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Abstract

This report documents the addition of new features to Caal. Previous work
on Caal resulted in a web application used for teaching students about reac-
tive systems. The tool supports description of processes in the process alge-
bra Calculus of Communicating Systems. It is possible to verify the presence
or absence of various preorders and equivalence between processes, and the
tool offers to play against the user in bisimulation games to prove to the user
the validity of a result. The tool also supports model checking of recursive
Hennessy-Milner formulae. All computations are done by reducing problems
to dependency graphs, and interpreting the computed fixed-point assignments,
which are computed by an ‘on-the-fly’ algorithm.

We extend Caal with full syntax and semantics of HML formulae and
offer reductions from HML formulae to dependency graphs. To complement
the bisimulation games, we define the HML game and show that satisfiabil-
ity is related to which player has a universal winning strategy. We also show
that universal winning strategy corresponds to fixed-point assignments on the
dependency graphs, and in doing so also shows the relationship between satis-
fiability and fixed-point assignments.

As an alternative to playing bisimulation games, we show it is possible to
compute a distinguishing formula for two non-bisimilar processes. Finding the
simplest possible distinguishing formula turns out difficult and we conjecture
the decidability problem of whether a simple formula exists is NP-hard. Instead
we present a greedy algorithm simplifies some formulae.

In Caal it is possible to view a visual representation of processes. Processes
can become quite complex and difficult to understand. Equivalence collapses
may simplify the state system and allow the user to focus on particular aspects
of a process. We present the theory and an algorithm to collapse processes
based on merging equivalent processes into equivalence classes.

As an experiment we attempted to reuse the code in Caal for a parallel
algorithm. We document our design, pseudocode, and test result. The results
were unsatisfactorily, but we identify possible reasons for this.
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1Introduction

This report documents the continuation of our work on Caal, first documented
in [14]. Caal is a tool intended for education in semantics and verification of
processes described in the process algebra Calculus of Communicating Systems
(CCS) [13]. At Aalborg University students can choose to follow a semantics
and verification course as part of their education. The course teaches students
the theory of reactive systems and how to model, analyse, and understand
them. Caal has a graphical interface with an editor that supports the syntax
of CCS, an explorer which enables the user to interact with CCS processes.
Figure 1.1a and Figure 1.1b shows the definition of an CCS process in the
editor and the process visualised by the explorer in Caal.

(a) CCS editor. (b) CCS Labelled Transition System.

Figure 1.1

Apart from supporting visualisation of CCS processes, Caal also supports
checking for various preorders and equivalences, including strong and weak
bisimilarity, and offers model checking for formulae described using recursive
Hennessy-Milner logic (HML) [8; 11]. It includes equivalence games where the
user is able to play against the computer in a way to help convince them of
the validity of a equivalence result. To describe the theory behind, and the im-
plementation of these features, we make use of Dependency Graph (DG)s [12].
For computing the fixed-points of the DG we use a local “on-the-fly” algorithm.

Caal also supports generation of distinguishing formulae, as an alternative
to playing games. Distinguishing formulae are another way of convincing the
user that two processes are not bisimilar. For two non-bisimilar processes, a
distinguishing formula has the property that one process satisfies the formula
and the other does not. We show that finding a distinguishing formula for
two non-bisimilar processes is rather simple, but the problem of finding the
simplest one is not.

The original report did not fully describe the semantics of recursive HML in
Caal. We amend this by offering the full semantics for recursive HML and by
describing the complete reduction from HML to dependency graphs for verifica-
tion purposes. Since games are a useful approach to gain deeper understanding
of the transition systems, we implement games for HML formulae, describe the
rules, and prove the relation between game winner and satisfiability.

For complex transition systems the graphical overview of a process and
its transitions can quickly become unwieldy and confusing. In some cases

13



14 CHAPTER 1. INTRODUCTION

the complexity of the graph can be reduced by collapsing processes that are
bisimilar. If a process can take a transition to two bisimilar processes, we can
simplify the visualisation of the two bisimilar processes, by collapsing them
into one process, without changing the behaviour.

Caal is meant to be an educational tool running on the omnipresent
browser platform. Its primary design goal was not designed to fully utilise
the computer’s processing power. Nevertheless we investigate whether Caal
can be adapted to run in parallel on multiple processes. This would make
the tool usable for larger state systems that are not practical to verify in the
browser. We attempt to adapt the software and try to compute fixed-points,
the central framework for all computations in Caal, using multiple processes
running in parallel.

1.1 Related Work

This sections talks about some of the other model checking tools available and
how they are similar or different from Caal.

The Edinburgh Concurrency Workbench (CWB) [18] is a tool for
analysing reactive systems, however there is no longer in active develop-
ment. The latest binaries are from 1999 and are not supported on Mac
OS. The users interact with CWB using a command-line interface. CWB
has been the tool of choice at Aalborg University through a number of
years. However with the lack of support it has become difficult to acquire
and install.
CWB supports µ-calculus for model checking. As of version 7.1 they have
implemented support for games, however only strong bisimulation game
is available.

Concurrency Workbench of the New Century (CWB-NC) [4] is a
tool developed at Stony Brook University. Unlike CWB they claim to
support both a command-line interface and a graphical interface however
it has been impossible to test as the last update is from year 2000 and
the download links do not work.
CWB-NC supports µ-calculus for model checking and their system design
allows users to add new equivalences and preorders themselves. There
has no been no systematic studying of their performance.

Both CWB and CWB-NC are command-line based tools with little or none
graphical interface. This also includes no editor. The users must write their
CCS programs in an external editor without syntax checking and load the file
using the command-line.

Both tools have support for equivalence checking of CCS and model check-
ing using µ-calculus. Neither of them make a claim to be using “on-the-fly”
algorithms for the verification process.

The most notable comparison of the two tools and Caal is our graphi-
cal interface, abstracting away from the command-line and letting the users
visualise their processes. Caal includes an editor with full support for the
syntax and semantics of CCS and implements games for both strong and weak
bisimulation and model checking game for recursive HML formulae.
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1.2 Bibliographical Remarks

The definitions and theorems in Chapter 2 are the same as used in our previous
work [14], with the exception of Example 2.8 and Example 2.19.

Both the notion of dependency graphs and the local minimum fixed-point
algorithm described in Section 2.2, was introduced by Liu and Smolka in [12].
Our definitions, which differ in the descriptions of pre-fixed-points and post-
fixed-points, and the algorithm, which contains a correction [9] to a minor
omission in the original, are taken from previous work [14].

Hennessy and Milner introduced HML in [8]. In previous work we extended
the syntax from [2] to include multiple recursively defined variables. The syn-
tax presented in Chapter 3 is the same, but in this report the semantics are
reworked, and completed for multiple variables.

The definition and rules of both bisimulation and HML games are based
on the book Reactive Systems [2], but the reduction to dependency graphs for
both bisimulation and HML games are from our previous work [14]. Just like
the semantics, the reduction of HML to dependency graphs has been completed
to support multiple variables.

The Caal Tutorial in Chapter 8 is written in cooperation with project
members from our previous work, and it is partly based on the text from [3].
Our main contributions to this chapter is Section 8.1, the section about model
checking in Section 8.4 and the section about HML game in Section 8.5.





2Preliminaries

Caal is a multi semester project that continues from previous work. It is
necessary to introduce some previous theory in order for this report to be un-
derstandable. The first part covers the language CCS, and Labelled Transition
System (LTS) along with bisimulation relations. Following this, we introduce
dependency graphs and assignments which forms the basis for implementation.
The chapter ends by describing algorithms to compute fixed-points.

2.1 Syntax and Semantics for CCS

We have a countable finite collection of channel names A, and the set of com-
plementary names A = {a | a ∈ A}. The label set is defined as L = A ∪ A.
Then the set of actions is defined by

Act = L ∪ {τ}.

Assume a finite collection of process names or process constants K. The
collection of CCS expressions P is given by the grammar:

P,Q ::= K
∣∣∣ α.P ∣∣∣ P +Q

∣∣∣ P | Q ∣∣∣ P [f ]
∣∣∣ P \ L ∣∣∣ 0

where K is a process name in K, α is an action in Act, L is a set of labels from
A, and f : Act −→ Act is a function satisfying the constraints:

f(τ) = τ,

f(a) = f(a) for each label a.

By convention we have that τ = τ .
The behaviour of each process name is given by a defining equation. There

is one definition for each K ∈ K:

K
def= P,

where P ∈ P and the constant K may appear in P .
With relabelling it is possible to write [b1/a1, ..., bn/an], where n ≥ 1, ai ∈

A, bi ∈ A ∪ {τ}, for each i ∈ {1, ..., n} and ai are distinct channel names. The
relabelling maps each ai to bi, and each ai to bi.

CCS uses the convention that the operators have decreasing binding strength
in the following order

1. Restriction and relabelling (the tightest binding)
2. Action prefixing
3. Parallel composition and summation

The Structural Operational Semantics (SOS) rules are given in Table 2.1
where α ∈ Act and a ∈ L.

17



18 CHAPTER 2. PRELIMINARIES

ACT
α.P

α−→ P

COM1 P
α−→ P ′

P | Q α−→ P ′ | Q

COM2
Q

α−→ Q′

P | Q α−→ P | Q′

COM3
P

a−→ P ′ Q
a−→ Q′

P | Q τ−→ P ′ | Q′

CON P
α−→ P ′

K
α−→ P ′

K
def= P

SUM1 P
a−→ P ′

P +Q
a−→ P ′

SUM2
Q

a−→ Q′

P +Q
a−→ Q′

REL P
α−→ P ′

P [f ] f(α)−−−→ P ′[f ]

RES P
α−→ P ′

P \ L α−→ P ′ \ L
α, α /∈ L

Table 2.1: SOS rules for CCS.

Given an CCS process and the SOS rules we can describe the behaviour of
a process using a LTS [10]. An LTS consists of a number of states, a set of
actions, and relations.

Definition 2.1 — Labelled Transition System
An LTS is a triple (Proc, Act,→ ) where Proc is a set of states, Act is a
set of actions, and →⊆ Proc× Act× Proc is the transition relation.

Given one or more processes, it might be interesting to see if two states
have the same behaviour, more specifically whether or not they can match
each other’s transitions. For this we introduce the notion of bisimulation. We
introduce both strong and weak bisimulation. Two states are said to bisimulate
each other if there exists a bisimulation relation between them.

Definition 2.2 — Strong Bisimulation
A binary relation R over the set of states of an LTS is a bisimulation if
and only if whenever s1Rs2 and α is an action:

If s1
α−→ s′1 then there is a transition s2

α−→ s′2 such that s′1Rs′2 and
If s2

α−→ s′2 then there is a transition s1
α−→ s′1 such that s′1Rs′2.

Two states s and s′ are bisimilar written, s ∼ s′, if and only if there
is a bisimulation that relates them. From now on the relation ∼ will be
referred to as strong bisimilarity.



2.1. SYNTAX AND SEMANTICS FOR CCS 19

All τ -actions in process behaviours are supposed to be internal and thus
unobservable. Consider the following example acc.τ.0 and acc.0, since the τ -
action is supposed to be unobservable we would expect these two processes to
be observable equivalent. Unfortunately, the processes acc.τ.0 and acc.0 are not
strongly bisimilar. Therefore we need a notion of equivalence which preserves
all the good properties of strong bisimulation abstracting from τ -actions in the
behaviour of a process. In order to define a notion that allows us to abstract
from the unobservable τ -actions in process behaviours, we first must define
another transition relation between processes.

Definition 2.3
Let P and Q be two states in an LTS. For each action α, we write P α=⇒ Q
if and only if either

• α 6= τ and there are processes P ′ and Q′ such that

P( τ−→)∗P ′ α−→ Q′( τ−→)∗Q

• or α = τ and P( τ−→)∗Q,

where we write ( τ−→)∗ for the reflexive and transitive closure of the relation
τ−→.

With ⇒ defined, we are able to define the equivalence notion weak bisimu-
lation.

Definition 2.4 — Weak Bisimulation
A binary relation R over the set of states of an LTS is a weak bisimulation
if and only if whenever s1Rs2 and α is an action (including τ):

if s1
α−→ s′1, then there is a transition s2

α=⇒ s′2 such that s′1Rs′2;
if s2

α−→ s′2, then there is a transition s1
α=⇒ s′1 such that s′1Rs′2.

Two states s and s′ are weakly bisimilar, written s ≈ s′, if and only if
there is a weak bisimulation that relates them. From now on the relation
≈ will be referred to as weak bisimilarity.

CCS processes can consists of different constants, but we want to ensure
that every process is guarded within the scope of some action prefix.

Definition 2.5 — Guarded Process Constant
A process constant K is guarded in CCS expression P , if every occurrence
of K in P is within the scope of some action prefixing.

We say that if a process is not guarded, it is unguarded and we can prove
that any process that is guarded has finitely many derivation trees.
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Lemma 2.6 — [14]
Any CCS expression P where every process constant K is guarded in P
can only have finitely many derivation trees, all of them finite.

Any prcoess outside the scope of an action prefix is unguarded. We provide
a more formal definition in terms of a reference graph

Definition 2.7 — Reference Graph
A reference graph is a directed graph described by a tuple (V,E), where
the vertices V = K are constants and E ⊆ V ×V . For any CCS definition
K

def= P we have (K,K ′) ∈ E if and only if K ′ occurs in P unguarded (not
in the scope of action prefixing).

Example 2.8
Consider the following process definitions.

P
def= Q+ a.R

Q
def= R+ b.Q+ P

R
def= P + c.R+R

Figure 2.1 shows the corresponding reference graph.

P

Q R

Figure 2.1: Cycle representing unguarded recursion.

Process P does not have an edge to R since R occurs in the scope of
action prefixing in a.R. The graph describes that to derive the transitions
for the process constant P , it is necessary to derive the transitions for
the process constant Q, which itself depends on R and P . To derive the
transitions for R is it necessary to derive the transitions both for P and
R itself. Cycles in the reference graph correspond to unguarded recursion.
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Definition 2.9 — Weakly Guarded CCS Expression
A CCS program is weakly guarded if and only if its reference graph has no
cycles.

A program fulfilling this definition of guardedness satisfies the following
property:

Lemma 2.10 — [14]
All weakly guarded CCS expressions have a finite number of derivations
trees all of finite size.

2.2 Dependency Graphs

This section introduce the notion of DG and algorithms for computing fixed-
points for dependency graphs [12]. DGs are used as the basis for verifications
in Caal.

In order to compute fixed-points on DGs, we introduce the notion of assign-
ments on DGs and how the complete lattice that exists between assignments
ensures the existence of both minimum and maximum fixed-points by applying
the Knaster-Tarski Theorem [19]. For the computation of the fixed-points we
present a local “on-the-fly” algorithm.

Definition 2.11
A DG is a pair (V,E) where V is a finite set of vertices and E ⊆ V ×P(V )
is a finite set of hyperedges. A hyperedge is a pair (v, T ) where v is the
source and T ⊆ V is the target set.

Example 1. G = (V,E) is a dependency graph where V = {u,w, x, y}, E =
{(y, ∅), (x, {y}), (u, {x, y}), (u, {w}), (w, {w})}. This can be seen in Figure 2.2.

u

xw y

∅

Figure 2.2: Simple dependency graph.
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Using dependency graphs we are able to compute minimum and maximum
fixed-points. In order to compute the fixed-points it is useful to introduce the
notion of assignments.

Definition 2.12
An assignment A on a dependency graph G is defined as a function map-
ping each vertex to either 1 or 0: A : V → {0, 1}.

There is also the notion of the pre-fixed-point assignments:

Definition 2.13
A pre-fixed-point assignment A of dependency graph G is an assignment
where for all v ∈ V , if there is an (v, T ) ∈ E such that for all v′ ∈ T it is
the case that A(v′) = 1, then A(v) = 1.

And post-fixed-point assignments:

Definition 2.14
A post-fixed-point assignment A of dependency graph G is an assignment
where for any v ∈ V , if it is the case that for all (v, T ) ∈ E there is a
v′ ∈ T such that A(v′) = 0, then A(v) = 0.

The partial order v between assignments is defined as A v A′ if for all v ∈
V , A(v) ≤ A(v′) and forms a complete lattice. Then by the Knaster-Tarski
fixed-point theorem, there exists a unique minimum pre-fixed-point assignment,
Amin, and a unique maximum post-fixed-point assignment, Amax [19].

We define F as a function mapping assignments to assignments.

Definition 2.15
Let A be an assignment on a dependency graph G = (V,E), then F (A) is
also an assignment for G, where F (A)(v′) = 1 if and only if there exists
a hyperedge (v′, T ) ∈ E such that it is the case for all v ∈ T that A(v) = 1.

Repeated applications of F starting with ⊥ (assignment mapping all vertices
to 0) approximates the minimum-fixed-point F (F (. . . F (⊥))). For convenience,
we let F 0(A) = A, and Fn+1(A) = F (Fn(A)). When Fn+1(⊥) = Fn(⊥), then
Fn(⊥) = Amin.

Example 2.16
As an example we compute the minimum fixed-point for the example in
Figure 2.2.
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1. Initially all vertices are marked 0. However, for the hyperedge (y, ∅), it
is trivial that for all y′ ∈ ∅, it is the case that Amin(y′) = 1. Thus the
assignment must have Amin(y) = 1.

2. Since Amin(y) = 1, and due to the hyperedge (x, y) ∈ E, it must be that
Amin(x) = 1.

3. Amin(x) = 1 and Amin(y) = 1, then due to (u, {x, y}) ∈ E, it is the case
that Amin(u) = 1.

4. Amin(w) = 0 since it is not case that for any (w, T ) ∈ E, for all v′ ∈ T ,
Amin(v′) = 1.

Computing Fixed-Point Assignments
We now introduce a local algorithm for computing minimum pre-fixed-point
assignments on a DG. The algorithm was first introduced by Xinxin Liu and
Scott A. Smolka [12].

Local Algorithm

Algorithm 2.1 shows the local Liu-Smolka algorithm. The algorithm takes a
dependency graph G = (V,E) and a vertex v ∈ V as its input and computes
the minimum pre-fixed-point assignment ‘on the fly’ AGmin(v).

The algorithm computes the minimum pre-fixed-point assignment AGmin(v)
for a single vertex which means instead of constructing the whole DG, only
the necessary parts have to be constructed during model checking. This can
reduce both the time required for model checking but also the memory usage.

The algorithm maintains a set W of hyperedges waiting to be processed,
and for each v ∈ V records in D(v) the hyperedges which were processed under
the assumption that A(v) = 0.

W initially contains the set of hyperedges which have v0 as the source, and
will be expanded as needed. The symbol ⊥ indicates that a vertex has not
been investigated yet.

A hyperedge e = (v, T ) is selected and removed from W in each iteration
of the while-loop. There are three cases:

• If A(v′) = 1 for every vertex v′ in the target set T of e, then also A(v) = 1.
Each hyperedge e′ ∈ D(v) must be re-processed since the assumption that
A(v) = 0 is no longer true. To accomplish this, D(v) is added to W .

