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Abstract: 
This report concerns the prediction of the loads and 
global dynamic response of a floating structure 
consisting of offshore anchoring ropes, a buoy and a 
slender space frame structure subjected to buoyancy 
and wave loading. Nonlinear analysis is required as the 
floating structure undergoes large deformations, and 
thus a two-dimensional corotational beam formulation 
is implemented. All structural components are modelled 
by cylindrical beam elements in both a produced 
Nonlinear Wave Code in Matlab and in the commercial 
finite element program Ansys Workbench which is used 
as validation source for the Nonlinear Wave Code. Via 
the Nonlinear Wave Code it is possible to evaluate the 
response of the floating structure in different sea states, 
including linear waves, nonlinear waves and irregular 
waves. 

The hydrostatics and hydrodynamic forces are modelled 
by various methods, in which the wave and buoyancy 
forces are found as a function of the amount of 
submerged cross-sectional area of the structure. Simple 
validation examples consisting of vertical and 
horizontal cylinders are performed continually through 
the report for the purpose of validating the implemented 
methods before the dynamic response of the floating 
space frame structure is predicted. 

The floating space frame structure is modelled with a 
fine mesh to obtain a sufficient representation of the 
ocean loads and the dynamic response of the structure. 
A time-domain analysis is performed, in which the 
structure is subjected to a linear wave. The predicted 
hydrostatics and hydrodynamic forces and the dynamic 
response in the Nonlinear Wave Code and Ansys 
Workbench are consistent. The Nonlinear Wave Code is 
thus able to predict the dynamic response of a floating 
slender space frame structure. 

 



 
 

 
 

Preface  
This Master Thesis is formulated by a group of two M.Sc. Engineer students at Aalborg 
University Esbjerg, on the 9𝑡𝑡ℎ and 10𝑡𝑡ℎ semester in the period from the 2nd of September 
to 16th of June 2015. The theme of the project is Nonlinear Analysis of Floating 
Offshore Structures. The project consists of a main report and an Appendix. The 
structural analyses cover modelling of wave loads, buoyancy forces and nonlinear 
dynamic finite element analysis. It is assumed that the reader has basic literacy 
concerning technical subjects such as statics, structural dynamics, fluid dynamics, 
continuum mechanics and the finite element method. 

The project is aimed primarily to the projects supervisors, examiners and other 
interested persons with an understanding of the theory from the considered topics. In the 
report, equation numbers are given to refer to the requested equations. The notation of 
the equation numbers is (1.1), (1.2) etc. A reference list is introduced in the end of the 
report, in which the books are indicated with author, title, publisher, edition while 
homepages are indicated with link and title. 

A copy of the report in PDF format is on the enclosed DVD, and in order to read and 
use all of the enclosed material, the following programs are required. 

− MATLAB 
− Ansys Workbench 
− Adobe Reader 

The report is formulated under supervision of Lars Damkilde, professor at Aalborg 
University Esbjerg and Morten E. Nielsen, Research Assistant at Aalborg University 
Esbjerg. The authors of this report express gratitude for the supervisors’ guidance. 
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1 Introduction 
One of the major engineering challenges in the near future is to meet the increasing 
global energy demand, which is expected to double within the next 20 years. [1] The 
increase in demand for renewable energy in the recent years has entailed a greater 
attention to offshore renewable energy structures such as wind turbines and the relative 
new and lesser widespread wave energy converters. The wave energy converters are 
still at an initial face in the industrial developing, however it may be the new promising 
renewable energy structure in the near future. The increase of the application of these 
structures gives rise to a larger utilisation of the ocean. Considering the offshore wind 
turbines, different types are applied on the ocean as shown in Figure 1. 

 
Figure 1: Different types of offshore wind turbines depending on the water depth. [2] 

The water depth decides the type of foundation of the offshore wind turbines, where the 
most advanced foundations are those for the floating wind turbines such as the Tension 
Leg Platform (TLP), semi-submersible structures (Semi-Sub) and spar floating 
structures (Spar).  

The semi-submersible structures have been used for many years in the offshore oil and 
gas industry operating on deep water. The structure consists of hulls fabricated from 
large horizontal pontoons onto which vertical steel columns are welded and is held to 
the seabed by anchors. The TLP has basis on another concept, as it is vertically moored 
by means of tethers or tendons. The high axial stiffness of the tethers does not allow any 
vertical motion but allows horizontal motion with wave disturbance, which gives a great 
stability of the structure. The spar floating structure is a large round hull anchored to the 
seabed by conventional chains and winches. The structure operates in deep water. 

Floating structures allow operation on deep water and thereby the opportunity to apply 
structures as offshore wind turbines and floating wave energy converter to a greater 
extend on the ocean.  
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Furthermore the ocean is a large, relatively untapped renewable energy resource as 
wave energy is assessed to be a reliable long-term energy source which has the potential 
to provide 10-15 % of the global electricity need. Mentioning for instance the Weptos, it 
is a promising wave energy concept, particular due to the drop-shaped rotors which give 
basis for a high and efficient utilisation of the waves. [1] 

 
Figure 2: Weptos, Wave Energy Converter at sea. [1] 

The Weptos has the ability to adapt to both small and large waves and wave directional 
waves. The structure can regulate the amount of incoming wave energy and thus reduce 
the loads affecting the structure in case of extreme wave conditions. Additionally, the 
Weptos is anchored to a buoy and is therefore flexible with regard to the waves. 

There is a clear interest in utilising the capacity of the ocean which the aforementioned 
increase in application of both offshore wind turbines and wave energy converters 
indicates. One of the major challenges when considering floating structures, is however 
to predict the loads and the dynamic response of the structure. Depending on the design 
of the structure and the design of the anchor, the structure behaves differently on the 
ocean and therefor an overall prediction of the loads of a floating structure is complex to 
accomplish. 

1.1 Approach for Analysis of Slender and Large Volume Structures 
Marine structures are generally categorised as either large or small volume structures. 
Large volume offshore structures such as ships and semi-submersible floating platforms 
are inertia-dominated which implies that radiation/diffraction analyses need to be 
performed. The global loads are thus due to wave diffraction significantly larger than 
the drag-dominated global loads. Analysing large volume structures, the hydrodynamic 
loads are found by potential flow theory by means of a velocity potential of the 
irrotational motion of an incompressible and inviscid fluid.  
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The potential flow and the real flow are illustrated in Figure 3. 

 
Figure 3: a) Potential flow. b) Real flow [1] 

Considering small volume structures such as floating slender space frame structures 
which is the case in this project, the wave loads on the members are predicted by the 
semi-empirical Morison’s formula. Slender structures are drag-dominated and the 
Morison’s formula includes both a drag term and an inertia term. The wave diffraction 
effect is ignored when applying the Morison’s formula, while the viscous drag effect is 
neglected when using the potential theory. For this reason usually a slender model is 
used in combination with a large volume structure model in order to include the effect 
of viscosity through drag forces on the Morison related elements. Figure 4 illustrates an 
example of a large volume structure in terms of an oil rig while a small slender structure 
is illustrated in terms of a restrained jacket structure. 

 
Figure 4: Slender structure in terms of a jacket structure and a large volume structure in terms of an oil rig. 

Floating structures are exposed to the same ocean phenomenon as a restrained jacket 
structure, i.e. wave loading, buoyancy and current. However, a floating slender structure 
is positioned at the ocean water surface and is in constant motion, which implies that the 
Morison’s formula is expressed in terms of the relative fluid-structure velocities and 
accelerations. To analyse a floating slender space framed structure it is thus needed to 
introduce geometric nonlinear analysis as the structure undergoes large displacements 
and rotations. A more detailed description of the aim and scope of the project are given 
in the following subsection. 
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1.2 Aim of Project 
The aim of this report is to predict the nonlinear time-domain dynamic response of the 
floating space frame structure subjected to ocean wave loads and buoyancy illustrated in 
Figure 5. A dynamic analysis is either performed in the time-domain or in the 
frequency-domain. The dynamic response of the floating space frame structure is 
predicted in the time-domain as it is not sufficient to represent the dynamic response of 
the structure in the frequency-domain. The advantage of the time-domain analysis is 
that it can deal with higher-order load effects, which is not possible to be captured in the 
frequency-domain.  Main focus is in this project given on the environmental loads 
subjected to the floating structure consisting of the hydrostatics and hydrodynamic 
forces while a corotational beam formulation is implemented. The prediction of the 
loads and the dynamic response is generally valid for any element based structure.  

 
Figure 5: Floating space frame structure consisting of offshore cables, a buoy and a space frame. 

The floating space frame structure illustrated in Figure 5 is an integrated dynamic 
system consisting of a space frame floater, a buoy and moorings. To achieve the aim of 
predicting the loads and dynamic response of the floating structure the following issues 
are considered and implemented in the project 

 The loads and dynamic response of the structure is predicted in the time-domain. 
 

 All structural components are modelled by cylindrical beam elements. 
 

 The hydrostatics and the hydrodynamic forces are calculated as function of the 
amount of submerged cross-sectional area of the structure.  
 

 The hydrodynamic forces are found by the semi-empirical Morison’s formula 
expressed in terms of the relative fluid-structure velocities and accelerations. 

The simplifications and delimitations made in the project are introduced and described 
in the following subsections. 
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Modelling of Nonlinear Wave Code in Matlab 
The prediction of the loads and the dynamic response of a floating structure are 
achieved in the programming language Matlab, as the commercial finite element 
programme Ansys Workbench is not fully developed with regard to wave modelling on 
floating structures. The wave modelling in Ansys Workbench is dominated by some 
important limitations which are discussed continually in the report. 
 

All calculations in the project are thus performed numerically in the programming 
language Matlab, in which a geometric nonlinear two-dimensional beam element 
programme is written, denoted the Nonlinear Wave Code. The Nonlinear Wave Code is 
capable of evaluating buoyancy forces and wave loading on restrained and floating 
offshore structures in different sea states. The only needed input in the Nonlinear Wave 
Code to predict the loads and the dynamic response of an arbitrarily designed floating 
slender structure is the geometry of the structure and the ocean wave specifications. The 
commercial finite element program Ansys Workbench is used as reference and as 
validation source for the methods implemented in the Nonlinear Wave Code.  
 

Structural Modelling 
All structural components in the project are modelled by cylindrical beam elements 
including the anchoring cables. By using beam elements it is possible to extract the 
section forces from the considered model which is decisive for the future structural 
design of a floating structure.  

1.3 Scope of Project 
Wave energy converters consist of large structural elements such as rotors or buoys 
which give a high and efficient utilisation of the wave energy. The energy loss due to 
these structural elements is an important issue when considering a wave energy 
converter; however this issue is ignored in the project. Furthermore, the design of these 
structural elements gives rise to wave disturbance. These phenomenons have thus an 
important influence on the behaviour of a floating structure as no waves enter through 
the structure. In this project a simplification is made as focus is only given on the space 
framed part of a floating structure, by which the diffraction phenomena is neglected and 
thus only through-going waves are considered as shown in Figure 6.  

 
Figure 6: Illustration of wave motion absorption and through-going waves.  

The important environmental ocean loads subjected to an offshore structure are waves, 
current, buoyancy and ice loads. Focus in this project is given on the waves and 
buoyancy forces, while the current and ice loads are omitted.  
 

No structural design analysis is performed and as aforementioned the fundamental 
elements for a future structural analysis of a floating structure are considered.  
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2 Method Consideration  
In the present subsection a description of the methods utilised in the project is 
introduced. Numerical methods which have satisfactorily balanced accuracy and 
computing resources are defined and used to predict the loads and the response of the 
floating space frame structure in different sea states.  

The corotational beam formulation implemented in the Nonlinear Wave Code follows a 
paper presentation given by Louie L. Yaw [3] and allows the structure to have arbitrarily 
large displacements and rotations at the global level. The formulation is introduced and 
described in Chapter 3. An illustration of the floating space frame structure undergoing 
large displacements and rotations is given in Figure 7. 

 
Figure 7: Illustration of the floating space frame structure undergoing large displacements and rotations. 

The wave loads acting on the structure are determined in the produced Nonlinear Wave 
Code in Matlab in which the wave kinematic quantities, that is the wave velocities and 
accelerations, are numerically calculated. The wave kinematic quantities are calculated 
based on different sea states, and subsequently used as input in Morison’s formula by 
which the differential hydrodynamic forces are determined. The hydrodynamic forces 
are transformed into beam loads by means of two methods as stated below. 

 In the first method the hydrodynamic forces are transformed into beam loads by 
means of polynomial regression, i.e. the differential hydrodynamic forces are 
represented by a higher order polynomial. The forces are subsequently transformed 
into consistent beam loads by the interpolation functions.  
 

 In the second method the hydrodynamic forces are converted into nodal forces by 
introducing numerical integration, based on the trapezoidal rule, and by means of 
interpolation functions. 
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These methods are validated in their associated subsections by a restrained solid 
cylinder subjected to the formulated hydrodynamic forces. The most accurate method of 
representing the hydrodynamic forces is then used in the prediction of the loads 
subjected to the floating space frame structure. 

 
Figure 8: An illustration of a slender restrained cylinder subjected to hydrodynamic forces. 

An overall description of the wave theories used for the determination of the wave 
kinematic quantities and a description of the abovementioned methods applied for 
calculation and conversion of the differential hydrodynamic forces into nodal forces is 
given in Chapter 5. The validation of the implemented methods is based on the 
commercial finite element program Ansys Workbench. For the purpose of this project, 
no specific location of the structure is given while the wave specifications as well are 
not given for a specific sea location. Only the linear wave theory is used for the sake of 
validation in the project. The validity of the used ocean wave specifications is based on 
the Le Mehaute diagram introduced in subsection 4.2.  

Furthermore, the hydrostatics is calculated in two manners in which the first method is 
based on a paper presented by M. Yazdchi. [4]  

 In the first method, the buoyancy forces are divided into two effects, namely a 
distributed pressure and a buoyancy term that only exists if the ends are capped. 
The buoyancy forces are calculated as a function of the submerged element 
length.  

 

 In the second method, the buoyancy forces are determined as a function of the 
amount of submerged area, and subsequently transformed into global nodal 
forces by interpolation functions and numerical integration.  
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For the purpose of validation of the formulated hydrostatics, two simple buoyancy test 
example are conducted in the Nonlinear Wave Code. A vertical and a horizontal hollow 
cylinder are dropped in still water as illustrated in Figure 7, by which the dynamic 
responses are compared and validated with the buoyancy formulation given in Ansys 
Workbench.  

 
Figure 9: Illustration of a horizontal and vertical hollow cylinder dropped into still water. 

The most accurate method of representing the hydrostatics is used in the prediction of 
the loads and the dynamic response of the floating space frame structure. The modelling 
and prediction of the response of the floating space frame structure is performed in 
Chapter 8, in which firstly the anchoring cables and the boundary conditions of the 
system are modelled. 

The Nonlinear Wave Code is completely automated so that the only necessary user 
input for the wave and buoyancy force analysis is the design of the floating structure 
and the desired wave specifications. The Nonlinear Wace Code is programmed so that it 
is possible to evaluate the response of the floating structures in different sea states, 
including linear waves, non-linear waves and irregular waves. Important scripts of the 
programmed Nonlinear Wave Code are presented in Appendix B while the full version 
of the programme is enclosed in the Appendix DVD.  
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3 Corotational Beam Formulation 
In the following chapter a simple two-dimensional corotational beam formulation is 
introduced and described based on a paper produced by Louie L. Yaw. [3] Many of the 
engineering problems are solved by the assumption of linear elastic, small deflection 
behavior which means that simple direct solutions are obtained with no need for load 
incrementation and iterative schemes. However, the displacements and rotations of a 
floating structure can be so large that it cannot be neglected while loads may change 
their orientations according to displacements and supports may change during loading. 
If these occurrences are included then the set of equilibrium equations becomes 
nonlinear.  

Structural nonlinearities can be identified as geometric nonlinearities, material 
nonlinearities and boundary nonlinearities. Based on this project the material 
nonlinearities are not presently included. However, considering floating structures the 
geometric nonlinearities are significant and therefore included in the project. The 
boundary nonlinearities consisting of the structure supports and insistence of degrees of 
freedom are likewise included as the modelled forces are set as function of the updated 
node coordinates and thus as function of the displacements.  

3.1 Corotational Concept 
The approach used for the geometric nonlinearities is as aforementioned a simple two-
dimensional corotational beam formulation, which is valid as long as local beam 
element strains are small and all beam elements are assumed to remain linear elastic. 
The most important requirements for a geometric nonlinear formulation is firstly the 
angle of rotation of a corotating structure, the relations between global and local 
variables and the determination of a variationally consistent tangent stiffness matrix.  

The corotational concept is basically a formulation, where the rigid body motions and 
the strain producing deformations are kept separate at the local element level. The rigid 
body rotations and translations are zero with respect to the local corotating coordinate 
system and thus only the strain causing deformations remains. The local strain causing 
deformations are related to the internal forces of the beam elements and by some 
relations between the local and the global variables the global internal forces are 
obtained. 
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To separate the rigid body motions from strain producing deformations at the local 
element level, a corotational local coordinate system for each element is introduced, 
where the x-axis is directed along the element and the z-axis is perpendicular to the x-
axis as illustrated in Figure 10. 

 
Figure 10: Initial and current configuration of a corotating beam element. 

A typical beam element in its initial and current configurations is illustrated in Figure 
10, in which the flexural deformations are neglected. In its initial configuration the 
initial length of the beam element 𝐿𝐿0 is defined by the global nodal coordinates of the 
beam for node 1 and 2 given by (𝑋𝑋1,𝑍𝑍1) and (𝑋𝑋2,𝑍𝑍2). Considering the beam element in 
its current configuration the global nodal displacements of the beam element are 
considered, and the current length 𝐿𝐿 of the beam element is thus given as 

in which 𝑢𝑢 and 𝑤𝑤 are the global nodal displacements in the 𝑋𝑋 and 𝑍𝑍 direction, 
respectively. The initial and current angle of rotation 𝛽𝛽0 and 𝛽𝛽 which as well are defined 
by the global variables are used to calculate the local nodal rotations 𝜃𝜃1𝑙𝑙  and 𝜃𝜃2𝑙𝑙. These 
local nodal rotations, which allows the rotation of the two-dimensional beam element to 
have arbitrarily large rotations, are used to calculate the local end moments 𝑀𝑀1 and 𝑀𝑀2 
of the beam element. 

The variationally consistent tangent stiffness matrix is thus generally obtained by 
evaluating the relation between the global and local variables and by the global internal 
forces. The global variationally consistent tangent stiffness matrix 𝐾𝐾 is assembled by 
adding two stiffness contributions: the transformed material stiffness at the global level 
𝑘𝑘𝑡𝑡1 and the geometric stiffness 𝑘𝑘𝑡𝑡𝑡𝑡 given as 

 𝐿𝐿 = ��(𝑋𝑋2 + 𝑢𝑢2)− (𝑋𝑋1 + 𝑢𝑢1)�2 + �(𝑍𝑍2 + 𝑤𝑤2)− (𝑍𝑍1 + 𝑤𝑤1)�2 (3.1) 

 
𝐾𝐾 = 𝑘𝑘𝑡𝑡1 + 𝑘𝑘𝑡𝑡𝑡𝑡 (3.2) 
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The transformed global material stiffness matrix 𝑘𝑘𝑡𝑡1 for a two-dimensional beam 
element is found by  

in which 𝐵𝐵 is the transformation matrix given as 

where 𝑐𝑐 and 𝑠𝑠 are the vectors of cosines and sinus for each beam element angle while 𝐿𝐿 
is the beam element length. 𝐶𝐶𝑙𝑙 is a matrix obtained by considering the axial force and 
the local end moments of the beam which leads to   

where 𝑟𝑟 is the radius of gyration calculated by the moment of inertia and the area of the 
beam element 𝑟𝑟 = �𝐼𝐼/𝐴𝐴 and 𝐿𝐿0 is the original length of the beam element. The 
geometric stiffness contribution 𝑘𝑘𝑡𝑡𝑡𝑡 is determined by evaluating the local axial forces 
and the local nodal rotations in the beam and by combining with the material stiffness 
the variationally consistent tangent matrix is obtained. 

For a more detailed description of the theory behind the corotational beam formulation 
reference is made to the paper presented by Louie L. Yaw. [3] 

3.2 Load Control Algorithm for Corotational Beam Analysis 
A program implementing the corotational beam algorithm has been written in the 
Nonlinear Wave Code. The algorithm is performed implicit and uses Newton-Raphson 
iterations at the global level to achieve equilibrium during each incremental load step. 
The Newton-Raphson method is based on the simple idea of linear approximations and 
is a very effective mathematically tool for solving equations numerically. The method 
provides continuously better approximations to the roots of a real-valued function and 
only needs one initial guess to start the iteration. Given a real-valued function 𝑓𝑓 with the 
reals 𝑥𝑥 and the equation 

An approximation of 𝑥𝑥 is provided by making an initial guess 𝑥𝑥0 and obtaining a better 
approximation 𝑥𝑥1 by means of the initial guess 𝑥𝑥0, the function 𝑓𝑓(𝑥𝑥0) and the derivative 
𝑓𝑓′(𝑥𝑥0) as stated in 

 
𝑘𝑘𝑡𝑡1 = 𝐵𝐵𝑇𝑇𝐶𝐶𝑙𝑙𝐵𝐵 (3.3) 

 
𝐵𝐵 = �

−𝑐𝑐 −𝑠𝑠 0 𝑐𝑐 𝑠𝑠 0
−𝑠𝑠/𝐿𝐿 𝑐𝑐/𝐿𝐿 1 𝑠𝑠/𝐿𝐿 −𝑐𝑐/𝐿𝐿 0
−𝑠𝑠/𝐿𝐿 𝑐𝑐/𝐿𝐿 0 𝑠𝑠/𝐿𝐿 −𝑠𝑠/𝐿𝐿 1

 � (3.4) 

 
𝐶𝐶𝑙𝑙 =

𝐸𝐸𝐴𝐴
𝐿𝐿0

�
1 0 0
0 4𝑟𝑟2 2𝑟𝑟2
0 2𝑟𝑟2 4𝑟𝑟2

� (3.5) 

 
𝑓𝑓(𝑥𝑥) = 0 (3.6) 

 𝑥𝑥1 = 𝑥𝑥0 −
𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0) (3.7) 
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The process is repeated until a sufficiently accurate value is obtained 

Geometrically, the process is illustrated in Figure 11, where the function 𝑓𝑓 appears in a 
coordinate system with an approximation 𝑥𝑥𝑛𝑛 of 𝑥𝑥 and a better approximation 𝑥𝑥𝑛𝑛+1. 

 
Figure 11: An iteration by the Newton-Raphson method. 

As seen in Figure 11 the point (𝑥𝑥𝑛𝑛+1, 0) is the intersection of the x-axis with the tangent 
to the function 𝑓𝑓 at point (𝑥𝑥𝑛𝑛,𝑓𝑓(𝑥𝑥𝑛𝑛)).  

One of the major advantages of the Newton-Raphson iteration is that the method fulfils 
square convergence, which means that the method provides a doubling of the number of 
significant figures of 𝑥𝑥. However, there are some disadvantages by use of the Newton-
Raphson iteration method. Each step in the iterative solution requires solution of a 
linearized set of equations which requires a high computational effort. Furthermore the 
method is sometimes not reliable, as the method for some examples never converges. 

The corotational beam algorithm solution consists of three important steps which are 
not described in the report. For a more detailed description of the algorithm, reference is 
made to the Nonlinear Wave Code script MainNonlinear.m represented in Appendix B. 

 

 

 

 

 

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
𝑓𝑓(𝑥𝑥𝑛𝑛)
𝑓𝑓′(𝑥𝑥𝑛𝑛) (3.8) 
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3.1 Validation of Corotational Beam Algorithm 
Two geometric nonlinear analysis examples are evaluated to validate the corotational 
nonlinear algorithm implemented in the Nonlinear Wave Code. In the first example it is 
assumed that large displacement, small rotation and small strains occur.  

