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Abstract:

Lockstep is a state of the art architec-
ture of microcontrollers employed in
safety-critical systems. It is a safety
feature for detecting core-level faults.
Complemented with other safety
features for memory, peripherals and
communication buses, they constitute
systems for use in fields that require
high functional safety.

The current project was conducted
in cooperation with Airbus Defence
and Space. Thus, one of the objectives
is to determine if Lockstep could be
beneficial to use in Avionic Systems
which is the field with the strictest
safety requirements.

The project focuses mainly on the
Texas Instruments Lockstep archi-
tecture which was the object under
investigation. Nevertheless, patents
of other semiconductor companies
are presented, leading the reader to
realize the challenges in a Lockstep
architecture.

Lockstep can be beneficial for avionic
product solutions, but due to the na-
ture of the certification process in this
field, it cannot be stated that such an
MCU is targeting systems of a specific
DAL criticality level.
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Chapter 1

Introduction

The increasing integration of computer systems into our daily routine and espe-
cially in systems where their behavior is vital has strengthen the need to contin-
uously investigate the means to make such systems more reliable and safe. The
safe operation of systems that may affect the integrity of human lives is essential.
However, it is a prohibitively expensive process to ensure the functional correct-
ness of a system. Hardware and software errors individually or in combination
may lead to devastating consequences for humans and/or for the environment. As
a result appropriate measures must be applied during the design, implementation,
installation and maintenance of safety-critical systems both in terms of software
and hardware [37].

At the beginning of a safety-critical system development, a hazard and risk analysis
is required to determine the safety integrity level for each component individually
and for the whole system. Therefore, different standards exist for each sector that
provide guidelines for the lifecycle of hardware and software development. As a
result, safety-critical systems should not only be safe, but they need to “look” safe
in order to be in compliance with the respective safety standard by the certification
authority.

A vast majority of safety-critical systems is in the form of embedded systems,
where a microprocessor is employed and it is not visible from the outside envi-
ronment. The highest volume production of safety-critical embedded systems is
observed in automotive and domestic product development companies.

Safety is an abstract term. Although, in the field of the embedded systems the
following definition could give a good interpretation:

“Safety is a property of a system that it will not endanger human life or the environment”

1



2 Chapter 1. Introduction

and a safety-related or safety-critical system may be defined as “The system by
which the safety of equipment or plant is assured”[37].

The field of avionics comprises of safety-critical systems that need to fulfill the
stringent safety requirements. Reliability in avionic is required to ensure the effi-
cient management and control of aircraft and space systems. A fault occurrence in
such systems may lead to a range of consequences, from disruption of schedule or
aircraft operations to accident conditions [4]. Electronics is a major part of avionic
systems. Thus, reliability of hardware electronic components is a main concern of
the avionic system designers.

Redundancy of components or systems is a common approach in the field of avion-
ics. In redundant architectures the main goal is that when a part of the system fails,
the rest of the system is able to continue operating efficiently. Beside the fact that
redundancy is an efficient way to mitigate faults, there are factors that can affect
the reliability of such architectures (i.e common cause failures, load sharing).

The current research approaches a safety feature / architecture of microcontrollers
that is already established in automotive, medical and industrial applications.
Lockstep, is a fault detection mechanism to prevent errors that may occur at the
core level. The microcontroller designers of Lockstep architecture were inspired
by the concept of redundancy and came up with a multi-core processor, while at
the same time attempting to deal with common cause failures that could affect the
efficiency of such a diagnostic.

Lockstep is just a piece of the puzzle of the safety features that modern micro-
controllers provide to help the application designers to achieve functional safety
and to comply with the required certification standards. However, currently it is
not broadly known in the avionics community and one aspect of this project is to
investigate how it could be employed in the production of avionic systems.

This report contributes to the academic community by describing a safety feature
that is used in the industry, but lacks of reliable scientific documentation sources.
Furthermore, while this project was conducted under the support and supervision
of the Airbus Defence and Space, it was easier for the author to obtain information
by semiconductor companies due to the established partnership of the company
with the majority of them.

This project is intended for electrical and embedded system students and for en-
gineers interested in safety around embedded systems. It could be used as infor-
mation material and guideline to employ a Lockstep architecture microcontroller
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in any embedded system.

1.1 Airbus Defence and Space

Airbus Group is a European global leader in the aeronautics, space and defence
industry. Founded in July 2000 under the name European Aeronautics Defence
and Space (EADS) is currently Europe’s leading company in the defence and space
industry. It is the second largest space company in the world and one of the top
10 defence companies globally with revenues of around 14 billion per year and
approx. 40.000 employees operating in more than 170 locations worldwide. The
Chief Executive Officer (CEO) of Airbus Defence and Space is Bernhard Gerwert.
Airbus Defence and Space focuses on core businesses: Space, Military Aircraft,
Missiles and related systems and services.

Figure 1.1: Airbus Defence and Space logo

The duty of Airbus Defence and Space is to develop cutting-edge reliable products
in the field of defence and space. The main concern of the company is to help
governments and institutions to protect natural resources, societies and individual
freedom. The aircrafts, satellites and services help to monitor climate and crops,
and to secure borders.

Airbus Defence and Space consists of four Business Lines: Military Aircraft; Space
Systems; Communications, Intelligence & Security (CIS); and Electronics. Among
the innovative products are the transport aircraft A400M, the military jet Eurofighter
and, in the framework of the Airbus Safran Launcher joint venture, the Ariane
launcher.
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1.1.1 Creation of the Company

In 1997, America appeared as the global flagship of the Aeronautics, Space and
Defence industry. Thus, in order to counterbalance the American leadership, the
French, German and Spanish governments asked their space and defence manu-
facturers to present a project of fusion into a single entity, a European company.

The EADS was founded the 10th of July 2000 by the fusion of the German aerospace
and defence company Daimler-Chrysler, the French missile and aircraft company
Aerospatiale-Matra and the Spanish aircraft company Construcciones Aeronauti-
cas SA.

This new company became immediately the second largest global aerospace com-
pany after its American competitor Boeing and the second largest European de-
fence company after the British company BAE Systems.

1.1.2 The Electronics Business Line

The entity of Electronics, is headed by Thomas Mueller, and is responsible for pro-
viding equipment for system integrators that serve both Airbus Defence and Space
within the Airbus Group and external customers all over the world. The prod-
ucts are basically addressing the civil, defence and security markets by providing
ground, maritime, airborne and space applications. The products of the Electronics
business line include radars and IFF systems, electronic warfare devices, avionics,
space platform electronics, space payload electronics as well as optronic sensors.

1.1.3 TEOHD5 Department

The current research was conducted on behalf of TEOHD5 department of Avionics
Center in Friedrichshafen in Germany. The title of the department describes what it
has to deal with: “TEOHD5 - Platform Software Avionics Computer”. The mission
of the department is the development, delivery and maintenance of Basis Software.
The definitions of Basis Software, Platform, Support Applications / Functions as they
are presented in the internal documentation of the company are following:

• The Basis Software provides a Platform and additional optional Support
Applications or Support Functions for the integration and installation of ap-
plication software through standard interfaces and standard communication
methods.

• The Platform provides a standard interface to the Application Software. Cov-
ers all Parts for abstraction of the Hardware. The Platform includes the Oper-
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ating System, Board Support Package, Device Drivers, Libraries & Commu-
nication Interfaces (comparable to Windows).

• Support Applications / Functions are utilized to support and / or to main-
tain a complete system (1 .. X processors in a box), e.g. Loader, Maintenance
Software, Redundancy Communication Concepts etc.

The expertise of the department can be categorized under the following 5 sections:

1. Equipment Engineering Support - Including system design, selection of proces-
sors and hardware modules, software architecture

2. Certification Activities - Development of Certification artifacts, Support Verifi-
cation & Validation (V&V) Process, Support Safety Analysis

3. Tools / Development Environment - Requirement Analysis and Software Design
with UML, RTOS Configuration

4. Test & Integration - Support Hardware Bring Up, Hardware / Software Inte-
gration and Test, Support Equipment Integration

5. Basis Software Engineering - Requirements Engineering according to develop-
ment standard, Software Development according to RTCA - DO178B Level
A-D, Software Development according to standard processes (ABD0100, VM-
XT and so on).

The permanent employees of the department are equipped with a multi-role ed-
ucation following a continuous training on new technologies, new development
methodologies and certification issues.

1.2 Problem Statement

The current research focuses on the Lockstep architecture that is employed in
safety-critical systems mainly in the automotive, medical and industrial markets.
The motivation behind this topic is that the Lockstep architecture is not broadly
known in the scientific community. It is a state of the art feature in a variety of
safety critical applications. Furthermore, it has already a history of use in a variety
of safety-critical applications, but the aforementioned domains that it is employed
in, are very special. Consequently, it lacks documentation in terms of a safety-
feature/architecture and the only source of information is the safety-manuals of
semiconductor companies for their own specific implementation.
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This research focuses on clarifying what Lockstep as a broad term means, high-
lighting the benefits and potential drawbacks of Lockstep as a safety mechanism
for error detection in embedded systems and investigating the different implemen-
tations from the several semiconductor companies that have already integrated it
in their microcontrollers.

The available hardware for this research was the TMS570LS3137 Hercules Devel-
opment Kit provided by Texas Instruments that has an integrated delayed-lockstep
mechanism and we focused on this specific implementation. The following re-
search questions were the primary concern of this project:

1. What is Lockstep in terms of embedded systems?

2. What are the reasons for using Lockstep as an error-detection mechanism?
What kind of errors can it detect?

3. How to use Lockstep? (specifically for TMS570LS31x/21x)

4. How Lockstep should be treated in the certification process of an avionic
system?

5. What are the limitations and drawbacks of a Lockstep architecture?



Chapter 2

Functional Safety and Certification
in Embedded Systems

The goal of this chapter is to describe the terms around safety in embedded sys-
tems and to highlight the differences among them. Additionally, safety standards
and their objectives are briefly presented. While the object under investigation is
the Hercules family of microcontrollers we will point out the safety standards that
it complies with and the approach that Texas Instruments follows for this purpose.
Finally, we focus on the avionics standards that is the sector of the department that
supported the current project.

2.1 Functional Safety and Fault Tolerance

An increasing amount of electronic devices involved in our daily routine is in-
evitable in the modern world and their faulty operation may harm humans and/or
animals and the environment [13]. Functional safety is a fundamental concept for
any field involving safety-related systems. For instance, in automotive it ensures
the right operation of the airbags at the right time, in transportation it ensures that
the doors will open and close at the right time, in medical sector it ensures the right
operation of a pump that could lead to an over-dose of a medicine to a patient and
in manufacturing it could ensure the right mix of chemicals through an automatic
valve closure mechanism.

The employment of safety-mechanisms focusing on electronics and software of the
system facilitates the reduction of risks to a tolerable level. It is not possible to
eliminate the risk, but what the functional safety is targeting to is to reduce its
negative impact. Additionally, functional safety is aiming to bring the system or
the device in a tolerable level while it provides the means to measure the probabil-

7
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ity of an event occurrence and the harm that it may cause. As a result, a system is
functional safe only if it contains tolerable risks.

In IEC 61508 Standard the Safety is defined as “The freedom from unacceptable risk of
physical injury or of damage to the health of people, either directly, or indirectly as a result
of damage to property or to the environment” and the Functional Safety as “It is a part
of the overall safety that depends on a system or equipment operating correctly in response
to its inputs”. In ISO 26262 the definition of Functional Safety is described as “Ab-
sence of unacceptable risk due to hazards caused by mal-functional behavior of electrical
and/or electronic systems” [22].

A variety of Standards exists for specific or general markets, to facilitate the compli-
ance of the systems to the functional safety principles. The standard for application-
specific functional safety development in electronics is the IEC 61508. Various
domain-specific standards have been derived from that [30]:

• IEC 60730 for white goods

• ISO 26262 for automotive passenger vehicles

• EN50128 for software development of railway applications

• IEC61513 for nuclear power plants

• IEC61511 for the process industry and associated instrumentation

• IEC62061 and ISO 13849 for machinery electrical control systems

• IEC62304 for medical systems

These standards offer guidelines to assess risk and assign safety goals for safety-
related systems, they provide methods to reduce systematic failures, frameworks
for quantitative analysis of random failure rates and effectiveness of diagnostics to
detect them and finally, they provide guidelines for the maintenance of functional
safety after the deployment of the product.

The functional safety term should not be confused with product characteristics as
reliability and availability. Reliability describes the likelihood for a system to exe-
cute efficiently an assigned task in a specified amount of time. Availability is the
percentage of the entire system service life during it can be used to execute the
assigned task [31].

With the term Fault Tolerance is described the ability of a functional unit to con-
tinue the execution of a required task even in presence of faults or errors [19]. In
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terms of hardware, the fault tolerance is its ability to continue performing a re-
quired task even when faults occur. For instance, hardware fault tolerance 0 is
interpreted as the inability of the system to continue operating efficiently even in
presence of a single error. Generally fault tolerance N means that the system will
lead to the loss of a safety function in occurrence of N+1 errors [43].

2.1.1 IEC 61508

The challenge in electrical, electronic or programmable electronic systems (E/E/PE)
is to utilize a variety of safety functions to prevent or mitigate in a safe way a fault
that may occur which would lead to an unexpected behavior of the system that
could be catastrophic for the surrounding environment.

The assessment of risk to minimize this kind of failures in any sector is supported
by the IEC 61508 standard series. They are international standards for E/E/PE
safety-related systems (including both hardware and software) developed by the
International Electrotechnical Commission (IEC). Initially they were developed for
application on system level but they were extended on product and component
level. They consist of seven parts:

• IEC 61508-1, General requirements

• IEC 61508-2, Requirements for E/E/PE safety-related systems

• IEC 61508-3, Software requirements

• IEC 61508-4, Definitions and abbreviations

• IEC 61508-5, Examples and methods for the determination of safety integrity
levels

• IEC 61508-6, Guidelines on the application of IEC 61508-2 and IEC 61508-3

• IEC 61508-7, Overview of techniques and measures

The IEC 61508 include a series of actions that are necessary to be followed during
the design, implementation, operation and maintenance of the system to comply
with the required Safety Integrity Level (SIL). There are four available SILs each
corresponding to a range of target likelihood of failures of a safety function. So,
the safety integrity level is a factor dependent on a safety function rather than on
the system or any part of it [18]. The SIL4 is considered the strictest while it targets
to the protection against the highest severity level risks.
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For a given process SILs are measures of the safety risk. The assignment of a SIL
reveals to what extent a process is expected to perform safely and in case of a fail-
ure to what extent it can react by failing safely [43].

On a device level, IEC 61508 is used by safety equipment vendor companies to
verify and document that their devices are suitable for use in SIL rated systems
[34].

2.1.2 ISO 26262

ISO 26262 is a sector-specific standard for the automotive industry that focuses on
functional safety. It is an extension of the IEC 61508 which covers industrial sys-
tems in general. In this standard the safety systems are divided in two categories:

• Active safety systems that react proactively to prevent an accident, such as
ACC, ABS and ESP.

• Passive safety systems that refer to the reactive actions after an accident occur-
rence, i.e safety belts, airbags, belt tensioners.

These systems and especially the electronics must also be secure, because a mal-
function could lead to personal injury.

The safety lifecycle that is followed in order to ensure functional safety according
to ISO 26262 starts with a definition of the system at vehicle level. For instance,
investigating an airbag system, a hazard analysis and risk assessment have to be
initially performed. A potential hazard for this system could be an unexpected
inflation of the airbag. For each of these hazards a safety goal has to be set. For
instance, how to prevent the unintended inflation of the airbag. Similarly to the
IEC 61508, each of these safety goals is categorized in Automotive Safety Integrity
Level (ASIL) terms. There are 4 available ASILs, from ASIL A to ASIL D, with an
increasing safety classification level in this order.

