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Abstract:

This project covers the analysis of lin-
ear prediction coding, and sparse linear
prediction algorithms, with the goal of
creating a Register Transfer Level archi-
tecture.
Two algorithm is then suggested to
find a set of, linear prediction coeffi-
cients, and sparse linear prediction co-
efficients, these algorithms are analysed
finding the flow, and inherent paral-
lelism. With the analysis of these algo-
rithms a finite state machine with data
path, is build consisting of a set of the
control path, and data path. The con-
trol path is build using algorithmic state
machine charts, and data path is build
consisting a set of hardware blocks.
The sparse linear prediction algorithm
analysed in this report is a novel idea
recently presented by the supervisor
Tobias Lindstrøm Jensen, therefore a
larger part of the analysis is used to in-
vestigate it. The given algorithm con-
sists of four iterations where a right
hand side least squares problem is
solved each iteration. Given this it
is found that the Levinson algorithm
is the most sufficient way of finding
a solution, where other methods are
also investigated. The report ends up
with two architectures, which can be ei-
ther implemented in VHDL or further
improved employing different optimiza-
tions methods.
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Preface

This report contains the work done by Henrik Holbæk Pedersen during his 9th and
10th semester of the master program, "Signal Processing and Computing", at Aalborg
university. The project proposal was worked out by the student, and the supervising
professors, Peter Koch and Tobias Lindstrøm Jensen. The proposed project concerns
speech coding, where it is analysed if it is possible to derive a real time implemen-
tation of a speech encoding using linear predictive coding. Where the objective is
finding a sparse residual, and compare this with a regular speech encoding. The first
part of this report concerns describing and analysing these algorithms, into detail to
understand the idea behind behind Linear Predictive coding. Where both proposed
methods are simulated to get an insight into how the input and output of the algo-
rithms is. The second part of the of the report concerns the architecture, where the
algorithms are analysed with the goal of making a real time layer architecture. This
part ends up with two Finite State Machines with Data path. last part of the report
gives an introduction into how the Finite State Machine with Data Path (FSMD)
can be turned into a VHSIC Hardware Description Language (VHDL) implementa-
tion, and lastly the report is concluded and discussed, where the resulting FSMD are
considered looking at how these can be improved.
During this report a large part of the time was put into reading up on Linear Pre-
dictive Coding, as this was a new field of study. This also means that the Sparse
Predictive Coding scheme was a new field, this is also due, that the proposed algo-
rithm is novel. So the literature about this part is relative little. As the sparse coding
scheme is a new novel idea a large part of time was used to analyse the given algo-
rithm as no literature is available concerning the implementing. These unforeseen
workloads means that only little time was put into implementing and improving the
RTL analysis. Even though the size the project was larger then manageable, given
the unforeseen workloads in analysing a new algorithm, it has been a very interesting
and challenging experience, which gives a good insight into how long it takes to take
a novel algorithm and turn into an application.

The Work done during the project period has been compiled into a report, and
follows the the description below. The source code used to produce the given plots
and figures are available on the attached CD.
As this report is done with an architecture in mind, a figure depicting the flow is
depicted in figure 1.

xi
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Application

Algorithm

Architecture

Figure 1: The a3 figure representing the 3 different Levels of going from an application to having
an architecture

Where the step from application into algorithm is described in Chapter 1-4, and the
step from taking the algorithm into an architecture is described in Chapter 5-7.

Chapter 1 This chapter introduces the Linear predictive coding scheme, and the
idea behind it. Ending up with a initial problem formulation and a set of requirements
for the given architecture.

Chapter 2 This chapter analyses the Linear prediction ending up with the two
given algorithms for solving the Linear Predictive Coding, and Sparse Linear Pre-
dictive Coding.

Chapter 3 This chapter analyses the novel Alternating Direction Method of Mul-
tipliers (ADMM) algorithm to identify solutions to solve it efficiently.

Chapter 4 This chapter simulates both the Linear Predictive Coding and sparse
Linear Predictive Coding.

Chapter 5 This chapter introduces the method used to analyse the algorithm,
going from the application into algorithm, which gives an architecture.

Chapter 6 This chapter analyses the Levinson-Durbin algorithm, used to find the
Linear Prediction.



Preface xiii

Chapter 7 This chapter analyses the ADMM algorithm, used to find the Sparse
Linear Prediction.

Chapter 8 This chapter gives an insight into how the given architectures can be
turned into an VHDL implementation.

Chapter 9 This chapter concludes the project, where the architecture is discussed
and how it can be further improved.

Aalborg University, August 26, 2015

Henrik Holbæk Pedersen
<hhpe07@student.aau.dk>
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Chapter 1

Introduction

In speech communication Voice Over IP (VoIP) are becoming more and more popu-
lar, and with that various protocols for VoIP exists. With each protocols there exists
different voice encoding methods, called vocoders. These methods are evaluated
on different parameters such as speech quality, communication delay, computational
complexity of implementation, power consumption, robustness to noise and robust-
ness to packet losses [Tokunbo Ogunfunmi and Madihally J. (Sim) Narasimha, 2012,
p.37]
The idea of a vocoder is to compress the speech signal as much as possible and keep
it to a point where the quality is still acceptable. Speech quality can be measured in
different ways, one way of doing so is the Mean-Opinion score (MOS),which is a five
point scale, giving scores from 1-5 where five is the best, and of 3.5 or higher implies
high level of intelligibility, speaker recognition and naturalness [Tokunbo Ogunfunmi
and Madihally J. (Sim) Narasimha, 2012, p.37]. One way of doing low bit rate speech
coding is by using Linear Predictive Coding (LPC). LPC was developed for low bit-
rate speech coding [Chu, p.263], where the early beginning of Linear prediction dates
back to the 1940s [Vaidyanathan, p.1]. Where an early influential paper about LPC
is the Makhoul [1975] according to [Vaidyanathan, p.1]. As LPC is a low bit-rate
coding algorithm, providing a low quality sound, however the theories behind LPC
gives foundation to more advanced speech coding schemes such as Code-Excided
Linear Prediction (CELP) [Chu, p.281]. CELP is another coding method where a
long and short term Linear prediction model is used [Chu, p.299]. Currently CELP
and variations of it is being used for various applications, and therefore it is still
interesting to investigate the fundamentals behind Linear prediction. As such this
project will focus on two different ways to implement Linear prediction, Linear Pre-
dictive Coding and Sparse Linear Predictive Coding, in a real time implementation,
on a Field Programmable Gate Array (FPGA). Both vocoders will be evaluated
according to the computational complexity of implementation, power consumption,
algorithmic delay and speech quality. The robustness to noise and robustness to
packet loss is out of scope as it requires a more extensive setup and test.
In this chapter the model behind human speech is explained, and the link to a
mathematical model of human speech.

1



2 Chapter 1. Introduction

1.1 Human Speech
Human speech is a combination of voiced and unvoiced speech john R Deller jr
[1999], as shown in figure 1.1 When a person speaks air comes from the lungs and
goes through the vocal cords and vocal tract. The vocal cords determines the pitch
of the sound, this is done by having the vocal cords vibrate and the speed of the
vibrations determines the pitch. For unvoiced the vocal cords remains open. The
vocal tract determines the sound one makes, and it changes for each sound.
So the air volume in the lungs determines the gain, the vocal cords determines the
frequencies of the excitation of the signal, and the rate of which the vocal cord
changes frequencies. The vocal tract is where the sound is determined and the shape
the tract forms decides which sound is made.

air

Vocal tract

Vocal cords

Speech

Figure 1.1: The figure depicts a human vocal cords and vocal tract

1.2 Speech Model
The human speech organ can be translated into a mathematical model, which can
put each part of human speech into a mathematical expression. Figure 1.2 depicts
the a model for speech, and the relationship is as follows:
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Speech expression Mathematical expression
Vocal tract H(z)(Model filter)
Excitation signal u(n)
Vocal cord vibration V(voiced)
Vocal cord vibration period T(pitch period)
No vocal cord vibration UV(unvoiced)
Air Volume G(gain)

X H(z)

T=pitch period

White noise

u(n)

G

V

UV LPC filter

s(n)

Speech signal

Figure 1.2: The figure depict the LPC model which models human speech

So to make a relationship with the human speech figure 1.1, when the human air
moves through the vocal cords, if the vocal cords are vibrating then the pitch period
T is determined by the frequency of which it vibrates. If the vocal cords are not
vibrating then, the signal is instead white noise where there is no pitch period. The
signal is then multiplied by a gain G, which describes the volume of air pressed
through the vocal cords. The signal u(n) is then put through the Model filter, which
models the vocal tract, This filter describes the impulse response of the vocal tract.
The Model filter H(z) is an Infinite impulse response (IIR) filter given by:

H(z) = 1
1 + a1z−1 + a2z−2 + . . . apz−p

(1.1)

where p is the order of the filter.

1.3 Linear Predictive Coding
In Linear Predictive Coding the Model filter coefficients is extracted from the speech
signal, this is done in an so called Linear Predictive Analysis (LPA). The LPA finds
a set of linear predicted filter coefficients and an error between the predicted signal
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and the real signal, mathematical background behind the Linear Predictive analysis
is further described in section 2.1.1. The filter coefficients and the error is then
packed and send through some protocol to another user, where the Linear Predictive
Synthesis unpacks the coefficients and error, to recreate the speech signal, the scheme
is depicted in figure 1.3.

Linear Predictive 
Analysis

Linear Predictive 
Analysis

Linear Predictive 
Synthesis

Linear Predictive 
Synthesis

x(n)

a1

a2

ap x(n)

e(n)

Figure 1.3: Linear predictive coding scheme

In the LPA the filter coefficients is commonly extracted using the Levinson-Durbin
recursion, which is further described in section 2.1.2

Application

LPC is an old concept and is currently used for speech coding in various applications,
with different expansion as:

• Low-Delay Code Excited Linear Prediction (LD-CELP)

• Conjugate-Structured Algebraic Code Excited Linear Prediction (CS-ACELP)

• Code Excited Linear Prediction (CELP)

• Algebraic Code Excited Linear Prediction (ACELP)

These implementations all use LPC, as a basis, where a set of filter coefficients and
error is found.
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1.4 Sparse Linear Predictive Coding

Lately a new Linear Predictive idea is being explored Daniele Giacobello [2010], this
scheme is to make the coefficients and the error sparse. The idea behind this is to
extract filter coefficients and error, where as much of the signal then is zero, and
there for does not need to be represented. The concept of Sparse Linear Predictive
Coding is further explained in section 4.1.

1.5 Initial Problem Formulation

In this section the setup for the LPC and Sparse Linear Predictive Coding (SLPC)
is investigated, leading up to a initial requirement specification which is then used
for the simulation.

1.5.1 LPC and sparse LPC encoding

There exists many different encodings using LPC, where the LPC coefficients and
error is the basis. But each of these encodings can be implemented with different
number of coefficients, LPC-10 standard consists of 10 LPC coefficients others use
more. In [Hung Ngo, Mehrub Mehrubeoglu, 2010, p.15] the effect of increasing the
number of coefficients effects signal to noise ratio. In this report it is decided to work
with 12 LPC coefficients.
As described earlier voiced and unvoiced signals can be encoded different, this is
referred to as excitation. But for this report the implementation an excitation model
unnecessary since the main goal is to see the difference between the normal and sparse
LPC implementation. so the voiced and unvoiced signals encoded as the same, this
will lead to poorer sound, and poorer compression ratio. However with the main part
being developing and implementing an architecture which can find LPC and sparse
LPC coefficients, and compare, the poor sound does not effect the results.
It is decided to use a 16 kHz voiced signal as input, this maybe referred to as wideband
audio or High-definition (HD) voice. Different encoders use different frequencies, the
16 kHz is used as a prof of concept for being able to use the best possible frequency,
since normal voice is below 14 kHz. Narrowband voice encoding is normally in the
300-3400 Hz range. When taking in the signal it is split up into segments, in this
report it is decided to keep each segment at 20 ms with a 10 ms overlap, see figure
1.4. With the overlapping it means that a new segment of 20 ms will be ready for
processing for every 10 ms. This decision means that processing of a package should
be processed within 10 ms, so no queuing arise. The 16 kHz signal and the 20 ms
segments yields a package size of 320 samples.
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Package 1

Package 2

Package 3

Package 4

Package 5

10ms 20ms 30ms 40ms 50ms 60ms
time

0ms

Figure 1.4: The figure shows how the packages containing 20 ms of 320 samples arrive every 10
ms

1.5.2 Preliminary Problem Description

In this section a preliminary problem description is made, which gives the basis for
further analysis of the problem.

Preliminary problem statement

This Sparse Linear Predictive Coding idea is an interesting development, which can
lead to a preliminary problem statement:

Is it possible to use Sparse Linear Predictive Coding to find the filter coefficients
and error, can this be implemented on a FPGA and how is the complexity of the
implementation compared to a normal Linear Predictive Coding implementation.

1.5.3 Preliminary Requirement specification

In the previous sections a set of specifications for the setup of the simulation and
implementation is stated, this can be summed up to a Requirement specification.
First the specifications for the simulation is listed, which then leads to a set of
requirements.