The first example concerns the geometric nonlinear behaviour of a single bar truss 
subjected to lateral loading. The geometric nonlinear behaviour of the truss is 
determined by both an analytical solution, the Nonlinear Wave Code and by a large 
deflection analysis in Ansys Workbench.  

 
Figure 12: Single bar truss subjected to a lateral loading with the cross-section shown to the right of the figure. 

The load displacement illustrated in Figure 14 is linear for small loads but as the load 
increases the curve becomes nonlinear. As the load increases further the bar truss 
becomes stiffer due to the geometric stiffness of the bar. The initial configuration and 
deformed state of the bar truss is shown in Figure 13.  

 
Figure 13: The initial configuration (blue line) and deformed state (red line) of the bar truss. 

As remarked from Figure 13 the height ℎ increases from 0.2𝑚𝑚 to 0.311𝑚𝑚. The load 
displacement results from the analysis are plotted and compared in Figure 14.  
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Figure 14: Comparison of the load versus displacement plot between the analytical, Ansys and Matlab solution. 

It is remarked from Figure 15 that the results are consistent. By this validation example 
it is demonstrated that the Nonlinear Wave Code is capable of representing beam 
elements that are allowed to have arbitrarily large displacements.  

The second verification example concerns a beam loaded by a moment at its free end as 
shown in Figure 16. The purpose of this example is to validate that the Nonlinear Wave 
Code is able to represent the behaviour of beam elements with large rotations.  

 
Figure 16: Cantilever beam subjected to an end moment. 
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The initial and deformed state of the beam is shown in Figure 17. 

 
Figure 17: Cantilever beam loaded with end moment. 

It is observed from Figure 17 that the cantilever beam is rolled up into a circle, which is 
due to that the moment has reached a value of Mc =  2π(EI/L). The moment versus 
vertical displacement plot is given in Figure 18.  

 
Figure 18: Moment versus displacement plot. 

It is again remarked that the load displacement is linear for small loads, but as the load 
increases the curve becomes nonlinear. The displacement in the z-direction remains 
positive in consequence of the positive bending moment, which rotates the beam 
counterclockwise. The displacement reaches maxima at a given point and decreases as 
the cantilever beam is rolled up into a circle. 

In preparation for the nonlinear dynamic analyses in the further project, it is necessary 
to extend the Newmark algorithm to consider nonlinear dynamic problems. The 
nonlinear Newmark algorithm is introduced in the following subsection 3.2.  
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3.2 Nonlinear Newmark Algorithm 
Linear structural dynamic problems are extensively solved by the linear Newmark 
algorithm which is a direct integration method. To consider nonlinear dynamic 
problems it is necessary to extend the Newmark algorithm so that iteration is performed 
at each time step in order to satisfy equilibrium.  

The Newmark solution method is thus rearranged so that the prediction relates to the 
velocity �̇�𝑢 and the acceleration �̈�𝑢, respectively, whereas the displacement 𝑢𝑢 is solved in 
the iterative solution of the equation of motion. As the equation of motion is satisfied at 
time increments … , 𝑡𝑡𝑛𝑛, 𝑡𝑡𝑛𝑛+1 the solution at 𝑡𝑡𝑛𝑛+1 is given from the equation of motion by 

in which the solution is given by Newton iterations on the residual 𝑟𝑟 obtained from 

The residual 𝑟𝑟 depends thus on 𝑢𝑢, �̇�𝑢 and �̈�𝑢. The first step of the nonlinear Newmark 
algorithm is to initialize the vectors 𝑢𝑢, �̇�𝑢 and �̈�𝑢 in which the displacement and velocity 
vectors are assumed to be known and are thus defined as zero vectors. The steps in the 
nonlinear Newmark algorithm is introduced below, where the acceleration vector is 
defined as following in the first step of the solution method 

(1) Initial conditions 𝑢𝑢0,𝑢𝑢0̇ 

(2) A loop over time is performed and predicted values of 𝑢𝑢 and �̇�𝑢 are defined 

where 𝑑𝑑𝑡𝑡 is defined as the time increment.  
 

(3) The aforementioned residual 𝑟𝑟 is calculated as 

where 𝐹𝐹𝑖𝑖𝑛𝑛𝑡𝑡 is the global internal force vector and 𝐹𝐹𝑛𝑛+1 is a vector containing the 
global nodal forces. 

 

 
 

 
𝑀𝑀�̈�𝑢𝑛𝑛+1 + 𝑔𝑔(𝑢𝑢𝑛𝑛+1, �̇�𝑢𝑛𝑛+1) = 𝑓𝑓𝑛𝑛+1 (3.9) 

 
𝑟𝑟 = 𝑓𝑓𝑛𝑛+1 −  𝑀𝑀�̈�𝑢𝑛𝑛+1 − 𝑔𝑔(𝑢𝑢𝑛𝑛+1, �̇�𝑢𝑛𝑛+1) (3.10) 

 
�̈�𝑢0 = 𝑀𝑀−1(𝑓𝑓0 − 𝐶𝐶𝑢𝑢0̇ − 𝐾𝐾𝑢𝑢0) (3.11) 

 

�̈�𝑢𝑛𝑛+1 = �̈�𝑢𝑛𝑛 

�̇�𝑢𝑛𝑛+1 = �̇�𝑢𝑛𝑛 + 𝑑𝑑𝑡𝑡 ∙ �̈�𝑢𝑛𝑛 

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + 𝑑𝑑𝑡𝑡 ∙ �̇�𝑢𝑛𝑛 +
1
2
𝑑𝑑𝑡𝑡2�̈�𝑢𝑛𝑛 

(3.12) 

 
𝑟𝑟 = 𝐹𝐹𝑛𝑛+1 −  𝑀𝑀�̈�𝑢𝑛𝑛+1 − 𝐶𝐶�̇�𝑢𝑛𝑛+1 − 𝐹𝐹𝑖𝑖𝑛𝑛𝑡𝑡 (3.13) 
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(4) Modification of the global tangent stiffness matrix and increment correction 

The corrected values of 𝑢𝑢𝑛𝑛+1, �̇�𝑢𝑛𝑛+1 and �̈�𝑢𝑛𝑛+1 are then defined as 

If the norm of the residual 𝑅𝑅 > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡 a new iteration starts, i.e. it returns to step 3. 

(5) The algorithm returns now to step 2 for a new time step or stop. 

The nonlinear Newmark algorithm is implemented in the Nonlinear Wave Code in 
MainNonlinear.m. In the following subsection 3.3 the programmed nonlinear Newmark 
algorithm is validated by means of Ansys Workbench. 

3.3 Validation of Nonlinear Newmark Algorithm 
The programmed nonlinear Newmark algorithm is validated by the following example, 
in which a cantilever beam is exposed to a harmonic excitation force at the free end as 
illustrated in Figure 19.  

 
Figure 19: Cantilever beam exposed to a harmonic force at the free end. 

The harmonic excitation force is given as 𝑃𝑃(𝑡𝑡) = 𝑃𝑃0 sin (𝜔𝜔𝑡𝑡) in which 𝑃𝑃0 = 1500𝑁𝑁 
and 𝜔𝜔 = 2. The initial configuration and deformed state of the beam is illustrated in 
Figure 20.  

 

𝐾𝐾∗ = 𝐾𝐾 + 𝑀𝑀
1

𝑑𝑑𝑡𝑡𝛽𝛽2
+ 𝐶𝐶

𝛾𝛾𝑑𝑑𝑡𝑡
𝛽𝛽𝑑𝑑𝑡𝑡2

 

𝛿𝛿𝑢𝑢 =
𝐾𝐾∗

𝑟𝑟
 

(3.14) 

 

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + 𝛿𝛿𝑢𝑢 

�̇�𝑢𝑛𝑛+1 = �̇�𝑢𝑛𝑛 +
𝛾𝛾𝑑𝑑𝑡𝑡
𝛽𝛽𝑑𝑑𝑡𝑡2

𝛿𝛿𝑢𝑢 

�̈�𝑢𝑛𝑛+1 = �̈�𝑢𝑛𝑛+1 +
1

𝑑𝑑𝑡𝑡𝛽𝛽2
𝛿𝛿𝑢𝑢 

(3.15) 



 
 

18 
 

 
Figure 20: The initial configuration and the maximum deformed state of the cantilever beam. 

The dynamic problem is solved by the nonlinear Newmark algorithm and compared 
with a linear and a nonlinear solution in Ansys Workbench. The plot of the solutions is 
given in Figure 21.  

 
Figure 21: The dynamic response of the three solutions in Matlab and Ansys Workbench. 

It is observed from Figure 21 that the nonlinear Newmark solution in the Nonlinear 
Wave Code agrees with the nonlinear solution in Ansys Workbench by which it can be 
concluded that the nonlinear Newmark algorithm is validated. The linear solution in 
Ansys is included to illustrate the difference between the linear and nonlinear solution. 
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The only sort of damping included in the analysis is a mass-proportional damping. In 
the following subsection 3.4 numerical damping is introduced and implemented in the 
Nonlinear Wave Code. 

3.4 Algorithmic Damping 
By introducing the algorithmic damping also referred to as the numerical damping, the 
Newmark integration scheme is stabilized by damping out the undesirable high 
frequency modes, i.e. algorithmic damping controls the numerical noise produced by 
the higher frequencies of a structure. The contributions of these high frequency modes 
are usually not accurate by which the numerical damping is preferred.  

The algorithmic damping is already an optional option in the Ansys Workbench and has 
the default value of 0.1 for Transient Structural analysis. The amount of numerical 
damping 𝛼𝛼 in the Nonlinear Wave Code is controlled by the following Newmark 
formulations of the 𝛾𝛾 and 𝛽𝛽 parameters for an unconditional stable Newmark integration 

in which the parameter 𝛼𝛼 ≥ 0 serves to introduce algorithmic damping. It is remarked 
from Figure 22 that unconditional stability is obtained if 1/2 ≤ 𝛾𝛾 ≤ 2𝛽𝛽. 

 
Figure 22: Stability scheme of the Newmark time integration algorithm.  

The unconditional stable Newmark scheme is much preferable when the high-frequency 
vibrations related to the highest modes are of no interest. Stable results are obtained by 
this scheme but not necessarily accurate results. The algorithmic damping is 
implemented in the Nonlinear Wave Code file denoted MainNonlinear.m. 

 𝛾𝛾 =
1
2

+ 𝛼𝛼           𝛽𝛽 =
1
4

(1 + 𝛼𝛼)2 (3.16) 
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3.5 Summary of Corotational Beam Formulation 
In this chapter a two-dimensional corotational beam formulation is implemented in the 
Nonlinear Wave Code to account for the geometric nonlinearities in consequence of the 
large displacements and rotations of the floating space frame structure. The corotational 
beam algorithm is performed implicit and uses Newton-Raphson iterations at the global 
level to achieve equilibrium during each incremental load step. 

The Nonlinear Wave Code is validated by simple static and dynamic validation 
examples, in which a bar truss is considered. The static and dynamic nonlinear solutions 
obtained from the Nonlinear Wave Code are consistent with the nonlinear solutions 
performed analytically and in Ansys Workbench.  

The Newmark algorithm is extended to account for dynamic nonlinear problems, in 
which iteration is performed at each time step in order to satisfy equilibrium. 
Furthermore for the preparation of the buoyancy and wave analyses, algorithmic 
damping is implemented in the Nonlinear Wave Code by which the Newmark 
integration scheme is stabilized by damping out the undesirable high frequency modes.   

In the following Chapter 4 the wave theories and the method of modelling linear and 
higher order waves is introduced and described.  
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4 Method for Modelling of Wave Loads 
The design of offshore structures is dominated by environmental loads which are caused 
by environmental phenomena such as wind, waves, current, earthquakes and ice. The 
most important environmental loading for the design basis of an offshore floating 
structure is the wave loading. The waves are generated due to the wind acting on the 
surface of the sea.  

As aforementioned the wave kinematics are generated in the programmed Nonlinear 
Wave Code and subsequently used in the calculation of the hydrodynamic forces. In the 
following subsections 4.1 and 4.2, the theory behind the wave modelling is introduced, 
described and applied in simple validation examples of the Nonlinear Wave Code. 

4.1 Basic Wave Mechanics 
The ocean wave loads occurring on offshore floating structures are caused by the 
motion of the water due to the wind generated waves. The wind energy is partly 
transformed into waves by surface shear, and with increasing wave height the waves 
increases due to the larger roughness. Figure 23 illustrates the general definitions of the 
water wave mechanic parameters. These parameters are general for all types of water 
wave theories.  

 
Figure 23: Water wave mechanic parameters. 𝒉𝒉 is the water depth, L is the wave length and 𝑯𝑯 the is wave height. 

Waves are either classified as long-crested waves or short-crested waves. The short-
crested are 3-dimensional waves travelling in different directions and have a relative 
short crest. Long-crested waves are 2-dimensional plane waves that travel in the same 
direction, perpendicular to the coast. Long-crested waves are a good approximation, 
although waves in reality are often short-crested and only long-crested near the coast. 
All waves in the present report are considered long-crested waves. 

4.2 Wave Theories 
The range of validity of different wave theories is determined by means of three 
important wave parameters, namely the wave height H, the wave period T and the water 
depth h. These wave parameters are used to define the non-dimensional wave steepness 
parameter 𝑆𝑆 = 𝐻𝐻/𝐿𝐿 that decides which wave theory to be applied. If 𝐻𝐻

𝐿𝐿
≪  0 then the 

linear wave theory is used, and if 𝐻𝐻/𝐿𝐿 >  0.01 then higher order theories are applied.  
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The most common breaking wave/non-linear wave theories are the Stokes 2nd - 5th order 
or the Stream function theory. The classification of the waves is performed via the Le 
Mehaute diagram, shown in Figure 24, based on the wave height, water depth and the 
wave period. 

 
Figure 24: Le Mehaute diagram. 𝒉𝒉 is the water depth, 𝑻𝑻 is the period and 𝑯𝑯 the is wave height. [5] 

In engineering practice the linear theory is used in many cases, particularly when 
modelling irregular waves for the fatigue limit state. Regular waves for ultimate limit 
state design purposes are modelled by higher order theories.  

The Linear Wave Theory 
The simplest mathematical model of waves is the linear wave theory, referred to as 
Stokes 1st order wave theory or Airy wave theory. The mathematical solution of the 
linear wave theory is based on an exact solution of the Laplace equation with linearized 
boundary conditions. The theory is only valid for non-breaking waves with small 
amplitudes compared to the wave length and the water depth. The Laplace equation and 
the linearization of the boundary conditions at the free surface is not described and 
explained in the present, by which reference is made to [5]. 
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The velocity potential for the linear wave theory is found by 

while the surface elevation is given as 

in which the wave number 𝑘𝑘 [m−1] and the cyclic frequency 𝜔𝜔 [rad/s]  is found as  

𝐻𝐻 Wave height [m] 
𝑡𝑡 Wave amplitude [m] 
𝐿𝐿 Wave length [m] 
𝑇𝑇 Wave period [s] 
ℎ Water depth [m] 
𝑥𝑥 Horizontal coordinate [m]  
𝑧𝑧  Vertical coordinate [m] 

The wave kinematic quantities, the velocity field and acceleration field, respectively are 
directly computed by differentiation of the velocity potential with respect to the 
horizontal and vertical direction given as 

The acceleration field for the particles is determined with respect to time as 

In addition to the above-mentioned kinematic quantities, the wave length is found by 
iteration, as it cannot be computed explicitly. This is performed by means of the 
dispersion relation, which gives the relationship between wave period and wave length.  

 

 𝜑𝜑 = −
𝑡𝑡 ∙ 𝑔𝑔
𝜔𝜔

∙
cosh�𝑘𝑘(𝑧𝑧 + ℎ)�

cosh(𝑘𝑘ℎ) sin (𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑥𝑥) (4.1) 

 𝜂𝜂 =
𝐻𝐻
2

cos(𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑥𝑥) = acos (𝑤𝑤𝑡𝑡 − 𝑘𝑘𝑥𝑥) (4.2) 

 
𝑘𝑘 =

2𝜋𝜋
𝐿𝐿

 , 𝜔𝜔 =
2𝜋𝜋
𝑇𝑇

 (4.3) 

 

𝑢𝑢 =
𝜕𝜕𝜑𝜑
𝜕𝜕𝑥𝑥

=
𝑡𝑡𝑔𝑔𝑘𝑘
𝜔𝜔

∙
cosh�𝑘𝑘(𝑧𝑧 + ℎ)�

sinh(𝑘𝑘 ∙ ℎ) ∙ cos(𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑥𝑥)                       for  𝑧𝑧 = 0 

𝑤𝑤 =
𝜕𝜕𝜑𝜑
𝜕𝜕𝑧𝑧

= −
𝑡𝑡𝑔𝑔𝑘𝑘
𝜔𝜔

∙
sinh�𝑘𝑘(𝑧𝑧 + ℎ)�

sinh(𝑘𝑘 ∙ ℎ) ∙ sin(𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑥𝑥)                   for  𝑧𝑧 = 0 

(4.4) 

 

�̇�𝑢 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= −𝑡𝑡𝑔𝑔𝑘𝑘 ∙
cosh�𝑘𝑘(𝑧𝑧 + ℎ)�

cosh(𝑘𝑘 ∙ ℎ) ∙ sin(𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑥𝑥)                  for  𝑧𝑧 = 0 

�̇�𝑤 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡

= −𝑡𝑡𝑔𝑔𝑘𝑘 ∙
sinh�𝑘𝑘(𝑧𝑧 + ℎ)�

cosh(𝑘𝑘 ∙ ℎ) ∙ cos(𝜔𝜔𝑡𝑡 − 𝑘𝑘𝑥𝑥)                for  𝑧𝑧 = 0 
(4.5) 
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The dispersion relation is for linear waves in finite water depth given by 

The iterative procedure for the purpose of determining the wave length parameter is 
performed in the Nonlinear Wave Code in the script WaveLength.m, while the particle 
velocities and accelerations are generated in the file ParticleVelandAccAiry.m when the 
theory used is the linear wave theory.  

A simple validation of the implementation of the surface elevation for the linear wave 
theory is given in Figure 25. The wave specifications are arbitrarily set to 𝐻𝐻 = 1𝑚𝑚, 
𝑇𝑇 = 15𝑠𝑠 and ℎ = 40𝑚𝑚 in both the Nonlinear Wave Code and in the commercial wave 
program WaveLab.  

 
Figure 25: Comparison of wave surface elevation modelled in the Nonlinear Wave Code and WaveLab, respectively. 

As illustrated in Figure 25, the surface elevation modelled by the Nonlinear Wave Code 
and WaveLab agrees.  

In subsection 4.3 the application of the linear waves for the modelling of irregular 
waves is introduced and described, while the following subsection contains a 
description of the Stokes 5th order wave theory. 

Higher Order Theory 
Waves with large steepness imply that application of the Stokes 1st Order Wave theory 
is inaccurate as shown on Figure 26. It is remarked that both the wave crest and wave 
trough of the higher order wave modelled by Stokes 5th order theory are lifted compared 
to the linear wave. 

 
𝐿𝐿 =

𝑔𝑔 ∙ 𝑇𝑇2

2 ∙ 𝜋𝜋
∙ tanh �

2 ∙ 𝜋𝜋 ∙ ℎ
𝐿𝐿

� (4.6) 
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Figure 26: Wave comparison between Stokes 1st and 5th order wave. 

The higher order wave crest is thus shorter and steeper than the linear wave crest, while 
the wave trough is longer and less steep. The ultimate limit state ULS waves can thus 
not be described validly by use of a linear wave theory, and it is instead necessary to 
implement the higher order wave theory, Stokes 5th order.  

Using Stokes Theory, it is assumed that all variables can be expressed as a series 
expansion, in which the velocity potential and water surface elevation is given as 

in which 𝑖𝑖 is Stokes order of theory. The Stokes 5th order is as aforementioned valid for 
waves with steepness 𝐻𝐻/𝐿𝐿 > 0.01, and likewise the linear wave theory, it is based on 
the Laplace equation. It is in the project assumed that the waves are periodic and long-
crested, that there is no flow through the bottom of the sea and that the pressure is 
constant at the surface. The wave length 𝐿𝐿 and the coefficient 𝜆𝜆 is determined by 
iteration of  

in which 𝐶𝐶𝑖𝑖 and 𝐵𝐵𝑖𝑖𝑖𝑖 are variables dependent on the wave number 𝑘𝑘 = 2𝜋𝜋/𝐿𝐿 and water 
depth. After the computation of the wave length and the 𝜆𝜆 coefficient, the velocity 
potential is found from 

 
𝜑𝜑 = 𝜑𝜑1 + 𝜑𝜑2 + …  𝜑𝜑𝑖𝑖 +  … 

𝜂𝜂 = 𝜂𝜂1 + 𝜂𝜂2 +  …  𝜂𝜂𝑖𝑖 +  … 
(4.7) 

 

𝐿𝐿 =
𝑔𝑔𝑇𝑇2

2𝜋𝜋
tanh (𝑘𝑘ℎ) ∙ (1 + 𝜆𝜆2𝐶𝐶1 + 𝜆𝜆2𝐶𝐶2) 

𝜋𝜋𝐻𝐻 = 𝐿𝐿 �𝜆𝜆 + 𝜆𝜆3𝐵𝐵33 + 𝜆𝜆5(𝐵𝐵35 + 𝐵𝐵55)� 
(4.8) 
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𝑐𝑐 = 𝐿𝐿
𝑇𝑇
 Phase velocity of wave [m/s] 

𝜃𝜃 Phase angle of wave  
𝑧𝑧 Vertical coordinate [m] 
𝐷𝐷𝑖𝑖  Variables dependent on 𝜆𝜆 and 𝐴𝐴𝑙𝑙𝑙𝑙, known function of 𝑘𝑘ℎ 

The velocity field can now be calculated by means of differentiation of the above-given 
velocity potential with respect to direction as  

The acceleration field is found by differentiation of the velocity field with respect to 
time 

Finally the water surface elevation 𝜂𝜂 from mean water level MWL can be calculated by 
the following equation 

in which 𝐸𝐸𝑖𝑖 are variables dependent on 𝐵𝐵𝑖𝑖𝑖𝑖 and 𝜆𝜆. The above-mentioned Stokes 5th 
Order Wave theory is implemented in the Nonlinear Wave Code. In the present 
subsection the method for modelling of wave loads and determination of the 
hydrodynamic forces is given. 

 

 𝜑𝜑 = −
𝑐𝑐
𝑘𝑘
�𝐷𝐷𝐷𝐷
5

𝑖𝑖=1

∙ cosh (𝐷𝐷𝑘𝑘(𝑧𝑧 + ℎ)) ∙ sin 𝐷𝐷𝜃𝜃 (4.9) 

 𝑢𝑢 =
𝜕𝜕𝜑𝜑
𝜕𝜕𝑥𝑥

        𝑤𝑤 =
𝜕𝜕𝜑𝜑
𝜕𝜕𝑧𝑧

 (4.10) 

 

𝑑𝑑𝑢𝑢
𝑑𝑑𝑡𝑡

=
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝑤𝑤
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= −𝑐𝑐𝜔𝜔�𝐷𝐷2
5

𝑖𝑖=1

∙ 𝐷𝐷𝑖𝑖 cosh 𝐷𝐷𝑘𝑘(𝑧𝑧 + ℎ) ∙ 𝑠𝑠𝑖𝑖𝑡𝑡 𝐷𝐷𝜃𝜃 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

= 𝑐𝑐𝑘𝑘�𝐷𝐷2
5

𝑖𝑖=1

∙ 𝐷𝐷𝑖𝑖 cosh 𝐷𝐷𝑘𝑘(𝑧𝑧 + ℎ) ∙ 𝑠𝑠𝑖𝑖𝑡𝑡 𝐷𝐷𝜃𝜃 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

= 𝑐𝑐𝑘𝑘�𝐷𝐷2
5

𝑖𝑖=1

∙ 𝐷𝐷𝑖𝑖 sinh 𝐷𝐷𝑘𝑘(𝑧𝑧 + ℎ) ∙ 𝑐𝑐𝑡𝑡𝑠𝑠 𝐷𝐷𝜃𝜃 

(4.11) 

 𝜂𝜂 =
1
𝑘𝑘
�𝐸𝐸𝑖𝑖 cos 𝐷𝐷𝜃𝜃
5

𝑖𝑖=1

 (4.12) 
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4.3 Modelling of Waves 
The method of modeling the stochastic irregular FLS waves and the higher order ULS 
waves are described in the following subsections. The modelling of the waves is usually 
performed by means of either measured wave data from the location of the structure or 
on the basis of wind data, by which the waves are assumed to be wind generated. As a 
consequence of the objective of this project, no wave data are available and the wave 
specifications for the higher order and irregular waves are thus chosen arbitrarily.   

