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Abstract  
This Master Thesis concerns crack propagation and lifetime estimation of a 2D structure 
subjected for given boundary condition. Stress intensity factors and energy release rate due 
to Linear Elastic Fracture Mechanic (LEFM) and crack growth models of Paris, Forman 
and NASGROW is taking into account.  

ANSYS Mechanical APDL is used to programme a code to simulate the trajectory of a 
crack and determine the lifetime due to crack propagation. 

Results from verification of the code indicate good agreement in order to simulate the 
trajectory of a crack, the estimation of lifetime show an error of 42%, if known sources of 
error is included an error of 17% is present.    
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Preface 
This Master Thesis is formulated by a M.Sc. engineer student at Aalborg University Esbjerg, 
as a long-term project, during 9. and 10. semester in the period of 1𝑡𝑡ℎ of September 2014 to 
16𝑡𝑡ℎ of June 2015. The project consist of a main report and an attached DVD.  

The topic of the Master Thesis is fracture mechanics, where the behaviour of linear elastic 
fracture mechanics (LEFM) is taking into account. The general theory of LEFM, criteria and 
models for simulate the crack trajectory due to crack propagation and lifetime estimation due 
to cyclic loading is described.  

The finite element program Mechanical APDL 15.0 (ANSYS classic), called ANSYS in rest of 
the project, is used to programme a APDL code that simulate the crack trajectory and estimate 
the lifetime of a 2D structure subjected for a load case. In order to conduct the APDL code user-
friendly it is implemented in the ANSYS user interface menu GUI, by the user interface design 
language (UIDL).      

In order to verify the APDL code for crack trajectory and lifetime estimation, two external 
experimental results is used for benchmarking.   

Set-up in the project 

Tables and figures is refer by: e.g. Figure 1 and Table 1.  

In case of two figures beside each other, index: (R) = right and (L) = left, is used. 

Equations: e.g. eq.(3.1). 

Reference: e.g. [1] is referred it the bibliography in the end of the project. 

YouTube videos 

Two YouTube Videos have been produced in order to demonstrate the use of the APDL code, 
this is only additional material, and is not necessary for the conception of the project. 

  QR code 
Video name: Crack Propagation and Lifetime Estimation in ANSYS 

Mechanical APDL 1 

 
URL address: https://www.youtube.com/watch?v=6ceGp-Wp6cc 

Video name: Crack Propagation and Lifetime Estimation in ANSYS 
Mechanical APDL 2 

 
URL address: https://www.youtube.com/watch?v=mp_2P2T2KK4 
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1 Introduction  
Through the history a lot of disasters cause by fracture failure of structures have caused many 
injuries and financial loss. Annual cost of facture in U.S.A in 1978 was estimated to $119 billion 
or 4% of the national product, the annual cost could be reduced by $35 billion if current 
technology were applied and could be reduced additional by $28 billion, if further reached was 
implemented [1]. 

During the World War II, the Liberty ships, see Figure 1, was produced with revolutionary 
procedure for fabricating ships quickly by an all-welded hull, where it normally was joined by 
riveted [1].  

 

Figure 1: Liberty ship exposed for fracture 

After some time a lot of the Liberty ships obtained fracture failures, where some of the ships 
broke completely in two. Investigation showed that the ships failures were caused by 
combination of three factors [1]: 

• The welds, due to the poor quality of the welds, contained crack-like flaws. 
• Most of the fractures cause local stress concentrations from the deck at square hatch 

corners.  
• The steel had poor fracture toughness. 

After this fracture failures, the mechanics of fracture become an engineering issue, standards 
and procedure for inspections was conducted. One of the leading researchers in this area was 
Dr. G.R. Irwin after studying the early works of Inglis, Griffith, Westergaard and others 
scientists, he explore some of the todays tools for fracture mechanics. Today Irwin is called one 
of the “fathers” of fracture mechanics [2]. 
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1.1 Scope of project 
The history of the Liberty ships from above is an example of how important the understanding 
and knowledge of fracture failure has become. This Master Thesis is conducted in accordance 
to get an understanding of the phenomenon crack propagation through a structure, and to 
estimate a corresponding lifetime. For this purpose some of the fracture tool conducted of Dr. 
G.R Irwin is taking into account. 

In Figure 2 a Work-Flow Chart of the Master Thesis is showed, the tasks is categorised into 
two groups the main tasks and sub tasks, where the bold tasks is the main tasks.    

 

Figure 2: Work-Flow Chart of the Master Thesis 

The Master Thesis start with general theory regarding the of determning crack behaviour due 
to propagation and lifetime estimation. Numerical solutions is conducted in ANSYS, and a 
process of programming due to obtain generals numerical solutions for crack trajectories and 
lifetime estaimations is accomplished. In order to verify the numerical solutions from ANSYS, 
experimental results is taking into account for benchmarking.   

   

  

   
2 of 84  

 



Numerical Analysis of Crack Propagation and Lifetime Estimation 
   

2 Linear Elastic Fracture Mechanics 
The applications and limitations of linear elastic fracture mechanics (LEFM) is explained, and 
the corresponding relations to classical failure theory is performed. The behaviour of fatigue 
crack growth from the nucleation to the macro perspective of a crack is conducted in order to 
define the state of fracture mechanics.    

2.1 Fatigue Crack Growth  
Crack growth depends on different condition and materials behaviour, the crack growth is 
expressed in three stages, before final failure occur [2], schematic showed in Figure 3.    

 

Figure 3: Different stages of crack fatigue crack growth life 

• Crack-nucleation 
o In most loadings situations, the critical area due to stresses are at the surface, 

where the crack nucleation develop.   
o The crack nucleate along slip lines orientated in a plane of maximum shear stress 

• Micro-crack growth 
o When the crack size reach typically 10 grain diameters it is called micro cracks. 
o The fatigue crack growth occur predominantly in a plane of maximum shear 

stress  
• Macro-crack growth 

o When the micro-crack are present and cycling loading continues, the fatigue 
crack tend to grow in the plane of maximum tensile stress, and become a macro-
crack.  

o In this stage the continuum theory is taking into account.  

Crack growth in the three stages depends on stress levels of the structure, if the stress level is 
high the total fatigue life occur in the micro- and macro-crack stages. Otherwise if the stress 
level is low the fatigue life is present in the nucleation- and micro-crack stages [2].    

In this Master Thesis the solid mechanics conditions is taking into account with corresponding 
continuum theory and LEFM approach, so the focus is at the macro crack growth stages to final 
failure.     
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2.2 Fracture Mechanics 
In general two forms of failure in solids exist, permanent (plastic) deformation and breakage, 
the classical failure theory describe failure of a structure due to the relation between applied 
stress and yield or tensile strength, Figure 4(R)    

For the fracture mechanics three important variables are pronounced, a combination between 
the applied stress, flaw size and the fracture toughness that replace the strength determine 
whether or not the structure leads to failure [3]. Figure 4(L)     

 

Figure 4: (R) Relation of Classical failure theory, (L) Relation of Fracture mechanics 

The classical failure theory assume that no defects exist in the material and for a plate affected 
by an uniform load a corresponding uniform stress variation is introduced, see Figure 5(R). 
During materials manufacturing, processing and service a flaw or crack is introduced and a 
local stress concentration is presented. In Figure 5(L) the plate is affected by a crack that 
produce a stress concentration or singular stress field [3]       

 

Figure 5: (L) Plate with uniform distributed stress, (R) Cracked plate with stress concentrations 

The plate affected by a uniform stress field is described by criteria from e.g. Von Mises, and 
compared with the yield stress in order to see if failure occur. The local stress concentrations 
field in the cracked plate is varying by a singularity at the crack-tip. In order to determine this 
singular stress field the fracture mechanism is taking into account [3]. 
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For the classical failure theory yield criterion is introduced in order to obtain failure behaviour, 
for fracture mechanical a corresponding value is taking into account, to determine when fracture 
occur, this value is the fracture toughness.  

The fracture toughness vs. stress variation is showed in Figure 6, for brittle material with low 
toughness value the stress variation and fracture toughness varies linearly when 𝜎𝜎 < 𝜎𝜎𝑦𝑦 0,8, and 
the linear-elastic fracture mechanism (LEFM) is taking into account. For a ductile material that 
obtain higher toughness value the LEFM approach is not adequate, and the elastic-plastic 
fracture mechanism (EPFM) cover this area. Materials that obtain very high toughness value 
the limit load analysis from classical failure theory must be taking into account, due to the fact 
that high stress level is insensitive to toughness [1].                

 

Figure 6: Effect of fracture toughness on the governing fracture mechanism 

In this master thesis the LEFM approach is taking into account in order to determine the crack 
propagation trajectories, and lifetime determination, and it is assumed that the material obtain 
homogenous and isotopic behaviour. 
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3 Static load Crack-tip Condition 
The condition that is taking place due to crack propagation for a static load relation is described 
in this section. From an energy point of view the theory from Griffith and Irwin is explained, 
from this the variation of stresses due to a crack-tip is described. The J-integral is introduced to 
determine this variation of stresses and is fundamental for the numerical analysis. In order to 
ensure the behaviour of LEFM due to plasticity, corrections is taking into account and the 
circumstance of plane stress and strain is described.       

3.1 Griffith Energy Balance 
During fracture two new surfaces are created and the total energy of the system are either 
decreased or remain constant due to the loads that affects the system. Griffith advance an energy 
balance between the potential energy and work required to form a crack. Where an incremental 
increase in crack area under equilibrium condition are given by [1]: 

Or 

 

Component Description 
𝐸𝐸 Total energy   
𝐸𝐸𝑃𝑃 Potential energy from internal strain and external force  
𝑊𝑊𝑠𝑠 Work required to create two new surfaces 
𝑑𝑑𝑑𝑑 Increase in crack area 

This relation can be showed by a cracked plate, see Figure 7, subjected for an increase in crack 
area 𝑑𝑑𝑑𝑑  due to crack increment 𝑑𝑑𝑑𝑑, and create two new surfaces.   

 

Figure 7: Through crack subjected for increase in crack area 

 𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑊𝑊𝑠𝑠

𝑑𝑑𝑑𝑑
= 0 (3.1) 

 −
𝑑𝑑𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑊𝑊𝑠𝑠

𝑑𝑑𝑑𝑑
 (3.2) 
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The potential energy in terms of strain energy, is given by a solution from Inglis of stress 
distribution: 

The work from surface energy is given by: 

Where 4𝑑𝑑𝑎𝑎 = 2 𝑑𝑑𝑑𝑑.  

Component Description 
𝐸𝐸𝑝𝑝,0 Potential energy of un-cracked plate 
𝐸𝐸 E-modulus  
𝛾𝛾𝑠𝑠 Surface energy 

A schematic plot of the energy variation with corresponding crack length is showed in Figure 
8, where the total energy: 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝑝𝑝𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑠𝑠. 

 

Figure 8: Energy variation with corresponding crack length 

The work from surface energy behave linear and the potential energy is parabolic varying due 
to 𝑑𝑑2 in eq.(3.3). When the potential and surface energy is in equilibrium with a corresponding 
critical crack length 𝑑𝑑𝑐𝑐, where the slope of 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 curve is 0, the crack become unstable and start 
propagating [4].      

 

 

 

 𝐸𝐸𝑝𝑝 = 𝐸𝐸𝑝𝑝,0 −
𝜋𝜋𝜎𝜎2𝑑𝑑2𝑎𝑎

𝐸𝐸
 

 
(3.3) 

 𝑊𝑊𝑠𝑠 = 4𝑑𝑑𝑎𝑎𝛾𝛾𝑠𝑠 (3.4) 
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Similar a corresponding critical stress level is obtained by differentiating eq.(3.3) and eq.(3.4) 
with respect to increase in crack area from eq.(3.2). 

And 

Equating eq.(3.5) and (3.6) solving for critical stress 𝜎𝜎𝑐𝑐: 

The surface energy 𝛾𝛾𝑠𝑠 depends on material behaviour and are typical given for brittle materials, 
when the material become more ductile a factor 𝛾𝛾𝑝𝑝 ,that ensure plastic behaviour, is introduced. 

An generalized expression for any type of energy dissipation is given by: 

Where 𝑤𝑤𝑓𝑓 is the fracture energy that include e.g. plastic behaviour depending on the material 
[1], 𝑤𝑤𝑓𝑓 describe whether or not fracture occur, due to a given value of energy release rate. 

 

 

 

 

  

 

 −
𝑑𝑑𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑

=
𝜋𝜋𝜎𝜎2𝑑𝑑
𝐸𝐸

 (3.5) 

 𝑑𝑑𝑊𝑊𝑠𝑠

𝑑𝑑𝑑𝑑
= 𝛾𝛾𝑠𝑠 (3.6) 

 𝜎𝜎𝑐𝑐 = �2𝛾𝛾𝑠𝑠𝐸𝐸
𝜋𝜋𝑑𝑑

 (3.7) 

 𝜎𝜎𝑐𝑐 = �2𝐸𝐸�𝛾𝛾𝑠𝑠 + 𝛾𝛾𝑝𝑝�
𝜋𝜋𝑑𝑑

 (3.8) 

 𝜎𝜎𝑐𝑐 = �2𝐸𝐸𝑤𝑤𝑓𝑓
𝜋𝜋𝑑𝑑

 (3.9) 

   
8 of 84  

 



Numerical Analysis of Crack Propagation and Lifetime Estimation 
   

3.2 Energy release rate 
The Griffith energy balance was further improve by Irwin that defined the energy release rate. 
This is the rate of change in potential energy due to the crack area, given by: 

Where: 

 

Component Description 
𝑈𝑈 Strain Energy   
𝐹𝐹 Work by external forces 

 

The energy release rate is compared to the fracture energy 𝑤𝑤𝑓𝑓 required to generate two new 
surfaces, and a critical value of energy release rate become: 

And crack propagation occur when 𝐺𝐺 ≥ 𝐺𝐺𝑐𝑐, this behaviour is described by the resistance curve 
[1].  

3.3 Resistance curve 
From the fracture toughness values of a material see section 5, a resistance curve of the material 
is performed due to crack propagation called, R-curve. A corresponding curve to the R-curve 
is the driving force curve that is the change in energy release rate due to crack propagation. 
When the driving force curve exceeds the value of the R-curve fracture occur, and is given by 
followed expression: 

The R-curve describe the material behaviour due to crack propagation. The R-curve exhibit 
different shapes for different material e.g. for ideal brittle material the R-curve is constant, and 
for a ductile material usually results in a rising R-curve. In Figure 9 two R-curves with four 
corresponding driving force curves (𝜎𝜎1 − 𝜎𝜎4) is showed [1].  

 𝐺𝐺 =  −
𝑑𝑑𝐸𝐸𝑝𝑝
𝑑𝑑𝑑𝑑

 
 

(3.10) 

 𝐸𝐸𝑝𝑝 = 𝑈𝑈 − 𝐹𝐹 (3.11) 

 𝐺𝐺𝑐𝑐 =
𝑊𝑊𝑠𝑠

𝑑𝑑𝑑𝑑
= 2𝑤𝑤𝑓𝑓 

 
(3.12) 

 
𝑑𝑑𝐺𝐺
𝑑𝑑𝑑𝑑

≥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
 

(3.13) 
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Figure 9: Two R-curve with corresponding four driving force curve 1-4 

The first R-curve 𝑑𝑑1 is a flat curve with a critical energy release value 𝐺𝐺𝑐𝑐1if the driving force 
curve exceeds this value the crack become unstable, e.g. 𝜎𝜎1 is stable, no crack propagation occur 
and 𝜎𝜎2 is unstable and crack propagation occur. The second R-curve 𝑑𝑑2 is a rising curve, where 
𝜎𝜎3 is stable and 𝜎𝜎4 is unstable but opposite the constant curve the crack is allowed to propagate 
to a critical value 𝑑𝑑𝑐𝑐2 with a corresponding critical energy release rate 𝐺𝐺𝑐𝑐2 .        

