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Introduction

In many industrial applications it is necessary to isolate components from vibration in connected
neighbour components. This is also the case for various rotational transmission systems. It has been
shown for different applications see e.g. [1–8], that periodic structures can generate such a vibration
isolation. An idea for such a torque vibration isolator consisted of periodically repeated substructures
with sufficient static torque stiffness, is sketched here below in Fig.1:

Figure 1: Vibration isolator sketch

Main idea of project is to model vibration isolator sketched above in order to have the
main advantages and disadvantages being seen before experiments are conducted. Also should
be considered general possibility of construction vibration isolation torque sketched above and how
this kind of structure affects on power flow from a wind turbine generator should be explored.

Models, considered in this work are based on differential equations and in order to find solution
of these equations following instruments are used:

1.Boundary Integral Equations method is used to find solution of a differential equation, using
only information about function and its derivatives on the boundary of volume considered in given
problem. In this method Green’s matrices are commonly used, which are solution of equation
with point force excitation. And in this work, bi-orthogonality conditions (in this work they are
used without detail explanation, because this theory lies out of scope of this work, more detailed
description can be found in [9]) are employed to find Green’s matrices. In appendix C, application
of this method to a simple case of axial rod vibrations is shown.

2. Floquet theory is widely used in order to obtain solution for periodically alternating infinite
structures. As shown for example in [7, 8] infinite structure cases are in good correspondence with
a finite one and therefore Floquet theory gives good possibility to analyse periodic structures and
understand mechanisms of wave propagation in periodic structures. In appendix D, application of
this method to a simple case of axial rod vibrations is shown.

Goal of this work is to model vibrational isolation torque as a periodical structure and provide
experimental data in order to see quality of modelling. All work divided in following subtasks:
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(I) Show possibility of using Floquet theory in polar coordinates on example of circular
membrane equation, since isolator, shown on a Fig.1 contains part, that is modelled as a part of
the circular plate, which equation is naturally written in polar coordinate system. Floquet theory is
well studied in cartesian coordinate system [1], but there are no works, where application of Floquet
theory to other coordinate systems is shown.

(II) Derivation and evaluation of boundary integral equations for a beam model (first model),
based on Bernoulli-Euler flat ring equations

(III) Derivation and evaluation of boundary integral equations for a Kirchoff-Love plate and
cylindricall shell model (second model) with use of polar coordinates

(IV) Experimental validation of first and second model
Since it is a long master’s project in first part only subtasks (I) (Ch.2) and (II) (Ch.3) are

considered. Parts (III) and (IV) will be covered in second part of project.
Project is written in comprehensive way and information in appendix can be used as supply for

more clear understanding of methods, that lies in ground of this project. Information in appendices
is not mandatory for understanding ideas of this project.
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Chapter 1

The concept of a periodic structures

Here common definitions for all periodic structures considered in this work are introduced. First,
an infinite periodic structure as shown on Fig.1.1 can be considered:

Figure 1.1: Infinite periodical structure scheme

,where 𝜉 is the common coordinate (axial coordinate of bar, radial coordinate of a circular
membrane, natural coordinate of spring). Each component of a periodic structure can have different
material parameters (like Young modulus), shape parameters (like curvature) and length repeating in
periodic alternating manner. In order to use Floquet theory at least one parameter excluding length
should be different for two segments. In terms of vibrations, different wavenumbers 𝑘𝑖 for each part
are required.

The existence of frequency stop- and pass-bands in infinite periodic waveguides is well known
and understood since the pioneering work by L.Brillouin [1]. The vibro-acoustics of beams, plates
and shells and pipes with periodic attachments or step-wise varying properties has been broadly
explored by many authors. Classial works [1, 2] and the modern one [3–8] are just a few of those,
which illustrate the classical and recent advances in this area of research and that it is of interest
to develop methods for various waveguides and make industrial application of theory of periodic
structures.

Infinite structure can be considered as built from finite structures called periodicity cell. Here
only periodicity cell with one period length are considered. Periodicity cells can be chosen arbitrary,
for example as:

Figure 1.2: Different periodicity cells schemes
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But most interesting properties are of a cell, which can be schematically illustrated as:

Figure 1.3: Symmetrical periodicity cell scheme

Structure, illustrated on Fig.1.3 called symmetrical periodicity cell (half "white"part - "black"part
half "white"part) and it has some important properties: it has one period length 1 + 𝛾 and it is
balanced with respect to center of masses, i.e. geometrical and gravity centers are in same point.

Since infinite structure can not be implemented practically, one can consider also a finite
structures, built from symmetrical cells. This kind of finite structures has some interesting properties,
which will be described in next chapters. One can consider non-symmetrical cell as a ’building
block’ but it does not have such properties and will not be considered in this work.

Properties of a finite and infinite structure are closely related to each other, and therefore both
structures can be considered simultaneously in order to show full picture of wave propagation and
vibrations.
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Chapter 2

Periodic circular membrane

Torque vibration isolator shown on Fig.1 can be considered as an ensemble of flat ring plates and
cylindrical shells, connected in an alternative manner, i.e. as a periodic structure. Equation of motion
of flat ring plate is naturally written in the polar coordinate system. Therefore, it is expedient to
investigate performance of a periodic structure in polar coordinates. Previously in [7] and [8] most
simple cases of axial and flexural vibrations of periodic beams and vibrations of cylindrical shell
were considered. Main ideas of these articles were shown for cartesian coordinate system. Main
goal of this chapter is to consider different coordinate system and show that all properties of the
periodic structures for cartesian coordinates are preserved in polar coordinate system with simple
circular membrane as an illustrative example.

2.1 Membrane vibration equation. Green’s function.

General equation of motion for the membrane has the form (see App.A for derivation from
Hamilton’s principle and [10]):(︀

∆ + 𝑘2
)︀
𝑢 = 𝑢𝑟𝑟 +

1

𝑟
𝑢𝑟 +

1

𝑟2
𝑢𝜙𝜙 + 𝑘2𝑢 = −𝑞(𝑟, 𝜙) (2.1)

,where 𝑞(𝑟, 𝜙) is the intensity of distributed force.
The external force can be presented as:

𝑞 (𝑟, 𝜙) =
+∞∑︁
𝑚=0

𝑄𝑚(𝑟) cos(𝑚𝜙) (2.2)

Then general solution can also be expanded in Fourier series :

𝑢 (𝑟, 𝜙) =
+∞∑︁
𝑚=0

𝑈𝑚(𝑟) cos(𝑚𝜙) (2.3)

Which substituted into Eq.2.1 gives:

(︀
∆ + 𝑘2

)︀
𝑢 =

+∞∑︁
𝑚=0

(︂
𝜕2𝑈𝑚(𝑟)

𝜕𝑟2
+

1

𝑟

𝜕𝑈𝑚(𝑟)

𝜕𝑟
+ (𝑘2 − 𝑚2

𝑟2
)𝑈𝑚(𝑟)

)︂
cos(𝑚𝜙) = −

+∞∑︁
𝑚=0

𝑄𝑚(𝑟) cos(𝑚𝜙)

(2.4)
Since cos𝑚𝜑 are independent functions, for each circumferential wave number 𝑚 decoupled

equation can be solved (hereafter, index 𝑚 is omitted in all equations):

𝑈 ′′(𝑟) +
1

𝑟
𝑈 ′(𝑟) +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝑈(𝑟) = −𝑄(𝑟) (2.5)
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In order to obtain solution Green’s function method is used. By definition [11], Green’s function
is a solution of the equation ( in what follows 𝜕

𝜕𝑟
𝐺(𝑟, 𝑟0) = 𝐺′(𝑟, 𝑟0)):

𝐺′′(𝑟, 𝑟0) +
1

𝑟
𝐺′(𝑟, 𝑟0) +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝐺(𝑟, 𝑟0) = −𝛿(𝑟 − 𝑟0) (2.6)

,where 𝛿(𝑥)- Dirac delta function. Here delta function 𝛿(𝑟−𝑟0) has meaning of intensity of point
force, applied at the point 𝑟0 and distributed in the angular coordinate direction as cos(𝑚𝜙), and 𝑟
is the observation point. Therefore second derivative 𝐺′′(𝑟, 𝑟0) has dimension of force intensity

Green’s function of an ordinary second-order differential equation has a following properties [11]
(for clarity notation of point of excitation and observation preserved).

Symmetry with respect to observation and excitation point property:

𝐺(𝑟, 𝑟0) = 𝐺(𝑟0, 𝑟) (2.7a)

Unit jump in derivative at the excitation point:

𝜕

𝜕𝑟
𝐺(𝑟0, 𝑟0 + 𝜀) − 𝜕

𝜕𝑟
𝐺(𝑟0, 𝑟0 − 𝜀) = 1, 𝜀 → 0 (2.7b)

Continuity at the excitation point:

𝐺(𝑟0, 𝑟0 + 𝜀) = 𝐺(𝑟0, 𝑟0 − 𝜀), 𝜀 → 0 (2.7c)

It should be noted that ,since second derivative 𝐺′′(𝑟, 𝑟0) has dimension of force intensity,
𝜕
𝜕𝑟
𝐺(𝑟, 𝑟0) in this case has dimension of the force, acting on a radial direction. Therefore, force

should have unit jump at the coordinate 𝑟 = 𝑟0. Also, property of unit jump is a reflection of
mathematical theorem 𝑑

𝑑𝑥
𝜃(𝑥) = 𝛿(𝑥), where 𝜃(𝑥) is the Heaviside theta-function. As known, theta-

function has unit jump at the point 𝑥 = 0.
Last two properties Eq.2.7b-Eq.2.7c can be used for obtaining explicit form of Green’s function

of equation Eq.2.5. The general solution of equation Eq.2.6 with arbitrary excitation point 𝑟0 has a
form:

𝑢+(𝑟) = 𝐴 𝐻
(1)
𝑚 (𝑘𝑟) , 𝑟 > 𝑟0

𝑢−(𝑟) = 𝐵 𝐻
(2)
𝑚 (𝑘𝑟) , 𝑟 ≤ 𝑟0

(2.7)

, where 𝐻
(1)
𝑚 (𝑟) and 𝐻

(2)
𝑚 (𝑟) are Hankel’s functions of order 𝑚 of first and second kind

respectively and 𝐴,𝐵 are integration constants.
In order to consider infinite structures function 𝑢+(𝑟) should satisfy radiation, or Sommerfeld,

condition [12].
With properties Eq.2.7a-Eq.2.7c one can obtain system of linear algebraical equations with

respect to constants 𝐴,𝐵:

𝑢+(𝑟0) = 𝑢−(𝑟0)
𝑑
𝑑𝑟
𝑢+(𝑟0) − 𝑑

𝑑𝑟
𝑢−(𝑟0) = 1

(2.8)

Constants are found as:

𝐴 = − 𝐻
(2)
𝑚 (𝑘 𝑟0)

𝑘(𝐻
(1)
𝑚+1(𝑘 𝑟0)𝐻

(2)
𝑚 (𝑘 𝑟0)−𝐻

(2)
𝑚+1(𝑘 𝑟0)𝐻

(1)
𝑚 (𝑘 𝑟0))

= −1
4
𝑖𝜋𝑟0𝐻

(2)
𝑚 (𝑘 𝑟0)

𝐵 = − 𝐻
(1)
𝑚 (𝑘 𝑟0)

𝑘(𝐻
(1)
𝑚+1(𝑘 𝑟0)𝐻

(2)
𝑚 (𝑘 𝑟0)−𝐻

(2)
𝑚+1(𝑘 𝑟0)𝐻

(1)
𝑚 (𝑘 𝑟0))

= −1
4
𝑖𝜋𝑟0𝐻

(1)
𝑚 (𝑘 𝑟0)

(2.9)

Thus, Green’s function for equation 2.5 have form:
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𝐺(𝑟, 𝑟0) =

{︃
−1

4
𝑖𝜋𝑟0𝐻

(1)
𝑚 (𝑘 𝑟0)𝐻

(2)
𝑚 (𝑘 𝑟) 𝑟 ≤ 𝑟0

−1
4
𝑖𝜋𝑟0𝐻

(2)
𝑚 (𝑘 𝑟0)𝐻

(1)
𝑚 (𝑘 𝑟) 𝑟 > 𝑟0

(2.10)

It should be noted, that this form of Green’s function in not unique. One can choose an arbitrary
combination of Bessel functions 𝑌 (𝑟) and 𝐽(𝑟) as the general solution Eq.2.7. Also, any solution
of the homogenous equation Eq.2.5 (with 𝑄(𝑟) ≡ 0) can be added to the existing form of a Green’s
function.

It is convenient to define Green’s function as a solution of the equation (for more detailed
explanation see App.B):

𝐺′′(𝑟, 𝑟0) +
1

𝑟
𝐺′(𝑟, 𝑟0) +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝐺(𝑟, 𝑟0) = −𝛿(𝑟 − 𝑟0)

𝑟0
(2.6’)

From physical point of view, with this definition force resultant 𝐹 =
2𝜋∫︀
0

𝑏∫︀
𝑎

− 𝛿(𝑟−𝑟0)
𝑟0

𝑟𝑑𝑟𝑑𝜑 =

−2𝜋
𝑟0

𝑏∫︀
𝑎

𝛿(𝑟 − 𝑟0)𝑟𝑑𝑟 = −2𝜋𝑟0
𝑟0

= −2𝜋 remains constant when point of excitation 𝑟0 is changing.

With definition 2.6’ Green’s function has form:

𝐺(𝑟, 𝑟0) =

{︃
−1

2
𝑖𝜋𝐻

(1)
𝑚 (𝑘 𝑟0)𝐻

(2)
𝑚 (𝑘 𝑟) 𝑟 ≤ 𝑟0

−1
2
𝑖𝜋𝐻

(2)
𝑚 (𝑘 𝑟0)𝐻

(1)
𝑚 (𝑘 𝑟) 𝑟 > 𝑟0

(2.11)

One can plot real part of function 2.11 in order to see that all properties of Green’s function are
present and Green’s function was found correctly. Let 𝑘 ≡ 1 and 𝑟0 = 1 therefore jump at the point
𝑟 = 1 of the function 𝐺′(𝑟, 𝑟0) should be 1

𝑟0
= 1:

Figure 2.1: Functions 𝐺 (blue) and 𝐺′(orange) for 𝑟0 = 1, dashed - imaginary part

As seen, function 𝐺(𝑟, 1) is continuous at point 𝑟 = 1, but function 𝐺′(𝑟, 1) experience unit
jump, as were predicted. Imaginary part is continuous in both cases, it does not affect unit jump.