The assignment of ASIL (very similar to SIL assignment in IEC 61508) to each
safety goal is dependent on 3 parameters:

• Exposure, how often the situation is risky for the passengers or other road
users

• Controllability, how involved people can handle the violation of the safety
goal
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• Severity, how serious could a missed safety goal become

Figure 2.1: ASIL classification examples [28]

In this example, the unexpected inflation of the airbag would most likely belong
to ASIL D level. A functional safety concept is required for each potential hazard.
For the airbag example, the functional concept could rely on a redundancy concept
where the system would consist of a control and monitoring channel. The airbag
would only inflate if both of the channels produce identical output. The technical
aspects of these functional safety concepts (i.e sufficient number of independent
sensors and the method to independently enable the trigger circuit) compromise
the technical safety concept. Software and hardware requirements are determined
then according to the technical safety concept.

2.1.3 Avionics Certification (DO - 178C and DO - 254)

The significance of the correct operation of avionic systems, due to the conse-
quences of the hazards that they may cause in a potential malfunction, makes the
avionic certification a complex process with stricter criteria than the aforemen-
tioned standards.

The DO-178B and DO-254 are documents that provide guidelines for dealing with
respectively software and hardware in the process of avionic systems development.
These two documents are written by people with formal software expertise and are
quite similar. Initially the hardware was not requiring the strict standards as the
software did. The evolution in the field of aviation revealed the need for a set
of rules that have to be followed in the hardware development life-cycle as well,
because the majority of the modern avionic systems consist of both hardware and
software components [45].

The series of the DO-178 (DO-178A, DO-178B, DO-178C) and DO-254 were devel-
oped by the commercial avionics community in cooperation with RTCA (a Federal
Advisory Committee) in an attempt to establish common guidelines for system de-
velopers and government certifying agencies for the certification of avionic prod-
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ucts.

It is worth to note at this point what is “certified” in the avionics world. The
Federal Aviation Administration (FAA), the national aviation authority of USA, is
responsible for ensuring that all air travel is safe. There is a commonly erroneous
notion about what is certifiable in the avionics world. The FAA does not specifically
certify software or hardware, but systems. The way and the standard that a system
will be certified varies. The required certificate depends on the product and its
usability:

• Technical Standard Order Authorization (TSOA) - Is used to approve that a
specific device (i.e GPWS, Radio, Weather Radar) can be used on a different
aircraft

• Type Certificate (TC) - Certifies systems for new aircraft

• Supplemental Type Certificate (STC) - Certifies changes of design not requir-
ing a new TC

The real intention of the certification process and the DO documents is to help
the industry to prove that each software or hardware product meets its intended
functionality. The terminology that is used in the field of avionics reveals the
different levels of compliance for a system [45]:

1. “Certified” is an entire system in which each component may have different
certification level

2. “Certifiable” is a component of a system that achieves its higher certification
status before certifying it within the whole system

3. “Qualified” is used in terms of a tool. Since it is not participating in the “fly”
operations does not require to be “certified”

4. “Compliant” is a certified system from a different entity than FAA (i.e mili-
tary or non commercial avionics)

In avionics, after a safety assessment of the system that is driven by SAE stan-
dard ARP4754 (Certification Considerations For Highly-Integrated or Complex Aircraft
Systems), a criticality level is determined. It might be from Level A to Level E.
Informally speaking, the Level A is the most stringent where a potential failure
might lead to loss of life of all passengers, at Level B a few people (passengers or
crew) may die, at Level C there are major injuries, at Level D minor injuries and
finally at Level E no impact on the people and the environment.
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Figure 2.2: Criticality Level Pyramid for Avionic Systems [45]

It should be noticed that even appliances that are not critical for the safety of the
flight require at least a Level D certification. A real-life example is an aircraft
crash that was caused by a seat-back video screen for the entertainment of the
passengers. The crash analysis revealed that these appliances were sharing a bus
for power supply with critical devices in the cockpit of the aircraft. The malfunction
of these safety unrelated devices affected the safety of the whole aircraft.

Software Considerations in Airborne Systems and Equipment Certification -
DO-178

As was already mentioned the DO-178 is aiming at establishing guidelines in terms
of software in the development of avionic systems. The initial version, DO-178 was
addressing the software life-cycle in avionics. A later version, the DO-178A was
enhanced with the classification of the system into criticality levels and component
testing methods to increase the quality of the overall system. The next version, DO-
178B was developed from scratch. Software quality was increased by the addition
of more planning methods, more application development practices, the integra-
tion of COTS products and tools and the integration of techniques for continuous
testing and monitoring of the system in real-world conditions. The latest DO-178C
version addresses known issues of the previous version while it provides new tool
qualification guidance.

The benefits derived from following the DO-178 series are not restricted only at
the certification. The guidelines facilitate the verifiable software quality, higher re-
liability, greater re-usability, decreased maintenance, lower life cycle costs, faster
integration to the hardware and increased probability of error detection during the
development phase.
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Design Assurance Guidance for Airborne Electronic Hardware - DO-254

DO-254 was released in 2000 and was formally required by FAA from 2005. The Eu-
ropean commission EUROCAE (European Commission for Civil Aviation Equip-
ment) provides the ED-80 containing the same content with DO-254. It is a coun-
terpart of the well-established DO-178, addressing electronic hardware issues to
reach the certification compliance.

DO-254 follows a top-down approach on electronic hardware starting from the
system level. The scope of this document is to address certification issues and to
ensure the functional safety on electronic hardware components where the com-
plexity of these devices is increasing and their size is shrinking [4]. It relates ex-
clusively to airborne systems and it is worth mentioning that electronic-hardware
is not certified as a stand-alone entity.

There is a distinction that derives from an analysis of a hardware component: It
may be either a Simple Electronic Hardware (SEH) or a Complex Electronic Hard-
ware (CEH). If it is determined that a component belongs to the former category
after the conduction of the appropriate analysis (i.e the component is fully testable,
or it does not contain silicon-based logic) the DO-254 document is not required.
More specifically, a simple component is one that provides the capability of per-
forming exhaustive testing on it, examining all the potential inputs.

Further steps in an abstract form could be defined as follows:

• Systems aspects are considered first - System or function Development As-
surance Level (DAL) is determined for a hazard that may occur at aircraft
level. Additionally, a hazard assessment should be performed. System func-
tions and DAL are allocated to hardware. Requirements of the system are
allocated to the hardware.

• Identification of functions and their effects - For each function that is ex-
pressed by a requirement and has an assigned DAL, hardware components
are designed to fulfill the respective requirement.

• Design assurance approach for hardware - Requirements based verification
is performed to determine the criteria of the assigned DAL.
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2.1.4 The Meaning of 1oo1D

For the Hercules family of microcontrollers the default Lockstep mode is described
as 1oo1D (one-out-of-one with diagnostics). A 1oo1D system is comprised of a sin-
gle channel with a diagnostic channel.

The terminology of these architectures is mentioned in the IEC-61508 standard.
Generally, the definition of MooN in IEC 61508-4 is given as “M out of N channels
architecture, where either of the two channels can perform the safety function”
and the definition of MooND is “M out of N channel architecture with Diagnos-
tics” [19]. As is also mentioned in the same safety standard, in case of a dangerous
failure, the safety function fails as well. In simple words, a MooN system contains
N identical components and if at least M out of N components are operating cor-
rectly, the system is error-free. Beyond the hardware this redundancy concept may
also be applied at software, time or information level.

Figure 2.3: 1oo1 Block Diagram [19]

Anthony Vaughan, the manager of Hercules safety group of Microcontrollers in
North America, describes the usability of this 1oo1D architecture in the aerospace
area and how it can be utilized to meet the strict safety criteria that are required in
this industry with the required highest level functional safety [46].

A common approach to ensure the functional safety in embedded aerospace elec-
tronic systems is the employment of the 2oo3 architecture (see Figure 2.4). Sys-
tems following this architecture comprise of 3 (probably dissimilar) embedded
controllers and a voting circuit. In case of a fault occurrence in one of the three
controllers the system availability remains unaffected while the other two control
the system. This fail operational architecture is proven to be efficient for flight
critical applications where is required high system availability and extremely low
failure rate.

Beyond the fact that 1oo1D is already used in a variety of safety critical applica-
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Figure 2.4: Two Out Of Three Architecture (2003) [46]

tions, is not enough for the safety requirements of the aerospace area. Instead,
a Two out of Two with Diagnostics (2oo2D) architecture may be utilized to cre-
ate fail-safe systems. This proposal that is analyzed in the article of A. Vaughan
deploys two separate channels each consisting of the 1oo1D controller (Lockstep
architecture) and a signal that is sent bidirectional between the controllers, to no-
tify that a fault occurred, maintaining the system availability.

Two main advantages are pointed out by this implementation: It is simpler than
the 2oo3 architecture and could be less susceptible to random failures while the
system consists of fewer controllers.

Figure 2.5: One out of One with Diagnostics (1oo1D) - Two out of Two (2oo2) Architectures [46]
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2.1.5 Texas Instruments Approach To Functional Safety

One of the initial tasks in functional safety development is a hazard and risk analy-
sis of the target application. Depending on this assessment, the level or the accept-
able risk is determined regarding the SILs as already discussed in Section 2.1.1.
Then, the process of software, hardware and system development must comply
with the requirements of the derived SIL in order to handle efficiently systematic
failures. Hardware and systems can be assessed via quantitative metrics to reveal
the likelihood of failure per hour and failure fraction in the final application prod-
uct [30].

A SIL is only achieved by evaluating the whole system and at component level we
could only say that “a component is developed according to SILx” or “ this com-
ponent is suitable for use in SILx systems”. The derived SIL of a system consisting
of a variety of components with different SILs is the weakest link.

As mentioned before the hardware and system can be assessed regarding the fail-
ure rate metrics. On the other hand, in the software there are not such metrics
while there are not random failure modes. The IEC 61508-3 describes the require-
ments for the software life cycle to comply with a determined SIL. The highest SIL
that a broad range of application is targeting is the SIL3. For SIL4 which is an ultra-
high safety level, redundancy architectures are used (i.e multiple channels) such as
two versions of software serving the same purpose. For instance, in a single system
two RTOSs from different suppliers can be employed to achieve compliance with
SIL4.

Developing a system with use of a certified COTS (Commercial Off The Self) soft-
ware such as a RTOS does not necessarily mean that the final product complies
with the COTS’s SIL. It ensures that the RTOS provides the mechanisms for several
tasks that are required for achieving functional safety such as memory allocation,
task synchronization, maintenance of temporal constraints and so on. In essence
the compliance depends on the loyalty to the specific SIL development and testing
requirements. The artifacts of following these rules should be well documented
and they are provided to the safety assessor.

The TMS570LSxxx and RM48x are two processor families developed by Texas In-
struments that are suitable for use in SIL3 systems. They have been independently
assessed by Exida1 and they were developed to address the risks of MCU devel-
opment and to restrict the random failures that have been noticed in safety critical
systems during operation.

1Exida is one of the leading authorities in the field of functional safety
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Figure 2.6: The Hercules ARM Family of safety MCUs [30]

Combining such an MCU that is specifically developed to comply with a SIL and
a RTOS that ensures the requested requirements for this safety level simplifies the
certification process for both the certification authority and the development com-
pany. In this direction, Texas Instruments provides the SafeTI design package that
helps their customers to build applications capable of easily achieving compliance
to safety functional standards. The SafeTI design package consists of 5 components
[32]:

1. Safety-related semiconductor components

2. Safety-related documents, tools and software

3. Complementary embedded processing and analog components

4. Quality manufacturing process

5. Safety development process

In Figure 2.7 is depicted a list of the currently available SafeTI devices and the
integrity levels according to what they are developed respectively.

The two categories of errors that the functional safety has to deal with are known
as systematic and random faults. Random faults are inherent to the application
and the metrics that already discussed to determine the failure rate are not ap-
plicable to them. Random errors could occur by a permanent failure of a circuit,
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Figure 2.7: SafeTI Devices [32]

temporary failure of SRAM or shorting of adjacent signals in the MCU and so on.

For the prevention of such errors, semiconductor companies utilize safety mech-
anisms that execute during the operation of the system within the control loop.
Because of the temporal constraints in real time embedded systems the burden of
the continuously or even periodically execution of these diagnostic tests became a
significant issue for the semiconductor companies. As a result the need for parallel
execution of such tests became vital. The Hercules MCU platform provide inte-
grated into hardware diagnostics facilitating tight control loops while the checks
run in parallel.

The application developer has to be aware of common mode failure when imple-
menting such safety mechanisms. Common mode failure describes the case that
faults occur in commonly shared signals. The temporal and physical diversity as
is presented in Sections 4.4.6.1 and 4.4.6.2 are measures to prevent the common
mode failure in the redundant CPU architecture.

The approach of Texas Instruments in the TMS570 family of processors for facilitat-
ing the application developers to achieve functional safety is called “Safe Island”.
This term describes the combination of hardware and software diagnostics while
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at the same time concerning the cost. In this philosophy elements like power,
clock, reset, CPU, Flash, SRAM and associated interconnect to Flash and SRAM
operate continuously hardware safety mechanisms to insure the right execution
of software. Therefore, after ensuring the correct operation of the aforementioned
elements, software-based diagnostics can be executed to verify the correctness of
other device elements, such as peripherals [21].
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Embedded Software Development

In this section we present the hardware and software that was used during this
project. The hardware selection was predetermined by the company, while the
TMS570LS3137 fulfills all the safety and communication features that are needed
to be employed as a coordinator between two modules of a large radar project that
is currently in progress. Regarding the software, the recommendations of Texas
Instruments were used to provide stability and flexibility regarding a potential
certification process, such as the Code Composer Studio IDE, the HALCoGen for
automatic code generation and the TI compiler.

3.1 Hardware

The hardware that was available for the conduction of the experiments in this
project is described in this section. The TMS570LS3137HDK evaluation board from
Texas Instruments and the SafeTI Hitex Safety Kit - TMS570LS3137 by Hitex in
cooperation with Texas Instruments are briefly demonstrated.

3.1.1 Hercules TMS570LS3137 microcontroller by Texas Instruments

TMS570 are the first Microprocessor Control Units (MCU) based on ARM R© CortexTM-
R4F based floating point that meet the IEC61508/SIL3 standards. This family of mi-
croprocessors is designed specifically to comply with automotive and transporta-
tion safety standards, while it consists of dual Cortex-R4F processors operating in
Lockstep. System-wide protection is insured by the error detection in the proces-
sor and the memory modules. Both single and double precision is achieved with
the integrated high-performance Floating Point Unit (FPU). They are targeting to
safety applications of transportation industry including [39]:

21
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• Automotive chassis and stability control

• Electric power steering

• Hybrid and electric vehicles

• Aerospace

• Railway communications

• Off-road vehicle engine controlp

The CPU offers 1.66 DMIPS/MHz1 and can provide up to 298 DMIPS with con-
figurations that can run at 180MHz. The big-endian [BE32] word-invariant format
is supported on this device. The TMS570LS3137 has 3MB flash and 256KB RAM
which are protected with Single-bit Error Correction and Double-bit Error Detec-
tion (SECDED). The flash is an Electrically Erasable and Programmable Memory
(EEPROM) with a 64 bit wide data bus. Furthermore, program and read opera-
tions are performed with a 3.3V supply input to the flash memory. Same input
supply is used for the I/O operations.

The TMS570LS3137 device has 3MB of integrated flash and 256KB of data RAM.
Both the flash and RAM have single-bit error correction and double-bit error de-
tection. The flash memory on this device is a nonvolatile, electrically erasable, and
programmable memory implemented with a 64-bit-wide data bus interface. The
flash operates on a 3.3-V supply input (same level as I/O supply) for all read,
program, and erase operations. When in pipeline mode, the flash operates with a
system clock frequency of up to 180 MHz. The SRAM supports single-cycle read
and write accesses in byte, halfword, word, and double-word modes.

Additionally, two Next Generation High-End Timer (N2HET) co-processors and
two Analog-to-Digital Converters (ADC) with up to 24 inputs are integrated in the
MCU. The N2HET module is an intelligent timer that is used in real-time applica-
tions while it provides sophisticated timing functions. A High-End Time Transfer
Unit (HTU) with a built-in Memory Protection Unit (MPU), facilitates the DMA-
type transactions of N2HET and main memory.

