
Aalborg University
7th semester project

Gait Sensor - For Monitoring Movement
Before Fall

Participants:
Christoffer Lundager Nedergaard

Supervisor:
Sofus Birkedal Nielsen

7th of January 2016

Instition for Electronic and IT
Fredrik Bajers Vej 7
9220 Aalborg E
Phone: 96 35 86 90
http://es.aau.dk

Title: Gait Sensor
Theme: Movement Monitoring Before Fall
Project period: 2015-09-01 - 2016-01-07

Project group: 710

Participants:

Christoffer Lundager Nedergaard

Supervisor:

Sofus Birkedal Nielsen

Number of copies: 2
Pages: 50
Number of appendixes: 2
Finished 7th of January 2016

Abstract:

This projects purpose was to develop
a wearable sensory device focused on
body segment movement and foot support
measurement, gait patients wear while in
a non-objective environment for clinician
to obtain “real life” data for analysis in
order to improve the specific clients gait
rehabilitation.
A prototype has been developed using the
Arduino DUE board, MPU-6050 MEMS,
a Foot Sensor sponsored by Nordic Neu-
roSTIM and a SD-card for data storage.
The Arduino DUE form the main device
of the product along with the SD-card, the
sensory is plugged into the Arduino using a
purposely designed extension board. The
idea being that the main device is mounted
in the belt, the MEMS are mounted on dif-
ferent body segments and connected to the
main device, the foot sensor being placed
in the clients shoe like an additional insole.
Data from the sensor is sampled at fixed
intervals and stored unmodified on the SD-
card in the .csv format, before the next
interval starts to ensure that no data is
lost.

This study is done by:

Christoffer Lundager Nedergaard Date

The content of this study is free to use only if the authors are informed and the used material is
made with a list of works cited.

Preface

This study is written by 7th semester Electronics and IT student Christoffer Lundager
Nedergaard in group 710 at Aalborg University as a part of the Bachelor of Engineering
education. The supervisor of the project is Sofus Birkedal Nielsen (SBN). The project
level is a 7th level Bachelor project counting 25 ECTS.

Reading Instructions

The project is divided into three parts, concerning different aspects of the project.

• Introduction
• System Design
• Closing

Figures, Listings, Equations and Tables all have unique numbers. All Figures have
captions placed below it.

No CD is included

This study is done by:

Christoffer Lundager Nedergaard Date

i

Contents

Reading Instructions . i

I Introduction 1

1 Introduction 2
1.1 Problem Description . 3
1.2 Initiating Problem . 4
1.3 Product Specific Requests . 4
1.4 Product Idea . 5

2 Problem Analysis 6
2.1 Understanding Human Gait . 6
2.2 Existing Solutions . 8

3 Requirements 10
3.1 Usability Requirements . 11
3.2 Hardware Requirements . 12
3.3 Software Requirements . 12

II System Design 13

4 System Design 14
4.1 Design . 14
4.2 Available Prototyping Materials . 14
4.3 Interfaces . 16
4.4 Sensor Modules . 19
4.5 Main Device . 21
4.6 Mechanical Design . 26
4.7 Hardware Design . 27
4.8 Software Design . 29

IIIClosing 38

5 Closing 39
5.1 Acceptance Test . 39
5.2 Conclusion . 45

iii

GROUP 610 CONTENTS

5.3 Further Development/Research . 46

Bibliography 47

A MEMS Fixture drawing 49

B SAM3X8E block diagram 50

iv

Part I

Introduction

1

1 Introduction

Basic human locomotion i.e. walking or gait as it is called in scientific works, is a normal
activity in the majority of the worlds population. Gait involves the whole body, though
some body segments are used more than others. This is especially the case in low speed
moment such as in normal walking. This is due to the fact that when a human “walk” it
is actually a controlled fall, that is continuously avoided and instigated.

Though human locomotion is part of everyday life, and can seem like the simplest of
tasks, everyone experiences trips or falls several times during their life. Trips and falls are
mainly experienced in the early and later years of ones life, where motoric skills are being
developed and motoric skills gradually deteriorate respectively.

Studies have shown that 33% of adult over 65 years old falls every year [Hausdorff et al.,
2001], and that 20-30% of them suffer moderate-to-severe injuries caused by those falls.
Resulting in reduced mobility and independence and increase the risk of a premature death
[Sterling et al., 2001],[Alexander et al., 1992].

In many cases where people fall and are injured they are enrolled into an rehabilitation
program to help and speed up the recovery process. During this process risk assessments
are made to determine progress of the client. This evaluation includes the “Up and Go”
and “Turn 180◦” exercises with an evaluation of several parameters such as difficulty and
steadiness.

However researchers and scientists would like a more objective measure of the clients gait,
including variability in stride length and time resulting in a gait speed. Also information
on foot support time is relevant since it has proven to be predictive of a fall [Hausdorff
et al., 2001], [Maki, 1997], [Hausdorff et al., 1997].

2

1.1. PROBLEM DESCRIPTION AALBORG UNIVERSITY

1.1 Problem Description

Sabata Gervasio an Adjunct at Aalborg University - Health Science and Technology has
put forward a project proposal concerning a system for monitoring stroke patients at home,
during daily activities resulting in more objective and natural measurements/recordings.

Similar studies have been made earlier (not limited to stroke patients) [Miyazaki, 1997]
using on-body sensors such as accelerometers and gyroscopes, gathering information about
body positioning, acceleration and velocity [Aminian, 2006], [Tong, 1999], [Kern and
Granat, 2003]. Other projects use pressure sensors mounted in the insole of the shoe
relaying information about stride time and weight placement.

Stroke patients are a massive economic burden on society, each year 1.3 million Europeans
suffer from strokes. The economic burden lies within direct treatment, rehabilitation and
basic care for the patient. In addition comes secondary injuries due to falls. Approximately
25 % of stroke patients end rehabilitation still having some degree of gait disability. Also
hemiparetic stroke patient have increased risk of falling due to impaired postural control
both static and dynamic.

The number of patient with hemiparesis secondary to strokes who suffer femoral neck
fracture is two - four times higher than that in the general population and most fractures
are caused by falls. Therefore to reduce the economic burden on society it is important to
identify and target stroke patient in risk of falling in order to develop new rehabilitation
training techniques.

Companies like Xsens and Shimmer already have products on the market capable of on-
body motion monitoring. Their product are however quite expensive making them less
attractive when dealing with preliminary research, multiple clients and/or large scale
research.

3

GROUP 610 CHAPTER 1. INTRODUCTION

1.2 Initiating Problem

Based upon the problem description above, the following problem set arise and form a
basis of which the problem analysis is done:

Development of a low cost, low complexity gait data acquisition system for use in non-
laboratory environments

1.3 Product Specific Requests

In order to get a clear picture of what the project/product should contain a meeting was
held with Sabata. The following is Sabata Gervasio’s rough idea for the system.

Usability requirements:

• Portable device
• Minimal donning/doffing effort
• Easy to use
• Minimal obstruction of movement
• Limited sensitivity to body placement
• Long power autonomy
• No/minimal data loss
• 50-200 Hz sample rate

Device parts (usage)

Data logger Worn in belt or in a bag around the waist of the client.
Foot Sensor (n= 2) Used to record stance of client and step duration.
IMU* (n= 7 - 10) Used to record body movement, using accelerometers and gyroscopes.
Connectivity Cabled or wireless system.
Power Power for data acquisition between 8-12 hours
Data Capable of holding 8-12 hours of data

* IMU: Inertial Measurement Unit

The rehabilitation gait research is still on an early stage and data analysis is done in
MATLAB, using kinematic models. Sabata would like data from the sensors in their
RAW format as this ensures transparency when working with them.

4

1.4. PRODUCT IDEA AALBORG UNIVERSITY

1.4 Product Idea

The general idea of the product is that it should be easy to use and require a minimum of
technical skill to operate. The clinician mounts the device and sensory on the client for
testing and set up. The client then goes home, mounts the equipment onto one self and
wears it while doing their daily activities.

1.4.1 Mounting the equipment

The main device is worn in the belt of in a bag attached around the waist. Sensors are
mounted different places around the clients body using a Velcro bands to hold them in-
place as per instructed by the clinician. The sensors are connected to the main device
via cabling that may or may-not be fixed to the body around joints to minimize activity
obstruction.

1.4.2 Using the equipment

To use the equipment is it simple turned "on" pushing a button and turned "off" when
monitoring is done. When the device is turned "on" a green LED i lit up. If the battery
level is to low the Green LED should start flashing, indicating that charging of the device
is needed. If the no sensors are connected to the main device a red LED should light up.
If the data storage is full a red LED should light up. Both sensor and data storage LEDs
should be marked making the error easily recognisable.

1.4.3 What should be monitored/measured

The foot sensor is used to monitor the clients center of presure (CoP), stride, stance, swing
and double support durations.

The accelerometers and gyroscopes are used to determine joint angle movements, position
and acceleration of body segments.