Dirac’s delta function 𝛿(𝑟) has remarkable property (which in mathematics is the definition of
Dirac’s delta function): ∫︁ 𝑏

𝑎

𝛿(𝑟 − 𝑟0)𝑓(𝑟)𝑑𝑟 = 𝑓(𝑟0) (2.12)

Eq.2.12 is valid for any interval 𝑟0 ∈ (𝑎, 𝑏), including (−∞,+∞)
And from equations Eq.2.5 - Eq.2.6’ and property Eq.2.12 one can obtain displacement 𝑢(𝑟0) at

any excitation point 𝑟0 for arbitrary force intensity 𝑞(𝑟) (it is shown in App.B). Displacement of a
membrane has the form:
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𝑢(𝑟0) = [𝑢′(𝑟)𝐺(𝑟, 𝑟0) − 𝑢(𝑟)𝐺′(𝑟, 𝑟0)]𝑟

⃒⃒⃒⃒𝑟=𝑏

𝑟=𝑎

+

𝑏∫︁
𝑎

𝑞(𝑟)𝐺(𝑟, 𝑟0)𝑑𝑟 (2.13)

Identity Eq.2.13 is a particular case of Kirchhoff integral in acoustics [12, 13].
It should be emphasized, that 𝐺′(𝑟, 𝑟0) is not uniquely defined at 𝑟 = 𝑟0 and since we consider

values 𝐺′(𝑟, 𝑟0) at the boundary value taken as limit from inside of a membrane. Let 𝑟 = 𝑎, 𝑟 = 𝑏
be the membrane boundaries, then limits have form:

𝐺′(𝑎, 𝑟0)

⃒⃒⃒⃒
𝑟0=𝑎

= 𝐺′(𝑎, 𝑎 + 𝜀) , 𝜀 → 0

𝐺′(𝑏, 𝑟0)

⃒⃒⃒⃒
𝑟0=𝑏

= 𝐺′(𝑏, 𝑏− 𝜀) , 𝜀 → 0
(2.14)

Let us consider Eq.2.11. Using following series expansion at the point 𝑧 = 0:

𝐻
(1)
𝑚 (𝑧) = 1 + 2𝑖(𝛾−log(2))

𝜋
+ 2𝑖(log(𝑧))

𝜋
+ 𝑂 (𝑧2)

𝐻
(2)
𝑚 (𝑧) = 1 − 2𝑖(𝛾−log(2))

𝜋
− 2𝑖(log(𝑧))

𝜋
+ 𝑂 (𝑧2)

(2.15)

,where 𝛾 ≈ 0.577216 is the Euler-Mascheroni constaint.
With this Eq.2.11 to the leading order can be rewritten as:

𝐺(𝑟, 𝑟0) =

{︃
1
2𝜋

(︀
−2𝑖 log

(︀
𝑘𝑟
2

)︀
+ 𝜋 − 2𝑖𝛾

)︀ (︀
2 log

(︀
𝑘𝑟0
2

)︀
− 𝑖𝜋 + 2𝛾

)︀
𝑟 ≤ 𝑟0

1
2𝜋

(︀
2 log

(︀
𝑘𝑟
2

)︀
− 𝑖𝜋 + 2𝛾

)︀ (︀
−2𝑖 log

(︀
𝑘𝑟0
2

)︀
+ 𝜋 − 2𝑖𝛾

)︀
𝑟 > 𝑟0

(2.16)

With derivative taken:

𝑑

𝑑𝑟
𝐺(𝑟, 𝑟0) =

{︃
− 𝑖

𝜋𝑟

(︀
2 log

(︀
𝑘𝑟0
2

)︀
− 𝑖𝜋 + 2𝛾

)︀
𝑟 ≤ 𝑟0

𝑖
𝜋𝑟

(︀
−2 log

(︀
𝑘𝑟0
2

)︀
+ 𝜋 − 2𝑖𝛾

)︀
𝑟 > 𝑟0

(2.17)

If we find Green’s function value at point 𝑟 = 𝑟0 + 𝜀

𝑑

𝑑𝑟
𝐺(𝑟0 + 𝜀, 𝑟0) = −2𝑖 log(𝑘(𝑟0 + 𝜖)) + 𝜋 + 2𝑖𝛾 − 𝑖 log(4)

𝜋𝑟0
(2.18)

If 𝜀 = 0 then 𝑑
𝑑𝑟
𝐺(𝑟0, 𝑟0) = − 1

𝑟0
− 2𝑖 log(𝑘𝑟0)

𝜋𝑟0
− 2𝑖𝛾

𝜋𝑟0
+ 𝑖 log(4)

𝜋𝑟0
. After same procedure repeated for

𝑟 = 𝑟0 − 𝜀 gives 𝑑
𝑑𝑟
𝐺(𝑟0, 𝑟0) = 1

𝑟0
− 2𝑖 log(𝑘𝑟0)

𝜋𝑟0
− 2𝑖𝛾

𝜋𝑟0
+ 𝑖 log(4)

𝜋𝑟0
. Thus we obtain value for Green’s

function at the point 𝑟 = 𝑟0 and this value depends on a limit direction.

𝑑

𝑑𝑟
𝐺(𝑟0 ± 𝜀, 𝑟0) = ∓ 1

𝑟0
− 2𝑖 log(𝑘𝑟0)

𝜋𝑟0
− 2𝑖𝛾

𝜋𝑟0
+

𝑖 log(4)

𝜋𝑟0
(2.19)

If more terms in the series expansion Eq.2.15 are taken, only precision of common part are
increasing, ∓ 1

𝑟0
is only part that changes with change of limit direction.

In what follows, it is assumed that all limits are taken correctly for all parts of membrane.
Before considering periodic structure single membrane can be considered in order to show the idea
of boundary integrals equations method.

Let 𝑟 = 𝑎 and 𝑟 = 𝑏 be circular membrane boundaries. Thus, one writes two boundary integrals
in form:

𝑢(𝑎) = [𝑢′(𝑟)𝐺(𝑟, 𝑎) − 𝑢(𝑟)𝐺′(𝑟, 𝑎)]𝑟

⃒⃒⃒⃒𝑟=𝑏

𝑟=𝑎

+
𝑏∫︀
𝑎

𝑞(𝑟)𝐺(𝑟, 𝑎)𝑑𝑟

𝑢(𝑏) = [𝑢′(𝑟)𝐺(𝑟, 𝑏) − 𝑢(𝑟)𝐺′(𝑟, 𝑏)]𝑟

⃒⃒⃒⃒𝑟=𝑏

𝑟=𝑎

+
𝑏∫︀
𝑎

𝑞(𝑟)𝐺(𝑟, 𝑏)𝑑𝑟

(2.20)
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Unknown here are two displacements at the boundaries 𝑢(𝑎), 𝑢(𝑏) and two forces 𝑢′(𝑎), 𝑢′(𝑏).
In order to close system of algebraic equations two more equations should be written. For single
membrane these are boundary conditions in form:

𝑢(𝑎) = 0
𝑢(𝑏) = 0

(2.21)

or

𝑢′(𝑎) = 0
𝑢′(𝑏) = 0

(2.22)

Mixed conditions can be stated too. Main principle is that energy functional should be
minimized (see. App.A). In this work only symmetrical boundary conditions are considered.

Eq.2.20,Eq.2.21 or Eq.2.20, Eq.2.22 are four algebraical equations with respect to four unknowns
𝑢(𝑎), 𝑢(𝑏), 𝑢′(𝑎), 𝑢′(𝑏) and this system has unique solution. When unknowns are found and
substituted into Eq.2.13, displacement at any point inside the domain 𝑎 < 𝑟0 < 𝑏 can be found.

2.2 Periodic structure

2.2.1 Infinite structure

We consider periodic membrane shown on Fig.2.2:

Figure 2.2: Infinite membrane scheme

Where “black” and “white” part have different material parameters: Young’s modulus, wave
propagation speed and length. Following dimensionless parameters are used in this work:

𝛼 =
𝐸2

𝐸1

; 𝛽 =
ℎ2

ℎ1

; 𝛾 =
𝑙2
𝑙1

; 𝜎 =
𝑐2
𝑐1

;𝜆 =
𝑙1
ℎ1

; 𝑘1𝑙1 = Ω (2.23)

Infinite periodical structure is considering with respect to radial coordinate 𝑟 (see Fig. 1.2)
With this eigenfrequencies problem can be rewritten in terms of boundary integration equations.

For each cell we write boundary equations at both ends in form:

𝑢𝑖(𝑎𝑖) = [𝑢′(𝑟)𝐺𝑖(𝑟, 𝑎𝑖) − 𝑢(𝑟)𝐺′
𝑖(𝑟, 𝑎𝑖)] 𝑟|

𝑟=𝑏𝑖
𝑟=𝑎𝑖

+
𝑏𝑖∫︀
𝑎𝑖

𝑞(𝑟)𝐺𝑖(𝑟, 𝑎𝑖)𝑑𝑟

𝑢𝑖(𝑏𝑖) = [𝑢′(𝑟)𝐺𝑖(𝑟, 𝑏𝑖) − 𝑢(𝑟)𝐺′
𝑖(𝑟, 𝑏𝑖)] 𝑟|

𝑟=𝑏𝑖
𝑟=𝑎𝑖

+
𝑏𝑖∫︀
𝑎𝑖

𝑞(𝑟)𝐺𝑖(𝑟, 𝑏𝑖)𝑑𝑟

(2.24)
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, where 𝑢𝑖 are displacement, 𝑎𝑖 are left and 𝑏𝑖 are right boundaries of 𝑖-th part of membrane
respectively. For each part we have 2 unknown displacements and 2 unknown forces at the
boundaries.

In order to show main principle one periodicity cell can be considered. Since Bessel 𝑌 (𝑟)
function contains singularity at point 𝑟 = 0 the central cell, that contains point 𝑟 = 0 should be
excluded from consideration. Thus, boundary conditions have form:

𝑢2(𝑎2) = [𝑢′(𝑟)𝐺2(𝑟, 𝑎2) − 𝑢(𝑟)𝐺′
2(𝑟, 𝑎2)] 𝑟|

𝑟=𝑏2
𝑟=𝑎2

+
𝑏2∫︀
𝑎2

𝑞(𝑟)𝐺2(𝑟, 𝑎2)𝑑𝑟

𝑢2(𝑏2) = [𝑢′(𝑟)𝐺2(𝑟, 𝑏2) − 𝑢(𝑟)𝐺′
2(𝑟, 𝑏2)] 𝑟|

𝑟=𝑏2
𝑟=𝑎2

+
𝑏2∫︀
𝑎2

𝑞(𝑟)𝐺2(𝑟, 𝑏2)𝑑𝑟

𝑢3(𝑎3) = [𝑢′(𝑟)𝐺3(𝑟, 𝑎3) − 𝑢(𝑟)𝐺′
3(𝑟, 𝑎3)] 𝑟|

𝑟=𝑏3
𝑟=𝑎3

+
𝑏3∫︀
𝑎3

𝑞(𝑟)𝐺3(𝑟, 𝑎3)𝑑𝑟

𝑢3(𝑏3) = [𝑢′(𝑟)𝐺3(𝑟, 𝑏3) − 𝑢(𝑟)𝐺′
3(𝑟, 𝑏3)] 𝑟|

𝑟=𝑏3
𝑟=𝑎3

+
𝑏3∫︀
𝑎3

𝑞(𝑟)𝐺3(𝑟, 𝑏3)𝑑𝑟

(2.25)

As seen, there are four unknown displacements 𝑢2(𝑎2), 𝑢2(𝑏2), 𝑢3(𝑎3), 𝑢3(𝑏3) and four unknown
forces 𝑢′

2(𝑎2), 𝑢
′
2(𝑏2), 𝑢

′
3(𝑎3), 𝑢

′
3(𝑏3). Therefore four more equations should be added. Two equations

are interfacial conditions between two cells, that allows to consider cells in the system and represents
continuity and forces equilibrium at the interface:

𝑢2(𝑏2) = 𝑢3(𝑎3)
𝛼𝑢′

2(𝑏2) = 𝑢′
3(𝑎3)

(2.26)

And two last equations are taken from Floquet periodicity theorem. That theorem allows to close
system in case of infinite structure. Any two points for Floquet conditions can be taken, but with
one period distance (1 + 𝛾)𝜆 between points, i.e. 𝑏3 − 𝑎2 = (1 + 𝛾)𝜆:

𝑢2(𝑎2) = Λ𝑢3(𝑏3)
𝑢′
2(𝑎2) = Λ𝑢′

3(𝑏3)
(2.27)

It should be emphasized that if one can consider first cell it is usually written as 𝑢1(𝑏1) instead
of 𝑢2(𝑎2) and 𝑢′

1(𝑏1) instead of 𝑢′
2(𝑎2). Nevertheless, that is the same point and therefore it does

not affect the solution.
Equations Eq.2.25-Eq.2.27 represent system of eight linear algebraical equations. In load-free

case, i.e. when 𝑞(𝑟) = 0 system is homogeneous. In order to find non-trivial solution condition
𝐷(Λ,Ω) = 0, where 𝐷(Λ,Ω) is the determinant of the system Eq.2.25-Eq.2.27, must be fulfilled.
In case of circular membrane 𝐷(Λ,Ω) is the second order polynomial in Λ and we can find its roots
for each Ω and plot them as shown on Fig.2.3.

In case of cartesian coordinates Λ = exp(𝑖𝐾𝐵) (see [1]) and zones where abs(Λ) = 1 are called
pass bands. It happens when 𝐾𝐵 is purely real number. In this case waves can propagate freely,
because magnitude of waves are not change throughout the period, changes only phase. But in case
of membrane it is not obviously so, as seen on Fig.2.3 in the zones, similar to cartesian pass bands
, the parameter Λ has magnitude close to 2 and it should have another form, than exp(𝑖𝐾𝐵).