Moreover, two Multi-Buffered Analog-to-Digital Converters (MibADCs) of 24 chan-
nels with 64 words and parity-protection are integrated. A conversion can be per-
formed on an individual channel or a group of them that is set by the software.

1DMIPS: Dhrystone Million Instructions Per Second is a benchmark to measure the integer per-
formance of processors and compilers [7].
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Three Multi-Buffered Serial Peripheral Interfaces (MibSPIs), two Serial Peripheral
Interfaces (SPI), one Local Interconnect Network (LIN), one Serial Communica-
tion Interface (SCI), one Inter-Integrated Circuit (I2C), three Control Area Network
(DCAN), one Ethernet interface and one Flexray controller are the communication
interfaces integrated into the device.

Two Frequency-Modulated Phase-Locked Loop (FMPLL) clock modules are em-
ployed. These modules are capable of multiplying the external frequency reference
when higher frequency is required for internal use.

A Direct Memory Access (DMA) controller with 16 channels, 32 control packets
and parity-protected is integrated, with a built-in MPU to protect the rest of the
memory in case of a malfunction of the DMA (the DMA is restricted to a prescribed
area of the memory).

All the device errors are controlled by the Error Signaling Module (ESM) while it
determines if an interrupt will be triggered or an external pin (ERROR) is asserted
for different kinds of errors.

Finally, expansion of the device with external modules such as synchronous/asyn-
chronous memory devices, peripherals or FPGAs can be achieved with the External
Memory Interface (EMIF) module [41].

Figure 3.1: TMS570LS3137 Hercules Development Kit

The TMS570LS3137 Hercules Development Kit was employed in this project to
evaluate and start the development with the Hercules platform of these safety se-
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ries of MCUs by Texas Instruments. The development board provides the following
features:

• 337p BGA TMS570LS3137 MCU, on board

• On Board USB XDS100vs JTAG

• On Board SCI to USB Serial

• 20 pin ARM and MIPI JTAG connectors

• 6 White NHET LEDs

• 2 Tri-Color RGB NHET LEDs

• 8MB SDRAM (EMIF)

• Ambient light and temperature sensor

• 2 CAN transceivers

• 1 RJ-45 ethernet port

• 1 Micro SD card slot (SPI mode)

3.1.2 SafeTI Hitex Safety Kit - TMS570LS31x/21x

The SafeTI is a tool developed by Hitex in cooperation with Texas Instruments and
facilitates the evaluation of safety features of TI’s Hercules safety microcontrollers
[33]. The kit consists of two Hercules microcontrollers placed on the same eval-
uation board, where the first acts as a Safety Device Under Test (SDUT) and the
second as a Control and Monitoring Device (C&M). There are two variations re-
garding the model of the SDUT device: it may be either an TMS570LS3137 or an
RM48L952 MCU. In the current project was used the former. The C&M device is
in both of the cases an RM48L952.
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Figure 3.2: SafeTI Hitex Safety Kit [17]

Additionally, a TPS65381-Q1 companion chip is integrated to monitor the opera-
tion of the SDUT device. This companion chip is a power source that contains
a watchdog which requires specific messages from the SDUT in a predetermined
amount of time, in order to detect potential hardware faults.

The software stack of the system consists of four layers from bottom to top:

1. The hardware abstraction layer

2. The Texas Instruments SafeTI Diagnostic Library

3. The SAFERTOS operating system

4. Example user application

Figure 3.3: SafeTI HSK Block Diagram [33]
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Essentially, the purpose of the kit is to monitor the reactions of the SDUT device
when faults are injected in real-time by the C&M.

The C&M is responsible for monitoring the behavior of the device under test and
provide the results and the measurement of system response times in a GUI based
application in a graphical manner.

3.2 Software

The software tools that were used during the conduction of the experiments and
the evaluation of the Lockstep architecture are presented in this section. Code
Composer Studio (CCS) for developing and debugging, HALCoGen for configura-
tion of the peripherals and automatic code generation and the GNU ARM toolchain
that was used as an alternative to the CCS integrated toolchain are briefly pre-
sented.

3.2.1 Code Composer Studio (CCS) and Tools Suite

Code Composer Studio is an Eclipse-base integrated development environment
(IDE) supporting Texas Instrument’s portfolio of microcontrollers and embedded
processors. It is used for developing and debugging of embedded applications. It
provides features such as source code editor, project build environment, debugger,
profiler and simulators [5]. Additionally, an optimizing C/C++ compiler is inte-
grated.

The debugger provides conditional or hardware breakpoints that are based on lo-
cal variables, registers or C expressions. Moreover, a memory window is provided
for all levels of memory to inspect potential issues, such as cache coherency prob-
lems. The debugger even supports complex multi-core or multi-processor systems,
providing synchronous operations and global breakpoints.

Measurement of code performance and efficient use of resources in debugging or
development mode is achieved through the profiler. Instruction cycles of a func-
tion, cache misses/hits, pipeline stalls and branches are events that can be mea-
sured and monitored by the profiler. The profiling facilities are active through the
whole development cycle and the goal is to end up in a finely-tuned code when it
is used efficiently by developers.

Testing and performance benchmarking are time consuming tasks that should be
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performed continuously during the development process. CCS supports a script-
ing environment suitable for the automation of such processes.

The flexibility of the Eclipse-based environment that provides the capability of
adding plugins and extensions, the aforementioned features plus others such as
image analysis and visualization, simulation and support for TI’s real-time oper-
ating systems, make the CCS an ideal IDE for embedded application development
for TI’s systems.

3.2.2 HALCoGen

The lowest software layer of an embedded system that directly interacts with the
hardware is called Hardware Abstraction Layer (HAL). It is usually responsible
for the system initialization and the direct access to the several components of the
MCU.

Figure 3.4: Hardware Abstraction Layer in an Embedded system [36]

Texas Instruments provides a GUI tool called HAL Code Generator (HALCoGen)
that the user can configure and generate device specific code for initialization of
the system and configuration even for the safety related functions [15]. It could
also be described as a driver code generator tool that insures a stable HAL code.

3.2.3 GNU ARM Toolchain

As an alternative toolchain to the CCS integrated tools, the GNU ARM was em-
ployed. The GNU ARM toolchain provides GCC compiler support for develop-
ment on embedded ARM processors with the contribution of ARM employees.
Specifically it supports Cortex-R/Cortex-M processor families, covering Cortex-
M0, Cortex-M3, Cortex-M4, Cortex-M0+, Cortex-M7, Cortex-R4, Cortex-R5 and
Cortex-R7 [14].
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The executables for the GNU ARM toolchain that are officially provided do not
support the big-endian [BE32] word-invariant format that is required for the Cortex-
R4F CPU of the TMS570LS3137. Building manually the binaries that are also pro-
vided from GNU ARM community was necessary, applying first a diff patch (see
Appendix D) on the source code.

After applying the patch to the binaries that are provided from the GNU ARM
webpage [14], the process for building them is as described in the Appendix E.

The reason for the investigation of an alternative toolchain is a potential future
need of the company to use the GCC compiler in a project that employs such a
microcontroller. Additionally, the type of license for the CCS integrated toolchain
varies regarding the specific model of the microcontroller. For some models is pro-
vided free, while for others it has code size limitations in a free version.
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Safety Features of Hercules Family

Texas Instruments provides a series of safety features for the Hercules family of mi-
crocontrollers that target to the functional safety of the applications. The current
research focuses on the Lockstep architecture and the benefits that it may provide
in a safety-critical system, but this section aims to give an overview of the other
provided features that make Hercules a competent family of microcontrollers in a
variety of safety applications, currently in the transportation, industrial and medi-
cal markets.

Instead of using software mechanisms to detect hardware errors, Hercules micro-
controllers implement safety in hardware that reduces the software overhead while
it increases the performance. The Lockstep architecture is presented thoroughly in
Chapter 5 and eliminates redundant system requirements and consequently ad-
ditional cost: In absence of the Lockstep architecture, redundant subsystems are
employed to comply with functional safety requirements. This redundancy of the
subsystems increases the cost and the space of the system significantly.

Except of Lockstep as a safety feature of the Hercules family, the CPU hardware
built-in self test (BIST) is employed for detection of latent defects without extra
software overhead. Furthermore, for the protection of memories and buses Error
Correction Code (ECC) logic is integrated in the CPU. Moreover, high diagnostic
coverage is achieved while all Random Access Memories (RAM) can be tested
using HW BIST and a Memory Protection Unit is employed to assure protection
against deterministic errors in the application software [16].

29
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4.1 CPU Logic Built-In Self Test (LBIST) Self-Test Controller
(STC)

Due to the high complexity of a Cortex-R4F CPU, TI does not recommend several
CPU software-based tests that are performed by other safety critical microcon-
trollers. Though, a hardware-based CPU Logic Built-In Self Test (LBIST) Self-Test
Controller (STC) scheme is proposed for providing high diagnostic coverage on
the CPUs operating in Lockstep at a transistor level. The STC is utilized to test
the CPU core using the deterministic LBIST controller as the test engine. This
hardware-based solution is more efficient in terms of required memory, detection
capability and execution time of the tests [35].

The LBIST tests are triggered by the software, where the developer may select to
run all or part of them based on the execution time. The execution time that the
application sets for the LBIST tests in each safety-critical loop can be allocated to
the LBIST diagnostic. The version used in TMS570LS31x/21x family is capable of
running the LBIST tests on both cores simultaneously [40].

Running the LBIST STC is much more costly in terms of power than a normal ap-
plication due to the increase of level of transistor switching per clock cycle that is
required. The user is able to reduce the CPU clock for the duration of the tests. It
is a trade-off between current consumption and time to complete the execution of
the diagnostic tests.

Before the execution of the LBIST test, a context save is performed and the CPU
is isolated from the rest of the system. The remainder logic of the system does
not interrupt its operation. After the completion of the test execution a CPU reset
is required, the system is notified that the reset was performed due to the com-
pletion of this test (through the SYSER register) and the normal operation of the
system continues by restoring the CPU context. Essentially, a context saving is not
required when the STC runs on start-up, while the start-up configurations will be
performed.

The LBIST provides the option to test a proper operation of the diagnostic. The
testing process is deterministic and in order to ensure that a test is performed
within expected time, a timeout counter is employed to detect a potential non-
deterministic situation that indicates an error. Moreover, the STC can operate in an
error-forcing mode, where an input error is injected to verify the right functionality
of the module in the error detection and propagation to the system level.

The STC supports 24 intervals that the test process can be divided into and run a
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few intervals at a time. The user is able to run either all the intervals together or in
slices specifying if the STC will continue from the next interval or restarting from
interval 0.

The table in Figure 4.1 depicts the coverage percent and time that is required for
each interval in a typical case of the device running at HCLK = 180 MHz, VCLK =
90 MHz, and STCCLK = 90 MHz.

Figure 4.1: Test Coverage and Duration [40]

• HCLK: Clock domain used by the high-speed system modules: Flash, mem-
ory interfaces, TCRAM interface, Error Signaling Module (ESM), DMA

• VCLK: Clock domain used by some system modules (VIM), peripheral mod-
ules accessed via the Peripheral Central Resource (PCR) controller, and all
other register interfaces also accessed via the PCR

• STCCLK: Determines the self-test execution speed, by dividing HCLCK
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4.2 Programmable Built-In Self-Test (PBIST) Module

The Programmable Built-In Self-Test Module integrated on the Hercules microcon-
trollers, facilitates the testing of on-chip memories via a host processor interface. A
dedicated on-chip PBIST ROM is employed to store information regarding on-chip
memories, memory groupings, memory background patterns and test algorithms.
Moreover, a test of the memories at their maximum possible speed in application
is provided and an intelligent clock gating is implemented in order to conserve
power. Finally, it provides the ability to test its own PBIST ROM itself [40].

Regarding the architecture, a small co-processor with a dedicate instruction set
specialized in memory testing is employed which executes routines that are stored
in the PBIST ROM. In comparison to software-based techniques that are used for
memory testing from the main Cortex-R4F processor, the PBIST provides signifi-
cant advantages:

• A dedicated memory path is used specifically for the self-test of the mem-
ories, resolving the problem of the long access paths that embedded CPUs
have to face.

• The dedicated instruction set that is specifically formulated for memory test-
ing facilitates the development of such test routines.
The generic instruction set of an embedded CPU may do the development
and execution of such self-tests a complex task.

• The algorithm code on a conventional embedded CPU for this purpose is
significantly larger than the code of PBIST.

• The size of a PBIST controller is significantly smaller than the size of an em-
bedded CPU.

The execution of the tests is triggered by the application where the developer has
the option to select the algorithms that will run against the memory modules of
the system. PBIST tests are destructive for the memory contents and if they execute
during operation of the system, the application may copy the data of the memory
under test to a non-tested memory and restore the data after the completion of the
current test.
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A potential error is indicated in PBIST status registers and a further feature is the
capability of keeping log of the errors.

Similarly to the LBIST controller (see Section 4.1), PBIST is a deterministic diag-
nostic method. Therefore, a timeout counter could be programmably implemented
using the Real Time Interrupt (RTI) module to indicate potential failure in test com-
pletion within expected amount of time [35].

Some of the test algorithms that are used for PBIST are following [40]:

1. March13N:

March13N is the algorithm for SRAM testing that provides the highest overall
coverage. The following algorithms are complementary to March13N which
is the baseline. The basic concept is to check if a bit cell can be written and
read as 1 and 0 and if a bit cell remains unaffected by the bits around it.
The operation is simple: Firstly, the array is initialized with a known pattern
and then a different pattern through the memory is marched. This algorithm
detects the following types of errors:

• Address decoder faults

• Stuck-At faults

• Coupled faults

• State coupling faults

• Parametric faults

• Write recovery faults

• Read/Write logic faults

2. Map Column:

Line sensitivities of the memory array are detected by the Map Column algo-
rithm. The first row is filled with all 0s, the second with all 1s and repeated
through the whole array in this way. Afterwards the values of each column
is read on consecutive cycles and the pattern is inverted to proceed with the
complementary check. This algorithm is targeting to the detection of the
following errors:

• Leakage due to a low resist path in a bit

• An Open in the bit cell

• Leakage on a BIT or BITN line

• Miss-balance in the sense amp

• Leakage in the sense
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• High resist in the sense amp

• Failure of the pre-charge circuits after read operations

3. Pre-Charge:

A similar algorithm to Map Column is employed to insure the correct pre-
charge capability of the SRAM array. The same pattern with 0s and 1s is
used in this algorithm, but a write operation is performed between two reads
to force the pre-charge circuits in the array to the worst-case conditions. A
failure occurs when an increasing frequency of the system approaches the
minimum access time of the SRAM array, at this boundary:

• High voltage should operate better than low

• Low temperature should operate better than high

4. DOWN1a:

DOWN1a is an additional test algorithm for CPU/memory read/write op-
erations that is targeting row/column decode in the SRAM array, the sense
amp and sense amp multiplexers, the memory array output buffers and with
aggressive writes checks potential at-speed write failures.

5. DTXN2a:

The DTXN2a algorithm is targeting to insure the correct functionality of the
global column decode logic

4.3 Error Correction Code (ECC) on Flash and SRAM

As already mentioned, Error Correction Code (ECC) is employed in the R4F CPUs.
In microcontrollers, a potential corruption of the stored data in the memory is
possible due to several reasons. Error detection techniques are employed by the
semiconductor companies to verify the correctness of the data before or during the
execution of the software in the memory modules [8]. Adding extra ECC bits to
the original data is a technique that facilitates the error detection insuring the data
integrity to the system. The implementation on the TMSx570 devices is capable of
detecting up to 2-bit errors and correct single bit errors.

The ECC controllers are located inside each of the CPUs. This placement of the
ECC controller provides two basic advantages: The diagnostic covers a potential
error detection between the CPU and the memory. Moreover, the ECC logic is
tested itself for potential errors as produced faults are detected by the CCM-R4F
module.
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The Single-Error-Correction Double-Error-Detection (SECDED) ECC logic is a di-
agnostic for the on-chip SRAM and Flash memory modules. Accesses to the mem-
ory modules are protected with this embedded in the CPU logic. 8 bits of ECC
code are provided for 64 bits of data (or instructions) fetched from the memory.
The expected ECC code is calculated by CPU and compared with the one received
from the memory. This logic is capable of correcting a single bit error. Therefore, in
case of a single bit error, it is flagged and corrected by the CPU. In case of multi-bit
errors, they are only flagged by the CPU and the application has to act appropri-
ately in such a case.