5

2 Problem Analysis

To understand walking or gait better this chapter contains an analysis of what a biped
gait is, its different phases and how they contribute significant information about how the
client is walking including how analysis of such information can help eliminating falling.

2.1 Understanding Human Gait

Gait the basis of human locomotion. In normal biped gait the legs do most of the work.
With most of the work done in the three major joints namely the pelvis and lower body,
being - hip, knee, ankle. When moving at faster speeds than walking the upper body
segments come into play, in order to maintain balance of the whole body. In research of
gait simplified models of walking are widely accepted including models like the inverted
pendulum [Mummolo et al., 2013].

Figure 2.1. Inverted pendulum model for biped gait. Showing foot support phases, Vertical
Center of Mass (CoM) displacement with the hip as CoM reference point [the
scientific world journal, 2013].

Note that this model does not take individual joint movement into account. As shown in
Figure 2.1 below the "inverted pendulum" both hip, knee and ankle movement is present
when walking, resulting in different body segment speeds.

6

2.1. UNDERSTANDING HUMAN GAIT AALBORG UNIVERSITY

Generally gait is divided into two phases: Stance and Swing. These phases are determined
by the foot support, the stance phase is when both feet touch the ground also know as
double support (DS), the swing phase is when one foot is lifted mentioned as single support
(SS). Gait at normal speeds consist of roughly 60% stance- and 40% swing phase.

Alternatively the gait cycle can be further divided into six or the newer eight sub-phases,
shown in Figure 2.2, A: New gait terms, B: Classic gait terms, C: Completion of gait phase
in %.

Figure 2.2. The eight gait phases shown including stance and swing indication [Physiopedia,
2015].

The different changes of joint angles are described in Figure 2.3. The fastest changes
occurs during the swing phase for both the hip and knee, the ankle experiences the fastest
change at the end of the stance phase.

Assuming the gait speed for a normal functioning human is 5 km/h and a stride length
of approximately 75 cm, further assuming a constant velocity during stance and swing
phase enables us to roughly calculate the angular velocity of the different body segments.
Stride length is defined as the distance of two successive placements of the same foot, also
defined as one gait cycle.

v = 5

[
km

h

]
= 1.33

[m

s

]
(2.1)

0.75

1.33
= 0.563 [s]← Time of one gait cycle (2.2)

Using Figure 2.3 an estimated angular velocity of the hip, knee and ankle can be calculated.

Hip:
∆Degrees

∆%
s
%

=

28−(−15)
80−60
0.563
100

=
2.15

0.00563
= 381.9

[
Degrees

s

]
(2.3)

Knee: =
60−18
90−80
0.563
100

=
4.2

0.00563
= 746

[
Degrees

s

]
(2.4)

Ankle: =

5−(−10)
60−55
0.563
100

=
3

0.00563
= 532.9

[
Degrees

s

]
(2.5)

7

GROUP 610 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.3. Angular joint movement during the different gait phases. HS: Heel strike, FF: Flat
foot, MS: Midstance, HO: Heel off, TO: Toe off, MSW: Midswing. NOTE: X-axis
[%], Y-axis [grader] [De Haagse Hogeschool, 2015]

2.2 Existing Solutions

There are several existing solutions made to monitor body movement. To mention a few
Xsens and Shimmer are some of the companies supplying such hardware.

2.2.1 Monitoring Equipment using inertial sensors

Xsens:

Supplies two versions of sensory equipment specifically designed to monitor body
movement. One of the solutions is made using straps to place wireless sensors on the
body. The other is a lycra suit with built in wired sensory. The data output of the two
solutions is 60 Hz and 240 Hz respectively both sampling 17 sensors. With a Battery time
of 6 and 9.5 hours, and a wireless data transfer with a latency of 30 ms and 20 ms.

Shimmer

Supplies a kit consisting of multiple sensor bricks, the system is capable of livestreaming
from 7 bricks to the docking station or simultaneous download of up to 60 docked bricks.
Each brick is capable of monitoring one of eight things such as ECG, Heart rate and
angular velocity.

8

2.2. EXISTING SOLUTIONS AALBORG UNIVERSITY

2.2.2 Analysis Software using inertial sensors

Xsens

Xsens has developed their own software for 3D modelling using their Xsens inertial sensor
technology. The software uses 3D orientation, acceleration and angular velocity from
each of the maximum 10 sensors attached. The information is input to a segmented body
model with added padding to make the model look more like a human. Tracker positioning
include feet and legs and a recommended tracker on the upper body for trunk movement.

9

3 Requirements

Based on the Problem analysis and the meeting held with Sabata, requirements for the
product are found. A description is made below explaining how the requirements are set
up with the main requirements being usability, hardware and software.

ID Title Description Parent Child
Unique
ID for
Req.

Title of Req. Description of specific Req. Source /
ID of ori-
gin

ID of
conse-
quence

10

3.1. USABILITY REQUIREMENTS AALBORG UNIVERSITY

3.1 Usability Requirements

These requirements are based on the meeting with Sabata and basic physiological
knowledge.

ID Title Description Parent Child
U.1 Donning/Doffing The device must be easy and quick

to put on and take off.
section
1.3

NA

U.2 Sensor Mounting The sensor must be mounted such
that it does not inhibit the clients
movement.

section
1.3

NA

U.3 Sensor Position-
ing

The sensors must have limited sen-
sitivity to placement on the body.

section
1.3

NA

U.4 Power The device must be powered by
its own power supply to provide
maximum autonomy.

section
1.3

NA

U.5 Data Storage All sensor data must be stored,
such that clinicians can use it for
analysis.

section
1.3

NA

U.6 Data Access The device data must be formated
such that it is direct importable to
analysis software.

section
1.3

S.4

U.7 Connectivity The main device and sensors must
be connected in such a way that it
does not inhibit the clients move-
ment.

section
1.3

NA

11

GROUP 610 CHAPTER 3. REQUIREMENTS

3.2 Hardware Requirements

These requirements form the basis for the hardware circuits and their function.

ID Title Description Parent Child
H.1 Sensors The sensory shall consist of ac-

celerometers, gyroscopes and a foot
sensor.

section
1.3

NA

H.2 Data Storage The data storage must be capable of
storing minimum 8 hours of sampled
data.

section
1.3

NA

H.3 Connectivity The hardware must be capable of
sampling data from at least 9 sen-
sors (7 IMU’s and 2 foot sensors).

section
1.3

NA

H.4 Data Sampling The hardware must be capable of
sampling the sensors at a rate of
minimum 100 Hz.

section
1.3, 2.2

S.1

H.5 Power The power supply must be capable
of powering the device for at least 8
hours of use.

section
1.3

H.2

H.6 Stored Data The data must be stored as unmod-
ified values.

section
1.3

S.3

3.3 Software Requirements

ID Title Description Parent Child
S.1 Timing The software must run on a timer

controlled loop for precise sampling
of at least 100 Hz.

H.4 NA

S.2 Connected sen-
sors

The software must be capable of
sensing how many sensors are con-
nected and arrange data accord-
ingly.

section
1.3

NA

S.3 Sampled Data Sampled data must be stored un-
modified.

section
1.3 &
H.6

NA

S.4 Data Storage Stored data must be stored in a
uniform fixed format.

U.6 NA

S.5 Process Contraint All data sampled from on loop run
must be stored in the data storage
before next run starts.

section
1.3

NA

12

Part II

System Design

13

4 System Design

An overview of the system design is created by describing the available materials, material
interfaces, sensor modules and main device. Moving over to describe the parts more in
depth, briefly the mechanical design idea including a sensor fixture idea, hardware design
and software design.

4.1 Design

The system is designed as shown Fig. 4.1 using the Foot sensor and the MEMS to generate
an input for the Processor to process and send to the Data Storage. The setup of signal
path and parts incorporated is based on the requirements in chapter 3.

Foot Sensor

MEMS

Processor Data Storage

x2

x7-10

Sensors Main Device

Figure 4.1. Basic system desing idea. Using two types of sensors, one data processing unit and
data storage device.

*MEMS - Micro-Electro-Mechanical system

4.2 Available Prototyping Materials

To make a prototype of the system, some materials are needed. From Figure 4.1 it is seen
that the system consists of two sensor types, one processor and a data storage or some
sort.

Foot Sensor

14

4.2. AVAILABLE PROTOTYPING MATERIALS AALBORG UNIVERSITY

The foot sensor is provided courtesy of Nordic NeuroSTIM. And is to be considered a
Costumer Of The Shelf (COTS) product. The foot sensor consist of three force resistive
pressure pads, one placed at the heel and the two others are placed at the lateral and
medial forefoot.

The foot sensor is made such that it is inserted into the shoe on top of the insole and
connected to the system via 4pin flat-pack connector. In the Sensor modules section more
information is found on the foot sensor.

MEMS

Several Micro-Electro-Mechanical systems (MEMS) were available for the project.
However they all used an analog output, which is good for most applications using micro
processors as they often have multiple analog inputs (ADCs). In this application however
the number of ADCs needed would quickly become a problem when making a simple
prototype.