Modelling of Higher Order Waves 
The higher order waves are modelled for the purpose of the ultimate limit state analysis, 
ULS. A limit state is when the loads lead to an unfavourable situation e.g. a structural 
failure. The ULS is based on plausible combinations from the relevant DNV standard, 
and defines the maximum load bearing resistance, in which yielding of the materials 
and failure can occur. According to the DNV standard the characteristic load effect of 
the dominant environmental load must at least be based on a 50 years return period. [6] 
The deterministic ULS waves specification are as aforementioned obtained from 
measurements performed in the location of the structure, however in this project the 
specifications of the higher order waves are chosen arbitrarily based on the Le Mehaute 
diagram given in Figure 24. 

Modelling of Irregular Waves 
A real sea state is best described by a random wave model, as ocean waves are irregular 
in shape, length, phase and height. If recorded time series of the surface elevation of 
irregular waves are available, a time-domain or frequency-domain analysis is used to 
study the irregular waves. In the frequency-domain analysis, the irregular waves are 
modelled by superposition of n linear wave components, i.e. 

in which 𝛿𝛿𝑖𝑖 is the phase angle of the 𝑖𝑖𝑡𝑡ℎ linear wave. The phase angles are assigned 
random numbers between 0 and 2𝜋𝜋 which makes the irregular waves certainly 
stochastic. The irregular waves are then generated by transforming data from the time-
domain to the frequency-domain by describing the irregular sea state by means of a 
wave frequency spectrum, which is defined in terms of a significant wave height, the 
peak period and the wave direction. Two different wave spectrums are normally used, 
the Pierson-Moskowitz (PM) spectrum 𝑆𝑆𝑃𝑃𝑃𝑃(𝜔𝜔) or the Joint North Sea Wave 
Observation Project, JONSWAP spectrum 𝑆𝑆𝐽𝐽(𝜔𝜔). The PM spectrum is only valid for a 
fully arisen sea while the JONSWAP spectrum is formulated as a modification of the 
PM spectrum for a developing sea state in a fetch limited situation, and is thus valid for 
non-fully arisen seas.  

 

 𝜂𝜂(𝑡𝑡) = �𝜂𝜂𝑖𝑖(𝑡𝑡) = �𝑡𝑡𝑖𝑖cos (
𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

𝜔𝜔𝑖𝑖𝑡𝑡 − 𝑘𝑘𝑖𝑖𝑥𝑥 + 𝛿𝛿𝑖𝑖) (4.13) 
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The JONSWAP spectrum, which is used in this project, is formulated as  

In which 𝑆𝑆𝑓𝑓 is the spectral density, 𝑓𝑓𝑝𝑝 is the peak frequency calculated by taking the 
inverse of the peak periods  

𝑓𝑓 is the frequency and 𝛾𝛾  is a peak factor between 1 − 7. The parameters 𝛼𝛼 and 𝛽𝛽 are 
given by  

The averages values for the JONSWAP experiment data are 𝛾𝛾 = 3.3, 𝜎𝜎𝑎𝑎 = 0.07 and 𝜎𝜎𝑏𝑏 =
0.09. Setting 𝛾𝛾 = 1 reduces the JONSWAP spectrum to the PM spectrum. The effect of 
the peak shape parameter 𝛾𝛾 for JONSWAP spectrum for 𝐻𝐻𝑠𝑠 = 4𝑚𝑚,𝑇𝑇𝑝𝑝 = 8𝑠𝑠 for 𝛾𝛾 = 1, 𝛾𝛾 =
2 and 𝛾𝛾 = 5 is illustrated in Figure 27. 

 
Figure 27: JONSWAP spectrum for Hs = 4m and Tp = 8s. 

The influence of the peak shape parameter is shown in Figure 27, as it is observed that 
the size and sharpness of the spectrum is controlled by this parameter.  

 

 

 𝑆𝑆𝑓𝑓 = 𝛼𝛼 ∙ 𝐻𝐻𝑠𝑠 2 ∙ 𝑓𝑓𝑝𝑝 4 ∙ 𝑓𝑓−5 ∙ 𝑡𝑡
−54∙�

𝑓𝑓𝑝𝑝
𝑓𝑓 �

4

∙ 𝛾𝛾𝛽𝛽 (4.14) 

 𝑓𝑓𝑝𝑝 =
1
𝑇𝑇𝑝𝑝

 (4.15) 

 

𝛼𝛼 =
0.0624

0.230 + 0.0336 ∙ 𝛾𝛾 − � 0.185
1.9 + 𝛾𝛾�

 

𝛽𝛽 = 𝑡𝑡
−
�𝑓𝑓−𝑓𝑓𝑝𝑝�

2

2∙𝑡𝑡2∙𝑓𝑓𝑝𝑝 2     where     𝜎𝜎 = �
𝜎𝜎𝑎𝑎 = 0.07  𝑓𝑓𝑡𝑡𝑟𝑟 𝑓𝑓 ≤ 𝑓𝑓𝑝𝑝
𝜎𝜎𝑏𝑏 = 0.09 𝑓𝑓𝑡𝑡𝑟𝑟 𝑓𝑓 > 𝑓𝑓𝑝𝑝

� 

 (4.16) 
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As aforementioned the average value of the parameter is 𝛾𝛾 = 3.3, however to obtain the 
exact value of the parameter, the following expression is used 

where 𝑇𝑇𝑝𝑝 is in seconds and the significant wave height 𝐻𝐻𝑠𝑠 in meters. An example of a 
JONSWAP spectrum is shown in Figure 28, where the wave specifications arbitrarily 
are chosen to 𝐻𝐻𝑠𝑠 = 3𝑚𝑚 and 𝑇𝑇𝑝𝑝 = 10𝑠𝑠. 

 
Figure 28: JONSWAP Spectrum for Hs = 3m, Tp = 10s and ocean depth h = 40m. 

The JONSWAP spectrum is divided into 20 linear spaced frequency bins as illustrated 
in Figure 28. For each of these frequencies a regular wave is determined by taking the 
area beneath the frequency. The wave height is determined from  

in which 𝑆𝑆(𝑓𝑓𝑖𝑖), is the spectral density for the frequency 𝑖𝑖  and ∆𝑓𝑓 is the width of 
frequency bin. The 20 linear waves with random phases are shown in Figure 29. 

 

𝛾𝛾 = 5 𝑓𝑓𝑡𝑡𝑟𝑟 
𝑇𝑇𝑝𝑝
�𝐻𝐻𝑠𝑠

≤ 3.6 

𝛾𝛾 = 𝑡𝑡𝑥𝑥𝑒𝑒 �5.75− 1.15
𝑇𝑇𝑝𝑝
�𝐻𝐻𝑠𝑠 

�  𝑓𝑓𝑡𝑡𝑟𝑟 3.6 <
𝑇𝑇𝑝𝑝
�𝐻𝐻𝑠𝑠

< 5 

𝛾𝛾 = 1 𝑓𝑓𝑡𝑡𝑟𝑟 5 ≤
𝑇𝑇𝑝𝑝
�𝐻𝐻𝑠𝑠

 

 

 

(4.17) 

 
𝐻𝐻𝑖𝑖 = 2 ∙ �2 ∙ 𝑆𝑆(𝑓𝑓𝑖𝑖) ∙ ∆𝑓𝑓 (4.18) 
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Figure 29: 20 regular waves generated from a JONSWAP spectrum. 

Summation of all 20 regular waves by means of aforementioned formulation (4.13) 
leads to the irregular waves given in Figure 30.  

 
Figure 30: Irregular wave composed of 20 regular waves. 

The duration and length of the irregular wave depends on the number of superimposed 
linear wave components. The generation of the irregular waves is programmed in the 
Nonlinear Wave Code by the script denoted JonswapFLS.m. 

The Wheeler Stretching is often used when generating irregular waves, as it provides a 
more accurate approximation of the wave kinematics above mean water level. The 
Wheeler Stretching is introduced in the following subsection.  
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Wheeler Stretching 
The linear wave theory is limited to small waves and does thus not yield valid wave 
kinematics for points above the mean water level as they are not in the fluid. This means 
that the theory does not yield valid description of the wave kinematics and needs thus to 
be stretched to include predictions of the fluid velocity and acceleration at points above 
the mean water level. The method of stretching applied is the so-called Wheeler 
Stretching which is implemented by substituting the vertical coordinates 𝑧𝑧 with the 
stretched coordinate 𝑧𝑧′ given as 

where 𝜂𝜂 is the surface elevation and  ℎ is the ocean depth. The wheeler stretching is 
valid for linear waves and irregular waves which are superposed by a number of linear 
waves as introduced in the previous subsection 4.3. As illustrated in Figure 31, the 
Wheeler Stretching modification stretches or compresses the velocity profile linearly 
into a height equivalent to the mean water depth.   

 
Figure 31: Wheeler stretching modification. 

A comparison between the horizontal velocity of a linear wave and the horizontal 
velocity of a Wheeler stretched linear wave is given in Figure 31. The wave 
specifications are set to 𝐻𝐻 = 2, 𝑇𝑇 = 8𝑠𝑠 and ℎ = 40𝑚𝑚.  

 
𝑧𝑧′ =

𝑧𝑧 − 𝜂𝜂

1 + 𝜂𝜂
ℎ

     𝑓𝑓𝑡𝑡𝑟𝑟   − ℎ ≤ 𝑧𝑧′ ≤  𝜂𝜂 (4.19) 
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Figure 32: Comparison of the horizontal velocity for an Airy wave and a stretched Airy wave. 

It is remarked that the Wheeler Stretching leads to larger kinematics quantities at the 
wave trough as the velocity profile is compressed, while the kinematic quantities are 
decreased at the wave crest as the velocity profile is stretched. The Wheeler Stretching 
is implemented in the Nonlinear Wave Code and can be applied instead of the linear 
wave theory as requested.  

In the following subsection 4.4 the method of calculating the hydrodynamic forces by 
evaluating Morison’s formula and the hydrodynamic coefficients is given.  
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4.4 Method of Hydrodynamic Forces 
The determined kinematic quantities from the linear wave theory and Stokes 5th order 
wave theory respectively, are applied in the calculations of the hydrodynamic forces. In 
the present section the hydrodynamic forces due to incoming waves are implemented, in 
which a cylinder modelled by cylindrical beam elements is considered. An example of 
an incoming wave on a cylinder is illustrated in Figure 33.  

 
Figure 33: Distributed wave loading due to submerged cylinder. 

Morison’s load formula is only valid for non-breaking waves; however the formula is 
valid for breaking water if the structure members are fully covered by water. In deep 
water, waves break when 𝐻𝐻/𝐿𝐿 > 0.14 and in shallow the waves break as 𝐻𝐻/𝐿𝐿 
exceeds 0.78. For non-breaking waves and slender structures, the general Morison’s 
differential formulation is applicable and formulated as 
 

 

consisting of a sum of an inertia force and a drag force in which the inertia force is 
proportional to the particle acceleration and the drag force is proportional to the square 
particle velocity. The Morison differential equation is only valid if the following ratio 
between the wave length 𝐿𝐿 and the tube diameter 𝐷𝐷 is obeyed  

 

By satisfying the ratio, the use of the diffraction theory is ignored when computing the 
kinematic quantities as the diffraction is insignificant for slender members. This is the 
case in the present project and the application of the Morison’s formulation to determine 
the hydrodynamic forces is valid. Considering restrained vertical members the 
Morison’s formulation is defined as 
 

 

in which 𝐶𝐶𝐷𝐷 and (1 + 𝐶𝐶𝐴𝐴) = 𝐶𝐶𝑃𝑃 is the dimensionless drag and inertia coefficients, 
respectively, 𝐷𝐷 is the diameter of the member, 𝜌𝜌 is the density of ocean water.  

 
𝑑𝑑𝐹𝐹 = 𝑑𝑑𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎 + 𝑑𝑑𝐹𝐹𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 (4.20) 

 
𝐿𝐿 > 5𝐷𝐷 (4.21) 

 
𝑑𝑑𝐹𝐹 = 𝑑𝑑𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎 + 𝑑𝑑𝐹𝐹𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑 = (1 + 𝐶𝐶𝐴𝐴)𝜌𝜌

𝜋𝜋𝐷𝐷2

4
�̇�𝑢 +

1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝐷𝐷𝑢𝑢|𝑢𝑢| (4.22) 
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The above given Morison’s load formula is as aforementioned valid for restrained 
structures in waves. Considering moving structures in waves, which is the case in this 
project, the Morison’s equation is reformulated to account for the relative velocities and 
accelerations.   

Considering Figure 33, the distributed wave force 𝑞𝑞𝑤𝑤𝑛𝑛  is perpendicular to the beam axis 
and dependent on the orientation of the beam, the contribution to the wave force is 
divided into local components 𝑞𝑞𝑤𝑤 = �𝑞𝑞𝑤𝑤𝑡𝑡  ,  𝑞𝑞𝑤𝑤𝑛𝑛𝑧𝑧

�. The distributed wave loading is 
calculated by means of the relative Morison formulation given as 

where 𝐴𝐴𝑠𝑠𝑖𝑖  is the submerged cross-sectional area, �̇�𝑢𝐹𝐹𝑛𝑛 is the fluid particle acceleration 
normal to the beam axis, �̇�𝑢𝑆𝑆𝑛𝑛 is the structural acceleration normal to thee beam axis, 𝐶𝐶𝐴𝐴 
is the added mass coefficient, 𝑟𝑟𝑛𝑛 is the relative fluid-structure acceleration and 𝑟𝑟𝑛𝑛 is the 
relative fluid-structure velocity. Additional hydrodynamic damping is not necessary to 
be included when using the relative Morison formula for the drag forces. The structure 
is damped due to the added mass coefficient 𝐶𝐶𝐴𝐴, which is described in the following 
subsection. The relative fluid-structure kinematics are defined and calculated as 

in which 𝑥𝑥𝑖𝑖 and 𝑥𝑥�̇�𝚤 are the velocities and accelerations, respectively. These are 
interpolated from the nodal velocities 𝐱𝐱 and nodal accelerations �̇�𝐱 by means of 

The wave load 𝑞𝑞𝑤𝑤𝑡𝑡 is defined as the distributed wave loading tangential to the beam axis 
and is mainly due to skin friction. The tangential drag force is small compared to the 
normal drag force but with important impact for long slender elements. The contribution 
from the distributed wave loading tangential to the beam axis 𝑞𝑞𝑤𝑤𝑡𝑡 is found by 

in which  𝐶𝐶𝐷𝐷𝑡𝑡 is the tangential drag coefficient and 𝑟𝑟𝑡𝑡 is the relative fluid-structure 
velocity tangential to the beam axis. The local distributed wave loads 𝑞𝑞𝑤𝑤 are 
transformed into global nodal forces 𝐹𝐹𝑤𝑤 by the method described in Chapter 5. The 
relative Morison formulation is implemented in the Nonlinear Wave Code script 
denoted WaveForce.m. The hydrodynamic coefficients of the structure are presented 
and described in the following subsection. 

 𝑞𝑞𝑤𝑤𝑛𝑛𝑖𝑖
= 𝐶𝐶𝑃𝑃𝜌𝜌𝑤𝑤𝐴𝐴𝑠𝑠𝑖𝑖�̇�𝑢𝐹𝐹𝑛𝑛𝑖𝑖 − 𝜌𝜌𝑤𝑤𝐶𝐶𝐴𝐴𝐴𝐴𝑠𝑠𝑖𝑖�̇�𝑢𝑆𝑆𝑛𝑛𝑖𝑖 +

1
2
𝜌𝜌𝑤𝑤𝐶𝐶𝐷𝐷𝑛𝑛𝐻𝐻𝑠𝑠𝑖𝑖𝑟𝑟𝑛𝑛𝑖𝑖�𝑟𝑟𝑛𝑛𝑖𝑖� (4.23) 

 𝑟𝑟𝑛𝑛 = 𝑢𝑢𝑖𝑖 − 𝑥𝑥𝑖𝑖   

𝑟𝑟𝑖𝑖 = �̇�𝑢𝑖𝑖 − �̇�𝑥𝑖𝑖  
(4.24)  

 
𝑥𝑥𝑖𝑖 = NT(𝑥𝑥𝑖𝑖)𝐱𝐱         �̇�𝑥𝑖𝑖 = NT(𝑥𝑥𝑖𝑖)�̇�𝐱 (4.25) 

 𝑞𝑞𝑤𝑤𝑡𝑡𝑖𝑖
=

1
2
𝜌𝜌𝑤𝑤𝐶𝐶𝐷𝐷𝑡𝑡𝐻𝐻𝑠𝑠𝑖𝑖𝑟𝑟𝑡𝑡𝑖𝑖�𝑟𝑟𝑡𝑡𝑖𝑖� (4.26) 
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Hydrodynamic Coefficients  
Before any dynamic analysis of the floating space frame structure is performed, it is 
necessary to determine the hydrodynamic coefficients as they are decisive for the 
motion of the structure. The total dynamic behavior of a floating body is described by 
the sum of two dynamic cases, namely the behavior of the body oscillating in still water 
and the behavior of a restrained body exposed to ocean waves as shown in Figure 34.  

 
Figure 34: Illustration of the dynamic behaviour of a floating body in ocean waves. 

The hydrodynamic coefficients that are to be included are the added mass and the drag 
and inertia coefficients. The importance and influence of the coefficients in the further 
analyses are described in the following subsection. 

Added Mass  
An additional force resulting from the fluid acting on a body under water has to be 
included in the analysis of a body’s motion in waves. As a body moves in fluid, an 
amount of fluid moves with it, i.e. when the body accelerates the fluid does too. More 
force is required to accelerate the body in fluid than in vacuum. The additional force is 
given by the added mass and is for a cylinder calculated by the following formulation 

where 𝜌𝜌 is the fluid density, 𝑟𝑟 is the radius of the cylinder and 𝐿𝐿 is the length. The non-
dimensional added mass coefficient 𝐶𝐶𝐴𝐴 is found by 

in which 𝐴𝐴 is the amount of submerged cross-sectional area. A good approximation of 
the amount of added mass is given by equation (4.28) as the Nonlinear Wave Code 
knows the approximate amount of submerged cross-sectional area in every time step. 
The calculation of the added mass coefficient is implemented in the script 
WaveForce.m.  

 

 

 
𝑚𝑚𝑎𝑎 = 𝜌𝜌𝜋𝜋𝑟𝑟2𝐿𝐿 (4.27) 

 
𝐶𝐶𝐴𝐴 =

𝑚𝑚𝑎𝑎

𝜌𝜌𝐴𝐴𝑠𝑠
 (4.28) 
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Drag and Inertia Coefficients 
Offshore floating structures are divided into structures which are either drag or inertia-
dominated. A structure with large cross-sections is inertia-dominated due to wave 
diffraction and the global forces are thus significantly larger than the drag induced 
global loads as described in the introduction of the project. The drag coefficient 𝐶𝐶𝐷𝐷 is 
most accurately derived by experimental test in which a restrained cylinder is subjected 
to waves.   

The drag- and inertia coefficients are functions of Reynolds number 𝑅𝑅𝑖𝑖, the Keulegan-
Carpenter number 𝐾𝐾𝐶𝐶 and the non-dimensional roughness ∆. These parameters are 
defined as following. 

Where: 
D Diameter [m] 
T Wave period [s] 
k  Roughness height [m] 
u Total flow velocity [m/s] 
v Fluid kinematic viscosity [m2/s] 
um Maximum orbital particle velocity [m/s] 

The inertia coefficient is defined by the following expression 

while the drag coefficient is found by 

where 𝐶𝐶𝐷𝐷𝑆𝑆 is the drag coefficient for steady-state given by equation (4.32) and 𝜓𝜓 is the 
wake amplification factor given by Figure 35. The drag coefficient for steady state is 
given by 

In which 𝑘𝑘 is the surface roughness, which for painted and uncoated steel is smooth, and 
if the structure is covered by marine growth then 𝑘𝑘 is chosen to be  0.005 − 0.05 𝑚𝑚. It is 
assumed that the floating space frame structure is made of painted steel by which the 
wake amplification factor 𝜓𝜓 is found by Figure 35. 

 𝑅𝑅𝑖𝑖 =
𝑢𝑢𝐷𝐷
𝑣𝑣

          𝐾𝐾𝐶𝐶 =
𝑢𝑢𝑙𝑙𝑇𝑇
𝐷𝐷

          ∆=
𝑘𝑘
𝐷𝐷

 (4.29) 

 𝐶𝐶𝑃𝑃 =  � 
2.0 𝑓𝑓𝑡𝑡𝑟𝑟 𝐾𝐾𝐶𝐶 < 3

max [2.0 − 0.044(𝐾𝐾𝐶𝐶 − 3) ;  1.6 − (𝐶𝐶𝐷𝐷𝑆𝑆 − 0.65)] 𝑓𝑓𝑡𝑡𝑟𝑟 𝐾𝐾𝐶𝐶 > 3� (4.30) 

 
𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐷𝐷𝑆𝑆 ∙ 𝜓𝜓(𝐶𝐶𝐷𝐷𝑆𝑆,𝐾𝐾𝐶𝐶) (4.31) 

 
𝐶𝐶𝐷𝐷𝑆𝑆 =

⎩
⎨

⎧
 

0.65      𝑓𝑓𝑡𝑡𝑟𝑟  𝑘𝑘/𝐷𝐷 < 10−4 (𝑆𝑆𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡ℎ)
29 + 4 ∙ log(𝑘𝑘/𝐷𝐷)

20
𝑓𝑓𝑡𝑡𝑟𝑟  10−4 < 𝑘𝑘/𝐷𝐷 < 10−2

1.05 𝑓𝑓𝑡𝑡𝑟𝑟 𝑘𝑘/𝐷𝐷 > 10−2 (𝑅𝑅𝑡𝑡𝑢𝑢𝑔𝑔ℎ) ⎭
⎬

⎫
 (4.32) 
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Figure 35: The diagram for determination of the wake amplification factor.  

The calculation of the drag coefficient is automated in the Nonlinear Wave Code file 
WaveForce.m while the user has the option to specify the values as requested. The drag 
and inertia coefficients are obtained at each node and extraction point throughout every 
time step.   

However, as aforementioned the drag and inertia coefficients are best represented by 
experimental studies. It is thus chosen to use constant drag and inertia coefficients in the 
project for the sake of simplification. Considering the slender structures used in the 
project and the recommendation of the DNV, the drag coefficient is set to 𝐶𝐶𝐷𝐷 = 0.5 and 
𝐶𝐶𝑃𝑃 = 2 in all calculations performed in the project.  

In the following subsection the influence of the drag and inertia coefficients on large 
and small volume structures is described.  
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The Influence of the Drag and Inertia Coefficients 
The influence of the drag and inertia-coefficients on large and slender cylinders is 
studied in the following by analyzing two wave cases on a restrained cylinder. The 
influence of the coefficients is firstly tested on a restrained cylinder with a large cross-
sectional diameter of 5𝑚𝑚 as illustrated in Figure 36. The wave specifications are set 
to 𝐻𝐻 = 1𝑚𝑚, 𝑇𝑇 = 15𝑠𝑠 and ℎ = 40𝑚𝑚. 