• There exists a v′ ∈ T such that A(v′) = 0. To allow e to be re-processed
if A(v′) becomes 1 at a later point, e is added to D(v′).

• When A(v′) = ⊥ for every v′ ∈ T . In this case e is added to D(v′) and
every hyperedge which has v′ as the source is added to W .

The local algorithm terminates when W = ∅.
Table 2.2 shows the internal state of the local algorithm before the i’th

iteration of the while-loop when executed on the dependency graph shown in
Figure 2.2 and the vertex x.
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Algorithm 2.1 Liu-Smolka Local Algorithm.
Input: A dependency graph G = (V,E) and a vertex v0 ∈ V .
Output: The minimum pre-fixed-point assignment Amin(v0) for v0.

1: for all v ∈ V do
2: A(v)← ⊥
3: A(v0)← 0
4: D(v0)← ∅
5: W ← succ(v0)
6: while W 6= ∅ do
7: e← (v, T ) ∈W
8: W ←W \ {e}
9: if ∀v′ ∈ T. A(v′) = 1 then

10: A(v)← 1
11: W ←W ∪D(v)
12: else if ∃v′ ∈ T. A(v′) = 0 then
13: D(v′)← D(v′) ∪ {e}
14: else
15: A(v′)← 0
16: D(v′)← {e}
17: W ←W ∪ succ(v′)
18: return A(v0)

i W A(x) A(y) D(x) D(y)
1 {(x, {y})} 0 ⊥ ∅ ∅
2 {(y, ∅)} 0 0 ∅ (x, {y})
3 {(x, {y})} 0 1 ∅ (x, {y})
4 ∅ 1 1 ∅ (x, {y})

Table 2.2: Execution of Algorithm 2.1 on Figure 2.2.

We will now define the level of a vertex v ∈ V on a dependency graph
G = (V,E). This definition will aid us in finding the distinguishing formula
later in the report.

Definition 2.17
The level of vertex v ∈ V is level(v) = n if Fn(v) = 1 and Fn−1(v) = 0.
By convention if the vertex’s assignment never changes, then level(v) =∞.

Strong Bisimilarity Reduction

We present reductions from equivalences to problems of computing the min-
imum pre-fixed-point assignment on a dependency graph, which can be done
using the algorithms presented in Section 2.2.

Suppose we have an LTS T = (Proc, Act,−→) and two states s, t ∈ Proc
and that we want to determine if s and t are strongly bisimilar. We construct
a dependency graph GT∼ = (V,E) where V ⊆ Proc × Proc. The dependency
graph is constructed with (s, t) as the root and the hyperedges are generated
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by Algorithm 2.2. The function succ(s, α) returns a set of states {s′ | s α−→ s′}.

Algorithm 2.2 Successor generator for GT∼ = (V,E).
Input: An LTS T = (Proc, Act,−→) and two states s, t ∈ Proc.
Output: All hyperedges starting from (s, t).

1: E ← ∅
2: for all α ∈ Act do
3: S ← succ(s, α)
4: T ← succ(t, α)
5: for all s′ ∈ S do . Hyperedge constructed triggered by s α−→ s′.
6: E ← E ∪ ((s, t), {(s′, t′) | t′ ∈ T})
7: for all t′ ∈ T do . Hyperedge construction triggered by t α−→ t′.
8: E ← E ∪ ((s, t), {(s′, t′) | s′ ∈ S})
9: return E

We say the hyperedge added to E in line 6, was triggered by s
α−→ s′.

Similarly for line 8, the construction of the hyperedge added to E was triggered
by t α−→ t′.

To construct a dependency graph for weak bisimilarity reduction use the
weak transition relation instead of the strong. The constructed dependency
graph has an interesting property: any vertex in the dependency graph, a
process pair (s, t), are bisimilar if and only if the minimum fixed-point for the
vertex is 0.

Theorem 2.18 — [14]
We have that Amin((s, t)) = 0 if and only if s ∼ t.

Example 2.19
Let LTS Left be defined by the Figure 2.3a and LTS Right be defined by
Figure 2.3b.

s

s1 s2

a a

b
b

(a) LTS Left

t

t1

a

b

(b) LTS Right

To find out whether the processes s, t are bisimilar, we construct a
bisimulation DG G = (V,E), and compute its the minimum pre-fixed-
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point assignment, using the algorithm defined in Algorithm 2.1 and the
succ(s, α) defined in Algorithm 2.2.

s, t

s1, t1 s2, t1

s
a−→ s1 s

a−→ s2

s2
b−→ s2

t1
b−→ t1

s1
b−→ s2

t1
b−→ t1

t
a−→ t1

Figure 2.4: Bisimulation dependency graph for process s and t.

The vertices in Figure 2.4 represents process pairs, and are marked
either 0 or 1 according to the minimum pre-fixed-point Amin. For a single
bordered vertex v = (s, t) ∈ V , it is the case that Amin(v) = 0, and for a
double bordered vertex, it is the case that Amin(v) = 1, note that there are
no double bordered vertices in this example. We have established earlier
that if Amin(v) = 0 then s ∼ t, and if Amin(v) = 1 then s 6∼ t. The
edges are labelled with the transitions that triggered the construction of
the hyperedge. The hyperedge originating in (s, t), with both (s1, t1) and
(s2, t1) as target vertices, was triggered because t a−→ t1 and s could match
with both s a−→ s1 and s a−→ s2. In this example the root vertex (s, t) has
the assignment Amin((s, t)) = 0, because it was not possible to promote
any vertices v ∈ V to 1. For a vertex v = (s, t) ∈ V to be promoted to the
assigment Amin(v) = 1, then there must exists either a transition

s
α−→ s′ such that t α9

or

t
α−→ t′ such that s α9



3Recursive Hennessy-Milner
Formulae

Sometimes it can be useful to be able to express formulae that hold inde-
finetely or at some unknown time in the future. This chapter will therefore
present HML which was introduced to process theory by Hennessy and Milner
in in 1985 [8]. This was later expanded with one variable by [11], allowing for
recursion. We present an extended syntax and semantics for recursive HML
with multiple variables. We present reductions from formulae to dependency
graphs and introduce HML games.

3.1 Syntax

HML consists of boolean connectives, such as conjunctions and disjunctions,
modalities, such as exists and for all, and the booleans true and false. The re-
cursive variant we use also includes variables that are defined either as minimum
fixed-points or maximum fixed-points. The choice of minimum and maximum
fixed-point affects the evaluation of formulae with respect to processes.

Definition 3.1
The set M of Hennessy-Milner formulae, over a set of actions Act and a
set of variables Var denoted by capital letters, is given by the following
abstract syntax:

ϕ ::= tt | ff | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈α〉ϕ | [α]ϕ | 〈〈α〉〉ϕ | [[α]]ϕ | X,

where α ∈ Act, X ∈ Var, and we use tt and ff to denote ‘true’ and ‘false’,
respectively. If A = {α1, . . . , αn} ⊆ Act(n ≥ 0), we use abbreviation

〈A〉ϕ for the formula 〈α1〉ϕ ∨ . . . ∨ 〈αn〉ϕ,

〈〈A〉〉ϕ for the formula 〈〈α1〉〉ϕ ∨ . . . ∨ 〈〈αn〉〉ϕ,

[A]ϕ for the formula [α1]ϕ ∧ . . . ∧ [αn]ϕ, and

[[A]]ϕ for the formula [[α1]]ϕ ∧ . . . ∧ [[αn]]ϕ.

(If A = ∅, then 〈A〉ϕ = ff , 〈〈A〉〉ϕ = ff , [A]ϕ = tt, and [[A]]ϕ = tt)

Each variable X has to be declared as a either minimum or a maximum
fixed-point:

X
max= ϕ

X
min= ϕ

where ϕ ∈M.

27
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Reference Cycle Length Restriction
The syntax does not prevent defining fixed-point recursively. Nested recur-
sively defined fixed-points can be hard to understand and become expensive
to compute. To restrict the costly evaluation we impose a restriction on the
fixed-points: a fixed-point declaration may only be mutually recursive with
itself. This means that a fixed-point definition for a variable X, may reference
variableX, or any other variable Y , as long as Y does not directly, or indirectly,
reference X. This restriction will permit us to evaluate fixed-point definitions
by substituting referenced variables by their computed fixed-point value.

X
max= 〈α〉Y ∨ 〈β〉X

Y
min= 〈δ〉tt ∧ Y

P
max= 〈α〉Q

Q
min= 〈δ〉P ∧Q

In the above example both X and Y obey the restriction. The definition
for X references only itself, or Y which does not reference X in any way. The
fixed-point result for Y can be computed independently of X. Afterwards when
evaluating the fixed-point for X, the result for Y is known.

Definition P and Q violate this restriction. Variable P referencesQ which in
turn references P . This means neither fixed-point can be found independently
of the other. Variable referencing is formally captured by a fixed-point reference
graph.

Definition 3.2 — Fixed-point Reference Graph
A fixed-point reference graph is a directed graph G = (V,E), where
V = Var and E ⊆ (Var × Var). The edge (X,Y ) ∈ E is present if and
only if the definition for X references Y directly.

The fixed-point reference graph for the previous example is shown in Fig-
ure 3.1.

X

Y

P

Q

Figure 3.1: Reference graph
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Definition 3.3 — Acyclic Fixed-Points Variables
Any variable which is not part of any cycle of length greater than one is
said to acyclic.

All cycles of length greater than one in any reference graph for some
fixed-point definitions, violates the restriction and are not acyclic.

Cycles of length one are self-loops, which are equivalent to variables directly
referencing themselves, which are permitted. In Figure 3.1 both X and Y are
acyclic variables, since the longest cycles they are in are of length 1. Both P
and Q violate the restriction since they form a cycle and are not acyclic. If
there is only one variable it is always acyclic since it cannot form a cycle of
length greater than 1.

We are interested in using HML to describe properties of CCS processes.
Informally processes satisfy a formula according to the following rules.

• All processes satisfy tt.

• No processes satisfy ff .

• A process satisfies ϕ1∧ϕ2 (respectively, ϕ1∨ϕ2) if and only if it satisfies
both ϕ1 and ϕ2 (respectively), either ϕ1 or ϕ2.

• A process satisfies 〈α〉ϕ for some α ∈ Act if and only if it affords an
α-transition leading to a state satisfying ϕ.

• A process satisfies [α]ϕ for some α ∈ Act if and only if all of its α-
transitions lead to a state satisfying ϕ.

• A process satisfies 〈〈α〉〉ϕ for some α ∈ Act if and only if it affords a α=⇒
transition leading to a state satisfying ϕ.

• A process satisfies [[α]]ϕ for some α ∈ Act if and only if all of its α=⇒
transitions lead to a state satisfying ϕ.

• A process satisfiesX depending on the value of the minimum or maximum
fixed-point value of its definition which we have not defined yet.

3.2 Semantics

The above definitions capture the syntax of recursive HML and give an intuition
for the meaning. But they lack in case of recursive variables important details,
like what does it mean for a state to satisfy formula ϕ? This section will provide
a formal definition for the semantics.

The function OCϕ (S) : 2Proc → 2Proc, for a formula ϕ, in the context C,
assuming the set of processes S that are satisfied by C, gives the set of processes
then satisfying ϕ. A context C ∈ Var ∪ {ε} is either a variable or the unique
context ε which is used outside fixed-points.

The function OCϕ (S) is defined in terms of its context and by induction on
the structure of the formula.
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OXX (S) = S

OCtt (S) = Proc

OCff (S) = ∅

OCX(S) =
{

minfix OXϕ if X is declared : X min= ϕ

maxfix OXϕ if X is declared : X max= ϕ
where X 6= C

OCϕ1∧ϕ2
(S) = OCϕ1

(S) ∩ OCϕ2
(S)

OCϕ1∨ϕ2
(S) = OCϕ1

(S) ∪ OCϕ2
(S)

OC〈α〉ϕ(S) = 〈·α·〉OCϕ (S)

OC[α]ϕ(S) = [·α·]OCϕ (S)

OC〈〈α〉〉ϕ(S) = 〈〈·α·〉〉OCϕ (S)

OC[[α]]ϕ(S) = [[·α·]]OCϕ (S)

The four bottommost functions are defined on sets of processes, which are
either all the processes that can perform any α-action to a process in the input
set, or the processes that can perform an α-action to all processes in the inputs
set respectively, defined for both the strict and weak transition relation.

〈·α·〉S = {p ∈ Proc | exists p′ ∈ S such that p α−→ p′}

[·α·]S = {p ∈ Proc | for all p′ ∈ S it is the case p α−→ p′}

〈〈·α·〉〉S = {p ∈ Proc | exists p′ ∈ S such that p α=⇒ p′}

[[·α·]]S = {p ∈ Proc | for all p′ ∈ S it is the case p α=⇒ p′}

The first case, OXX (S), is clear: under the assumption that the set of pro-
cesses S are satisfied by X, the processes satisfied by X are S. All processes
satisfies tt and no process satisfies ff . The set of processes satisfying a variable
that is not the current context is the set of processes in the minimum or max-
imum fixed-point depending on how the variable is declared, evaluated in the
context of the variable. The processes satisfying a conjunction or disjunction
is simply the union or intersection respectively of the processes satisfying the
constiuent terms.

Since the tuple (2Proc,⊆) is a complete lattice and the function OCϕ is mono-
tonic, there exists a minimum and maximum fixed-point by Tarski [19]:

minfix OCϕ =
⋂
{S ∈ 2Proc | OCϕ (S) ⊆ S}

maxfix OCϕ =
⋃
{S ∈ 2Proc | S ⊆ OCϕ (S)}

Using these definition we can define when a state satisfies a formula.
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Definition 3.4
A process s ∈ Proc is said to satisfy a formula ϕ, denoted s |= ϕ, if and
only if s ∈ Oεϕ(S) for any S ⊆ Proc.

A process s not satisfying a formula ϕ is denoted by s 6|= ϕ. Note that for
the particular function Oεϕ, where the context is ε, it does matter what the
argument of Oεϕ when the context is ε, since it is only used in the context of a
variable. For convenience we use ∅ as the argument when the context is ε.

3.3 Reduction to Dependency Graphs

Suppose we have an LTS T = (Proc, Act,−→), a state s ∈ Proc, and an HML
formula ϕ with only acyclic fixed-point variables, and we wish to determine
if s |= ϕ. We construct a set of dependency graphs, DG. The vertices of the
dependency graphs are triples denoted (s, ϕ)C where s ∈ Proc, ϕ ∈ M, and
C ∈ Var∪ {ε}. The initial dependency graph is constructed with (s, ϕ)ε as the
root.

The reason a set of dependency graphs is constructed is because a single de-
pendency graph cannot encode both a minimum and a maximum fixed-point.
Instead each context, including ε, will have its own dependency graph con-
taining all vertices under a given context. The fixed-point variables are still
indirectly connected: whenever there is a need to know the fixed-point value
of vertex (s,X)C , where C 6= X, it is necessary to find the fixed-point value
of vertex (s,X)X which is in a different dependency graph. Since all variables
are acyclic, so are the indirect dependences.

Figure 3.2 shows the rules for how the hyperedges of the dependency graph
are constructed depending on the formula is shown. Whenever a vertex is of the
form (s,X)C , where C 6= X, a new dependency graph is started with (s,X)X
as the root. The dashed arrow indicates an indirect dependence; it is not a
hyperedge part of the dependency graph.
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(s, tt)C

∅

(a) True.

(s,ff)C

(b) False.

(s, ϕ1 ∧ ϕ2)C

(s, ϕ1)C (s, ϕ2)C

(c) Conjunction.

(s, ϕ1 ∨ ϕ2)C

(s, ϕ1)C (s, ϕ2)C

(d) Disjunction.

(s, 〈α〉ϕ)C

(s′1, ϕ)C · · · (s′k, ϕ)C

Let {s′1, . . . , s′k} = {s′ | s α−→ s′}

(e) Strong Exists.

(s, 〈〈α〉〉ϕ)C

(s′1, ϕ)C · · · (s′k, ϕ)C

Let {s′1, . . . , s′k} = {s′ | s α=⇒ s′}

(f) Weak Exists.

(s, [α]ϕ)C

(s′1, ϕ)C · · · (s′k, ϕ)C

Let {s′1, . . . , s′k} = {s′ | s α−→ s′}

(g) Strong For all.

(s, [[α]]ϕ)C

(s′1, ϕ)C · · · (s′k, ϕ)C

Let {s′1, . . . , s′k} = {s′ | s α=⇒ s′}

(h) Weak For all.
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(s,X)X

(s, ϕ)X

where X min= ϕ or
X

max= ϕ

(i) Encoding of same variable
as context

(s,X)C

(s,X)X

where X 6= C

(j) Encoding of indirect de-
pendence on variable different
from context

Figure 3.2: Reduction rules for HML variables

Example 3.5
Let ϕ = [−]ff ∨X be the formula and X and Y defined as follows:

X
min= Y ∧ 〈−〉X

Y
max= 〈b〉tt ∨ 〈a〉Y,

and let Figure 3.3 be the LTS.

s s1
a a

Figure 3.3: LTS to be transformed

The rules from Figure 3.2 are again applied until the dependency graph
has been constructed. The full dependency graph can be seen in Figure 3.4
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(s, [−]ff ∨X)ε

(s, [−]ff )ε (s,X)ε

(s,X)X

(s, Y ∧ 〈−〉X)X

(s, Y )X

(s, Y )Y

(s, 〈−〉X)X

(s1, X)X

(s1, Y ∧ 〈−〉X)X

(s1, Y )X

(s1, Y )Y

(s1, 〈−〉X)X

(s, 〈b〉tt) ∨ 〈a〉Y )Y

(s1, 〈b〉tt ∨ 〈a〉Y )Y

· · ·(s,ff )ε (s,ff )ε

(s, 〈a〉Y )Y(s, 〈b〉tt)Y

(s1, 〈b〉tt)Y (s1, 〈a〉Y )Y

Figure 3.4: Full Dependency Graph for Figure 3.3
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In Figure 3.4 vertices that are double bordered have been assigned 1 and
vertices that are single bordered have been assigned 0 by a fixed-point algo-
rithm. The vertex (s1, Y )X has been assigned 1 because (s1, Y )X has been
assigned 1. For a similar reason have (s,X)ε been assigned 0.

Definition 3.6
The fixed-point marking of a vertex in a set of dependency graphs DG is
defined as ADG((s, ϕ)C) where:

ADG((s, ϕ)C) =
{
Amin((s, ϕ)C) if C = ε or C min= ϕ′

Amax((s, ϕ)C) if C max= ϕ′

To evaluate the fixed-point value for any vertex (s, ϕ)C in any dependency
graph in DG, begin computing the fixed-point as normal. Whenever a vertex
(s,X)C , for any variable not in the current context X 6= C is encountered,
pause the current fixed-point computation and start either a new minimum
or maximum fixed-point computation from (s,X)X depending on whether X
is defined as a minimum or maximum fixed-point respectively. This is guar-
anteed to terminate since all variable references are acyclic and therefore lim-
its the number of context switches possible. When the fixed-point value for
(s,X)X is known, the same value should be assigned to (s,X)C , such that
ADG((s,X)X) = ADG((s,X)C).

