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Synopsis:

The purpose of this project is to model the un-
certainties, random variations in soil proper-
ties on the basis of random field theory, where
the soil is modelled as a heterogeneous mate-
rial.

Two-dimensional cross-correlated random
fields are generated for the undrained shear
strength and Young’s modulus of the soil. Af-
ter that a number of Monte Carlo simulations
are performed and a catalogue of bearing ca-
pacities are obtained.

Based on the probability density function of
the load and the resistance a reliability analy-
sis is performed, by the crude Monte Carlo
simulation technique and the partial safety
factor for the undrained shear strength is cal-
ibrated corresponding to a target reliability.
This whole procedure is performed on two
different geotechnical cases: a strip footing
and an embankment.





Preface

This thesis is a product of two students’ project work at the 4th semester of the Master
Programme in Structural and Civil Engineering at the School of Engineering and Science
at Aalborg University, under the supervision of Lars V. Andersen. The project is com-
pleted within the period 1st of February to 8th of June 2015. The thesis is prepared and
made in compliance with the current curriculum of the 4th semester in M.Sc. Structural
and Civil Engineering.

Reading Guide

The references located within the paper are stated in the Bibliography, at the end of this
report. For this purpose the Harvard method was used. The Harvard referencing system
shows authors surname and the publication year. This source is placed on a current
place across the paper and refers to the Bibliography at the end of the report, where
the reference is completed. The completed reference states the following: author, title,
edition, publisher and year of publication. Web pages are listed with authors, title, web
sites URL address, publish year and date of downloading.

The thesis consists of three parts: a main report, an appendix, which are found in the
back of the report, and an electronic appendix on an attached CD. The main report refers
to the appendix and CD, where the appertaining calculations and extensional documents
are to be found. The files used in the different software, e.g. Matlab , Python and Fortran,
are attached to the electronic appendix CD. All references to the appendixes starts with
an Arabic letter. For example the first section in appendix A is thus to be referred to as
Appendix A.1.

The following programmes are used for calculations and simulations throughout the
thesis: Matlab, Fortran, Abaqus.
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Summary

Geotechnical data is constrained with uncertainties. Among them is the natural variabil-
ity of the soil which is a type of uncertainty that cannot be reduced. When designing a
structure, this unpredictability of the soil has to be taken into account. The traditional
way of doing this is based on a deterministic design, where partial safety factors are ap-
plied to the characteristic value of the loads and strength parameters, leading to a design
based on increased loads and decreased strengths.

The purpose of the thesis is to model the random variations in soil properties using a
probabilistic approach, based on the random field theory, in which soil properties are
characterized in terms of their means and standard deviations, and through a realiability
analysis to calibrate the partial safety factor for the undrained shear strength. The partial
safety factor in Denmark is set to γcu = 1.8, which is quite high compared to the general
factor proposed in Eurocode 7, γcu = 1.4.

Two-dimensional cross-correlated random fields for the undrained shear strength and
Young’s modulus of the soil are generated based on the matrix decomposition method.
The probabilistic finite element model is created by using different packages; Abaqus,
Python scripts, Fortran subroutines and Matlab scripts. 1000 Monte Carlo simulations
are performed, resulting in 1000 bearing capacities of the structure. The data is then
fitted and combined with the probability density function of the load a number of real-
izations are performed with the crude Monte Carlo simulation technique. Through this
the partial safety factor of the undrained shear strength is calibrated to a corresponding
target reliability index. This whole procedure is performed for two examples, one for a
strip footing and one for an embankment.

The reliability-based calibration shows that the partial safety factor can be reduced sig-
nificantly, from γcu = 1.8 to γcu = 1.5, in both cases, by which the costs are reduced
too.

In addition, the effects of the correlation length on the failure mechanism is investigated,
and it is found that the failure mechanism is highly dependent on the correlation length.
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CHAPTER1

Introduction

The soil data used in geotechnical design are usually associated with uncertainty. These
uncertainties can come from the natural variability of the soil, but also from uncertainties
related to imperfect knowledge, such as statistical, model and measurement uncertainty.
In this project the main focus will be set on the natural variability of the soil, which
is a type of uncertainty that cannot be reduced. The traditional way to deal with these
uncertainties is based on a deterministic design, where the soil is modelled as a locally
homogeneous material within each soil layer, resulting in a symmetric failure mecha-
nism (Terzaghi), as seen on Figure 1.1. Here partial safety factors are applied to the
characteristic values of material properties and loads. But if these partial safety factors
are not chosen carefully, the structure could end up being too safe, and thus very ex-
pensive. One way to reduce these costs is a reliability-based calibration of the partial
safety factors which corresponds to a well defined target reliability, depending on the
type of structure and the characteristics of the considered failure mode. In the reliability
analysis, probabilistic models are used, where the soil is modelled as a heterogeneous
material, resulting in a random failure mechanism, as seen in Figure 1.2.

Figure 1.1: Deterministic design. Figure 1.2: Probabilistic design.

Currently in Denmark the partial safety factor for the undrained shear strength is set
quite high, γcu = 1.8, compared to the general factor proposed in Eurocode 7, γcu = 1.4.
This will introduce a very high cost, and therefore it is of interest to investigate, if the
value of 1.8 is really necessary.

The purpose of this project is to model the uncertainties, random variations in soil prop-
erties with the use of finite element method on the basis of random field theory, where
the soil is modelled as a heterogeneous material, even within a single layer. In the ran-
dom field theory all the parameters are modelled by stochastic variables characterized
by a well chosen distribution function, a mean value, coefficient of variation and corre-
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2 1. Introduction

lation lengths. The effect of different correlation lengths on the failure mechanism will
be investigated, as this differs significantly from the homogeneous one. After the prob-
abilistic model of the soil and load is described and constructed, a reliability analysis
will be performed, based on the crude Monte Carlo simulation technique, and the partial
safety factor for the undrained shear strength will be calibrated corresponding to a target
reliability. This whole procedure will be performed on two different geotechnical cases:
a strip footing and an embankment.

1.1 Thesis Statement

Through the topics presented in the introduction it is desired to answer the following
question:

Can the partial safety factor of the undrained shear strength be reduced through a
reliability-based calibration, compared to the value specified in the Danish National
Annex to DS/EN 1997-1 [2007], Eurocode 7.

1.2 Delimitation of Thesis

The main focus of the thesis is set on the spatial variation of the soil properties, therefore
the model, measurement and statistical uncertainty will not be treated.

In order to model the variations of the soil properties two random fields were generated:
one for the undrained shear strength and one for the Young’s modulus of the soil.

In the thesis only cohesive soils are considered. Both the undrained shear strength and
Young’s modulus are assumed to have a lognormal distribution. The characteristic value
of the undrained shear strength will be taken as a 95% confidence level of the mean
strength. As no soil data was available, the characteristic values are assumed to have a
certain value, which are typical values for clayey soils. The coefficient of correlation
between the two random fields is assumed to take the value of 0.9

The load applied on the structure is a uniformly distributed load, directed downward
vertically. The characteristic value of the load is taken as 98% quantile and a Gumbel
distribution is assumed.

As no data was available, the coefficient of variation for the undrained shear strength and
load are taken as 40%. The values for the different correlation lengths are also assumed.

The covariance matrix between the undrained shear strength and Young’s modulus as-
sumes an ellipsoidal Markovian structure.

Only the ultimate limit state (ULS) analysis is performed, meaning that the deformations
will be not investigated, so serviceability limit state (SLS) is not considered.

The main focus is set to the embankment, the footing model mainly served as a simpli-
fication and validation, which was later modified to the embankment model.

These delimitations are of general concern throughout the thesis. Additional and more
specific delimitations will be presented in the appropriate chapters and sections.
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1.3 Overview of the Thesis

The thesis is divided into two main parts with Part I devoted to theory and Part II to
practice.

Part I - Theory

• Chapter 2 introduces the various uncertainties related to the soil, and describes
how variation of soil properties occurs in reality and how these uncertainties are
modelled. A discussion is also included about the characteristic value of the soil
properties and how the 95% confidence level of the mean strength is found.

• Chapter 3 introduces the random field theory, based on which the variation of soil
properties are modelled. Here the characteristics and assumptions needed to define
a Gaussian and stationary random field are listed and described in details. Further
on the matrix decomposition method is presented, which was used in order to
create the two-dimensional cross correlated random fields, one for the undrained
shear strength and one for the Young’s modulus of the soil.

• In Chapter 4 the procedure to construct the probabilistic finite element model is
described, along with the description of the material model and the finite mesh
used in the models. This chapter includes also a description on how the load was
modelled.

• Chapter 5 introduces the reliability analysis and how this was performed in this
thesis. Then the crude Monte Carlo simulation technique is presented. Finally the
target reliabilities are defined and the whole workflow is described, which gives a
good overview on the calculation steps.

Part II - Practice

• Chapter 6 presents the footing example, where the geometry and all the parameters
used in the probabilistic model are presented. Further on analytical calculations
are shown, along with a convergence analysis. In the end the results are presented,
which include the calibrated partial safety factors based on the reliability analy-
sis. In addition the effects of the correlation length on the failure mechanism are
described and discussed.

• Chapter 7 presents the embankment example, which follows the same structure as
Chapter 6. After the problem is well presented the results are shown and discussed.





Part I

Theory
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CHAPTER2

Uncertainties

In engineering the presence of uncertainty is unavoidable. The available data are some-
times incomplete or insufficient and they might invariably contain variability. Apart
from this, engineers also rely on assumptions or estimations based on models which
contain uncertainties as well. These uncertainties are usually divided into two main
types, namely aleatory and epistemic uncertainties. The aleatory uncertainty consists
of physical uncertainty, and it is associated with the randomness of the phenomena in
question, such as the natural variability of soil. On the other hand, the epistemic uncer-
tainty is related to imperfect models of the real world, thanks to insufficient or imperfect
knowledge of the reality. The epistemic uncertainties include statistical, model and mea-
surement uncertainty. [DNV, 2012]

As this projects main focus is set to the uncertainties related to soil, in the following
these are described in detail.

Figure 2.1: Sources of uncertainties in soils.