General specifications

To make a simulation and analyse how the final specifications needs to be setup, a
set of general specifications needs to be specified, which is as follows:

• no excitation model
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• 16 kHz voiced signal

• 20 ms segments

• 10 ms overlap

• package size 320 samples

• 12 coefficients

With this set of specifications both LPC and SLPC can be analysed and simulated
to find a final set of specifications.
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Chapter 2

Linear Prediction Background

The basic of Linear prediction is to find a set of future values of a discrete time signal
which is estimated as a linear function of past samples. Linear prediction can be done
in different ways, one is to make an all-pole model, which is characterized by a set of
a values given by {a1, ...., ap}. This is also known as an Autoregressive (AR) model.
Another way is to use an all-zero model, which is characterized a set of b values
given by {b1, ...., bl}. This is also referred to as the Moving Average (MA) model.
Both models can be combined to a pole-zero model, called the Autoregressive Moving
Average (ARMA) model. The most used linear predictive coding scheme uses the
all-pole model. The all-pole model leads to the Yule-Walker equations which can
be solved in different ways, for example steepest decent method, Newton’s method,
Cholesky decomposition, etc. A common used method for finding the coefficients, is
using the Levinson-Durbin recursion. In this chapter the Linear Predictive Coding
scheme will be explained, from taking the speech signal in as a discrete time signal,
deriving the Yule-Walker equation, then the all-pole filter coefficients is found using
the Levinson-Durbin recursion Makhoul [1975], Daniele Giacobello [2010]

2.1 Linear Predictive Coding
The prediction can then be used to setup a linear predictive coding scheme. It is to
divide it into two parts, an analysis block and a synthesis block as shown in figure 2.1.
Where the analysis block finds a set of coefficients, given by {a1, ...., ap} to describe
the signal x(n). The block also finds an error signal, which is the difference between
the predicted signal and the input signal, given by e(n)

9
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Linear Predictive 
Analysis

Linear Predictive 
Analysis

Linear Predictive 
Synthesis

Linear Predictive 
Synthesis

x(n)

a1

a2

ap x(n)

e(n)

Figure 2.1: Linear predictive coding scheme

The synthesis block then takes in the a’s, which are defined as a vector as in figure
2.1 and the error signal e(n), and returns an x̂(n).

a =


a1
a2
...
ap

 (2.1)

2.1.1 Linear Prediction Speech Analysis

The idea of linear prediction analysis is that the analysis finds the coefficients of a
IIR filter that predicts next values from the current and previous inputs. This is
given by an all-pole filter in equation (1.1) which can be rewritten into:

Y (z)
X(z) = H(z) = 1

A(z) = 1
1 +

∑p
k=1 akz

−k (2.2)

Assuming an unknown u(n), the signal s′(n) can be written as a prediction of a linear
weighted summation of the past samples of s(n)

s′(n) =
p∑

k=1
aks(n− k) (2.3)
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With this time-domain prediction the error can be found by taking the difference
between the prediction and the real signal as:

e(n) = s(n)− s′(n) (2.4)

where e denominates the current error between the prediction and the input signal,
this equation can be drawn as a figure 2.2, where the filter coefficients ap is used to
calculate the error.

z-1 z-1

+

z-1

+

z-1

+

a
1

a
2

a
3

a
p

Σ
s’[n] -

+

s[n]

e[n]

Figure 2.2: The figure depicts the relationship between the error signal e(n) and the input signal
s(n) and s′(n)

With the error, a summed squared error E is found without specifying the range
of summation. This gives an optimization problem, which can be turned into;

E =
∑
n

e2(n) =
∑
n

(
s(n) +

p∑
k=1

aks(n− k)
)2 (2.5)

The error can be minimized by:

∂E

∂ai
= 0, 1 ≤ i ≤ p (2.6)

where the error is differentiated by the coefficients ai
About this optimization problem some things are known, it is a convex, linear least
squares problem, which gives a solution to the problem. Figure 2.3 depicts a 2
dimensional drawing of the solution to the problem, where the solution is where the
curve have minimum, and where the gradient is 0.



12 Chapter 2. Linear Prediction Background

f(x)

x

minimum

iterations

startingpoint

Figure 2.3: 2D drawing of the Least squares solution, solved by gradient decent

From Equation (2.5) and (2.6), Equation (2.7) is obtained, this equation is also
known as the normal equation, in least squares terminology [Makhoul, 1975].

p∑
k=1

ak
∑
n

s(n− k)s(n− i) = −
∑
n

s(n)s(n− i), 1 ≤ i ≤ p (2.7)

The minimum total least squared error from E given by Ep can be obtained by
expanding Equation (2.5) and substituting with Equation(2.7) resulting in [Makhoul,
1975]

Ep =
∑
n

s2(n) +
p∑

k=1
ak
∑
n

s(n)s(n− k) (2.8)

Now the range of the summation in Equation (2.5), (2.7) and (2.8) is specified as
infinite as −∞ < n <∞ and by speficying the autocorrelation function of the signal
s(n) as:

R(i) =
∞∑

n=−∞
s(n)s(n+ i) (2.9)

This autocorrelation function is an even function so R(−i) = R(i), and a toeplitz
matrix, meaning that all elements along each diagonal are equal.
Equation (2.7) can be rewritten into:

p∑
k=1

akR(i− k) = −R(i), 1 ≤ i ≤ p (2.10)

and equation (2.8) can be rewritten into (2.11), which is shown in [Makhoul, 1975]
to be equal to the gain squared.

G2 = Ep = R(0) +
p∑

k=1
akR(k) (2.11)



2.1. Linear Predictive Coding 13

In reality the signal s(n) is only known for a finite interval so s′(n) is given by
windowing the signal s(n) with a windowing function w(n) for a finite interval and
otherwise zero as:

ŝ(n) =
{
s(n)w(n) 0 ≤ n ≤ N − 1
0 otherwise (2.12)

the autocorrelation function is then given by

R(i) =
N−1−i∑
n=0

ŝ(n)ŝ(n+ i) (2.13)

To solve the linear prediction (2.10) can be expanded into matrix form and rewritten
as:

Ra = −r (2.14)

where R is given by a toeplitz matrix given by:

R =


R(0) R(1) R(p− 1)
R(1) R(0) R(p− 2)
...

...
...

R(p− 1) R(p− 2) R(0)

 = XTX (2.15)

and -r is given by:

− r = −


R(1)
R(2)
...

R(p)

 = XTx (2.16)

and to recall a is given by

a =


a1
a2
...
ap

 (2.17)

Equation (2.14) is called the Yule Walker equation.
Solving the equation (2.14) by minimizing using least squares leads to a conventional
linear prediction problem on the form first by rewriting the equation into matrix
form:

a = R−1r = (XTX)−1XTx (2.18)

and then relating equation(2.18) and turning it into a minimization problem:

a = (XTX)−1XTx = argmin
a
‖x−Xa‖2 (2.19)
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The definition of x and X is given as:

x =

s(N1)
...

s(N2)

 (2.20)

X =


x(N1 − 1) . . . x(N1 −K)

...
...

x(N2 − 1) . . . x(N2 −K)

 (2.21)

Where the starting and ending points N1 and N2 can be chosen in various ways
assuming s(n) = 0 for n < 1 and n > N , a common approach is N1 = 1 and
N2 = N +K[Daniele Giacobello, 2010].
Equation(2.19) is a rewritten for expression of equation (2.5) and (2.6). This problem
can be solved in various ways, a number of ways is, steepest decent, gradient decent,
newton method, and other deviations there of Gauss-Jordan elimination etc. But
since the minimization problem can be given by the Yule-Walker equation, a fast
implementation can be the Levinson-Durbin recursion, which is low complexity and
stable according to [GeorgeCybenko, 1980].

2.1.2 Levinson Durbin Recursion

The Levinson-Durbin Recursion is used to solve the Yule-Walker equation given by:

Ra = −r (2.22)

Where R is a Toeplitz matrix and a ∈ Rp and r ∈ Rp are vectors as mentioned
earlier.
The Yule-Walker equation can be solved by the Levinson-Durbin Recursion as in
Algorithm 2.1 for this algorithm to run some initial values has to be given.

Algorithm 2.1 Levinson-Durbin
Require: E0 = R(0)
for 1 ≤ i ≤ p do

ki = −
R(i)+

∑i−1
j=1 a

(i−1)
j R(i−j)

E(i−1)

a
(i)
i = ki
for 1 ≤ j ≤ i− 1 do
a

(i)
j = a

(i−1)
j + kia

(i−1)
i−j

end for
E(i) = (1− k2

i )E(i−1)
end for
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A part of the Levinson-Durbin algorithm is the reflection coefficient which is also
known as the partial correlation coefficient [Makhoul, 1975] and can be interpreted
as the negative partial correlation between s(n) and s(n+ 1) while s is fixed.
The recursion can be divide into two loops, an outer and an inner loop. The inner loop
updates the a coefficients taking a(i−1)

j , minus the reflection coefficient ki multiplied
by a

(i−1)
i−j upto the loop number, j stopping at i The outer loop calculates a new

reflection coefficient for ki by dividing the equation R(i) +
∑i−1
j=1 a

(i−1)
j R(i− j) in the

current loop number by the current calculated error. Then updating the reflection
coefficient ki, and then updating the current error E(i), by taking the (1− k2

i )Ei−1
An implementation option for Levinson-Durbin is to normalize the autocorrelation
coefficients by dividing all R(i) by R(0), this will scale the a coefficients to give
a fix point solution, which can be beneficial while implementing the algorithm on
hardware.

2.2 Sparse Linear Predictive Coding
When looking into sparse linear predictive coding, The need to look at how LPC is
build up and what results a normal LPC implementation gives.
As an normally the Yule-Walker equation is solved given by:

Ra = −r (2.23)

This equation can be solved recursive by using the Levinson-Durbin Recursion as
described earlier, when solving the Yule-Walker equation like that it gives a set of
coefficients ap and an error signal e. The speech signal can be formulated as a
continuous signal as:

s[t] =
P∑
p=1

aps[t− p] + e[t] (2.24)

Where s[t] is the speech signal and e[t] is the error signal earlier mentioned as E
which is minimized in the normal LPC scheme.
The normal problem is defined as 2-norm problem also known as a least squares
problem, as in equation (2.19). So why is solving the problem as a 2-norm problem
so popular: it gives a stable solution and the prediction error results in the Yule-
Walker equation, and can be solved using the Levinson-Durbin recursion[Daniele
Giacobello, 2010].
The idea of making the LPC implementation sparse is then to solve the same problem
as equation (2.19), how ever the sparsity in a problem is measured as the cardinality,
which correspond to the 0-norm (||̇0). The problem with the 0-norm problem is that
it is a combinatorial problem which can not be solved in polynomial time, so for
implementation this is not variable. Instead the 1-norm is used, as it preforms well
as a relaxation of 0-norm linear programming problem[Daniele Giacobello, 2010].



16 Chapter 2. Linear Prediction Background

2.2.1 1-norm Sparse LPC

Into the basic problem a regularization criterion γ is introduced into the minimization
problem, so that a weight on the error and the coefficients[Daniele Giacobello, 2010]
regulate which element to focus the minimization on. This means that we seek to
find a solution to the same problem, however instead of finding the normal solution,
we seek a solution where the error residual and/or the coefficients of the solution is
minimized, leading to lesser data to transmit to describing the signal. So taking the
basic minimization problem in equation (2.19) and introducing this criterion yields
equation (2.25) recalling the definations of X and x in equation (2.20) and (2.21).

minimize
a

‖x−Xa‖1 + γ‖a‖1 (2.25)

with x ∈ RM , X ∈ RM×N and a ∈ RN .
Where(‖‖̇1) denotes the 1-norm and the γ is the regulation criterion which is a
constant that decide which part of the problem is put most emphasis on minimizing,
eg. the error or the coefficients. In [Tobias Lindstrøm Jensen, Daniele Giacobello,
Toon Van Waterschoot and Mads Græsbøll Christensen , 2015] γ is calculated and
set to γ = 0.12
There are different ways to solve this optimization problem in [Tobias Lindstrøm
Jensen, Daniele Giacobello, Toon Van Waterschoot and Mads Græsbøll Christensen
, 2015] two ways of solving this minimization problem is proposed, the Douglas-
Rachford method and the ADMM. By using the ADMM the problem can be rewrit-
ten into a recursive implementation much like Levinson-Durbin recursion with small
difference.

a(k+1) = aγ,2 −
[
−γI
X

]+

(y(k) − u(k)) (2.26)

e(k+1) = x−Xa(k+1) (2.27)

y(k+1) = S1/ρ

([
γa(k+1)

e(k+1)

]
+ u(k)

)
(2.28)

u(k+1) = u(k) +
[
γa(k+1)

e(k+1)

]
− y(k+1)) (2.29)

with x ∈ RM , X ∈ RM×N and a ∈ RN .
In equation (2.26) the (.)+ denotes a Moore-Penrose pseudo-inverse[Tobias Lindstrøm
Jensen, Daniele Giacobello, Toon Van Waterschoot and Mads Græsbøll Christensen
, 2015]. The S in equation (2.28) is a soft-threshold function given by:

(St(v))i = sign(vi)max(|vi| − t, 0) (2.30)

For this algorithm the variable ρ is found empirically found to ρ = 100 according
to [Tobias Lindstrøm Jensen, Daniele Giacobello, Toon Van Waterschoot and Mads
Græsbøll Christensen , 2015].
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2.2.2 Lower order

In subsection 2.2.1 sparse linear prediction is introduced, this in general works well
for higher order LPC implementations, minimizing the coefficients and the error
residual. However for encoding voiced signals, with a lower order implementation,(12
coefficients), the amount of sparsity in the coefficients little to none.
So instead another implementation is proposed, setting the regularization variable
to γ = 0, so the problem becomes

minimize ‖x−Xa‖1 (2.31)

This minimization problem minimizes the error residual, with the 1-norm minimiza-
tion.
Following the [Tobias Lindstrøm Jensen, Daniele Giacobello, Toon Van Waterschoot
and Mads Græsbøll Christensen , 2015], this minimization problem can be solved,
using the ADMM algorithm as follows:

a(k+1) = a2 −X+(y(k) − u(k)) (2.32)
e(k+1) = x−Xa(k+1) (2.33)
y(k+1) = S1/ρ(e(k+1) + u(k)) (2.34)
u(k+1) = u(k) + e(k+1) − y(k+1) (2.35)

where
XTXa2 = XT r, a2 = X+r, X+ = (XTX)−1XT . (2.36)

In the system the equation:
XTXα2 = XT r (2.37)

can be solved with the Durbin algorithm [Gene H. Golub]. Let z(k+1) = X+(y(k) −
u(k)) = X+(b(k)), then z(k+1) can be obtained by solving

XTXz(k+1) = XT b(k) (2.38)

Notice again that R = XTX is symmetric and Toeplitz and the above system can
be solved using efficiently using the Levinson algorithm [Gene H. Golub].
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Chapter 3

ADMM Algorithm Analysis

This chapter concerns the analysis of the algorithm ADMM. First Control Data
Flow Graph (CDFG) for the algorithm are derived, which is then used to analyse
the flow of the algorithm, and how it can be split up. Then the different parts of the
algorithm is analysed to investigate different possible solutions for each step.
The ADMM algorithm which is given as follows:

a(k+1) = a2 −X+(y(k) − u(k)) (3.1)
e(k+1) = x−Xa(k+1) (3.2)
y(k+1) = S1/ρ(e(k+1) + u(k)) (3.3)
u(k+1) = u(k) + e(k+1) − y(k+1) (3.4)

which is initialized with a2 = X+x given as the normal least squares solution. The
variables y(k) and u(k) are initialized as a zero vector, as stated in Tobias Lindstrøm
Jensen, Daniele Giacobello, Toon Van Waterschoot and Mads Græsbøll Christensen
[2015].
So to make a CDFG the algorithm is split into five parts, where the last four runs in a
loop. First part is to find the least squares solution, then run the ADMM algorithm,
first find new a(k+1) coefficients, then update the error e(k+1), find new y(k+1) and
u(k+1) vectors, then loop back to find a(k+2). The loop runs for a predetermined
number of iterations before the algorithm terminates, number of iterations are further
described in section 4.
The CDFG for the ADMM algorithm is depicted in figure 3.1, where the five blocks
as previous explained are used.