3.4 HML Game

In this section we introduce the game for HML with an arbitrary number of
recursive variables. Recall the formula definitions from Definition 3.1. The
game is between an “attacker” and a “defender”, who have the following goal:

• the attacker has to prove that s 6|= ϕ, while

• the defender has to prove that s |= ϕ

The configurations of the game has the form (s, ϕ)C where s ∈ Proc, ϕ is
an HML formula and C ∈ Var ∪ {ε} is the current context. For each of the
configurations the following successor configurations is defined according to the
structure of the formula ϕ.

• (s, tt)C and (s,ff )C have no successor configurations,

• (s, ϕ1 ∧ ϕ2)C and (s, ϕ1 ∨ ϕ2)C both have the successor configurations
(s, ϕ1)C and (s, ϕ2)C .

• (s, 〈α〉ϕ)C and (s, [α]ϕ)C have (s′, ϕ)C as successor configuration for all
s′ such that s α−→ s′.
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• (s, 〈〈α〉〉ϕ)C and (s, [[α]]ϕ)C have (s′, ϕ)C as successor configuration for
all s′ such that s α=⇒ s′.

• (s,X)C , has a single successor configuration (s,X)X where C 6= X.

• (s,X)X , has a successor configuration (s, ϕ)X , where X is defined as
either X max= ϕ or X min= ϕ.

Definition 3.7 — Rules for HML Games on DG
A play of a game starting from (s, ϕ)C is a maximal sequence of config-
urations formed by the players according to the following rules. Each
round either the attacker or the defender picks a successor configuration
if possible.

• The attacker picks a configuration when the formula is of the form (s, ϕ1∧
ϕ2)C , or when the choices are either (s, [α]ϕ)C , or (s, [[α]]ϕ)C .

• The defender picks a configuration when the formula is of the form (s, ϕ1∨
ϕ2)C , or when the choices are (s, 〈α〉ϕ)C , or (s, 〈〈α〉〉ϕ)C .

The successor configuration (s,X)C when C 6= X is uniquely determined
and is denoted by (s,X)C → (s,X)X . The successor configuration for (s,X)X
is also uniquely defined and is denoted by (s,X)X → (s, ϕ)X where X max= ϕ

or X min= ϕ. The successor configurations chosen by the attacker are denoted
A−→ moves and those chosen by the defender are denoted D−→ moves.

Notice that every play either

• terminates in (s, tt)C or (s,ff )C , or

• the attacker or the defender can get stuck in the current configura-
tion, either (s, [α]ϕ)C or (s, 〈α〉ϕ)C whenever s α9, or in (s, [[α]]ϕC) or
(s, 〈〈α〉〉ϕC), whenever s α;.

• the play is infinite.

Definition 3.8 — Winner in Recursive HML Game
The winner depends on which configuration the game ends in, or alterna-
tively the context for an infinite play.

• The attacker is a winner in every play ending in a configuration of the
form (s,ff )C or in play in which the defender gets stuck.

• The defender is a winner in every play ending in configuration of the form
(s, tt)C or in a play in which the attacker gets stuck.

• The attacker is a winner in every infinite play in context X, provided
that X is a defined as a minimum fixed-point: X min= ϕ. The defender is
a winner in every infinite play provided that X is defined as a maximum
fixed-point: X max= ϕ.
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The intuition for the winner in the context of a fixed-point is as follows: if
X is defined as minimum fix-point then the defender has to prove in finitely
many rounds that the property is satisfied. If a play of the game is infinite, it
means that the defender has failed to prove it in finitely many rounds, which
means the attacker wins.

If instead X is defined as maximum fix-point, then the attacker has to prove
in finitely many rounds that the property is not satisfied. If the play of the
game is infinite, it means that the attacker has failed to prove it in finitely
many rounds that the formula is satisfied, which means the defender wins.

With the support for multiple variables, there is a possibility that the con-
text will switch several times throughout a play, each time the context changes
between minimum and maximum fix-point, the winning conditions change too.
Even with support for multiple variables, an infinite play can only span over
one context, as we do not allow variables to be mutually recursive.

Universal Winning Strategy and Satisfiability
In this section we show that a process satisfies a formula if and only if the
defender has a universal winning strategy. Otherwise the process does not
satisfy the formula and the attacker has a universal winning strategy.

Example 3.9
We show an example of a formula for the process in Figure 3.5.

s s1

s2

s3

a,c

b

b

c

c

Figure 3.5: Branching example.

Let ϕ = 〈a〉tt ∧ [b]〈c〉tt be the formula. To show that s |= ϕ, we need to
shows that there is a universal winning strategy for the defender starting
from (s, ϕ)ε.
For the first move the attacker has two choices:

1. (s, 〈a〉tt ∧ [b]〈c〉tt)ε
A→ (s, 〈a〉tt)ε

2. (s, 〈a〉tt ∧ [b]〈c〉tt)ε
A→ (s, [b]〈c〉tt)ε

Choosing case 1 will result in a loss for the attacker, because the defender
would respond with

(s, 〈a〉tt)ε
D→ (s, tt)ε
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and end up in the true formula by taking the a-transition, so the attacker
is forced to take case 2 and take the b-transition to s1. The defender now
responds with:

(s1, 〈c〉tt)ε
D→ (s2, tt)ε

and ends up in (s2, tt) and the defender therefore has a universal winning
strategy.

For a given finite-state system, all formulae containing variables have a
equivalent formula containing no variables that are satisfied by the same pro-
cesses. Occurrences of variables in the definition of fixed-point variables are
replaced by substituting them for their definition a finite number of times.
The number of times when all variables occurs in the scope of a modal oper-
ator is the number of states in the finite-state system. The intuition is that
for a process to satisfy a minimum fixed-point, it must be possible to show in
a finite number of transitions. Similar for process not to satisfy a maximum
fixed-point, it must be shown in a finite number of transitions that the process
does not satisfy its definition.

The formal notation for this substitution is as follows. For any minimum
fixed-point variable X min= ψ let X0 = ff and Xm+1 = ψ[Xm/X]. Similar for
a maximum fixed-point variable X max= ψ let X0 = tt and Xm+1 = ψ[Xm/X].

The substitution is performed for all variables that do not refer to any other
variables in their body. Because we require variables references to be acyclic
there is always such a variable. Then the resulting formula can be substituted
for the variable in other definitions and so on until there are no more variables
left. Then the formula is variable-free.

The following theory sums up this folklore result on fixed-point unfold-
ing [2].

Theorem 3.10 — Reduction of one variable
Let ϕ be an acyclic recursive HML formula for which all occurrences of
variables in variable definitions occur in the scope of a modal operator.
Let T be a finite-state LTS with m states, and pick any variable X in ϕ.
Then p |= ϕ⇔ p |= ϕ[Xm/X] for all processes p in T .

The following example shows how the substitution works.

Example 3.11
We use the following process P def= a.b.P with 2 states, and the following
two variable definitions:

X
min= 〈a〉Y ∨ 〈−〉X

Y
max= 〈b〉Y



3.4. HML GAME 39

and let ϕ = X ∨ 〈c〉Y .
Y refers only to itself, so we substitute Y first and get Y 2 = 〈b〉〈b〉tt.

This is then used to replace occurrences of Y in other definitions. The new
definition for X becomes X min= 〈a〉〈b〉〈b〉tt ∨ 〈−〉X, and the new definition
for ϕ becomes ϕ = X ∨ 〈c〉〈b〉〈b〉tt.

We do the same to X and get X2 = 〈a〉〈b〉〈b〉tt ∨ (〈−〉〈a〉〈b〉〈b〉tt ∨
〈−〉ff ). X is then replaced with this new definition in ϕ which becomes
the variable-free formula ϕ = 〈a〉〈b〉〈b〉tt ∨ (〈−〉〈a〉〈b〉〈b〉tt ∨ 〈−〉ff ) ∨
〈c〉〈b〉〈b〉tt.

Theorem 3.12
Let G = (V,E) be a dependency graph constructed using the technique in
Section 3.3 from a finite-state CCS process and an recursive HML formula
ϕ with acyclic fixed-point variables. Then the following statements hold.

• State s satisfies ϕ if and only if defender has a universal winning strategy
starting from (s, ϕ)ε.

• State s does not satisfy ϕ if and only if the attacker has a universal
winning strategy starting from (s, ϕ)ε.

Proof. First we prove that if state satisfies the formula then the defender has
a universal winning strategy. The proof is by structural induction on ϕ. Note
that since the formula can be made variable-free by Theorem 3.10 it is not
necessary to have a proof for variables.

• If s |= tt the process s trivially satisfies the formula. From the configura-
tion (s, tt)C , the game has terminated with the defender as the winner.

• The case s |= ff , is a contradiction since no process satisfies ff , and the
defender does not need, nor have, a universal winning strategy. It can
only be the case that s 6|= ff , and in the configuration (s,ff )C the game
has terminated with the attacker as the winner.

• Suppose s |= ϕ1 ∧ ϕ2. The corresponding configuration is (s, ϕ1 ∧ ϕ2)C
with the two successor configurations (s, ϕ1)C and (s, ϕ2)C . Since s |= ϕ1
and s |= ϕ2 it does not matter which successor configuration the attacker
chooses since by induction the defender has a universal winning strategy.

• Suppose s |= ϕ1 ∨ ϕ2, then either s |= ϕ1 or s |= ϕ2. The corresponding
successor configurations are (s, ϕ1)C and (s, ϕ2)C . The defender’s play
at this point is to simply select the successor configuration corresponding
to any satisfied term, for which the defender by induction also has a
universal winning strategy for.

• If s |= 〈α〉ϕ, there must be a process s′ such that s′ |= ϕ and s
α−→

s′. The defender then selects the successor configuration (s′, ϕ)C , for
which the defender, by induction, has a universal winning strategy for.
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The defender plays in a similar manner for s |= 〈〈α〉〉ϕ using the weak
transition relation s α=⇒ s′.

• If s |= [α]ϕ, then for all processes s′ where s α−→ s′, it is the case that
s′ |= ϕ. Then it does not matter which successor configuration (s′, ϕ)C
the attacker chooses, by the induction hypothesis the defender has a
universal winning strategy for all of them. Similar holds for s |= [[α]]ϕ
using the weak transition relation s α=⇒ s′.

For the other direction we show that if state s does not satisfy ϕ then the
attacker must have a universal winning strategy.

• s 6|= tt, is a contradiction since the process s trivially satisfies the for-
mula. From the configuration (s, tt)C , the game has terminated with the
defender as the winner.

• The case s 6|= ff is trivially provable since no process satisfies ff . In the
configuration (s,ff )C , the game has terminated with the attacker as the
winner.

• Suppose s 6|= ϕ1 ∧ ϕ2. The corresponding configuration is (s, ϕ1 ∧ ϕ2)C
with the two successor configurations (s, ϕ1)C and (s, ϕ2)C . It is either
the case that s 6|= ϕ1 or s 6|= ϕ2 or perhaps s does not satisfy both.
Suppose s 6|= ϕ′ where ϕ′ = ϕ1 or ϕ′ϕ2. The attacker selects the successor
configuration (s, ϕ′)C , for which the attacker has a universal winning
strategy from by the induction hypothesis.

• Suppose s 6|= ϕ1∨ϕ2. That means s 6|= ϕ1 and s 6|= ϕ2. The corresponding
successor configurations are (s, ϕ1)C and (s, ϕ2)C . It does not matter
which configuration the defender picks since, by the induction hypothesis,
the attacker has a universal winning strategy for both of them.

• If s 6|= 〈α〉ϕ, it is the case that s′ 6|= p′ for all p′ where s α−→ p′. No
matter which successor configuration (s′, ϕ)C the defender picks, by the
induction hypothesis, the attacker has a universal winning strategy. This
reasoning is also sound for s 6|= 〈〈α〉〉ϕ using the weak transition relation
s
α=⇒ s′.

• If s 6|= [α]ϕ, then there exist some process s′, where s α−→ s′, where s′ 6|= ϕ.
The attacker then selects the successor configuration (s′, ϕ)C , for which
the attacker also has a universal winning strategy due to the induction
hypothesis. Similar holds for s 6|= [[α]]ϕ using the weak transition relation
s
α=⇒ s′.

Example 3.13
We show an example of a formula with one variable for the process in Fig-
ure 3.6.
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s s1 s2
b

b

a

a

Figure 3.6: Cycle example.

Let X min= 〈a〉tt∨ (〈b〉tt∧ [b]X) be the HML formula. To show that s 6|= X,
we must show that the attacker has a universal winning strategy starting
from (s,X)ε. The first move is to expand X:

(s,X)ε → (s, 〈a〉tt ∨ (〈b〉tt ∧ [b]X))X

Now the defender has two choices:

1. (s, 〈a〉tt ∨ (〈b〉tt ∧ [b]X))X
D→ (s, 〈a〉tt)X

2. (s, 〈a〉tt ∨ (〈b〉tt ∧ [b]X))X
D→ (s, 〈b〉tt ∧ [b]X)X

Choosing the case 1 will result in a loss for the defender, because he is
supposed to pick an a-successor for state s but s a9, so he is are forced to
choose case 2. The attacker than responds as follows

(s, 〈b〉tt ∧ [b]X)X
A→ (s, [b]X)X

A→ (s,X)X .

Now we unfold X and we are now back in the state where we started,
which means a cycle has been detected and the attacker win because the
fix-point is defined as a minimum fix-point.

Example 3.14
We show an example of a formula with multiple variables for the process
in Figure 3.7.

s s1 s3

b

b

a

c

Figure 3.7: Infinite loop example.

Let X or Y be the HML formula and let X and Y be defined as follows

X
min= 〈b〉X ∨ Y

Y
max= 〈c〉tt ∧ 〈a〉Y
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To show that s |= X, we must shows that the defender has a universal
strategy starting from (s,X)ε. The first move is to expand X:

(s,X)ε → (s, 〈b〉X ∨ Y )X

The defender now chooses:

1. (s, 〈b〉X ∨ Y )X
D→ (s, 〈b〉X)X

The defender now chooses:

1. (s1, 〈b〉X ∨ Y )X
D→ (s1, Y )Y

This means that the context switches from X to Y and the game is now
a maximum fix-point game. The configuration is now (s1, Y )Y and Y is
expanded. The attacker now has two choices:

1. (s1, 〈c〉tt ∧ 〈a〉Y )Y
A→ (s1, 〈c〉tt)Y

2. (s1, 〈c〉tt ∧ 〈a〉Y )Y
A→ (s1, 〈a〉Y )Y

Choosing case 1 will result in a loss for the attacker as the formula will
reach a true formula, so the attacker chooses case 2 and the defender
responds with:

(s1, 〈a〉Y )Y
D→ (s1, Y )Y → (s1, 〈c〉tt ∧ 〈a〉Y )Y

We have already been in this configuration, which means a loop has been
detected. According to the definitions this means the defender wins be-
cause the game was switched to a maximum fix-point game.

Relation Between Universal Winner and Fixed-Point
Assignments
The configurations of the HML game corresponds directly to vertices in a de-
pendency graph. If an attacker has successor configurations, the current config-
uration has a hyperedge with all the successor configurations. If the defender
has successor configurations, the current configuration have multiple hyper-
edges each to a single configuration.

We show the relation between universal winner in for the game corre-
sponds directly to the fixed-point marking for the set of dependency graphs
of the game. The assignment for a vertex in any dependency graph in the set,
ADG((s, ϕ)C) is defined in Definition 3.6.

Theorem 3.15
Let DG be the set of dependency graphs constructed by the rules in Fig-
ure 3.2. The defender has a universal winning strategy from a configuration
(s, ϕ)C if and only if ADG((s, ϕ)C) = 1.
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Proof. The proof is by induction on the number of indirect references in a path
on the set of dependency graphs. The base case is when there is no indirect
references and will be proved for a minimum fixed-point context X min= ϕX .
The proof for a maximum fixed-point context and ε are similar.

A level less than infinity implies the minimum fixed-point assignment is 1:
level(V ) <∞⇔ ADG(V ) = 1.

Since the defender may not loop in a minimum fixed-point context, if it has
a universal winning strategy it must be in a finite number of steps. We show by
induction on the maximum number of steps needed to win, that if the defender
has a universal winning strategy from (s, ϕ)X , then ADG((s, ϕ)X) = 1.

(s, tt)X The defender has won in 0 steps. From the construction in Fig-
ure 3.2a, this vertex has a single hyperedge with no target configurations,
implying ADG((s, tt)X) = 1.

(s, ff)X The defender loses and we need not prove this case.

(s, ϕ1 ∨ ϕ2)X Suppose the defender has a universal winning strategy from
(s, ϕ1 ∨ ϕ2)X in k steps. We need to show that ADG((s, ϕ1 ∨ ϕ2)X) = 1.
From the construction in Figure 3.2d there are two hyperedges going out:
one to (s, ϕ1)X , and one to (s, ϕ2)X . Since the defender can only win on a
finite play it must have at least one universal winning strategy of at most
k − 1 steps from either (s, ϕ1)X or (s, ϕ2)X or perhaps both. Suppose it
has one from (s, ϕ1)X , then by the induction hypothesis ADG((s, ϕ1)X) =
1. Then by the definition of pre-fixed-point assignment it must be the
case that ADG((s, ϕ1 ∨ ϕ2)X) = 1.

(s, ϕ1 ∧ ϕ2)X Suppose the defender has a universal winning strategy from
(s, ϕ1 ∧ ϕ2)X of k steps. We need to show that ADG((s, ϕ1 ∧ ϕ2)X) = 1.
From the construction in Figure 3.2c there is one hyperedge going out
with two target configurations: one to (s, ϕ1)X , and one to (s, ϕ2)X .
Since the attacker picks, the defender must have a universal winning
strategy from both (s, ϕ1)X and (s, ϕ2)X with the longest being of k− 1
steps. Then by the induction hypothesis both successors are assigned 1.
Since both target configurations for the hyperedge are assigned 1 it must
also be the case that ADG((s, ϕ1 ∧ ϕ2)X) = 1.

(s, 〈α〉ϕ)X Suppose the defender has a universal winning strategy from (s, 〈α〉ϕ)X
in k steps. We need to show that ADG((s, 〈α〉ϕ)X) = 1.
From the construction in Figure 3.2e there can be multiple successor
configurations (si, ϕ)X where 1 ≤ i ≤ n for some n ≥ 1. There must
be at least one configuration among those for which the defender has a
universal winnings strategy in k − 1 steps. Suppose that configuration
is (sj , ϕ)X . Then by the induction hypothesis ADG((sj , ϕ)X) = 1. Since
(s, 〈α〉ϕ)X has a hyperedge with only this configuration in the target set,
it must be the case that ADG((s, 〈α〉ϕ)X) = 1.
The proof is similar for weak-exists modality.