The energy release rate distinguish between two load cases, constant load and constant 
displacement that is of major important due to the variation of the resistance curve [1].  
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Constant load vs. constant displacement 

Consider two double cantilever beams (DCB) specimen that is subjected to constant load and 
constant displacement respectively see Figure 10 [4]. The specimen are affected by a crack 
increment 𝑑𝑑𝑑𝑑. 

 

Figure 10: Two DCB specimen under constant load (R), and constant displacement (L) affected by a crack increment da 

The potential energy due to strain energy 𝑈𝑈 and work from external force 𝐹𝐹 the crack increment 
form the two load-cases are given by the two load-displacement diagrams in Figure 11.  
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Figure 11: Load-displacement curves for a crack increment with constant load (R), and constant displacement (L) 

For the specimen with constant load an increase in the displacement occur, and from the 
constant displacement a decrease in load occur. From eq.(3.11) the potential energy of the two 
systems become: 

The energy release rate from eq.(3.10), introduction of compliance 𝐶𝐶 = ∆ 𝑃𝑃⁄   and the area 𝑑𝑑 =
𝑎𝑎 𝑑𝑑𝑑𝑑, the energy release rate for constant load and displacement become: 

Modifications of the expressions from eq.(3.15)  by compliance: 𝑑𝑑∆= 𝑃𝑃 𝑑𝑑𝐶𝐶 and 𝑑𝑑𝑃𝑃 = −𝑃𝑃 𝑑𝑑𝑑𝑑
𝑑𝑑

, 
shows that: 

From the results above it is given that the energy release rate for constant load and constant 
displacement is the same, but with different variation of the resistance curve [4]. 

 

Constant load Constant displacement 

𝑑𝑑𝑈𝑈 =
1
2
𝑃𝑃 𝑑𝑑Δ 𝑑𝑑𝑈𝑈 =

1
2
Δ𝑑𝑑𝑃𝑃  

𝑑𝑑𝐹𝐹 = 𝑃𝑃 𝑑𝑑Δ 𝑑𝑑𝐹𝐹 = 0 

𝑑𝑑𝐸𝐸𝑃𝑃 = −
1
2
𝑃𝑃 𝑑𝑑Δ 𝑑𝑑𝐸𝐸𝑃𝑃 =

1
2
Δ 𝑑𝑑𝑃𝑃 

 

(3.14) 

 

Constant load Constant displacement 

𝐺𝐺 =
1
𝑎𝑎
𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑

=
𝑃𝑃

2𝑎𝑎
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

 𝐺𝐺 = −
1
𝑎𝑎
𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑

= −
Δ

2𝑎𝑎
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

 
 

 

(3.15) 

 𝐺𝐺 =
𝑃𝑃2

2𝑎𝑎
𝑑𝑑𝐶𝐶
𝑑𝑑𝑑𝑑

 
 

(3.16) 
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Resistance curves for constant load vs. constant displacement 

It is seen from eq.(3.16) that the energy release rate for constant load and constant displacement 
is the same. But when looking at driving force in eq.(3.16) and compare the expressions in 
eq.(3.15) the constant displacement gives a negative value and the constant load is positive. A 
schematic graph for the driving force for constant load and displacement [1].       

 

Figure 12: Schematic graph of R-curve with corresponding driving force curves for constant load and displacement 

It is seen that the driving force curve for constant load is increasing and the curve for constant 
displacement are decreasing due to the operational sign in eq.(3.15). That is the displacement 
must be increased for further crack extension.  

When the R-curve is determined experimentally the specimen are usually tested in constant 
displacement configuration close as possible. In real structure the load condition is somewhere 
between constant load and constant displacement [1] 
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3.4 Stress analysis of cracks  
From Griffith’s theory of energy balance, Irwin showed a relationship between the energy 
release rate and stress variation, given by the stress intensity factor 𝐾𝐾. 

 

Component Description 
𝐸𝐸′ = 𝐸𝐸 For plane stress   

𝐸𝐸′ =
𝐸𝐸

1 − 𝑣𝑣2
 For plane strain 

 

The subscript I denote the mode of loading a crack can experience in Figure 13 the three mode 
showed.  

 

Figure 13: Three mode of loading with corresponding coordinate system [5] 

Mode I: Load is applied normal to the crack plane called opening mode.   

Mode II: In-plane shear load, tends to slide one crack face with respect to the other. 

Mode III: Out-of-plane mode, shear load. 

 

 

 

 

 

 

 𝐺𝐺 =
𝐾𝐾𝐼𝐼2

𝐸𝐸′
 (3.17) 
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The stress distribution around a crack-tip is schematic sketch in Figure 14(R). Two stress 
component are assumed a singular and a non-singular stress component. Where the singular 
part is the stresses in the vicinity of the crack-tip and the non-singular part is the stresses away 
from the crack-tip [1].  

Griffith found a relationship between the variations of the singular stresses and the distance 
from the crack-tip with 1 √𝑟𝑟⁄  singularity, when 𝑟𝑟 → 0 the stress is going to be infinity. The 
singular stress fields was described by Irwin from modification of stress functions from e.g. 
Westergaard and Williams [1]. Irwin developed the stress intensity factor 𝐾𝐾 that describe the 
crack-tip conditions relative to stress, strain and displacement near the crack tip.  The stress 
intensity factor for each loading mode with subscript I-III are present. The symbol 𝐾𝐾 is in 
honour of Irwin’s assistance Kies.                          

   
 

Figure 14: (R) Stress variation around crack tip, (L) Stress components in polar coordinates 

From Figure 14(L) the coordinate system ahead of the crack-tip and the polar coordinate are 
defined. The singular stress fields are given as functions of the three modes of loading from the 
polar coordinate system 𝑟𝑟,𝜃𝜃 [1].  

In Figure 15 the singular stress field of the crack-tip from eq.(3.18) is plotted in a polar 
coordinate system as function of 𝜃𝜃, for mode I, where 𝐾𝐾𝐼𝐼𝐼𝐼 = 0. Similar plots of the three stress 
components is performed in ANSYS and is schematic showed. The variation of stresses around 
the crack-tip look similar for the normal stresses, where the schematic plots of shear stresses is 
not totally symmetric, because a little amount of mode II affect the analysis.  

  

𝜎𝜎𝑥𝑥𝑥𝑥 =
𝐾𝐾𝐼𝐼
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sin �
𝜃𝜃
2�
�2 + cos �
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𝜃𝜃
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𝜃𝜃
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3𝜃𝜃
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cos �
𝜃𝜃
2�

cos �
3𝜃𝜃
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Figure 15: Variation of stress components from eq.(3.18) and mode I loading from ANSYS 
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The stress intensity factor for mode I, for a through crack in an infinity plate see, Figure 16, is 
given by: 

This is the most simply solution of stress intensity factors, and only depend at the applied stress 
and crack length [1]. 

 

Figure 16: Through crack 

A lot of closed forms solutions of the stress intensity factors is obtained, for all three mode of 
loading, a general solution is given in eq.(3.20).       

 

Component Description 
𝜎𝜎 Characteristic stress  

𝑓𝑓(𝑊𝑊,𝑑𝑑) Function of crack length and 
dimension of geometry    

 

The variation in dimension of geometry is seen from a single edge crack specimen subjected 
for mode I and mode II loading, see Figure 17, where the load is applied normal to the crack 
front and as a shear load. 

 𝐾𝐾𝐼𝐼 = 𝜎𝜎√𝜋𝜋𝑑𝑑 
 

(3.19) 

 𝐾𝐾(𝐼𝐼,𝐼𝐼𝐼𝐼,𝐼𝐼𝐼𝐼𝐼𝐼) =  𝜎𝜎√𝜋𝜋𝑑𝑑 𝑓𝑓(𝑊𝑊,𝑑𝑑) (3.20) 
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Figure 17: Single edge crack for mode I and II 

Analytical solutions for the stress intensity factor for mode I and II is given by [6]: 

 

From the equations above it is seen that the stresses relation between crack length 𝑑𝑑 and width 
of specimen 𝑊𝑊, contribute significant to the value of the stress intensity factor, especially for 
mode I as seen in Figure 18.   

 

Figure 18: Stress intensity factor for mode I and II with corresponding ration of a/W 

 

𝐾𝐾𝐼𝐼 =
𝑃𝑃
𝑎𝑎𝑊𝑊√𝜋𝜋𝑑𝑑 1,12 − 0,231 �

𝑑𝑑
𝑊𝑊
� + 10,55 �

𝑑𝑑
𝑊𝑊
�
2
− 21,72 �

𝑑𝑑
𝑊𝑊
�
3

+ 30,39 �
𝑑𝑑
𝑊𝑊
�
4
 (3.21) 

𝐾𝐾𝐼𝐼𝐼𝐼 =
𝑃𝑃
𝑎𝑎𝑊𝑊√𝜋𝜋𝑑𝑑 4,886 �

𝑑𝑑
𝑊𝑊� − 11,383 �

𝑑𝑑
𝑊𝑊�

2
+ 28,198 �

𝑑𝑑
𝑊𝑊�

3
− 38,563 �

𝑑𝑑
𝑊𝑊�

4
+ 20,555 �

𝑑𝑑
𝑊𝑊�

5
 (3.22) 
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3.5 J Integral 
In section 3.2. the energy release rate is described, J. Rice obtained a path independent contour 
integral, the J-integral, from his first-name Jim, which describe the energy release rate in LEFM, 
and similar eq.(3.10) the J-integral are given by [1]: 

The J-integral are also cable to describe the elastic-plastic (EPFM) behaviour which is not the 
case for energy release rate. 

The J-integral can be described by a path around a crack tip given by followed expression see 
Figure 19. 

Where: 

𝑤𝑤 = � 𝜎𝜎𝑖𝑖𝑖𝑖  𝑑𝑑𝜀𝜀𝑖𝑖𝑖𝑖
𝜀𝜀𝑖𝑖𝑖𝑖

0
 

𝑇𝑇𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 

 

Component Description 
𝑤𝑤 Strain energy density   
𝑇𝑇𝑖𝑖 Traction vector  
𝑛𝑛𝑖𝑖 Unit vector normal to Γ 
𝑢𝑢𝑖𝑖 Displacement vector 
𝑑𝑑𝑑𝑑 Length increment along the contour Γ  
Γ Path around crack tip 

𝜎𝜎𝑖𝑖𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑖𝑖 Stress and strain tensor 
   

 

Figure 19: Contour around the crack-tip  

 

  

 𝐽𝐽 =  𝐺𝐺 
 (3.23) 

 J =� �𝑤𝑤 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑�
Γ

 

 
(3.24) 
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Example J-integral 

Determination of the energy release rate by J-integral is performed for a double cantilever beam 
[4] see Figure 20, where the dotted line from 𝑎𝑎 to 𝐺𝐺 is the contour Γ of the J-integral from 
eq.(3.24).  

 

Figure 20: J-integral for a cantilever beam 

Followed approximations is taking into account. 

• The strain energy of the system is negligible.  
• 𝐶𝐶𝐶𝐶,𝐶𝐶𝐸𝐸 and 𝐸𝐸𝐹𝐹 is free surface, no traction is subject. 
• P is replaced by a shear load, become traction load at 𝑎𝑎𝐶𝐶 and 𝐹𝐹𝐺𝐺. 
• No displacement or traction in 𝜕𝜕 direction. 

Displacement and traction in 𝑑𝑑 direction for 𝑎𝑎𝐶𝐶 and 𝐹𝐹𝐺𝐺, the J-integral become: 

The displacement in 𝑑𝑑 direction is taking as the slope from a cantilever beam with a point mass 
in the end, where 𝑙𝑙 is replaced by 𝑑𝑑, moment of inertia is 𝐼𝐼 = 𝑎𝑎ℎ3 12⁄ . 

The traction in 𝑑𝑑 direction for 𝑎𝑎𝐶𝐶 and 𝐹𝐹𝐺𝐺 is given by 𝑇𝑇𝑦𝑦 = 𝑃𝑃 𝑎𝑎⁄ , and the J-integral become: 

 

 

 𝐽𝐽 = −2� �𝑇𝑇𝑦𝑦
𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝜕𝜕

�𝑑𝑑𝑑𝑑
ℎ

0
 

 
(3.25) 

 𝜃𝜃 =
1
2
𝑃𝑃𝑑𝑑2

𝐸𝐸𝐼𝐼
⟹ 𝑢𝑢𝑦𝑦 =

6𝑃𝑃𝑑𝑑2

𝐸𝐸𝑎𝑎ℎ3
  

 
(3.26) 

 𝐽𝐽 =
12𝑃𝑃2𝑑𝑑2

𝑎𝑎2𝐸𝐸ℎ3
 

 
(3.27) 
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The relation between J-integral, energy release rate and stress intensity factor, with a E-modulus 
of  210 𝐺𝐺𝑃𝑃𝑑𝑑, become: 

Analytical solution for a double cantilever beam [3]: 

It is seem that the solution of the J-integral and analytical solution is within an error of 5%. 

Modification of the J-integral have been used in the numerical evaluation of the stress intensity 
factor, see section 8. 

  

 
𝐽𝐽 = 𝐺𝐺 = 𝐾𝐾2

𝐸𝐸
 for plane stress 

⟹ 𝐽𝐽 = √𝐾𝐾𝐸𝐸 = 102 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚𝑚𝑚  
 

(3.28) 

 
𝑃𝑃

𝑎𝑎√ℎ
 2√3 �

𝑑𝑑
ℎ
� + 0.64 = 107 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚𝑚𝑚 

 
(3.29) 
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3.6 Crack-tip plasticity 
As described in section 3.4, the singular stress variation for LEFM is given by eq.(3.18), and 
the stress at the crack tip is infinity. In real material behaviour the stress is finite and a plastic 
deformation will occur at the crack tip and the stress intensity factor will obtain a new value. It 
is possible to maintain LEFM behaviour if some correction is made and the plastic deformation 
is small compared to crack length and the geometry of the system. 

Two approach has been provided due to this correction of the stress intensity factor, the first 
one is obtained by Irwin that is schematic sketch in Figure 21(R). Where elastic stress variation  
for a crack is showed [1].  

 

 

Figure 21: (R) Irwin approach to obtain a effective crack length, (L) Strip-yield model with compressive yield stress at the 
plastic zone 

Irwin showed that the elastic stress component must be redistribute in order to satisfy 
equilibrium due to the plastic stress component, he found that the radius 𝑟𝑟𝑦𝑦 of the plastic zone 
𝑟𝑟𝑝𝑝 is determined from yield stress: 

To describe the stress variation from the stress intensity factor an effective crack tip length must 
been taking into account:  

From an iterative solution an effective stress intensity factor is determined, here a closed form 
solution for the though crack is given by: 

 𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑 =
𝐾𝐾𝐼𝐼

�2𝜋𝜋𝑟𝑟𝑦𝑦
⇒ 𝑟𝑟𝑦𝑦 =

1
2𝜋𝜋

�
𝐾𝐾𝐼𝐼

𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑
�
2

⇒ 𝑟𝑟𝑝𝑝 = 2𝑟𝑟𝑦𝑦 

 
(3.30) 

 𝑑𝑑𝑦𝑦𝑓𝑓𝑓𝑓 = 𝑑𝑑 + 𝑟𝑟𝑦𝑦 
 (3.31) 
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Dugdale and Barenblatt obtained the Strip-yield model showed in Figure 21(L). Where the 
plastic zone with a length of 2𝜌𝜌, for a crack in compression with a load corresponding to the 
yield stress. From this a stress intensity factor for closure stress is obtained, and a length of the 
plastic zone is given with a size that almost is the same obtained by Irwin from eq.(3.30).   

 

Burekin and Stone found that an effective crack length 𝑑𝑑𝑦𝑦𝑓𝑓𝑓𝑓 in the area between 𝑑𝑑 − (𝑑𝑑 + 𝜌𝜌) and 
determined an expression for the effective stress intensity factor. A closed form solution for the 
through crack is given by: 

Variation of 𝐾𝐾𝑦𝑦𝑓𝑓𝑓𝑓 of Irwin and the strip-yield correction model in eq.(3.32) and eq.(3.34) is 
compared with the solution for a through crack from LEFM in eq.(3.19) with respect to the 
normalized stress and nondimensionalized 𝐾𝐾𝑦𝑦𝑓𝑓𝑓𝑓, [1] see Figure 22.   

