(i),pa(i)Σpa(i),i

Then it is seen that Xi is a linear regression on Xpa(i):

log(f(xi|xpa(i)) = −1

2
log(2πτ 2

i )− 1

2τ 2
i

(xi − αi − βTi xpa(i))
2

The regression coefficients vector βi = (βi,j)j∈pa(i) is indexed by pa(i). Note that by

standardising all variables, i.e. µi = 0 Σi,i = 1 ∀ i ∈ {1, . . . , n}, then αi = 0 ∀ i ∈
{1, . . . , n}.

16



The Maximum Likelihood Estimates(MLE) of αi,βi, τi are obtained by ordinary least

squares as was shown earlier in section 3.1.

Note that the estimate of τ 2
i is obtained by the sum of squared errors divided by the

sample size if µ̄i is known or sample size minus one if µ̄i is estimated.

That this estimate is the same as above can be seen by rewriting τ 2
i , as in (3.3).

Expanding log(f(xi|xpa(i)) gives:

log(f(xi|xpa(i))

=− 1

2
log(2πτ 2

i )− 1

2τ 2
i

(xi − αi − βTi xpa(i))
2

=− 1

2
log(2πτ 2

i )− 1

2τ 2
i

(α2
i + x2

i − 2xiαi − 2xiβ
T
i xpa(i) + 2αiβ

T
i xpa(i) + βTi xpa(i)x

T
pa(i)βi)

=−1

2
(log(2πτ 2

i ) +
α2
i

τ 2
i

)︸ ︷︷ ︸
κi

− 1

2τ 2
i

(x2
i − 2xiαi − 2xiβ

T
i xpa(i) + 2αiβ

T
i xpa(i) + βTi xpa(i)x

T
pa(i)βi)

Therefore the logarithm of the normalizing constant of f(x) is:

κ =
n∑
i=1

κi =
n∑
i=1

−1

2
(log(2πτ 2

i ) +
α2
i

τ 2
i

)

The remaining contribution of log(f(xi|xpa(i)) to log(f(x)) is

g(xi|xpa(i))) = log(f(xi|xpa(i)))− κi

We shall use the fact that the joint distribution, without the normalizing constant κ,

may be written as product of potentials p(xi,xpa(i)), which can be represented as

log(p(xi,xpa(i))) = −1

2
λix

2
i + δixi − xixTpa(i)γi

where γi = (γi,j)j∈pa(i) is indexed by pa(i).

If we initialize λi, δi,γi by zeroes, then we obtain these parameters by looping i = 1 . . . , n

and collecting terms from g(xi|xpa(i)):
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g(xi|xpa(i)))

=− 1

2τ 2
i

(x2
i − 2xiαi − 2xiβ

T
i xpa(i) + 2αiβ

T
i xpa(i) + βTi xpa(i)x

T
pa(i)βi)

=− 1

2

1

τ 2
i︸︷︷︸

+λi

x2
i +

αi
τ 2
i︸︷︷︸

+δi

xi − xixTpa(i)

−βi
τ 2
i︸︷︷︸

+γi

−αiβ
T
i

τ 2
i

xpa(i) −
βTi xpa(i)x

T
pa(i)βi

2τ 2
i

The parameters of log(p(xi,xpa(i))) is updated:

λi := λi +
1

τ 2
i

, δi := δi +
αi
τ 2
i

and γi := γi −
βi
τ 2
i

That leaves:

− αiβ
T
i

τ 2
i

xpa(i) −
βTi xpa(i)x

T
pa(i)βi

2τ 2
i

=
∑
j∈pa(i)

−αiβi,j
τ 2
i

xj −
∑

j,h∈pa(i)

βi,jβi,hxjxh
2τ 2
i

=
∑
j∈pa(i)

−αiβi,j
τ 2
i︸ ︷︷ ︸

+δj

xj −
1

2

∑
j∈pa(i)

β2
i,j

τ 2
i︸︷︷︸

+λj

x2
j −

∑
j∈pa(i)

∑
h∈pa(i)|h>j

xjxh
βi,jβi,h
τ 2
i︸ ︷︷ ︸

+γj,h

which is used to update parameters for the parents:

For j ∈ pa(i) : λj := λj +
β2
i,j

τ 2
i

and δj := δj −
αiβi,j
τ 2
i

For j ∈ pa(i) : for h ∈ pa(i) : if h > j : γj,h := γj,h +
βi,jβi,h
τ 2
i

Note that when j, h ∈ pa(i) and h > j then h ∈ pa(j), since pa(i) is a complete set in

the graph.
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4.1.2 Forward propagation

After the initialization, we then have the representation

log(f(x)) = κ+
n∑
i=1

log(p(xi,xpa(i)))

Let e be a subset of {1, . . . , n} corresponding to the set of observed variables and

let ē correspond to the set of unobserved variables. We then intend to calculate

f(xe) =
∫
Rdim(ē) f(xe,xē) dxē, i.e. the likelihood of the actual observation. We do

this by a forward propagation, where we loop i = 1, . . . , n and perform one of the fol-

lowing.

Option 1: If i ∈ e
We use the fact that xi is now just a number, so from the i’th potential we get

log(p(xi,xpa(i))) =− 1

2
λix

2
i + δixi − xixTpa(i)γi

=−1

2
λix

2
i + δixi︸ ︷︷ ︸

+κ

−
∑
j∈pa(i)

xiγi,j︸ ︷︷ ︸
+δj

xj

which means that the log-normalizing constant is updated as

κ := κ− 1

2
λix

2
i + δixi

and the parents receives an parameter update:

For j ∈ pa(i) : δj := δj − xiγi,j

Option 2: If i ∈ ē

19



First rewriting the log-potential

log(p(xi,xpa(i)))

=− 1

2
λix

2
i + δixi − xixTpa(i)γi

=− 1

2
λi

x2
i −

2δixi
λi

+ 2
xix

T
pa(i)γi

λi
+

(
− δi
λi

)2

+

(
xTpa(i)γi

λi

)2

− 2
δix

T
pa(i)γi

λ2
i


− 1

2
λi

−(− δi
λi

)2

−

(
xTpa(i)γi

λi

)2

+ 2
δix

T
pa(i)γi

λ2
i


=− 1

2λ−1
i

(
xi −

(
δi
λi
−
xTpa(i)γi

λi

))2

+
1

2λi

(
δ2
i +

(
xTpa(i)γi

)2 − 2δix
T
pa(i)γi

)
=− 1

2
log(

2π

λi
)− 1

2λ−1
i

(
xi −

(
δi
λi
−
xTpa(i)γi

λi

))2

+
1

2
log(

2π

λi
) +

1

2λi

(
δ2
i +

(
xTpa(i)γi

)2 − 2δix
T
pa(i)γi

)
Then integrate out xi in the potential

∫
R
p(xi,xpa(i)) dxi =

∫
R

1√
2πλ−1

i

exp

− 1

2λ−1
i

(
xi −

(
δi
λi
−
xTpa(i)γi

λi

))2
 dxi

× exp

(
1

2
log(

2π

λi
) +

1

2λi

(
δ2
i +

(
xTpa(i)γi

)2 − 2δix
T
pa(i)γi

))
= exp

(
1

2
log(

2π

λi
) +

1

2λi

(
δ2
i +

(
xTpa(i)γi

)2 − 2δix
T
pa(i)γi

))
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which yields the log-message:

log

∫
R
p(xi,xpa(i)) dxi =

1

2
log(

2π

λi
) +

1

2λi
(δ2
i − 2δix

T
pa(i)γi + γTi xpa(i)x

T
pa(i)γi)

=
1

2
(log(

2π

λi
) +

1

λi
δ2
i )−

δix
T
pa(i)γi

λi
+
γTi xpa(i)x

T
pa(i)γi

2λi

=
1

2
(log(

2π

λi
) +

1

λi
δ2
i )︸ ︷︷ ︸

+κ

+
∑
j∈pa(i)

−δiγi,j
λi︸ ︷︷ ︸

+δj

xj

+
∑
j∈pa(i)

−1

2

−γ2
i,j

λi︸ ︷︷ ︸
+λj

x2
j +

∑
j∈pa(i)

∑
h∈pa(i)|h>j

−xjxh
−γi,jγi,h

λi︸ ︷︷ ︸
+γj,h

Hence we update the normalizing constant and the parent parameters accordingly:

κ := κ+
1

2
(log(

2π

λi
) +

1

λi
δ2
i )

For j ∈ pa(i) : λj := λj −
γ2
i,j

λi
and δj := δj −

δiγi,j
λi

For j ∈ pa(i) : for h ∈ pa(i) : if h > j : γj,h := γj,h −
γi,jγi,h
λi

After this forward propagation we have that log(f(xe)) = κ and p(xi,xpa(i)) is propor-

tional to f(xi|xpa(i)∪e) for i ∈ ē. The last part may not be obvious, but remark that for

i ∈ ē:

• Let b index the observed variables preceding Xi and let d index the observed

variables descending Xi in the DAG, i.e. b ∪ d = e

• The potential p(xi,xpa(i)) of Xi after forward propagation is proportional to the

distribution of Xi given Xb∪pa(i). As Xi given Xb∪pa(i) is independent of Xd due

to the property of a DAG, we can conclude that p(xi,xpa(i)) is also proportional

to the distribution of Xi given Xpa(i)∪e.
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4.1.3 Backward propagation

Next, we want to determine f(xi|xe) when i ∈ ē. First we rewrite the i’th potential

log(p(xi,xpa(i))) =− 1

2
λix

2
i + δixi − xixTpa(i)γi

=− 1

2
λix

2
i + δixi − xixTpa(i)γi −

δ2
i

2λi
−

(xTpa(i)γi)
2

2λi
+
δix

T
pa(i)γi

λi

+
δ2
i

2λi
+

(xTpa(i)γi)
2

2λi
−
δix

T
pa(i)γi

λi

=− λi
2

(xi −
1

λi
(δi − xTpa(i)γi))

2 +
1

2λi
(δi − xTpa(i)γi)

2

This means, that after the forward propagation we may from the i’th potential param-

eters calculate:

• Mi := E(Xi|Xpa(i)∪e = xpa(i)∪e) =
1

λi
(δi − xTpa(i)γi)

• Vi := Var(Xi|Xpa(i)∪e) =
1

λi

Next we do a backward propagation, where we loop i = n, . . . , 1 and exploit that for

i ∈ e then

• µ̃i := E(Xi|Xe = xe) = xi

• σ̃2
i := Var(Xi|Xe) = 0

• ς̃i := Cov(Xi, Xpa(i)|Xe) = 0

This is used to calculate µ̃i, σ̃
2
i and ς̃i when i ∈ ē.

For µ̃i we first use the fact that E(X|Z) = E(E(X|Y )|Z) and then that E(αX+β|Z) =

αE(X|Z) + β:
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µ̃i :=E(Xi|Xe = xe)

=E(Mi|Xe = xe)

=
1

λi
(δi − γTi E(Xpa(i)|Xe = xe))

=
1

λi
(δi − γTi µ̃pa(i))

For σ̃2
i we use Var(X|Z) = E(Var(X|Y )|Z) + Var(E(X|Y )|Z) for the first equality then

E(α|Z) = α and Var(αX + β|Z) = α2Var(X|Z) for the third equality:

σ̃2
i :=Var(Xi|Xe)

=E(Vi|Xe = xe) + Var(Mi|Xe)

=E(
1

λi
|Xe = xe) + Var(

δi
λi
−
XT
pa(i)γi

λi
)|Xe)

=
1

λi
+

1

λ2
i

γTi Var(Xpa(i)|Xe)γi

For ς̃i we again use that E(X|Z) = E(E(X|Y )|Z) along with

• Cov(X, Y |Z) = E(XY |Z)− E(X|Z)E(Y |Z)

• E(XY |X) = XE(Y |X)

• Cov(αX + β, Y |Z) = αCov(X, Y |Z)

ς̃i :=Cov(Xi, Xpa(i)|Xe)

=E(Xpa(i)Xi|Xe = xe)− E(Xpa(i)|Xe = xe)E(Xi|Xe = xe)

=E(E(Xpa(i)Xi|Xpa(i)∪e = xpa(i)∪e)|Xe = xe)− E(Xpa(i)|Xe = xe)E(Mi|Xe = xe)

=E(Xpa(i)Mi|Xe = xe)− E(Xpa(i)|Xe = xe)E(Mi|Xe = xe)

=Cov(Mi, Xpa(i)|Xe)

=Cov(
δi
λi
−
XT
pa(i)γi

λi
, Xpa(i)|Xe)

=− 1

λi
γTi Var(Xpa(i)|Xe)
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where Var(Xpa(i)|Xe) is determined from (σ̃2
j , ς̃j) , j ∈ pa(i).