Natural or inherent soil variability

Natural or inherent soil variability is a physical uncertainty and it is the natural variation
in a soil layer. This natural variability can be either continuous or discrete. Continuous
spatial variability of a soil unit is characterized by an average trend of variation. A
common example is the strength of the soil, which can increase with depth. But even
continuous spatial variability is sometimes mixed with dislocation, like faults, lenses or
fills. This comes from the natural formation of soil. This type of physical uncertainty is
interpreted as discrete spatial variability. Such uncertainties cannot be reduced. [JCSS-
C1, 2006]

7



8 2. Uncertainties

Measurement uncertainty

In order to get information about the subsurface conditions, field investigation is re-
quired. The information can be gathered by the use of bore holes, cone penetration tests
(CPT) or geophysical records. During these tests and site investigations uncertainties
can arise due to imperfect measurements and/or sample disturbance. Strictly sticking to
testing standards with sufficiently accurate measuring devices these uncertainties can be
reduced by collecting more samples, performing more tests or employing more accurate
methods of measurements. [JCSS-C1, 2006]

Statistical uncertainty

Soil data generally is only available for a small part of the soil, as usually the number of
observations and samples is of limited amount. This will result in uncertainties that are
of statistical nature. The limited data will not give reliable estimates for the distribution
and autocorrelation functions. This type of uncertainties can be reduced by collecting
more data.

Model uncertainty

Typically, the measured tests, observations have to be modified in order for the data to be
suitable for design. These modifications rely on assumptions or estimations, which al-
ready carry uncertainties. The model uncertainties can come from imperfect engineering
models, wrong choices of probability distribution and autocorrelation functions and/or
characteristic values.

This project is focusing on the natural randomness, variability of the soil properties,
and the uncertainties related to the choice of probability distribution and autocorrelation
functions are not going to be considered. The uncertainties coming from the definition
of characteristic value of soil properties are disregarded as well.

2.1 Soil Variability

Natural variability occurs in soil, both horizontally and vertically, meaning that its prop-
erties vary from place to place within resulting deposits, and it is different from field
to field. This variability can be explained by the natural geological processes such as
weathering, erosion and sedimentation processes. Additionally, soils have been sub-
jected to various stresses, pore fluids, and physical and chemical changes, which is also
an explanation for the variability. This natural variability can be further increased by
human disturbance, in particular through erosion and gullying which can increase soil
variability through the remixing of sediments and exposure of underlying sediments by
gully dissection. [C.Fitzjohn et al., 2002]

2.2 Modelling the Variation of Soil Properties

The spatial variability of soil properties is difficult to predict deterministically. The lim-
ited sampling makes this even harder. Several mathematical models have been proposed
to model the variation of soil properties. In general two main approaches can be distin-
guished: standard statistical and geostatistical.
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Performing standard statistical analysis on a set of samples from a site investigation
might show that the values of the measured strength of the soil can be described by a
certain distribution type, but this will not give any information about which soil part has
higher values and which one low ones. One way to avoid this, is applying geostatistical
analysis, which in addition to the distribution type of the soil property gives also infor-
mation about the spatial variability. Geostatistics is a tool to show, for example, how the
undrained shear strength varies with depth, predicting the zones with higher and lower
values. [Davidović et al., 2010]

One of the common methods among geostatistics includes kriging and simulation of ran-
dom fields. Kriging is an estimation technique which, based on known (measured) values
of soil parameters in conjunction with the autocorrelation function, makes it possible to
estimate the soil properties in positions where no measurements have been performed.
[DNV, 2012]

On the other hand, a random field is a list of random numbers whose location are mapped
onto a space. These random numbers are generated based on different methods, in which
the values of the random numbers are often spatially correlated in one way or another.
The random field theory is further explained in Chapter 3, as in this project this method
was adapted in order to model the random variation of soil properties.

2.3 Characteristic Value of Soil Properties

As it was explained earlier there are various types of uncertainties which can be present
in loading, material properties and other aspects of any structure. But to design these
structures all the uncertainties involved must be taken into account. In most of the engi-
neering projects, dealing with these uncertainties is based on deterministic design. This
means, that partial safety factors are applied to the characteristic values of loads and ma-
terial properties. As a result, the whole design is based on increased loads and decreased
strengths. It is of great importance, to note that, because of this, the reliability of the final
design is highly dependent not only on the partial factors used but also on the manner in
which the characteristic value has been chosen and assessed.

There are different ways of defining the characteristic value of a soil property. DNV
[2012] states that the chosen definition of the characteristic value usually depends on the
design code which is to be applied and of course on the actual problem. Some of these
definitions which are often used are:

• mean value of the shear strength

• 5% quantile of the strength distribution

• 95% confidence level of the mean strength

For problems which are governed by a local soil strength a 5% quantile value of the
strength is usually chosen as the characteristic value. For problems where large soil
volumes are involved, the mean value is often taken as the characteristic value, as the
local strength variations are assumed to average out. DS/EN 1997-1 [2007] suggests
that the characteristic value shall be taken as a ”conservatively assessed mean value”,
meaning that the characteristic value should be taken with a confidence of 95%.
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In this project the characteristic value of the undrained shear strength will be taken as
the 95% confidence level of the mean shear strength.

2.3.1 95% confidence level for the mean strength

In the following it is described how the characteristic value of the shear strength can be
found as a 95% confidence level for the corresponding mean value.

The characteristic value of the undrained shear strength, cuk, can be described by Equa-
tion (2.1):

cuk = µcu− f
σcu√

n
(2.1)

where,

cuk characteristic value of the undrained shear strength
µcu mean undrained shear strength
f statistical coefficient related to the type of distribution,

confidence limits and number of test values
n number of samples

The mean strength, µcu, can be estimated by the sample mean:

µcu =
1
n

n

∑
i=1

cu,i (2.2)

The standard deviation, σcu, is estimated by the sample standard deviation:

σcu =

√
1

n−1

n

∑
i=1

(cu,i−µcu)
2 (2.3)

If the coefficient of variation, COVcu = σcu/µcu, is substituted into Equation (2.1), this
will lead to:

cuk = µcu

(
1− f√

n
COVcu

)
(2.4)

Several approximations and simplifications were proposed of Equation (2.1). Some of
them are presented in the following.

Based on Equation (2.1) Student [1908] proposed for the characteristic value to be de-
fined as:

cStudent
uk = µcu− t0.95,n−1

σcu√
n

(2.5)

Here, tα,ν is the inverse of Student’s t cumulative distribution function with ν = n− 1
degrees of freedom for non-exceedance probability α .

Ovesen [1995] simplified Student’s equation and arrived to the following:

cOvesen
uk = µcu−1.645

σcu√
n

(2.6)
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Based on comparative computations, Schneider [1999] also proposed a good approxi-
mation to Equation (2.4):

f√
n
∼=

1
2

(2.7)

Schneider’s simplification leads to characteristic values within reasonable accuracy, can
be applied to typical distribution types for soil (normal or lognormal) and it is applicable
even when no test values are available. As in this project this is the case, it is reasonable
to use Schneider’s equation.

Schneider’s proposed relationship for determination of the characteristic value of the
shear strength as a 95% confidence level for the corresponding mean value is defined in
Equation (2.8).

cSchneider
uk = µcu−0.5σcu (2.8)

It should be noted, that from now on cSchneider
uk will be noted as cuk.

As this project will have the coefficient variation as an input parameter, it is more ad-
vantageous to write Schneider’s equation in terms of the coefficient of variation instead
of the standard deviation, as seen in Equation (2.9).

cuk = µcu (1−0.5COVcu) (2.9)





CHAPTER3

Random Fields

Soil deposits are constrained with spatial variability (uncertainty), meaning that the soil
varies from one location to another, even if it is the same soil type. This might be a
result of natural geological processes or engineering construction. This chapter focuses
on how this spatial variability of soil properties can be modelled as a random field. The
characteristics and assumptions of random fields are described, together with how the
random fields are generated.

3.1 Characteristics and Assumptions

An important characteristic of a random field is the concept of statistical dependence
between field values at different points. From the mathematical viewpoint a random
field can be interpreted as a two or three dimensional random process. Specifically,
a two dimensional random field, X(x,y) is a set of random variables, X1,X2, . . . , each
associated with the value of a certain property of interest (for example undrained shear
strength) at the points (x1,y1), (x2,y2), . . . in the field. In general, a random field may be
defined by:

• its mean, µ , which gives information about its central tendency,

• its standard deviation, σ , which is a measure of the spread or scatter about the
mean,

• its dimensionless coefficient of variation, COV , defined as the ratio of the standard
deviation to the mean:

COV =
σ

µ
,

• its correlation function, ρ ,

• its complete multivariate joint probability density function (PDF), which is the
complete probabilistic description of all the points in the field from which proba-
bility calculations can be made.

A common way to exemplify the spatial variability is by plotting the variation of tip
resistance measured over the soil depth during a cone penetration test (CPT), as seen in
Figure 3.1. A CPT measurement can be thought as a continuous-state random process,

13



14 3. Random Fields

Figure 3.1: Tip resistance measured over the depth of the soil by a cone penetrometer.

where the random process X(z) can take on an infinite number of possible outcomes at
each point z.

The soil properties taken from this CPT can be constrained with measurement and/or
model uncertainties, but apart from that, Figure 3.1 can give a reasonably good idea
about the soil properties and soil types at the location where the CPT was performed.
This of course gives information only at the location of the CPT, but there is no guar-
antee of having the same properties 10 or 50 m away from the CPT sounding. But by
probabilistic methods the variability at the location where the CPT was performed can
be used to represent the variability at other locations. [Fenton and Griffiths, 2008]

Spatial variability is characterized by variability at a point, which means that a different
probability density function must be considered at each location of the soil unit. Another
characteristic of spatial variability is the spatial dependence, meaning that two random
variables will exhibit some dependence on each other, giving rise to joint probability
distributions. This implies that the complete probabilistic description of a random pro-
cess is the infinite-dimensional PDF. Such an infinite-dimensional joint PDF is difficult
to use in practice, as its parameters are difficult to calculate from the real data. [Fenton
and Griffiths, 2008]

In order to simplify the problem it is assumed that the random field is a Gaussian and
stationary process. In the Gaussian process the joint PDF is a multivariate normally
distributed random process. This will lead to the advantage that the complete distribution
can be specified by just the mean vector and covariance matrix. In a stationary process
the joint PDF is independent of spatial position, implying that the mean, covariance and
higher order moments are constant in space (or time), and this results in a point PDF,
which is also constant in space. Weak stationarity or second-order stationarity means
that only the mean and variance are constant in time. [Fenton and Griffiths, 2008]
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So based on these assumptions, a Gaussian and stationary random field requires a con-
stant mean and constant standard deviation.