 

Figure 22: Comparison of plastic zone corrections for a through crack 

 
𝐾𝐾𝑦𝑦𝑓𝑓𝑓𝑓 =

𝜎𝜎𝑦𝑦𝑦𝑦√𝜋𝜋𝑑𝑑

�1 − 1
2 �

𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑

�
2
 

 

(3.32) 

 𝜌𝜌 =
𝜋𝜋
8
�

𝐾𝐾𝐼𝐼
𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑
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𝐾𝐾𝐼𝐼
𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑
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2

� (3.33) 

 𝐾𝐾𝑦𝑦𝑓𝑓𝑓𝑓 = 𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑√𝜋𝜋𝑑𝑑 �
8
𝜋𝜋2

ln sec�
𝜋𝜋𝜎𝜎

2𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑
��

1
2
 

 

(3.34) 
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The 𝐾𝐾𝑦𝑦𝑓𝑓𝑓𝑓 of Irwin and strip-yield model deviate from the LEFM solution at stresses greater than 
0,5 𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑, the two correction models agree with each other up to a value of approximated 
0,85 𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑, where the strip-yield model become infinity. 

The LEFM approach is ensured if the plastic zone is small compared to the dimension of the 
geometry. Restriction due to crack size and stress variation have been suggested in order to 
ensure the LEFM approach [2]. 

Monotonic loading 
 

Cyclic loading Stresses 

𝑟𝑟𝑦𝑦 ≤
𝑑𝑑
8

 𝑟𝑟𝑦𝑦 ≤
𝑑𝑑
4

 𝜎𝜎𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 0,8 ∙ 𝜎𝜎𝑦𝑦 

 

The restrictions due to monotonic- and cyclic loading and correction from Irwin eq.(3.30) is 
taking into account for the analysis of trajectory and lifetime estimation in section 10. The is    

 

3.7 Plane stress vs. plane strain 
The definitions of plane stress and plane strain is given by: 

In Figure 23(R) a 3D edge crack are showed with two coordinate systems where subscribes 𝑖𝑖 
and 𝑑𝑑 denotes the interior and the surface of the crack. When the crack are subjected to a load 
the material around the crack tip in the interior region tries to contract in the x and z directions, 
but is prevented from doing so by the surrounding material, the Poisson effect. That leads to 
very high triaxial stresses and a stage of plane strain is acting in this region. Near the surface 
the triaxial stresses are lower but only at the surface the stage of plane stress exists [1].  

 

 
𝜎𝜎𝑧𝑧𝑧𝑧 = 𝜎𝜎𝑥𝑥𝑧𝑧 = 𝜎𝜎𝑦𝑦𝑧𝑧 = 0 ⇒     plane stress 

𝜀𝜀𝑧𝑧𝑧𝑧 = 𝜀𝜀𝑥𝑥𝑧𝑧 = 𝜀𝜀𝑦𝑦𝑧𝑧 = 0 ⇒        plane strain 
 

(3.35) 
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Figure 23: (R) 3D edge crack with interior and a surface coordinate system, (L) Stress variation along the z-axes in the 3D 
edge crack 

The level of triaxial stresses is schematic plotted in Figure 23(L) with the corresponding normal 
stress in the z directions. It is seen that the level of triaxial stresses decrease due to 𝜎𝜎𝑧𝑧𝑧𝑧 near the 
surface.  

To illustrate the variation between plane strain and plan stress variation due to the Von Mises 
yield criteria. From eq.(3.18) stress variation of a crack-tip, setting 𝜃𝜃 = 0 gives followed results 
for x, y and z stress components [1]: 

𝜎𝜎𝑥𝑥𝑥𝑥 =
𝐾𝐾𝐼𝐼

√2𝜋𝜋𝑟𝑟
 

 

𝜎𝜎𝑦𝑦𝑦𝑦 =
𝐾𝐾𝐼𝐼

√2𝜋𝜋𝑟𝑟
 

 

𝜎𝜎𝑧𝑧𝑧𝑧 = 0 
 For plan stress 

  𝜎𝜎𝑧𝑧𝑧𝑧 =
2𝑣𝑣𝐾𝐾𝐼𝐼
√2𝜋𝜋𝑟𝑟

 

 
For plan strain 

The Von Mises yield criteria and corresponding different in 𝜎𝜎𝑦𝑦𝑦𝑦 are given by: 

It is seen there exist a major different for plane stress and plane strain condition and it is 
important to distinguish between this two stages when talking fracture mechanics. Followed 
condition exist for plane stress and strain: 

𝐸𝐸′ = 𝐸𝐸 For plane stress   

𝐸𝐸′ =
𝐸𝐸

1 − 𝑣𝑣2
 For plane strain 

 

 

𝜎𝜎𝑉𝑉𝑡𝑡𝑉𝑉 𝑀𝑀𝑖𝑖𝑠𝑠𝑦𝑦𝑠𝑠 =
1
√2

��𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜎𝜎𝑦𝑦𝑦𝑦�
2 + (𝜎𝜎𝑥𝑥𝑥𝑥 − 𝜎𝜎𝑧𝑧𝑧𝑧)2 + �𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑧𝑧�

2�
1
2 

⟹ 𝜎𝜎𝑦𝑦𝑦𝑦(at yield)= �
𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑      (Plane stress)
2,5𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑 (Plane strain) 

(3.36) 
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4   Dynamics load Crack-Tip Condition 
If a structure is affected of rapid loading e.g. from an impact with a second structure or the 
material obtain high brittle behaviour, the scenario of “rapid crack propagation” occur. From 
section 3.1 the Griffith balance of energy for a propagating crack is performed for a static load- 
case where the potential energy introduced. If “rapid crack propagation” occur the velocity 
become essential and the kinetic energy also is taking into account. 

Energy release rate from form eq.(3.1) is modified to a dynamic energy release rate to include 
the kinetic energy by followed [1]: 

Potential- and kinetic energy is given by: 

With followed parameters: 

The fracture toughness for the energy release rate is equal to the fracture energy 𝑊𝑊𝑓𝑓, due to two 
surfaces, the static- and dynamic load-case is given by [1]: 

  
It is seen that the dynamics fracture toughness is less than the static value. This behaviour occur 
since less energy is needed to maintain a propagating crack, than a stationary crack. 

Relation between the energy release rate and the stress intensity factor for a static load-case is 
given by 𝐺𝐺 =  𝐾𝐾𝐼𝐼2/𝐸𝐸′, from this a dynamic stress intensity factor is obtained [1]: 

𝐾𝐾(0) representing te stress intensity factor for a static load-case, and 𝐾𝐾(𝑉𝑉) is a parameter 
ranging from [0 − 1], depended of the crack velocity, given by: 

ℎ is a function of longitudinal- and transverse waves velocity, and 𝑐𝑐𝑟𝑟 is the Rayleigh waves 
velocity. 

 𝐺𝐺(𝑡𝑡) =
𝑑𝑑𝐹𝐹
𝑑𝑑𝑑𝑑

−
𝑑𝑑𝑈𝑈
𝑑𝑑𝑑𝑑

−
𝑑𝑑𝐸𝐸𝑘𝑘
𝑑𝑑𝑑𝑑

 
 

(4.1) 

 
𝐸𝐸𝑃𝑃 = 𝑈𝑈 − 𝐹𝐹 

 𝐸𝐸𝐾𝐾 =
1
2
𝑚𝑚𝑉𝑉2 

 
 

(4.2) 

 𝐸𝐸𝑃𝑃 = 𝑓𝑓(𝜎𝜎,𝐸𝐸, 𝑑𝑑) 𝐸𝐸𝐾𝐾 = 𝑓𝑓(𝜎𝜎,𝐸𝐸,𝑑𝑑,𝑚𝑚,𝑉𝑉) (4.3) 

 𝐺𝐺𝑐𝑐,𝑠𝑠𝑡𝑡𝑚𝑚. = 𝐸𝐸𝑝𝑝 = 2𝑊𝑊𝑓𝑓 𝐺𝐺(𝑡𝑡)𝑐𝑐,𝑑𝑑𝑦𝑦𝑉𝑉. =
1
2
𝑑𝑑
𝑑𝑑𝑑𝑑

�𝐸𝐸𝑝𝑝 − 𝐸𝐸𝑘𝑘� = 2𝑊𝑊𝑓𝑓 (4.4) 

 𝐾𝐾(𝑡𝑡)𝐼𝐼 = 𝐾𝐾(𝑉𝑉) 𝐾𝐾(0) 
 (4.5) 

 𝐾𝐾(𝑉𝑉) ≈ �1 −
𝑉𝑉
𝑐𝑐𝑟𝑟
�√1 − ℎ 𝑉𝑉 

 
(4.6) 
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The dynamic stress intensity factor in eq.(4.5) is valid as long as the length of crack propagation 
(𝑑𝑑 − 𝑑𝑑0) is small compared to the specimen dimension, because the reflecting stress waves will 
not had time to reach the crack-tip. Otherwise the reflecting stress waves can have a significant 
effect on the local crack-tip fields [1].  

Rayleigh waves velocity 

Mechanical waves are waves which propagate trough a material at a wave speed which depends 
on the elastic and inertial properties of the material. There are two basic types of waves, 
longitudinal and transverse. The longitudinal travel have the fastest velocity, the transverse 
waves travel with a slower velocity. The Rayleigh waves travel through the material with both 
a longitudinal- and transverse direction, Rayleigh waves travel with slower velocity than 
transverse wave [7]. 

The case of dynamic crack propagation take place from “rapid loading” and the velocity is 
taking into account, this phenomenon occur due to crack branching. 

4.1 Crack branching 
In sections 3, it have been found that when a crack propagate a given amount of energy, the 
crack start propagating, due to dissipating the energy around the crack-tip. Recall the Griffith 
energy criterion and stress intensity factor from section 3.1 and 3.4, 𝐺𝐺 =  𝐾𝐾𝑖𝑖2/𝐸𝐸′ for plane stress.  

From experiments [8] in high brittle materials such as Plexiglas (PMMA) or Soda-Lime glass, 
it have been showed that at a critical velocity: 𝑉𝑉𝑐𝑐 the system chose to develop a new mode of 
dissipation, it diverts this energy not only to a single crack propagation, but to the formation of 
additional new cracks, called branches, typical two new cracks symmetric around the main 
crack. 

This phenomenon is showed in Figure 24, where four different specimen of PMMA is subjected 
for only tensile displacement to ensure pure mode I loading, with different crack velocities. The 
critical crack velocity is 𝑉𝑉𝑐𝑐 = 330 𝑚𝑚 𝑑𝑑⁄  or 0,39 𝐶𝐶𝑟𝑟, where 𝐶𝐶𝑟𝑟 is the Rayleigh wave speed.      

   
27 of 84 
 



 Aalborg University Esbjerg 
  

 

Figure 24: Experiment of crack branching in PMMA [8] 

When the crack velocity increase the branching effect increase, generally the branching cracks 
do not extend throughout the entire thickness of the specimen, they only affects the surface area 
of the specimen. The branching length is depended of the velocity in the main crack as seen in 
Figure 24, where the length of the branching increase with increasing crack velocity. 

Velocity of the main crack is changing during the process of branching due to loss of energy 
when a branching crack propagating. The branching crack stop propagating due to loss of 
energy to the main crack, and the main crack increases in velocity, see Figure 25.     

 

Figure 25: Varying Main crack velocity due to branching 

The phenomenon of crack branching is included for structure that is exposed for dynamic 
condition, where “rapid crack propagation” or high brittle behaviour is obtained. In this Master 
Thesis the dynamic condition is not taking into account, due to the fact that the loading 
condition for verification, see section 10, is assumed to be static or quasi-static.    
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5 Fracture Toughness 
The fracture toughness is a property of the material that describe the resistance due to crack 
fracture or failure. The fracture toughness of a material is dependent on temperature, corrosive 
environment also the stress variation and crack length influence the fracture toughness [1].  

Stress intensity factor from eq.(3.19) for mode I, is substituted with the fracture toughness 𝐾𝐾𝐼𝐼𝑐𝑐, 
the influence of crack length and stress variation is seen: 

From the expressions above it is seen that the crack length influence the fracture toughness 
more than the stress variation.  

The fracture toughness value is estimated from test results that is described in different 
standards. The most common one is the standard from American Society for Testing and 
Materials (ASTM), where the procedure for testing of fracture toughness and resistance curves 
is described. The fracture toughness value is a single value, where the resistance curve is various 
values of the fracture toughness. 

Measurement of fracture toughness for mode I from ASTM E399 

The principle of evaluating the fracture toughness 𝐾𝐾𝐼𝐼𝑑𝑑 , for mode I, according to ASTM E399 
standard is given below. Different specimen configuration are permitted in evaluation of 
𝐾𝐾𝐼𝐼𝑐𝑐 , here a compact specimen in evaluated see Figure 26. Plane strain and LEFM is assumed, 
that the plastic zone must be small compared to the specimen dimension and constant 
displacement is taking into account [1].  

Requirements for the length of initial crack lengths: 0,45 ≤ 𝑚𝑚0
𝑊𝑊
≤ 0,55.  

 

Figure 26: Compact specimen for evaluation of fracture toughness 

 𝐾𝐾𝐼𝐼𝑐𝑐 = 𝜎𝜎√𝜋𝜋𝑑𝑑𝑓𝑓(𝑊𝑊, 𝑑𝑑) ⇒ 𝜎𝜎 = 𝐾𝐾𝐼𝐼𝐼𝐼
√𝜋𝜋𝑚𝑚

𝑓𝑓(𝑊𝑊, 𝑑𝑑) ⇒ 𝑑𝑑 = 𝐾𝐾𝐼𝐼𝐼𝐼
2

2𝜋𝜋𝜋𝜋
𝑓𝑓(𝑊𝑊,𝑑𝑑) 

 
(5.1) 
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Testing of the specimen is conducted by applying a load 𝑃𝑃, the load is increased with a speed 
that ensure quasi-static condition, finally the specimen reach fracture and is broken. During the 
test measurements of the load 𝑃𝑃 and displacement of the crack mound opening displacement 
(CMOD) ∆ is conducted. I order to ensure the right value of the load to determine the fracture 
toughness, a corresponding load 𝑃𝑃𝑄𝑄 is used. In Figure 27 three different behaviour of a 𝑃𝑃 − ∆ 
diagram is showed. 

 

Figure 27: Different behaviour of 𝑃𝑃 − ∆ diagram 

Component Description 
𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥 Maximum measured load from test   
𝑃𝑃𝑄𝑄 The corresponding load for determining 𝐾𝐾𝐼𝐼𝑑𝑑 
𝑚𝑚 Initial elastic loading slope  
𝑚𝑚5% 95% slope of 𝑚𝑚-slope  
𝑃𝑃5% Load where 𝑚𝑚5% intersect with 𝑃𝑃 − ∆  curve  

 

Description of the three 𝑃𝑃 − ∆  curve [1]: 

1. Smooth in elastic region, and it deviates slightly when reach nonlinearity 
caused by plasticity. 

2. Unstable crack growth (e.g. flaws) occurs before deviates from linearity by 
5%. 

3. Fails completely before achieving 5% nonlinearity. 

When the value of 𝑃𝑃𝑄𝑄 is estimated a corresponding stress intensity factor is obtained with a 
function of specimen dimensions: 

𝐾𝐾𝑄𝑄 =
𝑃𝑃𝑄𝑄

𝑎𝑎√𝑊𝑊
 𝑓𝑓(𝑑𝑑,𝑊𝑊) 

In order to valid 𝐾𝐾𝑄𝑄 followed condition must be satisfied: 

𝑎𝑎,𝑑𝑑 ≥ 2,5�
𝐾𝐾𝑄𝑄
𝜎𝜎𝑦𝑦
�
2
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𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥 ≤ 1,10 𝑃𝑃𝑄𝑄 

If the above conditions is satisfied the 𝐾𝐾𝑄𝑄 = 𝐾𝐾𝐼𝐼𝑑𝑑 

5.1 Mixed-mode fracture toughness 
Fracture toughness for mode I is described in the section above, where the mode I loading is 
taking into account. Is many cases a structure is affected by more than mode I loading, where 
the mode II loading also play an essential role. Then the fracture toughness must consider mode 
I and II, for the mixed-mode fracture toughness.  