 
Figure 36: Restrained cylinder of L = 5m and r = 2.5m. 

Considering the large diameter of the fixed cylinder, the drag and inertia coefficients are 
set to 𝐶𝐶𝐷𝐷 = 1.2 and 𝐶𝐶𝑃𝑃 = 2, respectively. The drag and inertia forces and the total 
Morison force is executed and plotted in Figure 37.     

 
Figure 37: The influence of the drag- and inertia coefficients on a restrained cylinder with large cross-section. 
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It is remarked from Figure 37 that the structure is clearly inertia-dominated due to the 
large volume structure. The influence of the drag force on the structure is as observed 
almost of no importance compared with the inertia force. By replacing the large volume 
structure with a small volume structure of 𝐷𝐷 = 0.01𝑚𝑚 with drag and inertia coefficients 
of 𝐶𝐶𝐷𝐷 = 0.5 and 𝐶𝐶𝑃𝑃 = 2 respectively, the force results are illustrated in Figure 38. 

 
Figure 38: The influence of the drag- and inertia coefficients on a restrained cylinder with small cross-section. 

The force results obtained in Figure 38 confirms as aforementioned that the structure is 
drag-dominated when the structure consists of slender members. As this project 
considers slender cylinders, it is further confirmed that the drag-coefficient has the most 
significant influence on the hydrodynamic forces exposed to the structure.  

4.5 Summary of Wave Modelling Methods 
The basic wave mechanics, linear waves and higher order waves are in this chapter 
described and implemented in the Nonlinear Wave Code. More specific the wave 
kinematics is in this chapter generated in the programmed Nonlinear Wave Code and 
subsequently used in the calculation of the hydrodynamic forces. As the objective of the 
project is to predict the dynamic response of the floating space frame structure, the 
hydrodynamic forces are represented by the relative Morison formula which is 
expressed in terms of the relative fluid-structure velocities and accelerations. 

The drag and inertia coefficients are best represented by experimental studies. The drag 
and inertia are however in this project assumed to be constant, and are thus by the 
recommendation of the DNV set to 𝐶𝐶𝐷𝐷 = 0.5 and 𝐶𝐶𝑃𝑃 = 2 in all wave analyses performed 
in the project. 

The wave modelling in Ansys Workbench is introduced and described in Appendix A. 
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5 Modelling of Wave Loads 
The impact of the wave loads on the floating space frame structure is obtained from the 
kinematic quantities and by application of the relative Morison formulation to obtain the 
hydrodynamic forces. As the hydrodynamic forces are given in differential form as a 
force per unit length, a transformation of the differential hydrodynamic forces into 
nodal loads is needed. This is accomplished by the following two approaches.  

 The differential hydrodynamic forces are represented by a higher order polynomial 
regression. The forces are subsequently transformed into consistent beam loads by 
the interpolation functions.  
 

 The hydrodynamic forces are transformed into nodal forces by introducing 
numerical integration, based on the trapezoidal rule, and by means of interpolation 
functions. 

In the present chapter the projection of the kinematic quantities is described, and the 
implementation of the two abovementioned methods of representing the hydrodynamic 
forces is introduced. The methods are implemented in the Nonlinear Wave Code and 
validated by simple examples in which a restrained slender cylinder is subjected to 
wave loading.  

5.1 Projection of Kinematic Quantities 
The kinematic quantities induce a transverse and a tangential force contribution for each 
member of the floating space frame structure. The transverse and tangential force 
contribution is obtained either by the difference or the sum of the projected horizontal 
and vertical components of the kinematic quantities, depending on the angle of the 
member. The orientation of each member is represented by the transformation matrix 
given as following 

The projection of the kinematic quantities is implemented in the Nonlinear Wave Code 
in the script WaveForce.m and is illustrated in Figure 39. 

 
Figure 39: Projection of the kinematic quantities. 

The transverse and tangential contributions of the kinematic quantities are applied in the 
calculation of the differential hydrodynamic forces by means of the relative Morison’s 
formula and the hydrodynamic forces are subsequently transformed into nodal loads. To 

 
�
𝑥𝑥𝑙𝑙
𝑧𝑧𝑙𝑙� = � cos𝜃𝜃 sin𝜃𝜃

−sin𝜃𝜃 cos𝜃𝜃� �
𝑋𝑋
𝑍𝑍�               �

𝑋𝑋
𝑍𝑍� = �cos𝜃𝜃 − sin𝜃𝜃

sin𝜃𝜃 cos𝜃𝜃 � �
𝑥𝑥𝑙𝑙
𝑧𝑧𝑙𝑙�   (5.1) 
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obtain an accurate transformation of the hydrodynamic forces into nodal loads, a 
satisfactory distribution of the hydrodynamic forces is needed and achieved by a 
sufficient beam discretization. To avoid a large discretisation of the structure and 
thereby a demanding computational effort, extractions points are introduced in the 
subsequent subsection. 

5.2 Extraction Points 
To ensure that a given structure has a sufficient number of nodes, extra subnodes are 
generated between the main nodes. These nodes are referred as extraction points and 
implemented in the Nonlinear Wave Code by ExtractionPoints.m. An illustration of a 
beam element with two extraction points is given in Figure 40. 

 
Figure 40:  An element with 2 generated subnodes marked with red. 

The number of extraction points needed to obtain a sufficient representation of the 
hydrodynamic forces depends on which method is used to transform the forces into 
consistent nodal loads. The two methods are described in subsection 5.3 and 5.8. 

5.3 Polynomial Regression of Hydrodynamic Forces 
The differential hydrodynamic forces are in this subsection represented by a mathematic 
regression. In Figure 41 a solid cylinder of 𝑟𝑟 = 0.01𝑚𝑚 and length 𝐿𝐿 = 40𝑚𝑚 restrained at 
seabed level is illustrated. The purpose of this configuration is to represent the 
hydrodynamic force distribution over the depth of the ocean. The differential 
hydrodynamic forces are determined at each node at time step 𝑡𝑡 = 0𝑠𝑠 for the wave 
specifications set as ℎ = 40𝑚𝑚, 𝐻𝐻 = 1𝑚𝑚 and 𝑇𝑇 = 15𝑠𝑠.  

The cylinder is initially vertical at this time step and only the normal force contribution 
𝑓𝑓𝑛𝑛 from Morison’s formula is acting on the cylinder as the tangential force contribution 
𝑓𝑓𝑡𝑡 is set to zero. With a sufficient number of nodes, a relatively accurate polynomial can 
be drawn as illustrated in Figure 41. 
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Figure 41: Differential hydrodynamic forces determined for a restrained solid cylinder. 

As remarked from Figure 41 the hydrodynamic force profile must be represented by a 
higher order polynomial regression. A 3rd order polynomial regression gives a decent 
representation of the hydrodynamic forces. A quadratic regression over 4 and 25 points 
representing the differential hydrodynamic forces are illustrated in Figure 42 together 
with the hydrodynamic forces at each node. 

 
Figure 42: Polynomial regression representing the differential hydrodynamic forces acting on the solid cylinder. 

It should be noted that Figure 42 is rotated 90 degrees in comparison with Figure 41. It 
is however remarked from Figure 42 that the polynomial regression is relatively 
accurate even with few points. A decent rule of thumb is that the number of known 
points of a polynomial must be one more than the order of the polynomial. For example, 
to achieve a quadratic regression, four points are needed to obtain reasonable results. 
This can either be done by dividing the solid cylinder into 3 elements with 4 nodes or 
one element with two nodes and two extraction points.  
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The degree of polynomial depends on which type of load the structure is exposed to. 
For 1st order waves, a quadratic regression provides a decent fit to the hydrodynamic 
forces. The quadratic regression takes form as 

The coefficients 𝑒𝑒1 to 𝑒𝑒4 are obtained by using the Matlab function Polyfit, where the 
input parameters are the differential hydrodynamic forces in the nodes and in the 
extraxtion points for each element, the distance between the nodes and the extraction 
points and the degree of polynomial. The calculations are executed in the Nonlinear 
Wave Code in the Matlab script denoted WaveForce.m.  

5.4 Transformation of Hydrodynamic Forces into Beam Loads 
With the quadratic regression describing the distributed forces over the elements, the 
forces are now transformed into beam loads by means of the consistent load vectors. 
The consistent load vectors are defined via integration of the product of the transposed 
shape functions 𝑁𝑁𝑇𝑇 and the polynomial loads 𝑒𝑒 over the length of the elements 𝐿𝐿.  

The consistent load vector contains a transverse load, a tangential load and a bending 
moment at each node of each element as illustrated in Figure 43.  

 
Figure 43: Transverse and tangential loads and bending moments acting on two beam elements. 

The last step of the transformation is the projection of the local loads to global loads by 
means of the transformation matrix. The transformation of the differential 
hydrodynamic forces into nodal loads is implemented in the Nonlinear Wave Code in 
the script WaveForce.m and the consistent load vectors are implemented in the script 
denoted ConsistentLoadVectors.m. 

 
𝑒𝑒(𝑥𝑥) = 𝑒𝑒1 ∙ 𝑥𝑥3 + 𝑒𝑒2 ∙ 𝑥𝑥2 + 𝑒𝑒3 ∙ 𝑥𝑥 + 𝑒𝑒4 (5.2) 

 𝑟𝑟 = �𝑁𝑁𝑇𝑇𝑒𝑒 𝑑𝑑𝐿𝐿 (5.3) 
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5.5 Modelling of Self-weight 
The loading obtained from the mass due to the gravity acceleration has likewise the 
wave loading an impact on the floating space frame structure. The self-weight is 
implemented in the same manner as the hydrodynamic forces, namely by projection and 
transformation of the distributed self-weight load to nodal loads. The self-weight load of 
the structure is separated into a transverse load and a tangential load by projection as 
shown in Figure 45. 

 
Figure 44: The loading obtained by the mass due to the acceleration acting on the structure. 

By application of the consistent load vectors, the distributed loads are transformed into 
beam loads and subsequently projected to global loads. The self-weight is included in 
all wave analyses performed in the report. 

5.6 Validation of Hydrodynamic Forces by Polynomial Regression 
In the present subsections two analyses of a solid cylinder are performed to validate the 
method of representing the hydrodynamic forces by means of polynomial regression in 
the Nonlinear Wave Code. In the first example the cylinder is restrained and fully 
submerged, while the cylinder is partially submerged in the second example. 
Furthermore a convergence study is performed to clarify the accuracy of the Nonlinear 
Wave Code compared to Ansys Workbench. 
 
Validation of Fully Submerged Cylinder  
The method of determining the hydrodynamic forces in the Nonlinear Wave Code is 
below validated by means of Ansys Workbench. An example consisting of a restrained 
solid cylinder is exposed to linear waves as illustrated in Figure 45.  

The structure has the dimensions 𝐿𝐿 = 5𝑚𝑚, 𝑟𝑟 = 0.01𝑚𝑚 and the wave specifications are set 
to 𝐻𝐻 = 1𝑚𝑚, 𝑇𝑇𝑝𝑝 = 15𝑠𝑠, ℎ = 40𝑚𝑚 while the hydrodynamic coefficients are set to 𝐶𝐶𝐷𝐷 = 0.5, 
𝐶𝐶𝑃𝑃 = 2 and 𝐶𝐶𝐴𝐴 = 1. The cylinder is modelled relatively slender to obtain large 
displacements and thus to validate the fluid-structure interaction.                  
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Figure 45: Validation example of the implemented hydrodynamic forces by a restrained solid cylinder. 

The cylinder is modelled by 10 beam elements and 10 extraction points for each 
element. The horizontal displacement, velocity and acceleration responses in both 
programs are extracted from the end node and compared in Figure 46. 

 
Figure 46: Comparison of the displacement, velocity and acceleration responses extracted from Ansys and Matlab. 
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The interaction between the method of determining the hydrodynamic forces by 
polynomial regression in the Nonlinear Wave Code and Ansys Workbench given in the 
above example, confirms that both programs are agrees with each other. The deviation 
between the two results is determined to 2.6%. Representing the hydrodynamic loads by 
polynomial regression on a fully submerged structure is thus a good approximation, and 
by a finer mesh the deviation is reduced. 

However, as remarked in Figure 46, the acceleration response obtained by the Nonlinear 
Wave Code and Ansys Workbench both are dominated by high-frequency peaks. An 
explanation of the origin of the high-frequency peaks is given in subsection 5.9. It is 
furthermore remarked that the displacements of the cylinder is relatively small which is 
due to the small amplitude linear waves. In the following subsection the response of a 
partially submerged cylinder is predicted. 

Validation of Partially Submerged Cylinder  
An additional validation example is performed by the Nonlinear Wave Code to confirm 
that the method can deal with a structure that is partially submerged as illustrated in 
Figure 47. The purpose of this example is to validate that the method is able to deal with 
the interaction between the structure and the nature of the ocean water surface. The 
same cylinder is applied with the length 𝐿𝐿 = 5𝑚𝑚 and ocean wave specifications 𝐻𝐻 =
1𝑚𝑚, 𝑇𝑇 = 15𝑠𝑠 and ℎ = 40𝑚𝑚. The hydrodynamic coefficients are set to 𝐶𝐶𝐷𝐷 = 0.5, 𝐶𝐶𝑃𝑃 = 2 
and 𝐶𝐶𝐴𝐴 = 1.  
 

 
Figure 47: Validation example for a restrained solid circular cross-section positioned partly above MWL. 
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The cylinder is modelled by 10 beam elements and 10 extraction points for each 
element. The comparison of the horizontal displacement, velocity and acceleration is 
given in Figure 48. 

 
Figure 48: Comparison of the displacement, velocity and acceleration responses extracted from Ansys and Matlab. 

Besides the accelerations, which are discussed in subsection 5.9, the displacement and 
velocity plot results confirm that the implemented method is consistent with Ansys 
Workbench, and that the present method is able to represent the interaction at the ocean 
water surface.  

For partially submerged elements, this approach of evaluating the hydrodynamic forces 
by polynomial regression has some limitations. The method has difficulties describing 
the wave load distribution along the part of the element which is above the ocean water 
surface, as the load distribution goes rapidly from values to zero values. This is a gab 
that makes it impossible to find an exact polynomial regression to fit the load 
distribution along the length of element.  
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To illustrate the polynomial fit for a partially submerged element, a solid cylinder is 
modelled by two elements, in which Element 1 is fully submerged and Element 2 is 
partially submerged as illustrated in Figure 49. 
 

 
Figure 49: The polynomial regression fits over the two elements of the solid cylinder. 

It is remarked from Figure 49 that the polynomial regression fits perfectly for the fully 
submerged Element 1, whereas the polynomial regression fits badly for the partially 
submerged Element 2.  

Convergence Study of Structure Discretization 
It is crucial to impose the necessary amount of structure discretization to obtain a 
satisfactorily balanced accuracy and computing resources. The purpose of the 
convergence study is thus to obtain a sufficient accurate solution with a beam 
discretization that is sufficient and not overly demanding of computing resources. The 
convergence study is performed so that the mesh firstly is created using the fewest, 
reasonable number of elements, after which the beam discretization is increased and 
compared to both those of the previous mesh and Ansys Workbench until the results 
converge satisfactorily.  

Two convergence studies are thus performed to evaluate the influence of the number of 
extraction points and elements. Both convergence studies are performed on the partially 
submerged restrained cylinder shown in Figure 47, in which the first convergence study 
clarifies the influence of the extraction points, while the second convergence study 
confirms the importance of the element division of the structure. The mean percentage 
difference of the horizontal displacement of the partially submerged cylinder over a 
period of 15𝑠𝑠 between the Nonlinear Wave Code and Ansys Workbench is stated in 
Figure 50. The cylinder is modelled by two beam elements and the number of applied 
extraction points is gradually increased until convergence is satisfied.  
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Figure 50: Convergence study of the cylinder modelled with only two elements and a different number of extraction points. 

As remarked from Figure 50, the results are significantly more accurate by increasing 
the number of extraction points from 2 points per element to 10 points. However, the 
analyses converge at a deviation of 188 %, which is due to a phase shift that occurs 
between the results from the Nonlinear Wave Code and Ansys Workbench. 
Representing the hydrodynamic forces by only two beam elements is thus not sufficient, 
by which a convergence study of the necessary number of element division is given in 
the following.  

In the present convergence study, the number of extraction points is set to 10 while the 
number of element division is gradually increased from 2 to 100 beam elements as 
illustrated in Figure 51. 

 
Figure 51: Convergence study of the cylinder modelled with a different number of elements and 10 extraction points. 
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As observed from Figure 51, the results become significantly better as the number of 
elements is increased. With 100 beam elements and 10 extraction points for each 
element, the deviation is reduced to 1.1 %. The convergence study is not continued with 
further elements because of the increasing demand of computational time and effort.  

The reason why the results are more accurate by increasing the number of elements and 
not by increasing the number of extraction points is that the incorrect polynomial fit 
near the ocean water surface now is limited to a small element. The more elements used 
the smaller the elements become and the more insignificant the error at the water 
surface becomes. 

5.7 Summary of Wave Loads by Polynomial Regression 
The representation of the hydrodynamic forces by a polynomial regression in the 
Nonlinear Wave Code is proven to be a consistent approximation for fully submerged 
structures in comparison with Ansys Workbench. It is remarked that the polynomial fit 
provides a good representation of the wave loading by few nodes and extraction points. 

However, considering partially submerged elements the polynomial regression is not 
capable of providing a sufficient representation of the wave distribution along the 
partially submerged elements. A convergence study shows that a large number of beam 
discretization is needed to obtain reasonable results for the partially submerged cylinder. 

An approach to avoid the above-mentioned problem at the water surface is by 
representing the hydrodynamic forces by numerical integration. In the present 
subsection 5.8 a new approach of evaluating the hydrodynamic forces is introduced. 
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5.8 Numerical Integration of Hydrodynamic Forces 
The distributed wave loading is in the same manner as in the method using polynomial 
regression, converted into nodal forces by introducing interpolation functions 𝑁𝑁(𝑥𝑥) and 
integrating the dot product along the local beam axis as 

However, the representation of the ocean loads near the free surface is performed by 
introducing numerical integration in the Nonlinear Wave Code. The numerical 
integration is based on the trapezoidal rule which works by approximating the region 
under the graph of the function 𝑓𝑓(𝑥𝑥) as a trapezoid and determining its area as 
illustrated in Figure 52. 

 
Figure 52: Trapezoidal Rule 

The area of 𝑓𝑓(𝑥𝑥) considered in Figure 52 can be approximated by 𝑁𝑁 trapezoidals as 

which is simplified to the following expression as the discretization (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) is 
constant along the length 𝐿𝐿 

More trapezoids give a better approximation of the area under the curve, i.e. using an 
appropriate number of points along the beam length provides a sufficient simulation of 
the global system response. In the following subsection 5.9 the validation of using 
numerical integration to describe the ocean waves is given. 
 
 

 
F = �NT𝑞𝑞 𝑑𝑑𝑥𝑥

𝐿𝐿
= �𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥

𝐿𝐿
 (5.4) 

 � f(x)𝑑𝑑𝑥𝑥 ≈�(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)
𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝑓𝑓(𝑥𝑥𝑖𝑖 + 1)

2

𝑁𝑁

𝑖𝑖=1𝐿𝐿
 (5.5) 

 
� f(x)𝑑𝑑𝑥𝑥 ≈ (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) �

𝑓𝑓(𝑥𝑥𝑖𝑖)
2𝐿𝐿

+ 𝑓𝑓(𝑥𝑥𝑖𝑖+1) + 𝑓𝑓(𝑥𝑥𝑖𝑖+2) …
𝑓𝑓(𝑥𝑥𝑛𝑛)

2 � (5.6) 
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5.9 Validation of Hydrodynamic Forces by Numerical Integration 
In the same manner as for the polynomial regression method, two validation examples 
are performed to validate the method of representing the hydrodynamic forces by 
numerical integration. As a matter of form, the illustration of the validation examples is 
recalled and shown in Figure 53 for the fully submerged cylinder and in Figure 55 for 
the partially submerged cylinder. 

Validation of Fully Submerged Cylinder  
The structure has the dimensions 𝐿𝐿 = 5𝑚𝑚, 𝑟𝑟 = 0.01𝑚𝑚 and the wave specifications are for 
linear waves set to 𝐻𝐻 = 1𝑚𝑚, 𝑇𝑇𝑝𝑝 = 15𝑠𝑠, ℎ = 40𝑚𝑚. The hydrodynamic coefficients are set 
to 𝐶𝐶𝐷𝐷 = 0.5, 𝐶𝐶𝑃𝑃 = 2 and 𝐶𝐶𝐴𝐴 = 1.                   

 
Figure 53: Validation example of the implemented hydrodynamic forces by a restrained solid circular cross-section. 
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The horizontal displacement, velocity and acceleration responses in both programs are 
extracted at the end node and compared in Figure 54.  

 
Figure 54: Comparison of the displacement, velocity and acceleration responses extracted from Ansys and Matlab. 

The interaction between the method of determining the hydrodynamic forces by 
numerical integration in the Nonlinear Wave Code and Ansys Workbench, confirms 
that both programs are consistent when considering fully submerged restrained 
structures. The deviation of the results between the two programs is estimated to 2.5%, 
which is significantly reduced by applying a finer mesh. It is remarked that the 
deviation approximately agrees with the deviation obtained by the polynomial fit for a 
fully submerged cylinder. 

However, as remarked in Figure 54, the acceleration response obtained by the Nonlinear 
Wave Code and Ansys Workbench both is dominated by high-frequency peaks. An 
explanation of the origin of the high-frequency peaks is given in the following 
subsection. 

Validation of Partially Submerged Cylinder 
An additional simple validation example is performed by the Nonlinear Wave Code to 
validate that the method is able to deal with the interaction between the structure and the 
nature of the ocean water surface. The cylinder has the length 𝐿𝐿 = 5𝑚𝑚 while the ocean 
wave specifications are set to 𝐻𝐻 = 1𝑚𝑚, 𝑇𝑇 = 15𝑠𝑠 and ℎ = 40𝑚𝑚. The hydrodynamic 
coefficients are set to 𝐶𝐶𝐷𝐷 = 0.5, 𝐶𝐶𝑃𝑃 = 2 and 𝐶𝐶𝐴𝐴 = 1. 
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Figure 55: Validation example for a restrained solid circular cross-section positioned partly above MWL. 

The comparison of the horizontal dynamic response is given in Figure 56. 

 
Figure 56: Comparison of the displacement, velocity and acceleration responses extracted from Ansys and Matlab. 

The displacement and velocity plot results confirm that the implemented method of 
calculating the hydrodynamic forces is consistent with Ansys Workbench, and that the 
method can handle the variation and nature of the water surface.  



 
Nonlinear Time-domain Analysis of Floating Space Frame Structures 
 

 

55 
 

However, it is remarked that the acceleration signal is dominated by high-frequency 
peaks as aforementioned. The high-frequency peaks can be reduced by introducing 
numerical damping described in subsection 3.4. By performing a Fast Fourier 
Transform (FFT) analysis using the acceleration time-domain signal, the acceleration 
response is transformed from the time-domain to the frequency-domain by which the 
frequencies of the signal are clarified. Performing a FFT analysis on the acceleration 
response introduced in Figure 56 in which no algorithmic damping is included, the 
following frequency spectrum is obtained in Figure 57. 

 
Figure 57: FFT-analysis of the acceleration response to identify the frequencies of the response. No Algorithmic 
damping is introduced. 

It is observed from Figure 57 that the FFT-analysis of the acceleration response reveals 
that frequencies with large amplitudes occur when no numerical damping is included. 
By introducing numerical damping of 0.1 in the analysis, the following acceleration 
response in Figure 58 is given. 
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Figure 58: Displacement, velocity and acceleration response when algorithmic damping is included. 

It is remarked that the high-frequency peaks are significantly reduced when algorithmic 
damping is introduced. The accelerations are thus damped and by performing a FFT on 
the acceleration signal the following acceleration spectrum is obtained.  
 