After the forward and backward propagation we have that

f(xe) = exp(κ)

(Xi|Xe = xe) ∼ N(µ̃i, σ̃
2
i ) for i = 1, . . . , n

For all index variables pairs i < j that are connected in the graph, then the propagation

algorithm also has determined

Cov(Xi, Xj|Xe) = ς̃i,j

Thus, for any complete subset a of the graph, we can determine the distribution of

Xa|Xe.

4.2 General case

In the previous section, we showed how to do the estimation when updating one vertex

at the time. We will now show the case where we update complete clusters of vertices.

4.2.1 Initialization

Given the variables X1, . . . , Xn let them be ordered such that they form a perfect

sequence and represent them by a DAG. From that we obtain an ordering of the cliques

C1, . . . , Cq such that they have the running intersection property

Si = Ci ∩ (Ci+1 ∪ . . . ∪ Cq) ⊂ Cj for j ∈ {i+ 1, . . . , q}

Let Ci \ Si = C∗i and Y1, . . . ,Ym be vectors of variables such that

Y1 = (X1, . . . , Xk1)T , Y2 = (Xk1+1, . . . , Xk2)T , . . . , Ym = (Xkm−1+1, . . . , Xn)T

where Yi ⊂ C∗j , i.e. each C∗j is split into disjoint subsets. For convenience let Yi =

(Xki−1+1, . . . , Xki)
T = (Yki−1+1, . . . , Yki)

T

The joint density is now given by

f(x) = f(y) =
m∏
i=1

f(yi|ypa(i))
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where ypa(i) = xpa(ki).

Let Cov(Yi,Ypa(i)) = Σ{i},pa(i) := Σi,pa(i), then f(yi|ypa(i)) have mean µ̄i and co-variance

matrix Σ̄i,i:

µ̄i = µi + Σi,pa(i)Σ
−1
pa(i),pa(i)(ypa(i) − µpa(i))

= µi −Σi,pa(i)Σ
−1
pa(i),pa(i)µpa(i)︸ ︷︷ ︸

αi

+ Σi,pa(i)Σ
−1
pa(i),pa(i)︸ ︷︷ ︸

βT
i

ypa(i)

Σ̄i,i = Σi,i −Σi,pa(i)Σ
−1
pa(i),pa(i)Σpa(i),i

Let Ki = {ki−1 + 1, . . . , ki} and Σ̄−1
i,i = Qi which gives us:

log(f(yi|ypa(i)) = −1

2
log(|Σ̄i,i|)−

|Ki|
2

log(2π)− 1

2
(yi −αi − βTi ypa(i))

TQi(yi −αi − βTi ypa(i))

Here the regression coefficients matrix βi = (βi(s,h)), αi = (αi(h)) where h ∈ Ki , s ∈
Kpa(i) and the Maximum Likelihood Estimates(MLE) of αi,βi, Σ̄i,i are obtained.

Expanding log(f(yi|ypa(i)) gives:

log(f(yi|ypa(i))

=− 1

2
log(|Σ̄i,i|)−

|Ki|
2

log(2π)− 1

2
(yi −αi − βTi ypa(i))

TQi(yi −αi − βTi ypa(i))

=− 1

2
log(|Σ̄i,i|)−

|Ki|
2

log(2π)

− 1

2

(
αTi Q

iαi + yTi Q
iyi − 2αTi Q

iyi − 2yTpa(i)βiQ
iyi + 2αTi Q

iβTi ypa(i) + yTpa(i)βiQ
iβTi ypa(i)

)
=−1

2

(
log(|Σ̄i,i|) + |Ki| log(2π) +αTi Q

iαi
)

︸ ︷︷ ︸
κi

− 1

2
yTi Q

iyi +αTi Q
iyi + yTpa(i)βiQ

iyi −αTi QiβTi ypa(i) −
1

2
yTpa(i)βiQ

iβTi ypa(i)
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Therefore the logarithm of the normalizing constant is:

κ =
m∑
i=1

κi =
m∑
i=1

−1

2

(
log(|Σ̄i,i|) + |Ki| log(2π) +αTi Q

iαi
)

The remaining contribution of log(f(yi|ypa(i)) to log(f(y)) is

g(yi|ypa(i))) = log(f(yi|ypa(i)))− κi

The representation of the potentials p(yi,ypa(i)) looks slightly different now:

log(p(yi,ypa(i))) = −1

2
yTi λ

iyi + δiyi − yTpa(i)γ
iyi (4.1)

where λi is a |Ki|×|Ki|matrix, δi is a row vector for length |Ki| and γi is a |Kpa(i)|×|Ki|
matrix.

If we initialize λi, δi,γ
i by zeroes, then obtain these parameters by looping i = 1 . . . ,m

and collecting terms from g(yi|ypa(i)):

g(yi|ypa(i)))

=− 1

2
yTi Q

iyi +αTi Q
iyi + yTpa(i)βiQ

iyi −αTi QiβTi ypa(i) −
1

2
yTpa(i)βiQ

iβTi ypa(i)

=− 1

2
yTi Qi︸︷︷︸

+λi

yi +αTi Q
i︸ ︷︷ ︸

+δi

yi − yTpa(i) (−βiQi)︸ ︷︷ ︸
+γi

yi −αTi QiβTi ypa(i) −
1

2
yTpa(i)βiQ

iβTi ypa(i)

The parameters of log(p(yi,ypa(i))) is updated:

λi := λi +Qi , δi := δi +αTi Q
i and γi := γi − βiQi (4.2)

Let h ∈ Kpa(i), then h ∈ Kh∗ for some cluster yh∗ . The remaining is rewritten:

−αTi QiβTi︸ ︷︷ ︸
ωT

i

ypa(i) −
1

2
yTpa(i) βiQ

iβTi︸ ︷︷ ︸
Ωi

ypa(i) = −ωTi ypa(i) −
1

2
yTpa(i)Ω

iypa(i)

=
∑

h∈Kpa(i)

−ωi(h)yh −
1

2

∑
h∈Kpa(i)

∑
s∈Kpa(i)

yhΩ
i
h,sys

=
∑

h∈Kpa(i)

−ωi(h)︸ ︷︷ ︸
+δh

yh −
1

2

∑
h∈Kpa(i)

∑
s∈Kpa(i)|h∗=s∗

yh Ωi
h,s︸︷︷︸

+λh
∗

h,s

ys −
∑

h∈Kpa(i)

∑
s∈Kpa(i)|h∗<s∗

ys Ωi
s,h︸︷︷︸

+γh
∗

s,h

yh
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which is used to update parameters for the parents:

For h, s ∈ Kpa(i) :

if h∗ = s∗ : λh
∗

h,s := λh
∗

h,s + Ωi
h,s

if h∗ < s∗ : γh
∗

s,h := γh
∗

s,h + Ωi
s,h

For h ∈ Kpa(i) :δh := δh − ωi(h)

4.2.2 Forward propagation

After the initialization, we then have the representation

log(f(y)) = κ+
n∑
i=1

log(p(yi,ypa(i)))

Let e be a subset of {1, . . . ,m} corresponding to the set of observed variables and

let ē correspond to the set of unobserved variables. We then intend to calculate

f(xe) =
∫
Rdim(ē) f(ye,yē) dxē. We do this by a forward propagation, where we loop

i = 1, . . . ,m and perform step 1 and 2 depending on whether cluster i contains any

vertices from e, ē or both.

Step 1: If yie = yi ∩ ye 6= ∅
The i’th potential is now rewritten, using that yie are known and yi \ yie = yiē, into a

new potential log(p(yiē,ypa(i)))

log(p(yi,ypa(i))) =− 1

2
yTi λ

iyi + δiyi − yTpa(i)γ
iyi

=−1

2
yTieλ

i
ie,ieyie︸ ︷︷ ︸

+κ

−1

2
yTiē λ

i
iē,iē︸︷︷︸

+λi
iē,iē

yiē−yTieλiie,iē︸ ︷︷ ︸
+δiē

yiē

+ δieyie︸ ︷︷ ︸
+κ

+ δiē︸︷︷︸
+δiē

yiē

− yTpa(i) γ
i
pa(i),ieyie︸ ︷︷ ︸
−δT

pa(i)