The relations between the mixed-mode toughness is schematic showed in Figure 28,  a field 
below the toughness value of mode I and II define the zone where no fracture occur.          

 

Figure 28: Illustrations of mix-mode fracture toughness 

Fracture toughness for mix-mode is determined from test results with different ratio of mode I 
and II, a corresponding fit of the test results define the field where no fracture occur. 

Measurement of fracture toughness for mix-mode from ASTMD6671 

Determination of the mix-mode fracture toughness from test results, is performed by the ASTM 
D6671 standard, where the main principle is outlined here.   

The standard is used for composite material e.g. unidirectional carbon fiber tape laminates and 
glass-fiber, which contain brittle behavior. Specimen used for testing is the double cantilever 
beam (DCB) which is subjected for opening mode and shear mode by bending, by use of mixed-
mode bending apparatus schematics showed in Figure 29.     

The apparatus contain a Lever which is subjected to a load 𝑃𝑃 that produce bend and opening of 
the specimen that is fixed to a hinge at both size to ensure a continuous opening with no bending. 
The position of load 𝑃𝑃 is varying by the length 𝑐𝑐 for different test results in order to ensure 
varying ratio of the mode I and II. A large value of 𝑐𝑐 produce a large opening (mode I) and 
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small bending (mode II) and vice versa. Displacement ∆ of the crack is a mixture of the bending 
and opening. The apparatus operate in constant displacement mode.    

       

 

Figure 29: Mixed-mode Bending apparatus with DCB specimen 

From each test a load-displacement curve is performed similar as in Figure 27, where a load 𝑃𝑃𝑄𝑄 
and slope 𝑚𝑚 is determined. 

The fracture toughness is determined from the energy release rate, where the relation to stress 
intensity factor is given by: 𝐺𝐺 = 𝐾𝐾𝑖𝑖2 𝐸𝐸⁄  for plane stress. The toughness value for mode I and II 
is given by followed expressions:  

 

 

Component Description 
𝑃𝑃𝑄𝑄 The corresponding load for determining 𝐾𝐾𝑖𝑖𝑑𝑑 
𝜒𝜒 Correction parameter for longitude and transverse 

modulus (orthotropic material)  
𝐸𝐸𝑖𝑖𝑓𝑓 E-modulus in fibre direction, include the slope 𝑚𝑚  

(orthotropic material) 
 

The number of test and ratio of mode I- and II toughness value depends on the structure and 
corresponding load cases, which typically is described in standards.        

 𝐺𝐺𝐼𝐼,𝑐𝑐 =
12𝑃𝑃𝑄𝑄2(3𝑐𝑐 − 𝐿𝐿)2

16𝑎𝑎2ℎ3𝐿𝐿2𝐸𝐸𝑖𝑖𝑓𝑓  
(𝑑𝑑 + 𝜒𝜒ℎ)2 (5.2) 

 𝐺𝐺𝐼𝐼𝐼𝐼,𝑐𝑐 =
9𝑃𝑃𝑄𝑄2(𝑐𝑐 − 𝐿𝐿)2

16𝑎𝑎2ℎ3𝐿𝐿2𝐸𝐸𝑖𝑖𝑓𝑓 
(𝑑𝑑 + 0.42𝜒𝜒ℎ)2 (5.3) 
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6 Crack Trajectories 
In order to determine the trajectories of a propagating crack through a structure, conditions for 
the direction of the crack and the correlation of stress intensity factors for mode I and II is 
described in this section.  

6.1 Direction for crack propagation  
Determination of the direction of crack propagation in mixed-mode loading where an opening 
and in-plan shear mode occur have been performed by Erdogan and Sih [9]. Where it is assumed 
that the crack propagate in a direction equal to the maximum tangential stresses 𝜎𝜎𝜃𝜃𝜃𝜃 and the 
shear stress is equal zero. The tangential and shear stress components in polar coordinates are 
given by:  

The radial stress component is not taking into account since it do not contribute to the direction 
of the crack.    

The normalized tangential and shear stress variation is showed in Figure 30, where the first 
plot(R) show the stresses for the opening mode where 𝐾𝐾𝐼𝐼𝐼𝐼 = 0, and similar for the second plot(L) 
that show the stresses for the in-plane shear mode 𝐾𝐾𝐼𝐼 = 0.    

 

Figure 30: Tangential and shear stress variation (R) for 𝐾𝐾𝐼𝐼𝐼𝐼 = 0 and (L) for 𝐾𝐾𝐼𝐼 = 0 

 𝜎𝜎𝜃𝜃𝜃𝜃 =
𝐾𝐾𝐼𝐼

4√2𝜋𝜋𝑟𝑟
�3 cos �

𝜃𝜃
2�

+ cos �
3𝜃𝜃
2 �� −

𝐾𝐾𝐼𝐼𝐼𝐼
4√2𝜋𝜋𝑟𝑟

�3 sin �
𝜃𝜃
2�

+ sin �
3𝜃𝜃
2 �� 

 
(6.1) 

 𝜎𝜎𝑟𝑟𝜃𝜃 =
𝐾𝐾𝐼𝐼

4√2𝜋𝜋𝑟𝑟
�sin �

𝜃𝜃
2�

+ sin �
3𝜃𝜃
2 �� +

𝐾𝐾𝐼𝐼𝐼𝐼
4√2𝜋𝜋𝑟𝑟

�3 cos �
𝜃𝜃
2�

+ 3 cos �
3𝜃𝜃
2 �� 

 
(6.2) 
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It is seen that the maximum tangential stress occur where the shear stresses is zero and the angle 
of maximum tangential stress is: 

 

Erdogan and Sih showed the followed relationship: 

When 𝜎𝜎𝜃𝜃𝜃𝜃 reach maximum at a given angle 𝜃𝜃0 ⇒ 𝜎𝜎𝑟𝑟𝜃𝜃 = 0, the crack direction angle 𝜃𝜃0 satisfies 
the following equation: 

The relationship of Erdogan and Sih is called Maximum tangential stress (MTS). 

Another criterion for direction of a crack is performed by Richard [10], from a large number of 
experiments he fond followed empirical solution of crack direction: 

From equation above the maximum angle of crack direction is: 

From both criterion the value of 𝐾𝐾𝐼𝐼 is always positive or zero, that the normal loading always is 
tension or zero. The shear-load from mode II achieve both positive and negative values with 
corresponding sign of the angle of crack direction see Figure 31 [10].  

 
𝐾𝐾𝐼𝐼𝐼𝐼 = 0 ⟹ 𝜎𝜎𝜃𝜃𝜃𝜃,𝑚𝑚𝑚𝑚𝑥𝑥 ⟹ 0°       
𝐾𝐾𝐼𝐼 = 0 ⟹ 𝜎𝜎𝜃𝜃𝜃𝜃,𝑚𝑚𝑚𝑚𝑥𝑥 ⟹ 70,5°  

 
(6.3) 

 
𝜕𝜕𝜎𝜎𝜃𝜃𝜃𝜃
𝜕𝜕𝜃𝜃

= −
3
2
𝜎𝜎𝑟𝑟𝜃𝜃 

 
(6.4) 

 

𝑐𝑐𝑐𝑐𝑑𝑑 �
𝜃𝜃0
2 �

[𝐾𝐾𝐼𝐼 sin(𝜃𝜃0) + 𝐾𝐾𝐼𝐼𝐼𝐼(3 cos (𝜃𝜃0 − 1))] = 0 

⇒  𝜃𝜃0 = − arccos�
3𝐾𝐾𝐼𝐼𝐼𝐼2 + 𝐾𝐾𝐼𝐼2�𝐾𝐾𝐼𝐼2 + 8𝐾𝐾𝐼𝐼𝐼𝐼2

𝐾𝐾𝐼𝐼2 + 9𝐾𝐾𝐼𝐼𝐼𝐼2
� 

 

(6.5) 

 𝜃𝜃0 = ∓�155,5° |𝐾𝐾𝐼𝐼𝐼𝐼|
|𝐾𝐾𝐼𝐼| + |𝐾𝐾𝐼𝐼𝐼𝐼|

� − 83,4°  �
|𝐾𝐾𝐼𝐼𝐼𝐼|

|𝐾𝐾𝐼𝐼| + |𝐾𝐾𝐼𝐼𝐼𝐼|
�
2

 

 
(6.6) 

 
𝐾𝐾𝐼𝐼𝐼𝐼 = 0 ⟹ 0°       
𝐾𝐾𝐼𝐼 = 0 ⟹ 72,1°  

 
(6.7) 

   
34 of 84  

 



Numerical Analysis of Crack Propagation and Lifetime Estimation 
   

 

Figure 31: Sign of crack angles with corresponding sign of 𝐾𝐾𝐼𝐼𝐼𝐼 [10] 

Followed relationship of shear-load, 𝐾𝐾𝐼𝐼𝐼𝐼 value and angle of crack direction is obtained: 

The two criteria of Erdogan/Sih and Richard with varying 𝐾𝐾𝐼𝐼𝐼𝐼 values and a fixed value of 𝐾𝐾𝐼𝐼 =
10 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚 is showed Figure 32. 

 

Figure 32: Crack direction criteria MTS and Richard 

The two criteria looks similar, when they reach the extrema values of 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼⁄  the criteria of 
Richard exceed a higher value of 𝜃𝜃0.     

 

 
𝜏𝜏 > 0 ⟹𝐾𝐾𝐼𝐼𝐼𝐼 > 0 ⟹ 𝜃𝜃0 < 0 
𝜏𝜏 < 0 ⟹𝐾𝐾𝐼𝐼𝐼𝐼 < 0 ⟹ 𝜃𝜃0 > 0 

 
(6.8) 
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6.2 Mix-mode of Stress Intensity Factors 
If more than one loading condition is applied two or three mode is activated, only 2D problem 
is taking into account here, so only mode I and II is consider.  

Numerous of criteria have been proposed to determine an equivalent stress intensity factor for 
mode I and II. From experiments explicit expression have been made to “weighted” the 
different value of mode I and II into an equivalent stress intensity factor. 

Three different criteria for mix-mode is considered for material that is isotropic and 
homogeneous and the value of mode I always obtain positive value, 𝐾𝐾𝐼𝐼 > 0, that no crack 
propagation occur when a load of compression is considered. 

• Tanaka’s criteria [11]: 

• Richard’s criteria [10]: 

 
Where: 
𝛼𝛼 = 1,155 

• Irwin’s criteria [12]: 

 
 

From the three criteria it is seen that when 𝐾𝐾𝐼𝐼𝐼𝐼 = 0, the equivalent stress intensity factor 𝐾𝐾𝑦𝑦𝑒𝑒 =
𝐾𝐾𝐼𝐼. 

Comparison of the three criteria due to variation of 𝐾𝐾𝐼𝐼𝐼𝐼, with a fixed value of 𝐾𝐾𝐼𝐼 = 10 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚 
is seen in Figure 33 

 

 𝐾𝐾𝑦𝑦𝑒𝑒,𝑇𝑇 = (𝐾𝐾𝐼𝐼4 + 8𝐾𝐾𝐼𝐼𝐼𝐼4)�
1
4� 

 
(6.9) 

 𝐾𝐾𝑦𝑦𝑒𝑒,𝑅𝑅 =
𝐾𝐾𝐼𝐼
2

+
1
2
�𝐾𝐾𝐼𝐼2 + 4(𝛼𝛼𝐾𝐾𝐼𝐼𝐼𝐼)2 (6.10) 

 𝐾𝐾𝑦𝑦𝑒𝑒,𝐼𝐼 = �𝐾𝐾𝐼𝐼2 + 𝐾𝐾𝐼𝐼𝐼𝐼2 (6.11) 
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Figure 33: Three criteria of equivalent stress intensity factor with varying 𝐾𝐾𝐼𝐼𝐼𝐼 𝑣𝑣𝑑𝑑𝑙𝑙𝑢𝑢𝑣𝑣 

Tanaka is the most conservative in the area 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼⁄ < ±0,5, when 𝐾𝐾𝐼𝐼𝐼𝐼 𝐾𝐾𝐼𝐼⁄ > ±1 it become non-
conservative, Richard and Irwin variety similar but with a steeper slope for Richard.     

The criterion from Richard and MTS of crack direction and the mix-mode criteria is taking into 
account in the numerical analysis. 
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7 Lifetime Estimation  
During a load-case subjected to a structure, crack will start propagating and with the 
circumstance that small-scale yielding occur, than LEFM is taking into account, the lifetime for 
failure can be estimated from the stress intensity factor and the corresponding load-case.  

In this section the estimation of lifetime due to crack propagation is evaluated for different 
empirical models with the influence of various load-cases, and the factors of range in stress 
intensity and crack closure effect is investigated. 

Load-cases     

The load-case is categorised in two main groups, constant-amplitude loading and variable-
amplitude loading, in Figure 34 three different load-cases is illustrated with the minimum and 
maximum value of stress intensity factor 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 and 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 for a corresponding time series.  

 

Figure 34: Three load-cases 1-3 

Load-case 1 and 2 is defined as constant amplitude loading, and number 3 is variable amplitude 
loading. Load-case 2 is constant amplitude loading with mean stress effect or R-ratio. The 
constant amplitude loading is well described in literature and research due to fracture failure, 
where the variable amplitude loading are more complex and due to the history dependence from 
e.g. prior occasional of over- or under-loads [1].  

In this project the constant amplitude loading is investigated, for load-cases with positive values 
of 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 ≥ 0  and 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 > 0, that only tensile load is taking into account, and no compression.       
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7.1 Fatigue Crack Growth Rate  
In order to estimate the lifetime of a structure subjected to a load-case, research have showed 
an correlation, between the crack propagation and number of load cycles called fatigue crack 
growth rate, and properties that influence the crack propagation.     

For constant amplitude loading crack growth rate can be described by followed relationship [1]: 

Where: 

∆𝐾𝐾 = 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 𝑑𝑑 =  
𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉

𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥
 

 
 

Component Description 
∆𝐾𝐾 Range in stress intensity   
𝑑𝑑 Mean stress effect or R-ratio 
𝑑𝑑𝑑𝑑  Different in crack length: 𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖 
𝑑𝑑𝑑𝑑 Different in number of cycles: 𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖 

 

The mean stress effect 𝑑𝑑 is seen for load-case 2 in Figure 34, where the value of 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 exceed 
0. The value of 𝑑𝑑 only obtain 0 or 𝑑𝑑 > 0 in this project because only tensile loads is taking into 
account. 

Crack growth rate behaviour for constant amplitude loading is described by a sigmoidal curve, 
see Figure 35, where a log-log plot of 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄   and ∆𝐾𝐾 is showed.   

 

Figure 35: Fatigue crack propagation behaviour 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑑𝑑,∆𝐾𝐾) (7.1) 
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Component Description 
𝐾𝐾𝑡𝑡ℎ Threshold value, minimum value of ∆𝐾𝐾 for crack propagation   
𝐾𝐾𝐼𝐼𝑐𝑐 Fracture toughness, maximum value of ∆𝐾𝐾 for fracture 
𝑛𝑛 Slope of the fatigue crack growth curve in region 2 
𝐶𝐶 Intercept of sigmoidal curve in region 2 

 

The material parameters 𝐶𝐶 and 𝑛𝑛 is estimated form experimental testing, it is noted that the 
crack growth rate only obtain positives values, due to the logarithmic scales of the plot.  

The crack starts to growth at a given threshold value, that is minimum value of the stress 
intensity factor where the crack start propagate, this is defined as region 1. The crack continue 
to propagate in a linear way with increase in stress intensity and crack growth, this step is called 
region 2. The final end of the crack propagation is fracture where the stress intensity reach the 
fracture toughness value described in section 5, and a corresponding crack growth value that 
leads to fracture of the system, this region define the region 3. Here a short description of the 3 
region [1]: 

Region 1: The threshold value is a very complex case and a lot of research have been done 
during the time to describe this value. The value contain of two parts, a material property, and 
as a function of the loading, the threshold is typical defined from experiments similar as for the 
fracture toughness.  