3.1.1 Correlation Function

The third characteristic of a random field is its correlation function, which is used in
order to describe how the field varies in space. The correlation function of a random
field X(x,y) is defined as the correlation between two locations which are ∆x apart hori-
zontally in the x-direction and ∆y apart vertically in the y-direction:

ρ(∆x,∆y) = ρ(X(x,y),X(x+∆x,y+∆y)) =
Cov(X(x,y),X(x+∆x,y+∆y))√

Var(X(x,y)) ·
√

Var(X(x+∆x,y+∆y))
(3.1)

where,

Cov covariance
Var = σ2 variance

Since it was assumed that the random field is stationary, the correlation function be-
comes:

ρ(∆x,∆y) =
Cov(X(x,y),X(x+∆x,y+∆y))

Var(X)
(3.2)

There are several candidate correlation functions available. For soil properties a com-
monly applied model is the exponential (Markov) correlation function, in which the
correlation decays exponentially with distance. [JCSS-C1, 2006]. As seen in Figure 3.2,
in case of a two-dimensional random field this model is given by:

ρ(∆x,∆y) = exp
(
−2|∆x|

δx
− 2|∆y|

δy

)
(3.3)

where,

∆x,∆y distances between points in x and y directions
δx,δy correlation lengths or scales of fluctuations in x and y directions

2
1

∆x

0
-1

-2-2

-1

0

∆y

1

0

0.2

0.4

0.6

0.8

1

2

ρ
(∆

x,
∆

y)

Figure 3.2: Exponential (Markov) correlation function with δx = δy = 1m.
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For this project, an ellipsoidal Markovian correlation structure is assumed and is ex-
pressed as [Sarma et al., 2015]:

ρ(∆x,∆y) = exp

−2

√(
∆x
δx

)2

+

(
∆y
δy

)2
 (3.4)

The ellipsoidal Markovian correlation structure forms a quadrant symmetric matrix and
develops a properly symmetric well conditioned covariance matrix. Based on this cor-
relation function both isotropic and anisotropic random field can be generated. Isotropy
implies that the correlation between two points only depends on the distance between
these points and not on their orientation, having equal directional correlation lengths
(δx = δy = δ ). The isotropic two-dimensional exponential (Markov) correlation func-
tion is defined as:

ρ(∆x,∆y) = exp

(
−2
√

∆x2 +∆y2

δ

)
(3.5)

On the contrary, an anisotropic random field is generated when the directional correlation
lengths differ from each other, which is more common when dealing with soil properties.
The effect of correlation length on the correlation structure is illustrated in Figure 3.3.
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Figure 3.3: Effect of correlation length on the ellipsoidal Markovian correlation structure: (a)
isotropic with δx = δy = 1m and (b) anisotropic with δx = 3m and δy = 1m.
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3.1.2 Correlation Length

The correlation length or scale of fluctuation is defined as the distance over which prop-
erties are significantly correlated, having units of length. This means, that a random
field with a large correlation length tend to be more slowly varying and will result in a
smoother field. On the other hand, fields having small correlation lengths will vary more
irregularly over shorter distances, appearing very rough. In geotechnics, for naturally
deposited soils, the horizontal correlation length is generally larger than the vertical one
and this amount can be an order of magnitude. This difference can be explained by
the sedimentary deposition of soil strata due to geological processes. Figure 3.4 shows
typical random field realisations of undrained shear strength with different scale of fluc-
tuations.
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(b) δx = 5m and δy = 1m
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(c) δx = 10m and δy = 1m
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Figure 3.4: Realizations of the undrained shear strength with different correlation lengths.

It can be seen, that the generated random field highly depends on the chosen correlation
length, so care must be taken in choosing these values.

3.1.3 Cross-Correlated Random Fields

When dealing with different random fields, it is important to consider the relationship
between them. Different soil properties usually develop a correlation with one another.
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In this project the two soil properties are the undrained shear strength and the Young’s
modulus, and it is assumed that they are cross-correlated. This means that the complete
specification of the correlation structure of the two random fields X and Y is character-
ized by three correlation functions: ρX , ρY and ρXY .

The cross-correlation between X and Y is defined as:

ρXY =
Cov(X ,Y )√

Var(X)Var(Y )
(3.6)

For a stationary random field, the cross-correlation reduces to the constant coefficient,
ρ , and the correlation between X and Y can be expressed in matrix form as:

ρXY =

[
1 ρ

ρ 1

]
(3.7)

The coefficient of correlation is a relative measure of correlation assuming values be-
tween -1 and 1. A value of 0 implies no correlation, a value of -1 indicates full negative
correlation in opposite to the value of 1 which will imply a full positive correlation. The
coefficient of correlation also measures the closeness of relationship between the two
variables X and Y . A positive value implies that X and Y increase together. A negative
value will indicate that large values of X are associated with small values of Y . Figure
3.5 shows the cross-correlated random fields, where a full positive correlation is applied.
It can be seen that two random fields will have a similar pattern. [DNV, 2012]
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Figure 3.5: Cross-correlated random field for Young’s modulus and undrained shear strength
with ρ = 1.

Figure 3.6 shows that when there is no correlation (ρ = 0) the two random fields differ
very much.

A complete determination of spatial cross-correlation structure is not likely to happen as
this would require a large amount of spatially distributed data. In practice, the complete
cross-correlation structure is rarely known. Therefore the cross-corelation between soil
properties is defined at a point and estimated by statistically comparing the soil proper-
ties in pairs obtained from number of samples assumed to be from the same population.
This is defined as pointwise cross-correlation.
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Figure 3.6: Cross-correlated random field for Young’s modulus and undrained shear strength
with ρ = 0.

3.1.4 Probability Distribution

In order to model and describe the distribution of the uncertainties, probability distri-
butions are used. There are different types of distributions available, and therefore it is
important to choose the one which fits best with the data. In terms of soil properties the
most commonly used are the normal and lognormal distribution. In the following these
two types of probability distributions are described.

Normal Distribution

The normal distribution is a distribution model which often is used to represent soil prop-
erties. This is largely because sums of random variables tend to a normal distribution.
For example, the cohesive strength of a soil is due to the sum of a very large number
of electro-chemical interactions taking place at the molecular level - thus, the normal
distribution has been widely used to represent the distribution of cohesion. The normal
distribution of a random variable X is fully described by its mean value and standard
deviation and its probability density function has the following form:

f (x) =
1

σX
√

2π

[
−1

2

(
x−µX

σX

)2
]

for−∞ < x < ∞ (3.8)

The normal distribution is symmetric about the mean and can take on negative values.
Because soil parameters, such as the undrained shear strength, are nonnegative this might
be a disadvantage. For example, when modelling the Young’s modulus with normal dis-
tribution, there would be a nonzero probability of obtaining a negative Young’s modu-
lus. Since a negative elastic modulus does not occur in practice, the normal cannot be
its true distribution. This error may be small when the coefficient of variation is small
(COV≤0.3), meaning that the probability of negative values will usually be negligible.
If the coefficient of variation is large (COV>0.3), there may be a risk of getting negative
outcomes. A simple way to avoid this is to fit a nonnegative distribution. [DNV, 2012],
Fenton and Griffiths [2008]

The lognormal distribution cannot reach negative values, as seen on Figure 3.7 and there-
fore it is a better choice to model the variability of soil parameters.
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Lognormal Distribution

The lognormal distribution is defined such that if the variable X is lognormally dis-
tributed, then its natural logarithm is normally distributed. If the mean and standard
deviation of the random variable are µX and σX respectively, then the Gaussian field can
be transformed to a lognormally distributed field, with the standard deviation and mean
given by Eq. (3.9) and Eq. (3.10).

σlnX =

√{
ln
[
1+(COVX)

2
]}

(3.9)

µlnX = ln µX −
1
2

σ
2
lnX (3.10)

and its probability density function has the following form:

f (x) =
1

xσlnX
√

2π
exp

[
−1

2

(
lnx−µlnX

σlnX

)2
]

for 0≤ x < ∞ (3.11)

As a comparison, the normal and lognormal distribution for the same mean and coeffi-
cient of variation is illustrated on Figure 3.7.

Figure 3.7: Normal and lognormal distribution with µ = 100 kPa and COV = 0.4.
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3.2 2D Random Field Generation

This section describes the method used to generate the random fields.

In the present there are several methods available to generate multi-dimensional random
fields. Some of the most common ones are stated below [Fenton and Griffiths, 2008]:

• Matrix Decomposition (MD) Method,

• Turning Bands Method (TBM),

• Moving Average (MA) method,

• Local Average Subdivision (LAS) method,

• Fast Fourier Transform (FFT) method,

• Discrete Fourier Transform (DFT) method.

In this project the matrix decomposition method was chosen in order to generate the
random fields.

3.2.1 Matrix Decomposition Method

The matrix decomposition (MD) method is simple to implement in practice and it allows
fields of irregular geometry without additional computational effort. It is a direct method
of generating a random field with the specified correlation function. If the correlation
matrix, R, is a positive definite matrix then the Cholesky decomposition factorises it
into a lower triangular matrix, L, and its conjugate transpose, as seen in Equation (3.12)
[?]:

R=LLT (3.12)

The procedure to generate a two-dimensional cross-correlated random field using the
matrix decomposition method is described in the following steps [Vahdatirad, 2014]:

1. Assign an index to each discrete point in the field.

2. Construct the distance matrix in x- and y directions.

3. Calculate the correlation matrix, R, for the random field, using the specified cor-
relation function in Equation (3.4).

4. Find the lower triangular matrix, L, by using Equation (3.12).

5. Based on the cross-correlation matrix, ρXY , defined in Equation (3.7) find the
lower triangular matrix, Lcross.

6. Generate standard normally distributed random variables, stored in U.

7. Apply correlation for each random field by Equation. (3.13):

G=L×U (3.13)

8. Apply cross-correlation between the random fields by Equation (3.14)

Y = (Lcross×G′) (3.14)
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In this project two random fields are generated, one for the uncertainity in the undrained
shear strength, Ycu, and one in Young’s modulus, YE . These cross-correlated random
fields are Gaussian. As it was mentioned earlier, for soil properties a lognormal distri-
bution is a better fit, as it cannot reach negative values. Therefore the standard Gaussian
random fields (normal distribution) are transformed into lognormally distributed fields
by the following:

Wcu = exp(µlncu +σlncuYcu) (3.15)

WE = exp(µlnE +σlnEYE) (3.16)

where,

Wcu lognormally distributed random field for undrained shear strength
WE lognormally distributed random field for Young’s modulus
µlncu lognormal mean value for undrained shear strength
µlnE lognormal mean value for Young’s modulus
σlncu lognormal standard deviation for undrained shear strength
σlnE lognormal standard deviation for Young’s modulus
Ycu normally distributed random field for undrained shear strength
YE normally distributed random field for Young’s modulus

Based on this, two Matlab scripts were written in order to generate two-dimensional
random fields. In the first Matlab function, twoDCrossRandomfield_func.m the two-
dimensional cross-correlated standard normally distributed random fields are generated,
depending on the assumptions made. This follows the eight steps described earlier.
The second Matlab function, twoDRandomfield_func.m transfers the Gaussian random
fields into lognormal distributed ones, with uncertainity in the undrained shear strength,
and in Young’s modulus, as stated in Equation (3.15) and (3.16).