   
Figure 59: FFT-analysis of the acceleration response to identify the frequencies of the response. Algorithmic 
damping of 0.1 is included. 

To verify that the global response of the structure is not damped by introducing the 
numerical damping, the eigenfrequencies of the structure is determined and compared 
with the acceleration spectrum. A modal analysis shows that the first three 
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eigenfrequencies of the system are approximately 0.5 𝐻𝐻𝑧𝑧, 3.5 𝐻𝐻𝑧𝑧 and 9 𝐻𝐻𝑧𝑧 which are 
consistent with the clarified frequencies obtained by the FFT analysis given in Figure 
59. The amount of algorithmic damping implemented is thus valid as it has no impact 
on the global response of the structure. 

In the following subsection a convergence study of the necessary number of structure 
discretization is introduced. 

Convergence Study of Structure Discretization 
The study is performed on the aforementioned solid cylinder illustrated in Figure 55 in 
the same manner as in subsection 5.6. The difference of the displacement at the end 
node of the cylinder in the Nonlinear Wave Code and Ansys Workbench is determined 
at each time step where after the mean value over the total time of 15 seconds is 
calculated. 

Firstly, the cylinder is modelled by two beam elements while the number of extraction 
points is gradually increased until convergence is satisfied as illustrated in Figure 62. 

 
Figure 60: Convergence study of the cylinder modelled with only two elements and a different number of extraction points. 

As remarked, the results only become relatively little more accurate than the results 
obtained in subsection 5.6 by the polynomial regression method. This confirms that the 
element division of the structure is of significant importance both to obtain a sufficient 
representation of the hydrodynamic forces and the dynamic response of the structure.  

With both methods a phase shift occurs by a small number of structure discretization 
and consequently, the deviation is large even with many extraction points. However, it 
is remarked that with the numerical integration method, the results converges faster than 
the polynomial regression method.  
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In Figure 61, the number of elements is increased and the number of extraction points 
remains 10 and as remarked, the results are marginally more accurate in comparison 
with the results from Figure 51. Similar as the result in Figure 61 and Figure 51, the 
deviation between the Nonlinear Wave Code and Ansys Workbench is large for a low 
number of element divisions and becomes relatively accurate for a large number of 
element divisions.  

 
Figure 61: Convergence study of the cylinder modelled with a different number of elements and 10 extraction points. 

The hydrodynamic forces are thus not accurately represented according to Ansys 
Workbench when using few elements. The agreement is highly increased when using 10 
or more beam elements; however the finer discretization the more time-consuming the 
calculation becomes.  

Given that the wave loads are implemented and validated in the Nonlinear Wave Code, 
the modelling of the buoyancy forces is brought into focus in the following Chapter 6 in 
which two different approaches of evaluating the hydrostatics is introduced. 

5.10 Summary of Wave Loads by Numerical Integration 
The representation of the hydrodynamic forces by a numerical integration in the 
Nonlinear Wave Code is proven to be a consistent approximation for fully submerged 
structures in comparison with Ansys Workbench. It is further remarked that the present 
method provides an improved representation of the hydrodynamic forces for a partially 
submerged cylinder in comparison with the method of polynomial regression.  

As the method of numerical integration provides a better approximation of the wave 
distribution along the partially submerged elements, the method is used for the 
prediction of the ocean loads subjected to the floating space frame structure. However, 
as observed from the convergence studies, a fine mesh is necessary to obtain a sufficient 
representation of the hydrodynamic forces for partially submerged elements. 
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6 Modelling of Hydrostatics  
The Nonlinear Wave Code is in the present modified to include the hydrostatic forces. 
As aforementioned in the introduction of the project, two methods of evaluating the 
hydrostatics of a floating structure is evaluated. 
 

 The first method is based on a paper formulated by A. Yazdchi [4], in which the 
buoyancy forces appears as a consequence of  two contributions, a distributed 
pressure and a buoyancy term existing as the ends of the cylinder are capped. The 
buoyancy forces are calculated as a function of the submerged element length.  
 

 In the second method, the buoyancy forces are determined as a function of the 
amount of submerged cross-sectional area, and subsequently transformed into global 
nodal forces by introducing numerical integration.  

 

Both methods are implemented in the Nonlinear Wave Code and compared with the 
buoyancy formulation in Ansys Workbench. The most accurate method is subsequently 
applied for the prediction of the buoyancy forces on the floating space frame structure. 

6.1 Buoyancy Forces as Function of the Submerged Element Length 
To add the effects of buoyancy for the analysis of offshore marine systems a paper 
produced by A. Yazdchi [4] concerning modern formulations for the nonlinear analysis 
of flexible beams and pipes, modified to include the appropriate hydrostatic forces, is 
considered. The paper considers only the axial effects, bending effects and effects due 
to shear deformation and do thus not among other things account for ovalization effects 
which may be important for pipes in some cases.  

The contribution to the buoyancy force is divided into three effects, namely the 
distributed excess buoyancy {𝑞𝑞𝑡𝑡}𝑑𝑑 related to the external pressure from the seawater 
density, the curvature of the cylinder and a final buoyancy term {𝒒𝒒𝑖𝑖}𝑖𝑖 which only exist 
if the ends of an element are capped as illustrated in Figure 62. The effect from the 
curvature of the cylinder is omitted in this project and the element is thus idealized as a 
line element acting about its centre-line.  

 
Figure 62: Distributed excess buoyancy force. 
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The distributed excess buoyancy force vector {𝑞𝑞𝑡𝑡}𝑑𝑑 is calculated at the nodes of the 
element by evaluating 

In which: 
𝐴𝐴0 The cross-sectional area of the cylinder [m2] 
𝛾𝛾𝑤𝑤 The seawater density [1025 kg/m3] 
𝑡𝑡𝑛𝑛 The length of the cylinder [m] 
𝑡𝑡2 The orthogonal unit vector [-] 
𝐣𝐣 Unit vector [-] 

The dimensionless coefficients 𝑘𝑘𝐴𝐴 and 𝑘𝑘𝐵𝐵 are used to transform the buoyancy forces to 
the nodes of the element, and these coefficients are dependent of the position of the 
element in the seawater. These are namely set to 0.5 for a fully submerged element and 
for a partially submerged element calculated by the following expressions 

Where 𝑡𝑡𝑠𝑠 is the submerged length of the element. These formulations are relevant if only 
end 𝐴𝐴 of the element is submerged as illustrated in Figure 63. 

 
Figure 63: Partially submerged cylinder. 

The values of 𝐻𝐻𝐴𝐴 and 𝐻𝐻𝐵𝐵 are given by the following formulations 

In which ℎ is the height of the water surface above the ocean sea bed level. The current 
position vectors of the nodes, 𝐴𝐴 and 𝐵𝐵, are given by 𝑥𝑥𝐴𝐴  and 𝑥𝑥𝐵𝐵 .  It is easily observed that 
these coefficients are zero when both ends, 𝐴𝐴 and 𝐵𝐵, are out of the water.  

 

 {𝑞𝑞𝑡𝑡}𝑑𝑑 = 𝐴𝐴0𝛾𝛾𝑤𝑤𝑡𝑡𝑛𝑛𝑡𝑡2𝑇𝑇𝐷𝐷 �
𝑘𝑘𝐴𝐴𝑡𝑡2

0
𝑘𝑘𝐵𝐵𝑡𝑡2

0

� (6.1) 

 𝑘𝑘𝐴𝐴 =
𝑡𝑡𝑠𝑠
𝑡𝑡𝑛𝑛
�1 −

𝑡𝑡𝑠𝑠
2𝑡𝑡𝑛𝑛

�        𝑘𝑘𝐴𝐴 =
𝑡𝑡𝑠𝑠
𝑡𝑡𝑛𝑛
�1 −

𝑡𝑡𝑠𝑠
2𝑡𝑡𝑛𝑛

�       𝑡𝑡𝑠𝑠 =
𝐻𝐻𝐴𝐴

𝐻𝐻𝐴𝐴 − 𝐻𝐻𝐵𝐵
𝑡𝑡𝑛𝑛 (6.2) 

 
𝐻𝐻𝐴𝐴 = ℎ − 𝑥𝑥𝐴𝐴𝑇𝑇𝐣𝐣        𝐻𝐻𝐵𝐵 = ℎ − 𝑥𝑥𝐵𝐵𝑇𝑇𝐣𝐣 (6.3) 
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The last effect contributing to the buoyancy forces is as mentioned previously only 
existing if the ends of the cylinder are capped. The buoyancy term is given as 

The total final buoyancy force is thus formulated as following 

These buoyancy force formulations are implemented in the Nonlinear Wave Code and 
in the present subsection 6.2 the method is validated in which the limitations of the 
method are assessed and discussed. 

6.2 Validation of Buoyancy Forces  
To validate the method of determining the buoyancy forces formulated as function of 
the submerged element length, two simple validation examples are performed in the 
Nonlinear Wave Code and Ansys Workbench. The first example concerns a vertical 
hollow cylinder dropped in still water, followed by an example in which a horizontal 
hollow cylinder is dropped in still water. The dimensions of the cylinders are chosen so 
that the subjected buoyancy force is twice the magnitude of the self-weight, in which 
the state of equilibrium is obtained when half of the cylinders are submerged. 

Validation of Buoyancy Forces for Vertical Cylinder 
The first validation example includes a vertical cylinder initially positioned at the water 
surface and subsequently dropped in still water as illustrated in Figure 64.  

 
Figure 64: Validation of buoyancy formulation by a vertical cylinder. 

 �𝒒𝒒𝑡𝑡�𝑡𝑡 = 𝐴𝐴0𝛾𝛾𝑤𝑤 �

(𝐻𝐻 − 𝑥𝑥𝐴𝐴𝑇𝑇𝐣𝐣)e1
0

(𝐻𝐻 − 𝑥𝑥𝐵𝐵𝑇𝑇𝐣𝐣)e1
0

� = 𝐴𝐴0𝛾𝛾𝑤𝑤{𝑞𝑞𝑖𝑖1}𝑖𝑖 (6.4) 

 
𝐹𝐹𝐵𝐵 = {𝒒𝒒𝑖𝑖}𝑑𝑑 + {𝒒𝒒𝑖𝑖}𝑖𝑖 (6.5) 
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The buoyancy test is executed by dropping the cylinder from its initial position, as 
illustrated in Figure 65, which by some time finds its state of equilibrium position. The 
displacement, velocity and acceleration response from both the Nonlinear Wave Code 
and Ansys Workbench are shown in Figure 65.  

 
Figure 65: Buoyancy test on a vertical cylinder. 

It is observed that the results of the buoyancy test from the Nonlinear Wave Code and 
Ansys Workbench are consistent and it is thus validated that the programmed Nonlinear 
Wave Code and the applied theory is able to represent the buoyancy effect on vertical 
cylinders.  

The deviation between the two results is determined to be 0.8% by which confirms that 
the buoyancy formulation in the Nonlinear Wave Code for vertical cylinders compared 
to Ansys Workbench is valid.   
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Validation of Buoyancy Forces for Horizontal Cylinder 
An additional buoyancy test has been performed on a horizontal hollow cylinder. The 
initial configuration of the horizontal cylinder is shown in Figure 66. 

 
Figure 66: Buoyancy test on a horizontal cylinder. 

The buoyancy test is performed in the same manner by dropping the cylinder from its 
initial position, which by some time finds its state of equilibrium position. A 
comparison of the displacement, velocity and acceleration response of the buoyancy test 
is illustrated in Figure 67. 

 
Figure 67: Comparison of displacement plot from Matlab Code and Ansys Workbench. 

The responses from the Nonlinear Wave Code agree with Ansys Workbench in the first 
part of the response. However, it is observed that the results start to deviate in 
consequence of a shifting between the responses. This can be solved by applying a 
smaller time step of 0.0001𝑠𝑠 contrary to the applied time step of 0.001𝑠𝑠. The finer time 
step the better fit is given between the responses. 
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However, a critical limitation of this method is that convergence difficulties appears 
when reaching the state of equilibrium as seen from Figure 67. The method is not able 
to handle a single horizontal cylinder positioned near the water surface. It is assumed 
that the Ansys Workbench uses the present formulation implemented in Nonlinear 
Wave Code as the responses are consistent with each other and the convergence of both 
keeps up with each other.  

An additional limitation of the present method of evaluating the buoyancy forces is that 
the method does not account for the varying amount of submerged area which 
especially for horizontal cylinders does not imply an accurate representation of the 
buoyancy forces. The buoyancy forces are thus subjected once the center-line of the 
horizontal cylinder is in contiguity with the ocean water surface. 

This buoyancy force formulation given as function of the submerged length is 
implemented in the Nonlinear Wave Code, given as BuoyoncyForceVector.m. However, 
these significant limitations of the present buoyancy force formulation imply that a 
different method of evaluating the buoyancy forces is used. In the present subsection 6.3 
the hydrostatics of a single cylinder is determined by introducing numerical integration. 

6.3 Buoyancy Forces as Function of the Submerged Area 
In the present subsection a different approach of calculating the buoyancy forces of a 
submerged cylinder is introduced and implemented in the Nonlinear Wave Code. 

The distributed excess buoyancy 𝑞𝑞𝑡𝑡 of a cylindrical beam element is found by 
introducing numerical integration based on the trapezoidal rule. The distributed excess 
buoyancy 𝑞𝑞𝑛𝑛, acting normal to the beam axis as shown in Figure 68, is calculated as a 
function of the submerged area.  

 
Figure 68: The distributed excess buoyancy of the submerged beam element. 

The excess buoyancy of the submerged body is determined by the given formulation 

in which 𝐴𝐴𝑠𝑠 is the submerged cross-sectional area.  

 
𝑞𝑞𝑛𝑛 = 𝜌𝜌𝑤𝑤𝑔𝑔𝐴𝐴𝑠𝑠 (6.6) 



 
Nonlinear Time-domain Analysis of Floating Space Frame Structures 
 

 

65 
 

One major consideration regarding the buoyancy forces is the amount of submerged 
area of the structure. The challenge of using beam elements is defining the amount of 
submerged cross-sectional area when the structure is near the water surface. By 
implementation of beam elements, the shape of the structure is not fully described and 
therefor, the position of the beam elements does not specify the exact submerged 
volume of the structure.  

An example of a cylinder with capped ends floating on the water surface is illustrated in 
Figure 69 and as seen a large volume is submerged.  

 
Figure 69: A cylinder with capped ends floating on still water. The beam element of the cylinder is marked with red. 

Considering the cylinder as a beam element acting about its centre-line, the position of 
the beam is thus above the water surface as illustrated in Figure 69. Defining the water 
surface as the blue line, the submerged area is either zero (above the water surface) or 
the fully submerged area of the structure (under the water surface). This definition gives 
a large error for large volume structures.  

A definition of the submerged cross-sectional area is implemented by considering the 
position of the beam element and the radius of the cylinder. For a horizontal cylinder, 
the submerged area is constant along the length of the cylinder by which the following 
expression of the submerged cross-sectional area is given by 

For inclined beam elements the submerged area of a given cross-section varies along the 
beam element and the method of how to determine the submerged area at a given 
extraction point 𝑖𝑖 is illustrated in Figure 70. 

 𝐴𝐴𝑠𝑠 = 𝑅𝑅2 ∙ cos−1 �
𝑅𝑅 − 𝐻𝐻𝑠𝑠𝑖𝑖

𝑅𝑅
� − (𝑅𝑅 − 𝐻𝐻𝑠𝑠𝑖𝑖) ∙ �2𝑅𝑅 ∙ 𝐻𝐻𝑠𝑠𝑖𝑖 − 𝐻𝐻𝑠𝑠𝑖𝑖

2 (6.7) 
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Figure 70: Floating inclined cylinder on still water. The principle of the calculation of the submerged area is 
illustrated on the right side of the figure. The beam element of the cylinder is marked with red. 

As remarked from Figure 70, 𝐻𝐻𝑠𝑠𝑖𝑖 is the only variable and is calculated in the following 
for a given extraction point 𝑋𝑋𝑖𝑖 of the beam element. The distances 𝐻𝐻𝑇𝑇𝑖𝑖 and 𝐻𝐻𝐵𝐵𝑖𝑖 are 
obtained by  

where 𝑋𝑋𝑖𝑖 = [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖] is the coordinate set for the extraction point 𝑖𝑖 and 𝐷𝐷 = [0 1]𝑇𝑇 is a 
unit vector directed vertically. 𝑡𝑡2 is the unit vector perpendicular to the local beam axis. 
The submerged height 𝐻𝐻𝑠𝑠𝑖𝑖 is obtained by 

When the submerged height 𝐻𝐻𝑠𝑠𝑖𝑖 is calculated the submerged area at extraction point 𝑖𝑖 is 
obtained by (6.10). This definition of the submerged cross-sectional area is only valid 
when assuming a constant free surface elevation 𝜂𝜂 at each extraction point 𝑖𝑖.  

The total buoyancy effect is in contrary to the method formulated by A. Yazdchi not 
found by adding the two contributions: the distributed excess buoyancy 𝑞𝑞𝑛𝑛 and the 
forces 𝐹𝐹1 and 𝐹𝐹2 due to hydrostatic pressures at the capped ends as illustrated in Figure 
62. The total buoyancy effect is on the other hand as illustrated in Figure 68 determined 
by adding a transverse and tangential contribution given as 

 
𝐻𝐻𝑇𝑇𝑖𝑖 = 𝜂𝜂 − (𝑋𝑋𝑖𝑖 + 𝑡𝑡2𝑅𝑅)𝑇𝑇 ∙ 𝐷𝐷  
𝐻𝐻𝐵𝐵𝑖𝑖 = 𝜂𝜂 − (𝑋𝑋𝑖𝑖 − 𝑡𝑡2𝑅𝑅)𝑇𝑇 ∙ 𝐷𝐷  

(6.8) 

 𝐻𝐻𝑠𝑠𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧          2𝑅𝑅                                   𝑖𝑖𝑓𝑓           𝐻𝐻𝑇𝑇𝑖𝑖 ≥ 0                          

2𝑅𝑅
�𝐻𝐻𝐵𝐵𝑖𝑖 − 𝐻𝐻𝑇𝑇𝑖𝑖�

𝐻𝐻𝐵𝐵𝑖𝑖                    𝑖𝑖𝑓𝑓           𝐻𝐻𝐵𝐵𝑖𝑖 > 0    ⋀    𝐻𝐻𝑇𝑇𝑖𝑖 < 0 

          0                                     𝑖𝑖𝑓𝑓           𝐻𝐻𝐵𝐵𝑖𝑖 ≤ 0                           

 (6.9) 

 

𝐹𝐹𝑞𝑞𝑛𝑛1 = 𝜌𝜌𝑤𝑤𝑔𝑔𝐴𝐴𝑠𝑠𝑡𝑡1 𝐷𝐷 

𝐹𝐹𝑞𝑞𝑛𝑛2 = 𝜌𝜌𝑤𝑤𝑔𝑔𝐴𝐴𝑠𝑠𝑡𝑡2 𝐷𝐷 
 (6.11) 
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The distributed excess buoyancy is subsequently transformed into global nodal forces 
by evaluating the product of the transposed interpolation functions 𝑁𝑁(𝑥𝑥) and the 
distributed excess buoyancy by introducing numerical integration as described in 
subsection 5.8. In the following subsections this present method of evaluating the 
buoyancy forces is validated. 

6.4 Validation of Buoyancy Forces 
In the same manner as for the buoyancy force formulation given by A. Yazdchi, 
validation examples are performed in the Nonlinear Wave Code and Ansys Workbench 
for the purpose of validating the buoyancy force formulation given as function of the 
amount of submerged cross-sectional area. 

Validation of Buoyancy Forces for Vertical Cylinder 
Recalling Figure 71, the first part of the validation is based on a vertical cylinder 
dropped in still water in which the initial position and state of equilibrium is illustrated.  

 
Figure 71: Validation of buoyancy formulation by a vertical cylinder. 

The displacement, velocity and acceleration responses are extracted from the Nonlinear 
Wave Code and compared with the responses obtained by Ansys Workbench as shown 
in Figure 72. 
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Figure 72: Buoyancy test performed on a vertical cylinder by numerical integration. 

The responses are completely consistent with each other as observed. The deviation 
between the two results is found to be 0.8% which is consistent with the deviation 
obtained by the previous buoyancy force formulation of A. Yazdchi. This is due to that 
the buoyancy forces are subjected as function of the submerged element length for 
vertical cylinders, i.e. both method formulations are identical for vertical elements as 
long as the element discretization of the cylinder is identical. 

Validation of Buoyancy Forces for Horizontal Cylinder 
Recalling Figure 73, the second part of the validation is based on a horizontal cylinder 
dropped in still water in which the initial position and state of equilibrium is illustrated.  

 
Figure 73: Buoyancy test on a horizontal cylinder. 
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It is not possible to validate the present method for a horizontal cylinder with Ansys 
Workbench as the buoyancy formulation used in Ansys does not as aforementioned 
consider the amount of submerged cross-sectional area. The predicted dynamic response 
of the horizontal cylinder is shown in Figure 74. 

 
Figure 74: Buoyancy test performed on a horizontal cylinder by numerical integration. 

As opposed to the previous buoyancy force method by A. Yazdchi, it is observed that 
the present method, in which the buoyancy forces are calculated as function of the 
submerged cross-sectional area, is able to represent the response of a horizontal cylinder 
in motion near the free water surface. This buoyancy force formulation is implemented 
in the Nonlinear Wave Code, given as BuoyoncyForceVector.m, and applied for the 
prediction of the loads and the response of the floating space frame structure. 

6.5 Summary of Buoyancy Force Formulations 
Two buoyancy force formulations are introduced and implemented in the Nonlinear 
Wave Code. The method given by A. Yazdchi determines the buoyancy forces as a 
function the submerged length of a cylinder while the buoyancy forces in the second 
method are determined as a function of the submerged cross-sectional area.  

Comparing with the buoyancy force formulation in Ansys Workbench, the two methods 
provide identical results when considering vertical elements, while both Ansys 
Workbench and the method by A. Yazdchi has convergence difficulties when 
considering horizontal elements at the ocean water surface. The buoyancy forces are 
thus calculated as function of the submerged cross-sectional area for the prediction of 
the buoyancy forces subjected to the floating space frame in the project. 

In preparation for the dynamic analysis of the floating space frame structure, the 
interaction between the buoyancy and wave loads is verified in the following Chapter 7. 
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7 Interaction between Buoyancy and Wave Loading 
For the present the contribution from the buoyancy and the contribution from the wave 
loading has been introduced and validated independently. In this chapter the interaction 
between the buoyancy forces and the wave forces is validated for the purpose of 
predicting the response of a floating cylinder exposed to the nature of the ocean.  

Firstly a simple example is investigated, in which a vertical cylinder is subjected to 
linear waves with the wave specifications given as 𝐻𝐻 = 1𝑚𝑚, 𝑇𝑇 = 15𝑠𝑠 and ℎ = 40𝑚𝑚, while 
the structural coefficients are set to 𝐶𝐶𝐷𝐷 = 0.5, 𝐶𝐶𝑃𝑃 = 2 and 𝐶𝐶𝐴𝐴 = 0. The cylinder is 
structural supported so that it is able of moving vertically and horizontally, while the 
rotational degree of freedom is restrained. The objective of this example is to validate 
that the Nonlinear Wave Code is able to represent an accurate dynamic response of the 
interaction between buoyancy and wave loading for a floating vertical cylinder. The 
configuration of the example is illustrated in Figure 75.   

 
Figure 75: Cylinder tube exposed to both wave loads and buoyancy force simultaneously. 

It is remarked that the added mass coefficient 𝐶𝐶𝐴𝐴 is assumed to equal zero, which in the 
project for the purpose of improving the calculation time and simultaneous to prevent 
possible convergence difficulties. As confirmed in the project, the contribution from the 
inertia force is insignificant when considering slender cylinders, by which it is assumed 
to be valid to neglect the inertia force contribution obtained by the relative Morison 
formulation in the further calculations performed in the project. 