Region 2: In this region the crack propagation is linear and stable, this region is the most 
common for a crack during its lifetime. 

Region 3: The crack growth rate accelerates in this region and lead to fracture, researchers have 
during the time reached two explanations for this behaviour. The first one is due to microscopic 
fracture from e.g. flaws due discontinuity. A other explanations is that the crack growth rate 
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄  is not real due to larger plastic zone with an larger value of crack driving force. 
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Mean stress effect 

The mean stress effect or R-ratio is given as the ratio between minimum and maximum stress 
intensity factor for a given load case: 𝑑𝑑 = 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉/𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥.  

Illustration of the mean stress effect is schematic showed in the next two figures. In Figure 36 
four different load-cases here defined as blocks with followed conditions:  

• Constant R-ration for each block. 
• Identical increase in the value of 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥. 
• Different increase in the values of 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉. 

This gives an increase in range of stress ∆𝐾𝐾 in the block, but a generally decrease through all 
the blocks.  

 

Figure 36: Four different blocks of loads with varying range of stress intensity and different R-ratio 

   
41 of 84 
 



 Aalborg University Esbjerg 
  

The first block is subjected for an increase in 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 but with a constant 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 with a value of 
zero from which follows 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 = ∆𝐾𝐾, for the three existing blocks an increase in 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉, 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 
and ∆𝐾𝐾 is showed.  

In Figure 37 the variation of the sigmoidal curve is showed due to the four blocks with different    
R-ratio. Implemented of the curves is performed by the NASGROW model, see section 7.2.        

 

Figure 37: Crack growth rate for four blocks of loads with varying stress intensity factor, and different R-ratio 

It is obvious that different values of R-ratio affects the lifetime or crack growth of the material. 
The increase in R-ratio gives an increase in the crack growth and obtain a less conservative 
value of the threshold in region 1 and the fracture toughness in region 3. This is an important 
factor to take into account when determining the threshold- and fracture toughness values, 
where the load-case for testing procedure and the “real” structure have to be similar.          
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Crack closure 

During experimental test, Elber [1] discover the phenomenon crack closure, when a crack is 
subjected to low loads the crack opening of the material become the same or even less from a 
uncracked material. During a load cycle, see Figure 38, the crack start to close before it reach 
the 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 value, due to contact between the crack surfaces. It is seem that the crack stop closing 
at the 𝐾𝐾𝑂𝑂𝑃𝑃 value, the stress intensity at which the crack opens [1].     

 

Figure 38: Load cycles with crack closure 

Elber assume that the portion of the cycle below 𝐾𝐾𝑂𝑂𝑃𝑃 does not contribute to fatigue crack growth 
due to closure effect, and defined an effective stress intensity range: 

Substituting ∆𝐾𝐾 with ∆𝐾𝐾𝑦𝑦𝑓𝑓𝑓𝑓 in eq.(7.1) an expression for the crack grow rate is obtained by 
introducing the crack closure effect. The crack opening stress intensity from Elber [1] is given 
by: 

It is seen that when the mean stress level effect 𝑑𝑑 → 0 the value of opening stress intensity factor 
𝐾𝐾𝑡𝑡𝑝𝑝 = ∆𝐾𝐾. 

The closure effect occur for different reasoned, Suresh and Ritchie [1] identified five 
mechanisms for closure effect [1]. 

• Plasticity  
o Compressive residual stresses in the wake zone of the crack tip cause the crack 

faces to close. 
• Roughness 

o Coarse grain size of the material can cause deflection between crack surfaces, 
due to microstructural heterogeneity and lead to mix-mode, cause mismatch 
between the crack faces. 

 ∆𝐾𝐾𝑦𝑦𝑓𝑓𝑓𝑓 = 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐾𝐾𝑂𝑂𝑃𝑃 
 (7.2) 

 𝐾𝐾𝑡𝑡𝑝𝑝 = ∆𝐾𝐾 �
1

(1 − 𝑑𝑑)
− 0,5 − 0,4𝑑𝑑� 

 
(7.3) 
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• Corrosion 

o Corrosion become wedged between crack faces, prevent crack faces to close.    
• Viscous fluid  

o Become wedged between crack faces, prevent crack faces to close.    
• Martensitic transformation 

o Martensitic transformation in the wake zone of crack tip, cause residual stresses. 

7.2 Models for fatigue crack propagation 
Fatigue crack growth rate for constant amplitude loading is well described, and different crack 
growth models have been obtained during the time. Here four different models is introduced 
that cover different regions of the sigmoidal curve and loads effects see Table 1.  

Table 1: Crack growth models with corresponding regions and loads effects 

Model Region 1 
(𝐾𝐾𝑡𝑡ℎ) 

Region 2 Region 3 
(𝑘𝑘𝐼𝐼𝑐𝑐) 

Mean stress effect 
(𝑑𝑑) 

Crack closure 
(𝑓𝑓) 

Klesnil and 
Lukas 

X     

Paris  X    
Forman  X X X  

NASGROW X X X X X 
 

Klesnil and Lukas 
Describe the crack growth rate and corresponding range in stress intensity for region 1 [1]: 

It is seen that the crack growth only obtain a value when ∆𝐾𝐾 > 𝐾𝐾𝑡𝑡ℎ, and afterwards become 
linear in region 2 and 3.  

 

Figure 39: Schematic crack growth behaviour for Klesnil and Lukas, with random values. 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶(∆𝐾𝐾𝑉𝑉 − ∆𝐾𝐾𝑡𝑡ℎ𝑉𝑉 ) 
 

(7.4) 
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Paris  
This was the first relation that describe the crack growth behaviour, here only region 2 is taking 
into account [1].  

It is seen that the crack growth only obtain linear behaviour, and do not include 𝐾𝐾𝑡𝑡ℎ or 𝐾𝐾𝐼𝐼𝑐𝑐. 

 

Figure 40: Schematic crack growth behaviour for Paris, with random values. 

Forman  
This model describe the region 2 and 3, where the fracture toughness and R-ratio is taking into 
account [1]. 

 

It is seen that when (1 − 𝑑𝑑)𝐾𝐾𝐼𝐼𝑐𝑐 exceeds the value of ∆𝐾𝐾, crack growth going to infinity. 
 

 

Figure 41: Schematic crack growth behaviour for Forman, with random values. 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶∆𝐾𝐾𝑉𝑉 
 

(7.5) 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝐶𝐶∆𝐾𝐾𝑉𝑉

(1 − 𝑑𝑑)𝐾𝐾𝐼𝐼𝑐𝑐 − ∆𝐾𝐾
 (7.6) 
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NASGRO  
Developed at National Aeronautics and Space Administration (NASA) and published by 
Forman and Mettu [13] and [1], describe the crack growth in all the three regions.  

 

Materials constants p and q is estimated form experimental testing. The function 𝑓𝑓 define the 
ratio between opening stress intensity 𝐾𝐾𝑂𝑂𝑃𝑃 from eq.(7.4) and 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥. 

It is seen from eq.(7.7) when 𝐾𝐾𝑡𝑡ℎ exceed ∆𝐾𝐾 or 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 exceed 𝐾𝐾𝐼𝐼𝑐𝑐 crack growth value is going to 
infinity. 

 

Figure 42: Schematic crack growth behaviour for NASGROW, with random values. 

In order to visualize the variation of the four crack growth models from above, a load-case with 
a value of 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 = 0 and an increasing value of 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 in the interval 0 − 120 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚, that 
indicate a value of range in stress intensity of 𝑑𝑑 = 0, see Figure 43. 

The value of threshold and fracture toughness is given as, 𝐾𝐾𝑡𝑡ℎ = 0,9 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚 and 𝐾𝐾𝐼𝐼𝑐𝑐 =
96 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚. Material constants 𝐶𝐶,𝑛𝑛,𝑝𝑝, 𝑞𝑞 is chosen values (only for visualize the variation).    

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶 ��
1 − 𝑓𝑓
1 − 𝑑𝑑�

∆𝐾𝐾�
𝑉𝑉 �1 − 𝐾𝐾𝑡𝑡ℎ

∆𝐾𝐾�
𝑝𝑝

�1 − 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥
𝑘𝑘𝐼𝐼𝑐𝑐

�
𝑒𝑒 (7.7) 

 𝑓𝑓 =
𝐾𝐾𝑡𝑡𝑝𝑝
𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥

 

 
(7.8) 
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Figure 43: Load-case for visualize variation of crack growth models 

The variation of the four crack growth models is schematic showed in Figure 44. It is seen clear 
that the four models covers different regions of the 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄  vs. ∆𝐾𝐾 plot.     

 

Figure 44: Variation of the four crack growth models 

Region 1: 

Klesnil and Lukas together with NASGROW cover this region, as seen they first obtain a value 
at the threshold value. The models of Paris and Forman do not cover this region, and the value 
of range in stress intensity ∆𝐾𝐾 cannot be taking into account.   

Region 2: 

Paris, Forman and NASGROW cover this region and behave uniformly, Klesnil and Lukas 
behave as Paris’ model but do not cover this region.  
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Region 3 

Forman and NASGROW cover this region, they obtain a value that going to infinity at the 
fracture toughness value, Paris together with Klesnil and Lukas obtain linear behaviour as they 
do not cover this region.        

The model of Klesnil and Lukas only cover the region 1, in that case the model is not applicable 
for determining the lifetime of a structure, and for further work only the models of Paris, 
Forman and NASGROW is taking into account.  

7.3 Modified crack growth models 
In the former section the crack growth rate is described from the relation of change in crack 
length 𝑑𝑑𝑑𝑑 and change in number of cycles 𝑑𝑑𝑑𝑑. In case of determining the lifetime of a structure 
subjected to a constant amplitude load-case, modification of the crack growth models from 
above is implemented. 

From eq.(7.1) the crack growth is given as 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝑓𝑓(∆𝐾𝐾,𝑑𝑑), N is an integer and it is 
considered as a real number because the crack growth is assumed only to advance for at least a 
real number of cycles [14]. The crack growth rate is modified to only consider the number of 
cycles as followed: 

The crack growth models of Paris, Forman and NASGROW have been modified as followed: 

Paris: 

Forman: 

 

NASGROW: 

 

 𝑑𝑑 = 𝑓𝑓(𝑑𝑑𝑑𝑑,∆𝐾𝐾,𝑑𝑑) (7.9) 

 𝑑𝑑 =
𝑑𝑑𝑑𝑑

𝐶𝐶 ∙ ∆𝐾𝐾𝑉𝑉 (7.10) 

 𝑑𝑑 =
𝑑𝑑𝑑𝑑[(1 − 𝑑𝑑)𝐾𝐾𝐼𝐼𝑐𝑐 − ∆𝐾𝐾]

𝐶𝐶 ∙ ∆𝐾𝐾𝑉𝑉  
 

(7.11) 

 𝑑𝑑 =
𝑑𝑑𝑑𝑑

𝐶𝐶 �∆𝐾𝐾 (𝑓𝑓 − 1)
(𝑑𝑑 − 1)�

𝑉𝑉

�1 − 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥
𝐾𝐾𝐼𝐼𝑐𝑐

�
𝑒𝑒

�1 − 𝐾𝐾𝑡𝑡ℎ
∆𝐾𝐾�

𝑝𝑝  

 

(7.12) 
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In Figure 45 the three modified crack growth models is schematic showed, with the load-case 
from Figure 43 and value of threshold and fracture toughness is given as, 𝐾𝐾𝑡𝑡ℎ = 0,9 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚 and 
𝐾𝐾𝐼𝐼𝑐𝑐 = 96 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚. Material constants 𝐶𝐶,𝑛𝑛,𝑝𝑝, 𝑞𝑞 obtain a chosen value (only for visualize the 
variation).    

 

Figure 45: Variation of the three modified crack growth models 

It is seen that the curves of the modified crack growth obtain a “mirror” configuration compared 
with the original crack growth curves in Figure 44. It also make sense that the number of cycles 
decrease when the range in stress intensity ∆𝐾𝐾 increase and visa versa. From this modified crack 
growth models, the lifetime can be estimated due to number of cycle, this is implemented and 
verified in the section of numerical crack propagation. 

Estimation of the constants for growth models 

Material constants 𝐶𝐶 and 𝑛𝑛 from the crack growth models in last section, is estimated from 
experimental data where the number of cycles and crack length is measured due to crack 
propagation of a specimen, with a corresponding analytical solution for the stress intensity 
factor for the specimen. 

In Figure 46 a compact specimen and corresponding plot of the measured number of cycle and 
crack length is showed, the crack growth rate is estimated by followed: 

The range in stress intensity ∆𝐾𝐾 = 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 is determined from an analytical solution of the 
stress intensity of the specimen due to crack length, given by: 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖
𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖

 

 
(7.13) 

 𝐾𝐾𝐼𝐼,𝑚𝑚𝑚𝑚𝑥𝑥 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥

𝑎𝑎√𝑊𝑊
𝑓𝑓 �

𝑑𝑑𝑖𝑖
𝑊𝑊
� (7.14) 
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From the relation of mean stress effect: 𝑑𝑑 = 𝐾𝐾𝑚𝑚𝑖𝑖𝑉𝑉 𝐾𝐾𝑚𝑚𝑚𝑚𝑥𝑥⁄  the range in stress intensity is given by: 

 

 

  
Figure 46: (R) Compact specimen, (L) measurement of numbers of cycles and crack length. 

From the relation of crack growth rate and range in stress intensity from eq.(7.13) and (7.15) a 
logarithmic plot of the data can be performed as the sigmoidal curve in Figure 35. 

The intercept and slope 𝐶𝐶 and 𝑛𝑛 is fitted from the method of least square of a power function 
that is given of the form [15]: 

The best fit is found from the total squared error, where 𝑑𝑑 is the number of observations 𝑖𝑖: 

Differentiate the total error with respect to 𝑑𝑑 and 𝑏𝑏: 

Solving for 𝑑𝑑 and 𝑏𝑏 gives: 

 

 ∆𝐾𝐾 = 𝐾𝐾𝐼𝐼,𝑚𝑚𝑚𝑚𝑥𝑥 − (𝐾𝐾𝐼𝐼,𝑚𝑚𝑚𝑚𝑥𝑥 ∙ 𝑑𝑑) (7.15) 

 𝑑𝑑 = 𝑑𝑑𝜕𝜕𝑏𝑏 
 (7.16) 

 𝐸𝐸2 = � 𝜀𝜀𝑖𝑖2 =
𝑁𝑁

𝑖𝑖=1
� [𝑑𝑑𝑖𝑖 − 𝑓𝑓(𝜕𝜕𝑖𝑖)]2 =

𝑁𝑁

𝑖𝑖=1
� �𝑑𝑑𝑖𝑖 − 𝑑𝑑𝜕𝜕𝑖𝑖𝑏𝑏�

2𝑁𝑁

𝑖𝑖=1
 (7.17) 

 
𝜕𝜕𝐸𝐸2

𝜕𝜕𝑚𝑚
= 0 and 𝜕𝜕𝐸𝐸

2

𝜕𝜕𝑏𝑏
= 0 

 
(7.18) 

 𝑏𝑏 =
∑ ln 𝜕𝜕𝑖𝑖  ln𝑑𝑑𝑖𝑖 −

1
𝑑𝑑∑ ln 𝜕𝜕𝑖𝑖 ∑ ln𝑑𝑑𝑖𝑖

∑ ln 𝜕𝜕𝑖𝑖
2 − 1

𝑑𝑑∑ ln 𝜕𝜕𝑖𝑖
2

 (7.19) 

 a = exp�
1
𝑑𝑑 
� ln𝑑𝑑𝑖𝑖 − 𝑏𝑏

∑ ln 𝜕𝜕𝑖𝑖
𝑑𝑑

� (7.20) 
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The correlation coefficient, which obtain a value of 1 for perfect fit, and 0 for poor fit is given 
by: 

From this the material constants 𝐶𝐶 and 𝑛𝑛 is determined, from data of experiments and a 
corresponding analytical solution of the stress intensity factor. This have been used for lifetime 
estimation in the section of numerical analyses. 