Therefore a MEMS using I2C for communication was ordered from a dealer. The MEMS
chosen for the prototype is the MPU-6050 chip, as it includes: 3-axis- Accelerometer
and -Gyroscope, each axis contained in a 16bit vector. The chip also includes its own
Digital Motion Processor (DMP), which can be used to do off-processor calculations on
the accelerometer and gyroscope data. As found later in the development process the
DMP use and usage is rather poorly documented.

Processor

For simple prototyping two Arduino processor boards were available. The Arduino MEGA
2560 and the Arduino DUE board.

Feature Arduino MEGA Arduino DUE
Operating voltage 5 Volt 3.3 Volt
CPU Speed 16 MHz 84 MHz
Architecture 8 bit AVR 32 bit ARM Cortex-M3
Analog input 12 16
IO pins 54 54
Flash [KB] 256 512
SRAM [KB] 8 96
Programming JTAG JTAG / USB

Because of the Arduino DUEs 32 bit architecture and its 84 MHz clock speed, the Arduino
DUE board was chosen for prototyping. Its 32 bit architecture is useful when considering
the MEMS 16 bit data output for each of its accelerometer and gyroscope outputs.

Data Storage

For simplicity and storage size scalability a SD-card is chosen as the data storage. The
SD-card interface is quite simple and uses a Serial Peripheral Interface (SPI) connection
to communicate with the micro processor.

15

GROUP 610 CHAPTER 4. SYSTEM DESIGN

4.3 Interfaces

Using the available prototyping materials the interfaces between component “blocks” are
fixed and will be described in the following sections.

MPU-6050 Board → Arduino DUE

The MPU-6050 board uses the communication standard I2C to communicate to other
devices. The I2C connection uses a two wire topology with a line for a clock signal and
a line for the data signal. Using only two wires limits the I2C to being a half-duplex
communication line.

3.3V 3.3V

MPU-6050 board

4.7kΩ
R4

4.7kΩ
R5

3.3V 3.3V

Arduino DUE board

1.5kΩ
RN5A

1.5kΩ
RN5B

SCL

SDA

VCC

GND

AD0

SCL

SDA

3.3V

GND

D2x

MPU-6050 board Arduino DUE board

Figure 4.2. I2C interface between MPU-6050 sensor board and Arduino DUE board.

The I2C connection is an asynchronous serial communication line alike the UART. The
data transfer speed of the I2C is hardware determined by the IC used. However the
de facto standard for I2C communication has long been 100kbit/s i standard-mode and
400kbit/s i fast-mode, faster modes are available but will not be discussed because the
Arduino DUE only supports up to fast-mode (400kbit/s).

In Figure 4.2 it is seen that both lines SCL and SDA are connected to pull-up resistors.
This is necessary because the I2C clock and data output drivers are “open-drain” the result
being that the I2C devices can only “sink” the lines so that there can be no bus contention
e.i. when on device drives the line and another tries to pull it low possible causing short
circuit and damage to devices.

The I2C protocol is based on a master to slave topology but is capable of having more
than one master and multiple slaves connected to the same transmission line. As the
MPU-6050 board does not have master capabilities it works as the slave and the Arduino
DUE is the master.

16

4.3. INTERFACES AALBORG UNIVERSITY

In Figure 4.2 it is seen that both the MPU-6050 board and the Arduino DUE board have
pull-up resistors mounted. This is fine as long as the I2C driver is capable of “sinking” the
voltage below the logic voltage level for a “LOW”. From the Texas Instruments Application
Report [Arora, 2015] the minimum pull-up resistor value is calculated as:

RP(min) =
(VCC −VOL(max)

IOL
(4.1)

In the datasheet [Inv, 2012] for the MPU-6050 chip VOL and IOL is found as 0.4 Volt and
3 mA respectively. The Arduino DUE [ATM, 2012] sports the same capabilities only one
calculation is needed.

RP(min) =
3.3− 0.4

0.003
= 966.7 [Ω] (4.2)

When connecting three sensors to the BUS the pull-up impedance falls below 966.7 Ω to
about 766.3 Ω. Because only a single pull-up resistor is really needed the pull-up resistors
on the MPU-6050 boards could be removed or their value changed to be more fitting.

The pull-up resistor is also tied to a time constraint. The signal must have a rise time
of less than 300 ns in fast-mode, this rise time is determined by the pull-up resistor and
the combined BUS capacitance. From the Texas Instruments Application Report [Arora,
2015] the maximum pull-up resistance is calculated as

Rp(max) =
tr

0.8473 · Cb
(4.3)

Both the MPU-6050 and the Arduino DUE datasheet [Inv, 2012] [ATM, 2012] list
tr = 300ns and Cb = 400pf

Rp(max) =
300E − 09

0.8473 · 400E − 12
= 885.16 [Ω] (4.4)

Because the lowest value of the pull-up resistor is 966.7 Ω the circuit is not capable of
driving a BUS capacitance of 400 pf with a maximum rise time of 300 ns. Rearranging
the formula the maximum capacitance is found

Cb(max) =
tr

0.8473 · RP(min)
=

300E− 09

0.8473 · 966.7
= 366.262 [pf] (4.5)

Thus in order to have a proper I2C bus running at 400 kbit/s the BUS capacitance needs
to be measured and pull-up resistor values are chosen based on this measurement.

Initial ideas for cables connecting the main device to the sensors was using a USB cable,
being available in different lengths and having a sturdy connector it seemed like the ideal
cable for the job. However it turns out that a standard 1 m USB cable has a too large
cable capacitance. With the lowest capacitance value at 100 pF between D+ and D-,
Shield → 5V or 0V measuring 340 pF, shield → D+ or D- measuring 180 pF and 5V or
0V → D+ or D- 140 pF, and only being capable of connecting one sensor to the main
device, an USB cable is not suited for I2C interface.

Having a look at a standard flat cable it is specified to have a capacitance of only 45 pF
m

lead to neighbour lead. In addition the flat cable is capable of being a multi connector
wire, thus only one cable is required per leg making it the ideal prototype cable.

17

GROUP 610 CHAPTER 4. SYSTEM DESIGN

Foot Sensor → Arduino DUE

The Foot sensor supplied by Nordic NeuroSTIM consist of three force resistive pressure
pads. The resistors are connected to a common ground or source and three separate pins
on a four pin connector.

50kΩ
Pad1

50kΩ
Pad3

50kΩ
Pad 2 Foot Sensor

24.9kΩ
R1

24.9kΩ
R2

24.9kΩ
R3 1kΩ

R4

1kΩ
R5

1kΩ
R6

3.3V 3.3V 3.3V Arduino DUE

ADC0

ADC1

ADC2

Figure 4.3. Foot sensor connected to the Arduino DUE.

In Figure 4.3 The common pin is connected to Ground (0v) while the other pins are
connected to pull-up resistors and an ADC input resistor. The ADC is a cyclic pipeline
12-bit Analog-to-Digital converter and will be discussed later in section 4.5.

Arduino DUE → Data Storage

Arduino Due uses its SPI interface to communicate with the Data Storage (SD-card). A
basic SPI communication is made using four wires:

• Master Out Slave In (MOSI)
• Master In Slave Out (MISO)
• Serial Clock (SPCK)
• Slave Select (nSS)

The SPI connection is a full-duplex meaning it is capable of receiving data while
transmitting data. The connection is a synchronous data bus meaning it runs off a clock
signal controlling the BUS speed as seen in Figure 4.4.

MOSI

MISO

SPCK

nSS

MOSI

MISO

SPCK

Arduino DUE SD-Card
S
P
I

M
a
s
t
e
r

S
P
I

S
l
a
v
e

0 1 2 3 4 5 6 7

1 1 0 0 1 0 1 0
MSBLSB (0x53)

nSS

Figure 4.4. SPI interface between the Arduino DUE and SD-card.

18

4.4. SENSOR MODULES AALBORG UNIVERSITY

Like the I2C the SPI BUS can have more than one slave device, unlike the I2C connection
the SPI slave device need a slave select (nSS) line to active it (n denoting slave number).
The clock signal is only controlled by the master, this means that when a slave device
needs to send data to the master. The master has to know in advance and keep the clock
signal running. This is usually no problem since the SPI mostly is connected to sensors
onto which the master asks for data, thus knowing that an answer will be given.

The SPI connection supports clock speed ranging from kHz to several MHz. Communi-
cating with a Flash memory it is typically the flash memory that limits the data rate.
Using an SD-card, predefined data rates are given from the manufacturer usually around
10 Mbit/s. In some cases the SPI is capable of detecting transmission errors, and then
lowering the clock frequency.

4.4 Sensor Modules

The system contains two sensor modules namely the Foot sensor and the MPU-6050
(accelerometer and gyroscope).