The vertical cylinder is discretised into 20 beam elements while 10 extractions points 
are evaluated for each beam element obtain an sufficient representation of the wave and 
buoyancy forces. The response of the system is shown in Figure 76. 
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Figure 76: Vertical response of the cylinder tube subjected to both waves and buoyancy simultaneously. 

The vertical response of the cylinder is consistent with Ansys Workbench. However, a 
deviation of approximately 10% exist between the results, which is reduced by dividing 
the cylinder into a sufficient number of elements. Figure 77 illustrates the horizontal 
response of the cylinder. 

 
Figure 77: Horizontal response of the cylinder tube subjected to both waves and buoyancy simultaneously. 

It is remarked that the horizontal response of the cylinder as well agrees with Ansys 
Workbench, by which it is verified that the Nonlinear Wave programme is able to 
represent vertical floating cylinders subjected to waves and buoyancy simultaneously. 
The deviation is found to be 2.5% which a significant smaller deviation compared to 
deviation obtained from the vertical response of the cylinder. 
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It is additionally desirable to validate that the Nonlinear Wave Code is capable of 
predicting the response of a floating horizontal cylinder. However, it is recalled from 
subsection 6.2 that the Ansys Workbench is not able to represent the buoyancy effect on 
floating horizontal cylinders positioned near the free ocean water surface. In the 
following simple validation example the initial position of the horizontal cylinder is 5𝑚𝑚 
under the water surface, i.e. the cylinder is initially fully submerged. The cylinder is 
likewise the previous example able to move in the vertical and horizontal direction, 
while the rotational degree of freedom is restrained. The configuration of the example is 
given in Figure 78. 

 
Figure 78: Initial position of the horizontal cylinder subjected to wave forces and buoyancy. 

The horizontal cylinder is subjected to a linear wave with the same ocean specifications as 
given in the previous validation example. The dynamic response is shown in Figure 79. 

 
Figure 79: Vertical response of the horizontal cylinder tube which initially is fully submerged. 
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As expected the dynamic response of the floating horizontal cylinder represented by the 
Nonlinear Wave Code deviates in proportion to the results from Ansys Workbench. It is 
observed that the responses are consistent with each other during the first 3 seconds, 
which is because the horizontal cylinder still is fully submerged in that duration. As 
soon as the cylinder nears the ocean surface the deviation starts. As seen in Figure 79 
the acceleration response becomes uncontrolled as the Ansys Workbench is not capable 
of representing the response of the cylinder near the free surface.  

 
Figure 80: Horizontal response of the horizontal cylinder tube which initially is fully submerged. 

Observing the horizontal response of the cylinder given in Figure 80, yet again no 
agreement is obtained between the two numerical programs. These deviations due to the 
formulation of the buoyancy and wave forces near the free ocean surface in Ansys 
Workbench give rise to a possible disagreement of the responses between the Nonlinear 
Wave Code and Ansys Workbench when analysing the floating space framed structure 
which is introduced in the following Chapter 8.  
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8 Floating Space Frame Structure 
In this present chapter the time-domain dynamic response of the floating space frame 
structure is predicted by the Nonlinear Wave Code and compared with a response 
obtained from Ansys Workbench. The floating structure is as described in the 
introduction of the project constructed by offshore marine cables, a buoy and a space 
frame structure as shown in Figure 81. 

 
Figure 81: Floating structure consisting of offshore cables, a buoy and a space framed structure. 

The dimensions are set in proportion to the mean water level while the surface elevation 
is only considered as an illustration. In reality the wave length is very long compared to 
the dimensions of the space frame structure and is thus not possible to illustrate 
correctly.  Both the space frame and the buoy are initially subjected to a wave crest.  

It has not been possible to model the anchoring ropes with cable specifications in Ansys 
Workbench by which no comparison of the predicted dynamic response of the floating 
space frame structure with anchoring cables is performed between the Nonlinear Wave 
Code and Ansys Workbench. Instead two analyses are performed 

 In the first analysis the predicted dynamic response of the floating space frame 
structure with anchoring cables is only performed in the Nonlinear Wave Code. 
 

 For the purpose of validating that the Nonlinear Wave Code is able to predict the 
response of the coupled floating structure the cables are in both Ansys Workbench 
and in the Nonlinear Wave Code modelled by cylindrical beam elements without 
cable specifications. 

In the following subsections the modelling of the cables in the Nonlinear Wave Code is 
introduced and described, followed by an introduction to the modelling of the boundary 
conditions of the structure including charnier in both the Nonlinear Wave Code and in 
Ansys Workbench.  
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8.1 Modelling of Anchoring Cables  
The modelling of the anchoring cables supporting the floating space frame structure and 
the buoy is based on a product information catalogue given by the manufacturer 
Phillystran. [7] The cables are modelled in the Nonlinear Wave Code as circular solid 
cross-sections in which the moment of inertia is reduced so that the cables are assumed 
to be flexible in bending, in which they only possess transvers stiffness. The cables used 
in the project are an approximation of realistic offshore anchoring cables.  

The cable used as anchor line for the space frame structure is a wire rope manufactured 
in a 6x36 wire lay construction. The rope is designed for applications such as mooring 
lines and deep water buoy anchor lines. The diameter of the rope wire is 𝐷𝐷𝑊𝑊 = 32𝑚𝑚𝑚𝑚 
while the weight is given as 4.19𝑘𝑘𝑔𝑔/𝑚𝑚.  

As regards the anchoring of the buoy, polyester fibre ropes manufactured in a 7x19 wire 
lay construction are used. These ropes are usually designed for applications such as 
mooring lines and deep water buoy anchor lines. The diameter of the rope is 𝐷𝐷𝑊𝑊 =
0.127𝑚𝑚 while the weight is given as 10.4𝑘𝑘𝑔𝑔/𝑚𝑚, and the length of these ropes is set 
to 𝐿𝐿 = 41𝑚𝑚.  

8.2 Modelling of Charnier 
Among other things, the connection between the cable and the floating structure is 
modelled by a charnier, as the beam ends between the cable and the floating structure 
not necessarily has the same rotation. This means that an extra rotation degree of 
freedom is introduced, hence one for each of the two elements. An example of a 
charnier in Node 2 of a beam appears in Figure 82. 

 

 
Figure 82: Charnier in Node 2 by which the rotation degree of freedom is not the same for both elements. 

It is remarked that by implementation of a charnier in Node 2, the rotation degree of 
freedom is not identical for Element 1 and 2, although the node is shared between the 
two elements. 
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Validation of Charnier 
The implementation of charnier is validated by creating a similar case as the single bar 
truss subjected to a transverse force in subsection 3.1 and compare the results of the two 
cases. The structure is simple supported and modelled with two bar trusses connected 
by a charnier as illustrated in Figure 83. The two bar trusses have the same length and 
cross-section as the single bar truss in the previous case but the subjected lateral force is 
doubled as the structure has two bar trusses. 

 
Figure 83: Two bar trusses subjected to a transverse force. The two trusses are held together by a charnier (red dot). 

The initial configuration and deformed state of the structure is shown in Figure 84 and 
as remarked, the height h increases from 0.2𝑚𝑚 to 0.311𝑚𝑚 exactly as in the previous case 
in subsection 3.1. 

 
Figure 84: The initial configuration (blue line) and deformed state (red line) of the structure. 

For further validation the load displacement results are compared for the two cases in 
Figure 85. The structure with charnier is denoted Charnier model. 
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Figure 85: Load Displacement results of the structure (blue circles) and the bar truss (red line). 

The structure with charnier responds in the same manner as the single bar truss in 
subsection 3.1, which is expected, as the two cases in principle are the same when 
subjected to a transverse force at the same point. The implementation of the charnier is 
thus validated. 

8.3 Modelling of Buoy and Space Frame Structure 
Both the buoy and the space frame structure are modelled by cylinders and the floating 
of these elements is ensured by modelling them so that the buoyancy is twice the self-
weight of the elements. The design specifications of the buoy and the space frame 
structure are stated in Figure 86 below.  

 
Figure 86: Design of buoy and space frame structure. 

As remarked from Figure 86 the length of the space frame structure is five times the 
height of the structure. This design is chosen to avoid that the structure tilts while the 
height is set to 2𝑚𝑚 as far as possible to avoid that the horizontal cylinders get in 
contiguity with the ocean water surface as Ansys Workbench is not able to give a 
sufficient representations of the elements near the water surface. The design of the buoy 
is chosen with a view to ensure that the anchoring sea bed level ropes connected to the 
buoy, is not submerged due to the weight of the ropes.  
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8.4 Modelling of Boundary Conditions 
The connection between the cables and the space frame structure and the buoy is 
modelled by charnier by which an extra rotational degree of freedom is introduced, one 
for each element. The charnier is thus an important boundary condition for the global 
dynamic response of the floating space frame structure. The insertion of the charnier 
marked with a red colored sphere is illustrated in Figure 87. 

 
Figure 87: Boundary conditions of the floating space frame structure. The charnier is illustrated by a red sphere. 

The buoy is free to follow the movement of the ocean waves, while the rotation of the 
buoy is restrained. The anchoring ropes are simply supported at the sea bed level, in 
which they are only able to rotate. This is done to avoid large moment forces and to 
obtain proper cable conditions.  

In Ansys Workbench the charnier has been modelled by creating a body-to-body 
connection between two elements in the node connecting the elements, in which the 
rotation in the y-direction is set to free. The supports of the buoy and the ropes are 
modelled by means of Remote Displacement by which it is possible to control all the 
degree of freedoms in the considered node.  

8.5 Dynamic Response of Floating Space Frame Structure 
With implementation of the anchoring ropes and the boundary conditions, the dynamic 
response of the floating space frame structure is in the present subsection predicted in 
the Nonlinear Wave Code.  

A time-domain analysis with simulation duration of 15𝑠𝑠 and a time step of 0.01𝑠𝑠 is 
performed. The structure is subjected to a linear wave with the wave specifications set 
to 𝐻𝐻 = 1𝑚𝑚, 𝑇𝑇𝑝𝑝 = 15𝑠𝑠 and ocean depth ℎ = 40𝑚𝑚. Both the horizontal and vertical 
displacement responses are extracted from the model with the appertaining velocity and 
acceleration responses. The dynamic response is predicted for both the buoy and the 
space frame structure at the node locations stated in Figure 88. 
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Figure 88: Extraction points for the global dynamic response of the floating space frame structure. 

As determined through the convergence study performed in subsection 5.9, a large 
number of beam element divisions are needed to obtain an accurate representation of the 
hydrodynamic forces and buoyancy forces. In this simulation the total number of beam 
elements is 212 while 10 extraction points are applied for each beam element. The 
horizontal displacement, velocity and acceleration response for the buoy is extracted 
and given in Figure 89 below. 

 
Figure 89: Horizontal dynamic response of the buoy. 

As aforementioned the wave simulation is performed in a time duration of 15s which 
equals the duration of one wave period. In the initial configuration of the wave 
simulation, the floating structure is subjected to a wave crest in which the fluid velocity 
is maximum and the fluid acceleration is zero. This is remarked from the horizontal 
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displacement response of the buoy as the displacement is positive in the duration of the 
wave crest while the displacement is negative during a wave trough. In Figure 90 the 
vertical response of the space frame structure is given.  

 
Figure 90: Vertical displacement response of space frame structure. 

It is remarked from the vertical displacement response of the space frame structure that 
it yet again follows the motion of the wave. The structure is initially subjected to a wave 
crest which in interaction with the buoyancy moves the structure vertically. This is 
particularly observed by the first peak of the displacement response as a large part of the 
space frame structure initially is submerged. It is furthermore remarked that the 
magnitude of vertical displacement of the space frame structure equals the amplitude of 
the wave subjected to the structure. The motion of floating space frame structure is thus 
assessed to be physically realistic. 

However, as aforementioned and remarked from Figure 89 and Figure 90 the Ansys 
Workbench has not been used as benchmark for the results obtained in the Nonlinear 
Wave Code. This is due to it has not been possible to model the anchoring ropes in 
Ansys Workbench. The limitation of the anchoring cable modelling in Ansys 
Workbench is explained in the following subsection. 
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Wave Modelling Limitation in Ansys Workbench 
As aforementioned in subsection 8.1 the moment of inertia of the ropes is reduced in the 
Nonlinear Wave Code so that the ropes are without bending stiffness. To achieve the 
same structural properties in Ansys Workbench the ropes are tried modelled by two 
section types  

 User Integrated cross-section 
 LINK180-elements 

Applying the User-supplied integrated section properties instead of basic geometry data, 
the area of section and moment of inertia are typed in manually as required by the user 
by means of APDL commands. However, the User Integrated cross-sections have no 
solid representation and are thus not able to represent the hydrodynamic forces. These 
User Integrated cross-sections do give a solution but not a valid representation of the 
hydrodynamic forces subjected to the structure.   

Another approach of representing the ropes of the structure is to use the LINK180-
elements, which is a uniaxial tension-compression element normally used to model 
trusses, cables and links. According to the Mechanical APDL reference in Ansys, the 
LINK180-element is able to represent hydrodynamic added mass and loading, while 
buoyant loading is available. However applying this bar-element the Ansys Workbench 
solver does not converge which according to the Solution Information in Ansys is due to 
the flooding option does not work with LINK180-element. 

It has thus not been possible to represent the cable section properties in Ansys 
Workbench. A simulation is instead performed in both the Nonlinear Wave Code and 
Ansys Workbench to predict the response of the floating space frame structure without 
using cable specifications. The purpose is to validate that the Nonlinear Wave Code is 
able to represent the response of the coupled floating structure. 

Dynamic Response of Coupled Floating Space Frame Structure  
In the following subsection the predicted dynamic response obtained in the Nonlinear 
Wave Code and Ansys Workbench for the coupled floating space frame structure 
without structural cable properties is introduced. 

A time-domain analysis with simulation duration of 15𝑠𝑠 and a time step of 0.01𝑠𝑠 is 
performed. The structure is subjected to a linear wave with the wave specifications set 
to 𝐻𝐻 = 1𝑚𝑚, 𝑇𝑇𝑝𝑝 = 15𝑠𝑠 and ocean depth ℎ = 40𝑚𝑚. The total number of beam elements is 
212 while 10 extraction points are applied for each beam element.  Both the horizontal 
and vertical displacement response is extracted from the model with the appertaining 
velocity and acceleration responses. The dynamic response of the buoy is illustrated in 
Figure 91. 
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Figure 91: Comparison of vertical response for the buoy between the Nonlinear Wave Code and Ansys Workbench. 

As no structural cable properties are applied, it is observed from Figure 91 that the 
vertical displacement of the buoy is small. The stiff cables damp the motion of the buoy. 
However, it is seen that the predicted response in the Nonlinear Wave Code is 
consistent with the wave modelling in Ansys Workbench. The deviation is determined 
to be 1.1%. In Figure 92 the horizontal response of the buoy is illustrated. 

 
Figure 92: Horizontal displacement for the Nonlinear Wave Code compared to Ansys Workbench. 
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Yet again it is remarked that the predicted horizontal displacement of the buoy obtained 
by the Nonlinear Wave Code agrees with Ansys Workbench. The deviation of the 
displacement response between the Nonlinear Wave Code and Ansys Workbench is 
determined to be 1.7%.  However, a clear deviation is observed for the acceleration 
response. A finer time step and finer mesh of the floating structure in the Nonlinear 
Wave Code implies a more accurate prediction of the dynamic response and hereby the 
acceleration response. The vertical response of the space frame structure is given in 
Figure 93.  

 
Figure 93: Comparison of vertical response of the space frame structure. 

It is remarked from Figure 94, that the space frame structure follows the motion of the 
wave. The structure is initially subjected to a wave crest which in interaction with the 
buoyancy moves the structure vertically. The deviation of the vertical displacement 
response between the Nonlinear Wave Code and Ansys Workbench is for the space 
frame structure determined to be 6.4%. The deviation of the dynamic response for the 
space frame structure is in general larger than the deviation obtained for the buoy, 
which additionally is confirmed by a deviation of 14.3% for the horizontal displacement 
response between the Nonlinear Wave Code and Ansys Workbench. The horizontal 
displacement response of the space frame structure is illustrated in Figure 95. 

The most interesting of the predicted response of the coupled floating structure is the 
response of the space frame structure. This is due to the space frame structure consist of 
vertical, horizontal and inclined elements while the buoy only consists of one vertical 
cylinder. Considering the limitation of the wave modelling in Ansys Workbench which 
is not able to deal with horizontal elements near the free ocean surface, a deviation is 
expected to occur when the horizontal elements of the space frame structure nears the 
free water surface. Trying to reduce this source of deviation the height of the space 
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frame structure is set to 2𝑚𝑚 to avoid that the horizontal cylinders get in contiguity with 
the ocean water surface. However the inclined has also an influence on the deviation. 
The horizontal response is given in Figure 96.   

 
Figure 96: Horizontal response of the space frame structure. 

Considering the horizontal displacement response of the space frame structure, it is 
remarked that the magnitude of the displacement is small. This is due to among other 
things the stiff cable connecting the buoy and the space frame structure which damps 
the motion of the space frame structure.    

It is however remarked that the response obtained by the Nonlinear Wave Code 
generally agrees with Ansys Workbench. Considering the obtained results between the 
two programmes, it can be concluded that the Nonlinear Wave Code is able to predict 
the hydrostatics and hydrodynamic forces and the dynamic response of the coupled 
floating space frame structure. 
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9 Conclusion 
The objective of this project is the prediction of the loads and the dynamic response of the 
floating slender space frame structure in the time-domain. The floating space frame 
structure is an integrated dynamic system consisting of a space frame floater, a buoy and 
moorings.  All structural components are modelled by cylindrical beam elements based on 
the Bernoulli-Euler beam theory. All calculations in the project are performed numerically 
in the Nonlinear Wave Code, which is based on a corotational beam formulation. The 
implemented geometric nonlinear formulation allows the floating space frame structure to 
have arbitrarily large displacements and rotations at the global level. The Nonlinear Wave 
Code is capable of evaluating buoyancy forces and wave loading on arbitrarily designed 
restrained and floating slender offshore structures in different sea states. 

The hydrodynamic forces are represented by two methods. In the first method the 
differential hydrodynamic forces are represented by a higher order polynomial regression. 
This method requires a high discretization of the beam elements near the free ocean surface 
to give an accurate prediction of the wave forces. This method gives an accurate 
hydrodynamic load prediction for fully submerged elements, while error estimation is 
introduced when the elements are partially submerged.  

In the second method the hydrodynamic forces are represented by numerical integration, 
which is preferred compared to the polynomial regression, as this method gives sufficient 
accurate prediction of the wave forces for fully and partially submerged elements. The 
approach of representing the hydrodynamic forces is used in the prediction of the loads and 
dynamic response of the floating space frame structure.  

Two buoyancy force formulations are implemented in the Nonlinear Wave Code, in which 
the first method evaluates the buoyancy forces as a function the submerged length of a 
cylinder.  The buoyancy forces in the second method are determined as a function of the 
submerged cross-sectional area which is proven to be a more accurate and stable approach. 

The floating space frame structure is modelled with a fine mesh to obtain a sufficient 
representation of the ocean loads and the dynamic response of the structure. A time-domain 
analysis with simulation duration of 15𝑠𝑠 is performed, in which the structure is subjected to 
a linear wave. The floating space frame structure is modelled in both the Nonlinear Wave 
Code and Ansys Workbench, in which the predicted loads and dynamic responses are 
consistent with each other. It is concluded that the Nonlinear Wave Code is able to predict 
the hydrostatics and hydrodynamic forces and the dynamic response of a floating slender 
space frame structure. 

 

 

 

 



 
 

86 
 

10 Reference List 
 
[1]  »»WEPTOS™ Innovating in Wave Energy,«,« [Online]. Available: 

http://www.weptos.com/wp-content/uploads/2011/12/Book-about-WEPTOS_144-dpi.pdf. 

[2]  »»Types of offshore wind turbine foundations,«,« [Online]. Available: 
http://www.aquaticbiosystems.org/content/10/1/8/figure/F4?highres=y. 

[3]  2D Corotational Beam Formulation by Louie Yaw, Walla Walla University, Nov 30, 2009.  

[4]  Buoyancy forces and the 2D finite element analysis of flexible offshore pipes and risers by 
M. Yazdchi and M.A. Crisfield, Department of Aeronautics, London, 2002..  

[5]  Water Wave Mechanics by Thomas Lykke Andersen, Department of Civil Engineering, 
Aalborg University, August 2012.  

[6]  DNV, »Design of Offshore Wind Turbine Structures DNV-OS-J101,« 2013 January..  

[7]  »Phillystran,« [Online]. Available: http://www.phillystran.com/Markets2/Towing-Lines. 

[8]  Generation and Analysis of Random Waves by Zhou Liu, Laboratoriet for Hydraulik og 
Havnebygning, 3. udgave, Aalborg University, januar 2001.  

[9]  Analysis of Waves by Peter Frigaard, Department of Civil Engineering, Aalborg 
University, May 2012.  

[10]  DNV, »Enviromental Conditions and Enviromental Loads DNV-RP-C205« , October 
2011..  

[11]  DNV, »Global performance of Deep Water Floating Structures DNV-RP-F205« , October 
2004..  

[12]  DNV, »Design of Floating Wind Turbine Structures DNV-OS-J103,« 2013 June 

[13]  DNV, »Design of Offshore Steel Structures, General (LRFD Method) DNV-OS-J101,« 
2011 April. 

[14]  Concepts and Application of Finite Element Analysis by Robert D. Cook, 4th Edition, 
University of Wisconcin - Madison..  

[15]  Engineering Vibration by DanielJ. Inman, 3rd Edition, 2007.  

[16]  Structural Analysis by Aslam Kassimali, 4th Edition, Cengage Learning,2011.  

[17]  Non-linear Modeling and Analysis of Solids and Structures by Steen Krenk, Cambridge 
University Press, 2009.  

[18]  T. Fischer, »WP4: Offshore Foundations and Support Structures,« UpWind, 2006.  

[19]  NAFEMS Introduction to Nonlinear Finite Element Analysis, Edited by E. Hinton, 
Published by NAFEMS Ltd, Scotland United Kingdom.  

[20]  Mechanics and Analysis of Beams, Columns and Cables, 2nd Edition by Professor Steen 
Krenk, Published by Polyteknisk Press, Denmark, 2000.  

 
 
 
  



 
Nonlinear Time-domain Analysis of Floating Space Frame Structures 
 

 

87 
 

11 Appendix A 
 

Method of Wave Modelling in Ansys Workbench  
In the following Chapter the wave modelling in Ansys Workbench is described. The 
wave modelling is introduced by means of an extension pack available at the homepage 
of Ansys Workbench. The steps behind the wave modelling are described and graphical 
views of the options are introduced.  

The wave modelling in Ansys Workbench is implemented by means of the Ocean 
Environment command, which is included in Ansys Workbench by installation of the 
Offshore Extensions Pack that is available on the Ansys homepage. By the Ocean 
Environment it is among other things possible to input the basic environment through 
OCTYPE, Basic along with the ability to adjust the mean water level and sea bed level 
from the global origin. Furthermore it is possible to control the flooding input of local 
variation of drag and inertia coefficients based on Z level as handled under OCZONE. 

The first step of the wave modelling is to define the basic properties once the Ocean 
Basic load icon is clicked. The properties to be defined are the Ocean Mean Water 
Level and the Sea Bed Level which are measured from the global origin. 

 

 
Figure 97: Definition of the MWL and SBL. 

The graphic of the position of the Mean Water Level and Sea Bed Level is 
automatically updated based in the user entry. Unless the density and standard earth 
gravity are user defined, they defaults to 1025 𝑘𝑘𝑑𝑑

𝑙𝑙3 and 9.81 𝑙𝑙
𝑠𝑠2

, respectively. The next step 
is to define the structural coefficients. 

 
Figure 98: Definition of the added mass ratio. 