 

     

 

 
𝑟𝑟2 =

�∑ ln 𝜕𝜕𝑖𝑖  ln𝑑𝑑𝑖𝑖 −
1
𝑑𝑑∑ ln 𝜕𝜕𝑖𝑖 ∑ ln𝑑𝑑𝑖𝑖�

2

�∑ ln 𝜕𝜕𝑖𝑖
2 − ∑ ln 𝜕𝜕𝑖𝑖

2

𝑑𝑑 � �∑ ln 𝜕𝜕𝑖𝑖
2 − ∑ ln 𝜕𝜕𝑖𝑖

2

𝑑𝑑 �
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8 Numerical condition 
In order to implement the determination of stress intensity factors due to crack propagation the 
numerical finite element program ANSYS is used. In this section a brief overview of numerical 
tools that is used in ANSYS is described. A study of mesh and contours configurations is carried 
out in order to define the optimal numerical condition for determining the stress intensity factor.    

8.1 Domain Integral 

The Domain Integral is a numerical solution of the J-integral from section 3.5, it determine 
different problems and different types of load e.g. Elastic, plastic and thermal loading, in the 
followed a quasi-static problem with elastic loading is assumed.  

A closed contour containing an inner Γ0 and outer Γ1 contours is used where the inner is 
vanishingly small and the outer is finite see Figure 47. Divergence theorem can be applied and 
instead of integrating around a path of the crack tip, integration over the area between the paths 
is used to evaluate the J-Integration. Where the second integral is the components of traction 
[1]. 

 

Component Description 
𝑤𝑤 Strain energy density   
𝑞𝑞 Weight function in 𝑑𝑑∗, by Γ0 → 𝑞𝑞 = 1 and Γ1 → 𝑞𝑞 = 0    
𝑢𝑢𝑖𝑖 Displacement vector components 
𝛿𝛿1𝑖𝑖 Kronecker delta 
Γ0 , Γ1 Inner and outer contours 
Γ+  , Γ− Upper and lower crack face 
𝜎𝜎𝑖𝑖𝑖𝑖  Stress tensor 

 

 

Figure 47: Inner and outer contours, which form a closed contour around crack tip 

 

 

 𝐽𝐽 = � �𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕1

− 𝑤𝑤𝛿𝛿1𝑖𝑖�
𝐴𝐴∗

𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕𝑖𝑖

𝑑𝑑𝑑𝑑 − � 𝜎𝜎2𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕1

𝑞𝑞 𝑑𝑑Γ
Γ++Γ−

 (8.1) 
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The Domain integral is equal to the energy release rate 𝐽𝐽 = 𝐺𝐺 with followed relationship to the 
stress intensity factors, where 𝐸𝐸′ is for plane strain or plane stress condition: 

 

Interaction integral 

A more convenient way to determine the mixed-mode SIF values compared to the domain 
integral is the interaction integral which gives a more robust and actual results [16].  A 
description of the main fields of the interaction integral are given and a briefly evaluation of 
the numerical approach which are the tools ANSYS use to determine the SIF values are given. 

The interaction integral in a 3D domain is a contribution of the domain integral in eq.(8.2) 
called actual field, an auxiliary field and an interacting field between the actual and auxiliary 
field. Defined as:   

𝐽𝐽(̅𝑑𝑑):  Actual filed from the domain integral eq.(8.2) 

𝐽𝐽�̅�𝑚𝑎𝑎𝑥𝑥(𝑑𝑑):   Auxiliary field in the vicinity of a crack, containing the auxiliary stress, strain and 
displacement 𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥 , 𝜀𝜀𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥 ,𝑢𝑢𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥, that is functions of the auxiliary 𝐾𝐾𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥, 𝐾𝐾𝐼𝐼𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥 ,𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥 
with their corresponding polar coordinates 𝑟𝑟,𝜃𝜃. 

𝐼𝐼(̅𝑑𝑑):  Interaction integral, that interacting the auxiliary and actual field are given by, 
without    the components of traction: 

  
Figure 48:  (R) 3D crack front (L) crack front in plane [17]. 

 𝐽𝐽(𝑑𝑑) =
𝐾𝐾𝐼𝐼2 + 𝐾𝐾𝐼𝐼𝐼𝐼2

𝐸𝐸′
+

1 + 𝑣𝑣
𝐸𝐸

𝐾𝐾𝐼𝐼𝐼𝐼𝐼𝐼2  (8.2) 

 𝐽𝐽�̅�𝑆 = 𝐽𝐽(̅𝑑𝑑) + 𝐽𝐽�̅�𝑚𝑎𝑎𝑥𝑥(𝑑𝑑) + 𝐼𝐼(̅𝑑𝑑) 
 (8.3) 

 𝐼𝐼(̅𝑑𝑑) = � �𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥

𝜕𝜕𝜕𝜕1
+ 𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕1

− 𝜎𝜎𝑖𝑖𝑘𝑘𝜀𝜀𝑖𝑖𝑘𝑘𝑚𝑚𝑎𝑎𝑥𝑥𝛿𝛿1𝑖𝑖�
𝑉𝑉

𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕𝑖𝑖

𝑑𝑑𝑉𝑉 

 
(8.4) 
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From this expression a pointwise value of the interaction integral at a given location s, along a 
3D crack front see Figure 48, is given by: 

To obtain SIF values appropriated values of the auxiliary SIF values must be taken into account, 
here an numerical evaluation by use of FE formulations is performed.   

Numerical evaluation of interaction integral 

The numerical evaluation of interaction integral is performed in a finite-element framework by 
an isoparametric formulation with use of the Gauss-quadrature. Evaluation of integral in 
eq.(8.5) is given by [18]:   

 

Component Description 
𝑣𝑣𝑙𝑙𝑣𝑣. Elements in the domain   
𝑔𝑔𝑝𝑝𝑡𝑡𝑑𝑑. Gauss points    
𝑉𝑉 Volume includes all elements 
𝑃𝑃 Points in the domain 
𝛿𝛿1𝑖𝑖 Kronecker delta 

𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥, 𝜀𝜀𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥,𝑢𝑢𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥 Stress, strain and displacement of the auxiliary field 
𝜎𝜎𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑖𝑖 Stress and displacement of the actual field 
𝐽𝐽 Jacobian matrix 
𝑞𝑞 Weight function  
𝑤𝑤𝑝𝑝 Gauss integration weight factor for point 𝑃𝑃 

 

Both the domain integral and interaction integral are numerical methods that are supported by 
ANSYS. But for mixed-mode problems the interaction integral gives the best and most robust 
results [17]. 

 

 

 

 
𝐼𝐼(𝑑𝑑) =

𝐼𝐼(̅𝑑𝑑)
∫ 𝑞𝑞(𝑑𝑑)𝑑𝑑𝑑𝑑𝐿𝐿𝐼𝐼

 

 
(8.5) 

 𝐼𝐼(𝑑𝑑) = � � ��𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥

𝜕𝜕𝜕𝜕1
+ 𝜎𝜎𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝜕𝜕1

− 𝜎𝜎𝑖𝑖𝑘𝑘𝜀𝜀𝑖𝑖𝑘𝑘𝑚𝑚𝑎𝑎𝑥𝑥𝛿𝛿1𝑖𝑖�
𝜕𝜕𝑞𝑞
𝜕𝜕𝜕𝜕𝑖𝑖

det 𝐽𝐽�
𝑝𝑝
𝑤𝑤𝑝𝑝

𝑔𝑔𝑝𝑝𝑡𝑡𝑠𝑠.

𝑃𝑃

𝑦𝑦𝑦𝑦𝑦𝑦.

𝑉𝑉
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8.2 Mesh configuration 
Determination of stress intensity factors in ANSYS is performed, in order to ensure accuracy 
of result, a study of the mesh is accomplished. Distinguish between two mesh configuration the 
near crack-tip mesh and global mesh for the remaining structure. Number of contours for the 
Domain Integral is also examined in this section.  

Near crack-tip mesh  

Stress field in the vicinity of the crack tip is affected by the 1 √𝑟𝑟⁄   singularity and conventional 
elements cannot represent this singularity. A singular element have been introduced by taking 
an triangular isoperimetric element with mid-sides nodes and remove this nodes to a quarter 
points see Figure 49 which gives an more accurate results [19].  

 

Figure 49: Singular element 

To obtain the best results followed is recommended [18]: 

• The singular triangle element have to be straight-sided  
• Dimension correspond to crack tip: 𝑙𝑙 < 𝑑𝑑 8⁄  

Global Mesh 

ANSYS recommended [18] the PLANE183 elements for global meshing for 2D structure. 
PLANE183 is a higher order 8-node quadric- or 6-node triangular shaped element with mid-
side nodes Figure 50, where nodes K,L,M contract and forms the triangular elements.  

 
Figure 50: PLANE183 element, for quadric- and triangular shaped elements 

Behaviour of PLANE183 elements: 

• 2 degree of freedom in x- and y-direction per nodes. 
• Plane stress or plane strain behaviour. 
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Contours  

The Domain Integral in eq.(8.1) take a different numbers of domains around the crack-tip due 
to accurately in ANSYS this is named contours, in Figure 51(R) a crack-tip with five 𝑛𝑛1 − 𝑛𝑛5 
contours, and mesh is illustrated.  

Mesh is implemented by singular elements in the first contours, and quadric PLANE183 
elements in rest of the contours, this mesh is recommended by [20].  

  
 

Figure 51: (R) Contours and mesh around crack-tip, (L) dimension of crack-tip 

Mesh configuration due to the crack-tip dimension, Figure 51(L), is implemented by followed 
restrictions: 

• Length of singular elements, see Figure 49: 𝑙𝑙 = 𝑙𝑙 4⁄  
• Radius of crack-tip mesh: 𝑟𝑟 = ℎ 2⁄  
• Crack-tip angle: 𝛼𝛼 = 60° 
• 16 division of crack-tip mesh: 𝜃𝜃 = 18,75° 

 

 

 

 

 

   
56 of 84  

 



Numerical Analysis of Crack Propagation and Lifetime Estimation 
   

8.3 Analysis of number of counters  
In order to ensure arcuate number of contours for determining the stress intensity factors, the 
specimen from section 3.4 are determined from analytical solutions [6] eq.(3.21) and eq.(3.22), 
and numerical solution from ANSYS, with dimension, boundary conditions and material 
parameters in Figure 52 and Table 2. The solution in ANSYS is conducted for plane strain. 

 

Figure 52: Single edge crack for mode I and II with corresponding boundary condition 

Table 2: Dimension and material parameters for solution in ANSYS 

Component Description 
𝑑𝑑 5 mm  
𝑊𝑊 50 mm 
ℎ 1 mm 
𝐻𝐻 75 mm 
𝑃𝑃 600 N 

E-modulus 173.000 𝑀𝑀𝑃𝑃𝑑𝑑 
𝑣𝑣 0.3 

 

Analytical solutions: 𝐾𝐾𝐼𝐼 = 112,6 𝑀𝑀𝑃𝑃𝑑𝑑 √𝑚𝑚𝑚𝑚 and 𝐾𝐾𝐼𝐼𝐼𝐼 = 46,4 𝑀𝑀𝑃𝑃𝑑𝑑 √𝑚𝑚𝑚𝑚. 
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The mesh configuration from ANSYS for numerical determination for stress intensity factors 
is showed in Figure 53. The element size is 0,60 mm, and the total number of elements is 12.824. 

 

Figure 53: (R) Meshed specimen in ANSYS, (L) Close-up near by crack-tip 

Stress intensity factors is extract from 9 contours due to the crack-tip, where the contours 1-5 
is showed in Figure 51. The values from the 9 contours form mode I and II, is plotted in Figure 
54, with corresponding value of the analytical solution.  

 

Figure 54: Numerical solution from ANSYS, with 9 different contours for mode I (R), and II (L). 

Values for contours 1 and 2 is far from the analytical solution for both mode I and II, contours 
6-9 is converging for mode I, in mode II the values become less accurate.  
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It is decided for further numerical analysis to average the value of contours 3-5 to obtain a 
effective stress intensity factor for mode I and II: 

The effective stress intensity factor for mode I and II, and equivalent stress intensity factor from 
section 6.2 for different criteria get followed relationship: 

Effective stress intensity factor (ESIF) and corresponding analytical solution: 

Mode Analytical 
𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚𝑚𝑚 

ESIF 
𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚𝑚𝑚 

Errors 
[%] 

𝐼𝐼 112,60 112,72 0,11 
𝐼𝐼𝐼𝐼 46,39 46,63 0,52 

 

From the analytical solution [6], the accuracy of mode I and II is respective 0,5 % and 2 %.  

 

 

 

 

 

 

 

 

 

 

 

 

Effective stress intensity factor:  
𝑉𝑉3+𝑉𝑉4+𝑉𝑉5

3
 

⟹ �
𝐾𝐾𝐼𝐼,𝑦𝑦𝑓𝑓𝑓𝑓
𝐾𝐾𝐼𝐼𝐼𝐼,𝑦𝑦𝑓𝑓𝑓𝑓

 

 

(8.7) 

 𝐾𝐾𝑦𝑦𝑒𝑒 = 𝑓𝑓(𝐾𝐾𝐼𝐼,𝑣𝑣𝑓𝑓𝑓𝑓,𝐾𝐾𝐼𝐼𝐼𝐼,𝑣𝑣𝑓𝑓𝑓𝑓) 
 

(8.8) 
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8.4 Analysis of mesh size 
Study of the influence from different size of the global mesh around the crack-tip is performed 
in order to analysis the flexibility of the near crack-tip mesh. The specimen from Figure 52, 
have been analysed for mode I and II with different mesh sizes, varying from 0,10 mm to 1,50 
mm. In Figure 55 and Table 3 the results are plotted. The solution in ANSYS is conducted for 
plane strain. 

 

Figure 55: Different mesh size of global mesh for mode I and II with corresponding analytical solution 

It is seen that the global mesh size varying from 0,10 to 0,80 (marked with red) maintain the 
accuracy of stress intensity factor with respect to the analytical solution, where the accuracy of 
mode I and II is respective 0,5 % and 2 %. In Table 3 the value from Figure 55 is summarize.   

Table 3:  Global mesh size with corresponding numbers of elements and Error compared with analytical solution 

Meshsize 
[%] 0,10 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,50 

Num. of 
Elements 238604 67739 24653 12824 7786 4934 4053 2819 2508 

Error 𝐾𝐾𝐼𝐼 
[%] 0,35 0,28 0,19 0,11 0,14 0,15 0,21 0,23 0,25 

Error 𝐾𝐾𝐼𝐼𝐼𝐼 
[%] 1,70 1,58 1,81 0,52 1,04 2,56 3,91 5,30 5,90 
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From the results above is seen that the global mesh size is relative flexible compared to the 
analytical solution. In Figure 56 the mesh for sizes of 0,10 mm and 0,80 mm is presented. 

 

Figure 56: Different mesh sizes of 0,10 mm and 0,80 mm 

To verify the flexibility of the mesh size, further three analyses of mesh size is conducted where 
the geometry of the specimen from Figure 52 is changed in dimension by a factor of 1 2⁄ , 1/4 
and 1 8⁄ , with the same boundary condition and loads, see Table 4. 

Table 4: Dimensions of four specimens 

 

 

 

 

 

 

 

 

Component Original [mm] 1 2⁄  size [mm] 1/4 size [mm] 1 8⁄  size [mm] 
𝑑𝑑 5  2,5  1,25 0,63 
𝑊𝑊 50  25   12,50 6,25 
𝐻𝐻 75  37,5 18,75 9,375 
ℎ 1,00  0,50  0,25 0,125 
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Results of the analyses for the four specimens is showed in Table 5, where the red marked 
numbers is the mesh sizes that maintain the accuracy of stress intensity factor with respect to 
the analytical solution. The mesh size varies for the different specimen due to a limit of allowed 
elements in ANSYS.  