Foot Sensor

The Foot Sensor is provided as a COTS product by Nordic NeuroSTIM. It is a very simple
product, a foot shaped sensory containing three force resistive pads. Shown in Figure 4.3
the three resistors have an resistance of 50 kΩ when no force is exerted on it. When force
is applied to the pad the resistance drops to around 1 kΩ. As explained the three resistors
are connected to a common pin, leaving their other ends connectible to a resistor network
as shown in Figure 4.3 or similar circuits.

MPU-6050

The MPU-6050 provides inertial sensing capabilities through its gyroscopes and
accelerometers. Figure 4.5 shows orientation of the different axis according to chip
orientation.

Figure 4.5. Orientation of MPU-6050 axes, showing gyroscopic and accelerometer sensitivity.
Picture from MPU-6050 product specification [Inv, 2012].

19

GROUP 610 CHAPTER 4. SYSTEM DESIGN

It is seen how normal (readable) orientation of the chip corresponds to the “right hand
rule” in a Cartesian coordinate system. (Thumb = X-axis, Index = Y-axis, Middle =
Z-axis).

To better understand how the MPU-6050 functions, it’s block diagram is shown in Figure
4.6. The MPU-60x0 (both 6000 and 6050) contain three separate accelerometers and
gyroscopes, each with an 16-bit Analog-to-Digital converter handling the data output.

Figure 4.6. Block diagram of the MPU-6050 internals. Picture from MPU-6050 product
specification [Inv, 2012].

The gyroscope features three independent vibratory MEMS rate gyroscopes [Inv, 2012].
Detecting rotation in the X-, Y-, Z-axes. When the sensor is rotated it is picked up by
an capacitive pickoff. The signal is then amplified, demodulated and filtered producing a
voltage representing the angular rate. The gyroscopes have an programmable scale range
of ±250, ±500, ±1000 or ±2000 ◦/sec and a programmable sample rate from 8 kHz to 3.9
Hz.

The accelerometers has separate proof masses and is sampled by dedicated sigma-
delta ADCs. Movement of the sensor displaces proof mass which is picked up by
capacitive sensors, detecting the displacement differentially. As with the gyroscopes the
accelerometer also has a programmable scale range of ±2g, ±4g, ±8g or ±16g. It is stated
that when the accelerometer is placed on a flat surface it will measure 0g in the X and

20

4.5. MAIN DEVICE AALBORG UNIVERSITY

Y axis and +1g on the Z axis [Inv, 2012]. Unlike the gyroscope the accelerometer has a
fixed sample rate of 1 kHz.

The output from the gyroscope and the accelerometer are filtered by a digital lowpass
filter with programmable cut-off frequency.

Figure 4.7. Digital lowpass filter table from MPU-6050 product sheet [Inv, 2012].

All six sensors 16-bit values are stored in the Sensor Register accessible for the I2C
interface and Digital Motion Processor (DMP). The Sensor Register stores the newest
measurements, X-, Y- and Z-axis in 8-bit registers, most significant Byte first for each
axis.

In the Config Registers, clock source, device reset, accelerometer and gyroscope standby
are all set. The clock source can either be an internal 8 MHz oscillator, a Phase Lock Loop
controlled clock based on either gyroscope axis or an external square wave clock source
of 32.768 kHz or 19.2 MHz. In the product specification it is noted that when running
the gyroscopes, selecting the gyros as a clock source provided a more accurate clock [Inv,
2012].

The Slave I2C and SPI Serial Interface handles the I2C communication lines (NOTE: SPI
interface is only available in the MPU-6000.). The I2C device address is 0x68 or 0x69
depending in logic level of the AD0 pin.

4.5 Main Device

The main device is based on the Arduino DUE which uses Atmels 32-bit SAM3X8E
CORTEX-M3 ARM processor.

21

GROUP 610 CHAPTER 4. SYSTEM DESIGN

Figure 4.8. Product picture of the Arduino DUE board from the Arduino website showing
progamming and native USB port.

The Arduino DUE board is easily connectible with peripherals using the pin headers
placed along the boards edge, making it very flexible during prototyping. As the SAM3X8
processor support more features than necessary only the features used in the prototype
like interfaces to sensors and data storage are discussed.

Top half of the internal block design of the SAM3X8 CPU for full block diagram see
Appendix B.1

Figure 4.9. Top half of the SAM3X8 block diagram, showing the ARM architecture [ATM,
2012].

22

4.5. MAIN DEVICE AALBORG UNIVERSITY

This ARM processor uses the Harvard architecture, unlike AVR processors which uses
the Harvard architecture exclusively some ARM processors uses the Von Neumann
architecture. The Cortex-M3 processor uses two seperate data bridges, namely the
Advanced Peripheral Bridge (APB) and the Advanced High-performance Bridge (AHB).
The APB is a low speed bridge connecting the UART, ADC, TWI, PWM, DAC and CAN
peripherals, while the AHB is a high speed brigde connected to the SPI, SSC, HSMCI
peripherals (Abrevations can be found in the SAM3X8 datasheet [?]).

I2C Arduino DUE interfaec

Using the I2C interface and ADCs the APB is used. Looking first at the I2C interface
the Power Management Controller (PMC) must be handled to turn on the clock signal
for the TWI peripheral.

Figure 4.10. Block diagram of the TWI interface [ATM, 2012].

As seen in Figure 4.10 the APB sends data to the TWI which in-turn handles the proper
output pins through the Parallel Input/Output Controller (PIO). Interrupts are send
directly to the Nested Vector Interrupt Controller which is directly connected to the
processor seen in Figure 4.9.

TWCK and TWD are for an I2C interface renamed SCL and SDA respectively.

Analog-to-Digital interface

Taking a look at the SAM3X8E Analog-to-Digital converter it has a 12-bit resolution and
a 1 MHz max conversion rate e.i. Sample frequency. Using an integrated multiplexer it
has 16 seperate analog inputs controlled by the PIO.

23

GROUP 610 CHAPTER 4. SYSTEM DESIGN

Figure 4.11. Block diagram of the SAM3X8E Analog-To-Digital converter [ATM, 2012].

The ADC cell receives its input directly from the PIO to the multiplexer. The multiplexer
is programmable such that the output can be single ended or fully differential. The
input can be offset if single ended input i selected otherwise, offset is bypassed, The
Sample/Hold (S/H) operator ensures the signal is stable for conversion. The PGA block
is a programmable gain amplifier and can be set to 1/2, 1, 2 and 4 times. The input signal
is sampled by a Cyclic Pipeline 12-bit ADC like the one shown in Figure 4.12

Figure 4.12. Function diagram of a cyclic pipeline ADC [ATM, 2011].

Being a Cyclic ADC it runs off the clock in a cycle like maner, the Cyclic Stage (block)
in Figure 4.12 is used multiple times during a conversion. From the SAM3S4 ADC
Application Note (also applicable for SAM3X8) [ATM, 2011] it is found that a full 12-bit
conversion takes 20 ADC clock cycles thus the ADC clock needs to be 20 MHz to result
in a 1 MHz sample rate.

The ADC clock is set by using a prescale value of 0-255, ADCclock = MCK
PRESCAL MCK

24

4.5. MAIN DEVICE AALBORG UNIVERSITY

being the master clock and PRESCAL the prescale value set in the ADC Mode Register.

SPI Arduino DUE interface

The SPI is as before mentioned a synchronous serial data interface for external peripherals
connected to the processor. In Figure 4.13 it is shown how the SAM3X8E SPI interface
is connected to the inter-peripherals of the SAM3X8E

Figure 4.13. Block diagram of the SAM3X8E SPI interface [ATM, 2012].

Like the I2C interface the SPI interface receives its clock signal through the PMC. Unlike
the ADC and I2C this interface is connected directly to the Advanced High-performance
Bridge which runs at a higher speed. This is done to ensure the high data rate needed
to use the full potential of the SPI port. Interrupt control is done sending signals to the
NVIC in Figure 4.9

Timer Counter Arduino DUE interface

The Timer Counter TC does not affect the other interfaces as such, however to easily
create a fixed and controllable sample rate it is used for interrupt control. The TC split
into three 32-bit channels which can be programmed independently, making them capable
of doing frequency measuring, event counting, pulse generation, delay timing and others.

In Figure 4.14 it is seen that five TIMER_CLOCKn signals connected to the TC block,
these signals are internal clock signals routed through the PMC to the TC (i.e. enabled
through the PMC register). Also a set of three external clock sources (TCLKn) can be
chosen from the PIO which also controls the input/output TIOAn and TIOBn. Each
channel has its own interrupt line to the NVIC.

25

GROUP 610 CHAPTER 4. SYSTEM DESIGN

Figure 4.14. Block diagram of the SAM3X8E Timer Conuter [ATM, 2012].

The FAULT output is connected to the PWM controller and can be used to determine if
one counter running faster than another, e.g. if two motor speeds are measured and one
is running faster than the other the FAULT signal is triggered and the PWM controller
make a correction.

4.6 Mechanical Design

The mechanical design of the product is to be done in a way such that it is as easy to
use as possible. Living up to the usability requirements set in section 3.1. One example
of a mechanical design is given for the MEMS Fixture in appendix A.1. This design
incorporates a non wireless solution, where the MEMS is held in place using a velcro
strap, fed through the small “hinges” on either side of the small box.