19
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Begin

a2=X+x

Is k<L?

k=0
y=zeros
u=zeros

a(k+1)=a2 –X+ (y(k)–u(k)) e(k+1) = x-Xa(k+1)

y(k+1)=S1/ρ(e
(k+1)+u(k))u(k+1)=u(k)+e(k+1)-y(k+1)

k=k+1

End
No

Yes

Figure 3.1: CDFG depicting the full ADMM Algorithm.

3.1 CDFG possibilities
Analysing the CDFG there is different possibilities, one possibility is, if it is possible
to take out the Moore-Penrose pseudo-inverse matrix of X, out of the loop, as follows:
The block with a(k+1) = a2 −X+(y(k) − u(k)) contains the X+ which is the Moore-
Penrose pseudo-inverse matrix of X which is given by X+ = (XTX)−1XT and is a
constant variable, which does not change for every loop. So it can be taken out of
the loop and calculated beforehand. In the first iteration of the algorithm where y(0)

and u(0) is set to zero, means that the first a(1) is equal to a2. The last three blocks
is depended of the previous step, so they needs to be calculated inside the loop, and
they are dependent of each other and can therefore not be calculated in parallel.
With these updates a new CDFG can be derived as follows:
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Begin

Is k<L?

k=0
y=zeros
u=zeros

a(k+1)=a2 –X+ (y(k)–u(k))e(k+1) = x-Xa(k+1)

y(k+1)=S1/ρ(e
(k+1)+u(k)) u(k+1)=u(k)+e(k+1)-y(k+1)

k=k+1

end

No

Yes

Is k=0a(k+1)=a2

Yes

No

X+=(XTX)-1XT

a2=XTx

Figure 3.2: CDFG depicting the full ADMM Algorithm, where the calculations which can be taken
out of the loop is moved.

The four main blocks in the CDFG are given names and referred to by these names
in the rest of this section. The names are a(k+1) is "update coefficients", e(k+1) is
"update error", y(k+1) is "update y" and u(k+1) is "update u". The Moore-Penrose
pseudo-inverse calculation is given the name "Moore-Penrose", so then the new CDFG
is depicted in figure 3.3
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Begin

Is k<l?

k=0
y=zeros
u=zeros

Update coefficientsUpdate Error

Update Y Update U k=k+1

end

No

Yes

Is k=0a(k+1)=a2

Yes

No

Moore-Penrose

Figure 3.3: CDFG depicting the full ADMM Algorithm, where the blocks in the loop is given
names.

Another possible CDFG is to keep the Moore-Penrose pseudo-inverse inside the loop,
and calculate it using the Levinson algorithm, as described in 2.2.2, which is a prof
that the equation X+(y(k) − u(k)) can be solved efficiently using the Levinson algo-
rithm, however this means running the Levinson algorithm in every loop. The CDFG
with the Moore-Penrose pseudo-inverse inside the loop, and instead the "Update co-
efficients", is renamed "Update coefficients version 2"
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Begin Levinson-Durbin

Is k<L?

k=0
y=zeros
u=zeros

Update coefficients 
version 2

Update Error

Update Y Update U k=k+1

end

No

Yes

Is k=0a(k+1)=a2

Yes

No

Figure 3.4: CDFG depicting the full ADMM Algorithm, where the blocks in the loop is given
names, and the Moore-Penrose pseudo-inverse is inside the loop.

3.2 The different blocks
With the overall CDFG derived as depicted in figure 3.3, a CDFG can be build for
the different blocks.

3.3 Moore-Penrose
The "Moore-Penrose" block takes in one input, the X matrix which is a 332 times 12.
The "Moore-Penrose" block translated into a CDFG is as follows:
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Begin

Temp=XT*X

Temp2=inverse(Temp)

X+=Temp2*XT

End

Figure 3.5: Calculating the Moore-Penrose pseudo-inverse matrix of X

The calculation looks strait forward, but it contains a multiplication of X(332x12)
XT (12x332), an inversion of the result which is (12x12), and a multiplication of the
XT (12x332) matrix, which then gives the X+(12x332). This means that there is
many calculations involved in finding the Moore-Penrose pseudo-inverse, and there
is a large workload in the inversion of a 12x12 matrix. The main problem is inverting
a 12x12 matrix which can be solved by finding the analytical solution, which include
finding the determinant and cofactors of the matrix. Knowing that the matrix is
toepliz does however give another way of inverting it, as decribed in P. G. MAR-
TINSSON, V. ROKHLIN AND M. TYGERT [2005], which gives a complexity of
O(n log2 n).

3.4 Update coefficients
The "update coefficients" block is calculated by the following: The a2 vector which is
the least square solution, is subtracted by the result, of the y(k) vector is subtracted
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by the u(k), then to be multiplied by the calculated Moore-Penrose pseudo-inverse
X matrix. The CDFG for the update coefficients is strait forward when the Moore-
Penrose pseudo-inversion is outside of the loop, as depicted in figure 3.6

Begin

Temp=y(k)-u(k)

Temp2=X+*Temp

a(k+1)=a2-Temp2

End

Figure 3.6: Calculating the new ak+1 coefficient

However as described earlier this solution finding the Moore-Penrose matrix outside
is not a variable solution given the complexity of finding this matrix.

3.5 Update coefficients version 2
The "update coefficient version 2" is rather different then the other version, because
instead of having the Moore-Penrose pseudo-inversion outside of the loop. There is
two possibilities, either solving by QR-decomposition, or by applying the Levinson
algorithm.
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3.5.1 QR-decomposition

The calculation can be solved by using the QR-decompositon. From section 2.2.2 we
have the following equation:

XTXz(k+1) = XT b(k) (3.5)

For the Moore-Penrose z(k+1) = X+(y(k) − u(k)) = X+(b(k)) to simplify this z(k+1)

is set to α, so by using QR-decomposition and solving for α, means that we have:

α = (XTX)−1XT b(k) (3.6)
= X+b(k) (3.7)

The X matrix can be substituted by a QR decomposition, which means that instead
of the X matrix we find a upper triangular matrix R and a matrix Q so X = QR.
this leads to the following:

α = X+b(k) (3.8)
= (RTQTQR)−1RTQT b(k) (3.9)
= (RT IR)−1RTQT b(k) (3.10)
= R−1R−TRTQT b(k) (3.11)
= R−1QT b (3.12)

(3.13)

if we then set b = QT b we get the following:

α = R−1b (3.14)

This can then be rewritten into:
Rα = b (3.15)

Now we can solve the α knowing that the b = QT b where b is the vector y(k) − u(k)

and the R is an upper-triangular matrix[Gene H. Golub, p. 49]. The equation in
(3.15) is then solved by the "back substitution"[Gene H. Golub, p. 89].
This gives a set of equation from 1 to n where n is the number of coefficients:

αn = bn
Rn,n

(3.16)

αn−1 = bn−1 −Rn−1,nαn
Rn−1,n−1

(3.17)

and so on.
To start the "back substitution", the input matrix R matrix is needed, so to find R
matrices the Gram-Schmidt or the modified Gram-Schmidt method as described in
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Algorithm 3.1 Modified Gram-Schmidt
for i = 1 to n do
vi = ai

end for
for i = 1 to n do
rii =‖ vi ‖2
qi = vi/rii
for j = i+ 1 to n do
rij = qivj
vj = −vjrijqi

end for
end for

algorithm 3.1 taken from [Lloyd N. Trefethen, p.51-59] can be used to find the matrix
R.
The two methods have a flop count of 2mn2 for a m x n matrix[Lloyd N. Trefethen,
p.59], and the back substitution method have a cost of n2

Combining both the Gram-Schmidt and the QR factorization, this means 2mn2 +n2

flops. However, since the X matrix is a constant, so the Gram-Schmidt algorithm
can be solved outside of the loop of the ADMM algorithm.

3.5.2 Levinson Algorithm

The calculation can be done by finding the least squares solution to X+(y(k) − u(k))
which is explained in 2.2.2, using the Levinson algorithm. The Levinson algorithm
is a little different from the Levinson-Durbin altorithm. Where the Levinson-Durbin
algorithm solves the Yule-Walker equation, with a toeplitz matrix, The Levinson
algorithm can solve same right hand side problem. The difference between the al-
gorithms are explained in [Gene H. Golub, p. 210-211] where the Levinson-Durbin
is mentioned as the Durbin algorithm. The Levinson algorithm used is showed in
Algorithm 3.2, where the solution is given by x where the objectiv function solved is
given by Rx = b, where x ∈ Rp, R ∈ Rp×p,b ∈ Rp and R is a Toeplitz matrix.
This in then compared with the Levinson-Durbin algorithm in 3.3, where the solution
is given by Ry = −r, where y ∈ Rp, R ∈ Rp×p, r ∈ Rp and R is the Toeplitz matrix
as earlier described in equation 2.15 given by the vector r.
In the Levinson algorithm, the Durbin algorithm is calculated implicit for every
iteration, plus 3 lines of extra calculations, for the µ, v and the x calculation.

3.5.3 Operation count

The Levinson Algorithm operation count is 4n2 in [Gene H. Golub, p.211].
As described earlier the operation count using the QR decomposition is calculating
2mn2 outside of the loop and n2 and some overhead of multiplying the QT b which
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Algorithm 3.2 Levinson
Require: E0 = R(0); y(1) = −r(1) = α;x(1) = b(1)
for i = 1 : p− 1 do
E(i) = (1− α2)E(i−1)

µ = (b(i+1)−r(1:i)T x(i:−1:1))
E(i)

v(1 : i) = x(1 : i) + µy(i : −1 : 1)

x(1 : i+ 1) =
[
v(1 : i)
µ

]
if i < p− 1 then
α = −(r(i+1)+r(1:i)T y(i:−1:1))

E(i)

z(1 : i) = y(1 : i) + αy(i : −1 : 1)

y(1 : i+ 1) =
[
z(1 : i)
α

]
end if

end for

Algorithm 3.3 Levinson-Durbin
Require: E0 = R(0); α = y(1) = −r(1)
for i = 1 : p− 1 do
E(i) = (1− α2)E(i−1)

α = −(r(i+1)+r(1:i)T y(i:−1:1))
E(i)

z(1 : i) = y(1 : i) + αy(i : −1 : 1)

y(1 : i+ 1) =
[
z(1 : i)
α

]
end for
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is (2n − 1)m inside the loop, the operation count becomes (2n − 1)m + n2. Where
using the Levinson Algorithm is 4n2, this can be written into a table as shown in the
following table:

Method init OpS OpS init 1 iteration 40 iterations
Levinson Algorithm 0 4n2 0 576 23040
QR-Decomposition 2mn2 +

(2n− 1)m
n2 72708 100 4000

Moore-Penrose mn2 +
nlog2n

mn2 3.3233e+004 33200 1328000

It is decided to use the Levinson Algorithm to update the coefficients, since it uses
fewer operations then the QR-Decomposition. If the algorithm had to run for a larger
number of iterations, it is also seen that the QR-Decomposition uses lesser operations
each iteration, so at some point it will become favourable to use that method instead.
A CDFG is drawn for this in figure 7.6 which takes the autocorrelation r = XTx,
where X is the matrix, and x = (y − u) [Daniele Giacobello, 2010, p.7] as an input
and gives the vector y as an output.
A CDFG is needed to calculate the input r which is depicted in figure 3.8.

Begin

y(1)=-r(1)
E=1

α=-r(1)
p=12

Is i  > p-1?

End

μ=-(b(i+1)-r(1+i))Tx(i:-1:1)/E(i)v(1:i)=x(1:i)+μy(i:-1:1)x(1:i+1)=[v(1:i);μ]

For i=1:p

E=(1-α2)E
μ=-(b(i+1)-r(1+i))Tx(i:-1:1)/E(i)

α=-(r(i+1)+r(1+i))Ty(i:-1:1)/E(i)

x(1:i+1)=[v(1:i);μ]
y(1:i+1)=[z(1:i);α]

v(1:i)=x(1:i)+μy(i:-1:1)
z(1:i)=y(1:i)+αy(i:-1:1)

no

yes

stop

run

Figure 3.7: CDFG for the Levinson Algorithm
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Begin

Xt=XT

r=Xt*x

x=y-u

End

Figure 3.8: CDFG for calculating the input r to the Levinson Algorithm

3.6 Update error

The "update error" block is x(332) vector subtracted by the vector, which is a result
of multiplying the X(332x12) matrix by the a(k+1)(12) vector, which then gives the
e(k+1) which is 332 variables long, the CDFG is depicted in figure 3.9
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Begin

Temp=X*a(k+1)

e(k+1)=x-Temp

end

Figure 3.9: Updating the error vector

3.7 Update y
The "update y" block is includes the soft threshold function, which is split into it’s
own CDFG explained in 3.7.1. It is calculated by adding the error e(k+1) with u(k),
and then taking the soft threshold of that, which returns a vector which is 332 long.
The CDFG is depicted in figure 3.10.
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Begin

Temp=e(k+1)+u(k)

y(k+1)=softthreshold(Temp)

end

Figure 3.10: Updating the y vector

3.7.1 Soft threshold function

The soft threshold function is a function which looks at the variable, and if it is within
the decided ρ value then the variable is set to 0, else the function takes the absolute
value of the variable, minus the ρ value, and then multiply with the sign of the
variable to begin with. To make a more visual of what the Soft threshold function
does, it is depicted in figure 3.11, where the variable t is the value evaluated. In
figure 3.12 the CDFG for the soft threshold is depicted, where the input is the vector
"temp" in the block "Update Y", which is given as the input, and it returns an vector
as an output, after every variable in the vector is evaluated using the soft-threshold
function.
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1/-ρ

Ssoft(x)

X1/ρ

Figure 3.11: Figure depicting how the Soft threshold function works

The CDFG for the Soft thresholdfunction is depicted in figure 3.12.
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Begin

Rho=100
i=0

p=12

Is temp(i) >Rho?

res(i)=0

Temp=abs(temp(i))
-Rho

res(i)=sign(temp(i))*
Temp

end

yes

no

Is i<p

i=i+1

Figure 3.12: CDFG for the Soft threshold function

3.8 Update u

The "update u" block is a simpler block, which adds u(k) with e(k+1), and subtract
y(k+1). Which means that it is two vector additions and a vector subtraction, where
all vectors are 332 long. The CDFG is depicted in figure 3.13
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Begin

Temp=u(k)+e(k+1)

u(k+1)=Temp-y(k+1)

end

Figure 3.13: Updating the u vector

3.9 Conclusion
This chapter contains the analysis of the ADMM algorithm, finding the flow and
possible ways of implementing the algorithm. It was found that while implementing
the algorithm, that solving the Update A, takes fewest calculations using the Levinson
algorithm, for lower number of n, and if the number of n goes to infinite ,using the
QR-Decompesition is better. However at n = 12 the Levinson algorithm is best.
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Chapter 4

Linear Prediction Simulation

In this chapter the linear prediction setup is simulated, using Levinson-Durbin al-
gorithm to find the ap coefficients, the implementation is simulated together with a
implementation of ADMM algorithm, as explained earlier in section 4.1. This is done
to check how the outputs are for the different solutions. First a set of test signals
are specified, which are used through the simulation setup. Then the output of the
respective signals are plotted and the difference between the normal LPC and SLPC
coefficients can be examined.
Further studies of the convergence of the ADMM algorithm, and how the error signal
changes over a number of iterations. Lastly the Matlab implementation is profiled
to verify the bottleneck in the ADMM implementation.