The logic is different for each memory type and depending on the CPU. In case
of flash memory, the ECC check bits are programmed along the program data. In
RAM modules, the ECC code is generated by hardware with each write operation
and is stored in specific ECC memory location. The detection of an error is per-
formed during a read operation where the ECC bits from the special ECC space
are read along the data and if it is a single bit error it is corrected directly.
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Lockstep

The term lockstep is used in a variety of circumstances. In the military the march-
ing where the legs and the arms of a drilling soldier were absolutely in sync with
the corresponding of the soldier in front of, was called lockstep marching [24]. Ad-
ditionally, it is also referred to a protocol in multiplayer computer games that is
used to solve partially the look-ahead problem. This problem came up when the
latency of one client was used as a cheat method, while after this delay she knew
the steps of the other players. The lockstep protocol synchronizes the actions of
all the clients relatively to the higher latency client [26]. Moreover, a compensation
system is called lockstep where for example all the graduates of a law school that
are hired by a company receive the same salary, bonuses, promotions, regardless
their skills and working experience [25]. Generally, the term in all the aforemen-
tioned cases is used to indicate a synchronous or imitating movement. It is usually
expressed that something is “in lockstep with ...”, to show that it follows the latter.

In this research and in the embedded systems’ world, the Lockstep is a safety
feature that is integrated from semiconductor companies in families of microcon-
trollers that are used especially in safety-critical systems. The idea of the concept is
the same, but the implementation varies. In this section the Lockstep architecture
is described in a general manner, although the implementation, the architecture,
the placement of the cores and the details of its usability are specific for the Her-
cules family of Texas Instruments microcontrollers. Additionally, an alternative
implementation of Lockstep by Freescale is presented with significant differences
than the one by Texas Instruments. The purpose is to highlight a different way
that another leading company in the world of safety-critical systems targets the
functional safety of such applications.
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5.1 What is Lockstep?

The term “Lockstep” in the field of the embedded systems describes an error-
detection mechanism, employed by semiconductor vendor companies that con-
struct systems for safety-critical applications. Safety reliability and functional
safety requirements that are prerequisites in avionic and automotive electronic sys-
tems, are often satisfied with a hardware redundant architecture [10]. Lockstep is
a method to monitor and verify the correctness in the operation of a system [44]
by employing at least two processing modules performing identical operations.
Typically, the processors are synchronized to the same state during the system
start-up. The same tasks are independently processed by the processors operating
in lockstep and a real-time comparison of the output signals is performed. In case
of discrepancy in the output signals, an error signal is generated and further exe-
cution of the task is inhibited. Several mitigation techniques can be employed to
recover from the detected error by leading the system to a safe state where poten-
tially dangerous operations cannot be executed [10].

5.2 Reasons to use Lockstep

The lockstep concept is used in safety-relevant systems which require the detec-
tion of temporary or permanent errors during the execution of a task or a program.
Data corruptions occurring in a processor are more often undetected (“silent” er-
rors) [1].

In the literature, the kind of detected errors by the lockstep architecture are catego-
rized in several different ways. One approach is the soft and hard errors and these
terms are used to describe the persistence of the error. Soft errors describe these
that occur by a temporary anomaly (i.e Electrostatic Discharge (ESD) hit, noise
glitch) and lead to a bit or a logic gate flip in the core. Soft errors may be derived
from transient events such as cosmic radiation, radioactive decay, power supply
variations or cross talking [29], leading to unintended transient signals or condi-
tions in CPU cores or in the peripherals and their lifetime is typically 2 milliseconds
or less. This kind of errors can affect an instruction execution or computation, but
the next time that the same operation will be performed the error will not be re-
producible. On the other hand, hard errors are permanent and are caused by a
long term degradation of the silicon/logic over time. Hard errors may also occur
by corrupted memory cells or other circuit components due to ionizing radiation,
manufacturing inconsistencies [27], or exposure to high current which may cause
metal migration. Generally, they are caused by physical defect of the hardware and
they are not recoverable.
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In other source literature, the errors that lockstep architecture detects are classified
as follows [10]:

1. Permanent faults

2. Intermittent faults

3. Transient faults

In this classification permanent and transient faults are alternative terms to de-
scribe the hard and soft errors respectively. However, intermittent faults are a
special case that describe errors that occur either periodically, or at irregular inter-
vals under circumstances that several events performed simultaneously. This kind
of errors are difficult to detect as all the factors that contribute for their occurrence
should be present to reproduce them.

The lockstep architecture is an efficient way to detect all the aforementioned faults
and in some cases to isolate and/or correct them using a variety of enhancements
that are presented in the following section.

5.3 Lockstep implementation by Freescale

Freescale Semiconductor Inc., one of the leading companies in the world in the
construction of safety systems for automotive, industrial and consumer systems
has introduced the Lockstep concept into the dual-core MPC564xL MCU family.
The safety features of this family is targeting to applications that need to comply
with IEC61508 (SIL3) and ISO26262 (ASILD) safety standards [11]. This level of
safety is needed for systems such as:

• Electric power steering

• Short- and mid-range adaptive cruise control (up to 100m), RADAR and LI-
DAR

• Vehicle dynamic and chassis control

• ABS braking systems

• Electronic stability program (ESP)

• Blind spot detection

• Pre-crash detection
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• Hybrid electric vehicles

The implementation of this MCU is dual-core, dual-issue (To increase instruction
throughput, the processor can issue certain pairs of instructions simultaneously -
two instructions per clock cycle) [6]. Instead of using two MCUs with a primary
core executing the software and a checker core executing some safety diagnostic
software, MPC564xL family contains two “channels”, each consisting of a core,
bus, interrupt controller, memory controller and other core-related modules.
This MCU can be pre-configured to operate in two distinct modes:

1. Decoupled parallel mode (DPM) - independent core operation

2. Lockstep mode (LSM) - parallel core operation

Depending on the nature of the application, the developer has to employ the right
operating mode. The trade-off between performance and software transparency
has to be considered under the choice of the mode. In LSM, the two cores result
in the performance of one, while high diagnostic coverage and short detection in-
tervals without software interaction is achieved. On the other hand, in DPM, the
two channels work independently, providing higher performance, but lacking of
diagnostic coverage without software interaction at the hardware level [3].

More specifically, the redundancy in the architecture of MPC564xL family of freescale
is extended to more modules than only the core. The term in the safety manual of
the MPC5643LSM is called “Sphere of Replication” (SoR) and stands for the repli-
cation of the following components in order to detect permanent, dormant, latent,
and transient faults:

• e200z4 core (including Memory Management Unit)

• Enhanced Direct Memory Access (eDMA)

• Interrupt Controller (INTC)

• Crossbar Switch (XBAR)

• Memory Protection Unit (MPU)

• Flash Memory Controller (PFlashC)

• Static RAM Controller (SRAMC)

• System Timer Module (STM)

• Software Watchdog Timer (SWT)

• Peripheral Bridge (PBRIDGE)



5.4. Lockstep implementation on TMS570LS31x/21x by Texas Instruments 41

Figure 5.1: MPC564xL Block Diagram [12]

In LSM mode all the aforementioned components operate the same operations and
transactions and the supervisor module for the smooth and equal execution in sync
is called Redundancy Control Checker Units (RCCU). The role of the RCCUs is the
detection but not the prevention of failures at the point where the outputs of the
modules in sync are merged. The isolation of the fault is performed with an error
signaling by the Fault Collection and Control Unit (FCCU), which therefore allows
the device or the application to perform the appropriate operations.

Nevertheless, in the current research the main concern is the replication of the
core that is a common point between the various semiconductor companies and
the purpose is to reveal how this redundancy contributes in cooperation with the
other safety features that each microcontroller provides, to comply with the stan-
dards for the safety-critical systems.

5.4 Lockstep implementation on TMS570LS31x/21x by Texas
Instruments

In this section we describe the lockstep implementation on TMS570LS31x/21x of
the Hercules family of microcontrollers. The current research was based on a Texas
Instruments TMS570LS3137 Hercules Development Kit and focused on the imple-
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mentation, the architecture and the capabilities that are presented in this section.

Safety-critical systems require a run-time detection of errors that are derived from
a faulty behavior on the processor level. Two instances of Cortex-R4F processors
operate in a delayed lockstep (see Section 6.1) in order to prevent errors that may
lead to unsafe operating conditions. The CPU Compare Module for Cortex-R4F
(CCM-R4F) is employed in the Texas Instruments architecture to compare the out-
put signals of the two processors that run in a 1oo1D (one-out-of-one, with diag-
nostics). In case of a mismatch, an error is signaled to the Error Signaling Module.
Furthermore, a self-test method for the CCM-R4F module is applied at boot time
to detect any potential hardware errors on the module itself that could lead the
module to an unintended behavior. The three main characteristics of the CCM-R4F
module are [42]:

• Run-time detection for errors

• Self-test capability

• Error-forcing capability

5.4.1 Architecture and CCM-R4F module operation

The lockstep architecture and the interconnection diagram of the CCM-R4F mod-
ule is depicted in Figure 5.2. Two Cortex-R4F CPUs are fed with identical input
and their outputs are driven to the CCM-R4F for a match check. There is a delay
of 2 cycles before the entrance of the input signal to the Checker CPU and an equal
amount delay is coupled to the output of the Master CPU after it is propagated
to the system. This delay serves temporal diversity purposes that are described in
Section 5.4.6. In case of a mismatch in the comparison of the outputs from master
and checker CPU, a compare error signal is generated to notify the Error Signaling
Module. After a reset, 6 CPU clock cycles are required till the start of the compari-
son, in order to ensure that CPU output signals have been set to a known state [42].

The CCM-R4F can operate in four distinct operating modes:

1. 1oo1D lockstep

2. self-test

3. error forcing

4. self-test error forcing
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Figure 5.2: Interconnection diagram of CCM-R4F [35]

5.4.2 1oo1D Lockstep Mode

The 1oo1D is the default mode of the module after a start-up, where the afore-
mentioned comparison of the output signals from master and checker CPUs are
compared and an error flag is raised to the ESM. Upon a reset, the values of inter-
nal registers for the Cortex-R4F CPUs may vary. Therefore, to avoid an erroneous
computation in comparison, the application software must initialize registers of
both master and checker CPU with identical values, before they are used. In this
operating mode, the CPU compare error module generates two signals as a safety
mechanism to interface with the ESM: in case of a mismatch both “CCM-R4F -
compare” and “CCM-R4F self-test error” flags are raised to the ESM to ensure that
the error is detected even if one of the paths fail.

5.4.3 Self-test mode

In self-test mode, test patterns are automatically generated by the CCM-R4F to
determine its correct functionality. In case of an error detection that indicates a
hardware fault on the module itself, a “CCM-R4F - selftest” flag will be raised to
the ESM. After the completion or termination of the self-test, if no error occurred,
the self-test complete flag is set to notify the system to proceed appropriately.
Moreover, after the completion of this integrity test, the module remains in the
self-test mode until the appropriate register (MKEY: Mode Key Register) is set to
indicate the operation in a different mode. The following two tests are generated
by CCM-R4F in this order, to verify its proper functioning:

• Compare Match Test

• Compare Mismatch Test
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Each of these test patterns is applied on both of the inputs of CCM-R4F and clocked
for one cycle with a total duration of the self-test at 3615 CPU clock cycles. During
the self-test which is a non-interruptible task, both CPUs can work independently
of the test execution, but the comparison of their output signals is skipped while
the module is busy with its self diagnostic test. Furthermore, the self-test checks
only the integrity of the CCM-R4F module and not its memory mapped register
controls.

Compare Match Test

Four different test patterns are fed to the CCM-R4F in the compare match test.
These patterns contain identical vectors that are fed to both of the input ports of
the module simultaneously to check for output equality. In case of discrepancy,
the test is terminated, the self-test error flag is set and the self-test error signal is
generated. The table in Figure 5.3 depicts the vectors that fed to the input ports:

Figure 5.3: Compare Match Test vectors [42]

The duration of this test is 4 cycles where:

• 1st cycle: both CPU signal ports are fed with 1s

• 2nd cycle: both CPU signal ports are fed with 0s

• 3rd cycle: both CPU signal ports are fed with As

• 4th cycle: both CPU signal ports are fed with 5s

Compare Mismatch Test

In the compare mismatch test, patterns with one different bit are applied to the
input ports of the CCM-R4F module (see Figure 5.4). For instance, when a sig-
nal with all 1s is applied to the first line, a sequence of signals are applied to the
second, starting by flipping the least significant bit and on (Cycle 0,1,2,3, ...). The
comparison of the unequal vectors is expected to generate a mismatch in the pro-
portional bit (i.e bit 0 in cycle 0, bit 1 in cycle 1, ...) to indicate a correct functionality
without though propagating an error signal to the ESM.
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In case that a match is detected in any of the unequal comparisons, the self-test er-
ror flag is set, the self-test error signal is raised and the test is terminated, revealing
an unintended behavior of the module.

Figure 5.4: Compare Mismatch Test Vectors [42]

5.4.4 Error Forcing Mode

In error-forcing module, two non-identical signals are forced to the input ports of
the CCM-R4F module. More specifically, a hardcoded test pattern with a value of
0x5 is applied to the first input and 0xA to the second input respectively, expecting
a “CCM-R4F compare” error to be propagated to the ESM. As is described in the
1oo1D Lockstep mode (see section 5.4.2) the “CCM-R4F self-test” is also raised as
a safety mechanism in case of a path failure of the “CCM-R4F compare” signal.

This test ensures that an error between the CCM-R4F and ESM path is successfully
detected. If a fault is not detected in this mode, a hardware failure is present. The
duration of this mode is 1 CPU clock cycle and after its completion the mode is
automatically switched to 1oo1D Lockstep mode.

5.4.5 Self-Test Error Forcing Mode

In this mode an error is injected during the self-test of the module. In a normal
operation of the module, a “CCM-R4F self-test” flag is expected to be raised to
ESM. The error can be cleared through the application after the right operation of
the mode is verified.

5.4.6 Mitigation of common cause failures in CPU

In order to prevent common cause errors that can affect both of the pair of the CPU
cores, Texas Instruments employs some special techniques that at least can reduce
this possibility of simultaneously identical error appearance in both of the cores.
Temporal and physical diversity are practices to mitigate this common mode fail-
ure and the details of their implementation on the TMS570LS31x/21x family of TI
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microcontrollers are described in this section [35].

Temporal diversity

The first measure that is already presented in the Texas Instruments patent (see
Section 6.1) is related to timing and guarantees a temporal diversity between the
cores. The term “delayed lockstep” is used to describe the Lockstep implementa-
tion with this timing enhancement.

The clock input to one of the cores is delayed 2 cycles on the input side while the
output from the other is delayed 2 cycles on the output (see Figure 5.2). Therefore,
each core is executing a different operation at any given point in time. This way,
if there is a disturbance that might result in errant operation of the core such as
radiation, a voltage glitch, a voltage dip, etc., both cores will, again, fail in different
ways since they are executing different instructions at the point of the disturbance.

Physical diversity

Another consideration that is given to the design are placement/orientation of the
cores on the silicon. The 2 cores are rotated 90 degrees and flipped in relation to
each other with at least 100 um space in between. This is to give a physical di-
versity. Physical diversity gives some assurance of a different failure mechanism if
there is a manufacturing flaw causing physical damage to the die.

Figure 5.5: Example of orientation of the cores [35]

In Figure 5.5 a placement example of two cores on the silicon is illustrated where
the one is north-oriented and the other flipped-west. The common cause failures
that physical diversity is called to restrict might be due to manufacturing flaws
or even susceptibility to radiation due to the direction of some of the components
used in the core design. A simple example for a potential manufacturing flaw that
might be common to both cores without the physical diversity, suppose that there
is a geometry of a certain component that was prone to collecting moisture and it
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was processed in a way that this component was traveling parallel to some chem-
ical spray in the process. This might lead to trapped materials at this component
in the silicon but if the components were rotated and flipped it would make the
likelihood of trapping contaminates less likely. In this way, making the two cores
physically diverse can keep both cores from having the same defective component.