Table 5: Results of mesh size analyses of four specimen 

Dimension 
factor 

Mesh size 
[mm] 

Num. of 
Elements 

Error K I 
[%] 

Error K II 
[%] 

Original 0,10 238604 0,35 1,70 
 0,20 67739 0,28 1,58 
 0,40 24653 0,19 1,81 
 0,60 12824 0,11 0,52 
 0,80 7786 0,14 1,04 
 1,00 4934 0,15 2,56 
 1,20 4053 0,21 3,91 
 1,40 2819 0,23 5,30 
 1,50 2508 0,25 5,90 
     
1 2⁄  size 0,05 262958 0,36 1,64 
 0,10 70409 0,28 1,52 
 0,20 24566 0,19 1,76 
 0,30 12783 0,11 0,40 
 0,40 7930 0,14 1,14 
 0,50 4872 0,14 2,61 
 0,60 4047 0,20 3,95 
 0,70 2812 0,22 5,39 
     
1/4 size 0,025 353614 0,36 1,60 
 0,05 88718 0,28 1,47 
 0,10 24713 0,19 1,72 
 0,15 12929 0,11 0,37 
 0,20 7565 0,13 1,18 
 0,25 4971 0,15 2,61 
 0,30 3739 0,20 3,87 
 0,35 2914 0,25 5,43 
     
1 8⁄  size 0,025 106650 0,28 1,45 
 0,050 30420 0,19 1,68 
 0,10 7760 0,14 1,13 
 0,15 3983 0,19 4,043 
 0,20 2386 0,26 5,91 
 0,25 1502 0,27 7,04 
 0,30 1276 0,43 8,68 
 0,35 812 0,41 9,85 

 

  

   
62 of 84  

 



Numerical Analysis of Crack Propagation and Lifetime Estimation 
   

Relationship between the max value of allowed mesh size and the height of the crack ℎ see 
Figure 51(L), can be written as: 

As a results of the global mesh size analysis, to ensure the accuracy of stress intensity factor 
with respect to the analytical solution and the least number of elements due to computations 
time, the mesh size for further analysis must follow the relationship from (8.9).  

 

 

 

 
 

 

  

 

𝑚𝑚𝑣𝑣𝑑𝑑ℎ 𝑑𝑑𝑖𝑖𝑠𝑠𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥

ℎ
=

0,8
1

=
0,4
0,5

=
0,2

0,25
=

0,1
0,125

= 0,8  ⟹ 

 
Mesh size = 0,8 ∙ ℎ 

 

(8.9) 
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9 Programming in ANSYS   
Numerical analysis of crack propagation is carried out in ANSYS, where a code have been 
programmed in ANSYS Parametric Design Language (APDL), determining the trajectories of 
the crack and calculating the number of cycles during a load series of constant amplitude load. 
In Figure 57 a schematic diagram for the code is showed. 

 

Figure 57: Schematic diagram for APDL code in ANSYS 

The general procedure of the APDL code is categorised in two stages, an initial- and loop stage. 
In the initial stage a 2D geometry with boundary condition is defined, with the position and 
dimension of an initial crack. In the loop stage the crack is propagating with a given increment 
and a direction determined form the stress intensity factors, the crack stop propagating when 
the crack reach an edge in the crack material or the user defined number of steps is obtained. 
Further description of the APDL code is carried out in next section.  
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The required input for determination of crack trajectories and number of cycles is given by:    

• Solve operation for 𝐾𝐾𝑦𝑦𝑒𝑒 and 𝜃𝜃 
o Equivalent stress intensity factor from mode I and II with three different choices 

of criteria’s from section 6.2.  
 Tanaka’s criteria 
 Richard’s criteria  
 Irwin’ criteria 

o Direction of crack propagation, see section 6.1. with two different choices of 
criteria’s. 
 Maximum tangential stress of Erdogan and Sih. 
 Richard’s criteria 

Criteria of equivalent stress intensity factor and direction of crack propagation, is chosen in 
accordance with the results from the verifications in section 10.  

• Solve operation for numbers of cycles 𝑑𝑑. 
o Modified crack growth models, see section 7.3, with three different choices of 

models. 
 Paris 

• 2 inputs, values of materials constants 𝐶𝐶 and 𝑛𝑛 
 Forman 

• 4 inputs, values of materials constants 𝐶𝐶 and 𝑛𝑛, range in stress 
intensity 𝑑𝑑, and fracture toughness 𝐾𝐾𝐼𝐼𝑐𝑐. 

 NASGROW 
• 7 inputs, values of materials constants 𝐶𝐶, 𝑛𝑛 and 𝑝𝑝, 𝑞𝑞, range in 

stress intensity 𝑑𝑑, threshold value 𝐾𝐾𝑡𝑡ℎ, fracture toughness 𝐾𝐾𝐼𝐼𝑐𝑐. 
• Crack increment 𝑑𝑑𝑑𝑑 for the updated geometry. 

o The value of 𝑑𝑑𝑑𝑑 is chosen by the user. 
• Mesh operation, see section 8.2, for the optimal mesh configuration. 

o Mesh size is recommended to 0,8 ∙ ℎ, but can be chosen by the user. 
• Number of steps the analysis have to conduct  

The output is written to an output-file for every step 𝑖𝑖, with followed outputs.  

• Crack-tip coordinates with corresponding values of two crack angle. 
o 4 outputs, 𝜕𝜕𝑡𝑡𝑖𝑖𝑝𝑝, 𝑑𝑑𝑡𝑡𝑖𝑖𝑝𝑝 and 𝜃𝜃𝑡𝑡𝑖𝑖𝑝𝑝, ∆𝜃𝜃𝑡𝑡𝑖𝑖𝑝𝑝 (see next section). 

• Stress intensity factors 
o 4 outputs, effective stress intensity 𝐾𝐾𝐼𝐼  and 𝐾𝐾𝐼𝐼𝐼𝐼, 𝐾𝐾𝑦𝑦𝑒𝑒, and ∆𝐾𝐾. 

• Accumulated crack length. 
o 1 output, 𝑑𝑑𝑚𝑚𝑐𝑐𝑐𝑐. 

• Number of cycles from the three modified crack growth models. 
o 4 outputs, 𝑑𝑑𝑃𝑃𝑚𝑚𝑟𝑟, 𝑑𝑑𝐹𝐹𝑡𝑡𝑟𝑟 and 𝑑𝑑𝑁𝑁𝐴𝐴𝑆𝑆 with closure function 𝑓𝑓. 
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9.1 Crack propagation configuration in APDL code 
Here the function in the APDL code of the crack and the procedure of determining the crack 
trajectories is described. First the inputs for an initial crack is defined, from this the current 
crack configuration is determined see Figure 58. 

 

Figure 58: Definition of inputs for determining crack trajectories 

Component Description 
�𝑋𝑋𝑦𝑦𝑑𝑑𝑔𝑔𝑦𝑦,𝑅𝑅 ,𝑌𝑌𝑦𝑦𝑑𝑑𝑔𝑔𝑦𝑦,𝑅𝑅�, �𝑋𝑋𝑦𝑦𝑑𝑑𝑔𝑔𝑦𝑦,𝐿𝐿 ,𝑌𝑌𝑦𝑦𝑑𝑑𝑔𝑔𝑦𝑦,𝐿𝐿� X and Y coordinate for right and left edge of the crack  

�𝑋𝑋𝑡𝑡𝑖𝑖𝑝𝑝,𝑅𝑅 ,𝑌𝑌𝑡𝑡𝑖𝑖𝑝𝑝,𝑅𝑅�, �𝑋𝑋𝑡𝑡𝑖𝑖𝑝𝑝,𝐿𝐿 ,𝑌𝑌𝑡𝑡𝑖𝑖𝑝𝑝,𝐿𝐿� X and Y coordinate for right and left side of the crack-tip 
�𝑋𝑋𝑡𝑡𝑖𝑖𝑝𝑝,𝑌𝑌𝑡𝑡𝑖𝑖𝑝𝑝�  X and Y coordinate for crack-tip 

𝑑𝑑 Crack length 
𝑑𝑑𝑡𝑡𝑖𝑖𝑝𝑝 = ℎ Length of crack-tip 
ℎ = 𝑑𝑑𝑡𝑡𝑖𝑖𝑝𝑝 Width of crack  

𝛼𝛼 Angle of crack-tip, 60°  
𝜃𝜃𝑖𝑖𝑉𝑉𝑖𝑖 Initial crack angle, with respect to global coordinate system 
𝜃𝜃𝑐𝑐𝑎𝑎𝑟𝑟 Current crack angle 

𝑋𝑋𝑦𝑦𝑡𝑡𝑐𝑐 ,𝑌𝑌𝑦𝑦𝑡𝑡𝑐𝑐 Local coordinate system by crack-tip 
𝑋𝑋𝑔𝑔𝑦𝑦𝑡𝑡,𝑌𝑌𝑔𝑔𝑦𝑦𝑡𝑡 Global coordinate system 

�𝑋𝑋𝑡𝑡𝑖𝑖𝑝𝑝,𝑖𝑖𝑉𝑉𝑖𝑖 ,𝑌𝑌𝑡𝑡𝑖𝑖𝑝𝑝,𝑖𝑖𝑉𝑉𝑖𝑖� X and Y coordinate for initial crack-tip 
�𝑋𝑋𝑡𝑡𝑖𝑖𝑝𝑝,𝑐𝑐𝑎𝑎𝑟𝑟 ,𝑌𝑌𝑡𝑡𝑖𝑖𝑝𝑝,𝑐𝑐𝑎𝑎𝑟𝑟� X and Y coordinate for current crack-tip 

 

The initial crack is defined from coordinate of right and left edge and the crack-tip coordinate 
with a corresponding initial crack angle 𝜃𝜃𝑖𝑖𝑉𝑉𝑖𝑖, from this the value of ℎ and 𝑑𝑑𝑡𝑡𝑖𝑖𝑝𝑝 is calculated and 
the coordinate of right and left tip is determined with an angle of 30 deg. from the crack-tip.  
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The current crack is defined from the right and left tip coordinate, and the crack-tip is calculated 
form crack increment 𝑑𝑑𝑑𝑑 and the current crack angle 𝜃𝜃𝑐𝑐𝑎𝑎𝑟𝑟. This current crack angle is calculated 
from the initial angle 𝜃𝜃𝑖𝑖𝑉𝑉𝑖𝑖 and the angle determined from directions criteria ∆𝜃𝜃, from Erdogan 
and Sih or Richard from section 6.1, which gives 𝜃𝜃𝑐𝑐𝑎𝑎𝑟𝑟 = 𝜃𝜃𝑖𝑖𝑉𝑉𝑖𝑖 + ∆𝜃𝜃. 

This procedure form the current crack is repeated in the loop stage, for the user defined number 
of steps or until the crack reach an edge in the crack material. 

Initial crack angle 

In order to determine the stress intensity factors in ANSYS a local coordinate system at the 
crack-tip is needed, in that case the initial crack angle 𝜃𝜃𝑖𝑖𝑉𝑉𝑖𝑖 is defined from the global coordinate 
system as showed in Figure 59,  

 

Figure 59: Definition of initial crack angle 

Determining the numbers of cycles in APDL code 

In accordance with the three modified crack growth models from section 7.3, and the equivalent 
stress intensity factor 𝐾𝐾𝑦𝑦𝑒𝑒 for mode I and II, see section 6.2 with effective stress intensity factor 
see section 8.3, a function of determining the numbers of cycles in the APDL code is defined.  

For every step the maximum equivalent stress intensity 𝐾𝐾𝑦𝑦𝑒𝑒,𝑚𝑚𝑚𝑚𝑥𝑥 is calculated and range in stress 
intensity is defined as: 

 

 
∆𝐾𝐾 = 𝐾𝐾𝑦𝑦𝑒𝑒,𝑚𝑚𝑚𝑚𝑥𝑥 − 𝐾𝐾𝑦𝑦𝑒𝑒,𝑚𝑚𝑖𝑖𝑉𝑉 
𝐾𝐾𝑦𝑦𝑒𝑒,𝑚𝑚𝑖𝑖𝑉𝑉 = 𝑑𝑑 ∙ 𝐾𝐾𝑦𝑦𝑒𝑒,𝑚𝑚𝑚𝑚𝑥𝑥 

 
(9.1) 
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The modified crack grow models contains different limitations from the threshold value 𝐾𝐾𝑡𝑡ℎ 
and fracture toughness 𝐾𝐾𝐼𝐼𝑐𝑐. Here a description of how the APDL code handle these limitations 
from the three modified crack growth models. 

Paris     

No limitations is the model of Paris, in that case for every step a number of cycle is calculated. 

Forman 

The fracture toughness is taking into account for the model of Forman, and the number of cycle 
is calculated with followed limitations. 

NASGROW 

For the NASGROW model the threshold and fracture toughness is taking into account, and the 
number of cycle is calculated with followed limitations. 

It is important to mention that the function of crack propagation and determining the number 
of cycle is independent. That the crack propagation is carried out in accordance to the chosen 
increment 𝑑𝑑𝑑𝑑, and the determined angle of direction ∆𝜃𝜃 from each step. The crack increment 𝑑𝑑𝑑𝑑 
is also used for determining number of cycle, but no further correlation between the two 
functions is used. 

 

      

 

  

  

 𝑑𝑑𝑖𝑖 = � 0   𝑖𝑖𝑓𝑓   ∆𝐾𝐾 >  𝐾𝐾𝐼𝐼𝑐𝑐  
𝑑𝑑𝑖𝑖   𝑖𝑖𝑓𝑓   ∆𝐾𝐾 <  𝐾𝐾𝐼𝐼𝑐𝑐     

 
(9.2) 

 𝑑𝑑𝑖𝑖 = �
0    𝑖𝑖𝑓𝑓    ∆𝐾𝐾 <  𝐾𝐾𝑡𝑡ℎ                 
𝑑𝑑𝑖𝑖   𝑖𝑖𝑓𝑓    𝐾𝐾𝑡𝑡ℎ < ∆𝐾𝐾 <  𝐾𝐾𝐼𝐼𝑐𝑐
0    𝑖𝑖𝑓𝑓    ∆𝐾𝐾 >  𝐾𝐾𝐼𝐼𝑐𝑐              

 

 

(9.3) 
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9.2 Configuration of ANSYS interface  
In ANSYS the interface menu from where the program is controlled during a picking operations 
is called the GUI (Graphical User Interface), see Figure 60(R). From this menu all the functions 
available in ANSYS can be selected in order to implement analyses. All the functions is defined 
from a function block, see  

Figure 60(L), where a function block for creating a rectangle is showed, these function blocks 
is programmed to call APDL codes to conduct the function.  

 

 

 

Figure 60: (R) GUI menu in ANSYS Mechanical, (L) function block for creating a rectangle 

The function blocks is made by UIDL codes (User interface design language) that define the 
options for the function block. In order to arrange the functions blocks in the GUI menu a menu 
block can be used to ensure the correct placement of the function block. This menu- and 
function blocks is programmed into a control file from where the UIDL codes is conducted 
[21].  

 

Figure 61: Example of the construction for menu- and function blocks 

In Figure 61 an example of construct a control file with two function blocks, where the first is 
arranged by a menu file, and the second conducted directly from the control file. 
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Implementing APDL code in ANSYS GUI 

In ANSYS three control files arrange the menu- and functions files for the whole GUI menu. 
In order to implementing the APDL code from section 9.1. in the GUI, a user defined control 
file have been created to modify the GUI menu. In Figure 62 a diagram showed the 
configuration of this file, with the use of control file, menu- and function blocks, and the APDL 
codes.   

The block bracket [ ] is used for file names and APDL codes, the parenthesis ( ) is used for 
names of the menu- and function blocks.  

 

Figure 62: Schematic diagram for implementing the APDL code in ANSYS GUI 

In order to implement the APDL codes in the GUI menu 5 files is used, one control file and 4 
APDL codes. Implementing of this files in ANSYS is showed in appendix 1. 
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In Figure 63 the modified GUI menu is showed with corresponding menu- and function blocks.  

 

Figure 63: Modified GUI menu with implemented APDL codes for crack propagation 

In Figure 64 the function block for the crack growth model of NASGROW is showed, where 
the inputs parameters and outputs parameters is described in section 9.1. 