4.1 Test signals
The implementation is tested on 3 different signals.

1. a with a 100 Hz sinus tone

2. a recorded voice with the letter A

3. a random generated signal with low pass filtered noise

All the following plots are done on a frame 20 ms at 16 kHz, 320 samples per frame.
First the spectrum and autocorrelation is plotted for each of the 3 signals, where the
100 Hz signal is plotted in figure 4.1, Spoken A in figure 4.2, and last the 4.3.

37
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Figure 4.1: Spectrum of a 100 hz sinusoid signal and the autocorrelation function
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Figure 4.2: Spectrum of the spoken A signal and the autocorrelation function
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Figure 4.3: Spectrum of the voiced signal and the autocorrelation function

4.2 Output signals
The LPC and SLPC coefficients are then calculated using the LPC and the ADMM
algorithm. This gives a set of coefficients, these coefficients are then plotted by taking
a Fast Fourier Transform (FFT) of them, and plotting them using the decibel scale.
The signals are plotted against the real signal also in the same scale. The plots for
the same figures are depicted in figure 4.4, 4.5 , 4.6 with 100 Hz, Spoken A and
generated signal respectably.
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Figure 4.4: Amplitude response LPC coefficients, and the SLPC coefficients plotted against the
100 Hz signal
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Figure 4.5: Amplitude response LPCcoefficients, and the LPC coefficients plotted against the
spoken A
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Figure 4.6: Amplitude response LPC coefficients, and the SLPC coefficients plotted against the
generated low pass filtered signal

As seen in the figure 4.4, 4.5 and 4.6 the SLPC signal is almost the same as the
LPC signal and follows almost, with the exceptions of the 100 Hz signal, some kind
of ripple effect occurs. The plot of the spoken A is where both algorithms produces
an a signal vector which are most alike, which is good as this is the normal kind
of signals packed using speech coding. The signal with the low-pass filtered noise
in figure 4.6 is almost also the same with little difference in peaks, seen by the red
and cyan lines above the real signal. Also the amplitude seems to be above the real
signal, which is possible a implementation error. So according to the simulations, the
SLPC implementation with the ADMM algorithm, can find LPC coefficients which
approximates the signal, and gives a similar amplitude response as the normal LPC
implementation.
To plot these figures it is needed to know the gain of the signal, this can be calculated
as shown in equation 4.2, the gain is used to multiply the signal with the given gain
to get the correct magnitude.

G2 = R(0) +
p∑
k=i

akR(k) (4.1)
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4.3 Analysing the ADMM implementation
Here the ADMM implementation of the algorithm is analysed. There is a few things
which is of interest, first is to see the Mean Square Deviation (MSD) of the error and
coefficients as the algorithm iterates, to see how many iterations it takes before the
algorithm becomes converges. Second it is interesting to see how the coefficients and
error changes, and if the error vector becomes more sparse by running the algorithm.
Last it is interesting to see the runtime of the algorithm in Matlab to see if it gives
an insight into which part of the algorithm is more computational demanding.
The analysis of the ADMM algorithm, is done with the low-pass filtered signal, which
gives a new random signal for each time the algorithm is called. So that the way the
algorithm changes for each iteration, this is done, this MSD runs over 1000 iterations
of the algorithm to find the average convergence. The reason for using the low-pass
filtered generated signal to test the algorithm, is that it is random generated, so
while this generator can easily generate 1000 runs, of 20 ms random over and over,
is easier than creating many spoken signals which also should behave random.

4.3.1 Convergence

First the convergence of the algorithm is analysed, this is done by taking the MSD
of the error signal. The MSD is calculated by taking the difference between two
iterations, squared, and since it is two vectors they are summed up, and the mean is
then found by dividing by the number of elements I as stated in equation 4.2.

MSD(k) = 1
I

I∑
i=1

(e(i, k)− e(i+ 1, k))2 (4.2)

MSDA(k) = 1
I

I∑
i=1

(a(i, k)− a(i+ 1, k))2 (4.3)

Then to plot the change over time, a MSD is calculated for every iteration of the
algorithm.
Figure 4.7 and 4.8 depicts the MSD for the coefficients and the error, over 60 itera-
tions, it is here seen that both the error and the coefficients stop changing around 20
iterations, but little change still occurs until around 30 for the error and 60 for the
coefficients. however this changes for each new input there is, so instead the same set
up is implemented, but the same code is run for 1000 times, with a new random input
generated every time. Then the mean of the 1000 generated MSD vectors is found
which gives a better insight into the average number of iterations needed before the
algorithm settles, these figures are depicted in 4.9 and 4.10. It is here noticeable that
neither of them never settles completely but around 30-40 iterations they are both
fairly low.
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Figure 4.7: MSD of the Error over 60 iterations of the ADMM algorithm
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Figure 4.8: MSD of the coefficient over 60 iterations of the ADMM algorithm
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Figure 4.9: Average of the MSD Error over 60 iterations of the ADMM algorithm averaged over
1000 times
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Figure 4.10: Average MSD of the coefficient over 60 iterations of the ADMM algorithm averaged
over 1000 times
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4.3.2 Changes in signals

The error signal and coefficient vector changes as the ADMM algorithm runs, this
is plotted for the low pass filtered noise in figure 4.11, where the same signal is
plotted, first in 4.11 where it is visible to see how the 332 error samples change from
1 iteration to the 10 iteration, where the 1 iteration is the normal LPC solution. In
figure 4.12 where the 332 error samples change from 50 iteration to the 100 iteration,
and becomes more and more sparse.
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Figure 4.11: Plot showing the error for the 1 and 10 iteration.
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Listing 4.1: Sparse LPC matlab implementation

a2=X̂ +x
f o r k=0:K

ak = a2 − X\(y − u) ;
e = x−X∗ak ;
y = S( e+u , 1/ rho ) ;
u = u + e −y ;

end
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Figure 4.12: Plot showing the error for the 50 and 100 iteration.

4.3.3 Profiling of Matlab implementation

The implemented code in Matlab is implemented as 3, where each line of the four
lines are directly translated into Matlab code as shown in Listing 4.1.
This piece of code is then evaluated using the build in Matlab profiler, which can
give an insight into the bottlenecks of this implementation. This is done with it in
mind that the implementation might be suboptimal and other implementations might
yield better results. The profiler results for 1000 iterations of the implementation is
as following:
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Operation Time Times called
ak 0.344s 1000
e 0.02s 1000
y 0.016s 1000
u 0.009s 1000
initial lpc 0.006s 1

It is seen in the table that the calculation of ak, which takes the longest time, which
is expected, as this line in this implementation solves a least-squares problem. In
the real-time implementation in hardware, the least-squares problem will be solved
using the Levinson recursion as described in 3.5.3 as it is the implementation with
the lowest complexity.

4.4 Conclusion
In this chapter the ADMM algorithm is simulated and evaluated, and it is shown
that it can find a set of LPC coefficients, which yields a sparse error signal. The
algorithm convergence is also investigated to asses the number of iterations for suf-
ficient convergence. The convergence of the algorithm shows that at around 30-40
iterations the algorithm hardly alters the coefficients, and the error. So it is decided
that the algorithm should stop after 40 iterations as the improvement from running
further is too small. The error signal is plotted at iteration 1, 10 and 50 to analyse
changes, and there is visible change to sparsity of the error signal. The plotted coef-
ficients is visible also changing, however further knowledges from that is significant
small, as the objective function is not focusing on making this signal more sparse.
The profiling of the Matlab implementation proves the conclusion from earlier that
the least-squares problem in the algorithm is the most time consuming.
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Chapter 5

Architecture

5.1 Application
As described in the introduction, this report focus on finding a Register-transfer
level (RTL) architecture of a LPC and a SLPC implementation. This can be done
in different ways. To begin with a paradigm is set up, that we have an application,
which is finding the Linear prediction coefficients. This application leads to a set of
algorithms, in this case there is the LPC and SLPC algorithms. These algorithms can
then be translated into an architecture. The three different levels can be represented
by a figure depicted in 5.1.

Application

Algorithm

Architecture

Figure 5.1: The a3 figure representing the 3 different levels

5.2 Algorithm
In this report the application is decided as being finding the Linear Prediction Co-
efficients, and the algorithms is the Levinson-Durbin algorithm described in 2, and

49
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the novel ADMM algorithm described in 2.2.1. where both these algorithms can be
translated into many different architectures.
This report starts by explaining the application in 1 where the application of finding
the Linear Prediction Coefficients to represent the human speech. Then we go into
the algorithms in chapter 2, where the two different algorithms are explained. As in
the figure 5.2 each level can be further investigated, and iterated back to, which is
done in Chapter 3, where the ADMM algorithm is further investigated. This is done
because the ADMM algorithm is a newly proposed algorithm for finding the Sparse
Linear Prediction Coefficients.

Application

Algorithm

Architecture

Figure 5.2: The a3 figure representing the 3 different levels where the algorithm is investigated,
by iterating in the algorithm level

When going from the algorithm to making an architecture, there is different ways. In
this report it is decided to start with making Control Data Flow graphs, which gives
an insight into the flow of the algorithm. With the CDFG in hand, it is possible to
translate these into a Precedence graph. However as these Algorithms are complex
sets of Precedence graphs has been designed. These Precedence graphs can then be
translated into an architecture, this flow is depicted in figure 5.3.
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CDFG

PG

Architecture

Figure 5.3: Mapping from CDFG into the Precedence graphs, then into an architecture

5.3 Architecture

The mapping of the Precedence Graph (PG) into architecture can be done in many
ways. First we need to set a set of paradigm, which is used when making the
architecture these are:

• Allocation Select the number of functional units, communication and storage

• Scheduling Introduces time into the precedence graphs, clock cycles for the
operation

• Assignment Decides which functional to execute for each operation

• Controller design Control signals, their sequence, and how they are generated

5.3.1 Cost function

To be able to go further with the architecture, some choices needs to be taken, as
how to make the design is dependent on the constraint in the architecture.
To identify the constraint in this architecture, the cost function is introduced. Where
the design metrics are usually physical area (A), execution time (T), power consump-
tion (P) and noise (N). These metrics are general opposite to each other meaning
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that if one is increased others are decreased and vice versa. The cost function is
shown in 5.1.

C = f(A, T, P,N) (5.1)

With the cost function, given that there is a time constraint, no constraint on the
physical area. Where the Power consumption given in equation 5.2. Where CL is
the load capacitance, which is given by the hardware, VDD is the voltage of which
the hardware runs, and the fclk is the clock frequency.

P = CLV
2
DDfclk (5.2)

With the constraint on the time and no areal constraint, and the cost function, the
strategy of lowering the cost of running the algorithm is therefore to; lower the supply
voltage, as this is squared in 5.2. When lowering the voltage, the fclk is lowered to
as a consequence. This means fewer clocks to execute the algorithm. To compensate
for the lowered number of clocks, increased utilization of the inherent parallelism is
needed.

5.3.2 Design Space

When going from the precedence graphs there is the four different metrics as ex-
plained in 5.3.

• Allocation

• Scheduling

• Assignment

• Controller design

These four metrics is then iterated over according to which metric is most important.
As described in 5.3.1 the important metric in this report is the time. This means that
when going from the PG into an architecture, the first thing found is a scheduling,
then allocation. This concept is depicted in figure 5.4 where it is each of the 4
iterations going back to a previous layer depicts how the design can go up a layer to
make changes.
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PG

Scheduling

Allocation

Architecture

1

2

3

4

Figure 5.4: How the design can iterate for each improvements in the architecture as the design is
updated.

This design iteration can be drawn in the Y-chart [Daniel D. Gajski, p.43 ] depicted in
figure 5.5, which is the chart of how to design a FPGA architecture. We start with a
given process structure of the algorithm. With the given structure the RTL behaviour
can be described which is given by CDFG, and PG. This can be translated into a
RTL structure, given by the FSMD. The then given RTL structure gives the Logic
behaviour, with is build up by Algorithmic state machine (ASM) charts [Pappas,
1994, p.348-355], which then gives the logic layout.
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Figure 5.5: The Gajski Y-chart [Daniel D. Gajski, p.43 ] for system design of an FPGA

5.3.3 Scheduling

As given by the cost function, explained in 5.3.1 the goal in this implementation is
to find a scheduling which is as fast as possible with the time constraint and given
that there is no area constraint.
This means that there is one rather simple scheduling method which follows these con-
straints, the method is As Soon As Possible. As Soon As Possible (ASAP) scheduling
schedules each operation as soon as they are available, and does not consider any
hardware constraint, therefore it is decided to make all the scheduling using ASAP.

5.3.4 Finite State Machine With Data path

With the architecture done, a Finite State Machine with Data path is constructed.
This means that we have a Finite state Machine in the Control path as depicted in
figure 5.6, Finite State Machine (FSM) then controls the signals to and from the
Data Path. The data path contains the hardware logic which calculates the in and
outputs.



5.3. Architecture 55

Control  Path Data Path
Status

Control

Control_in

fclk

Control_out
Data_out

Data_in

Figure 5.6: Finite State Machine with Data path
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Chapter 6

LPC RTL Analysis

In this Chapter a RTL architecture of the Levinson-Durbin recursion will be de-
rived. First CDFG for the algorithm are derived, using that PG are given, and with
that a scheduling can be extrapolated, by assuming unlimited hardware. With the
precedence graphs and the schedule, a FSMD can be derived.

Algorithm 6.1 Levinson-Durbin
Require: E0 = R(0)
for 1 ≤ i ≤ p do

ki = −
R(i)+

∑i−1
j=1 a

(i−1)
j R(i−j)

E(i−1)

a
(i)
i = ki
for 1 ≤ j ≤ i− 1 do
a

(i)
j = a

(i−1)
j − kia(i−1)

i−j
end for
E(i) = (1− k2

i )E(i−1)
end for

From Chapter 2.1.2 the Levinson-Durbin is given as an algorithm in 6.1. This algo-
rithm is analysed and divided up into separate parts which can be translated into
the CDFG in figure 6.1. The different blocks are different parts of the algorithm, so
each block takes an input from last block and gives one output, the loop runs for as
many ap coefficients is wanted.
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Begin

is i<P?

ki  = -(R(i)+Σi-1
j=1aj

(i-1)+R(i-j))/E(i-1)

ai
(i)=ki

E(i)= (1-ki
2)*E(i-1) 

is j<i-1?

aj
(i)=aj

(i-1)-kiai-j
(i-1)

End

E(0)=R(0)
P=12

yes

i=i+1

j=j+1
yes

no

no

Is R ready?

yes

no

Figure 6.1: CDFG depicting the full Levinson-Durbin Algorithm

This CDFG is the basic version where multiplication operations are done in each
block, this can be broken down, so each block contains one mathematical operations.
This is done in figure 6.2 where some of the blocks are represented by another CDFG.
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Begin

K_nominator

E(0)=R(0)
i=1

P=12

div sign inverter

ai
(i)=kiInner loop

Is R ready?

is i<P?