At first we consider wave propagation far away from center . This case should fully correspond
to axial rod vibrations case in cartesian coordinates , because following limit can be considered:

(︁
∆

(2)
𝑝𝑜𝑙𝑎𝑟 + 𝑘2

)︁
𝑢 = 𝑢𝑟𝑟 +

1

𝑟
𝑢𝑟 +

1

𝑟2
𝑢𝜙𝜙 + 𝑘2𝑢 → 𝑢𝑟𝑟 + 𝑘2𝑢 =

(︁
∆

(1)
𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 + 𝑘2

)︁
𝑢 , 𝑟 → ∞ (2.28)

Therefore, shape of pass- and gap-bands should repeat shape for the axial beam vibration
considered in [8] and App.D.
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Figure 2.3: Floquet zones

In order to reach limit several consequent cells considered. Finite structure consisting of 𝑛 cells
is taken and then Floquet conditions used in order to transfer to infinity. Hereafter, number 𝑛 is
called a number of precalculated cells. Therefore, we prescribe 2𝑛 pair of the interfacial conditions:

𝑢1(𝜆) = 𝑢2(𝜆)
𝑢′

1(𝜆) = 𝛼𝛽𝑢′
2(𝜆)

𝑢2((1 + 𝛾)𝜆) = 𝑢3((1 + 𝛾)𝜆)
𝛼𝛽𝑢′

2((1 + 𝛾)𝜆) = 𝑢′
3((1 + 𝛾)𝜆)

...
𝑢2𝑛−1(𝐿2𝑛−1) = 𝑢2𝑛(𝐿2𝑛−1)
𝑢′

2𝑛−1(𝐿2𝑛−1) = 𝛼𝛽𝑢′
2𝑛(𝐿2𝑛−1)

(2.29)

,where 𝐿𝑛 = ((1+𝛾)n+1)𝜆 - distance from 0 to end of n-th periodicity cell.
And, since an infinite membrane is considered, we use Floquet conditions to transfer from n-th

cell to infinity:

𝑢2𝑛−1(𝐿𝑛−1) = Λ𝑢2𝑛+1(𝐿2𝑛−1 + (1 + 𝛾)𝜆)
𝑢′

2𝑛−1(𝐿𝑛−1) = Λ𝑢′
2𝑛+1(𝐿2𝑛−1 + (1 + 𝛾)𝜆)

(2.30)

Equations Eq.2.29-Eq.2.30 together with boundary integrals in form Eq.2.24 for each part of
membrane compose the system of homogenous linear algebraical equations with respect to unknown
displacements and forces at the borders and condition of non-triviality of solution can be used for
finding Floquet zones. For three precalculated cells it is shown on Fig.2.4

Gap band at the proximity of Ω = 0 appears due to singularity of a function 𝐻
(1)
𝑚 (𝑟) at the point

𝑟 = 0. Green’s function including function 𝐻
(1)
𝑚 (𝑘𝑟) and wave number is function of frequency

𝑘 = 𝑘(Ω). Moreover, 𝑘(Ω) → 0 when Ω → 0. Thus at the point Ω = 0 argument in 𝐻
(1)
𝑚 (𝑘𝑟) is

zero. And therefore gap bang at proximity of the point Ω = 0 can not be considered as real gap-band
and waves in this frequency region have the properties of pass band waves.
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Figure 2.4: Floquet zones for n=3

The effect is vanishing when wave propagation far away from center is considered and when
sufficient number of precalculated cells is taken, Floquet zones picture for circular membrane in
polar coordinates fully repeats one for axial beam rod vibrations in cartesian coordinates:

Figure 2.5: Floquet zones (axial vibrations – blue, membrane (n=100) – green)

That fact, that 𝑎𝑏𝑠(Λ) ̸= 1 even in pass bands means that Λ ̸= exp(𝑖𝐾𝐵) as in cartesian
coordinates case. In first model it differs and difference depends on number of pre-calculated cells.

Since
(︁

∆
(2)
𝑝𝑜𝑙𝑎𝑟 + 𝑘2

)︁
𝑢 →

(︁
∆

(1)
𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 + 𝑘2

)︁
𝑢 at 𝑟 → +∞ with order of 1

𝑟
then one can suppose

that
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𝐾𝑝𝑜𝑙𝑎𝑟
𝐵 = 𝐾𝑐𝑎𝑟𝑡

𝐵 + 1
𝑟𝑐ℎ𝑎𝑟

Λ𝑝𝑜𝑙𝑎𝑟 = Λ𝑐𝑎𝑟𝑡 exp
(︁

1
𝑟𝑐ℎ𝑎𝑟

)︁
= exp(𝑖𝐾𝐵) exp

(︁
1

𝑟𝑐ℎ𝑎𝑟

)︁ (2.31)

,where 𝑟𝑐ℎ𝑎𝑟is a characteristic length of the model. For first model was found that 𝑟𝑐ℎ𝑎𝑟 = 1
𝑛𝛾

and if corrected Floquet zones are plotted (𝑛 = 20,𝑚 = 0) it shows good correspondence:

Figure 2.6: Corrected Floquet zones (𝑛 = 20,𝑚 = 0)

Besides number 𝑛 of precalculated cells there is second parameter 𝑚 – number of circumferential
waves. As shown on the Fig.2.7, parameter 𝑚 does not change value of 𝑎𝑏𝑠(Λ) for given 𝑛, it affects
only on width of zero ’gap’ band. With parameter 𝑚 increasing increases width of zero gap band
and increases difference from cartesian case in low frequency range:

Figure 2.7: Floquet zones for n=5 and m=0 (green), m=5 (blue),m=10 (orange)
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As seen, main patterns, found for cartesian case are preserved for infinite waveguide case in
polar coordinates. But one should consider each case individually, because form of fundamental
solution is different for each coordinate system (for example, exponents in cartesian coordinates,
Bessel and Hankel functions in polar).

2.2.2 Finite structures

Every finite structure can be considered as series of a ’unit’ symmetrical periodicity cell (see
Fig 1.2). In order to find eigenfrequencies interfacial conditions should be stated:

𝑢1(𝜆) = 𝑢2(𝜆)
𝑢′

1(𝜆) = 𝛼𝛽𝑢′
2(𝜆)

𝑢2((1 + 𝛾)𝜆) = 𝑢3((1 + 𝛾)𝜆)
𝛼𝛽𝑢′

2((1 + 𝛾)𝜆) = 𝑢′
3((1 + 𝛾)𝜆)

(2.32)

And two types of boundary conditions (see App.A for Hamilton’s principle explanation):

𝑢1(𝜆/2) = 0
𝑢3((3/2 + 𝛾)𝜆) = 0

(2.33)

−𝑢′
1(𝜆/2) = 0

𝑢′
3((3/2 + 𝛾)𝜆) = 0

(2.34)

Equations Eq.2.32-Eq.2.33 defines eigenfrequency problem with “fixed” ends or A-type border
conditions, equations Eq.2.32 and Eq.2.34 defines problem with “free” ends or B-type border
conditions (existence of two such types of conditions were predicted by J. Mead in [2]). Roots,
obviously, can be found only numerically, since there are no inverse of the Bessel function exists.
Eigenfrequencies in both problems converges to gap band borders with increasing of the frequency:

Figure 2.8: Eigenfrequency of single symmetric periodicity cells (red – eigenfrequencies of “fixed”
problem, blue – “free”)

As in axial case, all eigenfrequencies of more than one periodicity cell appears in pass bands
and all eigenfrequencies from a lesser structure exists in a bigger:
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Figure 2.9: Eigenfrequency of structure with 10 symmetrical periodicity cells

In this chapter main patterns which are typical for periodical structure are shown. Behavior
of eigenfrequencies of finite structure has very common pattern. Eigenfrequencies of axial and
flexural rod vibrations, cylindrical shell single symmetrical cell also covers gap bands borders
[7, 8]. Eigenfrequencies of several periodicity cells appears in pass bands in all cases. Also, shown
techniques (Floquet theorem, boundary integrals method) that will be used in the next chapters. As
seen, main patterns valid for cartesian coordinate system preserves in polar coordinates, but some
adjustments required in order to show exact correspondence between these coordinate systems.
Since membrane equation is closely related to a thin plate equation it gives reason to say that Floquet
theory is working for circular thin plate equation, which will be used for modelling in second part
of this work. Moreover, it gives reason to say that Floquet theory is coordinate independent and can
be, with some adjustment,used for any coordinate system.

19



 



Chapter 3

Bernoulli-Euler curved beam model

In this chapter a simplified model of a torque vibration isolator is considered. Methods from
previous chapter (Floquet theorem, boundary integrals method) have broad range of applicability.
In this chapter all these methods are used for more complicated case of system of differential
equations. This chapter has theoretical and practical goals. Practical goal is to build first model of
torque vibration isolator in the form of a system of a differential equations. Theoretical goal is to
show the difference between the picture of Floquet zones of a single differential equation and a
system of differential equations. In order to achieve that, methods, considered in Ch.2 are expanded
and full range of tools for system of differential equations is obtained.

Torque vibration isolator has following periodicity cell with two different parts illustrated on the
Fig. 3.1

Figure 3.1: Vibration torque part

Part one is the segment of a circular plate, which is similar to a membrane considered in Ch.2
with a local polar coordinates (𝑟,Θ) and part two is the segment of a thin cylindrical shell with local
cartesian coordinate 𝑥 and local polar angle 𝜑. Each of these elements are more stiffer in transverse
direction 𝑟 and 𝑥 than in longitudinal Θ and 𝜑. Thus,as first approximation, the curved Bernoulli-
Euler beam model can be used, which excludes deformation of the plate segment in 𝑟-coordinate
and of the shell segment in 𝑥-coordinate.

As ’proof-of-concept’ a curved beam with circular cross-section will be considered, because its
consideration is obviously simpler. A curved beam has only one local coordinate 𝑠 which is shown
on Fig.3.2. Coordinate 𝑠 is the natural parameter of a curve that connects geometrical center of each
cross-section:
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Figure 3.2: First model scheme

For each segment of the structure, shown on Fig.3.2 in-plane and out-plane vibrations can be
considered separately.

3.1 Equations of motion

3.1.1 In-plane vibrations

With coordinate system shown on Fig.3.10 equations of motion of flat ring in-plane vibrations
have the form [14]:

𝜌𝐴𝜕2𝑢
𝜕𝑡2

= 𝜕𝑄𝑥

𝜕𝑠
+ 1

𝑅
𝑁𝑧 + 𝑝𝑢 − 𝜕𝑝𝛽

𝜕𝑠

𝜌𝐴𝜕2𝑤
𝜕𝑡2

= 𝜕𝑁𝑧

𝜕𝑠
− 1

𝑅
𝑄𝑥 + 𝑝𝑤 + 1

𝑅
𝑝𝛽

(3.1)

,where 𝑢 - 𝑥-axis displacement, 𝑤 - 𝑧-axis displacement, 𝛽 - rotation with respect to 𝑦 axis,
𝑄𝑖, 𝑁𝑖 - components of force vector, 𝑀𝑖, 𝑇𝑖-components of moment vector, 𝑅 is the radius of
curvature. Generalized forces and rotation with Bernoulli-Euler assumptions have form:

𝑀𝑦

𝐸𝐼𝑦
= 𝜕𝛽

𝜕𝑠
, 𝑄𝑥 = −𝜕𝑀𝑦

𝜕𝑠
𝑁𝑧

𝐸𝐴
= 𝜕𝑤

𝜕𝑠
− 1

𝑅
𝑢 , 𝛽 = 𝜕𝑢

𝜕𝑠
+ 1

𝑅
𝑤

(3.2)

For brevity no external loading considered, i.e. 𝑝𝑢 = 𝑝𝑤 = 𝑝𝛽 ≡ 0
Time and space dependence for both in-plane and out-plane vibration has the form:

{𝑢(𝑠, 𝑡), 𝑣(𝑠, 𝑡), 𝑤(𝑠, 𝑡), 𝛾(𝑠, 𝑡)}𝑇 = {𝑈̄ , 𝑉 , 𝑊̄ ,Γ}𝑇 𝑒𝑥𝑝(𝑘dim𝑠− 𝑖𝜔𝑡) (3.3)

Following dimensionless parameters used:

Ω =
𝜔𝑑

𝑐
, 𝑘 = 𝑘dim𝑑, 𝑠 =

𝑠

𝑑
, 𝑈 =

𝑈̄

𝑑
, 𝑉 =

𝑉

𝑑
,𝑊 =

𝑊̄

𝑑
, 𝜀 =

𝑑

𝑅
(3.4)
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With time and space dependence Eq.3.3 and dimensionless parameters Eq.3.4substituted into the
system Eq.3.1-Eq.3.2 following system is obtained:

𝑊
(︀
16k𝜀− k3𝜀

)︀
+ 𝑈

(︀
−k4 − 16𝜀2 + 16Ω2

)︀
= 0

𝑈
(︀
−16k𝜀 + k3𝜀

)︀
+ 𝑊

(︀
16k2 + k2𝜀2 + 16Ω2

)︀
= 0

(3.5)

Determinant of system of algebraical linear equations Eq.3.5 gives 6th order polynomial in 𝑘,
which is called dispersion relation:

𝑘6 + 𝑘4Ω2 + 2𝑘4𝜀2 − 16𝑘2Ω2 + 𝑘2𝜀4 − 𝑘2Ω2𝜀2 − 16Ω4 + 16Ω2𝜀2 (3.6)

When it is solved with respect to 𝑘 it gives 6 wavenumbers 𝑘(𝑖𝑛)
𝑖 :

Figure 3.3: Wave numbers 𝑘(𝑖𝑛), real parts

Figure 3.4: Wave numbers 𝑘(𝑖𝑛), imaginary parts

For applications it is of interest to consider low-frequency range, therefore it shows pictures,
that is characteristic only for Bernoulli-Euler curved beam:
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Figure 3.5: Wave numbers 𝑘(𝑖𝑛), imaginary parts

Different forms of wave number 𝑘𝑖 represents different form of waves. At the given frequency
Ω, value 𝑘(Ω) can be pure real, pure imaginary and complex number. Since space dependence
exp(𝑘 𝑠) considered, pure imaginary 𝑘(Ω) represents propagating wave (wave that does not change
its absolute value when 𝑠 is changing). Main theorem of algebra state that if 𝑖𝑘𝑖𝑚 is the root of
dispersion relation, then −𝑖𝑘𝑖𝑚 also the root. Root 𝑖𝑘𝑖𝑚 defines wave propagating from left to right
(with time dependence exp(−𝑖𝜔𝑡)) and root −𝑖𝑘𝑖𝑚 defines wave propagating from right to left. Pure
real value 𝑘𝑟𝑒 represents evanescent waves (waves that exponentially decreasing from left to right
or from right to left):

Figure 3.6: Different form of waves: pure imaginary 𝑖𝑘𝑖𝑚 (blue), pure real 𝑘𝑟𝑒 > 0 (orange), pure
real 𝑘𝑟𝑒 < 0 (green)

Complex value represents wave 𝑘𝑐𝑜𝑚𝑝 = 𝑘
(𝑟𝑒)
𝑐𝑜𝑚𝑝 + 𝑖𝑘

(𝑖𝑚)
𝑐𝑜𝑚𝑝, propagating from left to right or from

right to left (depends on a sign of imaginary part 𝑘(𝑖𝑚)
𝑐𝑜𝑚𝑝) modulated by exp(𝑘

(𝑟𝑒)
𝑐𝑜𝑚𝑝𝑠),i.e. oscillating

between two curves exp(𝑘
(𝑟𝑒)
𝑐𝑜𝑚𝑝𝑠) and − exp(𝑘

(𝑟𝑒)
𝑐𝑜𝑚𝑝𝑠) (shown dashed on the following figure) :
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Figure 3.7: Different form of waves 𝑘𝑐𝑜𝑚𝑝 = 𝑘
(𝑟𝑒)
𝑐𝑜𝑚𝑝 + 𝑖𝑘

(𝑖𝑚)
𝑐𝑜𝑚𝑝: 𝑘

(𝑟𝑒)
𝑐𝑜𝑚𝑝 > 0 (blue), 𝑘(𝑟𝑒)

𝑐𝑜𝑚𝑝 < 0 (green)

It is also convenient to introduce modal coefficient 𝑚𝑤 = 𝑊
𝑈

, which is found from equations
Eq.3.5 for each wave number individually. In that case 𝑚𝑢 = 𝑈

𝑈
= 1. Also, modal coefficients for

forces, moments and rotation introduced as:

𝑚𝛽 = (𝑘𝑚𝑢 + 𝜀𝑚𝑤)
𝑚𝑀𝑦 = (𝑘𝑚𝛽)
𝑚𝑁𝑧 = 16 (𝑘𝑚𝑤 − 𝜀𝑚𝑢)
𝑚𝑄𝑥 = −𝑘𝑚𝑀𝑦

(3.7)