The signal cable is then pluged into the box from the top, so that is does not bulge as a
bend would do if it had to be plugged in from the bottom. With this fixture it is possible
to mount it “upside down”. The fixture also provides a solution which is not body part
specific as the velcro strap holding it in place should be adjustable, so that it fits most
body segments.

26

4.7. HARDWARE DESIGN AALBORG UNIVERSITY

4.7 Hardware Design

For the prototype the Arduino DUE is connected to a Vero-board onto which connectors
to sensors and the SD-card extender board is soldered. It turns out that the connectors
on the Arduino DUE board are aligned such that it fits the vero board spacing, only one
exception is found and that is the connector row closest to the “Native USB Port”. Not
using this connector it mattered little during the hardware design phase.

SPI

MEMS
AD0-Sens1-6

SDA
SCL

SD-Card CS

ADC Ch. 0-5

GND3.3V

Figure 4.15. Connections used on the Arduino DUE.

Having chosen to use the MPU-6050 board no extra circuit design is needed to interface
with the Arduino DUE. The SD-card adapter is also ready for use out of the box. The
Foot Sensor from Nordic NeuroSTIM need some additional circuit design i.e. as seen in
Figure 4.3. The resistors are mounted on the vero board and connected as shown in Figure
4.3, additional resistors are mounted for the second foot sensor, and are connected to pin
ADC3-5.

Connection from the Extender board is done using a ten lead flat cable as it the required
size for connection of three sensors and a foot sensor, thus the client only need to wear a
single cable down each leg.

The extender board is wired using wire wrap, connection diagram is shown in Figure 4.16.

27

GROUP 610 CHAPTER 4. SYSTEM DESIGN

Flat
Cable
Con 1

Pin 1

2

3

4

5

6

7

8

9

10

SDA

3.3V

GND

SCL

AD0-sens 1

AD0-sens 2

AD0-sens 3

Analog 1

Analog 3

Analog 2

Flat
Cable
Con 2

Pin 1

2

3

4

5

6

7

8

9

10

SDA

3.3V

GND

SCL

AD0-sens 1

AD0-sens 2

AD0-sens 3

Analog 1

Analog 3

Analog 2

Pin
3.3v

GND

SDA

SCL

22

23

24

Arduino DUE
Connections

GND
Power

I2C

25

26

27

MEMS
AD0-sens1-6

A0

A1

A2

A3

A4

A5

ADC Ch.
0-5

52 SD-Card CS

SPI

1 MISO

2 +5V

3 SCK

4 MOSI

5 Reset

6 GND

GND

3.3V

+5V

CS

MOSI

SCLK

MISO

GND

SD-Card
board
connector

Pin 1

2

3

4

5

6

7

8

Figure 4.16. Extender board connections between the Arduinu DUE and the peripheral
connectors. Wire colors resemble colors used on actual hardware (NOTE: Black
GND = White wire, ADC resistors not shown see Figure 4.3).

Connections to the flat cable are made intentionally this way, with the SDA line only
having one neighbour minimizing cable capacitance for this output. A GND wire is
placed between the SDA and SCL minimizing cross-talk between signal, but increases
the capacitance “seen” by the SCL driver due to the two AC ground plane created by
GND and 3.3V.

AD0-sens wires are used to select the MPU-6050 chip. The I2C device address of the
MPU-6050 is either 0x68 or 0x69 depending on the logic value of its AD0 pin. Connecting
AD0 to AD0-sens the device address can be set allowing more than two sensor using the
same I2C connection. All six sensors share the same I2C connection, this is possible by
only setting the AD0 pin logic LOW on the desired chip and all other AD0’s logic HIGH.
Thus the desired chip hold the device address 0x68 and all other 0x69, this does restrict
software to never call a device on address 0x69, as multiple devices would in theory answer.
Reading all MPU-6050 devices requires a software controlled multiplexer of sorts.

28

4.8. SOFTWARE DESIGN AALBORG UNIVERSITY

The MPU-6050 board is not directly connectible a flat cable so an extension board is made
for each MEMS.

Flat
Cable
Con

Pin1

2

3

4

5

6

7

8

9

10

SDA

3.3V

GND

SCL

AD0-sens 1

AD0-sens 2

AD0-sens 3

Analog 1

Analog 3

Analog 2

MPU-6050
Board 1

Pin 1

2

3

4

5

6

7

8

SDA

VCC

GND

SCL

XDA

XCL

AD0

INT

Figure 4.17. Extender board connections between the flat cable and the MPU-6050 board. Wire
colors resemble colors used on actual hardware (NOTE: Black GND =White wire).

Note: Figure 4.17 showing MPU-6050 Board 1, AD0-sens 1-3 connection is shifted
respectively to the MPU-6050 Board number. Placement of the sensors on the flat cable
is interchangeable, but interchanging sensors from one leg to the another should be done
with caution making sure that no two identical MPU-6050 boards are connected to the
same flat cable.

The Foot Sensor is connected at the end of the flat cable completing the cable.

50kΩ
Pad1

50kΩ
Pad3

50kΩ
Pad 2 Foot Sensor

GND
MED
LAT
HEEL

Flat
Cable
Con

Pin1

2

3

4

5

6

7

8

9

10

SDA

3.3V

GND

SCL

AD0-sens 1

AD0-sens 2

AD0-sens 3

Analog 1

Analog 3

Analog 2

Foot
Sensor
Connector

Figure 4.18. Flat cable connection to the Foot Sensor.

4.8 Software Design

The software design in the prototype is done using the Arduino IDE and Arduino C
language, this is only done to make a quick test bench. The real product software should
be written in proper C langauge following a software standard such as the EN 62304
standard for medical devices.

29

GROUP 610 CHAPTER 4. SYSTEM DESIGN

Software Flow

The program flow and its function is determined by partly the system use, system
idea and partly by the software requirements. The main function of the software is
to requesting sensor data and storing the answer in the data storage. Considering the
software constraints S.1, S.5 set in the software requirements section the following solution
of sequential execution structure was chosen. Added to this decision comes requirement
S.3, hence the software only need to do fetch and store operations in a fixed time.

Setup

TC interrupt "ON"

MEMS Read

ADC Read

Store Data

Wait For Interrupt

Start-up Rutine

Interrupt Service Rutine

Figure 4.19. Basic software flow diagram showing “Start-up”- and “Interrupt Service” Rutine.

The Start-up Rutine is only run once after powering up the processor, once the Start-up
Rutine is done the Timer Counter Interrupt is enabled and control the software execution.
The only processes run on the processor is run within the Interrupt Service Rutine (ISR),
and when done returns to the “Wait For Interrupt” state.

Start-up Rutine

After powering up the processor, the “Start-up Rutine” is ran. This Rutine contains setup
of:

• Digital output pins in the PMC
• Starting the I2C interface

30

4.8. SOFTWARE DESIGN AALBORG UNIVERSITY

• Setup of connected MPU-6050 sensors
• starting the SPI interface
• Setting the SPI to full speed
• Finding an available file name
• Opening a file on the SD-card with the available file name
• Write Data Header
• Enable Timer Counter clock in PMC
• Configure Timer Counter
• Enable Timer Counter Interrupt

Digital output setup
The digital outputs are used to control the AD0-Sens pins and the SD-Card Chip Select
(CS). The pins are set as outputs using the following code

// d i g i t a l pin se tup
pinMode (mems1_pin , OUTPUT) ;
pinMode (mems2_pin , OUTPUT) ;
pinMode (mems3_pin , OUTPUT) ;
pinMode (mems4_pin , OUTPUT) ;
pinMode (mems5_pin , OUTPUT) ;
pinMode (mems6_pin , OUTPUT) ;

// SD−Card c h i p s e l e c t pin se tup
pinMode (ch ipSe l e c t , OUTPUT) ;

Where mems1_pin is assigned the pin number to be set as output on the Arduino DUE
board.

MPU-6050 setup
Setting up the MPU-6050 sensors are done one at a time. Using a “for” loop running for
the amount of sensors chosen by the “n” variable. An “if” statement is used to select the
individual sensors based on the “for” loops cycle. Writing to the “REG_PIOA_SODR” or
“REG_PIOB_CODR” is a direct way of setting a pin HIGH or LOW respectively, doing
it this way only takes 100 ns compared to 10 µs using the Arduino C method.