5.4.7 Lockstep behavior in CPU Debug mode

During a debug session, where the execution of the code is halted, several asyn-
chronous halting events occur, with a possibility to lead to a loss of Lockstep (in-
dication of non-existing errors). For this reason, when halting debug events are
detected, the CCM-R4F is automatically disabled. In order to set the Lockstep
mode on and the CCM-R4F in operational state, a CPU reset is required [42].

5.4.8 Error Signaling Module (ESM)

A brief overview of the Error Signaling Module is required in this chapter as it
is strongly related to the CCM-R4F module. The ESM collects and categorize the
errors that are derived by the hardware diagnostic tools, regarding their severity.
Low priority interrupt, high priority interrupt or an external pin action are poten-
tial responses to the hardware detected errors depending on their severity level.
The severity levels are divided into 3 groups, supporting up to 128 error channels
in total [42]:

Group No. of Channels Severity Level Interrupt Generation ERROR pin Behavior

Group 1 64 Low Severity Configurable Configurable
Group 2 32 High Severity Predefined Predefined
Group 3 32 High Severity No Interrupt Generation Predefined

Table 5.1: Groups of errors in ESM

The errors belonging to Group 1, indicating low severity, have a configurable in-
terrupt response and ERROR pin behavior. The Group 2 are considered as high
severity errors and an interrupt is always generated as well as the output on the
ERROR pin. Finally, the detection of the errors in Group 3, are high severity errors
that have already generated a CPU abort response and therefore they do not gen-
erate an interrupt. However, they always generate an ERROR pin output.
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Figure 5.6: ESM Block Diagram [42]

As already mentioned in the different operating modes of the CCM-R4F, all errors
that are related to this module fall into a Group2 category in the ESM. This means
that the interrupt and error pin behavior is fixed. i.e., an interrupt will always be
generated and the ERROR pin will be asserted.

5.5 Lockstep implementation on TMS570LC43x by Texas In-
struments

TMS570LC43x is currently the most recent microcontroller of the Hercules family.
The fist major difference is that the core has been upgraded to Cortex-R5F which
provides some enhancements to improve the performance of the device. The main
advantage of this migration to the Cortex-R5F is a lower latency in accessing pe-
ripherals and a hardware support for flushing lines in cache that have been mod-
ified in the main memory. The Hercules products with an integrated Cortex-R4F
core are built with only tightly coupled memory and by default no cache (i.e cache
memory is an option in these devices). With the integration of cache into the recent
microcontrollers a higher frequency is achieved [38].

The current research has focused primarily on the systems with Cortex-R4F CPU
cores. This section aims to emerge the main differences of the Lockstep implemen-
tation in the most recent microcontoller of Texas Instruments that is targeting to
safety-critical systems with the Lockstep implementation discussed in section 5.4.
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Figure 5.7: Block Diagram of CCM-R5F [40]

Regarding the comparison of the CPU outputs the concept is the same with the
implementation of TMS570LS31x/21x microcontrollers. A 2 cycles delay is applied
to the output of the Main CPU and an identical amount of delay to the input of
the Checker CPU. Before the delay stage, the output of the Master CPU propagates
to the system while after the delay stage is fed to the CPU Compare Module for
Cortex-R5F. CCM-R5F module receives the output signals of both CPUs and checks
for a mismatch. In case of a discrepancy, a compare error signal is raised to the
ESM module (see Figure 5.7).

The new lockstep-related feature of this microcontroller, is the implementation of
the VIM (see Section 5.5.1) in Lockstep mode. Two VIMs are running in lockstep
and their outputs are fed for comparison to the CCM-R5F. In case of a mismatch
a compare error is signaled to the ESM in the same way as with a core compare
error. Additionally two new run-time diagnostic features are integrated [40]:

• Checker CPU Inactivity Monitor

• Power Domain (PD) Inactivity Monitor

The former measure monitors the key bus signals of the Checker CPU to the in-
terconnect. The functionality of the Checker CPU is restricted to the execution of
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the same instructions with the Master CPU and propagation of the output signal
to the CCM-R5F module. It is prohibited to interact with the rest of the system,
while only the Master CPU is allowed to perform the transactions with memory
and peripherals. For this reason a number of key bus signals are monitored and
must be inactive. If an activity is indicated on them, an unintended interaction of
the Checker CPU occurred to the system. In case of detection of activity in any of
these signals (see Figure 5.8) is flagged as an error.

Figure 5.8: List of the signals that must be inactive in Checker CPU [40]

The latter diagnostic follows the same principle with the Checker CPU Inactivity
Monitor, but in terms of power domains. The Power Domain Inactivity Monitor
monitors the key bus signals of the inactive power domains that in a correct op-
eration must be inactive and isolated from the rest of the system. Any activity of
these signals indicates a transaction onto the interconnect which is an unintended
behavior (in case of a turned of power domain) and an error is flagged.

5.5.1 Vectored Interrupt Manager (VIM)

As aforementioned the Vectored Interrupt Manager (VIM) Module is operating in
lockstep in the same manner that the CPU cores do. VIM is the responsible module
for controlling and prioritizing the several interrupt sources that may occur during
the program flow. It is the same module for interrupt handling that is used on
TMS570Ls31x/21x microcontrollers, but it is enhanced with a redundant one to
operate in lockstep for increasing safety. Temporal diversity is also supported with
a delay stage of 2 CPU clock cycles (same as in the delayed-lockstep architecture
of the CPU cores) [40].
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Figure 5.9: Dual VIM for Safety [40]

The scope of this research is restricted to the lockstep operation. For more in-
formation about the kinds and the priorities of the generated interrupts and the
interrupt handling in the Hercules family of microcontrollers someone can refer to
the Technical Reference Manual (TRM) of the specific microcontroller.





Chapter 6

Lockstep Related Patents

Various semiconductor companies have settled patents for distinct lockstep archi-
tectures and several features for enhancement of its functionality and capabilities.
In this chapter the lockstep related patents are presented, emphasizing on the dis-
parity and the special characteristics that each invention has to demonstrate.

6.1 Delayed lockstep CPU compare (Texas Instruments)

The lockstep invention of Texas Instruments addresses a dual CPU architecture
microcontroller where the outputs of the CPUs are compared [29]. The two CPUs
execute the same program code, where a delay stage is applied to the output bus
of the first (CPU1) and a second delay stage is coupled to the input of the second
CPU (CPU2). The CPU compare unit is responsible for the comparison of the two
signals: the delayed output of the CPU1 and the output of the CPU2. The amount
of delay stages must be predetermined and equal and it can be a number of clock
cycles or fractions of clock cycles of the system clock. The signals that are com-
pared in the CPU compare unit are data that belong to the same operation of the
program code, while the time shift is compensated before reaching the comparator.

The slight time difference in the execution of an instruction by the two CPUs (re-
ferred as execution in a delayed lockstep) ensure the detection of a common cause
errors such as a short voltage drop or a glitch in the clock signal. Practical im-
plementations have shown that the appropriate delay to detect the majority of the
common cause errors is between 0.5 and 2 cycles of the system clock. The CPU
compare unit is adapted to report a match or mismatch in the comparison of the
two signals. In case of a mismatch, the system should handle the error detection
appropriately.

The system performance remains unaffected while the output of the CPU1 is di-
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rectly fed to the system before experiencing the delay stage and reach the CPU
compare unit. The role of the CPU2 is to feed the CPU compare unit with a second
signal that under normal conditions (without an error detection) should be identi-
cal to the delayed output signal of the CPU1. Therefore, the output of the CPU2 is
not propagated to the system and it does not affect the internal states of memories
or registers.

Figure 6.1: Prior art and Texas Instruments invention [29]

In the prior art as shown in Figure 6.1 on the left side, the CPU1 and CPU2 are
executing the same program code that are coupled via the input SYS_IN line at the
same time.

The output signals of the CPUs (OUT1, OUT2) are fed to the CCU (CPU Compare
Unit) and they are checked for match or mismatch. Moreover, they are propagated
to the system via the output buses SYS_OUT1 and SYS_OUT2. On the right side
of Figure 6.1 is depicted the current invention of Texas Instruments. The input bus
SYS_IN is directly connected to the CPU1 that is known as the master CPU while a
delay stage DEL2 interferes before feeding the checker CPU (CPU2) with the input
signal. The output of the CPU1, OUT1, is propagated directly to the system via
the SYS_OUT bus, but it is also coupled to a delay stage DEL1 which should be
equal with the delay stage used in the CPU2 (DEL2). The delayed output of CPU1,
OUT1d and the output of the CPU2 are fed to CCU to be checked if they are iden-
tical. In case of discrepancy the system is noticed via the compare output OUTc.
Regarding the read and write operations, both CPUs read data from the common
system memory, but only the master CPU is permitted to write and modify the
system state.
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6.2 Error detection and communication of an error location
in multi-processor data processing system having pro-
cessors operating in lockstep (Freescale Semiconductor
Inc.)

The current invention of Freescale Semiconductor Inc. facilitates the prevention
of a wrong lockstep operation due to some internal core errors. More specifically,
some internal errors, such as soft errors in a cache are not replicated to both of
the cores that operate in lockstep. As a result, the behavior of each core will be
different, leading the cores to fall out of lockstep [47].

The patent is referring to multi-core systems (>= 2 cores) that operate in lockstep.
The principle is that when a soft error is detected internally and an exception
is triggered, the other cores are forced to enter in the same altered state. This
imitation of the behavior of the first core from the others is achieved with an error-
signaling interface. It receives information regarding the altered internal state from
the core that experiences it and provides this information to the other cores that
they have to emulate the same altered state. The information that is propagated
may be the type and the location of the error, facilitating to distinguish it from
different predetermined types of errors.

When a machine check exception is generated in one core internally indicating a
hardware failure, the cross-signaling interface forces all the other cores to generate
the same exception. Potential causes of such an exception could be a parity error,
a decode error, logic error, and single and multi-bit errors discovered using error
correction code (ECC), parity, or other error detection mechanisms. An alternative
implementation to the machine check exception could be a cache control opera-
tion like a “miss” condition to be forced by the error-signaling interface where all
the cores perform an auto-invalidation of the cache location and the location of
the cache is reloaded. In case of simultaneous errors, a logic placed in the error-
signaling interface can decide which errors will be imitated by the other cores or
which cores should be reset.
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Figure 6.2: Error-signaling Interface in a lockstep architecture by Freescale [47]

A simplified model of the current patent is illustrated in Figure 6.2. The system in-
cludes two substantially identical processors operating in lockstep, two memories
that are bi-directional connected to the system interconnect and may be static ran-
dom access memory (SRAM) or dynamic random access memory (DRAM) or flash,
an error logic coupled in between of the two processors which bi-directionally
sends and receives control signals to the processors and the lockstep logic includ-
ing a bus interface unit (BIU) that is employed for the connection of the lockstep
logic to system interconnect.

The lockstep logic includes the comparator logic that compares the outputs of the
two (or more) processors and reports any potential error indicating that the pro-
cessors do not operate in lockstep mode anymore. Furthermore, it may acts as a
coordinator to couple the non-failed processor to the system interconnect via BIU
or trigger an exception or directly reset one or both processors.

The current embodiment is referring to lockstep operation of the processors, where
both execute the same program code simultaneously, accessing the same addresses
and anticipating identical outputs. A read request accesses the same data, saving
the content in their respective cache memories exactly on the same clock cycle and
in the same location. On the other hand, they can also operate independently exe-
cuting different instructions and operating as a multi-core system.

To conclude, this patent presents a solution in the case of an internal soft error in
one of the processors that operate in lockstep. In case of an exception signaling
in one of the processors as a response for example in a cache error, the proces-
sor will execute a different set of instructions (i.e interrupt service routine). The
simultaneous occurrence of such an error in both of the processors is rare and as
a result the lockstep operation will fall out of the correct functionality. The imi-
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tation of the erroneous state in the processor that operates without experiencing
the error through an error signaling interface in order to keep all the utilized pro-
cessors in a sync manner, is the proposal of Freescale that is analyzed in this patent.

6.3 Method and system for fault containment (Infineon Tech-
nologies AG)

The current invention by Infineon Technologies AG. enhances the prior art delayed
lockstep implementation with a method to prevent the propagation of the detected
error to the system [2].

As shown in Figure 6.3 on the upper side, which is substantially the implementa-
tion of Texas Instruments delayed lockstep mechanism (see Section 6.1), an error is
detected after the amount of delay unit2 (usually equal to delay unit1 and amounts
between 0.5 and 2.5 clock cycles) when the output signals of the CPUs are checked
in the comparator unit and in case of a mismatch the system is getting noticed. As
a result, till the detection of the error it is possible that erroneous data in a write
transaction are propagated to a system interconnect or a local SRAM. The embod-
iments of this patent are targeting to the prevention or containment to this error
propagation to the system.
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Figure 6.3: Prior art delayed lockstep implementation and Infineon’s enhancement [2]

In a first approach for corruption protected delayed lockstep CPUs, a method is
utilized as is demonstrated on the bottom of Figure 6.3. A further delay unit2 is
placed directly to the output signal of CPU1 and this delayed version is fed to the
comparator unit for a match check with the output of the CPU2 before it is fed to
the system in subsequent stages. In this regard, the comparator unit has the time to
generate an error signal in case of a mismatch, before the corrupted data propagate
to the system. In this way, the delay unit2 may delay a signal that is related to a
write transaction and prevent an erroneous write operation. For this purpose, the
error blocking unit is employed and with this architecture write transactions can
be blocked or totally be aborted. The corruption of the subsequent stages of the
system can also be prevented by operating these faulty write transaction to known
memory ranges while part of the system will still be functional.

The invention suggests different implementations of the delay unit2: instead of de-
laying all the signals, only the write operations may be delayed or only a category
of write transactions, i.e write operations to peripherals and to a memory attached
to a shared internal bus.
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Figure 6.4: Flow diagram of the Infineon’s invention for avoiding error propagation in multi-CPU
systems [2]

Variety of implementations are also proposed for the error blocking unit (alterna-
tive methods for step 65 in Figure 6.4): The first that is already mentioned is to
block a write transaction that is performed by the first CPU. A second case may be
to let a write transaction to propagate to the system and in case of a mismatch in
the comparator unit to send a command to abort it. Moreover it may modify the
address of the write transaction in a predetermined location that is considered as a
“safe” storage for this purpose. Finally, an implementation could be to utilize error
detection/correction code in a write operation and an abort will be generated by
the error blocking unit by corrupting the address signature of the write transaction.

Another approach is presented by employing two extra comparator units to verify
said protection condition that the output of the comparator unit1 (error signal) and
the output of the comparator unit2 (negated error signal) correspondingly agree.
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Figure 6.5: Two extra comparator units for comparison of the error and the negated error signals [2]

One issue that is mentioned in the current patent is the protection of the error
blocking unit. Specifically, to integrate a safety mechanism to resolve a potential
dangerous behavior of the error blocking unit where it could generate an error sig-
nal in absence of a lockstep error. The full compliance with the ISO26262 standard
requires the protection of this unit, without analyzing though a specific method
for this enhancement.

6.4 Method and apparatus for recovery from loss of lock
step (Hewlett-Packard Development Company, L.P)

Hewlett-Packard demonstrates a method for recovery from loss of lockstep [23]. In
case of a delayed correction of this loss, the whole system may crash. In a dual-
core system, in case of one failed processor the whole system may halt processing
if the other core is still full functional. As was already discussed in Section 6.2 that
is described the proposal of Freescale for the same issue, the loss of lockstep may
occur from a data cache error. A prior art is also presented for the loss of lockstep
(see Figure 6.6) where in case of malfunction of the one of the cores, the architected
state of the other core (considered as “good”) is saved to the memory. Then, both
of the cores are reset and reinitialized and the architected state is copied from the
memory.
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Figure 6.6: Prior art for prevention of loss of lockstep [23]

This prior art method is not efficient as it makes the cores unavailable for an
amount of time with burden on the performance of the system. Additionally, if
this amount of time that is required to recover from the loss of lockstep is long, it
may lead to the crash of the whole computer system.