3.1.2 Out-plane vibrations

Equations of motion of flat ring in-plane vibrations have the form:

𝜌𝐼𝑝
𝜕2𝛾
𝜕𝑡2

= 𝜕𝑇𝑧

𝜕𝑠
− 1

𝑅
𝑀𝑥 + 𝑝𝛾

𝜌𝐴𝜕2𝑣
𝜕𝑡2

= 𝜕𝑄𝑦

𝜕𝑠
+ 𝑝𝑣 + 𝜕𝑝𝛼

𝜕𝑠

(3.8)

With generalized forces and rotation with Bernoulli-Euler assumptions in form:

𝑀𝑥

𝐸𝐼𝑥
= 𝜕𝛼

𝜕𝑠
+ 1

𝑅
𝛾 , 𝑇𝑧

𝐺𝐼𝑝
= 𝜕𝛾

𝜕𝑠
− 1

𝑅
𝛼

𝑄𝑦 = 𝜕𝑀𝑥

𝜕𝑠
+ 1

𝑅
𝑇𝑧 , 𝛼 = −𝜕𝑣

𝜕𝑠

(3.9)

Where, 𝑣 - 𝑦-axis displacement, 𝛼 - rotation with respect to 𝑥-axis, 𝛾 - rotation with respect
to 𝑧-axis. With time and space dependence Eq.3.3 and dimensionless parameters Eq.3.4substituted
into the system Eq.3.8-Eq.3.9 following system is obtained:

Γ
(︁

𝑘2

𝜈+1
+ 2Ω2 − 𝜀2

)︁
+ 𝑉

(︁
𝑘2𝜀
𝜈+1

+ 𝑘2𝜀
)︁

= 0

Γ
(︁

𝑘2𝜀
𝜈+1

+ 𝑘2𝜀
)︁

+ 𝑉
(︁
−𝑘4 + 𝑘2𝜀2

𝜈+1
+ 16Ω2

)︁
= 0

(3.10)

Determinant of the system Eq.3.10:

−𝑘6−2𝑘4𝜈Ω2−2𝑘4Ω2−2𝑘4𝜀2+16𝑘2Ω2−𝑘2𝜀4+2𝑘2Ω2𝜀2+32𝜈Ω4+32Ω4−16𝜈Ω2𝜀2−16Ω2𝜀2 (3.11)
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Also gives 6 wavenumbers 𝑘(𝑜𝑢𝑡)
𝑖 :

Figure 3.8: Wave numbers 𝑘(𝑜𝑢𝑡), real parts

Figure 3.9: Wave numbers 𝑘(𝑜𝑢𝑡), imaginary parts

Modal coefficients in this case have form:

𝑚𝛾 = 1 𝑚𝑣 = 𝑉
Γ

𝑚𝛼 = −𝑘𝑚𝑣 𝑚𝑀𝑦 = (𝑘𝑚𝛼 + 𝜀𝑚𝛾)
𝑚𝑇𝑧 = 1

1+𝜈
(𝑘𝑚𝛾 − 𝜀𝑚𝛼) 𝑚𝑄𝑦 = 𝑘𝑚𝑀𝑥 + 𝜀𝑚𝑇𝑧

(3.12)

3.2 Boundary integrals method

Definition of Green’s matrix for a system of a differential equation is the same as for Green’s
function for a single equation, but in case of 𝑛 equations with 𝑚 variable functions 𝑛 load cases
should be considered. In each case one load is represented by delta-function whereas other are zero.
Therefore, Green’s matrix has dimensions 𝑛×𝑚.
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Since in boundary integrals method Green’s matrix for infinite structure considered, Green’s
matrix should satisfy radiation and decay conditions at the infinity [12]. Therefore, not all
wavenumbers can be considered. Detailed explanation of principle of choice and all necessary
references contained in [14]. Among six roots of both dispersion relations we choose one complex
with negative real part (𝑅𝑒(𝑘) < 0 ) and two purely imaginary roots with 𝑐𝑔𝑟𝑜𝑢𝑝 = 𝑑𝑘𝑑𝑖𝑛

𝑑𝜔
> 0 for

each in-plane and out-plane equations.
For Green’s matrix derivation bi-orthogonality condition will be used. It can be derived from

reciprocity theorem, which is well known for most commonly used linear differential equations and
for elastic helical spring is described in [13]. Derivation of all bi-orthogonality conditions used here
can be found in [9].

3.2.1 In-plane vibrations

Bi-orthogonality condition for this case has the form:

𝑀𝐴
𝑦 (𝑠)𝛽𝐵(𝑠) + 𝑁𝐴

𝑧 (𝑠)𝑤𝐵(𝑠) − 𝑢𝐴(𝑠)𝑄𝐵
𝑥 (𝑠) = 0 (3.13)

Or with modal coefficients introduced in Eq. 3.10:

𝑚
(𝑖)
𝑀𝑦 𝑚

(𝑗)
𝛽 + 𝑚

(𝑖)
𝑁𝑧 𝑚

(𝑗)
𝑤 −𝑚(𝑖)

𝑢 𝑚
(𝑗)
𝑄𝑥 = 0 (𝑖 ̸= 𝑗) (3.14)

Equations Eq.3.13-Eq.3.24 are called bi-orthogonality conditions for flat ring in-plane vibrations.
And with reciprocity theorem they are widely used in Green’s functions theory and for boundary
integral equations derivation.

In in-plane ring vibrations case each string of Green’s matrix represents solution for each of a
loading case 𝑝𝑖 = 𝛿(𝑠), 𝑝𝑗 = 0 (𝑖 ̸= 𝑗 ; 𝑖, 𝑗 ∈ {𝑢,𝑤, 𝛽})

In order to find Green’s matrix, property of force unit jump of Green’s function also used.
Three load cases considered: load case 1 𝑁𝑧(0) = −1

2
𝑠𝑖𝑔𝑛(𝑠) (it represents case 𝑝𝑤 = 𝛿(𝑠) ), load

case 2 𝑀𝑦(0) = −1
2
𝑠𝑖𝑔𝑛(𝑠) (𝑝𝛽 = 𝛿(𝑠)) and load case 3 𝑄𝑥(0) = −1

2
𝑠𝑖𝑔𝑛(𝑠) (𝑝𝑢 = 𝛿(𝑠)). With

that loading cases introduced it is convenient to split Forces/Moments and displacements into two
groups:

{𝑤(𝑠), 𝛽(𝑠), 𝑄𝑥(𝑠)}
{𝑢(𝑠), 𝑁𝑧(𝑠),𝑀𝑦(𝑠)}

(3.15)

If functions of first group are even, then functions of second group are odd and vice versa.
Since Heaviside theta-function is odd function, only continuity of functions should be considered.
Even functions have property of continuity at zero, and therefore, functions of second group are
continuous.

Let us consider loading case 1. Significant part of Green’s matrix has a following form:

{𝑢(𝑠), 𝑁𝑧(𝑠),𝑀𝑦(𝑠)} =
3∑︁

𝑖=1

{𝑚(𝑖)
𝑢 ,𝑚

(𝑖)
𝑁𝑧,𝑚

(𝑖)
𝑀𝑦}Γ

(1)
𝑖 exp(𝑘𝑖 𝑎𝑏𝑠(𝑠))𝑠𝑖𝑔𝑛(𝑠) (3.16)

Properties of Green’s matrix have following form:

𝑢(0) = 0
𝑀𝑦(0) = 0
𝑁𝑧(0) = −1

2
𝑠𝑖𝑔𝑛(𝑠)

(3.17)

Substituting 3.16 to 3.17 and multiplying each string to 𝑚
(𝑗)
𝑄𝑥 , 𝑚

(𝑗)
𝛽 , 𝑚

(𝑗)
𝑤 (𝑗 = 1, 2, 3)

respectively:
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3∑︀
𝑖=1

Γ
(1)
𝑖 𝑚

(𝑖)
𝑢 𝑚

(𝑗)
𝑄𝑥 = 0

3∑︀
𝑖=1

Γ
(1)
𝑖 𝑚

(𝑖)
𝑀𝑦𝑚

(𝑗)
𝛽 = 0

3∑︀
𝑖=1

Γ
(1)
𝑖 𝑚𝑁𝑧

(𝑖)𝑚
(𝑗)
𝑤 = −1

2

(3.18)

Summing all equations in 3.18:

3∑︁
𝑖=1

Γ
(1)
𝑖 (𝑚(𝑖)

𝑢 𝑚
(𝑗)
𝑄𝑥 + 𝑚

(𝑖)
𝑀𝑦 𝑚

(𝑗)
𝛽 + 𝑚

(𝑖)
𝑁𝑧 𝑚

(𝑗)
𝑤 ) = −1

2
(3.19)

Expression in brackets is exactly bi-orthogonal condition 3.24 and it is not zero only when 𝑖 = 𝑗.
Thus one can obtain explicit form of each coefficient Γ

(1)
𝑖 .

In same way all Green’s matrix coefficient entries can be found as:

Γ(𝑖𝑛)
(1)
𝑖 = −1

2
𝑚

(𝑖)
𝑤

𝑚
(𝑖)
𝑀𝑦 𝑚

(𝑖)
𝛽 +𝑚𝑁𝑧𝑖 𝑚

(𝑖)
𝑤 −𝑚

(𝑖)
𝑢 𝑚

(𝑖)
𝑄𝑥

Γ(𝑖𝑛)
(2)
𝑖 = −1

2

𝑚
(𝑖)
𝛽

𝑚
(𝑖)
𝑀𝑦 𝑚

(𝑖)
𝛽 +𝑚𝑁𝑧𝑖 𝑚

(𝑖)
𝑤 −𝑚

(𝑖)
𝑢 𝑚

(𝑖)
𝑄𝑥

Γ(𝑖𝑛)
(3)
𝑖 = 1

2
𝑚

(𝑖)
𝑢

𝑚
(𝑖)
𝑀𝑦 𝑚𝛽𝑖+𝑚𝑁𝑧𝑖 𝑚

(𝑖)
𝑤 −𝑚

(𝑖)
𝑢 𝑚

(𝑖)
𝑄𝑥

(3.20)

After coefficients found green matrix formed as (on example of loading case 1):

𝐺𝑖𝑛
1 (𝑠, 𝑠0) = {𝑢(𝑛)(𝑠), 𝑤(𝑛)(𝑠), 𝛽(𝑛)(𝑠), 𝑄

(𝑛)
𝑥 (𝑠), 𝑁

(𝑛)
𝑧 (𝑠),𝑀

(𝑛)
𝑦 (𝑠)} =

3∑︀
𝑖=1

{𝑠𝑖𝑔𝑛(𝑠)𝑚
(𝑖)
𝑢 ,𝑚

(𝑖)
𝑤 ,𝑚

(𝑖)
𝛽 ,𝑚

(𝑖)
𝑄𝑥, 𝑠𝑖𝑔𝑛(𝑠)𝑚𝑁𝑧𝑖, 𝑠𝑖𝑔𝑛(𝑠)𝑚

(𝑖)
𝑀𝑦}Γ(𝑖𝑛)

(1)
𝑖 exp(𝑘𝑖𝑛

𝑖 𝑎𝑏𝑠(𝑠− 𝑠0))

(3.21)
After Green’s matrix found, one can obtain displacement, expressed in terms of Green’s matrix

(analogous to 2.13) in same way as it done in App.B. It can be written as ( [13]):

𝛿1𝑛𝑤(𝑠0) + 𝛿2𝑛𝛽(𝑠0) + 𝛿3𝑛𝑢(𝑠0) =
[︀
𝐺𝑖𝑛

𝑛 (𝑠, 𝑠0). {𝑄𝑥(𝑠), 𝑁𝑧(𝑠),𝑀𝑦(𝑠),−𝑢(𝑠),−𝑤(𝑠),−𝛽(𝑠)}
]︀𝑠=𝑏

𝑠=𝑎
(3.22)

,where 𝛿𝑖𝑗 -Kronecker’s delta and {}.{} - dot product of two vectors. Equations Eq.?? called
boundary integrals for ring in-plane vibrations.

3.2.2 Out-plane vibrations

In same way, with three loading cases: load case 1 𝑄𝑦(0) = −1
2
𝑠𝑖𝑔𝑛(𝑠) (𝑝𝑢 = 𝛿(𝑠) ), load case

2 𝑇𝑧(0) = −1
2
𝑠𝑖𝑔𝑛(𝑠) (𝑝𝛾 = 𝛿(𝑠)) and load case 3 𝑀𝑥(0) = −1

2
𝑠𝑖𝑔𝑛(𝑠) (𝑝𝛼 = 𝛿(𝑠)).

Two groups of functions:

{𝑣(𝑠), 𝛾(𝑠),𝑀𝑥(𝑠)}
{𝛼(𝑠), 𝑇𝑧(𝑠), 𝑄𝑦(𝑠)}

(3.23)

And bi-orthogonality condition:

𝑚
(𝑖)
𝑇𝑧 𝑚

(𝑗)
𝛾 + 𝑚

(𝑖)
𝑄𝑦 𝑚

(𝑗)
𝑣 −𝑚(𝑖)

𝛼 𝑚
(𝑗)
𝑀𝑥 = 0 (𝑖 ̸= 𝑗) (3.24)

One can obtain Green’s matrix coefficients in form:
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Γ(𝑜𝑢𝑡)
(1)
𝑖 = −1

2
𝑚

(𝑖)
𝑣

𝑚
(𝑖)
𝑇𝑧 𝑚

(𝑖)
𝛾 +𝑚

(𝑖)
𝑄𝑦 𝑚

(𝑖)
𝑣 −𝑚

(𝑖)
𝛼 𝑚

(𝑖)
𝑀𝑥

Γ(𝑜𝑢𝑡)
(2)
𝑖 = −1

2

𝑚
(𝑖)
𝛾

𝑚
(𝑖)
𝑇𝑧 𝑚

(𝑖)
𝛾 +𝑚

(𝑖)
𝑄𝑦 𝑚

(𝑖)
𝑣 −𝑚

(𝑖)
𝛼 𝑚

(𝑖)
𝑀𝑥

Γ(𝑜𝑢𝑡)
(3)
𝑖 = 1

2
𝑚

(𝑖)
𝛼

𝑚
(𝑖)
𝑇𝑧 𝑚

(𝑖)
𝛾 +𝑚

(𝑖)
𝑄𝑦 𝑚

(𝑖)
𝑣 −𝑚

(𝑖)
𝛼 𝑚

(𝑖)
𝑀𝑥

(3.25)

Green’s matrix in form:

𝐺𝑜𝑢𝑡
1 (𝑠, 𝑠0) = {𝑣(𝑛)(𝑠), 𝛼(𝑛)(𝑠), 𝛾(𝑛)(𝑠), 𝑄

(𝑛)
𝑦 (𝑠),𝑀

(𝑛)
𝑧 (𝑠), 𝑇

(𝑛)
𝑧 (𝑠)} =

3∑︀
𝑖=1

{𝑚(𝑖)
𝑣 , 𝑠𝑖𝑔𝑛(𝑠)𝑚

(𝑖)
𝛼 ,𝑚𝛾𝑖, 𝑠𝑖𝑔𝑛(𝑠)𝑚

(𝑖)
𝑄𝑦,𝑚

(𝑖)
𝑀𝑥, 𝑠𝑖𝑔𝑛(𝑠)𝑚

(𝑖)
𝑇𝑧}Γ(𝑜𝑢𝑡)

(1)
𝑖 exp(𝑘𝑜𝑢𝑡

𝑖 𝑎𝑏𝑠(𝑠− 𝑠0))

(3.26)
And boundary equations in form:

𝛿1𝑛𝑣(𝑠0) + 𝛿2𝑛𝛾(𝑠0) + 𝛿3𝑛𝛼(𝑠0) =
[︀
𝐺𝑜𝑢𝑡

𝑛 (𝑠, 𝑠0). {𝑄𝑦(𝑠),𝑀𝑥(𝑠), 𝑇 𝑧(𝑠),−𝑢(𝑠),−𝛼(𝑠),−𝛾(𝑠)}
]︀𝑠=𝑏

𝑠=𝑎
(3.27)

3.3 The benchmark periodic structure

In order to validate the theory and the Wolfram Mathematica codes, an auxiliary problem has
been considered first.