(s, [α]ϕ)X Suppose the defender has a universal winning strategy from (s, [α]ϕ)X
in k steps. We need to show that ADG((s, [α]ϕ)X) = 1.
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From the construction in Figure 3.2g there is a single hyperedge with
multiple successor configurations (si, ϕ)X where 1 ≤ i ≤ n for some
n ≥ 0. The defender must have a universal winning strategy for all
successor configurations, and each strategy consists of at most k−1 steps.
Then by the induction hypothesis ADG((si, ϕ)X) = 1 for all 1 ≤ i ≤ n.
Since all target configurations for the hyperedge are assigned 1 it must
also be the case that ADG((s, [α]ϕ)X) = 1.
If there is no successor configuration at all then the attacker is stuck, but
all successor configurations are still assigned 1 and thereforeADG((s, [α]ϕ)X) =
1.
The proof is similar for weak-for-all modality.

(s,X)X Suppose the defender has a universal winning strategy from (s,X)X
in k steps. We need to show that ADG((s,X)X) = 1.
Then the defender has a universal winning strategy from (s, ϕX)X in
k − 1 steps implying that ADG((s, ϕX)X) = 1. Then by the construction
in Figure 3.2i it must also be the case that ADG((s, ϕX)X) = 1.

We show by induction on the levels of the configurations in the dependency
graph that if ADG((s, ϕ)X) = 1 then the defender has a universal strategy from
(s, ϕ)X .

• Assume ADG((s, ϕ)X) = 1 and level((s, ϕ)X) = 1. From the construction
rules in Figure 3.2 this can only happen if ϕ is of form tt, [α]ϕ′ or [[α]]ϕ′.

(s, tt)X The defender has won for (s, ϕ)X (and has a universal winning
strategy of 0-steps).

(s, [α]ϕ′)X Since the level is 1 there must be a hyperedge with no
target configurations. From the construction in Figure 3.2g this
implies the attacker is stuck and the defender has won and therefore
have a universal winning strategy of 0-steps.

(s, [[α]]ϕ′)X This proof is similar to one above for (s, [α]ϕ′)X .

• Otherwise the level is some k > 1.

(s, ϕ1 ∨ ϕ2)X SupposeADG((s, ϕ1∨ϕ2)X) = 1 and therefore level((s, ϕ1∨
ϕ2)X) = k < ∞. Then we need to show that the defender has a
universal winning strategy from this configuration.
Either (s, ϕ1)X or (s, ϕ2)X has a level less than k. Suppose (s, ϕ1)X
does. Then ADG((s, ϕ1)X) = 1, and by the induction hypothesis the
defender has a universal winning strategy from (s, ϕ1)X . From this
it follows that the defender has a universal winning strategy from
(s, ϕ1 ∨ϕ2)X : the defender gets to choose and picks (s, ϕ1)X as the
successor.

(s, ϕ1 ∧ ϕ2)X SupposeADG((s, ϕ1∧ϕ2)X) = 1 and therefore level(s, ϕ1∧
ϕ2)X = k <∞. Then we need to show that the defender has a uni-
versal winning strategy from this configuration.
Both (s, ϕ1)X and (s, ϕ2)X have levels less than k and are marked 1.
By the induction hypothesis the defender has a universal winning
strategy from both successors, and it does not matter which the
attacker picks the defender still has a universal winning strategy.
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(s, 〈α〉ϕ)X SupposeADG((s, 〈α〉ϕ)X) = 1 and therefore level((s, 〈α〉ϕ)X) =
k. Then we need to show that the defender has a universal winning
strategy from this configuration.
There must be exists at least one hyperedge with a single target con-
figuration with a lower level((sj , ϕ)X) < k implyingADG((sj , ϕ)X) =
1. By the induction hypothesis the defender has a universal winning
strategy from that configuration. Then the defender also has a uni-
versal winning strategy from (s, 〈α〉ϕ)X). The defender simply picks
(sj , ϕ)X).
The proof is similar for weak-exist-modality.

(s, [α]ϕ)X Suppose ADG((s, [α]ϕ)X) = 1 implying level((s, [α]ϕ)X) =
k. Then we need to show that the defender has a universal winning
strategy from this configuration.
There exists a single hyperedge with multiple target configurations
(si, ϕ)X where 1 ≤ i ≤ n for some n ≥ 1. By definition of level is
must be the case that level((si, ϕ)X) < k implying thatADG((si, ϕ)X) =
1, for all 1 ≤ i ≤ n. Then by the induction hypothesis the defender
has a universal winning strategy from all of them and it does not
matter which the attacker picks. If there is no configurations to pick
from the attacker is stuck and the defender has won.
The proof is similar for weak-forall-modality.

(s,X)X Suppose ADG((s,X)X) = 1 implying level((s,X)X) = k <
∞. Then we must show the attacker has a universal winning strat-
egy.
Based on the construction in Figure 3.2i, it must be the case that
level((s, ϕ)X) = k − 1 implying ADG((s, ϕ)X) = 1. By the induc-
tion hypothesis the defender has a winning strategy from (s, ϕX)X .
Since the successor configuration for (s,X)X is uniquely determined
(it is (s, ϕX)X) the defender has a universal winning strategy from
(s,X)X also.

For the inductive case the rules are similar, except now we must handle the
context switch made possible by the indirect references:

“⇒”. Suppose the the defender has a universal winning strategy from
(s,X)C where C 6= X in k steps. We show by induction on the number of
steps in the universal winning strategy that ADG((s,X)C) = 1.

The defender must have a universal winning strategy from (s,X)X in k− 1
steps implying that ADG((s,X)X) = 1. From the construction Figure 3.2j
there is a single hyperedge from (s,X)C to (s,X)X . Then it must also be the
case that ADG((s,X)C) = 1.

“⇐”. Suppose ADG((s,X)C) = 1 implying level((s,X)C) = k < ∞. Then
we show by induction on the level of a configuration that the defender has a
universal winning strategy.

Since level((s,X)C) = k it must be the case that level((s,X)X) = 1. Then
by the induction hypothesis the defender has a winning strategy from (s,X)X .
Since the successor configuration for (s,X)C is uniquely determined the de-
fender then has a universal winning strategy from (s,X)C also.
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We have showed the relation between satisfiability and universal winning
strategy, and the relation between universal winning strategy and the assign-
ment to vertices in the dependency graph. This makes it possible to show the
relation between satisfiability and the fixed-point assignment.

Corollary 3.16
Let T (Proc, Act,→) be a LTS where and ϕ an acyclic recursive HML for-
mula. Then for all s ∈ Proc it is the case that s |= ϕ if and only if
ADG((s, ϕ)ε) = 1.

Proof. Assume s |= ϕ. By Theorem 3.12 it must be the case that the defender
has a universal winning strategy from (s, ϕ)ε. From Theorem 3.15 we then
know that if the defender has a universal winning strategy it must be the case
that ADG((s, ϕ)ε) = 1. For the other direction assume ADG((s, ϕ)ε) = 0. Then
the defender does not have a universal winning strategy implying the attacker
has one. If the attacker has a universal winning strategy then s 6|= ϕ.

With this final proof we have shown that satisfiability, fixed-point assign-
ments, and universal winning strategies are related to each other. This com-
pletes the omission of proofs for multiple acyclic recursive HML that was left
unfinished in previous work. In the next chapter we use recursive HML formu-
lae to describe differences in behaviour of non-bisimilar processes.



4Distinguishing Formula

In Chapter 2 it is described that two processes are bisimilar they exhibit similar
behaviour, and if they are not bisimilar they have behave differently. The CCS
processes P def= a.b.0 + a.c.0 and Q def= a.(b.0 + c.0) are not bisimilar. After P
takes an a-transition the resulting process can only perform a b-transition or a
c-transition, whereas after Q takes an a-transition it can do both. There is a
theorem describing that bisimilar processes satisfies the same HML formulae.

Theorem 4.1 — Hennessy and Milner [8]
Let

(Proc, Act, { a−→| a ∈ Act}),

be an LTS generated from a weakly guarded CCS expression. Assume that
P,Q are processes in Proc, then:

P ∼ Q if and only if ∀ϕ P |= ϕ⇔ Q |= ϕ,

without the modalities 〈〈α〉〉 and [[α]]. And

P ≈ Q if and only if ∀ϕ P |= ϕ⇔ Q |= ϕ,

without the modalities 〈α〉 and [α].

The theorem implies that if two processes P and Q are not bisimilar there
exists a formula ϕ such that either P or Q satisfies it, but not both. Let
ϕ = 〈a〉(〈b〉tt ∧ 〈c〉tt). Then P 6|= ϕ, Q |= ϕ and we call ϕ a distinguishing
formula for P andQ. This chapter describes a method for finding distinguishing
formulae for non-bisimilar processes.

4.1 Distinguishing Formula

From Theorem 4.1 it is known that two CCS processes are bisimilar if and only
if they satisfy exactly the same formula. If two processes are not bisimilar then
there must be a formula that distinguishes the two processes. If processes P
and Q are not bisimilar, we call any formula that one of the processes satisfies,
but not the other, a distinguishing formula. A distinguishing formula can aid
in understanding why two processes are not bisimilar.

In Section 2.2, we described how to determine bisimilarity for CCS pro-
cesses by constructing a dependency graph and computing the minimum pre-
fixed-point for that dependency graph. Each vertex in the dependency graph
corresponds to a process pair. The fixed-point computation assigns either 1 or
0 to all vertices. After termination of the fixed-point computation, all vertices
assigned 0 mean the processes in the corresponding pairs are bisimilar, whereas
the assignment 1 signals that the corresponding process pairs are not bisimilar.

47
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Based on the fixed-point assignment of vertices in the dependency graph, we
will show how to create a formula ϕ, such that for two processes P 6∼ Q it is
the case that P |= ϕ and Q 6|= ϕ.

Before describing the formal definition of the construction, we provide an
example using the following non-bisimilar processes:

s

s2

s3 s4

a

b c

t

t2 t3

t4 t5

a a

b c

Figure 4.1: Two non-strongly-bisimilar LTSs.

The dependency graph, marked with the corresponding pre-fixed-point as-
signment, is shown in Figure 4.2.

s, t

s2, t2 s2, t3

s3, t4 s4, t5∅ ∅

t
a−→ t2 t

a−→ t3

s2
b−→ s3

t2
b−→ t4

s2
c−→ s4

s2
c−→ s4

t3
c−→ t5

s2
b−→ s3

s
a−→ s2

Figure 4.2: Bisimulation dependency graph for process s and t.

The vertices represent process pairs, and are marked according to the min-
imum pre-fixed-point Amin. For a single bordered vertex x, it is the case
that Amin(x) = 0, and for a double bordered vertex x, it is the case that
Amin(x) = 1. A marking of 1 for a vertex indicates that the processes in the
pair are not bisimilar, whereas, a marking of 0 indicates they are bisimilar. As
an example, s3 ∼ t4, but s2 6∼ t2.

The edges are labelled with the transitions that triggered the construction
of the hyperedge. The hyperedge originating in (s, t), with both (s2, t2) and
(s2, t3) as target vertices, was triggered because s a−→ s2 and t could match with
both t a−→ t2 and t a−→ t3. The reason (s2, t2) is marked one, is because of the
hyperedge with the empty target set, ∅, which is caused by s being able to take
a c transition, but t2 is unable to do that.
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From the assignment to the dependency graph it is possible to extract the
information necessary to construct a distinguishing formula. The formula that
distinguishes s2 and t2 is thus 〈c〉tt. It is the case that s2 |= 〈c〉tt, and that
t2 6|= 〈c〉tt. For the formula distinguishing s and t, we already have a formula
distinguishing s2 and t2 to build upon. By prepending [a] to our formula,
getting [a]〈c〉tt, we have a distinguishing formula for s and t since s |= [a]〈c〉tt,
and t 6|= [a]〈c〉tt. Note that prepending 〈a〉 to the formula getting 〈a〉〈c〉tt
would not work, since that formula is also satisfied by t.

Note that there are other formulae that distinguish s and t, like the sym-
metric case [a]〈b〉tt. A third one is 〈a〉(〈b〉tt ∧ 〈c〉tt). The third one might
be considered more complex, based on its syntactical length and nesting. If
only one distinguishing formula is required, it might be desirable to return the
simplest one. We will describe how to accomplish this later in this chapter.

4.2 Construction of Distinguishing Formula

The formula is inductively constructed from the dependency graph. The for-
mula found is one satisfied by s, but not t, for a vertex (s, t) representing s ∼ t.
Nodes marked 1 are followed until reaching a hyperedge with no targets (the
target is the empty set). There are two base cases, and two recursive cases.
The two base cases are when a vertex has a hyperedge with the empty target
set, which trivially marks the vertex 1. A vertex (s, t), can represent one case
when it has a hyperedge to the empty set because s α−→ s2, but t has no α-
transition. The other base case is symmetric. The recursive cases are similar,
but handle the cases where there is a hyperedge the target set is not empty,
and all vertices in the target set are marked 1.

s, t

∅. . . . . .

s
α−→ s′

(a) Case 1: ϕ = 〈α〉tt

s, t

∅. . . . . .

t
a−→ t′

(b) Case 2: ϕ = [a]ff

s, t

. . . . . .

s′, t1 . . . s′, tn

s
a−→ s′

(c) Case 3: ϕ = ϕ1 ∧ · · · ∧ ϕn where
for 1 ≤ i ≤ n, s′ |= ϕi and ti 6|= ϕi.

s, t

. . . . . .

s1, t
′ . . . sn, t

′

t
a−→ t′

(d) Case 4: ϕ = ϕ1 ∨ · · · ∨ ϕn where
for 1 ≤ i ≤ n, si |= ϕi and t′ 6|= ϕi.

Figure 4.3: Cases for construction of distinguishing formula.
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Figure 4.3 shows the various cases. From these cases we define the dis-
tinguishing formula function DF , implemented by Algorithm 4.1 for a vertex
(s, t).

Algorithm 4.1 Distinguishing Formula (DF) for s 6∼ t.
Input: State s and t s.t. s 6∼ t.
Output: Formula ϕ s.t. s |= ϕ and t 6|= ϕ.

1: . Build dependency graph GT∼ = (V,E) and compute minimum-fixed
point and levels, using strong bisimilarity reduction on s and t.

2: H ← {((s, t), T ) | ((s, t), T ) ∈ E and for all u ∈ T we have level(u) <
level((s, t))}

3: if ((s, t), ∅) ∈ H then
4: if s α−→ s′ and t 6 α−→ then
5: return 〈α〉tt
6: if t α−→ t′ and s 6 α−→ then
7: return [α]ff
8: else
9: Pick h = ((s, t), T ) ∈ H

10: if h was triggered by s α−→ s′ then
11: return

〈α〉
∧

(s′,t′)∈T

DF((s′, t′))

12: else . h was triggered by t α−→ t′

13: return
[α]

∨
(s′,t′)∈T

DF((s′, t′))

Theorem 4.2 — Distinguishing Formula
Let (s, t) be a vertex in a Bisimulation DG, and ϕ = DF ((s, t)). Then it
is the case that s |= ϕ, and that t 6|= ϕ.

Proof. Proof by induction on level of a vertex (s, t).

• If level((s, t)) = 1, then by definition of level, it is the case that the
condition in line 3 is true, and also that at least one of the conditions in
the if-statements in lines 4 or 6 is true.
Assume the condition in the first if-statement holds: it is the case that
s
α−→ s′ and t 6 α−→. Then s |= 〈α〉tt, but t 6|= 〈α〉ff .

For the other case, where t α−→ t′ and s 6 α−→, the formula [α]ff is con-
structed. Then s |= [α]ff , since s cannot perform an α-action, but
t 6|= [α]ff , since it can perform an α-action.

• If level((s, t)) > 1, then by the definition of level there must be a hyper-
edge, ((s, t), T ), such that ∀t ∈ T.level(t) < level((s, t)), implying that
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the hyperedge is in H. By the construction of the dependency graph it
is the case that if s α−→ s′, then there exists a hyperedge for the matching
α-transitions from t: ((s, t), {(s′, t′) | t α−→ t′}). There is a symmetric case
for t. Since the level is larger than 1, the condition in line 3 is not true
and the else branch in line 8 is taken. Then by definition of level, there
must be at least one hyperedge h = ((s, t), T ) in H.
Assume the the condition in if-statement at line 10 is true. Let ϕ1 =
DF ((s′, t1)), ϕ2 = DF ((s′, t2)), . . . , ϕn = DF ((s′, tn)), where (s′, ti) ∈ T
for 1 ≤ i ≤ n. By the induction hypothesis, s′ |= ϕi, and ti 6|= ϕi. Since
s′ |= ϕi, it is also the case that s′ |=

∧n
1 ϕi. Since s α−→ s′, then it must

be the case that s |= 〈α〉
∧n

1 ϕi.
It is also the case that t 6|= 〈α〉

∧n
1 ϕi. Suppose for contradiction that

t |= 〈α〉
∧n

1 ϕi. This implies there is some t α−→ ti such that ti |= ϕi,
contradicting the induction hypothesis that ti 6|= ϕi.
The final case for the else branch in line 12 is analogous.

The algorithm can be modified slightly for finding distinguishing formulae
for weak non-bisimilar processes. Instead of computing the strong bisimulation
dependency graph GT∼, the weak bisimulation graph GT≈ is constructed, and
rather than prepending 〈α〉 or [α], the weak variants 〈〈α〉〉 and [[α]] are used
instead, and the transition relation ⇒ is used instead of →.

Formulae may contain redundant parts that can safely be removed without
changing the semantics of the formula. Any weak exists prefixed or postfixed
with a weak exists on τ -action can be removed. The same holds for weak for
all.

Lemma 4.3 — Tau Removal
For any process p and formula ϕ the following biimplications holds, and
the right side is considered a simplification of the left side.

p |= 〈〈τ〉〉〈〈α〉〉ϕ⇔ p |= 〈〈α〉〉ϕ
p |= 〈〈α〉〉〈〈τ〉〉ϕ⇔ p |= 〈〈α〉〉ϕ
p |= [[τ ]][[α]]ϕ⇔ p |= [[α]]ϕ
p |= [[α]][[τ ]]ϕ⇔ p |= [[α]]ϕ

Proof. We consider only the first example prefixed weak-exist on τ -actions.
The proof for the others are similar.

Suppose p |= 〈〈τ〉〉〈〈α〉〉ϕ. Then there is some process p′ |= 〈〈α〉〉ϕ and
p′′ |= ϕ, where p τ=⇒ p′

α=⇒ p′′. This is equivalent to p( τ−→)∗p′( τ−→)∗q α−→ q′( τ−→)∗p′′.
Then p′ can be subsumed and p( τ−→)∗q α−→ q′( τ−→)∗p′′, which means p α=⇒ p′′ and
therefore p |= 〈〈α〉〉ϕ.