The added mass ratio defaults to the value 1, but can be set as required. The flooding 
behaviour of the structure is defined by either the true or false option as illustrated 
below here. 
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Figure 99: Selection of the flooding behaviour of the structure. 

The Structural Coefficients consisting of the drag- and inertia coefficients are given as 
tabular data under the function “Coefficients by Depth”. 

 

 
Figure 100: Definition of the structural coefficients as function of the ocean depth. 

The Structural Coefficients are as shown in above-mentioned Figure 100 as function of 
the depth. It is possible to add more rows if the structural coefficients are varying with 
depth.  The next step is to define the wave theory. 

  

 
Figure 101: Selection of the wave theory. 

After defining the General and Structural Coefficients properties, the wave options 
which are available under the drop down of Wave Theory has to be defined as 
illustrated in Figure 101. After selecting the wave theory, the parameters of the wave in 
the property table are to be defined as shown in Figure 102. 

 
Figure 102: Definition of the wave parameters in different load steps. 

The rows are dynamically created based on the number of steps issued in the Analysis 
Settings. It is furthermore possible to define random waves by means of the JONSWAP 
spectrum. 
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12 Appendix B 
In this appendix the Nonlinear Wave Code written in the programming language Matlab 
is introduced. Only the main scripts are included, while reference is made to the 
Appendix DVD for the complete version of the produced Nonlinear Wave Code. 

#################################################################### 
% M.sc. in Civil and Structural Engineering - Master Thesis 
% Nonlinear Time-domain Analysis of Floating Space Frame Structures 
% Nonlinaer Wave Code  
% Authors: Alaa Taha & Arber Kadriu 
% -------------------------------------------------------------------- 
% InputData 
#################################################################### 
 
function [nCoord,eTop,force,NodeFix,ch,NumberNewPoints,E,rhoS,eMat,... 
A,I,eSec,waveTheory,MWL,h,H,T,Do,CDn,CDt,CM,CA,rhoW,ny,k,g,nf,... 
phases,t] = InputData; 
 
% Design of the Floating Space Frame Structure 
%===================================================================== 
load('Coordinates.TXT'); 
mainCoord = Coordinates; 
  
load('MainTopology.TXT') 
mainTop = MainTopology; 
  
% Discretization of Structure 
for i=1:length(mainTop(:,1));          
NumberNewPoint = 0; 
xvals(i,:) = linspace(mainCoord(mainTop(i,1),1), 
mainCoord(mainTop(i,2),... 
             1), NumberNewPoint+2); 
yvals(i,:) = linspace(mainCoord(mainTop(i,1),2), 
mainCoord(mainTop(i,2),... 
             2), NumberNewPoint+2); 
end 
  
xvals = xvals'; 
yvals = yvals'; 
  
x = xvals(:); 
y = yvals(:); 
xy = [x,y]; 
  
nCoord = unique(xy,'rows','stable'); 
  
load('Topology.TXT') 
eTop = Topology; 
  
% Static Boundary Conditions 
%        Node   Force 
force = [            ]; 
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% Geometric Boundary Conditions: FixedDof(:,1) 
%           node  dofs 
NodeFix  = [  1   0 0 1 
            103   0 0 1 
            108   1 1 0 
            113   1 1 0]; 
  
% Charnier at Node 
%     Element  Node 
ch = [  51      2 
        52      1 
       113      1 
       132      2  ]; 
 
% Extra Points 
%===================================================================== 
NumberNewPoints = 10 ; 
 
% Material and cross section parameters of the structure 
%=====================================================================  
E = [200e9   % Young Modulus 
     200e9 
     200e9 
     200e9];                                   
     
Do = [0.5    % Outer cylinder diameter [m] 
      0.127 
      0.032 
      0.200];                                  
   
Di = [Do(1,1)*0.96681   % Inner cylinder diameter [m]                      
      0.000 
      0.000 
      Do(4,1)*0.96681];                                   
  
A = [((Do(1,1)/2)^2)*pi - ((Di(1,1)/2)^2)*pi % Cross-Sectional Area 
     ((Do(2,1)/2)^2)*pi - ((Di(2,1)/2)^2)*pi 
     ((Do(3,1)/2)^2)*pi - ((Di(3,1)/2)^2)*pi 
     ((Do(4,1)/2)^2)*pi - ((Di(4,1)/2)^2)*pi];   
  
I = [(pi*(Do(1,1)^4 - Di(1,1)^4)/64)         % Second Moment of Area 
     (pi*(Do(2,1)^4 - Di(2,1)^4)/64) 
     (pi*(Do(3,1)^4 - Di(3,1)^4)/64) 
     (pi*(Do(4,1)^4 - Di(4,1)^4)/64)];             
  
rhoS = [7850                                % Density of the Structure 
        10.4/A(2,1) 
        4.19/A(3,1) 
        7850];                              
     
% Assign Materials to Elements      
eMat = [ ones(1,102)*2 ones(1,10) ones(1,20)*3 ones(1,80)*4] ; 
% Assign Cross-sections to Elements 
eSec = [ ones(1,102)*2 ones(1,10) ones(1,20)*3 ones(1,80)*4] ; 
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% Wave Theory 
%===================================================================== 
waveTheory = 'Airy'; 
% waveTheory = 'Wheeler'; 
% waveTheory = 'Stokes_5th_Order'; 
% waveTheory = 'Irregular_Wave'; 
 
% Input parameters  
%===================================================================== 
MWL = 0;                       % Mean water level [m] 
h = 40;                        % Water depth [m] 
H = 1 ;                        % Wave height [m] 
T = 15;                        % Apparent wave period [s] 
CDn = 0.5;                     % Drag coefficient – tangential [-] 
CDt = 0;                       % Drag coefficient - Perpendicular [-] 
CM = 2;                        % Inertia coefficient [-] 
CA = 1;                        % Added Mass coefficient [-] 
rhoW = 1025;                   % Density [kg/m^3] 
ny = 1.05e-6;                  % Fluid kinematic viscosity[m^2/s] 
k = 5e-6;                      % Roughness height [m] - Painted steel  
g = 9.81;                      % Gravity [m/s^2] 
nf = 20;                       % Number of Airy waves 
phases = 2*pi*rand(1,nf);      % Random phase in the interval [0,2*pi] 
% Timestep 
%===================================================================== 
tStep = 0.01; 
t     = 0:tStep:15; 
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% #################################################################### 
% MainNonlinearCode 
% #################################################################### 
 
Clear all; Close all; Clc; 
  
% Input for Nonlinear Wave Code 
====================================================================== 
[nCoord,eTop,force,NodeFix,ch,NumberNewPoints,E,rhoS,eMat,A,I,eSec,... 
waveTheory,MWL,h,H,T,Do,CDn,CDt,CM,CA,rhoW,ny,k,g,nf,phases,t] = 
Input_Data; 
  
% Calculations 
====================================================================== 
% Dof Per Node          
dofPerNode = 3  ; 
  
% Nodes Per Element 
NodePerElem = 2 ; 
  
% Numbers of Nodes and Elements in Global Model 
Nn = length(nCoord(:,1)) ; 
Ne = length(eTop(:,1)) ;   
  
% Elements 
for i=1:length(eTop(:,1)); 
    Elem(:,:,i) = [nCoord(eTop(i,1),:) ; nCoord(eTop(i,2),:)]; 
end 
  
% Length of Each Element 
for i=1:length(eTop(:,1)); 
    lElem(i) = pdist([nCoord(eTop(i,1),:);nCoord(eTop(i,2),:)]); 
end 
lElem = lElem; 
 
% Number of Global Degrees of Freedom Without Charnier 
Ndof = dofPerNode*Nn ; 
  
%Ordering of Elements 
if size(eTop,1) == 1 
    ElemDof = 1:Ndof; 
else 
    Dofn = reshape(1:Ndof,dofPerNode,[])'; 
    Dofc = num2cell(Dofn,2); 
    ElemDof = cell2mat(Dofc(eTop(:,1:2))); 
End 
 
% Implementation of Charnier 
if numel(ch) > 0  
for i=1:length(ch(:,1)) 
    ElemDof(ch(i,1),3*ch(i,2)) = max(ElemDof(:))+1; 
end 
% Number of Global Degrees of Freedom With Charnier 
Ndof = dofPerNode*Nn + length(ch(:,1)); 
end 
  
% Fixed Nodes 
FixedDof=[]; 
for i=1:numel(NodeFix(:,1)) 
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    for j=2:numel(NodeFix(i,:)) 
        if NodeFix(i,j) == 0 
FixedDof = [FixedDof ((NodeFix(i,1)-1)*3)+(j-1)];           
        end 
    end 
end 
FreeDof = [1:Ndof]; 
FreeDof(FixedDof) = []; 
  
% Static Boundary Conditions 
f = zeros(Ndof,1); 
if numel(force)>0 
    for i=1:length(force(:,1)) 
f(force(i,1),1) = force(i,2); 
    end 
end 
  
% Known Forces and Displacements 
fKnown = zeros(Ndof,1); 
fKnown(FreeDof,1)=1;              % Forces are known  
fKnown = logical(fKnown); 
  
dKnown = ones(Ndof,1); 
dKnown(FreeDof,1)=0;              % Displacements are known  
dKnown = logical(dKnown); 
  
% Global Displacement Dofs 
dxz = zeros(length(nCoord(:,1)),2); 
dxz(1,:) = ElemDof(1,1:2);  
for i=1:length(eTop(:,1)) 
dxz(1+i,:)=ElemDof(i,4:5); 
end 
 
% Definition of Variables 
====================================================================== 
% Current Externally Applied Global Nodal Force Vector 
fn = zeros(Ndof,1); 
% Number of Load Increments 
ninc = 100 ;  
% Load Factor 
lambda = 1/ninc ; 
% Calculation of the Incremental Force Vector 
dF = lambda*f ; 
% Storage Vector of Local Forces 
qL = zeros(3,Ne); 
% Global Nodal Displacements 
un = zeros(Ndof,1); Su = zeros(Ndof,1) ; 
% Initial System Matrices 
[beta0,L0,B,Ksys] = KbeamNon(Ndof,Ne,eTop,nCoord,un,ElemDof,E,eMat,... 
A,eSec,I,qL); 
% Initial Memberdata Values  
[L,beta,qL,qi,Fint] = MemberData(Ndof,Ne,eTop,nCoord,un,ElemDof,... 
                                 L0,E,eMat,A,eSec,beta0,I); 
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% Dynamic Analysis 
====================================================================== 
% Global Mass Matrix 
Msys = zeros(Ndof) ; 
  
% Loop Over a Finite Number of Elements 
for n = 1:Ne ; 
  % Extract Global Node Numbers 
  ne = eTop(n,:) ;   
  % Coordinates of Element Nodes 
  xe = nCoord(ne',:) ; 
  % Extract Global Degrees of Freedom for Element 
  eDof = [ElemDof(n,1:3);ElemDof(n,4:6)]; 
  % Calculate Element Mass Matrix 
  Me = Mbeam(xe,rhoS,A,eMat(n),eSec(n)); 
  % Add Element Mass Matrix Into the Right Spot 
  Msys(eDof',eDof') = Msys(eDof',eDof')+ Me ; 
end 
  
% Initial Conditions 
M=Msys(fKnown,fKnown); 
K=Ksys(fKnown,fKnown);  
%[w0,f0,aC,C] = Cbeam(Ksys,fKnown,M); 
C = 0*M; 
  
u0 = zeros(length(K),1) ; % init. displacement 
v0 = zeros(length(K),1) ; % init. velocity 
  
% Nonlinear Newmark Scheme 
====================================================================== 
% Time-domain Solutions 
dt = t(2) - t(1) ; % time increment 
  
% Gravity Acceleration Force Vector 
[Fs] = SelfWeight(beta,Elem,lElem,ElemDof,rhoS,eMat,A,eSec,g); 
  
% Maximum Particle Velocity 
[uMax] = 
Maximum_Particle_Vel(nCoord,eTop,NumberNewPoints,t,waveTheory,... 
                              H,T,h,MWL,g,nf,phases); 
% Integration parameters  
% gammaC = 1/2; 
% betaC  = 1/4; 
Ndamp = 0.1;              % Numerical damping ratio  
gammaC = 0.5+Ndamp;       % Newmark beta-method integration parameters 
betaC = 0.25*(1+Ndamp)^2; % Newmark beta-method integration parameters 
% Initialize the Vectors u, v and a  
u = zeros(Ndof,length(t));  
v = zeros(Ndof,length(t));  
a = zeros(Ndof,length(t)); 
uu = zeros(Ndof,1); 
vv = zeros(Ndof,1); aa = zeros(Ndof,1); 
u(fKnown,1) = u0 ; % initial displacements 
v(fKnown,1) = v0 ; % initial velocities 
a(fKnown,1) = M\(Fs(fKnown,1)-C*v0-K*u0); 
  
% Perform Loop over the Time Steps 
  for j = 1 : numel(t)-1 
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  % Predicted Values of u and v  
    aa(fKnown,1) = a(fKnown,1); 
    vv(fKnown,1) = v(fKnown,1)+a(fKnown,1)*dt; 
    uu(fKnown,1) = u(fKnown,1)+v(fKnown,1)*dt +  0.5*a(fKnown,1)*dt^2;                    
     
% Memberdata of Current Values   
[L,beta,qL,qi,Fint] = MemberData(Ndof,Ne,eTop,nCoord,uu,ElemDof,L0,...    
                                 E,eMat,A,eSec,beta0,I); 
 
  % Updated Coordinate System 
    for i=1:Nn 
    ux(i) = nCoord(i,1)+u(dxz(i,1),1); 
    uy(i) = nCoord(i,2)+u(dxz(i,2),1); 
    end 
    nCoordUp = [ux' uy']; 
    [extP,dL] = Extrepoints(nCoordUp,eTop,NumberNewPoints); 
  % Surface Elevation 
    if strcmp(waveTheory,'Airy')==1 || strcmp(waveTheory,'Wheeler')==1 
    [eta,hTot,Lwave] = Eta(H,T,h,MWL,j*dt-dt,extP); 
    elseif strcmp(waveTheory,'Stokes_5th_Order') == 1 
    [Lwave,D,E5th]=LDEStokes5thOrderWaves(H,T,h); 
    [eta,hTot] = EtaStokes5(Lwave,E5th,T,MWL,j*dt-dt,extP); 
    elseif strcmp(waveTheory,'Irregular_Wave') == 1 
    [eta,hTot,Lwave] = EtaIrregular(h,H,T,MWL,j*dt- 
dt,extP,nf,phases); 
    end 
    hdata(:,j) = [hTot(1,1); hTot(end,1)]; 
  % Buoyancy Force Vector  
    [Fb] = 
BuoyancyForce(Do,eSec,hTot,extP,nCoordUp,eTop,dL,L,beta,rhoW,... 
              g,ElemDof); 
  % Wave force vector 
    [Fw] = WaveForce(Do,eSec,waveTheory,h,eta,H,T,nf,phases,extP,... 
                  nCoordUp,eTop,dL,L,beta,rhoW,ny,k,uMax,g,ElemDof,... 
                  CDn,CDt,CM,CA,j*dt-dt,v,a); 
  % Gravity acceleration force vector 
    [Fs] = SelfWeight(beta,Elem,lElem,ElemDof,rhoS,eMat,A,eSec,g); 
  % Residual calculation 
    r = Fs(fKnown,1) - M*aa(fKnown,1) - C*vv(fKnown,1) - 
Fint(fKnown,1)... 
        + Fb(fKnown,1) + Fw(fKnown,1);  
  % Calculation of the Norm of the Residual 
    rnorm = sqrt(r'*r); 
  % Total Force Vector 
    Ftot = (Fb+Fw+Fs); 
     
    tol = norm(Ftot(fKnown,1))*1e-3; % Tolerance 
    kiter = 0;      % Zero iteration counter 
    maxiter = 100;  % Max iterations 
    while rnorm>tol && kiter<maxiter;    
  % System matrices 
 [beta0,L0,B,Ksys]=KbeamNon(Ndof,Ne,eTop,nCoord,uu,ElemDof,E,... 
                            eMat,A,eSec,I,qL); 
Kmod = M*(1/(betaC*dt^2)) + C*((gammaC*dt)/(betaC*dt^2)) + ... 
       Ksys(fKnown,fKnown); 
  % Increment correction  
    Su = Kmod\r; 
  % Corrected values    
    uu(fKnown,1) = uu(fKnown,1) + Su; 
    vv(fKnown,1) = vv(fKnown,1) + (((gammaC*dt)/(betaC*dt^2)))*Su; 
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    aa(fKnown,1) = aa(fKnown,1) + ((1/(betaC*dt^2)))*Su ; 
  % Updated Memberdata Regarding the Corrected Values   
 [L,beta,qL,qi,Fint] = MemberData(Ndof,Ne,eTop,nCoord,uu,... 
                                  ElemDof,L0,E,eMat,A,eSec,beta0,I);  
  % Updated Coordinate System 
    for i=1:Nn 
    ux(i) = nCoord(i,1)+uu(dxz(i,1),1); 
    uy(i) = nCoord(i,2)+uu(dxz(i,2),1); 
    end 
    nCoordUp = [ux' uy']; 
    [extP,dL] = Extrepoints(nCoordUp,eTop,NumberNewPoints); 
  % Surface elevation 
    if strcmp(waveTheory,'Airy')==1 || strcmp(waveTheory,'Wheeler')==1 
    [eta,hTot,Lwave] = Eta(H,T,h,MWL,j*dt-dt,extP); 
    elseif strcmp(waveTheory,'Stokes_5th_Order') == 1 
    [Lwave,D,E5th]=LDEStokes5thOrderWaves(H,T,h); 
    [eta,hTot] = EtaStokes5(Lwave,E5th,T,MWL,j*dt-dt,extP); 
    elseif strcmp(waveTheory,'Irregular_Wave') == 1 
    [eta,hTot,Lwave] = EtaIrregular(h,H,T,MWL,j*dt-dt,extP,nf,phases); 
    end 
  % Buoyancy Force Vector   
    [Fb] = BuoyancyForce(Do,eSec,hTot,extP,nCoordUp,eTop,dL,L,... 
                         beta,rhoW,g,ElemDof); 
  % Wave force vector 
    [Fw] = WaveForce(Do,eSec,waveTheory,h,eta,H,T,nf,phases,extP,... 
                nCoordUp,eTop,dL,L,beta,rhoW,ny,k,uMax,g,ElemDof,... 
                CDn,CDt,CM,CA,j*dt-dt,vv,aa); 
  % Gravity Acceleration Force Vector 
    [Fs] = SelfWeight(beta,Elem,lElem,ElemDof,rhoS,eMat,A,eSec,g); 
  % Residual Calculation 
    r = Fs(fKnown,1)-M*aa(fKnown,1)-C*vv(fKnown,1)-Fint(fKnown,1)... 
        + Fb(fKnown,1) + Fw(fKnown,1) ; 
  % Calculation of the Norm of the Residual 
    rnorm = sqrt(r'*r);   
  % Update Iteration Counter 
    kiter = kiter + 1; 
    end 
  
  % Error if No Convergence   
    if rnorm>tol 
    j 
    error('Load Step Did not Converge: ')  
    end 
  % Final Values   
    u = uu; 
    v = vv; 
    a = aa; 
    udata(:,j+1) = u; 
    vdata(:,j+1) = v; 
    adata(:,j+1) = a;   
    etadata(:,j+1) = eta(end,end); 
  end 
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##################################################################### 
% MemberData 
##################################################################### 
function [L,beta,qL,qi,Fint] = MemberData(Ndof,Ne,eTop,nCoord,uc,... 
                               ElemDof,L0,E,eMat,A,eSec,beta0,I); 
% === Description 
===================================================== 
% Input:    Ndof            Number of dof 
%           Ne              Number of elements 
%           eTop            Topology 
%           nCoord          Coordinates 
%           uc              Current nodal displacements 
%           ElemDof         dof of each element 
%           L0              Original length of each element 
%           E               Young's modulus 
%           eMat            Materialparameter of each element 
%           A               Section area 
%           eSec            Cross-sectionalparameter of each element 
%           Beta0           Initial angle of each element 
%           I               Area moment of inertia 
% 
% Output:   L               Length of members 
%           beta            Angle of members 
%           qL              Local forces 
%           Fint            Internal force vector   
  
% Update of Member Data 
===================================================================== 
Fint = zeros(Ndof,1) ; 
  
for n = 1:Ne 
% Extract Global Node Numbers 
ne = eTop(n,:) ; 
% Coordinates of Element Nodes 
xe = nCoord(ne',:) ; 
% Calculation of the Distance between Nodes 
dX(n) = xe(2,1)+uc(ElemDof(n,4))-(xe(1,1)+uc(ElemDof(n,1))); 
dY(n) = xe(2,2)+uc(ElemDof(n,5))-(xe(1,2)+uc(ElemDof(n,2))); 
% Update current length of members 
L(n) = sqrt(dX(n)^2 + dY(n)^2); 
% Update the Cosine and Sine of the Current Angle Beta for Members 
c(n) = dX(n)/L(n); s(n) = dY(n)/L(n); 
% Calculate the Axial Displacement of Members 
uL(n) = (L(n)^2 - L0(n)^2)/(L(n) + L0(n)); 
% Calculate the Axial Force 
N(n) = (E(eMat(n))*A(eSec(n))*uL(n))/L0(n); 
% Calculate Beta 
beta(n) = atan2(dY(n),dX(n)) ; 
 
% Calculate Beta1 and Beta2 
beta1(n) = (uc(ElemDof(n,3))+beta0(n)); 
beta2(n) = (uc(ElemDof(n,6))+beta0(n)); 
 
% Calculate Teta1L and Teta2L 
theta1l(n) = atan((c(n)*sin(beta1(n)) - s(n)*cos(beta1(n)))/... 
                 (c(n)*cos(beta1(n)) + s(n)*sin(beta1(n)))); 
theta2l(n) = atan((c(n)*sin(beta2(n)) - s(n)*cos(beta2(n)))/... 
                 (c(n)*cos(beta2(n)) + s(n)*sin(beta2(n)))); 
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if theta1l(n) == -(cos(pi/2)) &&  theta2l(n) == -(cos(pi/2)) 
   theta1l(n)=0; 
   theta2l(n)=0; 
 
elseif theta1l(n) == (cos(pi/2)) &&  theta2l(n) == (cos(pi/2)) 
theta1l(n)=0; 
theta2l(n)=0; 
end 
 
% Calculate Nodal Rotations 
M1(n) = 4*E(eMat(n))*I(eSec(n))*theta1l(n)/L0(n) + 2*E(eMat(n))*... 
        I(eSec(n))*theta2l(n)/L0(n); 
M2(n) = 2*E(eMat(n))*I(eSec(n))*theta1l(n)/L0(n) + 4*E(eMat(n))*... 
        I(eSec(n))*theta2l(n)/L0(n); 
 
% Update Local Forces 
qL(:,n) = [N(n); M1(n); M2(n)]; 
 
% Calculation of Transformation Matrix 
B(:,:,n) = [-c(n)        -s(n)      0   c(n)       s(n)        0 
            -s(n)/L(n)   c(n)/L(n)  1   s(n)/L(n)  -c(n)/L(n)  0 
            -s(n)/L(n)   c(n)/L(n)  0   s(n)/L(n)  -c(n)/L(n)  1]; 
     
% Calculating Internal Forces 
====================================================================== 
% Internal Force Vector in Global Coordinates for Beam Element i 
qi(:,n) = B(:,:,n)'*qL(:,n) ; 
 
Fint(ElemDof(n,:),1) = Fint(ElemDof(n,:),1) + qi(:,n) ; 
end 
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##################################################################### 
% Tangent Stiffness Matrix 
##################################################################### 
function [beta0,L0,B,Ksys] = 
KbeamNon(Ndof,Ne,eTop,nCoord,un,ElemDof,E,eMat,A,eSec,I,qL); 
 