3.3.1 Infinite periodic structure

With respect to natural coordinate 𝑠 ring can be considered as periodic structure shown on
the Fig.1.2. Similar problem was considered in [3] for a helical spring and flat ring, but it was
considered within Timoshenko beam theory. In this work, as stated above Bernoulli-Euler theory
considered.

Let us consider a auxiliary problem with parts of periodicity structure connected such that plane
of in-plane vibrations of both parts are the same. Finally model can be represented as:

Figure 3.10: Auxiliary problem scheme

Each curved beam segment has the same material and same wire diameter, but different
curvature radius. Additional dimensionless parameters introduced as:

𝛼 =
𝐸1

𝐸2

; 𝛾 =
𝑙2
𝑙1

; 𝜎 =
𝑐2
𝑐1

;𝜆 =
𝑙1
𝑑

; Ω1 = Ω; Ω2 =
Ω

𝜎
; 𝜀1 =

𝑑

𝑅1

; 𝜀2 =
𝑑

𝑅2

(3.28)

Hereafter following dimensionless parameters set is considered unless it is stated otherwise:
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𝛼 = 1; 𝛾 = 0.5; 𝜎 = 1;𝜆 = 5; 𝜀1 = 0.2; 𝜀2 = 0.02 (3.29)

As in the case of axial and flexural beam vibrations Floquet theory can be used. Following
notation used:

𝑑𝑖𝑠𝑝𝑖(𝑠) = {𝑤𝑖(𝑠), 𝛽𝑖(𝑠), 𝑢𝑖(𝑠), 𝑣𝑖(𝑠), 𝛾𝑖(𝑠), 𝛼𝑖(𝑠)}
𝑓𝑜𝑟𝑐𝑒𝑖(𝑠) = 1

𝐸𝑖𝐼
(𝑖)
𝑥

{𝑄(𝑖)
𝑥 (𝑠), 𝑁

(𝑖)
𝑧 (𝑠),𝑀

(𝑖)
𝑦 (𝑠), 𝑄

(𝑖)
𝑦 (𝑠),𝑀

(𝑖)
𝑥 (𝑠), 𝑇

(𝑖)
𝑧 (𝑠)} (3.30)

Let us consider three subsequent parts of ring. For each part of ring we define two set of
three boundary integrals in form Eq.3.29 and Eq.3.35 (totally, 6*6=36 equations) and additionally
interfacial conditions (4*6=24 equations):

𝑤1(1) = 𝑤2(1) ; 𝛽1(1) = 𝛽2(1) ;𝑢1(1) = 𝑢2(1)
𝛾1(1) = 𝛾2(1) ; 𝑣1(1) = 𝑣2(1) ;𝛼1(1) = 𝛼2(1)

𝑁
(1)
𝑧 (1) = 𝛼𝑝𝑎𝑟 𝑁

(2)
𝑧 (1) ;𝑀

(1)
𝑦 (1) = 𝛼𝑝𝑎𝑟 𝑀

(2)
𝑦 (1) ;𝑄

(1)
𝑥 (1) = 𝛼𝑝𝑎𝑟 𝑄

(2)
𝑥 (1)

𝑇
(1)
𝑧 (1) = 𝛼𝑝𝑎𝑟 𝑇

(2)
𝑧 (1) ;𝑄

(1)
𝑦 (1) = 𝛼𝑝𝑎𝑟 𝑄

(2)
𝑦 (1) ;𝑀

(1)
𝑥 (1) = 𝛼𝑝𝑎𝑟 𝑀

(2)
𝑥 (1)

𝑤2(1 + 𝛾𝑝𝑎𝑟) = 𝑤3(1 + 𝛾𝑝𝑎𝑟) ; 𝛽2(1 + 𝛾𝑝𝑎𝑟) = 𝛽3(1 + 𝛾𝑝𝑎𝑟) ;𝑢2(1 + 𝛾𝑝𝑎𝑟) = 𝑢3(1 + 𝛾𝑝𝑎𝑟)
𝛾2(1 + 𝛾𝑝𝑎𝑟) = 𝛾3(1 + 𝛾𝑝𝑎𝑟) ; 𝑣2(1 + 𝛾𝑝𝑎𝑟) = 𝑣3(1 + 𝛾𝑝𝑎𝑟) ;𝛼2(1 + 𝛾𝑝𝑎𝑟) = 𝛼3(1 + 𝛾𝑝𝑎𝑟)

𝑁
(2)
𝑧 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑁

(3)
𝑧 (1 + 𝛾𝑝𝑎𝑟) ;𝑀

(2)
𝑦 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑀

(3)
𝑦 (1 + 𝛾𝑝𝑎𝑟)

𝑄
(2)
𝑥 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑄

(3)
𝑥 (1 + 𝛾𝑝𝑎𝑟)

𝑇
(2)
𝑧 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑇

(3)
𝑧 (1 + 𝛾𝑝𝑎𝑟) ;𝑄

(2)
𝑦 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑄

(3)
𝑦 (1 + 𝛾𝑝𝑎𝑟)

𝑀
(2)
𝑥 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑀

(3)
𝑥 (1 + 𝛾𝑝𝑎𝑟)

(3.31a)
Or in vector form:

𝑑𝑖𝑠𝑝1(1) = 𝑑𝑖𝑠𝑝2(1)
𝑓𝑜𝑟𝑐𝑒1(1) = 𝛼 𝑓𝑜𝑟𝑐𝑒2(1)
𝑑𝑖𝑠𝑝2(1 + 𝛾) = 𝑑𝑖𝑠𝑝3(1 + 𝛾)
𝛼𝑓𝑜𝑟𝑐𝑒2(1 + 𝛾) = 𝑓𝑜𝑟𝑐𝑒3(1 + 𝛾)

(3.31b)

And Floquet periodicity conditions (2*6=12 equations):

𝑢1(0) = Λ𝑢3(1 + 𝛾); 𝑣1(0) = Λ𝑢3(1 + 𝛾); 𝑤1(0) = Λ𝑢3(1 + 𝛾)
𝛼1(0) = Λ𝛼3(1 + 𝛾); 𝛽1(0) = Λ 𝛽3(1 + 𝛾); 𝛾1(0) = Λ 𝛾3(1 + 𝛾)

𝑀
(1)
𝑥 (0) = Λ𝑀

(3)
𝑥 (1 + 𝛾); 𝑀

(1)
𝑦 (0) = Λ𝑀

(3)
𝑦 (1 + 𝛾); 𝑇

(1)
𝑧 (0) = Λ𝑇

(3)
𝑧 (1 + 𝛾)

𝑄
(1)
𝑥 (0) = Λ𝑄

(3)
𝑥 (1 + 𝛾); 𝑄

(1)
𝑦 (0) = Λ𝑄

(3)
𝑦 (1 + 𝛾); 𝑁

(1)
𝑧 (0) = Λ𝑁

(3)
𝑧 (1 + 𝛾)

(3.32a)

Or in vector form:

𝑑𝑖𝑠𝑝1(0) = Λ 𝑑𝑖𝑠𝑝3(1 + 𝛾)
𝑓𝑜𝑟𝑐𝑒1(0) = Λ 𝑓𝑜𝑟𝑐𝑒3(1 + 𝛾) (3.32b)

Boundary integrals with conditions Eq.3.31a-Eq.3.32b defines homogenous system of
algebraical equations with respect to unknown displacements and forces on borders of the ring
parts. Let 𝐷(Λ,Ω) be the determinant of this system. 𝐷(Λ,Ω) is the twelfth order polynomial
in Λ , which defines stop- and pass-bands. It should be empathized, that determinant 𝐷(Λ,Ω)
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factorizes in two sixth order polynomials in Λ : in- and out- plane vibrations part, i.e. 𝐷(Λ,Ω) =
𝐷𝑖𝑛(Λ,Ω) *𝐷𝑜𝑢𝑡(Λ,Ω). Therefore these two parts can be considered independently.

It should be noted that both of determinants 𝐷𝑖𝑛(Λ,Ω) and 𝐷𝑜𝑢𝑡(Λ,Ω) can be written in form:

𝐷*(Λ,Ω) = Λ6 + 𝑎5Λ
5 + 𝑎4Λ

4 + 𝑎3Λ
3 + 𝑎2Λ

2 + 𝑎1Λ + 1 (3.33)

It has two properties: 1.By Vieta theorem, since free term of polynomial 𝐷*(Λ,Ω) is 1, if Λ is
a root of polynomial Eq.3.33, then Λ−1 is a root of polynomial too. 2. It has only even powers of
Ω as coefficients 𝑎𝑖 because no damping is considered.

For further consideration it is convenient to write 𝐷𝑖𝑛 as 𝐷𝑤,𝑢 with meaning of flexural-axial
part of a Floquet determinant. Also 𝐷𝑜𝑢𝑡 written as 𝐷𝛾,𝑣 with meaning of flexural-torsional part.

One can plot dependency Λ of Ω, for example from condition 𝐷𝑤,𝑢(Λ,Ω) = 0 . Unlike the
cases considered earlier in [8] there exists three pairs (with property Λ1 * Λ2 = 1) of branches
of solutions Λ𝑖(Ω): one pair of exponentially increasing and decreasing branches (this couple is
not shown below, because this couple has significantly higher (and lower) magnitude than other
two branches) and two pair of branches that defines stop- and pass-bands, it preserves for both
determinants 𝐷𝑤,𝑢 and 𝐷𝛾,𝑣. Below dependence 𝐷𝑤,𝑢(Λ,Ω) = 0 is plotted :

Figure 3.11: Floquet zones for 𝐷𝑤,𝑢(Λ,Ω) and different kinds of zones marked with numbers

One can distinct “real” stop band (marked as 1), where wave propagation fully blocked,its
location is defined by intersection of stop-bands of two branches (overlapping of an orange stop
band and a red stop band on the Fig.3.11).In zone 1 only exponential increasing-decreasing standing
waves are presented. "Partial"gap band (marked as 2) its location defined by overlapping pass band
and stop band of different branches (overlapping of a red stop band and an orange pass band and
vice versa). In zone 2 appears one propagating wave. And pass band (marked as 3) its location
defined as overlapping of two pass bands of different branches (an orange pass band and a red pass
band) in zone 3 two propagating waves are presented. All three zones contains one pair of standing
exponential increasing-decreasing standing waves, which is described above and not shown on the
picture.

Dependence 𝐷𝑜𝑢𝑡(Λ,Ω) = 0 also have same form:
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Figure 3.12: Floquet zones for 𝐷𝛾,𝑣(Λ,Ω)

Since model considered as whole, both pictures for in-plane and out-plane vibrations should be
considered simultaneously, but for visual reason they are separated. For comparison, both figures
Fig.3.11 and Fig.3.12 shown in one plot:

Figure 3.13: Floquet zones for 𝐷(Λ,Ω)

As seen, there are zones, where all 6 branches have abs(Λ) ̸= 1 and therefore full wave
propagation is fully blocked. Presence of this kind of stop bands is proved theoretically and shown
experimentally in [3] for flat ring and helical spring in frame of Timoshenko theory and both models,
shown here and in article [3] are in agreement with each other.
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3.3.2 Finite periodic structure

As in previous cases one can introduce concept of a symmetrical periodicity cell shown on the
Fig.1.3

One can find eigenfrequencies of this structure. With properly selected symmetrical boundary
conditions one can obtain boundary conditions on the gap band borders. In case of the ring in-plane
vibrations it is two groups of functions Eq. 3.23 discussed earlier. A-type boundary conditions for
one periodicity cell defined as [14]:

{𝑤(1
2
), 𝛽(1

2
), 𝑄𝑥(1

2
), 𝑣(1

2
), 𝛾(1

2
),𝑀𝑥(1

2
)} = 0

{𝑤(3
2

+ 𝛾𝑝𝑎𝑟), 𝛽(3
2

+ 𝛾𝑝𝑎𝑟), 𝑄𝑥(3
2

+ 𝛾𝑝𝑎𝑟), 𝑣(3
2

+ 𝛾𝑝𝑎𝑟), 𝛾(3
2

+ 𝛾𝑝𝑎𝑟),𝑀𝑥(3
2

+ 𝛾𝑝𝑎𝑟)} = 0
(3.34)

And B-type boundary conditions as:

{𝑢(1
2
), 𝑁𝑧(

1
2
),𝑀𝑦(

1
2
), 𝛼(1

2
), 𝑄𝑦(

1
2
), 𝑇𝑦(

1
2
)} = 0

{𝑢(3
2

+ 𝛾𝑝𝑎𝑟), 𝑁𝑧(
3
2

+ 𝛾𝑝𝑎𝑟),𝑀𝑦(
3
2

+ 𝛾𝑝𝑎𝑟), 𝛼(3
2

+ 𝛾𝑝𝑎𝑟), 𝑄𝑦(
3
2

+ 𝛾𝑝𝑎𝑟), 𝑇𝑧(
3
2

+ 𝛾𝑝𝑎𝑟)} = 0
(3.35)

Boundary integrals with interfacial conditions Eq.3.31a and boundary conditions Eq.3.34 or
Eq.3.35 defines also homogenous system of linear algebraical equations with respect to unknown
displacements and forces/moments at the ring parts borders. And by equaling determinant of this
system to zero we can find eigenfrequencies. Eigenfrequencies of system Eq.3.34 and Eq.3.35 fully
covers stop-band borders as in other cases considered in [8].