CHAPTER4

Probabilistic Computational

Modelling

A main concern of this project is to model the soil as heterogeneous material. To do
this a probabilistic computational model is necessary, in which the concept of random
field is used in order to take into account the uncertainties related to soil properties.
Modelling the random field is performed using the finite element method, in which the
material property in each element is assigned to the generated field’s random value.
Then, performing Monte Carlo simulation, this method will be repeated so that every
time a different random field is generated. The result of this probabilistic computational
model will be the probability distribution function of the bearing capacity, for both the
footing and embankment. This probability distribution function will be further used as
the resistance distribution through a reliability analysis in order to find the probability of
failure and based on that to calibrate the factor of safety.

4.1 Probabilistic Finite Element Model

This section describes in detail how the probabilistic finite element (FE) model is cre-
ated. This was done using different packages:

• Abaqus

• Python scripts

• Fortran subroutines

• Matlab

Abaqus is responsible for running the FE analysis. Python scripts are used to create
the FE model, then to submit it to Abaqus and in the end to extract the results from the
Abaqus output database (ODB). This allows to change the geometry of the model more
easily, which would be time consuming or practically impossible in the graphical user
interface (GUI) and on the other hand, as numerous simulations are to be run Python
scripting is a good solution to automate this. Fortran subroutines are used to define the
soil material model and they are also main tools to map the random fields onto the FE
model. Last, Matlab scripts are generating the random fields and they are responsible
for managing the whole calculation process. [Vahdatirad, 2014]

23
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The whole procedure of creating and analysing the probobalistic FE model can be di-
vided into three steps. First an FE model is created in order to get the coordinates of
the integration points of the elements. This is saved and is ready for further modifica-
tion. Then the random fields are created, which have the same size as the number of
integration points. In this project two random fields were created, one for the undrained
shear strength, cu, and one for the elastic modulus (Young’s modulus), E, of the soil. The
method for generating these random fields is described in detail in the Section 3.2. In the
last step the random fields are mapped as solution-dependent variables (SDVs) in each
integration point of the soil elements using a user-defined material subroutine (UMAT).
One of the state variables (SDV2) is storing the random field for Young’s modulus and
the other one (SDV3) stores the undrained shear strength.

As mentioned, Phython scripts are used to construct the FE model and communicate
with Abaqus, namely three: InitialPythonCoords.py, InitialPython.py and OdbsPro-
cess.py. These are described in details in the following.

4.1.1 InitialPythonCoords

This Python script is responsible to construct the FE-model without performing any
calculations on it. It generates a so-called dummy job in order to extract the coordinates
of the integration points of the soil elements. Here the magnitude of the applied load and
soil properties are not important. In the script the following main steps are performed:

Geometry

The geometry is generated by using a combination of points, lines which are assemled
in the end. All of these points and lines are defined as sets so it is always easy to refer
back to them.

Mesh generating

The mesh is generated based on the type of the elements and their size. Mesh refinement
along with mesh control can be used here.

Material properties

The different soil materials are created with elasticity parameters. Here dependent vari-
ables are also generated, with the purpose to use them as memory space for the stochastic
random fields. After this the different materials are assigned to the different sections.

Boundary conditions

The boundary conditions are created, which at the base are restrained in both horizontal
and vertical directions, and at the two vertical sides are fixed only in the horizontal
direction.

Load

Here an inactivated load is applied in order to complete the calculation. This means that
the magnitude of the load is not important, and it will result in an undeformed model.
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Creating the job to create the input file

The first step is to create an initial input file for Abaqus. After this the initial input
file is modified and connected with FORTRAN subroutine (InitialSubroutine.for). The
InitialSubroutine initializes the solution-dependent state variables (SDVs). Three state
variables are initialized: one for the element number, and two for the coordinates (X and
Y). The last step in InitialPythonCoords is running the modified Abaqus input file, to
find the element numbers and coordinates of the integration points of the FE model and
save it as a txt file (IntegrationPointsCoords.txt).

4.1.2 InitialPython

The InitialPython script follows almost the same procedure as the InitialPythonCoords.
Here the difference is that, the load is now activated and the Python script is connected
to the user-defined material subroutine (UMAT), which is a modified Mohr-Coulomb
material model, through the main subroutine (MainSubroutine.for). This user-defined
material is an elastic-perfectly plastic Mohr-Coulomb material model, in which the ma-
terial properties can be defined as state variables.

4.1.3 OdbsProcess.py

This script is responsible to extract the specified results at the reference nodes from the
Abaqus output database (ODB file).

To summarize it, Figure 4.1 shows the procedure for the probabilistic FE model.

Figure 4.1: Procedure for the probabilistic FE model.[Vahdatirad, 2014]
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4.2 Material Model

The material model used to characterize the soil in this project is a user defined material
model, which is modified Mohr-Coulomb material model, implemented by Associate
Professor Johan Clausen [Clausen et al., 2007].

The Mohr-Coulomb material model used in Abaqus is described in Appendix A. Here an
exact form of the Mohr-Coulomb criterion is implemented, but with a different formula-
tion for the plastic flow compared to the one that it is traditionally used. The traditionally
employed plastic potential has a six-sided shape, as seen in Figure 4.2.

Figure 4.2: Mohr-Coulomb yield surface in the deviatoric plane.

The plastic potential used in Abaqus is rounded in the octahedral plane, and hence the
plastic strains will differ from those of the traditional potential. The flow potential used
in Abaqus is shown in Figure 4.3.

Figure 4.3: Flow potential in the deviatoric plane - Abaqus.
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The user defined material model used in this project is based on the traditional Mohr-
Coulomb model, where the plastic potential has a six-sided shape, possessing corners
and an apex, which causes numerical difficulties. The modification of the material model
is based on a transformation into principal stress space and is valid for all linear isotropic
plasticity models in which corners and apexes are encountered. [Clausen et al., 2007].

The above described user defined Mohr-Coulomb material assumes linear elasticity and
it is described by: Young’s modulus, E, Poisson’s ratio, µ , cohesion, c, friction angle, φ

and dilatation angle, ψ .

In this project, both the footing and embankment involve undrained clay as soil material,
satisfying the Tresca failure criterion, as seen in Figure 4.2, in which the friction and
dilatation angle is assumed to be 0. It should be noted that in the user defined material
model these parameters cannot be set to 0, therefore these take the value of 0.00001.

4.3 Finite Mesh

It is important to discretize the problem in a way which is closest to the reality. There-
fore, the element type which is used in the finite element model plays an important role,
and it should be chosen carefully. In order to analyse the problem the finite element mesh
uses a two-dimensional model assuming plain strain and it is discretized into a number
of 8-node bi-quadratic, reduced integration, hybrid elements (CPE8RH). The need for
this type of elements is described in the following.

For undrained soil conditions it is an appropriate assumption that the material exhibits
a nearly-incompressible behaviour. This type of behaviour can be characterized with a
bulk modulus, K very much larger than the shear modulus, G, or in other words when
the Poisson’s ratio, µ is greater than 0.48. In a near-incompressible behaviour a very
small change in displacement produces extremely large changes in pressure. Therefore,
the solution cannot be obtained in terms of the displacement history only, since a purely
hydrostatic pressure can be added without changing the displacements. Abaqus [2013]

A nearly-incompressible material response cannot be modelled with regular elements
because the pressure stress in the element is indeterminate. This is not the case in the
hybrid element, where the pressure stress is treated as a basic solution variable coupled
to the displacement variable to approximate the equilibrium equations and compatibility
conditions.

For an incompressible material each integration point’s volume must remain almost con-
stant. This overconstrains the kinematically admissible displacement field and causes
volumetric locking. Due to this, finite element meshes often exhibit overly stiff be-
haviour, as seen in Figure 4.4.
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Figure 4.4: Effect of volumetric locking.[ESC]

In order to eliminate the volumetric locking, reduced integration is used. This means
that the number of integration points will be reduced as seen in Figure 4.5 and 4.6. The
8-noded element with full integration has nine integration points, but this will be reduced
to 4 when reduced integration is applied.

Figure 4.5: 8-node full integration element. Figure 4.6: 8-node reduced integration element.

Another type of element, 6-node modified, with hourglass control, hybrid with linear
pressure (CPE6MH) was also used in this project. This was only used as a part of
the convergence analysis, and it showed that it is less efficient than CPE8RH elements.
Figure 4.7 shows the nodes and integration points of this element type.

Figure 4.7: CPE6MH element.
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4.4 Numerical Method

When modelling the soil at high loads a number of non-linearities can be discovered,
which means that Hooke’s law becomes invalid, resulting in a non-linear stress-strain
relation. Therefore the elasto-plastic relations in the finite element method are imple-
mented in two different levels: global and material level. In order to calculate the strain
increments an equilibrium at the global level needs to be reached. In order to satisfy the
equilibrium condition, global iterative procedures are applied. On the material level, the
plasticity relations must be satisfied, and the stress increments are calculated by integra-
tion of the stress rates.

Abaqus uses the Newton-Raphson method to obtain solutions for non-linear problems.
Here the solution is found by applying the specified loads gradually and incrementally
working toward the final solution. Therefore, Abaqus breaks the simulation into a num-
ber of load increments and finds the approximate equilibrium configuration at the end of
each load increment. It often takes Abaqus several iterations to determine an acceptable
solution to a given load increment. The sum of all of the incremental responses is the
approximate solution for the non-linear analysis. ??

The non-linear response of a structure to a small load increment, ∆ f , is shown in Figure
4.8. In the elasto-plastic analysis this load increment will produce a displacement incre-
ment, ∆u. The incremental relation between the displacement and force is the following:

[Kt ]{∆u}= {∆ f} (4.1)

[Kt ] tangent stiffness matrix
{∆u} displacement increment vector
{∆ f} load increment vector

Figure 4.8: Load increment in elasto-plastic computation.[Krabbenhøft, 2002]

Based on Figure 4.8, Abaqus calculates the structure’s internal forces. The difference
between the total applied load and internal load can be calculated as:

{r}= { f}−{q} (4.2)

where,

{r} residual vector
{ f} applied force vector
{q} internal force vector
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Based on Figure 4.8 equilibrium is reached when:

‖{r}‖< ε‖{ f}‖ (4.3)

During the simulations, the FE analysis of the embankment with a maximum number of
increments set to 1000 resulted in a very long computational time sometimes. This long
computational time is due to fact that equilibrium is still reached even at an increment
number up to 650 where the load step is updated every time. It was noticed that this
change in the load step after a certain number of increments becomes negligible. This is
illustrated in an example.

Figure 4.9 shows the deformed mesh of the embankment at the 15th increment with a
load step (step time) of 0.3387. Next, Figure 4.10 shows the same analysis, but this time
at the final increment (658) with a load step of 0.3401. This change is 0.4%, or in other
words 99.6% of the bearing capacity is already reached after 15 increments. Therefore,
the maximum number of increments will be reduced to a 100, which is a reasonable
approach, as it reduces the computational time significantly.
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Figure 4.9: Increment: 15.
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Figure 4.10: Increment: 658.