Calculate error

i=i+1

End

yes

no

yes

no

Figure 6.2: CDFG depicting the full Levinson-Durbin Algorithm where the the algorithm is split
into different parts, given separate names

The "K_nominator" block is depicted in figure 6.3 which calculates the product of
the sum in the algorithm and the addition of R(i): R(i) +

∑i−1
j=1 a

(i−1)
j R(i− j)
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Begin

is j≤i-1?

j=1
temp(0)=0

temp(j)=aj
(i-1)*R(i-j)j=j+1

temp(j)=temp(j-1)+temp(j) End

no

yes

sum=temp(j)

K_nominator=
R(i)+Sum

Figure 6.3: CDFG depicting K_nominator

The block "div sign inverter", divides the K_nominator by the error E(i − 1), and
invert the sign of the result, this gives the result of ki in the algorithm and is depicted
in figure 6.4.
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Begin

End

Temp=K_nominator/
E(i-1)

ki=Signinverter(Temp)

Figure 6.4: CDFG depicting the division of the error E(i-1) and the sign inversion

The block "Inner Loop", is depicted in figure 6.5, and this is where the calculation:
a

(i)
j = a

(i−1)
j − kia(i−1)

i−j is done.
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Begin

is j≤i-1?

j=1

Temp=ki*ai-j
(i-1)

aj
(i)=aj

(i-1)-Temp

j=j+1

End
no

yes

Figure 6.5: CDFG depicting the inner loop of the algorithm

The last block "Calculate Error", is where the new error is calculated, which is
depicted in figure 6.6, showing the calculation: E(i) = (1− k2

i )E(i−1).
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Begin

Temp=ki*ki

Temp1=1-Temp

E(i)=Temp1*E(i-1)

End

Figure 6.6: CDFG depicting the error calculation

6.1 Data Flow Graphs
Analysing the CDFG in figure 6.3, it is obvious that there is just one overall loop,
and that the inner loop possible can be unravelled. The calculate error and div sign
inverter block is simple, and independent of the inner loop. This leads to the Data
Flow Graph (DFG) depicted in figure 6.7 and 6.8.

X -

1

Ki
X

Ki
E(i-1)

E(i)

Updating Error

Figure 6.7: Updating the error using the current ki and the last error E(i− 1)
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/

E(i-1)

kiRtemp(i)

Ki Calculate

Sign invert+

R(i+1)

Figure 6.8: Dividing by the Error and inverting the sign ki value

The first calculation of "K_nominator" is independent of the "inner loop", because
the summation in the nominator goes to−1. In the next iteration the ai−1

j which is
equal to the last calculated ki, this is multiplied by R(1) and added with R(i+ 1) as
depicted in figure 6.9.

X

k1

R(1)

temp(0)

k2 temp

Figure 6.9: k’th temporary value used to calculate k2

Now the inner loop is calculated and the result of the inner loop is used in the next
"K_nominator" block. So these blocks become dependent of each other and therefore
the following DFG shows the combination of the "K_nominator" and the "inner loop"
as they expands for each iteration of the algorithm.
So the calculation depicted in figure 6.9 is always done, combined with a set of DFG,
these DFG are depicted in figure 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18,
6.19, where each figure is named ki temp(2− 11)
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Figure 6.10: k’th temporary value used to calculate k3
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Figure 6.11: k’th temporary value used to calculate k4
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Figure 6.12: k’th temporary value used to calculate k5
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Figure 6.13: k’th temporary value used to calculate k6
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Figure 6.14: k’th temporary value used to calculate k7
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Figure 6.15: k’th temporary value used to calculate k8
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Figure 6.16: k’th temporary value used to calculate k9
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Figure 6.17: k’th temporary value used to calculate k10
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Figure 6.18: k’th temporary value used to calculate k11
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Figure 6.19: k’th temporary value used to calculate k12
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The result from the kitemp block is added with the result the kitemp(i), as depicted
in figure 6.20 which then can be send to the ki calculate.

+

temp(i)

temp(0)
Rtemp

Rtemp Calculate

Figure 6.20: R’th temporary value used to calculate k2

6.2 Precedence Graphs
In this subsection the PG for each part of the Levinson-Durbin algorithm are pre-
sented. For the Precedence graphs there is no hardware limits.
As all the DFG presented earlier are homogeneous DFG, where there is one input
and one output to each operation, and there is no feed back, the precedence relations,
and parallelism, can be seen immediately. So in this subsection the DFG’s for the
"K_nominator" and "inner loop", named ki temp(2 − 11) are analysed to find out
how the precedence are, as they are the only DFG with inherent parallelism, and the
degree of parallelism changes over time.
The first figure is 6.21 where there is no parallelism. The next figure 6.22 is the
next iteration, where there is some parallelism, plus there is an added summation.
Jumping ahead to the last ki temp11 in figure 6.23 shows that for each iteration a
new set of multiplication subtraction and multiplication is added, and additions are
added to sum up the result.
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Figure 6.21: Precedence graph for calculating ki temp2
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Figure 6.22: Precedence graph for calculating ki temp3
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Figure 6.23: Precedence graph for calculating ki temp11

So as seen with the precedence graphs for ki temp(2-11) that the summation of
these calculations means that the further the algorithm runs the more time and
hardware, it takes in each iteration. Where the 3 first calculations is the same for
just adding another column for each iteration. So to simplify this a block can be
defined, containing a multiplication, a Addition and a multiplication, this block is
then called MAM, and depicted in figure 6.24.

X

+

X

Figure 6.24: PG for the MAM block
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6.3 Scheduling
In this section time is added to precedences graphs, as C-steps, so a preliminary esti-
mation of how many C-steps it takes to run the algorithm, with unlimited hardware,
and each operation taking 1 C-step. The scheduling method used for this section is
ASAP scheduling, as the primary goal for the scheduling, is to execute the calcula-
tions as fast as possible since the execution is time sensitive. With the scheduling
the clock cycle of the processor can then reduced so the calculation is done within
the time limit.
ASAP scheduling for ki calculate is depicted in figure 6.25, which contains 3 c-steps.

/

E(i-1)

ki

Rtemp(i)

Ki Calculate

Sign invert

C-step 1

C-step 2

+

R(i+1)

C-step 3

Figure 6.25: Scheduling for the calculation of the ki value.

In figure 6.26 the Scheduling for the error update is depicted, which contains 3 c-
steps.
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E(i)

Updating Error

C-step 1
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Figure 6.26: Scheduling for the error update.

Figure 6.27 depicts the ki temp2, which contains 3 c-steps.
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Figure 6.27: Scheduling for the ki temp1.

Figure 6.28 depicts the scheduling for the ki temp3 where the MAM block takes up
3 c-steps.
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MAM

+1

MAMC-step 1-3

C-step 4

Figure 6.28: Scheduling for the ki temp2.

Figure 6.29 depicts the scheduling for the ki temp11 where the MAM block takes up
3 C-steps, and combined it takes up 7 C-steps.

+1

MAM MAM MAM MAM MAM MAM MAM MAM MAM MAM MAM

+2 +3 +4 +5

+1 +7 +8+6

+9

+10

C-step 1-3

C-step 4

C-step 5

C-step 6

C-step 7

Figure 6.29: Scheduling for the ki temp11.

The scheduling for the ki temp3-4 takes up 5 C-steps, ki temp5-8 takes up 6 C-steps,
ki temp9-10 takes up 7 C-steps. But they are not depicted as their scheduling is
trivial solutions which looks like the scheduling for ki temp2 and ki temp1 in figure
6.28 and 6.29 respectively.
Now knowing the C-steps each part of the algorithm, and knowing the precedence
relation a scheduling can be made where every calculation is done as soon as possible.
This scheduling is depicted in figure 6.30
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Figure 6.30: The figure depicts a scheduling of the Levinson-Durbin Algorithm

6.3.1 Hardware

In this subsection the hardware is described, using two’s complement sign number
representation. By analysing the algorithm, and how each block is build up in the
DFG, hardware blocks can be build which can solve different parts. This leads to
three different hardware blocks, one which can do the sign invert, another block
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which can do the division, and a last block which can do the multiplication, division
and substitution.

None restoring division

Division in hardware can be done in different ways, two common ways is restoring
division and none restoring division [Mostafa Abd-El-Barr, 2005, p.73].

Restoring division is where the number is subtracted by the divisor, if the result is
negative, then the number is restored by adding the divisor, if positive the number
is then past on as the remainder. The remainder is then bit left shifted, then the
remainder is subtracted by the divisor. Then if the number is negative the number
is restored by adding the the divisor, and put as the new remainder, if it is positive
it is put as the new remainder, This continues for as many bit there is, this potential
gives 2(S+A)-A calculations, where S is subtraction, and A is additions, for 16 bit
calculations, this gives potential 31 iterations.

None restoring division can be put as an algorithm, repeat following by n bit times:
if the sign is positive left shift number and dividend, subtract the number by divisor,
and set dividend LSB to "1". Else if the sign is negative, shift the number and
dividend, subtract the number by the divisor and set the dividend LSB to "0". If the
sign is 1, add then number to the divisor. This algorithm gives 2(n)+1, where n is
the number of bits, so this algorithm takes 17 iterations to complete.
Using the previous calculations of how many calculations is needed for restoring and
none restoring division, it is decided to use none restoring division. To give another
prof of concept for the calculation using none restoring division using the number
8=(1000) divided by 3=(0011), the calculation is depicted in figure 6.31, as poven
in [Mostafa Abd-El-Barr, 2005, p.74]. as seen in the picture the result is 2=(0010)
and a remainder of 2=(0010), which makes sense as 8 divided by 3 gives 2,666. The
examples used is an integer calculation, and therefore will it give a result with a
quotient and a remainder which can not be divided by the divisor.
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Figure 6.31: None restoring division where 8 is divided by 3

The hardware for none restoring division requires some control through the calcula-
tions, as the sign of the remainder decided if the next iteration is an addition or a
subtraction. The hardware setup is depicted in figure 6.32 where it is seen that the
hardware takes an input for the divisor, and the input number , clock, a clear signal
and the MUX_sel to put in the number to begin with. Then there is the control part
which sends the sign bit back to control if the calculation should be set to addition or
subtraction, there is the control of the dividend and the result. The hardware block
is a RTL drawing made from the hardware setup depicted in [Mostafa Abd-El-Barr,
2005, p.74].



84 Chapter 6. LPC RTL Analysis

Add / Sub

16 bit register

R1

/16

17 bit shift register

R2

/17

/16

MSB

17 bit shift register

R3

Divisor

Clk

shift

Clr

Add/sub

Dividend

Sign

Result

None restoring division

MUX

Input

MUX_sel

Figure 6.32: None restoring division hardware

Sign invert

To invert the sign using two’s complement number representation, the most signif-
icant bit is inverted, and a least significant bit is added going from plus to minus
sign, the same is done going from minus to plus sign. Figure 6.33 depicts the sign
invert hardware, it takes an input, and the input with one LSB set to "1", a clock
signal, and a clear signal to clear the registers, and it gives a result.
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Sign Inverter

Figure 6.33: Sign invert hardware set up

Multiplication, Division and Substitution

The last hardware block can do the remaining calculations. The hardware is build
so that it can do independent multiplications, and independent additions or subtrac-
tions, or it can do multiplication addition and multiplication following each other, as
the MAM block described earlier in 6.3. In the hardware setup there is the inputs
and outputs as follows:
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Input_ADD/SUB1 1st Input for the addition or subtraction
Input_ADD/SUB2 2nd Input for the addition or subtraction
Input_MUL1 1st Input for the multiplication
Input_MUL2 2nd Input for the multiplication
MUX_Sel1 MUX selects if the input number for the multi-

plication is a new input from input_MUL1 or a
number from the addition or division

MUX_Sel2 MUX selects if the input number for the ad-
dition/subtraction is a new input from in-
put_ADD/SUB2 or a number from the multi-
plication

Mul_res Gives the result from the multiplication register
Add_res Gives the result from the Add/sub register
Clr Clears the registers
Clk Clock
Add/sub_sel Selects addition or subtraction
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Figure 6.34: Multiply Subtraction Addition hardware block used to solve the MAM part of the
code.

6.4 Finite State Machine
In this section a FSM is build up containing a master ASM chart which is the
driving state machine, and several slave ASM charts which is in charge of driving
the hardware and doing the separate calculations, and controlling the registers, and
the intermediate register logic, input and output.
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Figure 6.35: ASM chart which runs the other state mashines
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6.4.2 ASM Ki Calculate

The ASM chart driving the Ki Calculate block, is depicted in 6.36.

Input_ADD/SUB1=Rtemp(i)
Input_ADD/SUB2=R(i+1)

MUX_sel2=1

Return=FSM 
division(Add_res,E(i-1)

FSM SIGN 
invert(Return)

s0

s1

s2

Figure 6.36: ASM chart driving the Ki calculate block

6.4.3 ASM Ki temp1

The driving ASM chart for the Ki temp1 block is depicted in figure 6.37 , it is a
simple block which does a simple calculation.

Clr=0
Input_Mul1=K1
Input_Mul2=R(1)
Mux_sel1=1
Mux_sel2=0

s0

Figure 6.37: The ASM chart which runs the Ki temp1 calculation
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6.4.4 ASM Rtemp Calculate

This block which sums the Ki temp1 and Ki temp(j) variables, the ASM chart is
depicted in figure 6.38 which drives a Multiply Addition Subtraction (MSA) block.

Input_ADD/SUB1=temp(0)
Input_ADD/SUB1=temp(i)

Add/sub_sel=0
MUX_Sel2=1

s0

Figure 6.38: The ASM chart which runs the Rtemp calculate block calculation

6.4.5 ASM Ki temp()

The driving part of the ASM chart for sending the right set of variables to the Ki
temp() block is depicted in figure 6.39.
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Figure 6.39: The ASM chart which runs the MAM part of the Levinson-Durbin algorithm

The slave ASM chart for the Ki temp() algorithm, sends the signals to drive the
MSA hardware block, and since there is parallelism in some of them the calls from
the algorithm goes to different MSA blocks, as seen in figure 6.40,6.41,6.42,6.43
and6.44. Only the slaves for run 1-4 and the last number 11 is depicted as the rest
can be derived from the once depicted.