Determinant of the system Eq.3.31a, Eq.3.34 or Eq.3.31a, Eq.3.35 also can be factorized
into two parts: in-plane and out-plane. And also both parts will be shown separately. In plane
eigenfrequencies can be plotted as:

Figure 3.14: Eigenfrequencies of the single in-plane periodical cell: boundary conditions A (red)
and boundary conditions B (green)

As seen property of eigenfrequencies of a single periodicity cell preserved. Eigenfrequency of
a single periodicity cell appears only in gap bands borders and covers all borders of gap bands. If
one considers out-plane periodicity cells, same property can be seen:

33



Figure 3.15: Eigenfrequency of single periodicity cell (out-plane part)

One can consider system with more periodicity cells and we see that new eigenfrequencies
appears only in “pure” pass-bands:

Figure 3.16: Eigenfrequencies of three periodicity cell border conditions A (red) and border
conditions B (green), common EF - black

Out-plane vibrations shows the same picture and therefore, for brevity it is not shown. As seen,
properties of eigenfrequencies, considered in [7], [8] and Ch.2 are preserves for Bernoulli-Euler ring
case.
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3.3.3 Eigenmodes analysis

Eingenmode analysis gives clear understanding of wave propagation picture in infinite
waveguide. Form of waves and energy transmission mode (standing or propagating wave) can
be easily shown when eigenmodes analysis is performed. Also it is first step to strain state analysis,
which is often of interest in engineering practice.

First same procedure used and determinant 𝐷(Λ,Ω) obtained from system Eq.3.31a-Eq.3.32b.
As shown above in case of a flat ring second branch of Floquet zones appears. And difference
between full and partial gap-band can be considered (see Fig.3.12).

For each root of polynomial 𝐷𝑖𝑛(Λ,Ω) one can find eigenmodes of in-plane vibrations. System
Eq.3.31a-Eq.3.32b with parameter Λ substituted has zero determinant. Therefore, one constant
assumed as constant, for example 𝑢1(0) = 1 and one arbitrary of equations of the system excluded
from consideration. For certainty system Eq.3.31a-Eq.3.32b with first equation changed to 𝑢1(0) = 1
called eigenmode of infinite waveguide. In the pure gap-band all waves are standing:

Figure 3.17: Standing waves in pure gap-band Ω = 0.037

In all cases all waved coupled as increasing-evanescent or traveling from left to right and right-
left in three groups such that Λ1 * Λ2 = 1. In partial gap-band appears one pair of propagating
travelling waves, whereas other two pairs are standing and coupled as increasing-evanescent:

Figure 3.18: One pair of travelling waves in partial gap-band Ω = 0.06

And in pure pass-band appears second couple of travelling propagating waves and one couple
standing increasing-evanescent. Waves for pass-band will not be represented here for brevity.
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3.4 The spatial periodic structure

Parts of model, shown on a Fig.3.10 are connected such that plane of in-plane vibrations of
first part is perpendicular to a plane of in-plane vibrations of the second part. Whereas boundary
integrals are not affected by such kind of rotation of coordinate system, interfacial conditions are
changing due to local coordinate system in different parts:

Figure 3.19: Local coordinate systems

Coordinate change is rotation on the angle 𝜋/2 with respect to z axis. Therefore, interfacial
conditions changing as:

𝑢 = 𝑣, 𝑣 = −𝑢̄, 𝑤 = 𝑤̄
𝛼 = −𝛽, 𝛽 = −𝛼̄, 𝛾 = 𝛾

(3.36)

With this coordinate changing new displacement and force vector definitions are required

𝑑𝑖𝑠𝑝𝑖1(𝑠) = {𝑤𝑖1(𝑠), 𝛽𝑖1(𝑠), 𝑢𝑖1(𝑠), 𝑣𝑖1(𝑠), 𝛾𝑖1(𝑠), 𝛼𝑖1(𝑠)}
𝑓𝑜𝑟𝑐𝑒𝑖1(𝑠) = 1

𝐸𝑖𝐼𝑖1𝑥
{𝑄𝑖1

𝑥 (𝑠), 𝑁 𝑖1
𝑧 (𝑠),𝑀 𝑖1

𝑦 (𝑠), 𝑄𝑖1
𝑦 (𝑠),𝑀 𝑖1

𝑥 (𝑠), 𝑇 𝑖1
𝑧 (𝑠)}

𝑑𝑖𝑠𝑝𝑖2(𝑠) = {𝑤𝑖2(𝑠),−𝛼𝑖2(𝑠), 𝑣𝑖2(𝑠),−𝑢𝑖2(𝑠), 𝛾𝑖2(𝑠),−𝛽𝑖2(𝑠)}
𝑓𝑜𝑟𝑐𝑒𝑖2(𝑠) = 1

𝐸𝑖𝐼𝑖2𝑥
{𝑄𝑖2

𝑦 (𝑠), 𝑁 𝑖2
𝑧 (𝑠),−𝑀 𝑖2

𝑥 (𝑠),−𝑄𝑖2
𝑥 (𝑠),−𝑀 𝑖2

𝑦 (𝑠), 𝑇 𝑖2
𝑧 (𝑠)}

(3.37)

,where 𝑖1 = 1, 3, 5, ... are parts with odd numbers and 𝑖2 = 2, 4, 6, ... are parts with even
numbers. Parts are coupled with respect to geometry.

With this new definition Floquet problem can be defined as above:

𝑤1(1) = 𝑤2(1) ; 𝛽1(1) = −𝛼2(1) ;𝑢1(1) = 𝑣2(1)
𝛾1(1) = 𝛾2(1) ; 𝑣1(1) = −𝑢2(1) ;𝛼1(1) = −𝛽2(1)

𝑁
(1)
𝑧 (1) = 𝛼𝑝𝑎𝑟 𝑁

(2)
𝑧 (1) ;𝑀

(1)
𝑦 (1) = −𝛼𝑝𝑎𝑟 𝑀

(2)
𝑥 (1) ;𝑄

(1)
𝑥 (1) = 𝛼𝑝𝑎𝑟 𝑄

(2)
𝑦 (1)

𝑇
(1)
𝑧 (1) = 𝛼𝑝𝑎𝑟 𝑇

(2)
𝑧 (1) ;𝑄

(1)
𝑦 (1) = −𝛼𝑝𝑎𝑟 𝑄

(2)
𝑥 (1) ;𝑀

(1)
𝑥 (1) = −𝛼𝑝𝑎𝑟 𝑀

(2)
𝑦 (1)

𝑤2(1 + 𝛾𝑝𝑎𝑟) = 𝑤3(1 + 𝛾𝑝𝑎𝑟) ; 𝛽2(1 + 𝛾𝑝𝑎𝑟) = −𝛼3(1 + 𝛾𝑝𝑎𝑟) ;𝑢2(1 + 𝛾𝑝𝑎𝑟) = 𝑣3(1 + 𝛾𝑝𝑎𝑟)
𝛾2(1 + 𝛾𝑝𝑎𝑟) = 𝛾3(1 + 𝛾𝑝𝑎𝑟) ; 𝑣2(1 + 𝛾𝑝𝑎𝑟) = −𝑢3(1 + 𝛾𝑝𝑎𝑟) ;𝛼2(1 + 𝛾𝑝𝑎𝑟) = −𝛽3(1 + 𝛾𝑝𝑎𝑟)

𝑁
(2)
𝑧 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑁

(3)
𝑧 (1 + 𝛾𝑝𝑎𝑟) ;𝑀

(2)
𝑦 (1 + 𝛾𝑝𝑎𝑟) = −𝛼𝑝𝑎𝑟 𝑀

(3)
𝑥 (1 + 𝛾𝑝𝑎𝑟)

𝑄
(2)
𝑥 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑄

(3)
𝑦 (1 + 𝛾𝑝𝑎𝑟)

𝑇
(2)
𝑧 (1 + 𝛾𝑝𝑎𝑟) = 𝛼𝑝𝑎𝑟 𝑇

(3)
𝑧 (1 + 𝛾𝑝𝑎𝑟) ;𝑄

(2)
𝑦 (1 + 𝛾𝑝𝑎𝑟) = −𝛼𝑝𝑎𝑟 𝑄

(3)
𝑥 (1 + 𝛾𝑝𝑎𝑟)

𝑀
(2)
𝑥 (1 + 𝛾𝑝𝑎𝑟) = −𝛼𝑝𝑎𝑟 𝑀

(3)
𝑦 (1 + 𝛾𝑝𝑎𝑟)

(3.38a)
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Or in vector form:

𝑑𝑖𝑠𝑝1(1) = 𝑑𝑖𝑠𝑝2(1)
𝑓𝑜𝑟𝑐𝑒1(1) = 𝛼 𝑓𝑜𝑟𝑐𝑒2(1)
𝑑𝑖𝑠𝑝2(1 + 𝛾) = 𝑑𝑖𝑠𝑝3(1 + 𝛾)
𝛼𝑓𝑜𝑟𝑐𝑒2(1 + 𝛾) = 𝑓𝑜𝑟𝑐𝑒3(1 + 𝛾)
𝑑𝑖𝑠𝑝1(0) = Λ 𝑑𝑖𝑠𝑝3(1 + 𝛾)
𝑓𝑜𝑟𝑐𝑒1(0) = Λ 𝑓𝑜𝑟𝑐𝑒3(1 + 𝛾)

(3.38b)

System of equations Eq.3.38b with definitions Eq.3.37 is define system of linear algebraic
equations. Determinant of this system 𝐷̄(Λ,Ω) is the twelfth order polynomial, which also factorizes
into two six-order parts 𝐷̄(Λ,Ω) = 𝐷̄𝑤,𝑣(Λ,Ω) * 𝐷̄𝛾,𝑢(Λ,Ω). But, since we consider essentially
spatial structure, one can not divide vibrations into in-plane and out-plane mode because vibrations
plane can’t be defined for spatial structures. Dependence Λ of Ω also can be plotted as:

Figure 3.20: Floquet zones of 𝐷𝑤,𝑢(Λ,Ω)(blue) and 𝐷̄𝑤,𝑣(Λ,Ω)(green)

As seen, both pictures are matching. This is explained by natural symmetry of problem
considered, both in-plane and out-plane displacement have same stiffness and therefore their
interchange does not affect end result. Parts 𝐷𝛾,𝑣(Λ,Ω) and 𝐷̄𝛾,𝑢(Λ,Ω) also matching and therefore
not represented here.

Thus, auxiliary problem are exact correspond to model, shown on a Fig.3.2. And all results,
shown above are valid for a first model.

3.5 Parametric study

In engineering application often of interest to know, how a parameter’s change affects on
properties of system. It is used in optimization process in order to choose proper methods for
optimization and reach best possible optimal properties.

Recalling initial parameters:
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𝛼 = 1; 𝛾1 = 0.5; 𝜎 = 1;𝜆 = 5; 𝜀1 = 0.2; 𝜀2 = 0.02 (3.39)

First, let us consider part curvature ratio 𝜖 = 𝜖1
𝜖2

change effect. For parameters considered above
it has value of 𝜖1 = 0.2

0.02
= 10. For determinacy parameter 𝜖2 is fixated and influence of changing 𝜖1

on Floquet zones picture is considered.
On the plot below with no color shown full gap bands for a given parameter 𝜖 and given

frequency Ω, whereas color represents partial or full pass band:

Figure 3.21: Floquet zones for different 𝜖

As seen, with increasing ratio 𝜖 pure gap bands tends to move to higher frequency.
Second parameter considered is 𝛾, following plot also represents full gap bands and partial or

full pass bands as above:

Figure 3.22: Floquet zones for different 𝛾
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For 𝛾 we have reciprocal tendency, with increasing 𝛾 gap bands tends to move to lower
frequency.

This parameter study in showing that model considered can be used for engineering applications
for optimization processes and obtaining properties, demanded by the industry and considering basic
ideas of influence of parameters on pure gap band positions.

In this chapter first model of a torque vibration isolator was considered. It has been modelled
as a system of differential equations for an infinite periodic structure. Therefore, methods, used in
Ch.2, were expanded to a system of a differential equation. Green’s matrix coefficient with using
bi-orthogonality condition were obtained in analytical form. Difference between Floquet zones of
a single differential equation and system of differential equation was shown. Also, was shown
independence with respect to symmetry transformation of Floquet zones for a structure with natural
symmetry. Also parameters study was conducted in order to show one of industrial applications of
given model.
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Conclusion and future work

First part of this master project has two main goals: theoretical and practical. In practical point of
view torque simple vibration isolator model was considered and vibration isolation properties of this
structure were considered. Model shows that full waves propagation block can be reached in low
frequency region, that of interest in industrial applications. Also, possibility of model optimization
was shown, but deep investigation of optimization of properties are out of scope of this project.

From theoretical point of view, all main principles of Floquet theory have been developed and
shown on examples. Possibility of using of polar coordinates were considered. Also first step in
hierarchy of torque vibration isolator models were considered. Model of torque vibration isolator
has been developed and considered in frame of Floquet zones theory. Tools that developed in this
part of master’s project have broad range of applicability and they will be used in second part of
work. Results obtained in this part will be used for comparison with second model, which will be
considered in second part of master’s project.

One of supplementary goals was to develop and validate the program that can be used for
modelling of an isolator. Wolfram Mathematica software was used for programming, because it fits
best for analytical modelling.

Also, first parts gives all necessary theory, shown in examples and with all necessary references,
that allows one to use differential equations in modelling of vibrations of physical structures.

Goal reached in this part, gives following propositions for goals of second part:
(I) Consider second model circular plate-cylindrical shell, using developed for polar coordinate

system Floquet theory from theoretical and practical point of view
(II) Compare first and second model in order to consider advantages and disadvantages of choice

of more complicated model. Also it is of interest in theoretical point of view to compare Floquet
theory for different coordinate system.

(III)Conduct experiments in order to validate models and developed theory and define practical
applicability of considered in both parts of masters’s project models

Both parts allows one to build hierarchy of two models of torque vibration isolator, that uses
wide range of methods with wide range of applicability.
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Appendix A

Derivation of equation of motion for a
circular membrane

Kinetic energy is written in form

𝑇 =
1

2

∫︁∫︁
𝑆

𝜌𝑢2
𝑡𝑑𝑆 (A.1)

Potential energy is written in form

𝑉 =
1

2

∫︁∫︁
𝑆

𝑇0(𝑢𝑥 + 𝑢𝑦)𝑑𝑆 +
1

2

∫︁
𝐿

𝜎(𝐿)𝑢2𝑑𝐿 (A.2)

where 𝑇0 = 𝑐𝑜𝑛𝑠𝑡 membrane surface tension,
𝜎(𝐿) membrane elasticity module.