This approach is used in both of the footing and embankment problem. But it should be
emphasised that the results might be slightly different if there was infinite time to do the
calculations.

4.5 Modelling of the Load

In this project the load on the structure, both in the case of footing and embankment, is
assumed to be a variable action, for example snow or wind, with a Gumbel distribution,
as suggested by DS/INF 172 [2009]. Here it is also recommended that for this type of
action to use a coefficient of variation, COV of 40% and a a 98% quantile characteris-
tic value for a 1 year return period. In the following the Gumbel distribution will be
characterized. The load is assumed to be uniformly distributed in a vertical direction.

Gumbel Distribution

The Gumbel distribution is used to model the distribution of the maximum (or the min-
imum) of a number of samples of various distribution. The normal distribution of a
random variable X is fully described by its mean value and standard deviation, as seen
on Figure 4.11, and its probability density function has the following form:

f (x) = α exp [−α(x−β )]exp [−exp [−α(x−β )]] for−∞ < x < ∞ (4.4)

Here α and β are shape and scale parameters and are related to the mean, µ , and standard
deviation, σ , by:

µ = β +
0.5772

α
(4.5)

σ =
π

α
√

6
(4.6)

The cumulative distribution function for a Gumbel distribution is defined as:

FX(x) = exp [−exp [−α(x−β )]] (4.7)
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Figure 4.11: Gumbel distribution with µ=11.92 and σ=4.3.

With the distribution type chosen for the load, the next step is to calculate the character-
istic value of the load, Fk, which is suggested as a 98% quantile. The quantile, x0.98 is
defined as FX(x0.98) = 0.98 becomes:

x0.98 = β − 1
α

ln(− ln(0.98)) (4.8)

Equation (4.8) written in terms of mean value and coefficient of variation becomes the
following:

Fk = µF

(
1−COVF

√
6

π
(0.5772+ ln(ln(0.98)))

)
(4.9)

The characteristic value of the load by using Equation (4.8) is for a 1 year return period.
From this the return period for the design load can be calculated by the following, which
in this case corresponds to a 50 year return period.

R =
τ

1−FX(xR)
(4.10)

where,

τ time interval between observation (1 year)
FX(x) distribution for 1 year extremes
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4.6 Summary

In the probabilistic approach the uncertainties related to the strength parameters and
the load were modelled, through stochastic variables, which are characterized by their
mean value, standard deviation and distribution type. The correlation lengths needed
to generate the random fields should be carefully chosen, as this influences the failure
mechanism of the structure, thus the reliability.

The stochastic model used for the calibration of partial safety factor is shown in Table
4.1.

Table 4.1: Stochastic model.

Variable Coefficient of variation Distribution type Quantile/Confidence

Load (variable) 40% Gumbel 98% quantile
Undrained shear strength 40% LogNormal 95% confidence





CHAPTER5

Reliability Analysis

Reliability analysis is an important tool for quantifying uncertainties in analysis and de-
sign of engineering systems. Traditionally structural analysis and design has been based
on deterministic methods, where characteristic values of the uncertain loads and resis-
tances are specified and partial safety factors are applied to the loads and strengths in
order to ensure that the structure is safe enough. The partial safety factors are usually
based on experience or calibrated to existing codes or to measures of the reliability ob-
tained by probabilistic techniques. However, there are a number of situations where
probabilistic methods are more efficient in order to deal with the uncertainties related to
the loads, strengths and modelling of the system.

A structure is usually required to perform its intended function for a specific period
of time under a given set of conditions i.e. it is required that it does not collapse or
becomes unsafe and that it fulfills certain functional requirements. The reliability of a
structure can be defined as the probability that unsatisfactory performance or failure will
not occur. Reliability methods are used to estimate the probability of failure. In this
chapter different reliability methods are discussed and based on them the probability of
failure, Pf , and the reliability index, β , of the structure are calculated. These numbers
will tell us about the safety of the structure and depending on them the partial safety
factors are then calibrated.

In general, the probability of failure, Pf , can be presented using the interaction between
the load, P, and resistance, R, as seen in Figure 5.1. P and R are modelled by independent
stochastic variables with probability density functions fR and fS and cumulative distri-
bution functions FP and FR. The probability of failure can be calculated as [Sørensen,
2011]:

Pf = P(R≤ P) = P(R−P≤ 0) =
∫

∞

−∞

FR(x) fP(x)dx (5.1)

In simple terms, the probability of failure can be estimated by the degree of overlap be-
tween the distributions, as seen on Figure 5.1. This depends essentially on the separation
between the means of the distributions and the spread in each distribution. The area of
overlap, Pf , decreases with increasing separation between µR and µP while Pf increases
with increasing spread (σR or σP) in either distribution. [Sørensen, 2011]

It is noted that it is important that the lower part of the distribution for the strength and
the upper part of the distribution for the load are modeled as accurate as possible.

35
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Figure 5.1: Illustration of probability of failure; interaction between loading and resistance
effects.

There are many methods that can be used to measure the reliability of a structure. Among
them are the first order reliability method (FORM), second order reliability method
(SORM) and simulation techniques. In FORM the limit state function (failure func-
tion) is linearized compared to SORM, where a quadratic approximation to the failure
function is determined. In both of these methods the reliability index is found by per-
forming an optimization process, normally by taking the derivatives of the limit state
function with respect to the variables. [Sørensen, 2011]

Figure 5.2 illustrates the difference between the first- and second order reliability meth-
ods in u-space. Here it can be seen that the approximation of the failure surface by
FORM is a straight line (linear approximation) and the one by SORM is a curved line
(quadratic approximation).

Figure 5.2: Illustration of first and second order approximations of the failure surface. Sørensen
[2011]

FORM and SORM come with the disadvantage that in order to make the optimization
problem easy to control the number of random variables of the target problem cannot be
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too many. As this project deals with geotechnical problems, that include a vast amount of
random variables, these methods may not be the best choice. On the other hand FORM
is expected to give reasonable results when the failure functions are not too non-linear.

To overcome these limitations it is recommended to use simulation techniques, in which
samples of the stochastic variables are generated and the relative number of samples
corresponding to failure is used to estimate the probability of failure. The most famous
simulation technique is crude Monte Carlo simulation.

5.1 Crude Monte Carlo Simulation

When applying FORM, SORM or simulation techniques it is required that it is possible
for given realizations, x, of the basic variables to state whether the structure is in a safe
state or in a failure state. Therefore the basic variable space can be divided into sets, the
safe set, ωs and failure set, ω f , by the failure surface (limit state surface) such as:

g(x)

{
> 0 ,x ∈ ωs

≤ 0 ,x ∈ ω f

Here g(x) denotes the failure function and it is defined as the load bearing capacity or
resistance, R, minus the loading, P. This formulation is called the limit state equation.

g(x) = R−P (5.2)

where,

g(x) failure function
R bearing capacity
P load

The crude Monte Carlo simulation technique involves generating a large number of re-
alisations of the basic random variables and checking whether failure occurred or not
for each set of random sample values. This process is repeated several times and the
ratio of the number of failures to the total number of simulations gives an estimate of the
probability of failure, as defined in Equation (5.3).Sørensen [2011]

P̂f =
1
N

N

∑
j=1

I [g(x̂ j)] (5.3)

where,

N number of simulations
I [g(x)] indicator function
x̂ j sample no. j of a standard normally distributed stochastic vector X

The indicator function is defined by:

I [g(x)] =

{
0 if g(x)> 0 (safe)
1 if g(x)≤ 0 (failure)
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The simulation is in principle simple and can be performed in two steps. First, in order
to simulate outcomes of stochastic variables with an arbitrary distribution, a “pseudo
random” number between 0 and 1 is generated for each of the components in x̂ j. In
the second step the outcomes of the “pseudo random” numbers z ji are transformed to
outcomes of x̂ ji by Equation (5.4) as shown in Figure 5.3:

x̂ ji = F−1
X (z ji) (5.4)

where,

F−1
X cumulative distribution function for random variable, Xi

Figure 5.3: Principle for simulation of a random variable.[Sørensen, 2011]

This process is then repeated until all components of the vector x̂ j have been generated.

The required number of simulations can be estimated from:

N =
1
Pf

(5.5)

This means that in order to estimate a probability failure of a magnitude of 10−5 it is
expected that approximately 1 millions simulations are necessary.

In order to measure the statistical accuracy of the estimated probability of failure its
coefficient of variation, COV (Pf ) is calculated by Equation (5.6). [Ayyub and McCuen,
2011]

COV (Pf )≈

√
Pf (1−Pf )

N

Pf
(5.6)

It is logical to see that if the number of samples, N approaches infinity the coefficient of
variation of the estimated probability of failure, COV (Pf ) approaches 0.

In order to illustrate the convergence of the simulation process the number of simulation
cycles, N, was varied. The results are shown in Figure 5.4 using a non-arithmetic scale
for the number of simulations to show the effect of N on Pf and COV (Pf ), at small as
well as large values.
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Figure 5.4: Convergence analysis for the crude Monte Carlo simulation - embankment.

It can be observed that a convergence is reached at N = 5 · 109. As the computational
time was short N = 1010 simulations are performed in both examples. It should be noted
here that this number corresponds for g(x), so 105 for R and P, based on Equation (5.2).

A typical realization of the crude Monte Carlo simulation of the resistance, R, and load,
P, is illustrated on Figure 5.5.

Figure 5.5: Crude Monte Carlo simulation method.

Now that the probability of failure is calculated the reliability index is defined by:

β = Φ
−1(−Pf ) (5.7)

where,

Φ standard normal distribution function
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5.2 Calibration of the Partial Safety Factor

The calibration of partial safety factors is performed in such a way that the reliability
calculated with the crude Monte Carlo simulation method with the new calibrated partial
safety factors is as close as possible to the target reliability index. Therefore, in order to
calibrate the partial safety factor of the undrained shear strength, first the target reliability
index, βT should be considered. Table 5.1 shows the proposed target reliabilities and the
corresponding annual probability of failures.

Table 5.1: Target reliabilities.

Structure Target reliability index, βT Annual probability of failure, Pf

Footing 3.7 10−4

Embankment 4.7 10−6

The target reliability of 4.7 for the embankment is proposed by the Danish National
Annex to DS/EN 1990 [2010] and by Banedanmark [2010]. On the other hand, the
footing is assumed to have a low consequence class (CC1) for which DS/EN 1990 [2010]
recommends a lower reliability index, 3.7.