% === Description===================================================== 
% Input:    Ndof            Number of dof 
%           Ne              Number of elements 
%           eTop            Topology 
%           nCoord          Coordinates 
%           un              Global nodal displacements 
%           ElemDof         dof of each element 
%           E               Young's modulus 
%           eMat            Materialparameter of each element 
%           A               Section area 
%           eSec            Cross-sectionalparameter of each element 
%           I               Area moment of inertia 
%           qL              Local forces 
% 
% Output:   Ksys            6x6 Nonlinear Stiffness Matrix 
 
 
Ksys = zeros(Ndof) ; 
  
% Loop over a finite number of elements 
for n = 1:Ne 
% Extract global node numbers 
ne = eTop(n,:) ; 
% Coordinates of element nodes 
xe = nCoord(ne',:) ; 
% Vector of initial angles of beam members  
beta0(n) = atan2((xe(2,2)-xe(1,2)),(xe(2,1)-xe(1,1))); 
% Initial beam element length 
L0(n) = sqrt((xe(2,1)-xe(1,1))^2 + (xe(2,2)-xe(1,2))^2); 
 
% Vector of beam element length based on current u 
L(n) = sqrt(((xe(2,1)+un(ElemDof(n,4)))-(xe(1,1)+... 
       un(ElemDof(n,1))))^2 + ((xe(2,2)+un(ElemDof(n,5)))-... 
       (xe(1,2)+un(ElemDof(n,2))))^2); 
 
% Vectors of cosines and sines for each beam element angle 
c(n) = ((xe(2,1)+un(ElemDof(n,4))) - (xe(1,1)+un(ElemDof(n,1))))/L(n); 
s(n) = ((xe(2,2)+un(ElemDof(n,5))) - (xe(1,2)+un(ElemDof(n,2))))/L(n); 
     
% Transformation Matrix B 
    B(:,:,n) = [-c(n)        -s(n)      0   c(n)       s(n)        0 
                -s(n)/L(n)   c(n)/L(n)  1   s(n)/L(n)  -c(n)/L(n)  0 
                -s(n)/L(n)   c(n)/L(n)  0   s(n)/L(n)  -c(n)/L(n)  1]; 
CL(:,:,n) = ((E(eMat(n))*A(eSec(n)))/L0(n))*[1 0 0 
0 4*(sqrt(I(eSec(n))/A(eSec(n))))^2 2*(sqrt(I(eSec(n))/A(eSec(n))))^2 
0 2*(sqrt(I(eSec(n))/A(eSec(n))))^2 4*(sqrt(I(eSec(n))/A(eSec(n))))^2] 
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% Standard Transformed Global Tangent Stiffness 
Kt1(:,:,n) = B(:,:,n)'*CL(:,:,n)*B(:,:,n); 
              
% The Axial Force in the Beam 
N(n) = qL(1,n); 
  
% The Local Nodal Rotations 
M1(n) = qL(2,n); 
M2(n) = qL(3,n); 
  
r(:,n) = [-c(n) -s(n) 0 c(n) s(n) 0]'; 
z(:,n) = [s(n) -c(n) 0 -s(n) c(n) 0]';     
  
Kts(:,:,n) = (N(n)/L(n))*(z(:,n)*z(:,n)')+((M1(n)+M2(n))/... 
              L(n)^2)*(r(:,n)*z(:,n)' + z(:,n)*r(:,n)'); 
                        
% The Variationally Consistent Tangent Stiffness Matrix 
KeNon(:,:,n) = Kt1(:,:,n) + Kts(:,:,n) ;  
     
% Add Element Stiffness Matrix into the Right Spot 
Ksys(ElemDof(n,:),ElemDof(n,:)) = Ksys(ElemDof(n,:),ElemDof(n,:))... 
                                  + KeNon(:,:,n) ; 
end 
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###################################################################### 
% Mbeam 
###################################################################### 
%==== Description ==================================================== 
% Input:    xe              Coordinates of Element Nodes 
%           rhoS            Structure Density 
%           A               Cross-sectional Area 
%           eMat            Material parameter of each element 
%           eSec            Cross-sectional parameter of each element 
% 
% Output:   Me              Mass matrix 
  
syms x 
% Calculation of element length 
Dxe = xe(2,:)-xe(1,:) ; 
L   = norm(Dxe)       ; 
  
mbar  = zeros(2) ; 
mbeam = zeros(4) ; 
Me    = zeros(6) ; 
  
% Shape function bar 
N1 =  -(1/L)*x+1; 
N4 =  (1/L)*x; 
         
% Shape function beam Bernoulli-Euler 
N2 = 1 - (3*x^2)/L^2 + (2*x^3)/L^3  ; 
N3 = x - (2*x^2)/L + (x^3)/L^2      ; 
N5 = (3*x^2)/L^2 - (2*x^3)/L^3      ; 
N6 = (-x^2)/L + (x^3)/L^2           ; 
         
% Shape Functions 
Nbar  = [N1 N4]; 
Nbeam = [N2 N3 N5 N6]; 
       
% Integration of Mass matrix   
mbar=real(double(int(Nbar'*rhoS(eMat)*A(eSec)*Nbar,0,L)))    ; 
mbeam=real(double(int(Nbeam'*rhoS(eMat)*A(eSec)*Nbeam,0,L))) ; 
       
% Local Mass Matrix         
bardof=[1 4]        ; 
beamdof=[2 3 5 6]   ; 
  
Me(bardof,bardof)   = mbar  ; 
Me(beamdof,beamdof) = mbeam ; 
     
% Transformation matrix 
NodeDir1 = Dxe(1)/L ;  
NodeDir2 = Dxe(2)/L ; 
  
T = [ NodeDir1 NodeDir2   0    0            0       0 
     -NodeDir2 NodeDir1   0    0            0       0 
     0            0       1    0            0       0 
     0            0       0  NodeDir1    NodeDir2   0 
     0            0       0  -NodeDir2   NodeDir1   0 
     0            0       0    0            0       1] ; 
 
Me = T'*(Me)*T ;  
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##################################################################### 
% Wave Forces  
##################################################################### 
function[Fw]=WaveForce(Do,eSec,waveTheory,h,eta,H,T,nf,phases,extP,... 
nCoord,eTop,dL,L,beta,rhoW,ny,k,uMax,g,ElemDof,CDn,CDt,CM,CA,tc,v,a); 
 
%==== Description 
========================================================= 
% Input:    Do              Cylinder Diameter 
%           eSec            Cross-sectionalparameter of each element 
%           waveTheory      Wave Theory 
%           h               Waterdepth 
%           eta             Surface Elevation 
%           H               Wave Height 
%           T               Wave Period 
%           nf              Number of Airy Waves 
%           phases          Random Phase in The Interval [0,2*pi] 
%           extP            Element Extraction Points 
%           nCoord          Coordinates 
%           eTop            Topology 
%           dL              Distance Between Extraction Points 
%           L               Element Length 
%           beta            Angle of Each Element 
%           rhoW            Water density 
%           ny              Fluid Kinematic Viscosity 
%           k               Roughness Height - Painted steel 
%           uMax            Maximum Particle Velocity 
%           g               Gravity Acceleration 
%           ElemDof         Dofs of Each Element 
%           CDn             Drag coefficient - tangential 
%           CDt             Drag coefficient - Perpendicular  
%           CM              Inertia coefficient 
%           CA              Added Mass coefficient 
%           tc              Current Time Step 
%           v               Current Structure Velocity 
%           a               Current Structure Acceleration 
% 
% Output:   Fw              Buoyancy force vector 
 
 
% Loop over Elements 
%=====================================================================            
Fw = zeros(max(max(ElemDof,[],2)),1); 
vS = zeros(max(max(ElemDof,[],2)),1); 
aS = zeros(max(max(ElemDof,[],2)),1); 
  
for i=1:length(eTop(:,1));    
 
% Elements and Element Length 
%===================================================================== 
Elem(:,:,i) = [nCoord(eTop(i,1),:) ; nCoord(eTop(i,2),:)];     
lElem(i) = pdist([nCoord(eTop(i,1),:);nCoord(eTop(i,2),:)]); 
  
% Unit Vectors 
%===================================================================== 
j  = [0 1]'; 
  
e1(i,:) = [cosd(radtodeg(beta(i))) sind(radtodeg(beta(i)))]; 
e2(i,:) = [-sind(radtodeg(beta(i))) cosd(radtodeg(beta(i)))]; 
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e12(:,:,i) = [e1(i,:); e2(i,:)]; % Transformation from global to local 
e21(:,:,i) = e12(:,:,i)';        % Transformation from local to global 
  
%===================================================================== 
% Outer radius  
r(:,i) = Do(eSec(i))/2; 
  
%===================================================================== 
for jj=1:length(extP(:,1,1)) 
     
% The Cross-sectional Top and Bottom elevations  
Ht(jj,i) = (eta(jj,i))-((extP(jj,:,i)'+e2(i,:)'*r(:,i)))'*j ; 
Hb(jj,i) = (eta(jj,i))-((extP(jj,:,i)'-e2(i,:)'*r(:,i)))'*j ; 
  
% The submerged height  
if Ht(jj,i) >= 0  
Hs(jj,i) = 2*r(:,i) ; 
elseif Hb(jj,i) > 0 && Ht(jj,i) < 0 ; 
Hs(jj,i) = ((2*r(:,i))/(Hb(jj,i)-Ht(jj,i)))*Hb(jj,i) ; 
else Hb(jj,i) <= 0 ; 
Hs(jj,i) = 0 ; 
end 
  
% Cross-Sectional Area 
As(jj,i) = (r(:,i)^2*acos((r(:,i)-Hs(jj,i))/r(:,i)))-(r(:,i)-
Hs(jj,i))*... 
           sqrt(2*r(:,i)*Hs(jj,i)-Hs(jj,i)^2); 
 
% Partical Velocities and Accelerations 
%===================================================================== 
if strcmp(waveTheory,'Airy') == 1 || strcmp(waveTheory,'Wheeler') == 1 
[u,w,ax,az] = 
Particle_Vel_and_Acc_Airy(extP,waveTheory,eta,h,H,T,g,tc); 
  
vel_n(jj,i) = e12(2,:,i)*[u(jj,i); w(jj,i)]; 
vel_t(jj,i) = e12(1,:,i)*[u(jj,i); w(jj,i)]; 
acc_n(jj,i) = e12(2,:,i)*[ax(jj,i); az(jj,i)]; 
  
elseif strcmp(waveTheory,'Stokes_5th_Order') == 1 
[Lwave,D]=LDE_Stokes5thOrderWaves(H,T,h); 
[u,w,aTot] = 
Particle_Vel_and_Acc_Stokes_5th_Order(extP,h,T,Lwave,D,eta,tc); 
  
vel_n(jj,i) = e12(2,:,i)*[u(jj,i); w(jj,i)]; 
vel_t(jj,i) = e12(1,:,i)*[u(jj,i); w(jj,i)]; 
acc_n(jj,i) = aTot(jj,i); 
  
elseif strcmp(waveTheory,'Irregular_Wave') == 1 
[u,w,ax,az] = JonswapFLS(H,T,h,tc,extP,g,nf,phases); 
  
vel_n(jj,i) = e12(2,:,i)*[u(jj,i); w(jj,i)]; 
vel_t(jj,i) = e12(1,:,i)*[u(jj,i); w(jj,i)]; 
acc_n(jj,i) = e12(2,:,i)*[ax(jj,i); az(jj,i)]; 
end 
   
 
 
 



 
 

104 
 

% Shape Functions 
%===================================================================== 
dLcount(:,i) = [0 ; dL(:,i)]; 
x(jj,i) = sum(dLcount(1:jj,i)); 
  
% Shape Function Bar 
N1(jj,i) =  -(1/L(i))*x(jj,i)+1; 
N4(jj,i) =  (1/L(i))*x(jj,i); 
         
% Shape Function Beam Bernoulli-Euler 
N2(jj,i) = 1 - (3*x(jj,i)^2)/L(i)^2 + (2*x(jj,i)^3)/L(i)^3; 
N3(jj,i) = x(jj,i) - (2*x(jj,i)^2)/L(i) + (x(jj,i)^3)/L(i)^2; 
N5(jj,i) = (3*x(jj,i)^2)/L(i)^2 - (2*x(jj,i)^3)/L(i)^3; 
N6(jj,i) = (-x(jj,i)^2)/L(i) + (x(jj,i)^3)/L(i)^2; 
  
% Structural Velocity and Acceleration 
%===================================================================== 
vS(ElemDof(i,1:2),1) = e12(:,:,i)*v(ElemDof(i,1:2),1); 
vS(ElemDof(i,3),1) = v(ElemDof(i,3),1); 
vS(ElemDof(i,4:5),1) = e12(:,:,i)*v(ElemDof(i,4:5),1); 
vS(ElemDof(i,6),1) = v(ElemDof(i,6),1); 
aS(ElemDof(i,1:2),1) = e12(:,:,i)*a(ElemDof(i,1:2),1); 
aS(ElemDof(i,3),1) = a(ElemDof(i,3),1); 
aS(ElemDof(i,4:5),1) = e12(:,:,i)*a(ElemDof(i,4:5),1); 
aS(ElemDof(i,6),1) = a(ElemDof(i,6),1); 
 
velS_n(jj,i) = [0 N2(jj,i) N3(jj,i) 0 N5(jj,i) 
N6(jj,i)]*vS(ElemDof(i,:),1); 
velS_t(jj,i) = [N1(jj,i) 0 0 N4(jj,i) 0 0]*vS(ElemDof(i,:),1); 
  
accS_n(jj,i) = [0 N2(jj,i) N3(jj,i) 0 N5(jj,i) 
N6(jj,i)]*aS(ElemDof(i,:),1); 
  
% Relative Fluid-Structure Kinematics 
%===================================================================== 
if extP(jj,2,i) <= eta(jj,i) && H > 0; 
velR_n(jj,i) = vel_n(jj,i) - velS_n(jj,i); 
velR_t(jj,i) = vel_t(jj,i) - velS_t(jj,i); 
accR_n(jj,i) = acc_n(jj,i) - accS_n(jj,i); 
else 
velR_n(jj,i) = 0; 
velR_t(jj,i) = 0; 
accR_n(jj,i) = 0; 
end 
  
% Drag Coefficient 
%===================================================================== 
% Drag Coefficient for Steady State 
if k/Do(eSec(i)) < 10e-4 % Smooth 
CDS = 0.65; 
elseif k/Do(eSec(i)) > 10e-4 && k/Do(eSec(i)) < 10e-2 
CDS = 29 + 4 * log(k/Do(eSec(i))); 
elseif k/Do(eSec(i)) > 10e-2 % Rough 
CDS = 1.05; 
end 
  
% Keulegan-Carpenter number 
KC(jj,i) = (uMax(jj,i)*T)/Do(eSec(i)); 
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% Wake Amplification Factor 
if (KC(jj,i)/CDS) < 1.1; 
psi(jj,i) = ((0.3-1.8)/(1.1-0))*((KC(jj,i)/CDS)-0)+1.8; 
elseif (KC(jj,i)/CDS) >= 1.1 && (KC(jj,i)/CDS) < 3; 
psi(jj,i) = 0.3; 
elseif (KC(jj,i)/CDS) >= 3 && (KC(jj,i)/CDS) < 18; 
psi(jj,i) = ((1.3-0.3)/(18-3))*((KC(jj,i)/CDS)-3)+0.3; 
elseif (KC(jj,i)/CDS) >= 18 && (KC(jj,i)/CDS) < 20; 
psi(jj,i) = ((1.25-1.3)/(20-18))*((KC(jj,i)/CDS)-18)+1.3; 
elseif (KC(jj,i)/CDS) >= 20 && (KC(jj,i)/CDS) < 60; 
psi(jj,i) = ((1-1.25)/(60-20))*((KC(jj,i)/CDS)-20)+1.25; 
elseif (KC(jj,i)/CDS) >= 60; 
psi(jj,i) = 1; 
end 
  
% Drag Coefficient 
CD(jj,i) = CDS * psi(jj,i);  
 
% Distributed Wave Load 
%===================================================================== 
% Relative Morison Formulation 
fd_n(jj,i) = CM*rhoW*As(jj,i)*acc_n(jj,i) - rhoW*CA*As(jj,i)*... 
accS_n(jj,i) + 0.5*rhoW*CDn*Hs(jj,i)*velR_n(jj,i)*abs(velR_n(jj,i)); 
fd_t(jj,i) = 0.5*rhoW*CDt*Hs(jj,i)*velR_t(jj,i)*abs(velR_t(jj,i)); 
  
 
% Function of the Distributed Force Regarding the Shape Functions 
%===================================================================== 
fd1(jj,i) = N1(jj,i)'*fd_t(jj,i); 
fd2(jj,i) = N2(jj,i)'*fd_n(jj,i); 
fd3(jj,i) = N3(jj,i)'*fd_n(jj,i); 
fd4(jj,i) = N4(jj,i)'*fd_t(jj,i); 
fd5(jj,i) = N5(jj,i)'*fd_n(jj,i); 
fd6(jj,i) = N6(jj,i)'*fd_n(jj,i); 
end 
  
% Numerical Integration - Trapezoidal Rule 
%===================================================================== 
Fw1(i) = dL(1,i)*((fd1(1,i)/2)+sum(fd1(2:end-1,i))+(fd1(end,i)/2)); 
Fw2(i) = dL(1,i)*((fd2(1,i)/2)+sum(fd2(2:end-1,i))+(fd2(end,i)/2)); 
Fw3(i) = dL(1,i)*((fd3(1,i)/2)+sum(fd3(2:end-1,i))+(fd3(end,i)/2)); 
Fw4(i) = dL(1,i)*((fd4(1,i)/2)+sum(fd4(2:end-1,i))+(fd4(end,i)/2)); 
Fw5(i) = dL(1,i)*((fd5(1,i)/2)+sum(fd5(2:end-1,i))+(fd5(end,i)/2)); 
Fw6(i) = dL(1,i)*((fd6(1,i)/2)+sum(fd6(2:end-1,i))+(fd6(end,i)/2)); 
  
% Distributed Wave Load Fw 
%===================================================================== 
Fwi(:,i) = [e21(:,:,i)*[Fw1(i); Fw2(i)]; Fw3(i); 
e21(:,:,i)*[Fw4(i);... 
            Fw5(i)]; Fw6(i)]'; 
  
Fw(ElemDof(i,:),1) = Fw(ElemDof(i,:),1) + Fwi(:,i);  
end 
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###################################################################### 
% Buoyancy Forces 
###################################################################### 
 
%==== Description===================================================== 
% Calculation of buoyancy forces for each element 
% Input:    Do              Cylinder Diameter   
%           h               Waterdepth 
%           extP            Element extraction points 
%           nCoordUP        Current Coordinates 
%           eTop            Topology 
%           dL              Distance between extraction points 
%           L               Element Length 
%           beta            Angle of each element 
%           rhoW            Water density 
%           g               Gravity acceleration 
%           ElemDof         Dofs of each element 
% 
% Output:   Fb              Buoyancy Force Vector 
 
% Loop over elements 
%=====================================================================             
Fb = zeros(max(max(ElemDof,[],2)),1); 
  
for i=1:length(eTop(:,1));    
 
% Elements and element length 
%===================================================================== 
Elem(:,:,i) = [nCoordUp(eTop(i,1),:) ; nCoordUp(eTop(i,2),:)];     
  
% Unit vectors 
%===================================================================== 
j  = [0 1]'; 
  
e1(i,:) = [cosd(radtodeg(beta(i))) sind(radtodeg(beta(i)))]; 
e2(i,:) = [-sind(radtodeg(beta(i))) cosd(radtodeg(beta(i)))]; 
  
e12(:,:,i) = [e1(i,:); e2(i,:)]; % Transformation from global to local 
e21(:,:,i) = e12(:,:,i)';        % Transformation from local to global 
  
% Distributed excess buoyancy Fbq and Fbp 
%===================================================================== 
% Outer radius  
r(i) = Do(eSec(i))/2; 
  
for jj=1:length(extP(:,1,1)) 
% The cross-sectional top and bottom elevations  
Htj(jj,i) = h(jj,i)-((extP(jj,:,i)'+e2(i,:)'*r(i)))'*j ; 
Hbj(jj,i) = h(jj,i)-((extP(jj,:,i)'-e2(i,:)'*r(i)))'*j ; 
  
% The submerged height  
if Htj(jj,i) >= 0  
Hsj(jj,i) = 2*r(i) ; 
elseif Hbj(jj,i) > 0 && Htj(jj,i) < 0 ; 
Hsj(jj,i) = ((2*r(i))/(Hbj(jj,i)-Htj(jj,i)))*Hbj(jj,i) ; 
else Hbj(jj,i) <= 0 ; 
Hsj(jj,i) = 0 ; 
end 
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% Sectional area at watersurface 
Aj(jj,i) =(r(i)^2*acos((r(i)-Hsj(jj,i))/r(i)))-(r(i)-
Hsj(jj,i))*sqrt(2*r(i)*Hsj(jj,i)-Hsj(jj,i)^2); 
  
% Distrubuted excess buoyancy Fbqi 
Fbqi(jj,i) = Aj(jj,i)*rhoW*g*e2(i,:)*j;   
  
% Distrubuted excess buoyancy Fbpi 
Fbpi(jj,i) = Aj(jj,i)*rhoW*g*e1(i,:)*j;  
   
% Shape functions 
%===================================================================== 
dLcount(:,i) = [0 ; dL(:,i)]; 
x(jj,i) = sum(dLcount(1:jj,i)); 
  
% Shape function bar 
N1(jj,i) =  -(1/L(i))*x(jj,i)+1; 
N4(jj,i) =  (1/L(i))*x(jj,i); 
         
% Shape function beam Bernoulli-Euler 
N2(jj,i) = 1 - (3*x(jj,i)^2)/L(i)^2 + (2*x(jj,i)^3)/L(i)^3; 
N3(jj,i) = x(jj,i) - (2*x(jj,i)^2)/L(i) + (x(jj,i)^3)/L(i)^2; 
N5(jj,i) = (3*x(jj,i)^2)/L(i)^2 - (2*x(jj,i)^3)/L(i)^3; 
N6(jj,i) = (-x(jj,i)^2)/L(i) + (x(jj,i)^3)/L(i)^2; 
  
% Function of the distributed force regarding the shapefunctions 
%===================================================================== 
f1(jj,i) = N1(jj,i)'*Fbpi(jj,i); 
f2(jj,i) = N2(jj,i)'*Fbqi(jj,i); 
f3(jj,i) = N3(jj,i)'*Fbqi(jj,i); 
f4(jj,i) = N4(jj,i)'*Fbpi(jj,i); 
f5(jj,i) = N5(jj,i)'*Fbqi(jj,i); 
f6(jj,i) = N6(jj,i)'*Fbqi(jj,i); 
end 
  
% Numerical integration - trapezoidal rule 
Fb1(i) = dL(1,i)*((f1(1,i)/2)+sum(f1(2:end-1,i))+(f1(end,i)/2)); 
Fb2(i) = dL(1,i)*((f2(1,i)/2)+sum(f2(2:end-1,i))+(f2(end,i)/2)); 
Fb3(i) = dL(1,i)*((f3(1,i)/2)+sum(f3(2:end-1,i))+(f3(end,i)/2)); 
Fb4(i) = dL(1,i)*((f4(1,i)/2)+sum(f4(2:end-1,i))+(f4(end,i)/2)); 
Fb5(i) = dL(1,i)*((f5(1,i)/2)+sum(f5(2:end-1,i))+(f5(end,i)/2)); 
Fb6(i) = dL(1,i)*((f6(1,i)/2)+sum(f6(2:end-1,i))+(f6(end,i)/2)); 
  
% Distributed excess buoyancy Fbq 
Fbqp(:,i) = [e21(:,:,i)*[Fb1(i); Fb2(i)]; Fb3(i); e21(:,:,i)*[Fb4(i); 
Fb5(i)]; Fb6(i)]'; 
 
% Buoyancy force 
%=====================================================================
===== 
Fb(ElemDof(i,:),1) = Fb(ElemDof(i,:),1) + Fbqp(:,i); 
  
end 
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