For the other direction suppose p |= 〈〈α〉〉ϕ. Then there is some process
p′ |= ϕ, where p α=⇒ p′, which is equivalent to p( τ−→)∗q α−→ q′( τ−→)∗p′. It is
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always possible for p to take zero τ -transitions to itself: p( τ−→)∗p, therefore
p( τ−→)∗p( τ−→)∗q α−→ q′( τ−→)∗p′ = p

τ=⇒ p
α=⇒ p′, which imply p |= 〈〈τ〉〉〈〈α〉〉ϕ.

4.3 Finding the Simplest Distinguishing Formula

In Section 4.1, there were several formulae that distinguished process s and t.
One was [a]〈c〉tt, and another was 〈a〉(〈b〉tt ∧ 〈c〉tt). We argue that the first
formula is simpler than the other because it has a shorter syntactical length.
While syntactical length is an indicator of complexity, a long formula does not
necessarily have to be complex to understand.

One possible metric is the total number of conjunctions or disjunctions in a
formula. The left and right side of conjunctions and disjunctions can be thought
of as branches to be satisfied, with nesting further complicating understanding.

Another metric is modal depth. The modal depth is the longest nesting of
modal operators in a formula:

Definition 4.4 — Modal Depth for HML
For an HML formula ϕ we define the modal depth MD as:

MD(ϕ) =



0 if ϕ = tt
0 if ϕ = ff
max(MD(ϕi) | 1 ≤ i ≤ n) if ϕ = ϕ1 ∧ . . . ∧ ϕn
max(MD(ϕi) | 1 ≤ i ≤ n) if ϕ = ϕ1 ∨ . . . ∨ ϕn
1 + MD(ϕ′) if ϕ = 〈α〉ϕ′

1 + MD(ϕ′) if ϕ = [α]ϕ′

1 + MD(ϕ′) if ϕ = 〈〈α〉〉ϕ′

1 + MD(ϕ′) if ϕ = [[α]]ϕ′

We conjecture that the general problem of determining whether it is possible
to find a distinguishing formula for two processes with at most a given modal
depth and number of conjunction and disjunctions is NP-hard. We were unable
to prove this conjecture, but compensate by offering a greedy algorithm that
simplifies formulae.

The greedy algorithm, shown in Algorithm 4.2, is itself a modified version
of Algorithm 4.1. The change is that whenever it creates a conjunction and
disjunction, in lines 11 and 13, it simplifies the formula by removing redun-
dant terms by calling Simplify with either the conjunction or disjunction as
argument, and the process pairs reached by taking α-transitions from s and t.

The function Simplify first initializes the result terms denoted by D to the
empty set. Assume it was called with a conjunction and therefore the branch
starting at line 16 has been taken. At this point, by induction, we know that
for all (s′, t′) ∈ T : s′ = s′′ for all (s′′, t′′) ∈ T , and that s′ |= ϕi, and finally
that there exists some ϕi such that t′ |= ϕi, where 1 ≤ i ≤ n.

The loop invariant is that for all s ∈ S it is the case there is no ϕ ∈ D such
that s 6|= D. In the loop any formula ϕi, that is not satisfied by more processes
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Algorithm 4.2 Greedy Distinguishing Formula (GDF) for s 6∼ t.
Input: State s and t s.t. s 6∼ t.
Output: Formula ϕ s.t. s |= ϕ and t 6|= ϕ.

1: . Build dependency graph GT∼ = (V,E) and compute minimum-fixed
point and levels, using strong bisimilarity reduction on s and t.

2: H ← {((s, t), T ) | ((s, t), T ) ∈ E and for all u ∈ T we have level(u) <
level((s, t))}

3: if ((s, t), ∅) ∈ H then
4: if s α−→ s′ and t 6 α−→ then
5: return 〈α〉tt
6: if t α−→ t′ and s 6 α−→ then
7: return [α]ff
8: else
9: Pick h = ((s, t), T ) ∈ H

10: if h was triggered by s α−→ s′ then
11: return

〈α〉Simplify(
∧

(s′,t′)∈T

GDF((s′, t′)), T )

12: else . h was triggered by t α−→ t′

13: return

[α]Simplify(
∨

(s′,t′)∈T

GDF((s′, t′)), T )

14: function Simplify(ϕ, T)
15: D ← ∅
16: if ϕ =

∧n
i=1 ϕi then

17: S ← {t′ | (s′, t′) ∈ T}
18: while S 6= ∅ do
19: Pick ϕi ∈ ϕ s.t. |NotSatisfy(S, ϕi)| ≥ |NotSatisfy(S, ϕj)|

for all ϕj ∈ ϕ
20: D ← D ∪ {ϕi}
21: S ← S \NotSatisfy(S, ϕi)
22: return

∧
ϕ∈D ϕ

23: else . ϕ =
∨n
i=1 ϕi

24: S ← {s′ | (s′, t′) ∈ T}
25: while S 6= ∅ do
26: Pick ϕi ∈ ϕ s.t. |Satisfy(S, ϕi)| ≥ |Satisfy(S, ϕj)| for all

ϕj ∈ ϕ
27: D ← D ∪ {ϕi}
28: S ← S \ Satisfy(S, ϕi)
29: return

∨
ϕ∈D ϕ

30: function Satisfy(S, ϕ)
31: return {s | s ∈ S and s |= ϕ}
32: function NotSatisfy(S, ϕ)
33: return {s | s ∈ S and s 6|= ϕ}
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than any other formula is picked; this is the greedy part. That formula is then
added to D. To maintain the invariant, all processes that does not satisfy ϕi
is removed from S.

At the end of the loop S is empty and for all (s′, t′) ∈ T , it is the case that
s |= ϕi, and t′ 6|= ϕi for all ϕi ∈ D. Since we only want a single formula all the
terms in D are conjoined as the result. The branch for disjunction works in a
symmetric manner.

Example 4.5 — Simplify
We use the following definitions and formulae.

P1 = a.(b+ c).0
P2 = a.b.0
P3 = a.c.0
ϕ = 〈a〉[c]ff ∧ 〈a〉〈c〉tt ∧ 〈a〉〈b〉tt

For the first iteration D = ∅ and S = {P1, P2, P3} and the following
processes do not satisfy the corresponding term:

NotSatisfy(S, 〈a〉[c]ff ) = {P1, P3}
NotSatisfy(S, 〈a〉〈c〉tt) = {P2}
NotSatisfy(S, 〈a〉〈b〉tt) = {P3}

The term is added to D and now D = {〈a〉[c]ff }. Both P1 and P3 are
removed from S which now becomes S = {P2}. The only term left to
choose from is 〈a〉〈c〉tt and the remaining process, P2, does not satisfy it.
The term is added to D which becomes D = {〈a〉[c]ff , 〈a〉〈c〉tt}, and the
process P2 is removed from S which now is empty. Now the while condi-
tion is false and the result 〈a〉[c]ff ∧ 〈a〉〈c〉tt is returned.

The greedy algorithm may not find the solution with the fewest terms.
The problem of selecting the minimal subset of terms from a conjunction or
disjunction is NP-hard. This will be shown by reducing the CNF-SAT to a
problem named the k-matrix problem, and then reducing the matrix problem
to our problem of reducing the number of conjunctions and disjunctions in the
formula.

CNF-SAT
To remind, CNF-formulae are conjunctions of clauses, which themselves are
disjunctions of s literals [16]. The formal definition used here is:

ϕ = C1 ∧ C2 ∧ · · · ∧ Cp
Ca = l1a ∨ l2a ∨ · · · ∨ lqa

a where qa ∈ N
lba = xr or xr where 1 ≤ r ≤ s.
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The CNF-SAT problem about determining whether a CNF-formula is sat-
isfiable: is it possibly to assign true and false to all variables of a formula
such that the formula is true? The following formula is in CNF-form and is
satisfiable:

(x ∨ y ∨ w) ∧ (x ∨ y ∨ w ∨ z) ∧ z

This assignment shows the formula is satisfiable:

x = false, y = true, z = true, w = false

k-Matrix Problem
We reduce the CNF-SAT problem to the k-matrix problem.

Definition 4.6 — k-Matrix Problem
The k-column matrix problem, is the problem of determining whether it
is possible to pick k ≤ n columns from M a m× n matrix, with elements
being either 1 or 0, such that each row has at least one number 1 in the
selected columns. If that is possible we say that M is solvable under the
k-matrix problem.

1 0 1 0
1 0 0 1
0 0 1 0


For k = 1, it is not possible to pick a single column from the matrix above

such that all rows for the selected columns are 1. It is possible to satisfy if
k = 2, by selecting column 1 and 3, all rows have at least one element that is
1 in the selected columns. Another valid example is picking column 3 and 4.
If problem is solvable for some k, it is also solvable for k+ 1 ≤ n; just pick the
same k columns and some other arbitrary column.

Reduction from CNF-SAT to k-Matrix Problem
We reduce the CNF-SAT problem to the k-Matrix problem by constructing the
corresponding matrix. For a CNF-formula with p clauses and s variables we
create a (p+ s)× 2s matrix for the k = s problem.

The idea is to construct a matrix such that if there are p clauses the matrix
has a row for each clause and variable. The row for each clause ensures that in
order for the clause to be true, a column corresponding to a literal in the clause
must be picked. The row for each variable ensures that a variable is picked to
be either true or false. Finally, there are two columns for each variable, one
for the non-negated literal, and one for the negated one, each corresponding
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to assigning either true or false to the corresponding variable. The reduction
from a CNF-formula to a matrix M is shown in Equation 4.1.

M(i, j) =


1 if i ≤ p, j ≤ s and xj ∈ Ci
1 if i ≤ p, s < j ≤ 2s and xj−s ∈ Ci
1 if p < i ≤ p+ s, and j = i− p or j = i− p+ s

0 otherwise

(4.1)

The first two cases covers ones in the the top part of the matrix and repre-
sents the clauses with 1 indicating the literal appears on the clause. The left
half covers non-negated variables, whereas the right covers the negated ones.

The third case, requires either the column of the non-negated literal or the
negated literal to be picked in order for the corresponding row to have at least
a single 1. Since it is a k-matrix problem, and k = s, it is necessary to choose
s-columns. Either the column for the non-negated literal or the negated literal
has to be chosen: if both columns are picked, it is not possible to select a
column for some other variable, meaning one of the rows does not have a 1 in
any of the selected columns, and thus the result is not valid.

Consider constructing the corresponding k-column matrix problem from the
example from before:

ϕ = x ∨ y ∨ w)︸ ︷︷ ︸
C1

∧ (x ∨ y ∨ w ∨ z)︸ ︷︷ ︸
C2

∧ z︸︷︷︸
C3

The formula has three clauses and four variables, which implies that for the
corresponding k-colum matrix problem, k = 4, and the matrix is of dimensions
7× 8. By the definition above for the matrix entries, the matrix looks like this
(the left column and top row are not part of the matrix; empty fields represent
0):

k = 4 x y z w x y z w
C1 1 1 1
C2 1 1 1 1
C3 1
x= 1 1
y= 1 1
z= 1 1
w= 1 1

The formula is satisfiable: by selecting columns 1 (x), 3 (z), 4 (w), and 6
(y), all the rows of those columns have at least a single 1.

Theorem 4.7 — CNF-SAT Reduction to k-Matrix Problem
Let ϕ be a formula in CNF with k variables, and letM be the construction
described in Equation 4.1 from ϕ. Then ϕ is satisfiable if and only if M
has a solution in the k-matrix problem.

Proof. Let ϕ = C1 ∧ . . . ∧ Cp be CNF-formula with s variables x1, x2, . . . , xs,
and let M be the matrix constructed from ϕ using Equation 4.1.
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1. Assume ϕ is satisfiable. Then there exists an assignment assigning each
variable xi, where 1 ≤ i ≤ s, true or false, such that evaluating ϕ un-
der this assignment yields true. Then M is satisfisable for the s-matrix
problem: it is possible to pick s columns in M such that each row has
at least one number 1 in each of the selected columns. For each variable
xi, if xi is true pick column i otherwise pick column s + i. Since each
clause have at least one literal that evaluate to true, at least one column
corresponding to a literal evaluating to true must have been selected for
all of the top p-rows. Then each of those rows has at least one number 1
in the selected columns. Also since each variable is only true or false, all
of the s bottommost rows in the matrix has at least one number 1 in the
selected columns.

2. Assume M is satisfiable for the s-matrix problem. Then there is an
selection of columns Y , where |Y | = s and ∀y∈Y 1 ≤ y ≤ 2s such that all
rows ofM has at least one number 1 in a column y ∈ Y . For all variables
xi, 1 ≤ i ≤ s in ϕ, assign true to xi if i ∈ Y , otherwise assign false to xi.
Since each of the p topmost rows have at least one number 1 in a selected
column, a literal must evaluate to true in each clause under the chosen
assignment. Since each of the s bottommost rows also have at least one
number 1 in a selected column, all variables have been assigned either
true or false.

k-Terms Problem
The k terms is the decision problem of whether some terms can be removed
from a formula.

Definition 4.8 — k-Terms Problem
Given formula ϕ1 ∧ · · · ∧ ϕm and processes ti 6|= ϕi for all 1 ≤ i ≤ m, and
number k, is there a subset X ⊆ {1, . . . ,m}, such that |X| ≤ k and for all
1 ≤ j ≤ m there exists i ∈ X such that tj 6|= ϕi.

Alternatively the formula may be a disjunction ϕ1 ∨ · · · ∨ϕm and pro-
cesses si |= ϕi where for all 1 ≤ i ≤ m, and number k, is there a subset
X ⊆ {1, . . . ,m}, such that |X| ≤ k and for all 1 ≤ j ≤ m there exists
i ∈ X such that sj 6|= ϕi.

The processes and formula from Example 4.5 are repeated here:

P1 = a.(b.0 + c.0)
P2 = a.b.0
P3 = a.c.0
ϕ = 〈a〉[c]ff ∧ 〈a〉〈c〉tt ∧ 〈a〉〈b〉tt

There is a solution for the 2-Terms Problem: the two terms P1, P3 6|= 〈a〉[c]ff
and P2 6|= 〈a〉〈c〉tt are enough. There is no solution to the 1-Term Problem.
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Reduction from k-Matrix Problem to k-Terms Problem
To show that the k-Terms Problem is NP-hard we make a reduction from the
k-matrix problem. First construct a LTS with a process for each row of the
matrix along with a special process 0. Each column is represented by an action.
A process can take an action to process 0, if and only if the corresponding entry
in the matrix is 0.

Let M be a m× n matrix consisting of only ones or zeros.
Let T = (S,Act,→) be an LTS where S = {0, 1, . . . ,m}, Act = {1, . . . , n}, and
→= {(p α−→ 0) |M(p, α) = 0}. Let ϕi = 〈i〉tt for 1 ≤ i ≤ n.

Theorem 4.9
The k-Matrix problem for M is solvable if and only if the k-Terms Prob-
lem is solvable for formula ϕ = ϕ1 ∧ . . .∧ϕn or formula ϕ = ϕ1 ∨ . . .∨ϕn
and for processes S.

Proof. For the proof assume ϕ is a conjunction. The proof for disjunction is
similar.

Suppose the k-Matrix problem is solvable for M . Then there is a some
columns C ⊆ {1, . . . , n} with |C| ≤ k. For each row r there must be a column
i ∈ C such that M(r, i) = 1. By definition this means r i9, implying r 6|= 〈i〉tt.
Then the solution to the k-Term Problem is the formulae {〈i〉tt | i ∈ C}.

For the other direction assume the k-Terms Problem is solvable. Then
there is a subset X ⊆ {1, . . . , n}, |X| ≤ k, such that for all pi, 1 ≤ i ≤ m there
exists j ∈ X such that pi 6|= 〈j〉tt. By the reduction that implies for all rows
1 ≤ i ≤ m, there exists j ∈ X, such that M(i, j) = 1. Then the set X is a
solution of columns for the k-Matrix problem.

We continue the reduction with the same example. But instead each row
of the matrix is annotated with processes, and the columns are annotated with
actions.

k = 4 1 2 3 4 5 6 7 8
1 1 1 1
2 1 1 1 1
3 1
4 1 1
5 1 1
6 1 1
7 1 1

Construction the corresponding LTS yields:
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1 2 3 4 5 6 7

0

1, 2, 3, 7, 8 2, 5, 7, 8 1, 2, 4, 5, 6, 7, 8 2, 3, 4, 6, 7, 8 1, 3, 4, 5, 7, 8 1, 2, 4, 5, 6, 8 1, 2, 3, 5, 6, 7

It can be seen how the LTS resembles the matrix. Process 2 can take the
transition 2 7−→ 0 because the entryM(2, 7) is blank. A solution to the 4-matrix
problem was picking columns 1, 3, 4 and 6. Then the terms 〈1〉tt, 〈3〉tt, 〈4〉tt and
〈6〉tt is a solution to the 4-terms problem; for all processes they do not satisfy
at least one of the terms since 2, 4 6|= 〈1〉tt, 3, 6 6|= 〈3〉tt, 1, 7 6|= 〈4〉tt and
5 6|= 〈6〉tt.





5Equivalence Collapse

Equivalence collapse can be used to hide equivalent processes to simplify the
visualised LTS shown in the explorer in Caal. This collapse can simplify the
representation of complex systems, and provide an overview and give insights
to the behavioural aspects of a process. We explain the theory behind the
equivalence collapse using strong bisimulation, and proceed to explain how to
implement equivalence collapse. We offer examples for equivalence collapse
using both strong and weak bisimulation. The weak bisimulation collapse ex-
ample also shows that not only can we simplify the LTS by collapsing equivalent
processes, but we can also hide unimportant process behaviour to to simplify
the LTS even further. This can be achieved by relabelling the action to τ , and
visualise the LTS using weak bisimulation collapse.

5.1 Bisimulation Collapse

Consider two bisimilar processes Q ∼ R, and then another process with a
choice of both: P def= α.Q+α.R. Since Q and R are bisimilar it is not possible
to distinguish between them. Then there is no need to have both and it would
not matter which choice was made, and P can be simplified by removing the
choice: P def= α.Q.

Since bisimulation equivalence is an equivalence, the set of all processes
can be divided into subset classes, for which all processes in a subset are all
bisimilar. For each class it is possible to select a process as a representative for
the class. Any process in the LTS can then be replaced by the representative
for its class without changing the behaviour of the system.

Figure 5.1 shows an LTS where processes can be collapsed.

t1

t2

t3 t4

t5 t6

t7 t8 t9

a

b

c

b
c

a

b c

Figure 5.1: LTS that can be collapsed to simpler process.

The processes t4 ∼ t6 ∼ t9 can not perform any actions at all and are
therefore bisimilar and could be all be replaced by a single representative, say
t6, shown in Figure 5.2.

61
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t1

t2

t3

t5 t6

t7 t8

a

b
c

b
c

a

b

c

Figure 5.2: LTS that can be collapsed to simpler process.