The current partial safety factors for the undrained shear strength and load, as defined in
the Danish National Annex to DS/EN 1997-1 [2007], are listed in Table 5.2.

Table 5.2: Partial safety factors used in the deterministic calculations.

Parameter Symbol Value

Partial safety factor for the undrained shear strength γcu 1.8
Partial safety factor for the load γF 1.5

The design value of the undrained shear strength and the load is calculated by Equation
(5.8) and (5.9).

cud =
cuk

γcu
(5.8)

Fd = FkγF (5.9)
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5.2.1 Deterministic Approach

Usually, in a deterministic design, the necessary dimensions of the structure are calcu-
lated based on the design load. After the calculations the dimensions are increased or
decreased, depending on the reached bearing capacity. In this project this is done the
other way around, meaning that the dimensions of the structures are fixed, and the de-
sign load is determined from the FE analysis with a uniform soil, characterized by the
design undrained shear strength, calculated by (5.8). The design load is calculated as
99% of the resistance as seen in Equation (5.10)

Fd = 0.99Rd (5.10)

where,

Rd resistance from the deterministic FE analysis

The assumption of the design load being 99% of the resistance was done in order to take
into consideration the possibility of a not full convergence and the approach used regard-
ing the number of increments, presented in Section 4.4, where the maximum number of
increments was lowered down to a 100.

5.2.2 Workflow

In the following, the calculations steps used in this project, in order to calibrate the
partial safety factor are described:

1. The design load, Fd , is determined from a deterministic calculation with uniform
soil, having the same undrained shear strength, cud , in all points of the model

2. The characteristic value of the undrained shear strength, cuk, is:

cuk = cudγcu (5.11)

3. Now with the known characteristic value with 95% confidence level for the mean
strength, and based on Schneider’s equation the mean value is found as:

µcu =
cuk

1−0.5COVcu
(5.12)

4. In order to model the uncertainties in cu and E cross-correlated random fields
are generated, having LogNormal distribution, based on the known mean value,
coefficient of variation, correlation lengths and covariance matrix.

5. A number of Monte Carlo (MC) simulations are performed to determine the bear-
ing capacity of the structure in ULS, resulting in a catalogue of bearing capacities.
A well-suited probability distribution function is fit to the data.

6. The characteristic load, Fk, is found as:

Fk =
Fd

γF
(5.13)
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7. Based on the coefficient of variation and probability distribution of the load, and
on the fact that the characteristic value of the load is a 98% quantile, the mean
value, µF , is found and then, subsequently:

σF = µFCOVF (5.14)

8. Based on the probability density function of the load combined with the probabil-
ity density function of the resistance, it is possible to make a number of realiza-
tions, performed with the crude Monte Carlo simulation technique.

9. From all the realisations the yearly probability of failure and reliability index is
calculated.

10. If this probability of failure is too low, this means that the partial safety factor of
the undrained shear strength is too high, and vice versa. The partial safety factor is
then calibrated until the target reliability index is reached. It should be noted here
that the partial safety factor for the load remains fixed through the calculations.
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CHAPTER6

Footing

One of the fundamental geotechnical problems is the bearing capacity of a strip foot-
ing. In this chapter a probabilistic analysis of the bearing capacity of a strip footing is
performed together with a reliability analysis, through which the partial safety factor for
the strength of the soil is calibrated, based on the workflow described in Section 5.2.
The soil is assumed to be clay and the analysis is performed assuming undrained con-
ditions satisfying the Tresca failure criterion (friction angle, ϕ is set to 0). Analytical
calculations are also performed, which gives an idea about, what the bearing capacity is.

6.1 Problem Definition

In the following, the problem definition and the finite element model is discussed. The
footing with a width of B = 2m is lying on linearly elastic - perfectly plastic Mohr-
Coulomb soil. The footing is lying on the ground surface, meaning that the surcharge
load, q is equal to 0. The geometry of the surface footing problem is shown in Figure
6.1.

2 m

4
 m

10 m

Figure 6.1: The geometry of the footing problem.

The size of the finite element model is 10.0 m by 4.0 m, and it is large enough to keep the
boundary conditions at the bottom and the right side from restricting the soil movement
due to the footing load, as deformations may still occur at a large distance from the
action, especially for undrained analysis.

45
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In order to analyse this problem the finite element mesh uses a two-dimensional model
assuming plain strain. The calculations are carried out for a rough footing, which means
that at the base of the footing no displacements are allowed in the x direction. The
boundary conditions at the base are restrained in both horizontal and vertical directions,
and at the two vertical sides are fixed only in the horizontal direction.

The characteristic value of the undrained shear strength is presented in Table 6.1.

Table 6.1: Characteristic value of the undrained shear strength for the footing.

Parameter Value

cuk [kPa] 108

The footing itself is modelled as an material with very high stiffness, assuming a very
large Young’s modulus.

6.2 Analytical Calculations

In the following the analytical approach to calculate the bearing capacity of a strip foot-
ing is presented. In this way the FE model can be validated. The analytical calculations
are based on Terzaghi’s bearing capacity formula.

The Terzaghi formulation for determination of the ultimate bearing capacity of shallow
rough rigid continuous (strip) foundations supported by a homogeneous soil layer is
shown in Equation (6.1).

qu = cNc +qNq +
1
2

γBNγ (6.1)

where,

c cohesion of soil
q overburden pressure at the bottom of the foundation
γ unit weight of soil
B width of foundation
Nc,Nq,Nγ bearing capacity factors

The failure mechanism assumed by Terzaghi for determining the ultimate bearing ca-
pacity for a rough strip footing located at a depth, Df, measured from the ground surface
is shown in Figure 6.2.

As it is assumed that the footing in question is a surface footing lying on undrained clay,
the term describing the overburden pressure and the term including the unit weight of
the soil can be excluded.

The bearing capacity for the strip footing on clay becomes:

quTerzaghi = cu(2+π) (6.2)

With an undrained shear strength, cud , of 60 kPa, the bearing capacity is:

quTerzaghi = 308.4kPa
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Figure 6.2: Terzaghi’s theory for bearing capacity of strip footing. [Azizi, 2000]

6.3 Convergence Analysis

In order to be sure that the chosen topology and element type will lead to correct results
a convergence analysis has been carried out for the bearing capacity of the strip footing
in clay, and it is shown in Figure 6.3. This includes two element types CPE8RH and
CPE6MH, respectively. It should be noted that in the convergence analysis the random
fields are not applied, so that a homogeneous soil is investigated.

Figure 6.3: Convergence analysis of bearing capacity.
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Figure 6.3 shows that the CPE8RH elements have better convergence, and they already
converge at 12405 nodes which corresponds to 4040 elements. On the other hand this
element type is better, because it results in a bearing capacity which is a lot closer to the
analytical solution and it needs less computational time. Based on this, the FE simula-
tions and deterministic calculations for the strip footing will be performed with a finite
mesh consisting of 4040 elements.

6.4 Deterministic Calculations

The design load is determined from the FE analysis with a uniform soil having an
undrained shear strength, cud , of 60 kPa (γcu = 1.8). The analysis resulted in a bear-
ing capacity, qu, equal to 316 kPa, which is shown on the load-displacement curve on
Figure 6.4. Based on this, the design load for the footing is found as 99% of the bearing
capacity:

Fd = 313kPa

Figure 6.4: Load-displacement curve - deterministic calculation.
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Further calculations were performed with different design values, corresponding to dif-
ferent partial safety factors. It was found, as seen in Figure 6.5, that there is a linear
relationship between the undrained shear strength, cud , and the resistance, Rd . This way,
there is no need to perform the deterministic calculations each time when the partial
safety factor is being calibrated. Instead the linear relation between them is used, so the
resistance can be calculated and subsequently the design load.

Figure 6.5: Relation between cud and Rd .

6.5 Probabilistic Analysis

Based on the matrix decomposition method described in Section 3.2, in order to gener-
ate a random field some input parameters are needed, namely its mean, µ , coefficient of
variation, COV , its correlation lengths in x- and y direction and the coefficient of corre-
lation between the two random fields, ρ . Table 7.3 shows these input parameters for the
undrained shear strength, cu, and Young’s modulus, E, of the footing.

Table 6.2: Input parameters for the footing.

Parameter Value

µcu [kPa] 135
COVcu [−] 0.4
µE [MPa] 29.7
COVE [−] 0.4
δx [m] 3
δy [m] 1
ρ [−] 0.9

Through the analysis 1000 realizations were generated resulting in 1000 bearing capac-
ities. Some examples of the load-displacements curves are shown in Figure 6.6. It can
be seen that these reflect the randomness of the soil, as the bearing capacity of the soil is
not the same in these cases, as expected.
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Figure 6.6: Realizations of load-displacement curves.

The data from the Monte Carlo simulations needs to be fitted, so it is important to choose
the most accurate distribution, especially at the lower part of the tail. Therefore three
types of distributions were fitted to the data, a normal, a lognormal and a Weibull distri-
bution, as seen on Figure 6.7.

Figure 6.7: Fit for the bearing capacity of the footing.
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It can be seen that a normal distribution fits best the data, especially at the lower part of
the tail.

6.5.1 Effects of the Correlation Length on the Failure Mechanism

In the following, it is investigated how the different correlation lengths affect the failure
mechanism. The correlation lengths have been described in Chapter 3.

In order to do this investigation, three simulations with different correlation lengths in
the x- and y directions have been performed for the footing model. Through these simu-
lations it has been observed that the failure always seeks out the region of the soil with
the weakest strength (darker colours). The correlation length gives information about
how the soil strengths vary in a particular direction. The larger the correlation length,
it is more likely for the soil to have the same strength in that particular direction. How
the failure mechanism behaves to different correlation lengths is described through the
following realizations of the stochastic soil field.

In the first simulation, as seen in Figure 6.8, the correlation lengths are set to 1 m in
x- and ydirection. Based on these correlation lengths, the realization of the stochastic
field, as seen in Figure 6.8a, becomes very random, where no layers of different soil
strengths can be distinguished. The deformed mesh and the failure mechanism based
on this realization is shown in Figure 6.8b and Figure 6.8c, respectively. It can be seen
that the failure mechanism seeks toward the left side of the model where the soil has
weaker strength. The failure mechanism is based on plotting all mechanical strain rate
components (ER).

In the second simulation the generated random field has a correlation length of 5 m in
x direction and 1 m in y direction and is illustrated in Figure 6.9. This shows a more
systematic random field, than the previous one. Here the soil region has more of a
uniform strength, with less randomness as shown in Figure 6.9a. This is reflected in
the deformed shape (Figure 6.9a) and failure mechanism (Figure 6.9c), where the soil
moves again towards the weak region, which in this case is a small region under the left
side of the footing.