 

Figure 64: Function block for inputs for the crack growth from NASGROW 
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10 Verification of APDL code 
In order to verify the APDL code described above with respect to the crack trajectories and 
the estimation of lifetime two experimental analyses is benchmarked with the result from the 
APDL code. The mix-mode criteria is compared and the plastic zone size is evaluated in order 
to ensure that LEFM behaviour is obtained.     

10.1 Trajectories 
The crack direction criterion, maximum tangential stress (MTS) and criterion of Richard from 
eq.(6.5) and eq.(6.6) is verify by external experimental data of a specimen with dimension and 
boundary condition [22], Figure 65(R).  

Modified boundary condition is carried out in order to run a numerical analysis Figure 65(L). 
All dimension are in US customary units due to comparison of results.   

The crack increment 𝑑𝑑𝑑𝑑 for this analysis is 0,1 [in] and mesh configuration due to mesh size is 
implemented from section 8.2.        

  
Figure 65: (R) Dimension and boundary condition of plate specimen, (L) Dimension and boundary condition of plate for 

numerical analysis in APDL, all dimension in inches 
Component Value 

𝐸𝐸 474.000 𝑝𝑝𝑑𝑑𝑖𝑖  
𝑣𝑣 0,3 
𝑃𝑃 1326 𝑖𝑖𝑏𝑏 

𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑 10.000 𝑝𝑝𝑑𝑑𝑖𝑖  
All dimension in US customary 
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Results of the numerical crack trajectories is showed in Figure 66 for a specimen with and 
without holes, note it is only for the specimen with holes where experimental results exists. The 
solution in ANSYS is conducted for plane strain. 

 

Figure 66: Numerical results in ANSYS of the crack trajectories 

Comparison of numerical and experimental results is showed in Figure 67. The two criterion 
for numerical analysis MTS and Richard (RICH) practically follows the crack trajectories from 
experimental results.  

The two criterion of MTSs and Richard look similar and for further studies the MTS criterion 
is taking into account.    

 

Figure 67: Experimental and two numerical crack trajectories for specimen with holes 
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Difference between the numerical crack trajectories for a specimen with and without holes is 
showed in Figure 68, and with the experimental results for comparison.    

 
Figure 68: Crack trajectories for a specimen with and without holes 

 
The hole in the middle affect the original trajectories by the Poisson effect, where stress 
concentrations around the hole produce shear stresses, and due to the MTS criterion from 
section 6.1, the crack direction is affected by shear stresses.      

Test of mix-mode criteria 

In order to see the different of mix-mode criteria from section 6.2, the three criterion have been 
compared through analysis of the plate with three holes from above.  

In Figure 69 the equivalent stress intensity factor 𝐾𝐾𝑦𝑦𝑒𝑒 from criterion of Tanaka, Richard and 
Irwin is showed with the corresponding crack length of the trajectories.  

 

Figure 69: Equivalent stress intensity factor from three different criterion. 

It is seen that the three criterion obtain almost the same value of 𝐾𝐾𝑦𝑦𝑒𝑒, only with a difference in 
the decimal place. Note the unit is US customary due the input unite.  
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Plastic zone radius 

From section 3.6 the plastic zone around a crack-tip is described with corresponding criteria for 
approximation of the plastic zone to still obtain LEFM behavior. The criteria of the radius of 
the plastic zone from Irwin from eq.(3.30), with a varying of 𝐾𝐾𝑦𝑦𝑒𝑒 through the crack trajectories 
and a corresponding 𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑. In Figure 70 the criteria of Irwin is showed, with a corresponding 
max value of plastic zone radius 𝑟𝑟𝑦𝑦 ≤ 𝑑𝑑 8⁄  for monotonic loading.    

 

Figure 70: Radius of plastic zone from criteria of Irwin, and corresponding max value from monotonic loading 

It is seen that the plastic zone radius from Irwin do not exceeds the max radius from monotonic 
loading that is a conservative approximation due to the fact the max radius for cyclic loading is  
𝑟𝑟𝑦𝑦 ≤ 4.     

10.2 Discussion of results 
The crack trajectories from experimental and numerical results are almost identical and the two 
criteria of Richard, and Erdogan and Sih shows identical behaviour, and from this the maximum 
tangential stress criteria of Erdogan and Sih is used for further analysis. The analysis of mix-
mode criteria showed almost no difference, so for further numerical analysis the criteria of 
Tanaka is chosen to determine the equivalent stress intensity factor.    
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10.3 Verification of lifetime estimation 
In section 7.3, the prediction of lifetime for a structure subjected for cycle loading is described. 
Due to modified crack growth models the number of cycle can be obtained from material 
parameters, crack length and the stress intensity factor. 

In this section a test specimen is evaluated from extrnal experimental data [23], where the 
material constants 𝐶𝐶 and 𝑛𝑛 is estimated, a comparison of the predicted number of cycle from 
the experiment and numerical analyses from ANSYS is performed, for plane strain. 

In Figure 71(R) a modified compact test specimen subjected to a constant load series is showed, 
with a corresponding plot of the measured number of cycles and crack length, it is seen that the 
specimen is subjected for fracture for approximated 58.000 cycles and a crack length of 25 mm. 
Note that the initial crack length 𝑑𝑑0 is 10,5 mm. 

The load is subjected by a test machine in constant load, the tensile load is 4.000 N with a stress 
ratio of R = 0,05 that is neglect in the analysis.  

Material data: 

Component Value 
𝐸𝐸 71,7𝐺𝐺𝑃𝑃𝑑𝑑 
𝐾𝐾𝑡𝑡ℎ 0,9 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚 
𝐾𝐾𝐼𝐼𝑐𝑐 96 𝑀𝑀𝑃𝑃𝑑𝑑√𝑚𝑚 
𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑 470 𝑀𝑀𝑃𝑃𝑑𝑑 

 
  

  
Figure 71: (R) Test specimen for lifetime estimation [23], (L) plot of measured number of cycles and crack length. 
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A numerical analyses is conducted in ANSYS in order to benchmark the results from the 
experimental and numerical analyses. The boundary conditions for the specimen is showed in 
Figure 72, the tensile loads 𝑃𝑃1 - 𝑃𝑃3 obtain a value of 4000 3⁄  respective, and the crack increment 
𝑑𝑑𝑑𝑑 = 0,2 𝑚𝑚𝑚𝑚. 

 

Figure 72: Boundary condition of modified compact specimen 

The crack trajectories of the experimental and numerical analyses from ANSYS is showed in 
Figure 73. It is seen that the two crack paths almost look similar.        

  
Figure 73: Crack trajectories, (R) for experimental specimen [23], (L) for numerical specimen from ANSYS 

 

In order to estimate the number of cycles from the crack growth models of Paris law eq.(7.5) in 
ANSYS, the material constants 𝐶𝐶 and 𝑛𝑛 have to be estimated.  

This is conducted in accordance with the description in section 7.2, first the range in stress 
intensity ∆𝐾𝐾 is found from an analytical solution with corresponding crack length 𝑑𝑑𝑖𝑖 and the 
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crack growth rate 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄  is determined from eq.(7.13). Then finally the intercept and slope of 
the 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄  vs. ∆𝐾𝐾 curve is estimated from the method of least square from eq.(7.16) to (7.21). 

The analytical solution for mode I of the modified compact specimen (normally the specimen 
only have two holes, besides the crack), is given by [6]: 

 

Where 𝛼𝛼 = 𝑚𝑚𝑖𝑖
𝑊𝑊

, the width: 𝑊𝑊 = 40 𝑚𝑚𝑚𝑚 and thickness: 𝑎𝑎 = 10 𝑚𝑚𝑚𝑚, see Figure 71(R).  

The stress ratio R = 0,05 was neglect, therefore the value of ∆𝐾𝐾 is equal to 𝐾𝐾𝐼𝐼 in the further 
analyses. 

The results of the analytical solution and the numerical results from ANSYS for mode I and II 
is showed in Figure 74, with a crack length varying from 10,5 mm to 25 mm in order to cover 
the same crack path length as the experimental.  

It is seen that the mode II from ANSYS is zero for most of the analysis and first affect the mode 
I at the last part of the analysis. The analytical solution and mode I from ANSYS follow each 
other through the crack trajectories with a different for approximated 10%. Due to neglect of 
stress ratio R, the  ∆𝐾𝐾 is equal to 𝐾𝐾𝑦𝑦𝑒𝑒 from eq.(9.1) for results in ANSYS.      

      

 

Figure 74: Analytical solution for modified compact specimen 

𝐾𝐾𝐼𝐼 =
𝑃𝑃

𝑎𝑎√𝑊𝑊
(2 + 𝛼𝛼)(0,886 + 4,64 ∙ 𝛼𝛼 − 13,32 ∙ 𝛼𝛼2 + 14,72 ∙ 𝛼𝛼3 − 5,60 ∙ 𝛼𝛼4 )

(1 − 𝛼𝛼)3 2⁄   
 

 
(10.1) 
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In order to estimate a power function by the method of least square from section 7.2, 7 values 
is selected from the experimental data in Figure 71(L). The selected value is chosen in order to 
get the best fit for a power function due to lack of accurate data. In Figure 75(R) the 7 selected 
values is indicated with others experimental data.  

 

The crack growth rate:  𝑑𝑑𝑚𝑚
𝑑𝑑𝑁𝑁

= 𝑚𝑚𝑖𝑖+1−𝑚𝑚𝑖𝑖
𝑁𝑁𝑖𝑖+1−𝑁𝑁𝑖𝑖

, is determined for the experimental data and the 7 fit data 

values, that become 6 values for the crack growth rate, this is showed in Figure 75. From the 
method of least square the constants for intercept and slope of the power function is determined: 

Or 

This power function or curve fit is showed in Figure 75(L), where it fits the corresponding data 
values. The correlation coefficient eq.(7.21) for this curve fit:𝑑𝑑2 = 0,9857, that is a reasonable 
value. 

  
Figure 75: (R) Experimental data with 7 selected data set for curve fit, (L) log-log plot of data with corresponding curve fit. 

The values from eq.(10.2) and (10.3) are the materials constants 𝐶𝐶 = 3 ∙ 10−9 and 𝑛𝑛 = 4,1295 
from Paris law.  

In order to validate the determination of cycles through crack propagation in ANSYS the 
material constants for Paris estimated above have been used. 

 

  

 𝑑𝑑 = 3 ∙ 10−9 ∙ 𝜕𝜕4,1295 
 (10.2) 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 3 ∙ 10−9 ∙ ∆𝐾𝐾4,1295 
 

(10.3) 
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In Figure 76 a comparison of the experimental solution and the results from ANSYS is showed. 
As seen in Figure 74 the different between the stress intensity factor for mode I for analytical 
solution and the results from ANSYS was approximated 10%. If this lag of accuracy is taking 
into account the results is near by the results from the experiment seen by the yellow graph in 
the figure, where the range in stress intensity ∆𝐾𝐾 have been increased by 10%.         

 

Figure 76: Comparison of experimental data and numerical data from ANSYS 
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Plastic zone radius 

The criteria of the radius of the plastic zone of Irwin from eq.(3.30), with a varying of 𝐾𝐾𝑦𝑦𝑒𝑒 
through the crack trajectories and a corresponding 𝜎𝜎𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑑𝑑. In Figure 77 the criteria of Irwin is 
showed, with a corresponding max value of plastic zone radius 𝑟𝑟𝑦𝑦 ≤ 𝑑𝑑 8⁄  for monotonic loading.    

 

Figure 77: Radius of plastic zone from criteria of Irwin, and corresponding max value from monotonic loading 

It is seen that the plastic zone radius from Irwin do not exceeds the max radius from monotonic 
loading. 

10.4 Discussion of results 
Results of the lifetime estimation due to numbers of cycles is more inaccurate due to estimation 
of the material constants 𝐶𝐶 and 𝑛𝑛. The uncertainty of data selection from the experiment plays 
an role, where 6 values of the original data was selected for curve fit. A other significant issue 
is the analytical solution of the stress intensity factor compared with the results from ANSYS 
that show a different of approximately 10%. Which leads to an high error in number of cycles 
due to the fact that the ∆𝐾𝐾 is powered by a factor of 𝑛𝑛 = 4,1295. 
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11 Conclusion 
The main focus of this Master Thesis was to create a numerical tool conducted in ANSYS to 
simulate the trajectories of a crack and estimate the lifetime due to cyclic loading of a structure.  

Trajectories  

A study of the mesh configuration is conducted and the most optimal mesh for near crack-tip 
mesh and global mesh is obtained. The near crack-tip mesh is made from singular elements and 
with 4 layers of quadric elements. The global mesh consist of quadric elements with a 
corresponding size to the high of the crack, where followed relation is recommended, Mesh-
size = 0,8 ∙ ℎ, see Figure 51. 

The contours of the interaction integral is analysed, in order to obtain the most accurate results 
followed numbers of contours is chosen: 3, 4 and 5. 

In section 10.1 the APDL code is compared to an experimental analysis, and it is seen that the 
trajectories is almost identical, the criteria of maximum tangential stress from Erdogan and Sih 
is used for further analyses. The APDL code is a powerful tool in order to obtain the crack 
trajectories from a numerical perspective. 

The Mix-mode criteria showed almost identical behaviour, and from this the criteria from 
Tanaka is used for further analyses.  

Lifetime estimation 

Different cack growth models is implemented in the APDL code in order to determine the 
number of cycles before fracture occur. The model of Paris is compared to an experimental 
analyses with mediocre results for different reason.  

The main reason is the results from the stress intensity factors due to the determination of 
material constants, where a different of approximated 10% of the analytical solution and 
numerical solution is obtained. The difference between the experimental and numerical results 
become around 42.000 cycles with an error of 42%, if the different of 10% from the stress 
intensity factors is taking into account, an error of 10.000 cycles or 17% is obtained. 
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13 Appendix 1 
Installations of the UIDL and APDL files in ANSYS is described in this section, an example 
is conducted in order to show how the program is working. 

1. From the attached CD, find the folder named “Crack modelling”, copy this folder to 
e.g. the desktop.  

2. Find the ANSYS folders on the computer where UIDL and APDL files is placed, see 
Figure 78 (Typical placement of this files).   

 
 

Figure 78 Folder for UIDL and APDL files 

3. Copy the file from UIDL folder called “menulist150.ans” (150 = version 15.0), to the 
folder “Crack modelling”, see Figure 79. 
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Figure 79 "Crack modelling" folder with "menulist150" open in notepad 

4. Open the file “menulist150.ans” , where the first four lines is directories for the 
ANSYS control files, create a new line with the directory of the folder “Crack 
modelling” with  “\” and the filename “UIDLcrackmodelling.GRN”, see Figure 79. 

5. Cut the file “menulist150.ans” back to the folder of UIDL folder. 
6. Open the folder “APDL file” and copy all the five files to the folder “APDL”, see 

Figure 78. 

The installations of the UIDL and APDL files is conducted, and ANSYS in ready to run with 
the new interface menu and APDL codes. 
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Example of the program 

1. Open the program “Mechanical APDL 15.0”, and type “plate” in the Command 
Prompt line, see fig Figure 80. 

 

Figure 80 Modify GUI menu, with marked Command Prompt line 

2. The command “plate” is a command for a plate with dimension of 50 × 75 [𝑚𝑚𝑚𝑚], and 
boundary condition showed in Figure 81. 

 

Figure 81 Boundary condition for plate 
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3. Click on the “Crack Input” button and fill out the boxes with followed values, see 
Figure 82, and press “OK”. 

 

Figure 82 Crack input with corresponding values 

4. Click on the “Paris” button , see Figure 80, and fill out the boxes with followed 
values, and a directory for the output file, click “OK” to start analysis, see Figure 83. 
 

 
Figure 83 Paris function block, with corresponding values 
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5. The crack trajectory of the plate is showed in Figure 84.  
 

 

                 Figure 84 Results of analysis 

6.  The output file is showed in Figure 85, with corresponding terms of the value.   

 

Figure 85 Output file with corresponding terms of the value 
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