The invention of Hewlett-Packard employs an apparatus comprising of at least
two processor units operating in lockstep, at least one idle processing unit and a
controller unit that is capable of copying an architected state of an operational pro-
cessor unit to the idle one. The processor unit that experiences the loss of lockstep
generates a signal and after the transfer of its architected state to the idle process-
ing unit, it goes offline.

In Figure 6.8 is depicted a system that contains three pairs of CPUs, each of them
operating in lockstep (CPU0 in lockstep with CPU1, CPU5 in lockstep with CPU4,
CPU2 in lockstep with CPU3). In lockstep mode, each pair is connected to a lock-
step logic (see Figure 6.7):
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Figure 6.7: Pair of processors in lockstep mode connected to a lockstep logic [23]

The node controller is coupled in between and from its perspective each pair ap-
pears as a single processor. In lockstep mode the pairs are first connected to a
lockstep logic (Figure 6.7) and then to the node controller (Figure 6.8). In one im-
plementation the node controller is aware of the architected state of all the pairs
that are connected to it. Another case may be that the node controller is used just
as means for communication between the processors. In this way, it could store
internally or to an external component of the system the architected state of the
processors. A further scenario could be that the node controller will facilitate the
storage of its architected state to another processor of the system. Finally, one pro-
cessor could have the role “hot standby” that will be idle and in case of a failure
(loss of lockstep) on another processor, it could recover it by adapting its archi-
tected state with the help of the node controller.

Figure 6.8: Architectural details for recovery from loss of lockstep [23]

A flow diagram for the recovery of lockstep via the “hot standby” processor is
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demonstrated in Figure 6.9. An example case would be a process depicted in the
first step of the flow diagram is executed in lockstep on the pair of CPU0 and CPU1
of the Figure 6.8. An error event is detected by CPU0 indicating an impending loss
of lockstep and it signals the node controller for this failure. The node controller
copies the architected state of the pair CPU0/CPU1 to the idle pair CPU2/CPU3.
At this point, the system operates without the existence of a hot standby pair un-
til the appropriate actions execute on the first “infected” pair (i.e all caches are
flushed on the CPU0/CPU1). Finally, the node controller reboots the CPU0/CPU1
pair of processors and set them as the new hot/standby pair.

Figure 6.9: Flow diagram for recovery from loss of lockstep - “hot standby” processor [23]

6.5 System and method to increase lockstep core availabil-
ity (Infineon Technologies AG.)

An alternative method for increasing lockstep core availability is presented by Infi-
neon Technologies AG [27]. In a simple implementation of a lockstep architecture
in prior art, when a core-related error occurs the entire system (both CPUs and
peripherals) is placed in a reset state to recover by the error. This method has the
drawback of a delay of tens of milliseconds that could not satisfy the temporal re-
quirements of a real time safety-critical system. Another technique that efficiently
increases the core availability is the employment of one more CPU (three CPUs
running in lockstep mode) and with a majority voting system to detect the defect
CPU and recover, while the functional CPUs continue with the execution of the
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software. Although this method is robust and efficient, the cost, the power con-
sumption and area on the silicon are increased.

The invention of Infineon involves two CPUs operating in lockstep (master and
checker in a delayed lockstep or not) and a state buffer where the state of the mas-
ter CPU is stored. In case of a mismatch in the comparison of the output signals of
the two CPUs a control signal is generated and the stored state is loaded to both
of the CPUs from the state buffer.

Figure 6.10: Schematic diagram of the Infineon’s patent, introducing the state buffer [27]

As shown in Figure 6.10, each of the CPU cores include a state control logic. Var-
ious implementations that are proposed in the current patent, propose different
state control logic functionalities. In one case they control the operation of their
respective CPU core, being capable of pausing and restarting them and writing
their current state to the state buffer. The saved state from the state buffer is also
loaded with the help of this state control logic. In other implementations it sam-
ples periodically the master CPU saving its state to the state buffer or a sampling
is triggered on an event occurence such as the start of a task execution.
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Figure 6.11: Flow diagram where the save state is triggered on a task start [27]

In the case that the flow diagram in Figure 6.11 demonstrates, the state control
logic of the master CPU saves the current state to the state buffer by generating
a control signal. The current state is interpreted in the voltages and/or current
values, or their logical high and low values of the circuit components that the CPU
contains, or the values of the local registers of the main CPU. After the completion
of the storage of the current state, the first instruction of the task is received by
the memory module and is executed in lockstep mode. If the comparator detects a
mismatch, it generates a control signal notifying the state control logic of the CPU
cores (see Figure 6.10). In another implementation a control register is employed
as shown in Figure 6.10 that is notified by the comparator for a mismatch and
it generates the control signals for controlling the state control logic of the CPU
cores. In any of the aforementioned scenarios, the state control logic of the CPU
cores receive a control signal that there is a discrepancy in the comparison of the
outputs. Therefore, it generates a read signal to the state buffer, the saved state is
retrieved and the execution of the task restarts.

To sum up, a known “good” state of the master CPU core is saved in the state
buffer before the execution of a task. In case of a comparison error in the lock-
step execution, the core states are reverted back to the known “good” state and
the instructions are re-executed. The benefit of this method is that in an erroneous
situation only the CPU cores are winding back to a safe state and not the entire
system (i.e peripherals). As a result, the core availability, meaning the time that the
core is operational and able to execute instruction sets is significantly increased.

Several enhancements are proposed in this patent, such as using a counter to pre-
vent an endless loop of reverting to the same state when executing the same task
which could derive from a permanent error. However, the purpose of this chapter
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is to give an insight about the potential problems and the suggested solutions for
the lockstep architecture and not to analyze all the details of each invention.

6.6 Computing with both lockstep and free-step processor
modes (Hewlett-Packard Development Company, L.P.)

The current invention demonstrates a method for systems comprised of a set of
two or more processors with capability to operate in two step modes [1]: lockstep
or free-step mode. Strongly depending on the severity in the safety requirements
of a task it can be assigned to a processor to work in a free-step mode, or to be
coupled in a set of two processors for execution in lockstep mode. The benefit is an
optimal way to trade-off between high performance and system integrity by using
free-step or lockstep mode respectively.

Figure 6.12: A computer system including four processors with the suggested architecture by
Hewlett-Packard [1]

The example system in Figure 6.12 includes four processors placed in pairs (P11-
P12, P21-22) and each pair interfaces to the rest of the system by the Core Elec-
tronics Component (CEC). The rest of the system consists of memory (RAM or
hard disk, etc.) and I/O channels. The CEC includes an interface logic for the
communication of the processors with the rest system and a loss-of-lockstep logic
that controls the error detection by the comparison of the outputs of the processors
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when the system is operating in lockstep mode. In case of operation in free-step
mode the output data from the processors propagate to the system via the interface
logic bypassing the LOL. In memory beside the data, processes and the operating
system, is stored a configuration database that provide information for the opera-
tion of the system:

• Distinguishing the step mode of each CPU (free-step or lockstep mode)

• Some criteria that the above mode assignment could change dynamically

• A list of processes that must run in lockstep mode (By default, processes run
in free-step mode if they do not exist in this list)

In each process call, a look-up operation is performed in the database to check if
the process requires execution on a single processor in free-step mode or on a pair
of processors in lockstep mode. Moreover some special rules could determine the
running mode of the process such as the time of execution or resource require-
ments of the process. For instance, in a nightly execution could be set a rule for
forcing a lockstep mode as the performance is not as important as the error de-
tection at that time. In one of the variations of the invention, resource utilization
by operating system could also be employed to determine if a switch to free-step
mode of an overloaded pair of processors, or a reallocation of the process to an-
other pair should be performed.

Figure 6.13: Flow graph of a potential scenario using the current invention [1]

In the scenario presented in the flow graph of Figure 6.13, the steps S21-S24 are
executed in parallel with S11-S14. As aforementioned, the steps S11-S14 check the
configuration database and assign the process to a single or a pair of processors
for free or lockstep mode respectively. At the same time, resource allocation of
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the processors is monitored by the operating system. In step S22 if one of the
processors is stressed, a reallocation is performed in terms of step mode in S23,
which may be performed dynamically or after a restart of the system.
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Results

7.1 Experiments

Two experiments were conducted in the current project related to the Lockstep ar-
chitecture of Texas Instruments TMS570LS3137 microcontroller. The purpose of the
first is to demonstrate how the Lockstep architecture can be employed in a safety-
critical application in order to detect soft and hard errors that may occur during
the execution of the software. The second experiment presents the behavior of the
CPU through a GUI that is provided with the HiTex SafeTI kit. It calculates the
time that is required from an error occurrence till the error detection.

The purpose of the experiments is to demonstrate how the Lockstep architecture
can be employed in a safety-critical application on the TMS570LS3137 microcon-
troller and to calculate the time that an error will be detected. The hardware that
was used is the TMS570LS3137 Hercules Development Kit (see Section 3.1.1) and
the SafeTI Hitex Safety Kit - TMS570LS3137 (see Section 3.1.2).

7.1.1 Error-Forcing Experiment on TMS570LS3137HDK

The purpose of the experiment is to give to the reader an overview of how the
TMS570LS3137 microcontroller has to be configured in order to operate efficiently
in Lockstep mode. Regarding the hardware, the TMS570LS3137 Hercules Develop-
ment Kit was used to create a simplified application with the programmable push-
button and the LEDs that are integrated on it. In terms of software the HALCoGen
04.03.00 was used to configure and generate the initialization code for the micro-
controller and the peripherals that were employed in this experiment and the Code
Composer Studio IDE 6.1.0 for the development and debugging (partially) the ap-
plication.
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From the aforementioned in the Lockstep implementation of TMS570LS3137 and
CCM-R4F, the Lockstep is active in “1oo1D Lockstep Mode” by default and per-
manently. The developer is not able to disable it.

The current experiment is kept as simple as possible in terms of functionality, in
order to avoid the complexity in code that a more sophisticated application could
involve. The validity of the experiment is not affected, while the error detection
is independent of the application complexity and the size of the code. The errors
that may occur are exclusively related to the hardware and the conditions that the
system could be physically exposed to.

What is visually perceived during the execution of the code is that when the pro-
grammable push-button is pressed, it turns two LEDs on, on the evaluation board:

• The red LED indicating that a hardware error is present on the system and is
turned automatically on

• The white LED that is set by the code when the button is pressed

If the button gets pressed for a second time, it turns both of the LEDs off. The
behavior of this application was designed with the purpose to artificially gener-
ate an error when the user presses the programmable button and monitor if it is
efficiently detected by the comparator module. When the error is detected the ex-
ecution of the software is halted. With a second press of the button the error is
cleared from the ESM module and the execution of the software continues.
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Figure 7.1: Entering Error-forcing mode by pressing the pushbutton

More specifically, in HALCoGen the RTI and GIO drivers need to be set active
(see Appendix F for the HALCoGen configuration screenshots). The RTI driver is
utilized to integrate a small delay (configured for 500 ms delay in the Compare 0
Period of RTI1 Compare) after the button is pressed to avoid the button bouncing.
The GIO driver is enabled in order to use the GIOA7 pin of the evaluation board
that is assigned to the programmable push-button. Additionally, the following
interrupt channels should be activated:

• 0 for ESM High,

• 20 for ESM Low,

• 2 for RTI Compare 0,

• 9 for GIO Int A

Finally, the interrupt for the GIOA7 pin (Bit 7 in GIO PortA tab) should be enabled.
After setting correctly this configuration to the HALCoGen, the code should be
generated and we are ready to develop the application in CCS. The main advantage
of the generated code by HALCoGen is that it generates all the necessary start-up
code for the initialization of the controller and driver-specific code that the user can
easily configure via its graphical user interface. For example, a file “sys_core.asm”
is generated automatically to set both of the cores to an identical state (i.e their
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register values) as is a prerequisite for the efficient use of the Lockstep diagnostic
(see Section 5.4.2).
The scope of this experiment is the CCM-R4F configuration. It is a simple mod-
ule in terms of configuring and manipulating the detected errors. It is controlled
by two 32-bit registers: The CCM-R4F Status Register (CCMSR) and the CCM-R4F
Key register (CCMKEYR). The former contains information about whether the self-
test is completed, or an error is detected and what was the specific pattern that the
self-test failed. The latter is used to set or read the mode of the module. For more
information regarding the registers of the CCM-R4F module, please refer to Ap-
pendix A.

The CCM-R4F module is set to “Error-forcing Mode” by setting the CCMKEYR
register to 0x09 (see Appendix A). The input patterns of 0xAs and 0x5s are fed to
the CCM-R4F module and a compare error is generated.
The current example application has employed a flag ESM_High_Int_Flag that is
set to the ESM Interrupt Service Routine (ISR). The HALCoGen generated code
determines the priority group that each detected error belongs to (see Section 5.4.8
for error categories) and executes the corresponding code regarding the severity of
the error. This is the point where the application developer has to deal with the
detected error depending on the safety requirements and the temporal constraints
of the application. For the sake of this experiment the ISR is empty while the
purpose is to wait for the user to press the button and clear the error. Therefore,
with a second button press, the ERROR pin is cleared and the execution of the
application continues.

7.1.2 CCM-R4F Experiment with Hitex Safety Kit- TMS570LS3137

The SafeTI Hitex Kit is an evaluation board implemented by Hitex in cooperation
with Texas Instruments for assessing the safety features of the MCU. The kit has
2 Hercules MCUs on it. One is the primary MCU and the second is used to inject
faults. The software tool can be used to choose and profile the reactions of the
main MCU.

The purpose of this experiment is to highlight the capabilities that this evaluation
kit provides related to the Lockstep architecture and the CCM-R4F module.

Measurement of Test Execution Time

The profiling window in the HSK Monitor GUI provides the capability to perform
time measurements for certain tests. In the drop-down menu when selecting the



7.1. Experiments 73

CCMR4 module which is the main concept of this project, 3 tests are available and
they are executed when the user presses the “Profiling” button:

• CPU Lockstep:

The “CPU Lockstep” performs a self-test of the CCM-R4F module (see Section
5.4.3) and the result of this test is depicted in the Figure 7.2. The amount of time
that is required for a self-test of the CCM-R4F module is 14 usec as is shown on
the right bottom corner of the HSK-Monitor GUI.

Figure 7.2: CPU Lockstep Test Time Measurement

• CPU Error Forcing Test:

The execution of the “CPU Error Forcing” test reveals the duration of an error de-
tection that is applied on the compare error output signal of the compare unit (see
Section 5.4.4). The derived time that is displayed in the HSK-Monitor is 15 usec.
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Figure 7.3: CPU Error Forcing Test Time Measurement

• CPU Self-test Error Forcing:

This test forces an error at the self-test error signal (see Section 5.4.5). Regarding
the HSK-Monitor GUI the duration of this test is 6 usec.

Figure 7.4: CPU Self Test Error Forcing Time Measurement

Run-time Injection of Error and Time Detection Measurement

The application that is integrated into the HSK, monitors and implements the ap-
propriate conversions of the temperature and acceleration values that are derived
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from the corresponding sensors that are integrated on the board. In Figure 7.5
we can observe the behavior of the application when shaking the evaluation board
and the acceleration values change rapidly. The tab “Application” displays contin-
uously these values as shown in Figure 7.5.

Figure 7.5: Temperature and Acceleration Values in HSK-Monitor GUI

This part of the experiment is targeting to demonstrate the basic feature of the
HSK that is the run-time injection of errors. In “Validating & Profiling” tab when
“Lock Step Compare” is selected and the user presses the “INJECT” button, an er-
ror is injected from the C&M MCU to the SDUT MCU (see Section 3.1.2). The error
detection time of the injected error is displayed in the right bottom corner of the
HSK-Monitor GUI and in the measurement that is depicted at Figure 7.6 is 17 usec.
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Figure 7.6: Lockstep Compare Run-time Fault Injection

7.1.3 Conclusions

The first experiment is a demonstration of setting the CCM-R4F module in “Error
Forcing” mode. The fault injection / forcing is the only mechanism to make an
error occur purposefully and reliably. In order to conduct more sophisticated ex-
periments it would require to create a hard fault in the silicon by disassembling the
MCU and create a hard fault in. To create a soft error it would be possible by sub-
jecting the MCU to a concentrated amount of radiation (alpha and beta particles)
without ensuring that it would create only a core compare error without affecting
other elements in the silicon.