Likewise the processes t3 ∼ t5 ∼ t8 can all take a b-transition to a process
that cannot do anything at all and are therefore bisimilar, and could all be
replaced by a representative, say t5. Likewise for t2 and t7 the representative
is t2 and finally we will end up as shown in Figure 5.3

t1 t2 t5 t6
a b ca

Figure 5.3: LTS that can be collapsed to simpler process.

The initial state (t1) of this final LTS is bisimilar with the initial state of
the first one.

We generalize this to any equivalence, not just bisimulation.

Definition 5.1 — Equivalence Class
Let ≡ be equivalence relation. Then the equivalence class for a pro-
cess p is the set of all processes that are equivalent, [p]≡, defined as
[p]≡ = {p′ | p′ ≡ p}.

For any LTS we can then define a corresponding collapsed version where
all equivalent processe have been grouped.

Definition 5.2 — Collapsed Labelled Transition System
Let T = (Proc, Act,→) be a LTS where Proc is a set of states, Act a set
of actions, →⊆ Proc × Act × Proc the transition relation, and ≡ be a
equivalence relation between processes.

The collapsed labelled transition system TC = (Proc’, Act,→C) is then
also an LTS with Proc’ ⊆ 2Proc, and →⊆ Proc’ × Act × Proc’. The set
of states Proc’, are all the equivalence classes, defined by Proc’ = {[p]≡ |
p ∈ Proc}. For any original transition in T , TC has a transition between
the corresponding partitions: →C= {[p]≡

α−→ [p′]≡ | p
α−→ p′}.
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For strong and weak bisimulation, the collapsed transition system is bisim-
ilar to the original.

Theorem 5.3
Let T = (Proc, Act,→) be a LTS. For all p ∈ Proc: p ∼ [p]∼, and p ≈ [q]≈.

Proof. To proof this we construct the bisimulation relation R. Let R =
{(p, [p]∼) | p ∈ Proc}.

For the first direction, let (p, [p]∼) ∈ R for any p ∈ Proc, and suppose
p

α−→ q. Then by definition of →C it is the case that [p]∼
α−→C [q]∼, and we

have that (q, [q]∼) ∈ R.
For the other direction, suppose [p]∼

α−→C [q]∼. Then there must exists
some processes p′ ∈ [p]∼ and q′ ∈ [q]∼ such that p′ α−→ q′. Since p ∼ p′ there
must be a transition p

α−→ q′′ such that q′′ ∼ q′. Observe that q′′ ∼ q which
implies q′′ ∈ [q]∼ which in turn implies [q]∼ = [q′′]∼. By definition of R it is
the case that (q′′, [q]∼) ∈ R.

For weak bisimulation the proof is similar, except the transition relation
used, including in the construction of the collapsed LTS, is based on⇒ instead.

Disjoint-Set Data Structure.
We need some way of representing groups of processes that are equivalent. For
this we use a data structure called Disjoint-set data structure [6]. This data
structure is managed using the three functions defined in Algorithm 5.1. The
Disjoint-set data structure helps keeps track of disjoint subsets of processes
that are equivalent. We start by calling the function Make-Set(x) with each
process x ∈ Proc. The function is shown in Algorithm 5.1 on line 1. Each
process is assigned itself as the representative process. This will later change
as we link the equivalent processes. The Find-Set function which is defined in

Algorithm 5.1 Disjoint-Set Procedures
1: function Make-Set(x)
2: x.parent = x
3:
4: function Find-Set(x)
5: if x.parent == x then
6: return x
7: else
8: return Find-Set(x.parent)
9:

10: function Union(x, y)
11: xRoot = Find-Set(x);
12: yRoot = Find-Set(y);
13: xRoot.parent = yRoot;
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Algorithm 5.1 on line 4, finds and returns the input process x’s representative
process. It does this by recursively calling itself with x’s parent, until it reaches
the representative process and the condition in line 5 is true.

When we have two equivalent processes x and y, we link them using the
function Union(x, y), defined in Algorithm 5.1 on line 10.

Lines 11-12 Find the representative process of the x and y process.

Line 13 Assign the representative process of x to y’s representative process.

In our implementation we have optimised the algorithms using union by rank
and path compression [6] to flatten the linked relationship between processes.
The amortized running time of each operation isO(α(n)) where n is the number
of Make-Set operations. The function α(n) is an extremely slowly growing
function – so slow that in practice it might as well be a constant.

The equivalence collapse algorithm which is defined by Algorithm 5.2, uses
the three functions, Make-Set, Find-Set, and Union, for linking equivalent
processes so they later can be collapsed.

Algorithm 5.2 Equivalence Collapse
Input: LTS T = (Proc, Act,→) and equivalence relation ≡
Output: LTS TC = (Proc’, Act,→C)

1: for all p ∈ Proc do
2: Make-Set(p)
3: for all p ∈ Proc do
4: for all q ∈ Proc do
5: pRoot = Find-Set(p)
6: qRoot = Find-Set(q)
7: if pRoot = qRoot then
8: continue . p and q have already been linked
9: if pRoot ≡ qRoot then

10: Union(p,q)
11: Proc’ = ∅
12: →C= ∅
13: for all p α−→ q do
14: →C=→C ∪{(Find-Set(p), α,Find-Set(q))}
15: Proc’ = Proc’ ∪ {Find-Set(p),Find-Set(q)}
16: return TC = (Proc’, Act,→C)

Lines 1-2 We initialises the processes by calling Make-Set for every pro-
cess in the LTS. This will cause the parent reference for p to point to p,
i.e. causing a self-loop.

Lines 3-10 We then proceed to verify that p and q are equivalent. If they
are equivalent we call Union(p,q), to link the two processes.

Lines 11-16 We create the set Proc’ and→C . For all transitions (p, α, q) ∈→,
we create a transition (Find-Set(q), α,Find-Set(q)) and add it to →C .
We also add the representative processes Find-Set(p) and Find-Set(q)
to Proc’.
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The time complexity of our algorithm is O(|Proc|2 · α(|Proc|) + |Act| ·
α(|Proc|)) and the additional space used for the disjoint sets in computing
the collapsed LTS is O(|Proc|).

Example 5.4 — Strong Bisimulation Collapse
Let Proc = {s, s1, s2, s3, s4, s5} of processes, where s ∼ s1, and s3 ∼ s4 ∼
s5. An illustration of the LTS T is shown on Figure 5.4.

s

s1 s2 s3

s4 s5

b
c

c
b

d

a a

a

a

Figure 5.4: Illustration of LTS T .

We use Algorithm 5.2 to collapse the LTS T to TC , for strong bisimu-
lation. This is done in two steps.

Step 1 Create the Disjoint-set data structure, by linking all bisimilar pro-
cesses together.

Step 2 Create Proc’ and →C , using the Disjoint-set data structure.

We start with step 1, namely the lines 1-10 in Algorithm 5.2. We first
apply the function Make-Set(x) on each process x ∈ Proc, as seen on
Figure 5.5. Note that the arrows in the following figures illustrates the
reference to the process’s parent, and not their transitions.

s

s1 s2 s3

s4 s5

Figure 5.5: Make-Set has been applied on all processes.

We know that process s ∼ s1 and s3 ∼ s4, and can therefore link
them using the function Union(s3, s4) and Union(s, s1), which is shown
in Figure 5.6.



66 CHAPTER 5. EQUIVALENCE COLLAPSE

s

s1 s2 s3

s4 s5

Figure 5.6: The function Union(s3, s4) and Union(s, s1) has been applied

We also know that s4 ∼ s5, and we apply Union(s4, s5), and get the
result shown in Figure 5.7.

s

s1 s2 s3

s4 s5

Figure 5.7: The function Union(s4, s5) has been applied

We have now found a representative process for all bisimilar processes,
which are {s1, s2, s5}. Now we can proceed with step 2, namely lines 11-16
in Algorithm 5.2. For all transitions p α−→ q ∈ Proc we find the represen-
taive of p and q and add them to the new transition relation →C , under
the same action α. Thereafter we add the representative of p and q to
Proc’. In Table 5.1 we have the execution of step 2. The returned LTS

i p
α−→ q F ind(p) Find(q) →C ∪ {(Find(p), α, F ind(q))} Proc’ ∪

{Find(p), F ind(q)}
1 (s, c, s1) {s1} {s1} ∅ ∪ {(s1, c, s1)} ∅ ∪ {s1, s1}
2 (s, b, s2) {s1} {s2} {(s1, c, s1)} ∪ {(s1, b, s2)} {s1} ∪ {s1, s2}
3 (s1, c, s1) {s1} {s1} {(s1, c, s1), (s1, b, s2)} ∪ {(s1, c, s1)} {s1, s2} ∪ {s1, s1}
4 (s1, b, s2) {s1} {s2} {(s1, c, s1), (s1, b, s2)} ∪ {(s1, b, s2)} {s1, s2} ∪ {s1, s2}
5 (s2, d, s3) {s2} {s5} {(s1, c, s1), (s1, b, s2)} ∪ {(s2, d, s5)} {s1, s2} ∪ {s2, s5}
6 (s3, a, s4) {s5} {s5} {(s1, c, s1), (s1, b, s2), (s2, d, s5)} ∪

{(s5, a, s5)}
{s1, s2, s5} ∪ {s5, s5}

7 (s4, a, s3) {s5} {s5} {(s1, c, s1), (s1, b, s2), (s2, d, s5), (s5, a, s5)}
∪ {(s5, a, s5)}

{s1, s2, s5} ∪ {s5, s5}

8 (s4, a, s5) {s5} {s5} {(s1, c, s1), (s1, b, s2), (s2, d, s5), (s5, a, s5)}
∪ {(s5, a, s5)}

{s1, s2, s5} ∪ {s5, s5}

9 (s5, a, s5) {s5} {s5} {(s1, c, s1), (s1, b, s2), (s2, d, s5), (s5, a, s5)}
∪ {(s5, a, s5)}

{s1, s2, s5} ∪ {s5, s5}

Table 5.1: Execution of step 2 in Algorithm 5.2 with LTS T as input

TC = (Proc’, Act,→C), where Proc’ = {s1, s2, s5}, Act = {a, b, c, d}, and
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→C= {(s1, c, s1), (s1, b, s2), (s2, d, s5), (s5, a, s5)}. Figure 5.8 illustrates
the collapsed LTS TC .

s1 s2 s5

c a

b d

Figure 5.8: Illustration of strong bisimulation collapsed LTS TC

Example 5.5 — Weak Bisimulation Collapse
We use the same example as in Example 5.4 Let Proc = {s, s1, s2, s3, s4, s5}
of processes, where s ∼ s1, and s3 ∼ s4 ∼ s5. An illustration of the LTS
T is shown on Figure 5.9.

s

s1 s2 s3

s4 s5

b
c

c
b

d

a a

a

a

Figure 5.9: Illustration of LTS T .

Say we are only interested in the d-transitions, meaning that we do
not want the a, b, c-transitions visualised in the LTS. To achieve this we
relabel the a, b, c-transitions to τ for all processes. We create LTS T ′ under
this relabelling, where p ∈ Proc

p′ = p[tau/a, tau/b, tau/c],

LTS T ′ is illustrated Figure 5.10
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s′

s′1 s′2 s′3

s′4 s′5

τ
τ

τ
τ

d

τ τ

τ

τ

Figure 5.10: Illustration of LTS T ′, relabelled a, b, c-transition to τ .

We use Algorithm 5.2 to collapse the LTS T ′ to T ′C , for weak bisimu-
lation, see Figure 5.11 for the collapsed LTS T ′C .

s′2 s′5

τ τ

d

Figure 5.11: Illustration of weak bisimulation collapsed LTS T ′C

We have now simplified the LTS T to LTS T ′C , with relabelling and
weak bisimulation, to the point where the interesting d-transition is the
only visualised transition, other than τ -transitions.

CWB uses a partition refinement algorithm [5]. While our equivalence
collapse algorithm merges disjoint sets together the refine algorithm assumes
an opposite stance: all processes are in the same block are equivalent. Initially
all processes are in the same block. If two processes in the same block are not
equivalent under some criteria the block is split into those that are and those
that are not. The time complexity of the algorithm is O(|Proc| · |Act|) and the
space complexity is listed to be O(|Proc|+ |Act|). Compared to our algorithm,
this one scales better with the number of processes but uses more memory.



6Parallel Fixed-Point
Computation

Caal only runs in the browser and it mostly only uses a single thread of com-
putation. Leveraging the multiple cores in computers is an interesting chal-
lenge. In this chapter we describe a parallel algorithm for computing minimum
fixed-points and how existing code is leveraged and combined with a Redis [1]
database.

6.1 Overview

The parallel algorithm will only implement a minimum fixed-point algorithm
adapted from the one by Liu and Smolka in [12], and will initially only compute
strong and weak bisimulation. Several processes will be started that each
compute part of the fixed-point computation for the graph.

For the implementation of the parallel fixed-point algorithm we have reused
the JavaScript (JS) (compiled from TypeScript) implementation in Caal for
faster development of the prototype. This enables reuse of all code not related
to user interfaces and prevents having to reimplement several features like the
successor generator for dependency graphs, parsers, and transformations that
simplify processes.

The choice of the Google V8 JavaScript engine [7] to access our libraries in
JS resulted in C++ being chosen as the implementation language for the par-
allel program. V8 allows C++ programs to create JS values, call JS functions,
and create callbacks in C++ that can be called from JS. Our use of V8 includes
loading CCS processes and getting hyperedges from a successor generator.

To communicate between workers, share fixed-point values, and partition
out work we use Redis (REmote DIctionary Server) [1], a key-value database
where keys are byte-safe strings and the values can be a variety of data struc-
tures. Our instance will manage data used by the algorithm and maintain the
current fixed-point assignments. A useful property of Redis is that all com-
mands sent to it are atomic. If multiple commands are required to be executed
in sequence without errors it is necessary to use a transaction. For complex
transactions it might be simpler to use Lua scripting in Redis. Lua scripts can
be loaded into Redis and later executed by clients. Each script runs in isolation
and has access to any arguments the client passed.

Since Redis primarily works with strings we augment the JS in Caal to
serialize and deserialize processes and hyperedges to strings.

Figure 6.1 shows an overview of the parts described. Each worker is a C++
process started by MPI. A worker wraps its own successor generator and runs
its own partial fixed-point computation on data received from the server. When
it has processed data it sends updates back to the server.

69
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C++ MPI Worker

(De)serialise   
                          V8 /JS

CAAL

      

Fixed-Point

Markings
Dependents
Hyperedges

Status

Hyperedges

Redis

Vertex

Figure 6.1: Diagram for parallel computation

6.2 Pseudocode

The pseudocode for the algorithm is shown in Algorithm 6.1. All function
prefixed with Atomic can be assumed to operate on global data. Other data
is local. The algorithm is run simultaneous on multiple processes, but each
process has its own rank. The process with rank 1 initialises the waiting list
by adding the outgoing hyperedges from sinit to the waiting list, initializes the
set of active workers to the emptyset, and finally joins the other processes at
the barrier. No process can cross the barrier until all are ready.

After the first barrier all processes mark themselves as active, and sets their
list of dependent edges to the empty set. Dependent edges are hyperedges that
needs to be added back to the waiting list when a target node is assigned 1.

The function AtomicCount ensures termination when there is no more
work. The count only reaches 0 when no more processes have any hyperedges
to process and all were unable to acquire any. If only one process is working on
any hyperedges and the waiting list is empty the other processes will not exit
since the working process may add more work soon. In case sinit is assigned 1
all processes are allowed to exit the loop a the next iteration since the result
is known (for pseudocode brevity this is not shown).

If the process didn’t exit the loop it requests some hyperedges along with
assignments for all vertices among those hyperedges in lines 9–14. Then it
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Algorithm 6.1 Parallel Minimum-Fixed Point Algorithm
Input: Reference to the database DB, rank of process 1 ≤ rank ≤ m, and

initial state sinit ∈ S.
Output: Change A and D as side effect.

1: if rank = 1 then
2: AtomicAddEdges({succ(sinit))}
3: Active = ∅
4: BARRIER
5: AtomicPut(Active, rank)
6: D = ∅
7: BARRIER
8: while AtomicCount(Active) 6= 0 do
9: H,Alocal ← AtomicGetEdgesAndValues(DB)

10: if H = ∅ then
11: AtomicDel(Active, rank)
12: continue
13: else
14: AtomicPut(Active, rank)
15: Hnew ← ∅
16: Dnew ← ∅
17: for (s, T ) ∈ H do
18: targetsAssignedOne← 0
19: for u ∈ T do
20: if Alocal(u) = ⊥ then
21: Alocal(u)← 0
22: Dnew ← Dnew ∪ (u, {(s, T )})
23: Hnew ← Hnew ∪ succ(u)
24: else if Alocal(u) = 0 then
25: Dnew ← Dnew ∪ (u, {(s, T )})
26: else
27: targetsAssignedOne← targetsAssignedOne+ 1
28: if targetsAssignedOne = |T | then
29: Alocal(s)← 1
30: BEGIN (DB)
31: AtomicAddEdges(Hnew)
32: AtomicAddDependents(Dnew \D)
33: AtomicUpdateAssignments(Alocal)
34: END(DB)
35: D ← D ∪Dnew
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initializes the local variables Hnew and Dnew to hold new hyperedges and de-
pendents respectively.

All hyperedges are iterated over starting at lines 17. For each hyperedge it
iterates the target vertices. If the target vertex has not been seen before, in
line 20, it is given the new marking of 0, is added as a dependent for s, and
its successors are added to Hnew to later be added to the global waiting list.
Otherwise if the vertex is assigned 0 we simply add the hyperedge as a new
dependent. Finally, if it is assigned 1, we simply increment the number of target
vertices assigned 1 so far. If all target vertices of a hyperedge are assigned 1,
then in order for the assignment to be a valid prefixed-point assignment the
source vertex must also be assigned 1, done in line 29. This is where a check
for early termination could be made.

Finally the data needs to be sent back to the database using a transac-
tion. The set of new hyperedges are added to the database, followed by any
new dependent edges, and finally the updated assignment. The database adds
dependent hyperedges to the waiting list internally using a Lua script for any
new assignment of 1.

6.3 Parallel Fixed-Point Computation Results

The university has a compute cluster for running parallel programs. The cluster
consists of nine compute nodes each with 1Tb of memory, 4 AMD Opteron 6376
Processors each containing 16 cores running at 2.3Ghz, and a 1Tb disk [17].

Our parallel algorithm was run on the compute nodes using up to 63 cores.
The last core was reserved since the Redis database used by the algorithm ran
on the same compute node. The algorithm was run on the verification problem
known as Alternating Bit Protocol (ABP). The problem can be tuned for differ-
ent buffer sizes with larger sizes yielding a more complex verification problem.
The dependency graph constructed checks for weak bisimilarity between the
implementation and specification of ABP.