−yTpa(i) γ
i
pa(i),iē︸ ︷︷ ︸

+γi
pa(i),iē

yiē

which means that the log-normalizing constant is updated as

κ := κ− 1

2
yTieλ

i
ie,ieyie + δieyie
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The parents receives:

For h ∈ Kpa(i) : δh := δh − γih,ieyie

If yie 6= yi we are left with the potential

log(p(yiē,ypa(i))) = −1

2
yTiēλ

i
iē,iēyiē + δ̃iēyiē − yTpa(i)γ

i
pa(i),iēyiē

Note that δ̃iē = −yTieλiie,iē + δiē

Step 2: If yiē 6= ∅
While rewriting the log-potential a simple notation will be used to ease reading and

dim(yiē) = |Kiē|

log(p(yiē,ypa(i)))

=− 1

2
yTλy + δy − yTp γy

=− 1

2

[
yTλy − 2δλ−1λy + 2yTp γλ

−1λy

+ (−δλ−1)λ(−δλ−1)T + (yTp γλ
−1)λ(yTp γλ

−1)T − 2(δλ−1)λ(yTp γλ
−1)T

]
+

1

2

[
(−δλ−1)λ(−δλ−1)T + (yTp γλ

−1)λ(yTp γλ
−1)T − 2(δλ−1)λ(yTp γλ

−1)T
]

=− 1

2

(
y − ((δλ−1)T − (yTp γλ

−1)T )︸ ︷︷ ︸
µ∗

)T
λ
(
y − ((δλ−1)T − (yTp γλ

−1)T )
)

+
1

2

(
δ(δλ−1)T + yTp γ(λ−1)TγTyp − 2δ(λ−1)TγTyp

)
=− 1

2
log(|λ−1|)− |Kiē|

2
log(2π)− 1

2
(y − µ∗)T λ (y − µ∗)

+
1

2
log(|λ−1|) +

|Kiē|
2

log(2π) +
1

2

(
δ(δλ−1)T + yTp γ(λ−1)TγTyp − 2δ(λ−1)TγTyp

)
(4.3)
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Then integrate out yiē in the potential∫
R|Kiē|

p(yiē,ypa(i)) dyiē

=

∫
R|Kiē|

1√
(2π)|Kiē|λ−1

exp

(
−1

2
(y − µ∗)T λ (y − µ∗)

)
dy

× exp

(
1

2
log(|λ−1|) +

|Kiē|
2

log(2π) +
1

2

(
δ(δλ−1)T + yTp γ(λ−1)TγTyp − 2δ(λ−1)TγTyp

))
= exp

(
1

2
log(|λ−1|) +

|Kiē|
2

log(2π) +
1

2

(
δ(δλ−1)T + yTp γ(λ−1)TγTyp − 2δ(λ−1)TγTyp

))
We now rewrite the result and go back to the normal notation

log

∫
R|Kiē|

p(yiē,ypa(i)) dyiē

=
1

2
log(|λ−1|) +

|Kiē|
2

log(2π) +
1

2

(
δ(δλ−1)T + yTp γ(λ−1)TγTyp − 2δ(λ−1)TγTyp

)
=

1

2

(
log(|λ−1|) + |Kiē| log(2π) + δ(δλ−1)T

)
+

1

2
yTp γ(λ−1)TγTyp − δ(λ−1)TγTyp

=
1

2

(
log(|λiiē,iē

−1|) + |Kiē| log(2π) + δ̃iē(δ̃iēλ
i
iē,iē

−1
)T
)

︸ ︷︷ ︸
κ∗

+
1

2
yTpa(i) γ

i
pa(i),iē(λ

i
iē,iē

−1
)Tγipa(i),iē

T︸ ︷︷ ︸
λ∗

ypa(i) − δ̃iē(λiiē,iē
−1

)Tγipa(i),iē

T︸ ︷︷ ︸
δ∗

ypa(i)

=κ∗ +
1

2
yTpa(i)λ

∗ypa(i) − δ∗ypa(i)

=κ∗ +
∑

h∈Kpa(i)

−δ∗h︸︷︷︸
+δh

yh +
1

2

∑
h∈Kpa(i)