The aforementioned testing methods were not possible to be performed in this
project due to lack of the special required equipment in the company’s laborato-
ries and the high cost of acquiring this. Similar experiments are performed by the
semiconductor companies to ensure the right operation of their Lockstep architec-
tures.

The idea of run-time fault injection by a secondary MCU is the innovation of the
Hitex-SafeTI-Kit and is useful to assess the behavior of the primary MCU via the
well structured user interface that is provided. What was observed during the
conduction of the experiments for the time measurement is variations in the fault
detection time. For instance, 2 subsequent “CPU Lockstep” error injections result
in different fault detection time. Initially, we did not expect a variation while this
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time should be deterministic. A Lockstep error occurrence is critical and generates
the highest priority interrupt. After investigating the way that an error is injected
in the primary CPU, the variation in time detection was justified. When the safety
application gets the command to “INJECT” a fault the following sequence of steps
happens:

1. An I/O pin is raised to signal the fault injection request to the monitor

2. A few instructions are executed to check which kind of failure to inject

3. A function from the SafeTI Diagnostic Library is called to cause the fault
injection

4. After the fault injection in the Hardware, an ESM error signal is raised

5. In the ESM IRQ handler another pin is raised indicating to the monitor that
the fault is detected.

The steps that occur in a fault injection in the C&M and SDUT devices are demon-
strated in Figures 7.7 and 7.8 respectively.

Figure 7.7: Dataflow of C&M Device In a Fault Injection Operation [33]

Figure 7.8: Dataflow of SDUT Device In a Fault Injection Operation [33]

As a result, during the pre-work for the error injection, peripherals or OS interrupts
may occur and they add overhead to the detection time. This overhead makes the
measurement of the detection time non-deterministic. In simple words, the reason
is that the fault is injected by software and is not a realistic case where a hardware
error generates the highest priority interrupt. More specifically the error detection
time in “Error forcing” mode would expected to be 1 CPU clock cycle, as is the
duration of the Error-Forcing test (see Section 5.4.4).

HSK integrated software utilizes the functions of the SafeTI Diagnostic Library
provided by Texas Instruments for the operation of the safety features. The profil-
ing time measurements of our experiments deviate from the timestamps that are
presented in the manual of the SafeTI library:
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Figure 7.9: SafeTI CCM-R4F Related Functions Time in usec[20]

The CCMR4F_SELF_TEST in Figure 7.9 corresponds to the “CPU Lockstep” profil-
ing test (14 usec), the CCMR4F_ERROR_FORCING_TEST to the “CPU Error Forcing
Test” (15 usec) and the CCMR4F_SELF_TEST_ERROR_FORCING to “CPU Self-test
Error Forcing” (6 usec) respectively.

To sum up, the current project covers all the potential experiments that could be
conducted related to Lockstep architecture for the available hardware. The restric-
tions in Texas Instruments implementation (i.e Lockstep mode is disabled in Debug
Mode) do not give the opportunity for more sophisticated experiments. Finally, the
Hitex SafeTI Kit provides an innovative way of run-time fault injection to the main
MCU using a “helper” MCU, but the fault detection time measurement is not a
useful feature for our experiments while the values are not realistic and may vary
in different consequent fault injections.



Chapter 8

Lockstep In Avionics

This chapter focuses on the process of verifying a COTS hardware component in
the special field of Avionics and how the Lockstep architecture should be treated
during the certification process. Moreover, an example use case of Lockstep archi-
tecture in an avionic system is presented.

8.1 Certification Actions

One of the research questions for this project is “How Lockstep should be treated in
the certification process of an avionic system?”. As was already mentioned in chapter
2.1.3 the certification process is applied at a system level. As a result we cannot
conclude if the Lockstep architecture can be employed in avionic systems or not
and under which DAL is suitable to use such an MCU. It is strongly dependent on
the nature of the application and the hazards that could derive.

For a COTS hardware component as is the TMS570LS3137 MCU a series of analysis
is required (i.e SEH or CEH component, hazard analysis, allocation of hardware
component to each function and so on). Although, such an analysis is out of the
scope of this project and impossible in absence of a specific system and application.
Instead, we focused on how this processor should be treated in a certification pro-
cess. Following a list of requirements that are included in the “CAST-32 Multi-core
Processors” paper provided by FAA (the analysis regarding the Lockstep architec-
ture is attached in Appendix G) we are confident to claim that the TMS570LS3137
MCU should be treated as a single-core processor. Beside the fact that the CAST-32
paper mentions that:

“This paper does not apply to the following MCP architectures:

• Two core processors in which both cores host the same software and execute that
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same software in Lockstep so that their outputs, based on identical input data, can be
compared for use in a safety-critical application.”

we followed thoroughly the list of requirements that are provided because as we
have already noticed, each Lockstep implementation may be different in terms of
shared resources, system availability and so on.

This analysis contributes to a potential certification process in a system that will
employ such an MCU. Certification experts from Airbus Defence and Space have
the knowledge and the expertise to follow the guidelines dealing with single-core
processor systems. Therefore, this project may be the “spark” for the integration
of Lockstep architecture MCUs in avionic systems.

8.2 Example Lockstep Use Case

It should have already become clear that it is not the optimal way to present a
specific example of a project without having performed a functional-hazard anal-
ysis and clear requirements. Nevertheless, a simplified example application of a
Lockstep architecture, presented in a very abstract way could help the reader to
understand how such an MCU could be employed in a safety-critical system and
the extra benefits that this could offer.

Beside the fact that the rate of aircraft engine failures have dramatically decreased,
at the point that flight crews is most likely that will not ever meet one in their
whole career, it still remains a possibility. Because of this infrequent occurrence
of an engine failure the crew is not always able to identify and to handle such a
malfunction [9]. As a result, erroneous operations of the crew in such a case could
lead to devastating consequences for them and for the passengers.

The engine is likely the most complex and crucial component on the aircraft. It is
responsible for hundred calculations and as a result a main part of the safety relies
on this component. In our example, we will focus on the fire detection scenario of
the engine. In avionics, there is the principle of keeping the aircraft trajectory as
the highest priority duty [9]. Thus, in case of an engine malfunction, the system
should stabilize the aircraft trajectory first, before proceeding with further actions
to resolve the engine problem. This could probably cause a larger damage to the
engine but it would help to ensure the safety of humans and the aircraft itself.

In our scenario we introduce a lockstep processor into the aircraft’s engine. One of
the functions of this MCU is to receive the raw values from temperature sensors,
to convert them to Celsius degrees and in case of exceeding the acceptable limit
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to notify the crew and the system controller via the Ethernet interface to prevent a
fire. After taking the appropriate actions to stabilize the aircraft trajectory (i.e acti-
vate a redundant engine) the system sets the defective engine to idle state. In high
altitude the level of radiation that occurs from cosmic rays is significantly high.
As is already mentioned, such a radiation can cause a bit flip in the core of the
system that executes this temperature calculation. In case of such a bit flip during
the conversion from a single-core MCU without any diagnostic, an erroneous fire
alarm could be raised. The erroneous calculation could end up in a non-realistic
over-limit temperature value, leading to an undesirable deactivation of the engine
and getting the flight crew into trouble. In presence of a Lockstep MCU, such an
error would be detected and could temporarily set the system into a safe-state. The
two cores operating in Lockstep, most likely would not experience the same bit flip
and they would produce divergent outputs. This discrepancy in the comparison of
the output signals would generate an error.

From this point and on, everything would depend on the system requirements.
For instance, if the system could handle to “wait” the time that is required for a
soft-reset of the MCU, it could be determined if the error is temporal or permanent.
In case of permanent error the system could finally set the engine idle and enable
a redundant one. In case of a soft error, a reset of the system could be enough to
continue operating efficiently.

In this example, we tried to eliminate the complexity of such a system and fo-
cus only on one functionality and one hazard: How the radiation could affect
the conversion of the temperature values and how the Lockstep architecture could
facilitate the system designer to mitigate this malfunction. The general safety ar-
chitecture (i.e a voting system compromising of multiple instances of the Lockstep
MCUs, or multiple dissimilar temperature sensors, needed to comply with DAL
A requirements that such a system would most probably require) is purposefully
skipped. The purpose of this Lockstep use case is to introduce the reader in think-
ing of the usability of this architecture in complex systems that need to comply
with stringent standards and fulfill safety requirements to prevent hazards that
could affect humans and the environment.





Chapter 9

Retrospective

In this chapter we summarize the project objectives, highlighting what has been
achieved and how both company and scientific community could benefit by this
research. The discussion section describes the challenges and restrictions during
this project and the philosophy of Texas Instruments for functional safety from the
Hercules family MCUs point of view. Moreover, the Future Work section includes
ideas how this current project could be extended in scientific and practical terms.

9.1 Discussion

The objectives of the current project were successfully covered providing evidence
for each aspect of a Lockstep architecture and especially for the available hardware,
the TMS570LS3137 microcontroller by Texas Instruments.

Initially we investigated the term “Lockstep” and its relation to safety-critical em-
bedded systems. The experiments demonstrate how to configure the Lockstep in
the desired mode and how to perform the only potential experiment by setting the
CCM-R4F module in “Error-Forcing” mode, causing artificially an error. Addition-
ally, the HiteX SafeTI Kit was employed while it is advertised as a great tool for
the assessment of the safety features of the Hercules family of microcontrollers. It
utilizes a clever concept of a run-time injection of a fault with a simple button click
via the provided GUI. Although, the time measurements are not realistic, while the
errors are produced by software which adds overhead to the real fault detection
time. Most likely it is more realistic for the assessment of other safety features that
are out of the scope of this project.

The current project contributes to the company as information material for a po-
tential future use of Lockstep architecture in the innovative avionics systems that it
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produces. Moreover, it highlights an obscure, in terms of literature, but interesting
safety feature that is already a state of the art in automotive, medical and industrial
applications.

The following research question that was thoroughly investigated was the reasons
to employ a Lockstep based MCU. A simplified answer would be that it is a di-
agnostic for core-level error detection. Both soft and hard errors are detected (or
even corrected, depending on each implementation) that occur by exposure of the
system to high radiation levels or a malfunction that occurred during the manu-
facturing process.

Furthermore, the main available literature that is not strongly dependent on the
Hercules family of Texas Instrument was derived from the patents of other semi-
conductor companies. The demonstration of alternative methods either in terms
of hardware architecture or in error detection / correction mechanisms reveal the
two main challenges in such a system:

• Synchronization of two cores - Different methods are utilized for the efficient
in Lockstep operation of the two cores. In case of running out of sync, erro-
neous fault detection would be signaled by the comparator module.

• System availability - Some systems require the continuation of the application
execution even when an error is detected. Due to the high criticality of the
executed function, methods were employed to continue the operation of the
system after a fault detection by the Lockstep architecture.

While the current project is strongly related to safety critical aspect of embedded
systems it was necessary to include a chapter introducing the reader to the termi-
nology around safety. Moreover, a brief overview of the functional safety related
certification standards and processes was crucial while the final products of the
discussed microcontroller families need to comply with them in order to be per-
mitted for use in safety-critical applications. While the company under the current
project was supported belongs to avionics industry, an introduction to the related
certification standards is provided.

One of the crucial points for the company research is “How Lockstep should be treated
in the certification process of an avionic system?”. As is described in Chapter 2.1.3, the
certification process in avionic systems varies from other sectors. Beyond the most
stringent requirements to ensure the functional safety, the certification process is
done on a system level. As a result, we cannot say that an MCU employing a Lock-
step architecture is certifiable for an avionic system or not. It is always dependent
on the application and the system and consequently on the DAL level that will be
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derived from the appropriate analysis. Nonetheless, we performed an initial task
that is inevitable for a piece of COTS hardware in an avionic system certification:
We conducted an analysis, concluding that the TMS570LS3137 beyond a dual-core
processor system, it should be treated as a single-core. The redundancy exists due
to the diagnostic channel that monitors and facilitates the error detection in one of
the two cores (1oo1D Safety Architecture).

As is already mentioned, the Hercules family of microcontrollers was developed
targeting the relevant component level requirements of IEC 61508 and ISO 26262.
For DO 254 the situation is more complicated. It requires evidence of the internal
component design, including source code of embedded IP components. As a re-
sult, confidentiality challenges for the semiconductor companies exist while they
cannot expose these information to the public. Thus, most DO 254 compliant sys-
tems consist of non-compliant components (The certification is applied on system
level).

An important point to note for the Hercules family of microcontrollers is the miti-
gation of a detected error. In previous chapters we presented the actions for detect-
ing an error but not how to deal with a presence of it. The main reason is that there
is not a certain answer how to deal with a detected error. The Hercules devices are
not supposed to be fault tolerant. The documentation of these devices including
the technical reference manuals and safety analysis documents have an indication
of FT = 0 (Fault Tolerance). Essentially, the main focus of the Hercules family is
the efficient detection of an error, without though maintaining the operation of the
system afterwards. Then, it is strongly dependent on the safety requirements of
the system how each error should be handled. Thus, the real functional safety is
implemented at system level. Several safety features of these MCUs are provided,
but the system design and the implementation of the safety functions are the key
elements to achieve high reliability and comply with the application requirements.
A typical case for a CCM error detection could be to run the LBIST test to ensure
the correctness of the core(s) (if the LBIST test passes, it means that it was a soft
error). In a successful LBIST result, it is safe to continue the execution of the appli-
cation. If the CCM error continues, a soft reset is probably required to re-sync the
cores. All these actions are strongly related to safety requirements of the system.
The aforementioned scenario though, could not be applicable to a system that ex-
ecutes safety-critical real time operations and the temporal burden of LBIST test
execution could lead to a disaster. Actions like turning the system off, setting it
to a degraded mode (i.e stop executing safety-critical operations while transferring
them to another operational module) or notifying a human could be just a few
scenarios of CCM error mitigation.
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As was already mentioned in this project, it is not possible to eliminate risks in any
system. The real goal of functional safety is to detect and correct a potential fault
or to lead the system to fail safely. In any system, there is a Single Point of Failure
(SPOF). In the case of the Lockstep architecture, what is essentially achieved is to
transfer the SPOF from the CPU core(s) to the CCM comparator module. This is
always a concern of safety-system designers. Accepting that it is not feasible to
avoid a SPOF, they try to transfer it to a simpler component with lower failure rate,
where the error detection is easier and the self-test to ensure the right operation
of the component itself is faster. Definitely, the CCM comparator module is much
simpler than the core. Additionally, the time execution of CCM self-test is much
less than the CPU self-test (10.405 and 364.000 usec respectively).

Along the current report we point out several advantages of the Lockstep architec-
ture. It is a run-time safety mechanism to detect errors without adding any burden
in the development process. From the developer’s point of view a single-core pro-
gramming model is required, avoiding the complexity in programming multi-core
processors. Additionally, while it is a hardware implemented diagnostic, the error
detection is faster than implementing any software that checks for errors. The only
disadvantage we can notice is the increased power consumption that such an MCU
require in comparison to a single-core. Obviously, in any safety-related system the
designer has to decide on a trade-off between either performance or cost (in terms
of silicon area or power consumption) and safety-related functions.

9.2 Conclusion

To sum up, the objectives of the current project were accomplished, giving to the
reader an overview of the Lockstep architecture in general and detailed informa-
tion about the Lockstep implementation of Texas Instruments using the Cortex-R4F
processor. The research questions that we called to answer covered the Lockstep
concept drawing all the available information that after a big effort we managed to
collect:

3 What is Lockstep in terms of embedded systems? (see Chapter 5.1)

3 What are the reasons for using Lockstep as an error-detection mechanism?
What kind of errors can it detect? (see Chapter 5.2)

3 How to use Lockstep? (see Chapter 7.1.1)



9.3. Future Work 87

3 How Lockstep should be treated in the certification process of an avionic
product? (see Chapter 8.1)

3 What are the limitations and drawbacks of a Lockstep architecture? (see
Chapter 9.1)

Due to the kind of errors that Lockstep is targeting, the experiments were restricted
while we do not own the equipment to artificially produce such errors. Addition-
ally, as is already mentioned in Section 5.4.7, the Lockstep is automatically disabled
in debugging mode. Thus, it was not possible even to check the behavior of the
system (i.e register values) when an error-forcing was performed. Nevertheless,
the current project is a good base for a future researcher or a designer of safety-
critical systems to comprehend the “Lockstep” as a safety concept and to identify
the advantages and disadvantages of such an architecture. Every potential aspect
of safety should be thoroughly considered while the protection of environment
and human lives should be a top priority for everyone.