The third simulation is performed with a correlation length of 100 m in x direction and
1 m in ydirection, as seen in Figure 6.10. Having a correlation length approaching a
larger number, results in a random field where the soil appears to be homogeneous, as
seen in Figure.6.10a. The deformed mesh and the failure mechanism based on these cor-
relation lengths are illustrated in Figure 6.10b and Figure 6.10c. As expected, the failure
mechanism is almost symmetrical and resembles very much the failure mechanism by
Terzaghi, which was presented in Figure 6.2.

The Matlab and Python scripts together with the FORTRAN subroutines which were
used to create the probabilistic model of the footing can be found in
Calculation/Footing/ProbabilisticModel on Appendix CD.
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(a) Random field for the undrained shear strength [Pa] with µcu = 135Pa and COVcu = 0.4.Viewport: 1     ODB: C:/Users/Wee/Desktop/FOOTING/X1−Y1.odb
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(c) Failure mechanism.

Figure 6.8: Simulation 1 with δx = 1m and δy = 1m.
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(c) Failure mechanism.

Figure 6.9: Simulation 2 with δx = 5m and δy = 1m.
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(c) Failure mechanism.

Figure 6.10: Simulation 3 with δx = 100m and δy = 1m.
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6.6 Reliability Analysis

Through the reliability analysis it is desired to calibrate the partial safety factor for the
undrained shear strength until it reaches/comes as close as possible to a target reliability,
which for the footing was set to 3.7, corresponding to an annual probability of failure of
10−4.

The results based on the crude Monte Carlo simulation technique, are presented in Table
6.3.

Table 6.3: Calibration of the partial safety factor for the footing - Crude Monte Carlo Simulation.

γcu Normal Lognormal Weibull
β Pf β Pf β Pf

1.8 4.00 3.10·10−5 4.50 3.44·10−6 3.56 1.80·10−4

1.6 3.80 7.00·10−5 4.30 8.49·10−6 3.37 3.69·10−4

1.5 3.70 1.00·10−4 4.14 1.69·10−5 3.27 5.31·10−4

1.4 3.58 1.73·10−4 4.06 2.39·10−5 3.15 8.00·10−4

1.2 3.28 5.15·10−4 3.70 1.00·10−4 2.89 1.90·10−3

It can be seen that through a reliability-based calibration the target reliability is reached
with a partial safety factor of 1.5 for the undrained shear strength, when the data is fitted
with the normal distribution. Figure 6.11 shows how the area of the overlap increases
by decreasing the partial safety factor for the soil, resulting in a higher probability of
failure.

(a) γcu = 1.8 (b) γcu = 1.5

Figure 6.11: Reliability analysis - Footing.
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In addition, FORM was performed too, and the results are shown in Table 6.4.

Table 6.4: Calibration of the partial safety factor for the footing - FORM.

γcu Normal Lognormal
β Pf β Pf

1.8 3.60 1.50·10−4 3.83 6.38·10−5

1.6 3.38 3.60·10−4 3.53 2.00·10−4

1.5 3.25 5.80·10−4 3.34 4.20·10−4

1.4 3.11 9.40·10−4 3.20 6.87·10−4

1.2 2.75 3.00·10−3 2.80 2.54·10−3

It can be seen that by using FORM the partial safety factor cannot be reduced, as the
target reliability index is reached with a partial safety factor of γcu = 1.8. This is because
FORM approximates the failure surface with a straight line, therefore more failures can
fall into that.

The calculations and Matlab programme responsible for the reliability analysis of the
footing can be found in Calculation/Footing/ReliabilityAnalysis on Appendix CD.



CHAPTER7

Embankment

In this chapter the problem of an embankment will be analysed, where the soil is mod-
elled as a random field. In Denmark some of the embankments for the railways are very
old and there is not much data on what type of soils these embankments are consisting
of. These embankments consist of different regions with different soil types, but the
geometry is not known exactly, just through some certain limits. Therefore creating a
probabilistic FE model, where the input and the geometry is automated and it is easy to
change, is a good way to analyse the problem. Further in this chapter a reliability analy-
sis is also performed, through which it is desired to calibrate the partial safety factor of
the soil strength.

7.1 Problem Definition

The slope and underlying soil is assumed to consist of undrained clay, and the whole
model is divided into four different regions to which different material properties are
assigned, as seen in Figure 7.1.
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Figure 7.1: The geometry of the embankment problem.
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The characteristic value for the different regions are presented in Table 7.1

Table 7.1: Characteristic values of the undrained shear strengthfor the embankment.

Parameter Region 1 Region 2 Region 3 Region 4

cud [kPa] 40 70 110 80

In order to analyse this problem the finite element mesh uses a two-dimensional model
assuming plain strain. The boundary conditions at the base are restrained in both hori-
zontal and vertical directions, and at the two vertical sides are fixed only in the horizontal
direction.

7.2 Convergence Analysis

Just like in the case of the strip footing, a convergence analysis is performed for the
bearing capacity of the embankment. The results from the convergence analysis for the
footing have shown that the 8-noded elements show better convergence. Therefore, this
was adapted and here a convergence has been carried out only with the 8-noded elements
(CPE8RH), as seen in Figure 7.2.

Figure 7.2: Convergence analysis of bearing capacity.

The CPE8RH elements show again good and fast convergence already with 12405 nodes,
which corresponds to 4646 elements. This number of elements is adapted and used for
the further simulations and calculations.
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7.3 Deterministic Calculations

The approach described in Chapter 5 is used in order to find out the design load. Ta-
ble 7.2 shows the design values of the undrained shear strength, corresponding to the
original partial safety factor of γcu = 1.8, of the different regions which are used in the
deterministic calculations.

Table 7.2: Design values for the embankment.

Parameter Region 1 Region 2 Region 3 Region 4

cud [kPa] 22.22 38.89 61.11 44.44

Based on these design values a FE analysis was performed with homogeneous soil, and
resulted in a bearing capacity, qu of 229.6 kPa, which is shown on the load-displacement
curve on Figure 7.3. With this the design load, Fd is found as:

Fd = 227.3kPa

Figure 7.3: Load-displacement curve - deterministic calculation.

The relation between the undrained shear strength, cud , and resistance, Rd , was investi-
gated, and it was found out that there is again a linear relationship between them, as seen
in Figure 7.4
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Figure 7.4: Relation between cud and Rd .

7.4 Probabilistic Analysis

Like in the case of a strip footing, in order to generate the random field for the undrained
shear strength, cu, and Young’s modulus, E, some input parameters are needed. These
are listed in Table 7.3, together with the unit weight, γ , and Poisson’s ratio, ν , for the
four different regions.

Table 7.3: Input parameters for the embankment.

Parameter Region 1 Region 2 Region 3 Region 4

µcu [kPa] 50 87.5 137.5 100
COVcu [−] 0.4 0.4 0.4 0.4
µE [MPa] 29.7 29.7 29.7 29.7
COVE [−] 0.4 0.4 0.4 0.4
δx [m] 0.5 0.5 1 100
δy [m] 0.5 0.5 1 1
ρ [−] 0.9 0.9 0.9 0.9
γ
[
kN/m3

]
18.6 19 21.4 19

ν [−] 0.485 0.485 0.485 0.485
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A realization of the generated random field based on the input parameters described in
Table 7.3 is shown in Figure 7.5.
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Figure 7.5: Random field for the undrained shear strength [Pa].

In the probabilistic analysis 1000 simulations were performed, resulting in 1000 bearing
capacities. As an example, some of the load-displacements curves are illustrated in
Figure 7.6.

Figure 7.6: Realizations of load-displacement curves.
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The data from the probabilistic analysis were fitted to three different types of distribu-
tions: a normal, lognormal and a Weibull distribution. The histogram of the sample data
of the fitted distributions can be seen in Figure 7.7.

Figure 7.7: Fit for the bearing capacity of the embankment.

It can be seen that the for the embankment the Weibull distribution fits best to the data,

In the following some of the realizations of the probabilistic analysis are shown. Here it
should be noted that not the whole models are shown.

The Matlab and Python scripts together with the FORTRAN subroutines which were
used to create the probabilistic model of the embankment can be found in Calcula-
tion/Embankment/ProbabilisticModel on Appendix CD.
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(a) Random field for the undrained shear strength [Pa].
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(b) Displacements in the y direction, deformed mesh [mm].
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(c) Failure mechanism.

Figure 7.8: Simulation 84.
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(a) Random field for the undrained shear strength [Pa].
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(b) Displacements in the y direction, deformed mesh [mm].
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(c) Failure mechanism.

Figure 7.9: Simulation 291.
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(a) Random field for the undrained shear strength [Pa].
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(c) Failure mechanism.

Figure 7.10: Simulation 824.
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7.5 Reliability Analysis

Through the reliability analysis it is desired to calibrate the partial safety factor for the
undrained shear strength until it reaches/comes as close as possible to a target reliability.
For the embankment the target reliability was set to 4.7 which corresponds to an annual
probability od failure of 10−6.

The results based on the crude Monte Carlo simulation technique, are presented in Table
7.4.

Table 7.4: Calibration of the partial safety factor for the embankment - Crude Monte Carlo
Simulation.

γcu Normal Lognormal Weibull
β Pf β Pf β Pf

1.8 6.25 2.10·10−10 ∞ 0.00 5.28 6.23·10−8

1.6 5.44 2.72·10−8 5.69 6.40·10−9 4.98 3.21·10−7

1.5 5.31 5.50·10−8 5.55 1.44·10−8 4.88 5.12·10−7

1.4 4.78 8.37·10−7 4.81 7.54·10−7 4.60 2.07·10−6

1.2 5.00 2.40·10−7 5.17 1.16·10−7 4.52 3.11·10−6

It can be seen that through a reliability-based calibration the target reliability is reached
with a partial safety factor of 1.5 for the undrained shear strength, when the data is fitted
with the Weibull distribution. As a comparison, the interaction between the load and
resistance based on the original and calibrated partial safety factor are shown in Figure
7.11

(a) γcu = 1.8 (b) γcu = 1.5

Figure 7.11: Reliability analysis - Embankment.
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FORM was performed in the case of the embankment too, and the obtained results are
presented in Table 7.5, showing again conservative results.

Table 7.5: Calibration of the partial safety factor for the embankment - FORM.

γcu Normal Lognormal
β Pf β Pf

1.8 4.98 3.19·10−7 5.03 2.47·10−7

1.6 4.64 1.70·10−6 4.67 1.50·10−6

1.5 4.46 4.10·10−6 4.48 3.76·10−6

1.4 4.28 9.45·10−6 4.29 9.00·10−6

1.2 4.02 2.87·10−5 4.03 2.70·10−5

Another approach was performed, in which the raw data of the bearing capacities were
used in the crude Monte Carlo simulation technique. This however resulted in infinite
reliability indexes (zero probability of failure). This could be due to the fact that only a
limited number of realizations were available and therefore there was no overlap between
the histogram of the sample data and the load distribution. This can be seen in Figure
7.12. One way to avoid this is to run more realizations for the bearing capacities, but
because of lack of time, this was not possible.