92 Chapter 6. LPC RTL Analysis

MSA=1
Input_MUL1=K

Input_MUL2=a(1)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(1)

Mux_sel1=0

a(1)=add_res
Input_mul2=R(2)
Mux_sel2=0

s0

s1

s2

Figure 6.40: The ASM chart for the Ki temp(2) part of the Levinson-durbin algorithm
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MSA=1
Input_MUL1=K

Input_MUL2=a(1)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(2)

Mux_sel1=0

a(2)=add_res
Input_mul2=R(2)
Mux_sel2=0

Input/add_sub1=Return
Add/sub_sel=1

MSA=2
Input_MUL1=K

Input_MUL2=a(2)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(1)

Mux_sel1=0

a(1)=add_res
Input_mul2=R(3)
Mux_sel2=0

Return=mull_ress

s0

s1

s2

s3

Figure 6.41: The ASM chart for the Ki temp(3) part of the Levinson-durbin algorithm
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MSA=1
Input_MUL1=K

Input_MUL2=a(1)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(3)

Mux_sel1=0

a(3)=add_res
Input_mul2=R(2)
Mux_sel2=0

Input/add_sub1=Return
Add/sub_sel=1

MSA=2
Input_MUL1=K

Input_MUL2=a(2)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(2)

Mux_sel1=0

a(2)=add_res
Input_mul2=R(3)
Mux_sel2=0

Return=mull_ress

MSA=3
Input_MUL1=K

Input_MUL2=a(3)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(1)

Mux_sel1=0

a(1)=add_res
Input_mul2=R(4)
Mux_sel2=0

Return=mull_ressInput/add_sub1=Return
Add/sub_sel=1

s0

s1

s2

s3

s4

Figure 6.42: The ASM chart for the Ki temp(4) part of the Levinson-durbin algorithm
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MSA=1
Input_MUL1=K

Input_MUL2=a(1)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(4)

Mux_sel1=0

a(4)=add_res
Input_mul2=R(2)
Mux_sel2=0

Input/add_sub1=Return
Add/sub_sel=1

MSA=2
Input_MUL1=K

Input_MUL2=a(2)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(3)

Mux_sel1=0

a(3)=add_res
Input_mul2=R(3)
Mux_sel2=0

Return=mull_ress

MSA=3
Input_MUL1=K

Input_MUL2=a(3)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(2)

Mux_sel1=0

a(2)=add_res
Input_mul2=R(4)
Mux_sel2=0

Input/add_sub1=Return
Add/sub_sel=1

MSA=4
Input_MUL1=K

Input_MUL2=a(4)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(1)

Mux_sel1=0

a(1)=add_res
Input_mul2=R(5)
Mux_sel2=0

Return=mull_ressInput/add_sub1=Return
Add/sub_sel=1

s0

s2

s1

s3

s4

Figure 6.43: The ASM chart for the Ki temp(5) part of the Levinson-durbin algorithm



96 Chapter 6. LPC RTL Analysis

MSA=1
Input_MUL1=K

Input_MUL2=a(1)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(11)

Mux_sel1=0

a(11)=add_res
Input_mul2=R(2)
Mux_sel2=0

Input/add_sub1=Return
Add/sub_sel=1

MSA=2
Input_MUL1=K

Input_MUL2=a(2)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
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Mux_sel1=0
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Input_mul2=R(3)
Mux_sel2=0
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Input_mul2=R(4)
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Input_MUL2=a(4)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
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Mux_sel1=0

a(8)=add_res
Input_mul2=R(5)
Mux_sel2=0

Return=mull_ressInput/add_sub1=Return
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Input_MUL1=K

Input_MUL2=a(5)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
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Mux_sel1=0

a(7)=add_res
Input_mul2=R(6)
Mux_sel2=0

MSA=6
Input_MUL1=K

Input_MUL2=a(6)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
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Mux_sel1=0
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Input_mul2=R(7)
Mux_sel2=0

Return=mull_ress

MSA=7
Input_MUL1=K

Input_MUL2=a(7)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(5)

Mux_sel1=0

a(5)=add_res
Input_mul2=R(8)
Mux_sel2=0

MSA=8
Input_MUL1=K

Input_MUL2=a(8)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(4)

Mux_sel1=0

a(4)=add_res
Input_mul2=R(9)
Mux_sel2=0

Return=mull_ress

MSA=9
Input_MUL1=K

Input_MUL2=a(9)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(3)

Mux_sel1=0

a(3)=add_res
Input_mul2=R(10)

Mux_sel2=0

MSA=10
Input_MUL1=K

Input_MUL2=a(10)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(2)

Mux_sel1=0

a(2)=add_res
Input_mul2=R(11)

Mux_sel2=0

Return=mull_ress

MSA=11
Input_MUL1=K

Input_MUL2=a(11)
Mux_sel1=1
Mux_sel2=0

Add/sub_sel=0
Input_add/sub1=a(1)

Mux_sel1=0

a(1)=add_res
Input_mul2=R(12)

Mux_sel2=0

Return=mull_ressInput/add_sub1=Return
Add/sub_sel=1

Input/add_sub1=Return
Add/sub_sel=1

Input/add_sub1=Return
Add/sub_sel=1

Input/add_sub1=Return
Add/sub_sel=1

Input/add_sub1=Return
Add/sub_sel=1

Input/add_sub1=Return
Add/sub_sel=1

Input/add_sub1=Return
Add/sub_sel=1
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s1

s6

s2

s3

s4
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Figure 6.44: The ASM chart for the Ki temp(11) part of the Levinson-durbin algorithm

6.4.6 ASM sign invert

To drive the sign inverter a ASM is presented in figure 6.45 where the input is inverted
and added one LSB "0001".

Clr=0
Input=interlogicR
LSB_input=(0001)

s0

Figure 6.45: the ASM chart for inverting the sign

6.4.7 ASM division

As earlier ASM chart, as depicted in figure 6.46 runs 16 iterations of the loop, then to
restore the remainder if the sign of the remainder is negative, by adding the divisor.
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So the result is the result output, plus the output og the "sign" where the remainder
is restored, as depicted in figure 6.46

Clr=0
MUX_sel=1

Divisor=interError
Rtemp(i)

n=1

Is n<16

Is Sign positive?

Shift=1
Add/sub=0

Dividend=”0”LSB
MUX_sel=0

n=n+1

Shift=1
Add/sub=1

Dividend=”1”LSB
MUX_sel=0

n=n+1

yes

no
yes

Is Sign positive?

Add/sub=0
MUX_sel=0

yes

no
no

s0

s1

s2

s3

Figure 6.46: The ASM chart driving the division

6.4.8 ASM error

When the data is ready the inputs is set and first the multiplication is done, then
1 is subtracted by the result of the multiplication. The result is then multiplied by
the old Error, when done the calculation done flag is set, and the result is sent to
the intermediated logic registers, as depicted in figure 6.47.
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Clr=0
MUX_Sel1=1

Input_MUL1=interlogicR
Input_MUL2=interlogicR2

MUX_Sel2=0

Add/sub_sel=1
Input_ADD/SUB1=(0001)

Input_MUL2=interErrorlogic
MUX_sel1=0
MUX_Sel2=0

s0

s1

s2

Figure 6.47: ASM describing the signals to drive the Error update

6.4.9 Final Schedule

With the earlier schedule made considering control-steps, where each operation takes
1 C-step, we can now make a final schedule. The difference is that the division takes
17 clocks each C-steps, unlike the other operations.
This changes the scheduling radically since the division takes up 17 clocks each time,
and the rest of the functions have to wait for the division to be done. The new
schedule is depicted in 6.48, the change is that before it was the ki temp(2-11) that
took the longest now it is the division which takes the longest, changing it from 93
C-steps into 189 clocks.
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Clk 64

Clk 65

Clk 66

Clk 67

Clk 68

Clk 78

Clk 79

Clk 80

Clk 81

Clk 82

Clk 83

Clk 84

Ki

 Calculate
Error update Ki  temp1 Ki  temp(2-11) Rtemp Calculate

Scheduling

Figure 6.48: Final schedule where the clock cycles are depicted

6.4.10 Registers

As seen in figure 6.49 the number of registers needed are incrementing as the vector
a grows for each iteration. This means that in the beginning most of the registers
are unused.
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IterationClock

1 Init

1

2

3

4

5

6

7

8

9

10

11

2-20

21-40

41-60

61-78

79-96

97-114

115-132

133-150

151-168

169-186

187-189

Register

R(1-12) temp Rtemp

a(1)a(2)

a(3)

a(4)

a(5)

a(6)

a(1)a(7)

a(8)

a(9)

a(10)

a(11)

a(1)

a(12)

Figure 6.49: Register Lifetime analysis

6.4.11 State vector

The controlling part of the Finite State Machine is the state vector, which iterates
in the states to send the signals to control the Data Path. The states for driving
the control path is depicted in figure 6.50, where the description for each step in the
State vector is described in the following tabular:
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s0

s1

s2

s3

s4

s5

s6

Figure 6.50: State vector for the Levinson-Durbin algorithm

State Call
s0 Idle iteration, waiting for ready signal
s1 ki calculate
s2 update error, ki temp1
s3 ki calculate
s4 update error, ki temp1, ki temp(j)
s5 Rtemp calulate
s6 ki calculate

The different iterations consists of a set of calls, which is dependent on each other
where each of the calls for each iteration is presented in the following table:
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iteration calls
1 ki Calculate, ki temp1, Error update
2 ki Calculate, ki temp1, ki temp2, Error

update, Rtemp Calculate
3 ki Calculate, ki temp1, ki temp3, Error

update, Rtemp Calculate
4 ki Calculate, ki temp1, ki temp4, Error

update, Rtemp Calculate
5 ki Calculate, ki temp1, ki temp5, Error

update, Rtemp Calculate
6 ki Calculate, ki temp1, ki temp6, Error

update, Rtemp Calculate
7 ki Calculate, ki temp1, ki temp7, Error

update, Rtemp Calculate
8 ki Calculate, ki temp1, ki temp8, Error

update, Rtemp Calculate
9 ki Calculate, ki temp1, ki temp9, Error

update, Rtemp Calculate
10 ki Calculate, ki temp1, ki temp10, Error

update, Rtemp Calculate
11 ki Calculate, ki temp1, ki temp11, Error

update, Rtemp Calculate

6.5 Conclusion
With these ASM and the hardware defined a full FSMD as depicted in figure 6.51
can be build, where each of the ASM charts makes up the Control path and a set of
signal is send to the Data Path to do the calculations.
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Control  Path Data Path
Status

Control

Control_in

fclk

Control_out
Data_out

Data_in

Figure 6.51: Finite State Machine with Data path

With this a RTL architecture is derived, for the Levinson-Durbin algorithm. All this
gives a complete FSMD which can then be implemented in a FPGA.
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Chapter 7

ADMM RTL Analysis

In this chapter a RTL analysis of the ADMM is found. First the flow of the algorithm
is analysed by making a set of CDFG. With these CDFG precedence of each oper-
ation is know, which then can be worked into precedence graphs, which can give an
insight into how much parallelism there is in the algorithm. Knowing the operations
needed for the algorithm and the precedence, a FSMD can be designed.
A Finite State Machine with Datapath consists of two different parts, the Data path,
and the the control path.
Where the DataPath includes the hardware arithmetic used to do the calculations,
and the control path is where the flow of the algorithm is controlled.

7.1 Control Data Flow Graphs
As described earlier in section 3 a set of CDFG can be drawn to describe the flow of
the ADMM algorithm, in this section these CDFG are further described to go into
detail of how the algorithm flows.
First a CDFG for the Algorithm, where as earlier there are four main parts/lines in
the algorithm which the flow graphs describe later in detail. Figure 7.1 describes one
iteration of the algorithm, where the initial variables for the algorithm is found.

105
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Begin

Data ready?

Update A

Update E

Update Y

Update U

End

Figure 7.1: Initial CDFG of the ADMM algorithm

Figure 7.1 describes four blocks which is UpdateA, UpdateE, UpdateY and
UpdateU , these are the 4 building blocks of the algorithm

7.1.1 Update A

The UpdateA block is the most complicated block as described earlier in section 3
because of the least-squares problem, which is decided to be solved by using the
Levinson algorithm, described in section 3, the block also consists of a vector sub-
traction, with a 12 variable long vector. The CDFG for the algorithm is depicted in
figure 7.2, where the levinson block is further described later in 7.1.5
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Begin

Levinson
Return ”a”

A(k+1)=VectorSub(a2-a)

End

Figure 7.2: DFG describing the Update A block

7.1.2 Update E

The UpdateE depicted in figure 7.36 is where the error vector is updated, this is
done by multiplying the a coefficients found in updateA, with the X matrix defined
in equation2.21, the result is subtracted from x, which is the objective function for
the equation. This gives the residual also called error for the signal.

Begin

Temp=MatrixVectorMul(X,a)

e=VectorSub(x,Temp)

End

Figure 7.3: DFG describing the Update E block
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7.1.3 Update Y

The UpdateY is where the threshold function is used on the sum of the errore and the
u vectors. The threshold function is described earlier in section 3.7.1. The threshold
function is the function which makes the error signal more and more sparse each
iteration, as it sets the value below the threshold to 0 and the values above +/- the
threshold to the value minus the threshold value. The UpdateY CDFG is depicted
in figure 7.4

Begin

Temp=VectorAdd(e+u)

Soft 
threshold(Temp)

End

Figure 7.4: DFG describing the Update Y block

7.1.4 Update U

The UpdateU CDFG is depicted in figure 7.5, this is the simple block where two
vectors(u and e) are added and subtracted by the y.
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Begin

Temp=VectorAdd(u+e)

u=VectorSub(Temp-y)

End

Figure 7.5: DFG describing the Update U block

7.1.5 CDFG Levinson

As described earlier in section 3 where the Levinson Algorithm is described in Algo-
rithm 3.2 it consists of an outer loop and an inner loop, which is also visible in figure
7.6. The thing about the inner loop is that it is identical with the Levinson−Durbin
algorithm, this is also described in [Gene H. Golub, p.211]. The thing about the outer
and inner loop ,is that the first iteration of the inner loop is independent of the outer
loop in the first iteration. The second loop of the inner loop is dependent of the first
iteration of the outer loop. This means that the algorithm can be run in parallel, so
that the outer and inner loops runs at the same time. This is also described in third
edition of the Gene H. Golub book.



110 Chapter 7. ADMM RTL Analysis

Begin

y(1)=-r(1)
E=1

α=-r(1)
p=12

Is i  > p-1?