Action integral have form:

𝐻 =
1

2

∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

(𝑇 − 𝑉 )𝑑𝑆𝑑𝑡 =
1

2

∫︁ 𝑡1

𝑡0

(

∫︁∫︁
𝑆

(𝜌𝑢2
𝑡 − 𝑇0(𝑢𝑥 + 𝑢𝑦))𝑑𝑆 − 1

2

∫︁
𝐿

𝜎(𝐿)𝑢2𝑑𝐿)𝑑𝑡 (A.3)

Variation of the first summand:

∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

𝜌𝑢𝑡𝛿𝑢𝑡𝑑𝑆𝑑𝑡 =

∫︁∫︁
𝑆

𝜌𝑢𝑡𝛿𝑢
⃒⃒𝑡1
𝑡0
𝑑𝑆 −

∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

𝜌𝑢𝑡𝛿𝑢𝑡𝑡𝛿𝑢𝑑𝑆𝑑𝑡 = −
∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

𝜌𝑢𝑡𝑡𝛿𝑢𝑑𝑆𝑑𝑡

(A.4)
Second summand:

−
∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

𝑇0𝑢𝑥𝛿𝑢𝑥𝑑𝑆𝑑𝑡 = −
∫︁ 𝑡1

𝑡0

∫︁
𝐿

𝑇0𝑢𝑥𝛿𝑢𝑑𝑦𝑑𝑡 +

∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

𝑇0𝑢𝑥𝑥𝛿𝑢𝑑𝑆𝑑𝑡 (A.5)

Third summand:

−
∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

𝑇0𝑢𝑦𝛿𝑢𝑦𝑑𝑆𝑑𝑡 = −
∫︁ 𝑡1

𝑡0

∫︁
𝐿

𝑇0𝑢𝑦𝛿𝑢𝑑𝑥𝑑𝑡 +

∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

𝑇0𝑢𝑦𝑦𝛿𝑢𝑑𝑆𝑑𝑡 (A.6)

With 𝑢𝑥𝑑𝑦 + 𝑢𝑦𝑑𝑥 = 𝑑𝑢
𝑑𝑛

first parts of A.5 and A.6 turns to:

−
∫︁ 𝑡1

𝑡0

∫︁
𝐿

𝑇0
𝑑𝑢

𝑑𝑛
𝛿𝑢𝑑𝐿𝑑𝑡 (A.7)

Total variation 𝛿𝐻 from A.4-A.7
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𝛿𝐻 =

∫︁ 𝑡1

𝑡0

∫︁
𝐿

(𝜎(𝐿)𝑢− 𝑇0
𝑑𝑢

𝑑𝑛
)𝛿𝑢𝑑𝐿𝑑𝑡 +

∫︁ 𝑡1

𝑡0

∫︁∫︁
𝑆

(𝑇0(𝑢𝑥𝑥 + 𝑢𝑦𝑦) − 𝜌𝑢𝑡𝑡)𝛿𝑢𝑑𝑆𝑑𝑡 (A.8)

From which we obtain membrane equation of motion:

𝑇0∆𝑢− 𝜌𝑢𝑡𝑡 = 0 (A.9)

And two possibly border conditions

(𝜎(𝐿)𝑢− 𝑇0
𝑑𝑢

𝑑𝑛
)

⃒⃒⃒⃒
𝐿

= 0 (A.10)

or

𝑢

⃒⃒⃒⃒
𝐿

= 0 (A.11)

With time dependence exp(−𝑖𝜔𝑡), i.e. 𝑢(x, 𝑡) = 𝑈(x) exp(−𝑖𝜔𝑡) equation A.9 can be rewritten
as:

∆𝑈 +
𝜔2𝜌

𝑇0

𝑈 = 0 (A.12)

And with designation 𝑘2 = 𝜔2𝜌
𝑇0

it has final form (uppercase omitted):

(∆ + 𝑘2)𝑢 = 0 (A.13)

It should be empathized, that potential energy has the form:

𝑉 =
1

2

∫︁∫︁
𝑆

(𝑇0 + 𝐸𝐴)(𝑢𝑥 + 𝑢𝑦)𝑑𝑆 +
1

2

∫︁
𝐿

𝜎(𝐿)𝑢2𝑑𝐿 (A.14)

And when limit 𝐸𝐴 → 0 considered one has pure membrane vibrations case. Otherwise, 𝐸𝐴 >>
𝑇0 represents plate in-plane vibration case. Here limit 𝐸𝐴 → 0 considered from beginning.
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Appendix B

Derivation of the boundary integral equation
for a circular membrane

Starting with following equation

𝑢′′(𝑟) +
1

𝑟
𝑢(𝑟) +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝑢(𝑟) = −𝑞(𝑟) (B.1)

Multiplying by 𝐺(𝑟, 𝑟0) and integrating over all membrane area gives:

𝐼 =

2𝜋∫︁
0

𝑏∫︁
𝑎

(𝑢′′(𝑟) +
1

𝑟
𝑢(𝑟) +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝑢(𝑟))𝐺(𝑟, 𝑟0)𝑟𝑑𝑟𝑑𝜑 = −

2𝜋∫︁
0

𝑏∫︁
𝑎

𝑞(𝑟)𝐺(𝑟, 𝑟0)𝑟𝑑𝑟𝑑𝜑 (B.2)

Since axi-symmetric case considered:

𝐼 = 2𝜋

𝑏∫︁
𝑎

(𝑢′′(𝑟) +
1

𝑟
𝑢(𝑟) +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝑢(𝑟))𝐺(𝑟, 𝑟0)𝑟𝑑𝑟 = −2𝜋

𝑏∫︁
𝑎

𝑞(𝑟)𝐺(𝑟, 𝑟0)𝑟𝑑𝑟 (B.3)

And after cancellation:

𝐼 =

𝑏∫︁
𝑎

(𝑢′′(𝑟) +
1

𝑟
𝑢(𝑟) +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝑢(𝑟))𝐺(𝑟, 𝑟0)𝑟𝑑𝑟 = −

𝑏∫︁
𝑎

𝑞(𝑟)𝐺(𝑟, 𝑟0)𝑟𝑑𝑟 (B.4)

Considering following integrals and using by-part integration (arguments omitted for brevity and
clarity):

𝐼1 =

𝑏∫︁
𝑎

𝑢′′ 𝐺𝑟𝑑𝑟 = 𝑢′ 𝐺𝑟

⃒⃒⃒⃒𝑏
𝑎

−
𝑏∫︁

𝑎

𝑢′(𝐺′ 𝑟+𝐺)𝑑𝑟 = [𝑢′ 𝐺𝑟−𝑢(𝐺′ 𝑟+𝐺)]

⃒⃒⃒⃒𝑏
𝑎

+

𝑏∫︁
𝑎

𝑢(𝐺′+𝐺′+𝐺′′ 𝑟)𝑑𝑟

(B.5)

𝐼2 =

𝑏∫︁
𝑎

𝑢′ 𝐺𝑑𝑟 = 𝑢𝐺

⃒⃒⃒⃒𝑏
𝑎

−
𝑏∫︁

𝑎

𝑢𝐺′ 𝑑𝑟 (B.6)
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𝐼3 =

𝑏∫︁
𝑎

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝑢𝐺 𝑟𝑑𝑟 (B.7)

Substituting B.5-B.7 into B.4 gives:

𝐼 = 𝐼1 + 𝐼2 + 𝐼3 = [𝑢′ 𝐺𝑟 − 𝑢𝐺′ 𝑟]

⃒⃒⃒⃒𝑏
𝑎

+

𝑏∫︁
𝑎

(𝐺′′ +
1

𝑟
𝐺′ +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝐺)𝑢 𝑟𝑑𝑟 (B.8)

Recalling modified Green’s function definition:

𝐺′′(𝑟, 𝑟0) +
1

𝑟
𝐺′(𝑟, 𝑟0) +

(︂
𝑘2 − 𝑚2

𝑟2

)︂
𝐺(𝑟, 𝑟0) = −𝛿(𝑟 − 𝑟0)

𝑟0
(B.9)

With definition B.9 equation B.8 has the form:

𝐼 = [𝑢′(𝑟)𝐺(𝑟, 𝑟0) − 𝑢(𝑟)𝐺′(𝑟, 𝑟0)]𝑟

⃒⃒⃒⃒𝑟=𝑏

𝑟=𝑎

+

𝑏∫︁
𝑎

−𝛿(𝑟 − 𝑟0)

𝑟0
𝑢(𝑟) 𝑟𝑑𝑟 (B.10)

And with property of delta function it can be rewritten as:

𝐼 = [𝑢′(𝑟)𝐺(𝑟, 𝑟0) − 𝑢(𝑟)𝐺′(𝑟, 𝑟0)]𝑟

⃒⃒⃒⃒𝑟=𝑏

𝑟=𝑎

− 𝑢(𝑟0) 𝑟0
𝑟0

(B.11)

Here modified Green’s function used, in term 𝑢(𝑟0) 𝑟0
𝑟0

cancelled 𝑟0 and boundary equation has
more simple form.Also, it can be rewritten with recalled right hand side of B.4 in form:

𝑢(𝑟0) = [𝑢′(𝑟)𝐺(𝑟, 𝑟0) − 𝑢(𝑟)𝐺′(𝑟, 𝑟0)]𝑟

⃒⃒⃒⃒𝑟=𝑏

𝑟=𝑎

+

𝑏∫︁
𝑎

𝑞(𝑟)𝐺(𝑟, 𝑟0)𝑑𝑟 (B.12)
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Appendix C

Axial rod vibrations in boundary equations
method point of view

C.1 Green’s function definition and derivation

Axial beam vibration can be described with following equation:

𝑢𝑥𝑥 −
1

𝑐2
𝑢𝑡𝑡 = −𝑞(𝑥, 𝑡) (C.1)

,where 𝑐 has meaning of sound of speed (speed of elastic wave propagation) and q(x,t) is the
force density.

With harmonic vibrations state assumed 𝑢(𝑥, 𝑡) = exp[(−𝑖𝜔𝑡)𝑈(𝑥) Eq.C.1 can be rewritten as:

𝑢′′(𝑥) + 𝑘2𝑢(𝑥) = −𝑞(𝑥) (C.2)

,where 𝑘 = 𝜔
𝑐

called wave number. In what follows harmonic vibrations state assumed and
uppercase of letters is omited.

Green’s function by definition is a solution of the equation with force density 𝑞(𝑥) = 𝛿(𝑥− 𝑥0),
where 𝛿(𝑥) is Dirac’s delta function. In the rod axial vibrations case it has meaning of a point force
acting at point 𝑥 with observation point 𝑥0 and Green’s function equation can be written as:

𝑑2

𝑑𝑥2
𝐺(𝑥, 𝑥0) + 𝑘2𝐺(𝑥, 𝑥0) = −𝛿(𝑥− 𝑥0) (C.3)

It can be proven that Green’s function should satisfy following properties:

𝐺(𝑥, 𝑥0) = 𝐺(𝑥0, 𝑥)
𝜕
𝜕𝑥
𝐺(𝑥0, 𝑥0 + 𝜀) − 𝜕

𝜕𝑥
𝐺(𝑥0, 𝑥0 − 𝜀) = −1, 𝜀 → 0

𝐺(𝑥0, 𝑥0 + 𝜀) = 𝐺(𝑥0, 𝑥0 − 𝜀), 𝜀 → 0
(C.4)

Since common solution of homogenous equation C.2 has the form:

𝑢(𝑥) = 𝐶1 exp(𝑖𝑘𝑥) + 𝐶2 exp(−𝑖𝑘𝑥) (C.5)

Solution of equation can be written in form (if one should consider infinite beam it is very
important that function 𝐺(𝑥, 𝑥0) should satisfy radiation conditions at infinity [12]):

𝐺+(𝑥, 𝑥0) = 𝐴 exp(𝑖𝑘𝑥) , 𝑥 > 𝑥0

𝐺−(𝑥, 𝑥0) = 𝐵 exp(−𝑖𝑘𝑥) , 𝑥 ≤ 𝑥0
(C.6)

Green’s function in form Eq.C.6 substituted into two last properties in C.4 gives:
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𝐺+(𝑥0, 𝑥0) = 𝐺−(𝑥0, 𝑥0)

𝑑
𝑑𝑥

(𝐺+(𝑥, 𝑥0) −𝐺−(𝑥, 𝑥0))

⃒⃒⃒⃒
𝑥=𝑥0

= −1
(C.7)

or in explicit form:

𝐴 exp(𝑖𝑘𝑥0) = 𝐵 exp(−𝑖𝑘𝑥0)
𝑖𝑘𝐴 exp(𝑖𝑘𝑥0) + 𝑖𝑘𝐵 exp(−𝑖𝑘𝑥0) = −1

(C7’)

System Eq.C7’ has the unique solution for unknown coefficients 𝐴 and 𝐵:

{𝐴,𝐵} = { 𝑖

2𝑘
exp(−𝑖𝑘𝑥0),

𝑖

2𝑘
exp(𝑖𝑘𝑥0)} (C.8)

And finally Green’s function can be written as:

𝐺(𝑥, 𝑥0) =

{︃
𝑖
2𝑘

exp(−𝑖𝑘(𝑥− 𝑥0)) 𝑥 ≤ 𝑥0

𝑖
2𝑘

exp(𝑖𝑘(𝑥− 𝑥0)) 𝑥 > 𝑥0

(C.9)

Or in short form:

𝐺(𝑥, 𝑥0) =
𝑖

2𝑘
exp(𝑖𝑘 abs(𝑥− 𝑥0)) (C.10)

If this function plotted it is seen that all properties Eq.C.4 are fulfilled:

Figure C.1: Green’s function of axial rod vibration equation(blue) and its derivative(orange) and
imaginary parts (dashed)

C.2 Equation of axial displacement of a rod. Boundary integrals
method

Green’s function can be used in order to obtain solution of a differential equation with arbitrary
load. Recalling axial rod vibrations equation:

𝑢′′(𝑥) + 𝑘2𝑢(𝑥) = −𝑞(𝑥) (C.11)
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And Green’s function definition:

𝑑2

𝑑𝑥2
𝐺(𝑥, 𝑥0) + 𝑘2𝐺(𝑥, 𝑥0) = −𝛿(𝑥− 𝑥0) (C.12)

In what follows 𝑑
𝑑𝑥
𝐺(𝑥, 𝑥0) = 𝐺′(𝑥, 𝑥0)

Multiplying equation C.11 on 𝐺(𝑥, 𝑥0) and integrating over beam length

𝑏∫︁
𝑎

(𝑢′′(𝑥) + 𝑘2𝑢(𝑥))𝐺(𝑥, 𝑥0)𝑑𝑥 = −
𝑏∫︁

𝑎

𝑞(𝑥)𝐺(𝑥, 𝑥0)𝑑𝑥 (C.13)

First left hand side of an equation C.13 considered:

𝐼 =

𝑏∫︁
𝑎

(𝑢′′(𝑥) + 𝑘2𝑢(𝑥))𝐺(𝑥, 𝑥0)𝑑𝑥 (C.14)

Considering following integral and using by-part integration:

𝐼1 =
𝑏∫︀
𝑎

𝑢′′(𝑥)𝐺(𝑥, 𝑥0)𝑑𝑥 = 𝑢′(𝑥)𝐺(𝑥, 𝑥0) −
𝑏∫︀
𝑎

𝑢′(𝑥)𝐺′(𝑥, 𝑥0)𝑑𝑥 =

= [𝑢′(𝑥)𝐺(𝑥, 𝑥0) − 𝑢(𝑥)𝐺′(𝑥, 𝑥0)]

⃒⃒⃒⃒𝑏
𝑎

+
𝑏∫︀
𝑎

𝑢(𝑥)𝐺′′(𝑥, 𝑥0)𝑑𝑥

(C.15)

And second part of integral just rewritten as:

𝐼2 =

𝑏∫︁
𝑎

𝑘2𝑢(𝑥)𝐺(𝑥, 𝑥0)𝑑𝑥 (C.16)