Figure 7.12: Fit for the bearing capacity of the embankment.

The calculations and Matlab programme responsible for the reliability analysis of the
embankment can be found in Calculation/Embankment/ReliabilityAnalysis on Appendix
CD.





CHAPTER8

Conclusion

The purpose of the thesis was to model the random variations of soil properties by ap-
plying the random field theory, and based on that to calibrate the partial safety factor
of the undrained shear strength, which in the Danish National Annex to DS/EN 1997-1
[2007] is set to 1.8.

First the different uncertainties related to the geotechnical cases were introduced, from
which the main focus was set on the natural soil variability. The natural randomness
of the soil was modeled by the use of random field theory, which was described with
all the characteristics and assumptions. Two random fields were generated, one for the
undrained shear strength and one for the Young’s modulus of the soil. For the generation
of a two-dimensional random field the matrix decomposition method was used. A prob-
abilistic computational model was constructed using the finite element method, in which
the material property in each element was assigned to the generated random field. 1000
simulations were performed, which resulted in a probability distribution of the bearing
capacity.

A reliability analysis was performed by the crude Monte Carlo simulation method through
which the probability of failure and the reliability index was calculated, based on the in-
teraction between the load and resistance. Thorugh this reliability analysis the partial
safety factor for the undrained shear strength was calibrated to a corresponding target
reliability index. All these calculations were performed for a strip footing and then for
an embankment. It was found that, for both examples, the calculated reliability indices
indicate that the partial safety factor can be reduced significantly from the present factor
of γcu = 1.8 to γcu = 1.5.

In addition, it was investigated how the different correlation lengths influenced the fail-
ure mechanism of the structure. It was found that for small correlation lengths in the x di-
rection, the failure mechanism was very random. For high correlation lengths, x= 100m,
the generated failure mechanism resembled very much the failure mechanism by Terza-
ghi.

In general it is concluded that through a reliability-based calibration, where the uncer-
tainties related to random variations of the soil are accounted for, the partial safety factor
of the undrained shear strength can be reduced significantly, by which the costs are re-
duced too.
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8.1 Future Work

The reliability-based calibration of partial safety factors turned out to be efficient. How-
ever this was performed only on a fixed coefficent of variation and correlation lengths,
due to lack of time. Therefore it would be interesting to perform more simulations with
different correlation lengths and coefficient of variation and compare them.

Another limit state equation would be also interesting to investigate. Since cross-correlated
random fields were generated between the undrained shear strength and Young’s modu-
lus of the soil, this could be used for the serviceability limit state (SLS), where instead of
the bearing capacities, the interaction between the load and displacements is analysed.
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APPENDIXA

Mohr-Coulomb Model

The Mohr-Coulomb model in Abaqus is based on the Mohr-Coulomb model suggested
by Coulomb (1776). In this model, the Mohr-Coulomb criterion assumes that the failure
is controlled by the maximum shear stress, and that it depends on the normal stress. Fur-
thermore, in this model it is assumed that the failure is independent of the intermediate
stress (σ2). In general, soils would include some small dependence on σ2, however, the
Mohr-Coulomb model is considered to be sufficiently accurate for most applications.
Here, the constitutive model uses an elastoplastic model and the yield function includes
isotropic cohesion hardening/softening and uses the potential flow which has no corners
in the deviatoric stress space.

Figure A.1: Mohr-Coulomb yield model.

In Figure A.1 the failure line and Mohr circles are shown, where s is the maximum shear
stress and it is half of the difference between the maximum and minimum principal
stresses, σ1 and σ3 respectively. σm is the normal stress which is defined as the average
of σ1 and σ3. The Mohr-Coulomb criterion can be written as in Equation. (A.1).

s︸︷︷︸
Max.shearstress

=
σ1−σ3

2

σm︸︷︷︸
Normalstress

=
σ1 +σ3

2

τ = c−σ tanφ (A.1)
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τ shear stress
c cohesion of material
σ normal stress
φ friction angle

where,

Form Mohr’s circle in Figure A.1, the shear- and normal stress can be expressed as in
Equation (A.2) and (A.3).

τ = scosφ (A.2)

σ = σm + ssinφ (A.3)

By substituting Equation (A.2) and (A.3) into Equation (A.1), the Mohr-Coulomb crite-
rion can be rewritten as follows:

τ− c+σ tanφ = 0

⇓
scosφ − c+(σm + ssinφ) tanφ = 0

⇓
scos2

φ − ccosφ +σm cosφ tanφ + scosφ sinφ tanφ = 0

⇓

scos2
φ − ccosφ +σm cosφ

sinφ

cosφ
+ scosφ sinφ

sinφ

cosφ
= 0

⇓
scos2

φ − ccosφ +σm sinφ + ssin2
φ = 0

⇓

s(cos2
φ + sin2

φ)︸ ︷︷ ︸
=1

− ccosφ +σm sinφ = 0

In the end, the Mohr-Coulomb criterion can be written as in Equation (A.4),

s+σm sinφ − ccosφ = 0 (A.4)
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A.1 Yielding behaviour

The yield criterion can be described in term of invariants, which is obtained from the
Cauchy stress tensor σi j. It is usually divided into two parts of tensors. The first is the
hydrostatic stress or the so called volumetric stress, and it is usually involved when the
volume of a body is changing due to the external force. The second one is the deviatoric
stress which is typically used in the failure criteria, and it is involved when the body
tends to distort due to the external force. The stress tensor may then be expressed as,

σi j = Si j− pI
⇓

Si j = σi j + pI

where,

Si j deviatoric stress tensor
pI hydrostatic stress tensor

p mean stress p =
1
3
(σ11 +σ22 +σ33)

I identity matrix

The first invariant, I1 is described by the principal stresses and can be written as in
Equation (A.5). The second and third are described in terms of deviatoric stress S and
can be expressed as states in Equation (A.6) and (A.7), respectively.

I1 = Tr(σ) = σ11 +σ22 +σ33 (A.5)

J2 =
1
2

S : S =
1
6
[
(σ11−σ22)

2 +(σ22−σ33)
2 +(σ33−σ11)

2] (A.6)

J3 = det(S) =
1
3
(S ·S) : S (A.7)

Furthermore, the equivalent pressure stress, p, the Mises equivalent stress, q and the
third invariant of deviatoric stress, r are defined in Equation (A.8), (A.9) and (A.10):

p =−1
3

I1 =−
1
3

Tr(σ) (A.8)

q =
√

3J2 =

√(
3
2

S : S
)

(A.9)

r = 3
(

1
2

J3

) 1
3

=

(
9
2

S ·S : S
) 1

3

(A.10)

Based on these, the Mohr-Coulomb yield surface from Equation (A.4) can be rewritten
as in Equation (A.11),

Rmcq− p tanφ − c = 0 (A.11)

where, Rmc is the Mohr-Coulomb deviatoric stress and it depends on the deviatoric polar
angle Θ defined as Equation (A.13). φ is the friction angle of the material or in other
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words is the slope of the Mohr-Coulomb yield surface. The Mohr-Coulomb deviatoric
stress is defined as in Equation (A.12).

Rmc(Θ,φ) =
1√

(3)cosφ
sin
(

Θ+
π

3

)
+

1
3

cos
(

Θ+
pi
3

)
tanφ (A.12)

cos3Θ =

(
r
q

)3

(A.13)

The Mohr-Coulomb yield surface in the deviatoric plane can be seen in Figure A.2.

Figure A.2: Mohr-Coulomb yield surface in the deviatoric plane.
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A.2 Flow rule

In order to describe the plastic behaviour of the material, the flow rule have to be taken
into account. In Abaqus the potential flow is described by Equation (A.14)), where g can
be written as in Equation (A.15). The flow potential G is defined in Equation (A.16).

dε
pl =

dε
pl

g
∂G
∂σ

(A.14)

g =
1
c

σ :
∂G
∂σ

(A.15)

G =
√

(εc|0tanΨ)2 +(Rmwq)2 − p tanΨ (A.16)

where,

Ψ(θ , f α) dilatation angle from meridional plane at high confining pressure
c|0 initial cohesion yield stress
ε parameter referred to as the meridional eccentricity

The flow potential, G tends to a straight line in the meridional stress plane as the merid-
ional eccentricity tends to zero as seen in Figure A.3.

Figure A.3: Hyperbolic flow in the meridional plane

Furthermore, the flow potential, G has a smooth elliptic function (see Equation (A.17))
in the deviatoric stress plane, as seen in Fig. A.4). By using this flow potential, which is
continuous and smooth in the meridional stress plane it is ensured that the flow direction
is unique.

Rmw(Θ,e) =
4(1− e2)cos2 Θ+(2e−1)2

2(1− e2)cosΘ+(2e−1)
√

4(1− e2)cos2 Θ+5e2−4e
Rmc

(
π

3
,φ
)

(A.17)
Here e is a parameter that describes the “out-of-roundedness” of the deviatoric section
and is defined as in Equation (A.18). Alternatively, e can be considered as an indepen-
dent material parameter, as in Abaqus the value of e can be provided directly. In order
to have a convexity and smoothness of the elliptic function, it is required that e is in the
range of (1/2 < e≤ 1).

e =
3− sinφ

3+ sinφ
(A.18)
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Figure A.4: Flow potential in the deviatoric plane.

The flow potential in the deviatoric plane is illustrated in Figure A.4.

Furthermore, the flow in the deviatoric plane is non-associated and by using this Mohr-
Coulomb model, this generally require the solution of nonsymmetric equations.


	Titlepage
	Contents
	Introduction
	Thesis Statement
	Delimitation of Thesis
	Overview of the Thesis

	Part I
	Uncertainties
	Soil Variability
	Modelling the Variation of Soil Properties
	Characteristic Value of Soil Properties

	Random Fields
	Characteristics and Assumptions
	2D Random Field Generation

	Probabilistic Computational Modelling
	Probabilistic Finite Element Model
	Material Model
	Finite Mesh
	Numerical Method
	Modelling of the Load
	Summary

	Reliability Analysis
	Crude Monte Carlo Simulation
	Calibration of the Partial Safety Factor


	Part II
	Footing
	Problem Definition
	Analytical Calculations
	Convergence Analysis
	Deterministic Calculations
	Probabilistic Analysis
	Reliability Analysis

	Embankment
	Problem Definition
	Convergence Analysis
	Deterministic Calculations
	Probabilistic Analysis
	Reliability Analysis

	Conclusion
	Future Work

	Bibliography

	Appendix
	Mohr-Coulomb Model