End

μ=-(b(i+1)-r(1+i))Tx(i:-1:1)/E(i)v(1:i)=x(1:i)+μy(i:-1:1)x(1:i+1)=[v(1:i);μ]

For i=1:p

E=(1-α2)E
μ=-(b(i+1)-r(1+i))Tx(i:-1:1)/E(i)

α=-(r(i+1)+r(1+i))Ty(i:-1:1)/E(i)

x(1:i+1)=[v(1:i);μ]
y(1:i+1)=[z(1:i);α]

v(1:i)=x(1:i)+μy(i:-1:1)
z(1:i)=y(1:i)+αy(i:-1:1)

no

yes

stop

run

Figure 7.6: CDFG for the Levinson Algorithm

Analysing the outer and the inner loop of the Levinson shows that the difference is
sign of α is inverted, where the sign of µ is the same, and in the calculation of the
respective lines, there is a subtraction in the µ line, and a addition in the α line.
This means that the outer loop is a little faster because there is no sign inversion.
Given these conclusion, it means that the same hardware and flow as used for the
Levinson-Durbin algorithm can be used for the Levinson.

7.2 Precedence graphs

The CDFG previously described in chapter are all doing vector/ matrix calculations,
and when there is one input there is one output for each block, and partial calculations
are dependent on each other. So if block diagrams were to be made of these CDFG
it would result in homogeneous block diagrams, so the same information can be
extrapolated using precedence graphs.

7.2.1 Update A

As described earlier in 2.2.2 the X+(y − u) can be solved by solving the Levinson
algorithm where objective function is Rx = b where R is XTX as described earlier,
and in this case b is XT (y − u) so to solve this for each iteration, first a vector
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subtraction is needed for y − u as these are both vectors which are 332 long, a
simplified precedence graph is used to describe the parallelism, as shown in figure
7.7. As seen from the precedence graph it is possible to do all the calculations in 1
step, with all operations run in parallel.

- - -

+ + +

Figure 7.7: Precedence graph for the vector subtraction

This vector is then multiplied by the matrix XT , this means that the 332 variable
long vector is multiplied 332x12 matrix the precedence graph for this is depicted in
figure 7.8 in a simplified version, the real version is 332 multiplications, and then in
second "step" 166 addition, then 83 additions, then 41 additions then 21, then 10
then 5 then 3 then 1 and 1. This means that in the real precedence graph, there is
1 "C-step" with multiplications and 9 "C-steps" with additions.

+ +

x x x

+

x x

+

+

x x

+

x x

+

x

+

+

Figure 7.8: Precedence graph for the vector multiplied by the matrix X

Levinson

With the needed variables for the algorithm, the Levinson algorithm can now be run,
where the r variables precedence graph was shown earlier.
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The following precedence graphs are half of the Levinson algorithm, as the Durbin
part was depicted earlier in section 6, and as earlier stated they are almost the same,
and can run in parallel.
First the µtemp calculate where for first iteration gives the first Rtemp, as shown in
figure 7.9, this is then sent to µicalculate where the first µi value is found in 7.10.

X

R(1)

temp(0)

μ2 temp

x(i)

Figure 7.9: Multiplying the R(1) coefficient with the last x(i)coefficient

/

E(i-1)

μiRtemp

μi Calculate

-

b(i+1)

Figure 7.10: the temp value minus the b(i+ 1) value, then divided by the error, giving µ

With the first µi which is µ1, it is send to µi temp1 which gives temp(1), as shown
in figure 7.11. This result is then send to Rtemp calculate together with the result
fromµitemp.
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X + X
x(1)

y(1) x(1)

μ2

R(2)

temp(1)

μi temp1

Figure 7.11: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value.

From here on the mu1temp muitemp(i) is called for each iteration, then summed up
by the RtempCalculate which is then subtracted by the bvalue, and divided by the
error E this keeps on going from figure 7.11 to fig:mytemp11

+

temp(i)

temp(0)
Rtemp

Rtemp Calculate

Figure 7.12: adding the first temp value with the last calculated
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X + X

x(1)

μ3

R(3)

X + X

R(2)

+

μi temp2

temp(2)

y(1)

y(2)

x(2)

x(1)

x(2)

Figure 7.13: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value

X + X

y(3)

μ4

R(4)

X + X

y(2) R(3)

+

X + X

R(2)y(1)

+

μi temp3

temp(3)

y(3) x(1)

x(3)

x(2)

x(1)

x(2)

x(3)

Figure 7.14: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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X + X

x(1)

μ5

R(5)

X + X

R(4)

+

X + X

R(3)

X + X

y(1) R(2)

+

+

μi temp4

temp(4)

x(1)

x(2)

x(2)

x(3)

x(3)

x(4)

x(4)

y(2)

y(3)

y(4)

Figure 7.15: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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X + X

R(6)

X + X

R(5)

X + X

R(4)

+

+

X + X

R(3)

+

X + X

R(2)

+

μ6

μi temp5

temp(5)

y(5)

y(1)

y(2)

y(3)

y(4)

x(1)

x(1)

x(2)

x(2)

x(3)

x(3)

x(4)

x(4)

x(5)

x(5)

Figure 7.16: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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Figure 7.17: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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Figure 7.18: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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Figure 7.19: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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Figure 7.20: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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Figure 7.21: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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Figure 7.22: Multiplying the µi with the vector y, adding each variable with the x vector, which
gives the new x vector, this is multiplied by the R vector, and summed up to temp value
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When the Levinson algorithm is done, the a2 vector is subtracted by the vector given
by the algorithm, the precedence graph is the same as shown figure 7.7

Update error

The Error calculation is done with a vector matrix multiplication with a 332x12
matrix and a 12 variable long vector, this gives a 332 variable long vector, this can
be done with 12 iterations of a 332 long vector multiplication as shown in figure 7.23,
where each iteration is multiplied and accumulated up with the previous calculated
vector.

x x x

+ + +

Figure 7.23: Vector matrix multiplication where the result is accumulated from the previous vector
multiplication

The result is then subtracted from the vector x as in figure 7.7, which gives the error
e

Update y

The Update Y is then calculated by adding the error e with the vector u as shown
in figure 7.24 and the threshold function is then put on this value.
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+ + +

Figure 7.24: Vector addition

The threshold function is not of a specific length, as each value in the vector is
checked, if it is larger or smaller then the threshold, and if it is larger then the
absolute value, a subtraction is needed. If the value is smaller, the value is set to
0 however since there is 332 values, one of them is most likely larger, so with the
setup, a subtraction and an addition is always needed, giving the precedence graph
as shown in figure 7.25

- - -

+ + +

Figure 7.25: Precedense graph for the Threshold function

Update u

The Update U is a rather simple step, where the vector u is added to the error e
and subtracted by the vector y where the vector multiplication precedence graphs
was shown earlier in figure 7.24. The vector subtraction gives the came precedence
as the vector multiplication where it just subtract instead.

7.3 Hardware
The hardware used for these calculations can be made in different ways, where i have
decided to use the same hardware if possible from the Levinson-Durbin algorithm.
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The most important hardware part is the MSA as this block can do most normal
calculations, and is build so it can calculate the multiply substitution multiply, as
used in the Levinson-Durbin, and the Multiply addition, multiply, as used for the
Levinson algorithm.
This block can also do the operations separate if needed, as shown in figure 7.26.
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/16
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/16

/16
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R11
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Add/sub_sel
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Add_res

Multiplier Subtraction 
Addition

MUX
MUX_Sel2

Input_ADD/SUB1

Input_MUL2

Figure 7.26: The hardware block made for the Multiplier Subtraction Addition.

The second needed part is the None restoring division, depicted in figure 7.27, which
is used once for each iteration of the Levinson-Durbin, and twice for each iteration
of the Levinson algorithm.
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Figure 7.27: None restoring division hardware

The third needed block from earlier is the sign inverter, however since the sign
inverter, can be used for the threshold function, as depicted in figure 7.28. The
idea with the threshold function is that the sign of the variable is removed and the
threshold value is subtracted, of the sign then changes again, the value was to low,
and the value is set to 0, of the sign remains the same, then the first sign decides if
it is positive or negative, and the sign is then changed accordingly.
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Figure 7.28: Hardware block for calculating the soft threshold function

As the threshold block and MSA are designed, with the purpose of making several
of them so that it can run in parallel, such a way that there is 332 blocks of them at
the same time.

7.4 Scheduling
The Scheduling for this ADMM algorithm is complex as it is so large that is has to
be divided up into blocks.
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7.4.1 Update A

The first part is the Levinson-Durbin algorithm as scheduled earlier and depicted in
figure 6.30 where a run of the algorithm takes up 93 C-step, this algorithm is used
to calculate the initial a coefficients, since it is initial calculations, means that the
calculation can be done outside the loop. Then as shown earlier with 332 parallel
MSA blocks, it is possible to calculate the y − u in 1 C-step. The next part is
the Levinson algorithm as depicted in 7.29 where the Levinson and Levinson-durbin
scheduling is combined, and as seen they take up the same time plus 8 because of the
extra calculation for the outer loop in the Levinson algorithm, giving 101 C-steps.
This gives the conclusion that it takes 101 C-steps to each iteration to calculate the
new a coefficient.

7.4.2 Update E

The next block is where the error is calculated, where as mentioned earlier in the
precedence graphs section7.2 the updating step consists of a vector matrix calculating
which can be done in 12 C-steps, and a vector subtracted by the result of the vector
matrix calculation, which can be done in 1 C-step.

This leads to the conclusion that the Update E takes 13 C-steps.

7.4.3 Update y

The update y block is the threshold function, and as shown in my hardware design
of the threshold, it can be done rather simple. So the e + u takes 1 C-step, and
the threshold takes 2 C-Steps, however the initial threshold value also needs to be
calculated, which can be done before the ADMM algorithm. So this gives a 3 C-steps
and 1 initial C-Step.

7.4.4 Update U

The block for updating the u vector takes one vector addition and a vector subtrac-
tion. So combined it takes 2 C-steps each iteration.

7.4.5 Conclusion

With the four different blocks of the algorithm, the number of C-steps can be calcu-
lated. This gives the following table:

Block Initilization 1 iteration 40 iterations
Update A 93 101 4133
Update E 0 13 520
Update Y 1 3 121
Update U 0 2 80
Combined 94 119 4854
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This also table gives the same indications as the simulation see section 4.3.3, where
the UpdateA also took significant longer then the other parts.
Knowing the dependencies of each of the parts of the algorithm can lead to an chart
showing timing of the update A block runs from start to end, this is depicted in
figure7.29. Where it is seen that many of the different blocks does not run contin-
uously, and the dependencies of input for another block keeps the functional units
from being used coherently.
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Figure 7.29: Scheduling of the Levinson Algorithm

However good results this is, it is calculations done by summing up the C-steps. In
this algorithm the only part takes more clocks then C-steps is the division. As the
addition, multiplication and subtraction can be calculated in 1 clock cycle.
The division takes up number of bits-1 operations to calculate the result, this means
that the scheduling can be updated to go by operations instead of C-steps. From the
earlier schedule of the Levinson-Durbin in figure 6.48 we know it takes 189 clocks,
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when running the Levinson algorithm, it takes 12 more clocks, because of the extra
calculation giving 201 clocks for the Levinson algorithm.

Block Initilization 1 iteration 40 iterations
Update A 189 201 8229
Update E 0 13 520
Update Y 1 3 121
Update U 0 2 40
Combined 190 219 8950

As earlier the table shows the same bottleneck with the Update A, since the only
part which included a division was the Update A.

7.5 Finite State Machine
While making the Finite state machine for the ADMM algorithm, it is possible to
reuse many of the ASM charts from the Levinson-Durbin algorithm, as the inner
loop of the Levinson Algorithm, is the Levinson-Durbin algorithm.
Therefore a ASM chart is made from the old ASM of the Levinson-Durbin algorithm.
First a ASM chart is made, for the full ADMM, as depicted in 7.30. It starts with
calling the old Levinson-Durbin algorithm to find the initial a2 coefficients. After
finding the coefficients, a set of loops are initialized, where the first loop decides
how many times the ADMM algorithm runs. The second loop decides how many
coefficients the algorithm finds. inside the loops contains two calls one calling the
first iteration of the ADMM algorithm, and the other is parallel and calls the Levinson
algorithm. As explained earlier both these algorithms can run in parallel.
After the two algorithms finds the first set of a coefficients the algorithm breaks out
and update the error e, the vector y and u, then to reset set the counter inside the
inner loop to update the coefficients again.
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Figure 7.30: ASM chart controlling other ASM charts

The depicted ASM in figure 7.32 depicts the Master ASM chart for the Levinson
algorithm, which handles the input to the Levinson algorithm, while the figure 6.35
depicts the Master ASM for running the Levinson-Durbin algorithm. Both these
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algorithms calls other ASM charts which then sends the right input to the architect
units. Where two of them for the Levinson algorithm are depicted in figure 7.34
and 7.35, and for the Levinson-Durbin the same figures are depicted earlier in the
rapport in figure 6.40 and 6.44.
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Figure 7.31: Levinson ASM chart for controlling how the Levinson algorithm runs in the outer
loop
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Figure 7.32: Levinson-Durbin ASM chart for controlling how the algorithm runs in the inner loop
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Figure 7.33: The ASM chart for controlling the input to the multiply add multiply operation in
the Levinson algorithm
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Figure 7.35: The ASM chart for controlling the input to the 11th iteration multiply add multiply
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7.5.1 ASM update E

As earlier described the, then the update E calculates the error, by finding the
residual of the objective function, and putting numbers into it. This is done by
multiplying the X matrix with the vector a. The result is then subtracted from the
vector x.
To get an overview of what happens, the CDFG from earlier is depicted in figure
7.36, where the afore mentioned operations are separated into two blocks. The first
finds the temp value, which is the matrix vector multiplication. as depicted in figure
7.37, This ASM chart is a simplification of how it can be done, where a counter keeps
multiplying each column of the matrix with the vector, and summed up, as described
in section 7.2.1.

Begin

Temp=MatrixVectorMul(X,a)

e=VectorSub(x,Temp)

End

Figure 7.36: DFG describing the Update E block
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Figure 7.37: The ASM chart calculating the temporary result from multiplying the X matrix with
the a vector

With the new vector in a temporary vector temp(), it is then multiplied with
the vector x(), as depicted in figure 7.38, which then returns the new updated error
vector e

MSA=1
Clr=0

Input_ADD/sub1=x(1)
Input_ADD/sub2=temp(1)

Mux_sel2=1
Add/sub_sel=1

MSA=2
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Input_ADD/sub2=temp(2)
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Input_ADD/sub1=x(3)
Input_ADD/sub2=temp(3)

Mux_sel2=1
Add/sub_sel=1

MSA=332
Clr=0

Input_ADD/sub1=x(332)
Input_ADD/sub2=temp(332)

Mux_sel2=1
Add/sub_sel=1

s0

Figure 7.38: The ASM chart giving the result of calculating the error vector e
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7.5.2 ASM update y

The ASM chart for update y, starts with adding the e and u vectors, depicted 7.39,
where the result of this is put through a threshold function as earlier described,
depicted in figure 7.40, this ASM chart controls the other ASM chart such that
it can make multiply calls to parallel threshold functions. The ASM chart which
calculates each element of the vector is depicted in figure 7.41.