∑
s∈Kpa(i)|h∗=s∗

yh λ
∗
h,s︸︷︷︸

+λh
∗

h,s

ys +
∑

h∈Kpa(i)

∑
s∈Kpa(i)|h∗<s∗

ys λ
∗
s,h︸︷︷︸

+γh
∗

s,h

yh

Hence we update the normalizing constant and the parent parameters accordingly:

κ : = κ+ κ∗

For h, s ∈ Kpa(i) :

if h∗ = s∗ : λh
∗

h,s := λh
∗

h,s − λ∗h,s
if h∗ < s∗ : γh

∗

s,h := γh
∗

s,h − λ∗s,h
For h ∈ Kpa(i) :δh := δh − δ∗h

As in the simple case we have that log(f(ye)) = κ and p(yiē,ypa(i)) is proportional to

f(yiē|ypa(i)∪e).
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4.2.3 Backward propagation

Next, we want to determine f(yiē|ye) when yiē 6= ∅. We rewrite the i’th potential like

in equation (4.3)

log(p(yiē,ypa(i)))

=− 1

2
yTiēλ

i
iē,iēyiē + δiēyiē − yTpa(i)γ

i
pa(i),iēyiē

=− 1

2

(
yiē − λiiē,iē

−1
(δTiē − γipa(i),iē

T
ypa(i))

)T
λiiē,iē

(
yiē − λiiē,iē

−1
(δTiē − γipa(i),iē

T
ypa(i))

)
+

1

2

(
δiē(δiēλ

i
iē,iē

−1
)T + yTpa(i)γ

i
pa(i),iē(λ

i
iē,iē

−1
)Tγipa(i),iē

T
ypa(i) − 2δiē(λ

i
iē,iē

−1
)Tγipa(i),iē

T
ypa(i)

)

This means, that after the forward propagation we may from the i’th potential param-

eters calculate:

• Mi := E(Yiē|Ypa(i)∪e = ypa(i)∪e) = λiiē,iē
−1

(δTiē − γipa(i),iē

T
ypa(i))

• Vi := Cov(Yiē,Yiē|Ypa(i)∪e) = Var(Yiē|Ypa(i)∪e) = λiiē,iē
−1

Next we do a backward propagation, where we loop i = m, . . . , 1 and exploit that for

i ∈ e then

• µ̃ie := E(Yie|Ye = ye) = yie

• σ̃ie := Var(Yie|Ye) = 0

• Σ̃ie := Cov(Yie,Ypa(i)|Ye) = 0

This is used to calculate µ̃iē, σ̃iē and Σ̃iē.

For µ̃iē we first use the same method as in the simple case:

µ̃iē :=E(Yiē|Ye = ye)

=E(Mi|Ye = ye)

= λiiē,iē
−1

(δTiē − γipa(i),iē

TE(Ypa(i)|Ye = ye))

= λiiē,iē
−1

(δTiē − γipa(i),iē

T
µ̃pa(i))
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For σ̃iē we use Var(X|Z) = E(Var(X|Y )|Z)+Var(E(X|Y )|Z) for the first equality then

E(α|Z) = α and Var(AX + β|Z) = AVar(X|Z)AT for the third equality:

σ̃iē =Var(Yiē|Ye)
=E(Vi|Ye = ye) + Var(Mi|Ye)

=E(λiiē,iē
−1|Ye = ye) + Var(λiiē,iē

−1
δTiē − λiiē,iē

−1
γipa(i),iē

T
Ypa(i)|Ye)

=λiiē,iē
−1

+ λiiē,iē
−1
γipa(i),iē

T
Var(Ypa(i)|Xe)γ

i
pa(i),iēλ

i
iē,iē

−1

For Σ̃iē we again use that E(X|Z) = E(E(X|Y )|Z) along with

• Cov(X, Y |Z) = E(XY |Z)− E(X|Z)E(Y |Z)

• E(XY |X) = XE(Y |X)

• Cov(AX + β,Y |Z) = ACov(X,Y |Z)

Σ̃iē :=Cov(Yiē,Ypa(i)|Ye)
=E(Ypa(i)Yiē|Ye = ye)− E(Ypa(i)|Ye = ye)E(Yiē|Ye = ye)