Table 6.1 shows information about each run. Single-core verification time is
how much time the algorithm spent using a single process. The entries below
the number of cores is the relative speed compared to single core. For instance
the run with buffer size 4 and 32 processes had a relative speed of 2.14 – slightly
more than twice as fast as when run with a single process.

Buffer size Single-worker-
process verification
time (s)

Number of worker processes

2 4 8 16 24 32 63
2 3.24 1.14 1.24 1.32 1.15 1.17 1.18 0.99
3 19.10 1.30 1.39 1.34 1.51 1.76 1.86 1.49
4 128.10 1.28 1.66 1.85 1.92 2.15 2.14 1.85
5 838.97 1.33 1.66 1.87 1.79 1.78 1.73 2.19

Table 6.1: Verification time

It was attempted to run ABP with a buffer size of 6, however the program
crashed after roughly 30 minutes. The successor generators in Caal was meant
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for educational aspects and for running in the browser. This means the succes-
sor generators are not completely state-free and internally cache results. The
cached data accumulates over many calls and eventually the memory limit in
V8 is reached [15].

From the table it is apparent the relative speeds when running multiple
processes are not satisfactorily. It would be reasonable to expect the speedup
when running 32 processes with available cores to be significantly higher than
2.

To better understand why it was not faster we examine some data logged
during the run with 32 processes for buffer size 4 compared to the run with
just one process shown in Table 6.2:

Logged data item 1 process 32 processes
Avg. system time reading [ms] 1081 4403
Avg. system time writing [ms] 921 4811
Avg. system time loading [ms] 214 45
Avg. system time processing [ms] 125391 48437
Sum of the above [ms] 127608 57698
Avg. system time spent in JS [ms] 125193 48371
Total num edges processed 2657 16021
Total num vertices processed 69382 509686
Total MB Written 87 567
Total MB Read 87 567
Total iterations 890 12799
Total wait iterations 1 7384
Total work iterations 889 5415
Total running time [s] 128.10 58.87

Table 6.2: Data for ABP run with 32 processes and buffer size 4.

For our runs we know the dependency graph has to be fully explored. The
number of wait iterations indicate the number of iterations a process attempted
to received hyperedges to work on, but none were available. This number is
1 for one process and this happens when there are no more hyperedges left to
process. For 32 processes the number of iteration not doing anything is greater.
However, waiting does not seem to be the major contributing factor to the poor
speedup: except reading and writing to Redis, almost all of the remaining time
is spent running JavaScript code as indicated by the column for JS Time.

The number of edges and vertices listed in the column for one process is
therefore a reasonable approximation of the complexity of the graph. With this
realization it becomes apparent by comparing the total number of hyperedges
and vertices processed that the 32 processes must have worked on overlapping
vertices. The run with 32 processes go through roughly 7 times more work
indicated by number of edges, nodes, data written and read, and number of
work iterations. This might have been caused by processes exploring and both
adding the same newly-found hyperedges to the waiting list. We hypothesize
that redundant work loads are the major reason for the poor speedup.
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It should also be noted that the serialized string representation of vertices
can become many kilobytes and hyperedges can reach megabytes. The overhead
of serializing and deserialising vertices in JS are far from negligible. Running
one process for ABP with buffer size 4 takes around 125s in the parallel algo-
rithm. Doing the same in Caal takes around 35s. The only difference is the
serialization and deserialisation.

*** Send
Send_0 = accept.Send_out_0;
Send_1 = accept.Send_out_1;

Send_out_0 = ’send_0.Send_wait_0;
Send_out_1 = ’send_1.Send_wait_1;

Send_wait_0 = Send_out_0 + dack_0.Send_1 + dack_1.Send_wait_0;
Send_wait_1 = Send_out_1 + dack_1.Send_0 + dack_0.Send_wait_1;

*** Receive
Receive_0 = dsend_0.Receive_ack_0 + dsend_1.’ack_1.Receive_0;
Receive_1 = dsend_1.Receive_ack_1 + dsend_0.’ack_0.Receive_1;

Receive_ack_0 = ’deliver.’ack_0.Receive_1;
Receive_ack_1 = ’deliver.’ack_1.Receive_0;

*** Medium (lossy)
Mediuml_send = send_0.Mediuml_send_0 + send_1.Mediuml_send_1;
Mediuml_send_0 = ’dsend_0.Mediuml_send + Mediuml_send;
Mediuml_send_1 = ’dsend_1.Mediuml_send + Mediuml_send;

BufferSend2 = (Mediuml_send[a0/dsend_0, a1/dsend_1] |
Mediuml_send[a0/send_0, a1/send_1]) \ {a0,a1};

BufferSend3 = (BufferSend2[a0/dsend_0, a1/dsend_1] |
Mediuml_send[a0/send_0, a1/send_1]) \ {a0,a1};

BufferSend4 = (BufferSend3[a0/dsend_0, a1/dsend_1] |
Mediuml_send[a0/send_0, a1/send_1]) \ {a0,a1};

BufferSend5 = (BufferSend4[a0/dsend_0, a1/dsend_1] |
Mediuml_send[a0/send_0, a1/send_1]) \ {a0,a1};

Mediuml_ack = ack_0.Mediuml_ack_0 + ack_1.Mediuml_ack_1;
Mediuml_ack_0 = ’dack_0.Mediuml_ack + Mediuml_ack;
Mediuml_ack_1 = ’dack_1.Mediuml_ack + Mediuml_ack;

*** The alternating bit protocol - Implementation
set Internals = { send_0, send_1, ack_0, ack_1,

dsend_0, dsend_1, dack_0, dack_1 };
ABPl = (Send_0|Receive_0|BufferSend5|Mediuml_ack) \ Internals;

*** The alternating bit protocol - Specification
SPEC = accept.’deliver.SPEC;
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In the following sections we show the debugging tools implemented in Caal
based on theory described in previous chapters. This includes HML game, dis-
tinguishing formula, and bisimulation collapse. We do this by showing exam-
ples and describe how these debugging tools might aid an user in understanding
model checking, or the behavioural aspects of a process. Caal is implemented
in JavaScript and is licensed under the MIT License. In the previous report
[14] we chose to implement Caal as a web application using JavaScript, which
resulted in a portable application that can be accessed by different operating
systems, such as Windows, Linux, and Mac OS. The benefit of having Caal
implemented as a web application is the easy accessibility and no need to for
installation. Because Caal aims to be an educational tool, performance was
never highly prioritised, since a web application will never have the computa-
tion power of a native application. Instead user friendliness and usability as a
teaching tool were prioritised when creating Caal.

7.1 HML Game

Our implementation of HML game share some similarities to the bisimulation
game done in our previous report [14]. This section describes how we imple-
mented the HML game in Caal according to the theory in Chapter 3

The game consists of an “attacker” and a “defender”, a process and a for-
mula. The attacker’s goal is to prove that the process does not satisfy the
formula, whereas the defender’s goal is prove that the process does satisfy the
formula. A full description of the rules and winning conditions of an HML
game can be found in Section 3.4. In the current state of Caal we only sup-
port HML games with a minimum fixed-point, but plan to implement support
for maximum fixed-points.

The HML game is designed such that the human player will always play
the losing role, meaning the computer always has a winning strategy. In case
of an infinite loop, the winner depends on what context the game is in.

Figure 7.1 gives a full overview of the implemented HML game. The bottom
left corner has a game log, which gives the user an overview of what configu-
ration the game is in, whose turn it is to make a move and what context the
game is in. To the right of the game log there is a table showing the possible
subformulae and transitions it is possible for the user to choose.

For the example we use the process S seen in Figure 7.1 and the formula

X
min= 〈c〉〈a〉tt ∨ (〈b〉tt) ∧ [b]X)

75
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Figure 7.1: Full overview of HML game

Figure 7.2 shows the result of the verification done by Caal. The formula
is satisfied. The user can click the three vertical dots to the right and click
“Play” to be convinced of the correctness of the property. The user is then
taken to the HML game seen in Figure 7.1

Figure 7.2: Result of the formula verification

Because the formula was satisfied by the process S, we are playing as at-
tacker and we are going to lose.
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Figure 7.3a shows the defender’s first move; it chose the subformula 〈b〉tt∧
[b]X. The configuration is now a conjunction meaning it is our turn as attacker
to pick. Figure 7.3b shows we picked the subformula [b]X and we have to choose
a b-transition to either S1 or S2.

Regardless of which transition we pick, we end up in a state with only an
out-going b-transition, so the defender picks the configuration 〈b〉tt∧ [b]X again
and we respond by choosing [b]X and we end up in S3.

Figure 7.3c shows that this time the defender picks 〈c〉〈a〉tt and afterwards
pick the c-transition to S3. The defender follows up by picking the a-transition
and reaches the true formula and therefore win as seen on Figure 7.3d.

(a) Defender picks subformula (b) Attacker picks subformula

(c) Defender picks subformula (d) Defender wins

Figure 7.3: Game log for HML game

7.2 Distinguishing Formula

For two non-bisimilar processes it can be useful to know a property that one
satisfies but not the other. This property can be described by a distinguishing
formula. Although these formulae are not always easy to find by hand, they are
guaranteed to exist. This section shows our implementation in Caal, based
on the theory in Chapter 4, for generating distinguishing formulae.
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For our example we define the following processes

Man
def= wakeUp.shower.start.cook.stop.eat.Man

Stove
def= start.Stove1

Stove1 def= cook.stop.Stove+ break.0

Dinner
def= (Man |Stove)\{start, stop, cook}

Spec
def= wakeUp.shower.tau.tau.tau.eat.Spec

We can use the explorer to visualise our CCS program, on Figure 7.4 we explore
the process Dinner.

Figure 7.4: LTS of the process Dinner.

Our question is then, does Dinner ∼ Spec? Is the man able to wake up,
take a shower, cook his meal on the stove and thereafter eat it? To answer our
questions we go to the verifier, and add the strong bisimulation property for
Dinner and Spec. See Figure 7.5 for the verified property.

Figure 7.5: Verified strong bisimulation property.
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So by looking at Figure 7.5 we can see that the property is not satisfied.
We can now generate a distinguishing formula to show what exactly separates
the Dinner and Spec process.

Figure 7.6: Generated distinguishing formula.

On Figure 7.6 two new HML properties have now been generated with the
distinguishing formula

〈wakeUp〉〈shower〉〈tau〉〈break〉tt

. And we can see that

Dinner |= 〈wakeUp〉〈shower〉〈tau〉〈break〉tt
Spec 6|= 〈wakeUp〉〈shower〉〈tau〉〈break〉tt

If we need more convincing that e.g. Dinner satisfies the distinguishing formula
we can play the HML game, which is explained in Section 7.1.

7.3 Equivalence Collapse

In this section we show how the equivalence collapse works in Caal. We give
an example to show that it is possible to collapse an LTS using strong and
weak bisimulation. We will also show that with a combination of relabelling
and weak collapse, it is possible to hide uninteresting process behaviour for
certain transitions, and thereby highlight other transitions.

In Figure 7.7 an LTS is presented in Caal’s debugging tool explorer. In
the explorer we have the possibility to collapse the LTS using either strong or
weak bisimulation collapse. The equivalence collapse has been implemented
according to the theory presented in Chapter 5
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Figure 7.7: Uncollapsed LTS

Strong Bisimulation Collapse
If we press the “Options” dropdown menu, and select strong bisimulation col-
lapse we get the graph shown in Figure 7.8.
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Figure 7.8: Collapsed LTS, with strong bisimulation

We see that the sequence S2 a−→ S4 b−→ S6 and S2 a−→ S3 b−→ S6 has been
collapsed to 6 a−→ 4 b−→ 1. It has been collapsed since S3 ∼ S4.

Weak Bisimulation Collapse
We can also use weak bisimulation collapse to abstract from τ -transitions,
and further simplify the LTS. Notice that the same processes has been col-
lapsed from the strong bisimulation collapse figure, because if two processes
are strongly bisimilar they are also weakly bisimilar. Process S1 and S2 are
weakly bisimilar and therefore are they collapsed into process 2, see Figure 7.9.
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Figure 7.9: Collapsed LTS, with weak bisimulation

Together with relabelling to τ and weak bisimulation collapse, we can hide
unimportant processes behaviour. Say we define S1 to be:

S1 = (τ.S2)[τ/a, τ/c]; .
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Figure 7.10: LTS after relabelling and weak bisimulation collapse.

If we explore S1 we can see that a, c-transitions for process S1 has changed
to τ -transitions, and with weak bisimulation collapse enabled we get Fig-
ure 7.10. This feature can be beneficial if you have a large LTS and you
are only interested the behaviour for a process for certain actions.





8Caal Tutorial

This tutorial gives an informal introduction to the main features of Caal and
how to use them. Caal supports the process algebras Calculus of Communicat-
ing Systems (CCS) and Timed Calculus of Communicating Systems (TCCS),
and both equivalence and model checking analysis of processes through verifi-
cation and games. Caal consists of four different modules; an editor module
for modelling processes, a module for visualization of processes, a module for
equivalence and model checking, and a game module. Caal is available at:

http://caal.cs.aau.dk.

8.1 The Language CCS

CCS is a process algebra used to model concurrent systems. We shall now
informally introduce CCS.

The most basic process of all is the 0 (or nil) process. It cannot perform
any action whatsoever and thus stops all computation. The most basic process
constructor in CCS is action prefixing. The formation rule for action prefixing
is as follows:

If P is a process and a is a label, then a.P is a process.

Using the formation rule for action prefixing and the 0 process we can build
two example processes:

shake.0 shake.walk.0 .

The first process can only perform the shake action and then dies (becomes
the 0 process). The second process is a more complex process, which after
performing the shake action, can also perform the walk action. Names can also
be assigned to processes. For example, we can give the second process a name:

Boy = shake.walk.0 . (8.1)

Naming processes allows us to introduce recursive definitions of process
behaviors. For example, we can define a recursive process specification as
follows:

Tree = shake.′apple.Tree .

This tree can be shaken which causes it to deliver an apple and afterwards
returns to its initial state where it can be shaken again. Note the bar over
′apple (the apostrophe denotes a bar in Caal), which indicates that it is an
output action. This tree only allows one type of apple. In order for the tree
to support multiple colors of apples, we use the choice operator. Now the tree
can be defined as:

ColorTree = shake.(′greenapple.ColorTree + ′redapple.ColorTree) . (8.2)

The idea is that after the tree has been shaken, it can deliver either a green
or a red apple. In general, the formation rule for choice is:

85
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If P and Q are processes, then P +Q is also a process.

The process P +Q is able to do either P or Q, but not both. As soon as P
is performed any further execution of Q is preempted and vice versa.

Another operator is the parallel composition operation. Composition de-
scribes two or more processes running in parallel and possibly interacting with
each other. For example, if we continue the example from Equation 8.1, we can
shake the tree in order to receive an apple and then walk to the next tree after
an apple has fallen to the ground. This can be described by the CCS process:

Girl = ′shake.apple.′walk.Girl . (8.3)

The CCS expression Tree | Girl describes a system consisting of two pro-
cesses; the tree and the girl. These two processes can communicate through
their shared communication channels; shake and apple.

However, neither the girl nor tree are required to communicate with each
other. They could communicate over their channels with any other processes
they have been composed with, or simply perform the shake, apple, or walk
actions directly without communication.

P and Q may proceed independently or they may communicate through
shared channels.

When two processes communicate through the same input and output ac-
tion the resulting action is called a τ -action. It might be best if only one
had access to the apples that fall from the tree. CCS allows this through an
operation called restriction. This allows us to hide certain channels from the
environment. If we continue from Equation 8.3 and expand the example to
accept red or green apples:

Man = ′shake.(Man1 + Man2) , (8.4)
Man1 = redapple.′walk.Man ,

Man2 = greenapple.′throw.Man .

Now we can define the Orchard using the ColorTree from Equation 8.2 and the
refined Man from Equation 8.4:

Orchard = (ColorTree | Man) \ {shake, redapple, greenapple} . (8.5)

The restricted channels shake, redapple, and greenapple may only be used
for communication between the tree and the man. Their scope is restricted
to the process Orchard. In general, the formation rule for restriction can be
described as follows:

If P is a process and L is set of channel names, then P \ L is a process.

In P \ L the channel names in L can only be used to communicate within
P . It might be beneficial for the orchard to have access to other sorts of fruit.
This can be done by defining a generic orchard that can be shaken, then drop
its fruit and reset:

GenericOrchard = shake.′fruit.GenericOrchard .
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Through appropriate renaming of the GenericOrchard it is possible to ob-
tain a more specific Orchard. For example:

PearOrchard = GenericOrchard [pear/fruit] .

PearOrchard is a process that behaves like GenericOrchard but outputs
pears instead of a generic fruit. The renaming operation can be described as:

If P is a process and f is a function from labels to labels, then P [f ] is a
process.

8.2 The Language TCCS

TCCS is an extension of CCS with time, which means that we still have all
the syntactical elements of CCS but with a new syntactic element, the delay
prefixing operator. With this operator we can model processes like

5.a.0 ,

which means that after delaying for 5 time units the a-action becomes available.
We extend the Orchard example and add time to it. We add a time con-

straint to the tree specifying that if the falling apple has not been caught
within 3 time units then it falls to the ground. Extending the ColorTree from
Equation 8.2 we get:

ColorTree = shake.ColorTree1 ,

ColorTree1 = ′greenapple.ColorTree + ′redapple.ColorTree + 3.tau.ColorTree .

The ColorTree has the choice of dropping either a green or a red apple. If
the tree drops a particular apple then it commits to that choice, but simply
delaying will not commit to any choice. For example, after delaying for 2 time
units the tree can still drop green or red apples.

However, after 3 time units the τ -action becomes available which prevents
any further delays. An action must be performed immediately when a τ -action
is available. If no one is ready to catch the apple within 3 time units the apple
falls to the ground.

Let us say that after the man has shaken the tree he needs to rest for 2
time units before he is ready to catch an apple. Extending the Man from
Equation 8.4 we get:

Man = ′shake.2.(Man1 + Man2) .

It is not possible for the man to rest for more than 2 time units because a
handshake is available between the Man and the ColorTree (i.e. a τ -action
becomes available). We can also define an unfit man who requires a longer
break after shaking the tree:

SlowMan = ′shake.5.(Man1 + Man2) .

If we define the orchard as

Orchard = (ColorTree | SlowMan) \ {shake, redapple, greenapple} .

then the slow man will never be able to catch an apple since his required break
makes him unable to catch the apples before they fall to the ground.
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8.3 Editor

The editor is used to input CCS and TCCS programs. The editor has full
support for CCS and TCCS syntax, and features live syntax checking to assist
the user if syntactical errors occur. The “Parse”-button will notify the user of
any contextual errors, such as referencing an undefined process. Furthermore,
Caal supports saving of the project to both a local file and the browser cache,
as well as an autosave feature that allows the user to restore unsaved work if
an unexpected error should occur. Using the editor we can input the examples
from Equation 8.2 and Equation 8.4 as shown in Figure 8.1.