MSA=1
Clr=0

Input_ADD/sub1=e(1)
Input_ADD/sub2=u(1)

Mux_sel2=1
Add/sub_sel=0

MSA=2
Clr=0

Input_ADD/sub1=e(2)
Input_ADD/sub2=u(2)

Mux_sel2=1
Add/sub_sel=0

MSA=3
Clr=0

Input_ADD/sub1=e(3)
Input_ADD/sub2=u(3)

Mux_sel2=1
Add/sub_sel=0

MSA=332
Clr=0

Input_ADD/sub1=e(332)
Input_ADD/sub2=u(332)

Mux_sel2=1
Add/sub_sel=0

s0

Figure 7.39: The ASM chart adding the e and the u vectors returning the temp() vector

Thresholdblock=1
Tempval=temp(1)

Thresholdblock=2
Tempval=temp(2)

Thresholdblock=3
Tempval=temp(3)

Thresholdblock=332
Tempval=temp(332)

s0

Figure 7.40: The ASM chart controlling the threshold hardware input
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Clr=0
Input=tempval
MUX_sel1=1
MUX_sel2=0
Add/sub=1

Input2=Threshold

If negsign = 1 Result=0

If sign = 0

MUX_sel1=0
MUXsel=1
Add/sub=0

Input2=0001 LSB

no

yes

yes

no

Result=Res

s0

s1

s2

s3

Figure 7.41: The ASM chart Sending the numbers to a specific hardware unit.

7.5.3 ASM update u

The update U ASM chart consists of two parts a vector addition and a subtraction,
however as the same multiplication, with u and e have been done before as an input
to the threshold function, the same variable can be reused, and since the temp()
vector still contains the result from last. The second part is where the vector y is
subtracted from the temp() vector, as depicted in figure 7.42.
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s0

Figure 7.42: The ASM chart subtracting y from the temp() vector

7.5.4 Registers

As seen in figure 7.43 from earlier, number of registers needed are incrementing as
the vector a grows for each iteration for the Levinson-Durbin algorithm. For the
Levinson algorithm we have almost the same registers as with the Levinson, the
difference is that the algorithm runs beside each other, where the outer loop uses the
inner loop’s result to calculate a new coefficient, as depicted in figure
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Figure 7.43: Register Lifetime analysis of the Levinson-Durbin



142 Chapter 7. ADMM RTL Analysis
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Figure 7.44: Register Lifetime analysis of the Levinson algorithm

For the ADMM algorithm the number of registers remains constant as the x(k),
a(k), y(k), u(k) and e(k) has the same length and is updated in each iteration into
the same vector, so 5 registers of the length k is needed plus the registers for the
Levinson algorithm.

7.5.5 State vector

The controlling part of the Finite State Machine is the state vector, which iterates
in the states to send the signals to control the Data Path. The states for driving the
control path is depicted in figure 7.45. Where there are 5 states, which is described
in table:

State Description
s0 Idle iteration, waiting for

ready signal, and counter for
iterations.

s1 Update A
s2 Update E
s3 Update Y
s4 Update U
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s0

s1

s2

s3

s4

Figure 7.45: State vector for the Levinson-Durbin algorithm

These States are described earlier in section 7.5 where a set of different ASM charts
is depicted for each of the states.
The following state vector depicts the flow of the Levinson algorithm, as it is a bit
different from the Levinson-Durbin state vector described in section 6.4.11.

s0

s1

s2

s3

s4

s5

s6

s7

Figure 7.46: State vector for the Levinson algorithm
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State Call
s0 Idle iteration, waiting for ready signal
s1 ki calculate, µi calculate
s2 update error, ki temp1, update error µ, µi temp1
s3 ki calculate, µi calculate
s4 update error, ki temp1, ki temp(j), update error µ , µi temp1, µi temp(j)
s5 Rtemp calulate, Rtemp calulate µ
s6 ki calculate ,update error µ , µi temp1, µi temp(j)
s7 µi calculate

The different iterations consists of a set of calls, which is dependent on each other
where each of the calls for each iteration is presented in the following table:
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iteration calls
1 ki Calculate, ki temp1, Error update, µi Calculate, µi temp1
2 ki Calculate, ki temp1, ki temp2, Error update, Rtemp

Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp2

3 ki Calculate, ki temp1, ki temp3, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp3

4 ki Calculate, ki temp1, ki temp4, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp4

5 ki Calculate, ki temp1, ki temp5, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp5

6 ki Calculate, ki temp1, ki temp6, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp6

7 ki Calculate, ki temp1, ki temp7, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp7

8 ki Calculate, ki temp1, ki temp8, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp8

9 ki Calculate, ki temp1, ki temp9, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp9

10 ki Calculate, ki temp1, ki temp10, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp10

11 ki Calculate, ki temp1, ki temp11, Error update, Rtemp
Calculate,µi Calculate, µi temp1 ,Rtemp Calculate µ, µi
temp11

12 µi Calculate,Rtemp Calculate µ,

7.6 Conclusion
In this chapter a possible FSMD is found with a set of ASM and a data path com-
prised of a set of hardware. The FSMD gives a Scheduling for the algorithm, which
takes 6759 clocks, which has to be calculated every 20 ms, which can be done with-
out problem at 50 mHz clock, given 50.000.000 ∗ 0.02 = 1.000.000clocks for every 20
ms. As described 5 it is therefore possible to lower the clock in such a way that the
calculation is done just in time for the new input. Thereby saving power.



146 Chapter 7. ADMM RTL Analysis



Chapter 8

Implementation

In this chapter implementation of a FSMD as the two derived earlier in 6 and 7 is
described.
As describing the full implementation is out of scope, and there is an infinite number
of different ways to implement a FSMD in VHDL, therefore only a few aspects of
the implementation is described.
First the top level of the design, depicted in figure 8.1, where an input is generated
in the block Input, this block then sends the coefficients to a state machine inside
the Durbin_cal block, finally when this state machine is done, the output is send to
the store_ram, which then returns the results into the ram, and a signal is send to
the input block that it is ready for a new input.

Figure 8.1: Top Level blockdiagram in vhdl.

Inside the Durbin_cal block is a state machine which iterates for 12 iterations as
described in 6.4.11, a little part of a simplified code is depicted in listings 8.1 where
the steps are shown with the math instead of the calls to calculate each part.
In VHDL there is many predefined blocks to do different calculations, therefore it
is unnecessary to implement a specific multiplier, adder, sign inverter or divider as
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Listing 8.1: Sparse LPC matlab implementation

case current_s i s
when s0 =>
i f ( ready= ’1 ’) then

next_s <= s1 ;
e l s e
next_s <= s0 ;
end i f

when s1 =>
temp:=a1∗ r i n 1 r ;
a2 := −((temp+r i n 2 r ) /E) ;
E:=(1−a2∗a2 ) ∗E;
next_s <= s0 ;

when s2 =>
a1 :=( a2∗a1+a1 ) ;
temp:=a2∗ r i n 1 r ;
temp2:=a1∗ r i n 2 r ;
a3 := −((temp+temp2+r i n 3 r ) /E) ;
E:=(1−a3∗a3 ) ∗E;
next_s <= s0 ;

when s3 =>
a1 :=( a3∗a2+a1 ) ;
a2 :=( a3∗a1+a2 ) ;
temp2:=a1∗ r i n 3 r+a2∗ r i n 2 r ;
temp:=a3∗ r i n 1 r ;
a4 := −((temp+temp2+r i n 4 r ) /E) ;
E:=(1−a4∗a4 ) ∗E;
next_s <= s0 ;
end case ;
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described in the hardware section of the RTL analysis. Instead blocks can be dragged
into a block diagram making up the different calculations. However the defined MSA
hardware block depicted in figure 6.34, is specific to solve a part of both the Levinson-
Durbin and Levinson Algorithms, therefore a specific block is designed for this, as
depicted in figure 8.2 As seen the inputs are the same as in the figure 6.34. This
block diagram turned into a symbol block, depicted in figure 8.3, which can then be
used for other block diagrams where the MSA block is needed

Figure 8.2: Block diagram showing the MSA block.

Figure 8.3: The MSA block when it is turned into a block

8.0.1 Conclusion

In this chapter a introduction into how the FSMD can be implemented in VHDL,
where most of the designed hardware parts used for these algorithms are already
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implemented in VHDL.



Chapter 9

Conclusion

The purpose of this project was stated by the problem statement:
Is it possible to use Sparse Linear Predictive Coding to find the filter coefficients
and error, can this be implemented on a FPGA and how is the complexity of the
implementation compared to a normal Linear Predictive Coding implementation.

This can be translated into being, analyse the LPC and SLPC implementations,
using the Levinson-Durbin and ADMM algorithms respectively. Which can be turned
into the following three Levels:

• Application

• Algorithm

• Architecture

9.1 Application
From the introduction the Application is given as finding a set of Linear Predic-
tive Coefficients and a residual which can represent a given input signal. There
exists various ways to find these coefficients, in this project it was decided to use
the Levinson-Durbin algorithm. When making a sparse application there is some
possibilities, the object of making the application sparse can be put on, either the
Coefficients, the residual or both. In the report the formula for finding a sparse resid-
ual and coefficients were stated. However it were decided to only make the Residual
sparse, as it simplifies the implementation.
The difference is the implementations of making both coefficients and residual sparse,
and sparse residual is the vectors and matrices in and out puts. This means that the
same set of operations are used for the proposed implementation ADMM algorithm
and where the object is to make the whole signal sparse.
With the given two algorithms a Matlab simulation setup were made, to give an
insight into the works of the algorithms.
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9.2 Algorithm
The as the algorithms was decided as being the Levinson-Durbin and ADMM, these
two are analysed. Where the Levinson-Durbin is strait forward with a set of op-
erations for a given number of iterations, which in turn was turned into a set of
precedence graphs. The ADMM algorithm were more complicated as it takes the
input from a normal Linear Prediction. Inside the Algorithm the difference right
hand side least squares problem is solved, Which were decided to be solved using the
Levinson Algorithm, in the other steps of the ADMM algorithm a set of vector op-
erations are used, and a soft threshold function. Given these operations to make up
one iteration of the ADMM algorithm, a set of precedence graphs and flow diagrams
were made.
Solving the least squares problem for the toepliz matrix inside the ADMM, a set of
solutions were proposed. Where the Levinson Algorithm proved to take the fewest
operations, and given the Levinson-Durbin architecture already given it proved sim-
pler to implement.

9.3 Architecture
The Architectures implemented in this report for the Levinson-Durbin and ADMM
were build upon the given Precedence graphs and flow diagrams. The architecture of
the Levinson-Durbin algorithm is reused for implementing the ADMM algorithm as
the input to the algorithm is a set of normal Linear Predictive Coefficients. Another
part where some of the Levinson-Durbin algorithm is used, is while implementing
the Levinson algorithm. This is done because the Levinson-Durbin is calculated
implicit by the Levinson algorithm in the inner loop for every iteration. While further
analysing the Levinson algorithm it is shown that there is little difference between
the inner and outer loop of the Levinson Algorithm, and that they can run in parallel,
therefore it is possible to use most of states for the algorithm. The architecture for
the Levinson-Durbin algorithm and ADMM ends up giving a Datapath in which all
calculations are done, and a FSM, given by a cluster of ASM charts which controls
the signals to and from the Data path.

9.4 Future
While the given architectures can be implemented in a given FPGA, the architectures
can be further optimized which is explained in the following two subsections 9.4.1
and 9.4.2.

9.4.1 Possible Optimization

When implementing a RTL architecture it is possible to run some optimizations. One
of the optimizations is to see of it is possible to share registersDaniel D. Gajski. This
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is possible as already described in 6.4.10 where the initial registers are shown and
how register sharing is possible. Another possibility is to use register merging, this is
where it is possible to use a register as for two variables, this is possible if the variables
has none-overlapping access times. however as described in [Daniel D. Gajski, p.227],
however this lowers the access time to the register, since it needs a longer address
to allocate which variable is requested. More interesting is the possibility of doing
chaining and multi-cycling [Daniel D. Gajski, p.229 ]. chaining means that two
or more functional units or, arithmetic units are used in the same cycle, without
storing the intermediate result. The other possible way was to do multi-cycling, this
is where slower units are used to calculate none critical computations, meaning that
an operation which normally takes 1 clock cycle, is slowed down, so a result is first
calculated after tow or more cycles. This is interesting for this project, as there are
many none critical paths in the calculation of both the Levinson-Durbin algorithm,
and when calculating the ADMM algorithm. It is seen in the scheduling in 7.29
and 6.30 that many of the operations stands still while the critical operations runs.
While optimizing the number of functional units, it is possible to look into Functional
Unit Sharing, this is where the possible number of functional units are decreased by
sharing the units between the different calculations. It is also possible to implement
connection sharing, this is done so that the number of connections between registers
and functional units are shared and used more efficiently, and if possible the number
if connections are decreased.
Going further into the possibilities of optimizing the RTL, then it is possible to do
functional unit pipe-lining, this is where the functional takes a variable, do a partial
calculation, before taking in a new number, while it finishes the calculation. By
doing this, it is possible to decrease the delay between the output variables, however
the throughput through the functional unit remains the same. While it also acts as
a form of register being able to hold variables in clue while calculating the current
result.

9.4.2 Possible Scheduling

When implementing a RTL architecture it is important to consider different ways to
schedule the architecture.
For this project it was decided from the beginning to use ASAP scheduling, as the goal
of the implementation is to implement a real-time implementation of voice encoding.
The idea behind ASAP scheduling is to put unlimited hardware into the solution,
and the run the code as fast as possible. The good thing with this solution is that
it is then possible to decide at the end to lower the clock frequency of the FPGA, in
such a way that the calculations are done just in time.
Instead of using ASAP, some parts of the architecture could be implemented with
another scheduling form of scheduling to make use of the hardware in a better way,
a few of the possible ways of schedule is, Force directed scheduling, As Late As
Possible (ALAP), list scheduling.
The Force directed scheduling is useful when there is constrain on hardware and
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time, then the scheduling can be run to see if it is possible to schedule given the
time. The algorithm uses ASAP and ALAP to find out possible scheduling then to
spread out the calculations on the arithmetic in such a way that it takes the least
time given the time constraint.
The ALAP is a good way to schedule when there is a time constraint, without looking
at hardware.
List scheduling is a way to schedule where a given priority list for each operation, then
the algorithm keeps running to find a possible scheduling list where the calculations
given the highest priority is scheduled first.
Given that the scheduling for the implementation is decided by the synthesis tool in
the given program, it was also decided to use a simple scheduling, given that there
is no hardware constraint, and that the clock frequency can then be lowered.
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