9.3 Future Work

From the academic point of view the main objectives of the Lockstep as a safety
concept have been accomplished. One aspect of extending this project could be
the investigation of the low-level architecture of such an MCU on transistor level.
In fact, it is not possible to obtain such information from the semiconductor com-
panies while they protect their intellectual property and they do not provide so
detailed information to the public.

In practical terms, the next step for Lockstep MCUs is their integration in real-
world projects in other sectors that require functional safety. More specifically, this
research was conducted under the supervision and support of Airbus Defence and
Space in order to obtain deeper knowledge regarding the Lockstep architecture, to
highlight the pros and cons and how it could be integrated in avionic systems that
need to fulfill extremely stringent safety requirements.

From the semiconductor companies’ point of view, we would expect over the next
few years, a Lockstep architecture with two dissimilar cores. It would be more sus-
ceptible to common cause failures while it is unlikely for differently implemented
cores to fail in the same way. Obviously there are challenges for this step, basically
due to the complexity of synchronizing dissimilar components (i.e synchronize two
cores of different architectures to execute the same instructions at the same time).
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CCM-R4F Register Tables

Figure A.1: CCMSR Resgister [42]
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Figure A.2: CCMKEYR Register [42]



Appendix B

Main function of the first experi-
ment

/∗∗ @file sys_main.c
∗ @brief Application main file
∗ @date 15.Jun.2015
∗ @version 04.03.00
∗
∗ This file contains the main function ,
∗ for setting the CCM−R4F module
∗ in "Error−forcing" mode when the programmable pushbutton
∗ is pressed
∗/

/∗ USER CODE BEGIN (0) ∗/
/∗ USER CODE END ∗/

/∗ Include Files ∗/

#include "sys_common.h"

/∗ USER CODE BEGIN (1) ∗/
#include "ccmr4.h"
#include "esm_demo.h"
#include " rti .h"
#include "gio.h"
#define BUTTON_LOW 0
#define ERROR_ABSENCE 0
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#define ERROR_PRESENCE 1
#define BUTTON_BIT_NO 7
#define LED_BIT_NO 17
#define LED_OFF 0
#define LED_ON 1

/∗ USER CODE END ∗/

/∗ USER CODE BEGIN (2) ∗/
uint16 buttonPressed;
/∗ USER CODE END ∗/

void main(void)
{
/∗ USER CODE BEGIN (3) ∗/

/∗ Initialize ESM driver ∗/
esmInit() ;

/∗ Enable the Interrupts ∗/
_enable_interrupt_();

/∗ Initialize the flag that indicates if the button is pressed ∗/
buttonPressed = BUTTON_LOW;

/∗ Initialize the flag that indicates a presence of an error ∗/
uint32 uiError = ERROR_ABSENCE;

/∗ Initialize RTI driver ∗/
rtiInit () ;

/∗ Set high end timer GIO port hetPort pin direction to all output ∗/
gioSetDirection(hetPORT1, 0xFFFFFFFF);

/∗ Enable RTI Compare 0 interrupt notification ∗/
rtiEnableNotification (rtiNOTIFICATION_COMPARE0);

/∗ Enable GIO driver ∗/
gioInit () ;

while(1)
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{
/∗ Enable Notification on the 7th pin of GPIO PortA that is

assigned to the programmable pushbutton ∗/
gioEnableNotification(gioPORTA, BUTTON_BIT_NO);
switch (buttonPressed) {

case 1:
if (uiError)
{

/∗ Clears the ERROR pin ∗/
esmClearErrPin();
/∗ Turns the white LED off ∗/
gioSetBit(hetPORT1, LED_BIT_NO,

LED_OFF);
/∗ Disables the button notification ∗/
gioDisableNotification(gioPORTA,

BUTTON_BIT_NO);
/∗ Resets the error indicator flag ∗/
uiError = ERROR_ABSENCE;

}
else
{

/∗ Turns the white LED on ∗/
gioSetBit(hetPORT1, LED_BIT_NO,

LED_ON);
/∗ Sets the CCM−R4 Module in Error−

forcing Mode ∗/
CCM_R4_Compare();
/∗ Disables the button notification ∗/
gioDisableNotification(gioPORTA,

BUTTON_BIT_NO);
/∗ Sets the error indicator flag ∗/
uiError = ERRO_PRESENCE;

}
/∗ Insert a delay of 500ms to avoid button bounce

∗/
rtiStartCounter(rtiCOUNTER_BLOCK0);
/∗ Reset the button pressed indicator flag ∗/
buttonPressed = BUTTON_LOW;
break;

}
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}
/∗ USER CODE END ∗/
}

/∗ USER CODE BEGIN (4) ∗/
/∗ USER CODE END ∗/
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CCMR4F-Compare Function

/∗∗ @file ccmr4.c
∗ @brief CCMR4 Driver Source File to check CCMR4 compare error
∗ @date 15.June.2015
∗ @version 1.00.000
∗.\\
∗/
/∗ (c) Texas Instruments 2009, All rights reserved . ∗/
#include "ccmr4.h"
#include "gio.h"
#include "het.h"
#include <stdio.h>
extern unsigned int ESM_High_Int_Flag;

/∗∗ @fn void CCM_R4_Compare(void)
∗ @brief CCMR4 Compare fail Error creation and check routines .\\
∗/
void CCM_R4_Compare(void)
{

/∗ Setting the Error forcing mode ∗/
CCMR4Reg−>CCMKEYR = 0x00000009;

/∗ Waiting for interrupt ESM Interrupt flag ∗/
while(!ESM_High_Int_Flag);

/∗ Clear the Interrupt Flag ∗/
ESM_High_Int_Flag=0;

}
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Appendix D

ARM GCC 4.9 2015q1 Big-Endian
Patch

−−− /home/ s t e l i o s g a n /gcc−arm−none−eabi−4_9−2015q1−20150306/
s r c /gcc/gcc/conf ig/arm/t−rmprof i le . or ig 2015−02−27
0 5 : 1 6 : 5 0 . 0 0 0 0 0 0 0 0 0 +0100

+++ /home/ s t e l i o s g a n /gcc−arm−none−eabi−4_9−2015q1−20150306/
s r c /gcc/gcc/conf ig/arm/t−rmprof i le 2015−03−20
1 0 : 5 9 : 5 6 . 8 7 0 1 1 9 6 2 9 +0100

@@ −13,8 +13 ,10 @@
MULTILIB_OPTIONS += mfloat−abi= s o f t f p /mfloat−abi=hard
MULTILIB_DIRNAMES += s o f t f p fpu
MULTILIB_OPTIONS += mfpu=fpv4−sp−d16/mfpu=vfpv3−d16/mfpu=

fpv5−sp−d16/mfpu=fpv5−d16
MULTILIB_DIRNAMES += fpv4−sp−d16 vfpv3−d16 fpv5−sp−d16 fpv5−

d16
+MULTILIB_OPTIONS += mbig−endian
+MULTILIB_DIRNAMES += big−endian

MULTILIB_MATCHES = march?armv6s−m=mcpu? cortex−m0
MULTILIB_MATCHES += march?armv6s−m=mcpu? cortex−m0plus
MULTILIB_MATCHES += march?armv6s−m=mcpu? cortex−m1

@@ −89 ,11 +91 ,20 @@
i f n eq ( , $ ( f i l t e r armv7 armv7−r armv7−a , $ ( subst $ (comma) , $ (

space ) , $ ( w i t h _ m u l t i l i b _ l i s t ) ) ) )
MULTILIB_REQUIRED += mthumb/march=armv7
MULTILIB_REQUIRED += mthumb/march=armv7/mfloat−abi= s o f t f p /

mfpu=vfpv3−d16
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MULTILIB_REQUIRED += mthumb/march=armv7/mfloat−abi=hard/
mfpu=vfpv3−d16

+MULTILIB_REQUIRED += mthumb/march=armv7/mbig−endian
+MULTILIB_REQUIRED += mthumb/march=armv7/mfloat−abi= s o f t f p /

mfpu=vfpv3−d16/mbig−endian
+MULTILIB_REQUIRED += mthumb/march=armv7/mfloat−abi=hard/

mfpu=vfpv3−d16/mbig−endian
MULTILIB_OSDIRNAMES += mthumb/march . armv7 =! armv7−ar/thumb
MULTILIB_OSDIRNAMES += mthumb/march . armv7/mfloat−abi . hard/

mfpu . vfpv3−d16 =! armv7−ar/thumb/fpu
MULTILIB_OSDIRNAMES += mthumb/march . armv7/mfloat−abi . s o f t f p /

mfpu . vfpv3−d16 =! armv7−ar/thumb/ s o f t f p
+MULTILIB_OSDIRNAMES += mthumb/march . armv7/mbig−endian =! armv7

−ar−bigE/thumb
+MULTILIB_OSDIRNAMES += mthumb/march . armv7/mfloat−abi . hard/

mfpu . vfpv3−d16/mbig−endian =! armv7−ar−bigE/thumb/fpu
+MULTILIB_OSDIRNAMES += mthumb/march . armv7/mfloat−abi . s o f t f p /

mfpu . vfpv3−d16/mbig−endian =! armv7−ar−bigE/thumb/ s o f t f p
MULTILIB_REUSE += mthumb/march . armv7=marm/march . armv7
MULTILIB_REUSE += mthumb/march . armv7/mfloat−abi . s o f t f p /

mfpu . vfpv3−d16=marm/march . armv7/mfloat−abi . s o f t f p /mfpu .
vfpv3−d16

MULTILIB_REUSE += mthumb/march . armv7/mfloat−abi . hard/
mfpu . vfpv3−d16=marm/march . armv7/mfloat−abi . hard/mfpu .
vfpv3−d16

+MULTILIB_REUSE += mthumb/march . armv7/mbig−endian=marm/
march . armv7/mbig−endian

+MULTILIB_REUSE += mthumb/march . armv7/mfloat−abi . s o f t f p /
mfpu . vfpv3−d16/mbig−endian=marm/march . armv7/mfloat−abi .
s o f t f p /mfpu . vfpv3−d16/mbig−endian

+MULTILIB_REUSE += mthumb/march . armv7/mfloat−abi . hard/
mfpu . vfpv3−d16/mbig−endian=marm/march . armv7/mfloat−abi .
hard/mfpu . vfpv3−d16/mbig−endian
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Appendix E

How to Build the GNU ARM Toolchain
on Ubuntu

E.1 Build GNU Tools on Ubuntu 8.10

The following instructions are located in the GNU ARM Toolchain website [14] and
are integrated into this report due to the frequent changes that occur by the active
GNU ARM community.

E.1.1 Install Ubuntu Ubuntu 8.10

ISO image is available from http://old-releases.ubuntu.com /releases/8.10/ubuntu-
8.10-desktop-i386.iso.
You can install it as a native system or a virtual machine. The command lines
provided in this document are all using user id ‘build’ as an example, so please
create a new user called ‘build’ in the system. Otherwise, you have to replace user
id ‘build’ with your own one.

E.1.2 Tune environment and install required software

Change /bin/sh to bash

Some shell scripts in gcc and other packages are incompatible with the dash shell,
which is the default /bin/sh for Ubuntu 8.10. You must make /bin/sh a symbolic
link to one of the supported shells: saying bash. Here on Ubuntu 8.10 system,
this can be done by running following command firstly: $ sudo dpkg-reconfigure
-plow dash Then choose ‘No’ in the ‘Configuring dash’ popup dialog and press
enter. You can run following command and check that /bin/sh points to ‘bash’:
$ ls -l /bin/sh
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...... /bin/sh -> bash

Change software sources to Main server

On Ubuntu 8.10 system, click ‘System->Administration->Software Sources’ to open
‘Software Sources’ dialog, choose ‘Main server’ in ‘Download from:’ list box, then
click ‘close’.
You will be prompted by a window saying ‘The information about available soft-
ware is out-of-date’, please click ‘Reload’. And then there will be a warning mes-
sage box popped up, which can be just ignored by clicking ‘Close’.

Edit the file using command line:
$ sudo vi /etc/apt/sources.list
replace all ‘http://*.ubuntu.com’ with ‘http://old-releases.ubuntu.com’ in that file,
save and exit. Run following command to update package list. It should not fail,
or else something has been wrong.
$ sudo apt-get update

Install common tools and libraries

Install common tools and libraries needed by build process with below command:
$ sudo apt-get install $ sudo apt-get install apt-src \
p7zip-full \
gawk \
gzip \
perl \
autoconf \
m4 \
automake \
libtool \
libncurses5-dev \
gettext \
gperf \
dejagnu \
expect \
tcl \
autogen \
guile-1.6 \
flex \
flip \
bison \
tofrodos \
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texinfo \
g++ \
gcc-multilib \
libgmp3-dev \
libmpfr-dev \
debhelper \
texlive \
texlive-extra-utils
Note that the package management software might complain that several packages
cannot be installed properly while installing texlive and texliveextra- utils. It won’t
harm our building process, please just ignore it now. Some of those tools might be
unnecessary, but it won’t hurt if installed.

Download and deploy prebuilt native tools

In order to save effort to prepare the native build tools, we provide prebuilt ones at
website https://launchpad.net/gcc-arm-embedded-misc /native-build-tools/20140701.
The related source package and script are also provided. Please download the tool
and decompress it to a proper place, it will be used in subsequent steps to build
gcc arm embedded toolchain. The command to decompress it looks like:
tar xf prebuilt-native-tools.tar.lzma –lzma
Please be noted that those prebuilt tools are for Ubuntu 8.10 32-bit and not suitable
for any other build platforms. For those working on other build platforms, please
either prepare your own build tools and use them through option –build tools of
build script or just use the ones from your system by not specifying the –build
tools option.

E.1.3 Build GNU Tools for ARM Embedded Processors

If you download and decompress the prebuilt tools successfully, you have set up
the building environment. You can now start to build the toolchain by yourself
with below commands:
#Copy the src release package into ~/toolchain/ directory
$ cp gcc-arm-none-eabi-4_9-2015q1-20150306-src.tar.bz2 ~/toolchain
#Prepare source codes
$ cd ~/toolchain
$ tar -xjf gcc-arm-none-eabi-4_9-2015q1-20150306-src.tar.bz2
$ cd ./gcc-arm-none-eabi-4_9-2015q1-20150306/src
$ find -name ’*.tar.*’ | xargs -I% tar -xf %
$ cd ../
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#Start building the toolchain.
#Can specify "–skip_steps=mingw32" option to skip building windows host
#toolchain, and if specify that option when building prerequisites,
#you have to specify it when building toolchain too.
$ ./build-prerequisites.sh –build_tools=YOUR_PATH
$ ./build-toolchain.sh –build_tools=YOUR_PATH
After this, you can ‘cd’ into
‘~/toolchain/gcc-arm-none-eabi-4_9-2015q1-20150306/pkg’ and find the built toolchain/-
source code packages and the md5 checksum file



Appendix F

HALCoGen Configuration Screen-
shots

The following figures depict the configuration that is required in the GUI of HALCo-
Gen for the first experiment (see Section 7.1.1). After setting the appropriate op-
tions the code is generated to proceed further with the development of the appli-
cation.

Figure F.1: Enable RTI - GIO Drivers
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Figure F.2: Configure RTI Compare 0 to generate 500 usec delay

Figure F.3: Activation of RTI Compare 0 and GIO Int A in VIM
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Figure F.4: Activation of ESM Low Interrupt in VIM Module





Appendix G

Requirements for Multi-core Proces-
sors
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