=E(E(Ypa(i)Yiē|Ypa(i)∪e = ypa(i)∪e)|Ye = ye)− E(Ypa(i)|Ye = ye)E(Mi|Ye = ye)

=E(Ypa(i)Mi|Ye = ye)− E(Ypa(i)|Ye = ye)E(Mi|Ye = ye)

=Cov(Mi,Ypa(i)|Ye)

=Cov(λiiē,iē
−1
δTiē − λiiē,iē

−1
γipa(i),iē

T
Ypa(i),Ypa(i)|Ye)

=− λiiē,iē
−1
γipa(i),iē

T
Var(Ypa(i)|Ye)

where Var(Ypa(i)|Ye) is determined from (σ̃j, Σ̃j) , j ∈ pa(i).

After the forward and backward propagation we have that

f(ye) = exp(κ)

(Yi|Ye = ye) ∼ N(µ̃i, σ̃i) for i = 1, . . . ,m

Note that the matrix σ̃i is 0 for entry (c, d) if yic /∈ yiē or yid /∈ yiē.

31



4.3 Special cases

Looking at the new method, we see that it is an extreme of the general case where each

Yi is as small a possible

Y1 = X1 , Y2 = X2 , . . . , Ym = Xn

The other extreme is the JTA for which each Yi is made as large as possible, i.e.

Yi = C∗j .

After initialization the size of Yi matter whenever matrix inversion done. The only

matrix inversion is λiiē,iē
−1

, which size is determined by the number of unobserved

variables in Yi.
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Chapter 5

Testing and comparison

The new method was implemented, tested and compared with the simple method. The

following describes the code and the comparison of the two methods.

5.1 Code

The code is written in R and can be found on https://github.com/cosius/Master-Thesis.

It contains an implementation of the new method along with a test script for test data

generating and testing.

The implementation is divided into initialization, forward propagation, backward prop-

agation, and a script that calls the two propagations.

Only the propagation’s where tested. The data for testing was generated so all cliques

were of the same size and had the same overlap, i.e. separator size. The cliques were

generated so they only overlapped the previous and the next clique.

The test script uses the same data to test runtime for the simple method, which

is done by using the package condMVNorm that can be found at https://cran.r-

project.org/web/packages/condMVNorm/index.html.
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5.2 Comparison

The new method and the simple method were compared by running the same data

calculation ten times and recording the runtime. The same test was done several times,

and a small variation was found. This is most likely due to other software running on

the computer used.

Looking at the simple method, different clique and separator sizes gave no change in

runtime. This is to be expected as these have no influence on the size of the covariance

matrix, which is the determining factor for the runtime of a matrix inversion.

The number of vertices did, however, affect the runtime for the simple method. Tests

were done for 500, 1000 and 2000 vertices. The runtime came to 3.8, 26.5, and 186.8

seconds. Assuming a polynomial complexity, i.e. (a500)x = 3.8, we get:

log

(
26.5

3.8

)
log(2)

= 2.80

log

(
186.8

26.5

)
log(2)

= 2.82

This suggests that condMVNorm uses the Strassen algorithm for inverting the matrix,

as its complexity is O(n2.81) [Gall, 2014].

For the new method, clique and separator sizes did have an effect on runtime. This

is also expected as increasing both, adds more edges thereby increasing the number

of updates needed to be sent. Going from 3 to 8 in separator size with 1000 vertices,

increased the runtime from 3.6 to 7 seconds, whereas the simple method stayed the

same at around 26.5 seconds. However, it was not expected that for 1000 vertices and

a clique size of 200, the runtime was 43.5 seconds for the new method, as opposed to

the 26.6 seconds for the simple method. The reason of this is unknown and may be the

result of a fault in the code.

Another problem with the new method arises when looking at the number of vertices.

Here the runtime for 500, 1000, 2000, and 4000 vertices were 1.3, 3.6, 21.,3 and 93.7

seconds accordingly. Compared with the simple method these are still significantly

lower, but no pattern is found. Runtime was expected to double when the number of

vertices doubles, as clique and separator sizes were kept the same. This is because the

propagation only depends on the number of parents a vertex has, which is determined

by clique and separator sizes.
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Whether these anomalies are due to coding or an oversight in the algorithm remains

to be determined. However, the new method is proven faster than the simple method

when the clique sizes are small.
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