Figure 8.1: Editor.

8.4 Verification

After having defined a process in the editor we may want to verify its correct-
ness. We introduce the several forms of verification that Caal supports.

Equivalence Checking
Caal supports the following equivalences and preorders:

• simulation,

• simulation equivalence,

• bisimulation,

• trace inclusion, and

• trace equivalence.
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This section focuses on bisimulation. Strong bisimulation is a notion re-
lating two processes such that whenever one of the processes can perform an
α-action the other process must also be able to perform an α-action. The
resulting pair must again be related by strong bisimulation.

We also have the notion of weak bisimulation. We use the term “weak” to
indicate that we abstract away from τ -actions. Whenever one of the processes
can perform an α-action the other process also must be able to perform a
matching α-action, where it is allowed to perform zero or more τ -actions before
and after performing the α-action. The resulting pair must again be related
by weak bisimulation.

Example 8.1
We have the CCS processes:

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} ,
Spec = walk.Spec ,

We want to check if the processes Orchard and Spec are strongly or weakly
bisimilar. Figure 8.2 shows the result of the verification. The processes
Orchard and Spec are not strongly bisimilar, but they are weakly bisimi-
lar, as indicated by the red cross and the green check mark, respectively.

Figure 8.2: Verification of bisimulation.

Model Checking
Caal supports model checking through use of recursive Hennessy-Milner logic
(HML) formulas. HML formulas are used to check if a given process satisfies
certain properties. For instance we might want to check if our man:

• is always able to walk after receiving an apple,

• is able to shake the tree right now,

• is able to get hold of a red apple.
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Caal has support for the full syntax and semantics of recursive HML, and
also supports formulas with multiple nested variables, with the restriction that
variables are not allowed to be mutually recursive.

X min= <a>X or Y (8.6)
Y max= [b]Y

Equation 8.6 is an example of a supported HML formula.

X min= <a>X or Y (8.7)
Y max= [b]Y and X

Equation 8.7 is an example of an HML formula that is not allowed because Y
refers back to X.

Example 8.2
We have the CCS processes

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} .

We want to check if it is possible to reach a state from the Orchard where
the Man will never be able to perform a walk-transition again. We can
express this as the recursively defined property

X min= [[walk]]ff or <->X,

where - is the set of all actions. Figure 8.3 shows the result of the verifi-
cation. As we can see, this property is not satisfied, as indicated by the
red cross.

Figure 8.3: Verification of a recursive HML formula.



8.4. VERIFICATION 91

Timed Equivalence and Model Checking
When verifying TCCS we support the same equivalences and preorders as men-
tioned earlier, as well as an extended version of HML with time called Timed
HML (THML). Strong timed bisimulation is almost the same as regular strong
bisimulation. Whenever a process can make a move by some action α, the other
process must be able to match the move by the same action α. Whenever a
process can make a delay, the other process must be able to match the delay.
The resulting pairs must again be related by strong timed bisimulation.

Just like it can be useful to abstract away from τ in CCS, it can be useful
to abstract away from time in TCCS, which is called “untimed”.

Example 8.3
We have the TCCS processes:

Man = ′shake.2.(redapple.walk.Man + greenapple.walk.Man) ,
Tree = shake.(′greenapple.Tree + ′redapple.Tree + 3.tau.Tree) ,

Orchard = (Tree | Man) \ {shake, redapple, greenapple} ,
Spec = walk.Spec ,

We want to check if the Orchard is weakly timed or weakly untimed bisim-
ilar to Spec. The Orchard is not weakly timed bisimilar to Spec, but they
are weakly untimed bisimilar shown in Figure 8.4.

Figure 8.4: Verification of bisimulation with time.

As seen in Example 8.2, HML allows us to verify that the system satisfies
certain properties, but it is often interesting to verify that the system does so
with respect to time.

Example 8.4
We want to verify that the Man from Example 8.3 can never receive a red
apple if he waits for less than 2 time units after shaking the tree. We can
express this property as the recursively defined THML formula:

X max= [’shake]<0,1>[redapple]ff and X;

As seen in Figure 8.5 the property is satisfied.
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Figure 8.5: Verification of a recursive THML formula.

8.5 Debugging Options

Verifying properties for CCS processes might not always yield the expected
result. This might mean a bug is present in the CCS processes. We introduce
the tools available for debugging in Caal.

Explorer
The explorer makes it possible to graphically explore the Labelled Transition
System (LTS) generated by a process. To begin, the desired process is selected
from the drop-down menu at the top left. The outgoing transitions from the
selected process are then displayed. The explorer is shown in Figure 8.6.

Figure 8.6: Explorer.
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The states in the LTS can be selected by clicking them. The currently
selected state is colored red and the outgoing transitions from that state will
be displayed in the table below the LTS.

A number of different options are available in the explorer:

Zoom The slider at the top left will zoom in on the currently selected state.
Sometimes the LTS becomes too large to tell the different states and tran-
sitions apart, which is when zooming helps. When zoomed in, the LTS
will automatically be centered on the currently selected state whenever
it is changed.

Expand Depth The number at the top right is the number of states to
expand the LTS with. For example, if we have a depth of five, then all
states which are up to five transitions away from the currently selected
state will be displayed.

Lock The padlock at the top right will lock/unlock the LTS. The states
in the LTS are automatically positioned, but may sometimes become
cluttered if there are too many states or transitions. Locking the LTS
makes it possible to manually rearrange the states in the LTS.

Export The download button at the top right will download an image of
the currently displayed LTS.

Transitions The LTS can be displayed using either strong or weak transi-
tions. By default the LTS displayed is using strong transitions. In the
case of TCCS, there are also options for timed and untimed transitions.

Collapse The LTS can be collapsed using either strong or weak bisimula-
tion collapse. Strong bisimulation collapse means that all states which
are strongly bisimilar are collapsed into a single state. Figure 8.7 shows
the Orchard with strong bisimulation collapse, and Figure 8.8 shows the
Orchard with weak bisimulation collapse. In cases where the LTS be-
comes very large the zoom option might not be sufficient. In such cases
all unwanted actions can be relabelled to τ and removed using weak
bisimulation collapse.

Figure 8.7: Orchard with strong bisimulation collapse.
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Figure 8.8: Orchard with weak bisimulation collapse.

Games for Equivalences and Preorders
Caal supports games for the following equivalences and preorders:

• strong/weak bisimulation,

• strong/weak simulation, and

• strong/weak simulation equivalence.

Furthermore, Caal also has games for the timed and untimed variations of
the above equivalences and preorders. In this section we will focus on the game
for strong bisimulation. The games for the other equivalences and preorders
are similar, but with different rules.

The strong bisimulation game consists of an “attacker”, a “defender”, and
two processes s and t to play on. The goal of the attacker is to show that the
processes are not strongly bisimilar, and the goal of the defender is to show
that they are. The game is played over a number of rounds, where each round
starts in a pair of states called the current configuration. Initially, the current
configuration will be (s, t). Each round is played according to the following
rules:

1. The attacker performs a transition under some action α from s to s′ or
from t to t′. If the attacker cannot perform any transition the defender
wins.

2. The defender must now respond with a transition.

• If the attacker played s to s′, then the defender must perform a
transition t to t′ under the same action α. If the defender cannot
perform any transitions, then the attacker wins.

• If the attacker played t to t′, then the defender must perform a
transition s to s′ under the same action α. If the defender cannot
perform any transitions, then the attacker wins.

3. The game continues for another round with the pair (s′, t′) as the current
configuration.

If a cycle is detected in the game, i.e. if we reach a configuration (s′, t′)
which has previously been the current configuration the defender wins the
game.

If the attacker has a universal winning strategy, then s and t are not strongly
bisimilar. If the defender has a universal winning strategy, then s and t are
strongly bisimilar. If a player has a universal strategy, then that player will
always be able to win regardless of what the other player does.
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We show an example of a strong bisimulation game. Instead of showing the
simple game between the Orchard and Spec processes, we will define a pear
tree to play against the apple tree. We can define the pear tree as a relabelling
of the ColorTree from Equation 8.2:

PearTree = ColorTree [pear/greenapple, pear/redapple] .

Figure 8.9 shows a strong bisimulation game where the player is playing as
attacker against the computer in the defender role.

Figure 8.9: Screenshot of the strong bisimulation game.

The game settings in the top specifies that it is a strong bisimulation game
between the processes PearTree and ColorTree where the player is playing as at-
tacker. We also have the option to restart the game to the (PearTree,ColorTree)
configuration.

The LTSs generated by the processes PearTree and ColorTree are shown in
Figure 8.10, where the current configuration of the game is highlighted in red.
The two LTSs have the same options (e.g. lock, zoom, etc.) as in the explorer.

Figure 8.10: Game LTSs.
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Figure 8.11 shows the different transitions available to the player. It consists
of three columns:

Source The source state of the transition. Can be either the current state
in the left LTS or the current state in the right LTS.

Action The label of the transition.

Target The destination state of the transition.

Figure 8.11: Available transitions.

Figure 8.12 shows the different steps of a full game in the game log. The
initial state of the game log is shown in Figure 8.12a, where the role of the player
and whether or not the player has a universal winning strategy is shown. The
player then knows if a loss was due to a bad move. The game log then prompts
the player to pick a transition.

Figure 8.12b shows the game log after the player has made the attack

PearTree shake−−−→ 4

on the left LTS, where 4 is the identifier of the target state.
Figure 8.12c shows the response of the defender

ColorTree shake−−−→ 6

on the right. The next round of the game starts and the game log shows the
current configuration of the game (4, 6). The player can now attack again on
the left or right.

Figure 8.12d shows the player attacking with the transition

4 pear−−−→ 5

on the left. The defender cannot match the pear transition on the right. The
player wins the game which means that the processes PearTree and ColorTree
are not strongly bisimilar.
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(a) Game log with introduction. (b) Game log after an attack.

(c) Game log after a defend. (d) Game log with a winner.

Figure 8.12: The game log.

HML Game
An HML game consists of an “attacker”, a “defender”, a process s, and a for-
mula ϕ. A play of a game starting from the start state s is a maximal sequence
of configurations formed by the players according to the following rules. Each
round either the attacker or the defender picks a successor configuration if
possible.

• The attacker picks a configuration when the formula is of the form (s, ϕ1∧
ϕ2), or when the choices are either (s, [α]ϕ) or (s, [[α]]ϕ).

• The defender picks a configuration when the formula is of the form (s, ϕ1∨
ϕ2), or when the choices are (s, 〈α〉ϕ) or (s, 〈〈α〉〉ϕ).

The winner depends on which configuration the game ends in, or alternatively
the context of an infinite play.

• The attacker is the winner in every play ending in a configuration of the
form (s,ff ) or in play in which the defender gets stuck.

• The defender is the winner in every play ending in configuration of the
form (s, tt) or in a play in which the attacker gets stuck.

• The attacker is the winner in every infinite play in context X provided
that X is a defined as a minimum fixed-point: X min= ϕ. The defender is
the winner in every infinite play provided thatX is defined as a maximum
fixed-point: X max= ϕ.



98 CHAPTER 8. CAAL TUTORIAL

Figure 8.13 shows an HML game where the user is playing as defender against
the computer.

Figure 8.13: HML Game.

The game consists of a few different elements:

• the process and formula at the top left,

• the LTS in the middle,

• game log at the bottom left, and

• subformula and transition table at the bottom right.

Using Example 8.2 we now want to play an HML game to verify that the
result is correct and that the formula is indeed not satisfied. We have the
Orchard process given by

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} ,

and the formula
X min= [[walk]]ff or <->X .

The initial game log can be seen in Figure 8.14a. As it can be seen, we
are playing as defender and we are going to lose, matching the claim from
Figure 8.3 that the formula is not satisfied.

As defender we have to choose which of the disjunctions we want to continue
from. We can pick between two subformulas:
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1. [[walk]]ff and

2. <->X .

Taking case 1 will result in a loss in the next round because the attacker
picks a transition so we reach a false formula as shown in Figure 8.14b. Instead
the defender picks case 2 and picks a transition, resulting in X being unfolded as
it can be seen on Figure 8.14c. The game continues with the defender picking
one of the two cases, each time unfolding X and having to pick a transition as
seen on Figure 8.14d. Figure 8.15 shows the transition table for the defender.
Eventually the game will detect a cycle as it can be seen in Figure 8.14e, which
means the defender loses because we played in a minimum fix-point game.

(a) Game log with introduction. (b) Reaching false formula.

(c) Unfold X. (d) Select a transition.
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(e) Game log with a winner.

Figure 8.14: Game log for HML Game.

Figure 8.15: Transition table.

Distinguishing Formula
HML formulas can also be used to check if two processes are strongly bisimilar.
Two processes are strongly bisimilar if and only if they satisfy the same for-
mulas. This also implies that if two processes are not strongly bisimilar, then
there must exist a formula that distinguishes them.

Example 8.5
We have the processes

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
FastMan = ′shake.(redapple.(walk.FastMan + FastMan) +

greenapple.(walk.FastMan + FastMan) .

Caal is able to generate a distinguishing formula for two processes. Fig-
ure 8.16 shows a generated distinguishing formula for the two processes
Man and FastMan which are not strongly bisimilar. This is done by click-
ing the three vertical dots on the right-hand side and clicking on ‘Distin-
guishing formula’.
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Figure 8.16: Distinguishing formula.

Distinguishing Trace
Much like the distinguishing formula, Caal can also generate a trace that
distinguishes two processes. When checking whether two processes are trace
equivalent or if one process is a trace inclusion of the other, Caal will output
the distinguishing trace if this is not the case. Figure 8.17 shows a distinguish-
ing trace for the processes Man and FastMan from Example 8.5.

Figure 8.17: Distinguishing trace.

As we can see, the FastMan affords the trace

’shake.greenapple.’shake ,

which the Man does not. The distinguishing trace is given as an HML formula
so that the HML game can be loaded.

8.6 Closing Remarks

Caal is an open source project developed at Aalborg University by Jacob
Karstensen Wortmann, Jesper Riemer Andersen, Nicklas Andersen, Mathias
Munk Hansen, Simon Reedtz Olesen, and Søren Enevoldsen under the super-
vision of Jiří Srba and Kim Guldstrand Larsen.

The source code can be found on GitHub at https://github.com/caal/
caal. We welcome suggestions and bug reports either through the issue tracker
on GitHub, or via e-mail at caal@cs.aau.dk.

https://github.com/caal/caal
https://github.com/caal/caal
mailto:caal@cs.aau.dk




9Conclusion

Progressing on earlier work we described the theory and implementation of
various extensions to Caal.

The complete semantics for recursive HML with regards to fixed-points
and variables was left unfinished in earlier work. We refine and complete the
semantics for recursive HML and describe the translation of HML formulae to
sets of dependency graphs which encodes satisfiability, the result of which can
be found by computing the fixed-point assignment to the dependency graphs.

To complement the bisimulation game already implemented in Caal, we
describe the rule of the recursive HML game, and the relation between sat-
isfiability and which player, either the attacker or defender, has a universal
winning strategy in the game. This is followed by a reduction to dependency
graphs for implementing the game. The implemented game is played against
the computer who always beat the player using its universal winning strategy
in order to to show why a model checking result holds.

Given a dependency graph used for computing bisimulation, we describe
how the fixed-point assignment can be interpreted for non-bisimilar processes
in order to produce a distinguishing formula. Ideally the user would prefer the
simplest distinguishing formula possible. However, with the exception of minor
simplifications like removing redundant pre- or post-fixed tau-modalities, this
turns out not to be straightforward. We conjecture that the general problem
of finding the simplest possible distinguishing formula is NP-hard, but offer no
proof. Instead we present a greedy algorithm that will eliminate redundant
terms from formulae, but will not always eliminate the most possible. We
show a related decision-problem is NP-hard, implying this particular problem
of eliminating the most terms from formulae has exponential time complexity.

Bisimulation collapse is another feature that provides overview when vi-
sualising processes in Caal. Equivalent processes are simplified by picking a
representative among the equivalence class. We describe an efficient algorithm
for computing the representatives using the disjoint-set algorithm. Collapsing
processes in the process explorer in Caal can reduce the clutter and enable to
user to hide uninteresting processes.

The non-visual part of Caal was adapted for use in our parallel algorithm
prototype. The algorithm combines a database, and wrapped JavaScript suc-
cessor generators in C++, to run multiple worker processes in parallel, each
computing part of a large dependency graph. The speedup when running mul-
tiple processes was poor and it underlying successor generators accumulated
memory resulting in the prototype algorithm not working for large problems.
The main culprit or poor performance appears to be poor work distributions;
processes make redundant computations on the same data.

An earlier version of Caal, including support for generating distinguishing
formulae without simplifications, was used by students in February 2015 for
the course in semantics and verification. Feedback from the students were
in general on the positive side; for returned questionnaires asking about the
usability of Caal, the average score was 7.0/10.
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Improvements to Caal

Play as Winner In the current state of the HML game, the user is only
able to play as the losing side. While this might help the user getting a
better understanding of why a formula is satisfied or not satisfied it might
not help the user understand why that exact strategy is the universal
winning strategy.
Since Caal is meant as an educational tool, being able to play as the
winning side and allowing the user to “discover” the universal winning
strategy for themselves might give them a better understanding of their
system and convince them even more.

Rework Verifier Interface Since Caal is an educational tool it is impor-
tant that it is easy and intuitive to use. Therefore a rework of the verifier
interface could be needed to enhance the usability and make it easier for
the users to use.

HML Maximum Fixed-Point in HML Game In the current state, the
HML game does not support maximum fixed-point formulae.

More Operators Operators such as “Until” and “Weak Until” known from
CTL could be implemented. The users already have the expressive power
from HML but the syntax from CTL may be easier to comprehend for
users not accustomed to HML.

Multi Person Editor Group work is a very big part of studying at Aalborg
University, and for that reason it could be interesting to implement the
functionality for more users to work in the same editor at the same time.

Parallel Algorithm with Better Speedup

The parallel algorithm implemented has poor speedup. It would be interest-
ing to see what performance could be obtained if more work was invested in
correcting the shortcomings of the algorithm. The successor calculations take
almost exclusively take up the running time. Moving the successor generation
to a faster performing language might increase the speed by several factors.
Making the successor generator completely stateless might enable the algo-
rithm to handler larger problems, however the caching done helps performance
and without it the algorithm might become slower.

The most important change would like be better work distribution. Pro-
cesses should never handle the same work; ideally work should be distributed
evenly, but also in such a way that the partial graph a process work on is
connected as much as possible.
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NP-hardness of Simplest Distinguishing Formula

In Section 4.3 we conjectured that determining whether two non-bisimilar pro-
cesses have a distinguishing formula with at most a given modal depth and
number of conjunctions or disjunctions is NP-hard. The complexity of this
problem is interesting. If the problem is NP-hard then it would show our
greedy algorithm is justified. It it is not NP-hard then there may be an al-
gorithm that can compute the simplest distinguishing formula in polynomial
time.
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