// I2C sensor se tup −− i n i t i a l i s a t i o n
for (uint8_t i =0; i < n ; i++)

{
i f (i ==0){

// only code the the two connec tab l e sensors e . i . on por t 1
REG_PIOA_SODR |= 0x00000001 << 14 ;
// s e t s pin PA14 high − arduino pin 23
REG_PIOB_CODR |= 0x00000001 << 26 ;
// c l e a r s pin PB26 − arduino pin 22

}
else i f (i ==1){
REG_PIOA_CODR |= 0x00000001 << 14 ;
// c l e a r s pin PA14 high − arduino pin 23
REG_PIOB_SODR |= 0x00000001 << 26 ;

31

GROUP 610 CHAPTER 4. SYSTEM DESIGN

// s e t s pin PB26 − arduino pin 22
}
Wire . begin () ;
Wire . beg inTransmiss ion (memsaddr) ;
Wire . wr i t e (0x6B) ;
// Power management o f r e g i s t e r 1
Wire . wr i t e (0) ;
// Writes in t o Power r e g i s t e r 1 to c l e a r s l e e p
// − wakes up MPU−6050
Wire . endTransmission (t rue) ;
// Terminates se tup o f MPU−6050 ch ip

}

The “Wire.begin();” creates the I2C start condition on the SDA line (namely SDA
going LOW while SCL is HIGH). “Wire.beginTransmission(memsaddr);” outputs the
I2C device address (0x68) on the I2C bus calling a device on that address. Next up
is moving the I2C devices internal address pointer to the Power management register
(0x6B) and writing 0x0, clearing the MPU-6050 devices sleep mode and turning it on.
The “Wire.endTransmission(true);” ends the transmission setting the stop condition (SDA
going HIGH while SCL is HIGH).

SPI setup
The SPI setup is done as a backgound feature using the “sd.begin();” function, it inputs
the pin number used for CS (52), and the desired SPI speed. Using SPI_FULL_SPEED
set the bus to 42 MHz.

// SD−card se tup −− i n i t i a l i s a t i o n
i f (! sd . begin (ch ipSe l e c t , SPI_FULL_SPEED))
{

sd . i n i tE r r o rHa l t () ;
}

If the “if” statement is true an error message is written to the SD-card.

SD-Card setup
To ensure that no data is overwritten if the device if restarted during a session. In order
to do this a check is made to ensure that the file name is not allready existing on the
SD-Card.

// Find an unused f i l e name .
while (sd . e x i s t s (f i leName)) {

i f (f i leName [BASE_NAME_SIZE + 1] != ’ 9 ’)
{

f i leName [BASE_NAME_SIZE + 1]++;
}
else i f (f i leName [BASE_NAME_SIZE] != ’ 9 ’)
{

32

4.8. SOFTWARE DESIGN AALBORG UNIVERSITY

fi leName [BASE_NAME_SIZE + 1] = ’ 0 ’ ;
f i leName [BASE_NAME_SIZE]++;

}
else
{

e r r o r ("Can ’ t ␣ c r e a t e ␣ f i l e ␣name") ;
}

}

Using the “while” statement ensures that every possible name is tried cycling through and
increasing the file name value until it is 9 characters long. If not file name is found an
error message is written to the SD-card.

// Open SD−card f i l e − wr i t e er ror f i l e . open i f f a i l s
i f (! f i l e . open (fi leName , O_CREAT | O_WRITE | O_EXCL)) {

e r r o r (" f i l e . open") ;
}

When a name is found the file is created on the SD-card using the “file.open();” expression.
If the file fails to be created and opened an error message is written on the SD-card.

Preparing the file for data a dataheader is written to the file using the function
“dataheader(void);”.

void dataheader (void) {
// mi l i s ,AdX1,AdY1,AdZ1 ,GyX1,GyY1,GyZ1 ,AdX2 , . . .
// , hee l1 , Med1 , Lat1 , Heel2 ,

f i l e . p r i n t (F(" m i l i s ")) ;
for (uint8_t y=0; y < n ; y++)
{

f i l e . p r i n t (F(" ,AcX")) ;
f i l e . p r i n t (y ,DEC) ;
f i l e . p r i n t (F(" ,AcY")) ;
f i l e . p r i n t (y ,DEC) ;
f i l e . p r i n t (F(" ,AcZ")) ;
f i l e . p r i n t (y ,DEC) ;
f i l e . p r i n t (F(" ,GyX")) ;
f i l e . p r i n t (y ,DEC) ;
f i l e . p r i n t (F(" ,GyY")) ;
f i l e . p r i n t (y ,DEC) ;
f i l e . p r i n t (F(" ,GyZ")) ;
f i l e . p r i n t (y ,DEC) ;

}
for (uint8_t e=0; e < n ; e++)
{

f i l e . p r i n t (F(" ,MED")) ;
f i l e . p r i n t (e ,DEC) ;

33

GROUP 610 CHAPTER 4. SYSTEM DESIGN

f i l e . p r i n t (F(" ,LAT")) ;
f i l e . p r i n t (e ,DEC) ;
f i l e . p r i n t (F(" ,HEEL")) ;
f i l e . p r i n t (e ,DEC) ;

}
f i l e . p r i n t l n () ;

}

This function writes a .csv one line header, starting with milis, then the MPU-6050 sensor
data and then the two foot sensor ADC values. The last write done creates a line change.
Every value is seperated by a comma thus the .csv file name extension.

Timer Counter setup
The Timer Counter setup starts with enabling the clock signal to the Timer Counter
desired. Then the Timer Counter is configured by setting which Timer Counter to
configure (TC), its channel (1), enabling Waveform operation mode, selecting register
compare mode and the timer clock input signal.

pmc_enable_periph_clk (ID_TC7) ; // enab l e p e r i p h e r a l c l o c k TC7

// Timer se tup func t i on

TC_Configure (TC2, 1 , TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC
| TC_CMR_TCCLKS_TIMER_CLOCK3) ;
// t imer counter , channel , waveform mode ,
// counter run up then re se t , d i v i d e r choosen t imer c l o ck3 (32)
TC_SetRC(TC2, 1 , 26250) ;
// t imer counter 2 channel 1 counts to 26250 , r e s e t s and repea t s
TC_Start (TC2, 1) ;
// MCK / 32 = timer_clock3 −> 84 MHz / 32 = 2.625E6 −−>
// fo r 100 Hz i n t e r up t 2.625E6 / 100 = 26250 r e s e t va lue
// TC_Start (TC2, 1) ;

// enab l e t imer i n t e r r u p t s on the t imer
TC2−>TC_CHANNEL[1] .TC_IER=TC_IER_CPCS;
// IER = in t e r r u p t enab l e r e g i s t e r
TC2−>TC_CHANNEL[1] .TC_IDR=~TC_IER_CPCS;
// IDR = in t e r r u p t d i s a b l e r e g i s t e r

// enab l i ng nes ted vec to r i n t e r u p t c o n t r o l l e r
NVIC_EnableIRQ(TC7_IRQn) ;

Having configured the Timer Counter its register for register comparison is set to 26250,
having chosen the TIMER_CLOCK3 running at 2.625 MHz. Thus for a 100 Hz interrupt
the register value needs to be 2,625,000

100 = 26250 When the compare value is set the timer
is started, however without enabling the interrupt signals no interrupt will occur. Setting

34

4.8. SOFTWARE DESIGN AALBORG UNIVERSITY

the Timer Counter Interrupt Enable Register and Clearing the Timer Counter Interrupt
Disable Register enables interrupts. In addition to this the NVIC also need to be enabled,
and specifying the ISR to run when an interrupt occurs.

Interrupt Service Rutine

When an interrupt occurs the processor leaves its “Wait For Interrupt” state and enters
the “Interrupt Service Rutine“. This rutine contains the following process:

• Clear interrupt flag restarting the timer
• Read all MPU-6050 sensor data
• Read all ADC channels
• Write Data to the SD-card
• Check that data is written to the SD-card

Timer reset
When the ISR is entered the Timer Counter status is read in order to re-enable the
interrupt function.

// Get the s t a t u s to c l e a r i t
// and a l l ow the i n t e r r u p t to f i r e again
TC_GetStatus (TC2, 1) ;

Read MPU-6050 data
Receiving data from the MPU-6050 MEMS is done much like during the setup, each sensor
is called individually and its register cursor is moved to the desired register. When the
cursor is moved a total of 14 bytes is requested also called a burst read. This is done
by calling the device with a read bit instead of a write bit in the address followed by a
master ”ACK“, the slave device then send the byte pointed to by the register cursor. Upon
byte receive the master does another ”ACK“ and next byte is sent. When the last byte is
received the master does a ”NACK“ and stop condition.

for (uint8_t i =0; i < n ; i++)
{
i f (i ==0){

REG_PIOA_SODR |= 0x00000001 << 14 ;
// s e t s pin PA14 high − arduino pin 23
REG_PIOB_CODR |= 0x00000001 << 26 ;
// c l e a r s pin PB26 − arduino pin 22

}
else i f (i==1)
{

REG_PIOB_SODR |= 0x00000001 << 26 ;
// s e t s pin PB26 − arduino pin 22
REG_PIOA_CODR |= 0x00000001 << 14 ;
// c l e a r s pin PA14 high − arduino pin 23

35

GROUP 610 CHAPTER 4. SYSTEM DESIGN

}
Wire . beg inTransmiss ion (memsaddr) ;
Wire . wr i t e (0x3B) ;
// s t a r t i n g wi th r e g i s t e r 0x3B (ACCEL_XOUT_H)
Wire . endTransmission (f a l s e) ;
Wire . requestFrom (memsaddr , 1 4 , t rue) ;
// r e que s t a t o t a l o f 14 r e g i s t e r s

AcX[i]=Wire . read ()<<8|Wire . read () ;
// 0x3B (ACCEL_YOUT_H) & 0x3C (ACCEL_YOUT_L)
AcY[i]=Wire . read ()<<8|Wire . read () ;
// 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
AcZ [i]=Wire . read ()<<8|Wire . read () ;
// 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
Tmp[i]=Wire . read ()<<8|Wire . read () ;
// 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
GyX[i]=Wire . read ()<<8|Wire . read () ;
// 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
GyY[i]=Wire . read ()<<8|Wire . read () ;
// 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
GyZ[i]=Wire . read ()<<8|Wire . read () ;
// 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
}

Read ADC Channels
To read the ADCs channels the Arduino C function “analogRead();” is used, using the “u”
variable as input to determine channel and to define where the functions output is stored.