With using equality 𝐼 = 𝐼1 + 𝐼2 Eq.C.14 can be rewritten:

𝐼 = [𝑢′(𝑥)𝐺(𝑥, 𝑥0) − 𝑢(𝑥)𝐺′(𝑥, 𝑥0)]

⃒⃒⃒⃒𝑏
𝑎

+

𝑏∫︁
𝑎

(𝐺′′(𝑥, 𝑥0) + 𝑘2𝐺(𝑥, 𝑥0))𝑢(𝑥)𝑑𝑥 (C.17)

With Green’s function definition Eq.C.12 one can rewrite equation C.17 in form:

𝐼 = [𝑢′(𝑥)𝐺(𝑥, 𝑥0) − 𝑢(𝑥)𝐺′(𝑥, 𝑥0)]

⃒⃒⃒⃒𝑏
𝑎

−
𝑏∫︁

𝑎

𝛿(𝑥− 𝑥0)𝑢(𝑥)𝑑𝑥 (C.18)

Dirac’s delta-function has a property:

𝑏∫︁
𝑎

𝑓(𝑥)𝛿(𝑥− 𝑥0)𝑑𝑥 = 𝑓(𝑥0) (C.19)

,which is valid for any range (𝑎, 𝑏) that contains 𝑥0 including (−∞,+∞).
With property C.19 and recalling right hand side of C.13 one can rewrite C.18

𝑢(𝑥0) = [𝑢′(𝑥)𝐺(𝑥, 𝑥0) − 𝑢(𝑥)𝐺′(𝑥, 𝑥0)]

⃒⃒⃒⃒𝑏
𝑎

+

𝑏∫︁
𝑎

𝑞(𝑥)𝐺(𝑥, 𝑥0)𝑑𝑥 (C.20)

Therefore, if values on a beam boundary are known, one can find displacement at any point
within the boundary. Eq.C.20 is called boundary integral equation for an axial rod vibrations.
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C.3 Boundary integrals method direct application

Let us consider unit length beam with forcing problem written as:

𝑢(0) = 1
𝑢(1) = 0

(C.21)

For brevity no external loading considered, i.e. 𝑞(𝑥) ≡ 0. For both boundaries boundary integral
should be written as:

𝑢(0) = (𝑢′(1)𝐺(1, 0) − 𝑢(1)𝐺′(1, 0)) − (𝑢′(0)𝐺(0, 0) − 𝑢(0)𝐺′(0, 0))
𝑢(1) = (𝑢′(1)𝐺(1, 1) − 𝑢(1)𝐺′(1, 1)) − (𝑢′(0)𝐺(0, 1) − 𝑢(0)𝐺′(0, 1))

(C.22)

Or in implicit form :

1
2
𝑢(0) − 1

2
exp(𝑖𝑘)𝑢(1) + 𝑖

2𝑘
𝑢1(0) − 𝑖 exp(𝑖𝑘)

2𝑘
𝑢1(1) = 0

−1
2

exp(𝑖𝑘)𝑢(0) + 1
2
𝑢(1) + 𝑖 exp(𝑖𝑘)

2𝑘
𝑢1(0) − 𝑖

2𝑘
𝑢1(1) = 0

(C.23)

,where 𝑢(0), 𝑢(1), 𝑢′(0), 𝑢′(1) are yet unknown. With boundary conditions added following
system has the unique solution:

1
2
𝑢(0) + 1

2
exp(−𝑖𝑘)𝑢(1) + 𝑖

2𝑘
𝑢1(0) − 𝑖 exp(−𝑖𝑘)

2𝑘
𝑢1(1) = 0

1
2

exp(−𝑖𝑘)𝑢(0) + 1
2
𝑢(1) + 𝑖 exp(−𝑖𝑘)

2𝑘
𝑢1(0) − 𝑖

2𝑘
𝑢1(1) = 0

𝑢(0) = 1
𝑢(1) = 0

(C.24)

It can be found as:

{𝑢(0), 𝑢(1), 𝑢′(0), 𝑢′(1)} = {1, 0, (2 − 𝑖 cot(𝑘))𝑖𝑘,−𝑖
𝑖𝑘

sin(𝑘)
} (C.25)

After found constants Eq.C.25 are substituted into Eq.C.20 and displacement can be obtained
for any point 𝑥0 within the range (0,1) (here 𝑘 ≡ 1):

Figure C.2: Displacement found with boundary integrals

This solution can be validated trough transfer matrix method. This method has less computation
difficulty, but also less stabile. In axial rod vibrations case it gives significant computational
advantage, but in other cases stability question should be considered.
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Recalling axial rod vibration equation (here also 𝑞(𝑥) ≡ 0):

𝑢′′(𝑥) + 𝑘2𝑢(𝑥) = 0 (C.26)

It has common solution in form:

𝑢(𝑥) = 𝐶1 exp(𝑖𝑘𝑥) + 𝐶2 exp(−𝑖𝑘𝑥) (C.27)

And considering same boundary problem Eq.C.23 one can write following system:

𝑢(0) = 𝐶1 + 𝐶2 = 1
𝑢(1) = 𝐶1 exp(𝑖𝑘) + 𝐶2 exp(−𝑖𝑘) = 0

(C.28)

System Eq.C.28 can be solved with respect to unknown integration constaints 𝐶1, 𝐶2 as:

{𝐶1, 𝐶2} = { 1

1 − exp(2𝑖)
,

1

1 − exp(−2𝑖)
} (C.29)

When constants Eq.C.29 are substituted into C.27 displacement can be plotted as:

Figure C.3: Displacement found with boundary integrals(blue) and displacement found by transfer
matrix method (red)

As seen, both methods are giving the same result. Advantage of the boundary integrals method
are not seen here, but in more complicated cases which are considered in main part instability of a
transfer matrix method is significant and it can not be used for obtaining results. Still,it were used
for checking validity of found Green’s functions.
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Appendix D

Floquet theorem. Infinite periodic rod.

Floquet theorem is a very powerful tool for finding solution for a differential equations on a
infinite periodic structures. This is very common theorem for a periodic differential operator and
lies out of scope of this work. Nevertheless, it will be shown here for a particular case. Here an
infinite periodic rod axial vibrations case will be considered. Results of this chapter is used in Ch.1
for comparison

Infinite rod can be represented as:

Figure D.1: Infinite rod

Each part of rod has its own vibration equation written as (harmonic vibrations state assumed
and also, for brevity free vibrations state, i.e. 𝑞(𝑥) ≡ 0 for any part of infinite rod):

𝑢′′
1(𝑥) + 𝑘2

1𝑢1(𝑥) = 0
𝑢′′
2(𝑥) + 𝑘2

2𝑢2(𝑥) = 0
...
𝑢′′
𝑛(𝑥) + 𝑘2

𝑛𝑢𝑛(𝑥) = 0
...

(D.1)

In this appendix following dimensionless parameters are used:

𝛼 = 𝐸2

𝐸1
; 𝛽 = ℎ2

ℎ1
; 𝛾 = 𝑙2

𝑙1
;𝜎 = 𝑐2

𝑐1
;𝜆 = 𝑙1

ℎ1
; Ω = 𝜔ℎ1

𝑐1
(D.2)

Since we have only two kind of sections "white"and "black"we are interested only in two
equations (all quantities are already dimensionless):

𝑢′′
𝑤ℎ𝑖𝑡𝑒(𝑥) + Ω2𝑢𝑤ℎ𝑖𝑡𝑒(𝑥) = 0

𝑢′′
𝑏𝑙𝑎𝑐𝑘(𝑥) + (Ω𝛽

𝜎
)2𝑢𝑏𝑙𝑎𝑐𝑘(𝑥) = 0

(D.3)

,where 𝑤ℎ𝑖𝑡𝑒 = 1, 3, 5, ... are number of section with first set of parameters and 𝑏𝑙𝑎𝑐𝑘 =
2, 4, 6, ... are number of sections with second set of parameters.

For each section one can find Green’s function in form Eq.C.10:
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𝐺𝑤ℎ𝑖𝑡𝑒(𝑥, 𝑥0) = 𝑖
2Ω

exp(−𝑖Ω abs(𝑥− 𝑥0))

𝐺𝑏𝑙𝑎𝑐𝑘(𝑥, 𝑥0) = 𝑖𝜎
2Ω𝛽

exp(−𝑖Ω𝛽
𝜎

abs(𝑥− 𝑥0))
(D.4)

And boundary integrals in form Eq.C.20 respectively:

𝑢𝑖(𝑥0) = [𝑢′
𝑖(𝑥)𝐺𝑖(𝑥, 𝑥0) − 𝑢𝑖(𝑥)𝐺′

𝑖(𝑥, 𝑥0)]

⃒⃒⃒⃒𝑏𝑖
𝑎𝑖

(D.5)

Let’s consider three consequent parts of infinite rod (they are marked with numbers on a
Fig.D.1). For each boundary boundary integrals can be written:

𝑢1(0) = (𝑢′
1(𝜆)𝐺1(𝜆, 0) − 𝑢1(𝜆)𝐺′

1(𝜆, 0)) − (𝑢′
1(0)𝐺1(0, 0) − 𝑢1(0)𝐺′

1(0, 0))
𝑢1(𝜆) = (𝑢′

1(𝜆)𝐺1(𝜆, 𝜆) − 𝑢1(𝜆)𝐺′
1(𝜆, 𝜆)) − (𝑢′

1(0)𝐺1(0, 𝜆) − 𝑢1(0)𝐺′
1(0, 𝜆))

𝑢2(𝜆) = (𝑢′
2((1 + 𝛾)𝜆)𝐺2((1 + 𝛾)𝜆, 𝜆) − 𝑢2((1 + 𝛾)𝜆)𝐺′

2((1 + 𝛾)𝜆, 𝜆))−
−(𝑢′

2(𝜆)𝐺2(𝜆, 𝜆) − 𝑢2(𝜆)𝐺′
2(𝜆, 𝜆))

𝑢2((1 + 𝛾)𝜆) = (𝑢′
2((1 + 𝛾)𝜆)𝐺2((1 + 𝛾)𝜆, (1 + 𝛾)𝜆) − 𝑢2((1 + 𝛾)𝜆)𝐺′

2((1 + 𝛾)𝜆, (1 + 𝛾)𝜆))
−(𝑢′

2(𝜆)𝐺2(𝜆, (1 + 𝛾)𝜆) − 𝑢2(𝜆)𝐺′
2(𝜆, (1 + 𝛾)𝜆))

𝑢3((1 + 𝛾)𝜆) = (𝑢′
3((2 + 𝛾)𝜆)𝐺3((2 + 𝛾)𝜆, (1 + 𝛾)𝜆) − 𝑢3((2 + 𝛾)𝜆)𝐺′

3((2 + 𝛾)𝜆, (1 + 𝛾)𝜆))−
−(𝑢′

3((1 + 𝛾)𝜆)𝐺3((1 + 𝛾)𝜆, (1 + 𝛾)𝜆) − 𝑢3((1 + 𝛾)𝜆)𝐺′
3((1 + 𝛾)𝜆, (1 + 𝛾)𝜆))

𝑢3((2 + 𝛾)𝜆) = (𝑢′
3((2 + 𝛾)𝜆)𝐺3((2 + 𝛾)𝜆, (2 + 𝛾)𝜆) − 𝑢3((2 + 𝛾)𝜆)𝐺′

3((2 + 𝛾)𝜆, (2 + 𝛾)𝜆))−
−(𝑢′

3((1 + 𝛾)𝜆)𝐺3((1 + 𝛾)𝜆, (2 + 𝛾)𝜆) − 𝑢3((1 + 𝛾)𝜆)𝐺′
3((1 + 𝛾)𝜆, (2 + 𝛾)𝜆))

(D.6)
Boundary equations gives 6 equations with 6 unknown displacements

𝑢1(0), 𝑢1(𝜆), 𝑢2(𝜆), 𝑢2((1 + 𝛾)𝜆), 𝑢3((1 + 𝛾)𝜆), 𝑢3((2 + 𝛾)𝜆) and 6 unknown slopes. In order to
find solution one need 6 more equations.

In order to consider rod as the system interfacial conditions are written:

𝑢1(𝜆) = 𝑢2(𝜆)
𝑢′
1(𝜆) = 𝛼𝑢′

2(𝜆)
𝑢2((1 + 𝛾)𝜆) = 𝑢3((1 + 𝛾)𝜆)
𝛼𝑢′

2((1 + 𝛾)𝜆) = 𝑢′
3((1 + 𝛾)𝜆)

(D.7)

As seen, this adds only four equations. If four, five,etc. consequent cells considered, two
equations still be missed. In order to get closed system for infinite rod Floquet theorem used.
Floquet theorem gives possibility to transfer from finite number of cells to infinity. It statement for
axial rod vibrations case can be formulated as: "displacement of two points on a distance of one
period differs on a constant complex multiplier and this multiplier is constant for any cross-section".
Period of structure shown on a Fig.D.1 is (1 + 𝛾)𝜆 and therefore Floquet theorem statement can be
written as:

𝑢1(0) = Λ𝑢3((1 + 𝛾)𝜆)
𝑢′
1(0) = Λ𝑢′

3((1 + 𝛾)𝜆)
(D.8)

System Eq.D.6-Eq.D.8 is homogenous system of 12 equations with 12 unknown displacements
and slopes. Since it homogenous, in order it to have non-trivial solution, its determinant 𝐷(Λ,Ω)
should be zero. In this case 𝐷(Λ,Ω) is the second order polynomial in Λ and it can we written
implicitly as (more detailed properties of this equation is considered in [15] ):

Λ2 +
Λ (𝛼2𝛽2 + 𝜎2) sin(𝜆Ω) sin

(︀
𝛾𝜆Ω
𝜎

)︀
𝛼𝛽𝜎

− 2Λ cos(𝜆Ω) cos

(︂
𝛾𝜆Ω

𝜎

)︂
+ 1 = 0 (D.9)
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Figure D.2: Zeroes of determinant 𝐷(Λ,Ω) for 𝛼 = 2.5 , 𝛽 = 1 , 𝛾 = 2, 𝜆 = 1 , 𝜎 = 1.5

Since free term of the Eq.D.9 is 1, by Vieta’s theorem there are two roots Λ𝑖(Ω), 𝑖 = 1, 2 such
that Λ1 *Λ2 = 1 and if abs(Λ1) = 1 then abs(Λ2) = 1. For each Ω one can plot two roots of Eq.D.9
as:

Fig.D.2 called picture of Floquet zones. It shows two kind of zones: pass band where abs(Λ) = 1
and gap bands abs(Λ) ̸= 1. In pass band waves can propagate freely because amplitude of wave
does not change, changes only phase. In gap band appears two standing waves with increasing and
decreasing amplitude and therefore wave propagation is prohibited. Bloch proposed following form
Λ = exp(𝑖𝐾𝐵) and 𝐾𝐵 is called Bloch number. When 𝐾𝐵 is purely real one have pass band and
gap band otherwise. Often Floquet theorem for wave equations called also Bloch theorem, because
Bloch has studied electron movement in 3D space and purposed such wave movement form as
described above.
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