// ADC read os f o o t sensors
for (uint8_t u = 0 ; u < 6 ; u++)
{

data [u] = analogRead (u) ;
}

Write data to SD-card
Before writing the data acquired the time stamp “Time” is incremented by ten, representing
that 10 ms has passed since last sample. The time stamp is written to the SD-card along
with all other data using a “for” loop to cycle through the values. The write cycle is
finished by writing a line change. To ensure data is written to the SD-card a sync and
write error check is done - if either has occurred an error message is written to the SD-card.

Time += 1UL∗10 ;
// Write a l l the Data to the SD−card
f i l e . p r i n t (Time) ;
for (uint8_t t=0; t < n ; t++)
{

f i l e . wr i t e (’ , ’) ;

36

4.8. SOFTWARE DESIGN AALBORG UNIVERSITY

f i l e . p r i n t (AcX[t]) ;
f i l e . wr i t e (’ , ’) ;
f i l e . p r i n t (AcY[t]) ;
f i l e . wr i t e (’ , ’) ;
f i l e . p r i n t (AcZ [t]) ;
f i l e . wr i t e (’ , ’) ;
f i l e . p r i n t (GyX[t]) ;
f i l e . wr i t e (’ , ’) ;
f i l e . p r i n t (GyY[t]) ;
f i l e . wr i t e (’ , ’) ;
f i l e . p r i n t (GyZ [t]) ;

}
for (uint8_t r=0; r < 6 ; r++)
{

f i l e . wr i t e (’ , ’) ;
f i l e . p r i n t (data [r]) ;

}
f i l e . p r i n t l n () ;

i f (! f i l e . sync () | | f i l e . getWriteError ()) {
e r r o r (" wr i t e ␣ e r r o r ") ;

}

37

Part III

Closing

38

5 Closing

5.1 Acceptance Test

In the previous chapters the design of a gait data logger has been developed, based
on requests and a simple body movement analysis. Usability, Hardware and Software
requirement have been set in chapter 3 these requirement will be discussed and tested to
see if they are met.

Usability Requirements

ID Title Description Parent Child
U.1 Donning/Doffing The device must be easy and quick

to put on and take off.
section
1.3

NA

Test Method:

In order to test this requirement a role play is setup using volunteers i.e. people who have
not been involved in the development of the product possible creating a bias. The role
play should be video recorded and review by the volunteers in order for them to “OK” the
video material and in order for them to relive the experience, after the video review. A
dialog should be initiated by a clinician having some knowledge of the product.

Result:

Testing was not done due to product only being on early prototype stage.

U.2 Sensor Mounting The sensor must be mounted such
that it does not inhibit the clients
movement.

section
1.3

NA

Test Method:

See Test Method of U.1

Result:

See test Result of U.1

39

GROUP 610 CHAPTER 5. CLOSING

U.3 Sensor Position-
ing

The sensors must have limited sen-
sitivity to placement on the body.

section
1.3

NA

Test Method:

Sensors are placed on a person and the device is turned on, the person then walks in a
specific pattern. When the person has walked the pattern the device is turned off and
the sensors are moved/adjusted. The device is turned on again and the walk pattern is
repeated. After completing a series of sensor placements the data gathered is compared
either directly or using a model.

Result:

Testing was not done due to product only being on early prototype stage.

U.4 Power The device must be powered by
its own power supply to provide
maximum autonomy.

section
1.3

NA

Test Method:

As the device is intended to ship with its own power bank or hold an internal battery -
no test is carried out

Result:

The device is intended to come with its own power bank

U.5 Data Storage All sensor data must be stored,
such that clinicians can use it for
analysis.

section
1.3

NA

Test Method:

Initial gait analysis is done using MATLAB and data is stored using the .csv extension.
Running the MATLAB command CSVREAD(’filename’,1,0) to see if it can read the file.

Result:

Using the CSVREAD(’filename’,1,0) result in Gait00.csv being read into the workspace
of MATLAB - Thus data is stored in a readable format that can be used for analysis.

U.6 Data Access The device data must be formated
such that it is direct importable to
analysis software.

section
1.3

S.4

Test Method:

See test method of U.5

Result:

40

5.1. ACCEPTANCE TEST AALBORG UNIVERSITY

See test Result of U.5

U.7 Connectivity The main device and sensors must
be connected in such a way that it
does not inhibit the clients move-
ment.

section
1.3

NA

Test Method:

See test method of U.1

Result:

See test Result of U.1

Hardware Reuirements

ID Title Description Parent Child
H.1 Sensors The sensory shall consist of ac-

celerometers, gyroscopes and a foot
sensor.

section
1.3

NA

Test Method:

By inspecting the hardware used its components are found.

Result:

The early prototype consist of 3-axis- Accelerometer and Gyroscope. To measure foot
support the Nordic NeuroSTIM foot sensor is used.

H.2 Data Storage The data storage must be capable of
storing minimum 8 hours of sampled
data.

section
1.3

NA

Test Method:

The sensors were connected to the main device and it was turned on and left over night -
being checked after approximately 12 hours.

Result:

Checking the Gait01.csv files end milis entry being 21,598,340 milis.

TEST NOTE: the test was running 100 Hz but only incrementing the Time variable by 5.

h =
countervalue · 1

Samplerate

increment · 3600
=

21, 598, 340 · 1
100

5 · 3600
= 11.999 (5.1)

41

GROUP 610 CHAPTER 5. CLOSING

H.3 Connectivity The hardware must be capable of
sampling data from at least 9 sen-
sors (7 IMU’s and 2 foot sensors).

section
1.3

NA

Test Method:

Connecting sensors to the device and turning it on running it for a minute, turning the
device off and reading the SD-card checking that it contains 7 sets of IMU data and 2 sets
of Foot sensor data.

Result:

This test is not completed due to the prototype stage, however it is possible to sample
two IMU and two Foot sensors at 100 Hz.

H.4 Data Sampling The hardware must be capable of
sampling the sensors at a rate of
minimum 100 Hz.

section
1.3, 2.2

S.1

Test Method:

Measuring the AD0-sens 1 pin on the extender board the interrupt frequency is found, as
this controls the sampling of the sensors it result in the sensor sample frequency.

Result:

Having connected an oscilloscope probe to the AD0-sens 1 pin the following oscilloscope
image was obtained.

Figure 5.1. 100 Hz sample rate, time base 5 ms, scale 2 v, Channel 1 (yellow) is connected to
AD0-sens 1 pin, when the signal drops the MEMS is activated i.e. having address
0x68.

42

5.1. ACCEPTANCE TEST AALBORG UNIVERSITY

H.5 Power The power supply must be capable
of powering the device for at least 8
hours of use.

section
1.3

H.2

Test Method:

Connect the sensors to the device and turn it on, leave the device for 8 hours, checking
up on it in 5 minute intervals.

Result:

Testing was not done due to product only being on early prototype stage.

H.6 Stored Data The data must be stored as unmod-
ified values.

section
1.3

S.3

Test Method:

Program the device to output the binary value of a sensor reading to on of the processors
digital port, measure the value and compare it to the one stored on the SD-card

Result:

This test is not complete. The value stored on the SD-card is ASCii coded, the value
should be unmodified only changing its format.

Software Requirements

ID Title Description Parent Child
S.1 Timing The software must run on a timer

controlled loop for precise sampling
of at least 100 Hz.

H.4 NA

Test Method:

See Test Method H.4

Result:

See Test Result H.4

S.2 Connected sen-
sors

The software must be capable of
sensing how many sensors are con-
nected and arrange data accord-
ingly.

section
1.3

NA

Test Method:

Connect all sensor to the device and turn it on for a minute. Turn off the device and

43

GROUP 610 CHAPTER 5. CLOSING

remove one sensor, turn the device back on for a minute. This process is repeated until
(and including) no sensors are attached. Having run the device without sensors add one
sensor and repeat the process until all sensors are reattached to the device. Check the
data logged onto the SD-card for data arrangement

Result:

This test is not done because this feature is not yet available to the early prototype.

ID Title Description Parent Child
S.3 Sampled Data Sampled data must be stored un-

modified.
section
1.3 &
H.6

NA

Test Method:

See Test Method H.6

Result:

See Test Result H.6

ID Title Description Parent Child
S.4 Data Storage Stored data must be stored in a

uniform fixed format.
U.6 NA

Test Method:

Checking the data log files generated during Test Methos S.2, Checking that time stamp
i written in column 1 followed by the MEMS data form the connected MPU-6050 boards,
then the data from the Foot sensors.

Result:

Reading the .csv file generated it is verified that the data is stored in a fixed format.

m i l i s ,AcX0 ,AcY0 , AcZ0 ,GyX0,GyY0,GyZ0 ,AcX1 ,AcY1 , AcZ1 ,GyX1,GyY1,
5 ,1480 ,−16448 ,−5728 ,−280 ,−73 ,−271 ,1232 ,−16632 ,−4568 ,−453 ,−80 ,
10 ,1348 ,−16428 ,−5868 ,−275 ,96 ,−162 ,1280 ,−16452 ,−4384 ,−391 ,−30 ,
15 ,1420 ,−16448 ,−5684 ,−279 ,99 ,−177 ,1220 ,−16508 ,−4428 ,−462 ,−6 ,
20 ,1376 ,−16416 ,−5824 ,−285 ,105 ,−175 ,1304 ,−16548 ,−4332 ,−421 ,−32 ,
25 ,1420 ,−16468 ,−5676 ,−286 ,105 ,−168 ,1324 ,−16636 ,−4436 ,−413 ,−36 ,
30 ,1416 ,−16496 ,−5800 ,−253 ,99 ,−187 ,1252 ,−16556 ,−4420 ,−430 ,−41 ,
35 ,1424 ,−16460 ,−5560 ,−294 ,93 ,−173 ,1244 ,−16564 ,−4384 ,−408 ,−48 ,
40 ,1464 ,−16392 ,−5780 ,−285 ,121 ,−186 ,1268 ,−16444 ,−4308 ,−432 ,−63 ,
45 ,1464 ,−16416 ,−5700 ,−265 ,139 ,−192 ,1344 ,−16528 ,−4360 ,−415 ,−53 ,

NOTE: This is only part of the .csv file, the original file contains more columns. Data
displayed does not come from Test S.2

44

5.2. CONCLUSION AALBORG UNIVERSITY

ID Title Description Parent Child
S.5 Process Contraint All data sampled from on loop run

must be stored in the data storage
before next run starts.

section
1.3

NA

Test Method:

This is tested using a modified version of the product software, having added exstra control
of an external digital pin. Setting the pin HIGH when entering the ISR and setting it
LOW when all data is stored. Measuring the “on” time, if it is shorter than the sample
time the test is passed.

Result:

This test is not completed.

5.2 Conclusion

This project titled Gait Sensor themed and aimed at producing a medical device for use
in gait research. The initiating project problem being:

Development of a low cost, low complexity gait data acquisition system for use in non-
laboratory environments

A meeting was held with Sabata Gervasio the original proposer of the project. Sabata
Gervasio had some specific requests as to the hardware used in the project and based on
these and a simplified analysis of the human gait cycle a prototype was developed.

To design a Gait sensor using the hardware Sabata specified an electronic system is made.
Making a prototype capable of the task set the following equipment was used:

• Arduino DUE development board
• IMU - MPU-6050
• Nordic NeuroSTIM Foot Sensor
• SD-card extension board for Arduino development boards

The prototype is based on the Arduino DUE functioning as the platform onto which the
prototype is build. Building an extender board to use with the Arduino DUE board
enabled me to connect the sensor cables. The sensor cables being purposely build to fit
the gait sensor project scope of measuring lower body segmental movement.

The prototype developed during the project period is capable of sampling two MPU-6050
IMUs and six ADC at a sample rate of minimum 100 Hz and storing the data on a SD-card
before the next sampling occurs. Handling a total of 26.4 kbit per second.

When the sensors are connected and a FAT16 or FAT32 formatted SD-card is inserted
in the SD-card extension board, the Arduino DUE is powered up running a setup rutine

45

GROUP 610 CHAPTER 5. CLOSING

after which sensor sampling starts. Because the data is stored just after each sampling,
the device is simply turned off when monitoring is done. The SD-card now contains the
sampled data each sample tied to a specific time in a comma separated file using the
extension .csv directly importable into MATLAB or another editor.

5.3 Further Development/Research

Developing further on this prototype adding more MEMS and optimizing the software
using a proper C language, and designing PCBs making it more sturdy would take the
prototype along way. Optimizing the device would make it more ready for role play where
its mechanical design is tested. The sensors interface considered it is properly better to
change them to a different model like the MPU-6000, with greater data rates. As research
progress some sensor measurements might be omitted due to redundancy from other values
or lack of information gain.

A wireless sensor solution could also be considered it does however require, that each
sensor include its own power supply, but considering today’s Embedded technology a
single cell battery should be capable of powering the device for one monitoring session.
Making the system wireless a Wifi connection could be use full for uploading data directly
to the clinician, enabling data analysis to be done on an early stage,

As this is being developed as a research tool considering how to keed the cost down per
unit, could also be analysed to make a cost benefit analysis.

A lot more time can be sped on developing this project into a finished product, helping
gait research.

46

Bibliography

BH Alexander, FP Rivara, and ME Wolf. The cost and frequency of hospitalization for
fall-related injuries in older adults. American journal of public health, 1992.

K. Aminian. Computational intelligence for movement science. IGI Global, 2006.

Rajan Arora. I2c bus pullup resistor calculation (slva689.pdf). Texas Instruments
Application Report, 2015.

Analog-to-Digital Converter in the SAM3S4. ATMEL., 2011.

AT91SAM ARM-based Flash MCU. ATMEL., 2012.

De Haagse Hogeschool. Bergwandelen Het Onderzoek. url:
http://www.eduweb.hhs.nl/¿bergwandelen/onderzoek.htm, 2015.

JM Hausdorff, HK Edelberg, SL Mitchell, L a" Goldberger", and JY Wei. Increased gait
unsteadiness in community-dwelling elderly fallers. Archives of physical medicine and
rehabilitation, 1997.

JM Hausdorff, D "a Rios", and HK Edelberg. Gait variability and fall risk in community-
living older adults: a 1-year prospective study. Archives of psysical medicine and
rehabilitation, 2001.

MPU-6000 and MPU-6050 Product Specification Rev. 3.3. InvenSense Inc., 2012.

N Kern and MH Granat. Multi-sensor activity context detection for wearable computing.
EUSAI, 2003.

B. Maki. Gait changes in older adults: predictors of falls or indicators of fear. Journal of
the American Geriatrics society, 1997.

S Miyazaki. Long-term unrestrained measurement of stride length and walking velocity
utilizing a piezoelectric gyroscope. IEEE Transaction on Bio-medical engineering, 1997.

Carlotta Mummolo, Luigi Mangialardi, and Joo H. Kim. Quantifying dynamic
characteristics of human walking for comprehensive gait cycle. Journal of biomedical
engineering, 2013.

Physiopedia. Gait - Phases of the gait cycle. URL: http://www.physio-pedia.com/Gait,
2015.

47

GROUP 610 BIBLIOGRAPHY

Daniel A. Sterling, Judith A. O?Connor, and J Bonadies. Geriatric falls: injury severity
is high and disproportionate to mechanism. Journal of Trauma-Injury & Critical care,
2001.

the scientific world journal. three-dimensional gait analysis can
shed new light on walking in patients with haemophilia. url:
http://www.hindiwa.com/journal/tswj/2013/284358/, 2013.

K Tong. A practical gait analysis system using gyroscopes. Medical engineering & physics,
1999.

48

A MEMS Fixture drawing
1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H

E
E
T
 1

O

F
 1

D
R

A
W

N

C
H

E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O

V
E
D

C
h
ri
st

o
ff

e
r

0
2
-0

1
-2

0
1
6

D
W

G
 N

O

fa
ct

o
ry

d
ra

w
in

g

T
IT

L
E

S
IZ

E

C
S
C
A
LE

R
E
V

M
E
M

S
 F

ix
tu

re

Figure A.1. Mechanical drawing of MEMS Fixture

49

B SAM3X8E block diagram

Figure B.1. Block diagram of SAM3X8E

50

	Introduction
	Introduction
	Problem Description
	Initiating Problem
	Product Specific Requests
	Product Idea

	Problem Analysis
	Understanding Human Gait
	Existing Solutions

	Requirements
	Usability Requirements
	Hardware Requirements
	Software Requirements

	System Design
	System Design
	Design
	Available Prototyping Materials
	Interfaces
	Sensor Modules
	Main Device
	Mechanical Design
	Hardware Design
	Software Design

	Closing
	Closing
	Acceptance Test
	Conclusion
	Further Development/Research

	Bibliography
	MEMS Fixture drawing
	SAM3X8E block diagram

