
Aalborg University

Compiling Protocol Narrations
into Applied Pi Processes

Sam Sepstrup Olesen

June 8, 2015

Department of Computer Science

Software Engineering

Selma Lagerløfs Vej 300

Telephone +45 9940 9940

+45 9940 9798

http://www.cs.aau.dk

Title:
Compiling Protocol
Narrations into
Applied Pi Processes

Project period:
10th semester
Spring, 2015

Project group:
des102f15

Author:
Sam Sepstrup Olesen

Supervisor:
Hans Hüttel

Finished: June 8, 2015

Number of pages: 41

Abstract:

The focus of this report is to ease
the process of designing and analysing
cryptographic protocols.
Based on the work of Briais and Nest-
mann, we extend their syntax to in-
clude an equational theory and de-
fine term derivation for arbitrary equa-
tional theories, such that we can pro-
duce a projection from protocol nar-
rations to processes defined in the ap-
plied pi calculus. For reasoning about
the complexity of our projection, we
prove that the term derivation problem
is NP-complete.

We have implemented this projection

in our compiler narcapi, which is

written in OCaml.

The content of this report can be used freely; however publication (with source mate-

rial) may only occur in agreement with the author.

Sam Sepstrup Olesen

Preface

This report was written as a master project by Sam Sepstrup Olesen in the
spring of 2015, while studying Software at Aalborg University.

The report documents the compilation from protocol narrations to pro-
cesses in the applied pi calculus. The compilation is implemented in OCaml as
the compiler narcapi, which is available at https://github.com/samolesen/
narcapi.

Although, these subjects will be presented in the report to some degree,
the reader is expected to be somewhat familiar with process calculi, as well as
basic cryptography.

I would like to thank my supervisor, Hans Hüttel, for the constructive
feedback and engaging discussions throughout my specialisation.

https://github.com/samolesen/narcapi
https://github.com/samolesen/narcapi

Contents

1 Introduction 9
1.1 Outline of the Report . 10

2 Preliminaries 11
2.1 Protocol Narrations . 11
2.2 Checks-on-Reception . 13
2.3 Applied Pi Calculus . 16

3 Analysis 21
3.1 Compilation . 21
3.2 Complexity . 21

4 Design 23
4.1 Syntax of Equational Protocol Narrations 23
4.2 Knowledge Deduction . 23
4.3 Generation of Checks . 28
4.4 Compilation to Applied Pi . 29

5 Implementation 31
5.1 Syntax . 31
5.2 Data Representation . 32
5.3 Deviations from the Formal Translation 32
5.4 Examples . 35

6 Conclusion 39
6.1 Future Work . 39

Bibliography 41

7

Chapter 1

Introduction

When designing or presenting cryptographic protocols, it is common to use
informal protocol descriptions, such as protocol narrations, to describe the in-
tended execution of a protocol run as a sequence or directed graph of message
exchanges between the associated principals[BN07]. An example of a protocol
narration can be seen in Table 1.1. Encryption of a message M with a key N
denoted by {M}N .

A; S : {B}kAS

S ; A : {kB}kAS

A; B : {m}kB

Table 1.1: Example of a protocol narration.

This protocol narration describes a simple protocol, in which a principal A
can ask a key-server S for a key to communicate with a principal B. However,
a few implicit assumptions about ownership of keys are made in the protocol
narration. It is first assumed that A and S share a key kAS . It is also assumed
that B knows the key kB that is sent to A by the key-server S. Other important
aspects are the actions the principals are supposed to perform on the messages
they receive, e.g. decryption and consistency checks are implicit. We obviously
expect the principals to attempt decryption of the messages they receive. We
also expect that the key-server S only sends the key kB , if that is the key
requested by A.

These implicit concepts of protocol narrations are formalised by Briais and
Nestmann in [BN07]. Their paper also defines a translation of protocol narra-
tions to processes in the spi calculus, which have been implemented by Briais
in the spyer compiler[Bri08]. We believe the automatic generation of explicit
protocol descriptions, from the intuitive notation of protocol narrations, eases
the work of designing and analysing cryptographic protocols. However, the spi
calculus contains a fixed set of cryptographic primitives that the users of the
Briais compiler are limited to use. Protocols that depend on cryptographic
primitives not included in the spi calculus of Briais, e.g. homomorphic encryp-
tion, are therefore not supported by the compiler.

My motivation for working on this project is to ease the process of de-

9

10 CHAPTER 1. INTRODUCTION

signing and analysing cryptographic protocols. Last semester, I designed and
analysed protocols for election monitoring[Ole15]. Protocol narrations were
used for concise descriptions the protocols. Because the dependence on a se-
cret sharing scheme, it was not possible to use spyer for automatic translation
of the protocol narrations. The protocols were instead manually translated to
explicit applied pi processes. I found the manual modelling of the protocols to
be a rather cumbersome and error-prone process, that could be interesting to
automatise.

The applied pi calculus[AF01] is an extension to the spi calculus, that allows
for specification of arbitrary cryptographic primitives through the definition of
an equational theory. Symmetric encryption and decryption, of a message x
with a key y, can for example be written as the equation dec(enc(x, y) , y) = x.

Can the translation described in [BN07] be generalised to a transla-
tion from protocol narrations to processes in the applied pi calculus?

In addition to the translation from protocol narrations to processes in the
spi calculus[BN07], existing work related to explication of protocols include
the projection from global session types to local session types[HYC08] and
code generation based on protocol narrations[Mod14].

1.1 Outline of the Report

We present the background theory for our work in chapter 2. We examine how
we can utilise the background theory in chapter 3, where we also determine
the computational complexity of a translation. In chapter 4, we define the
compilation to applied pi processes. The compilation is implemented in our
compiler narcapi. The primary derivations between the formal compilation
and the implementation are described in chapter 5. Finally, chapter 6 will
present the conclusion of the project.

Chapter 2

Preliminaries

In this chapter, we explore the existing work of protocol narration compilation
and process calculi, which we use as a foundation for our work.

2.1 Protocol Narrations

Several implicit concepts allow protocol narrations to be concise. Implicit de-
composition of messages by principals allow for implicit projection of elements
in tuples, as well as implicit decryption of encrypted messages, on condition
that the principal knows the corresponding decryption key. Also, protocol nar-
rations do not explicitly specify which checks a principal should perform when
a message has been received. An example is shown in Table 2.1, which is a pro-
tocol narration of a simple protocol that allows a principal A to verify whether
a principal B knows a shared key kAB .

A; B : {n}kAB

B ; A : {n+ 1}kAB

Table 2.1: Example of a protocol narration.

In the protocol narration, principal A sends a nonce n ∈ N, which is en-
crypted with a shared key kAB , to principal B. By decrypting the nonce n and
encrypting the value n + 1 with a shared key kAB , B can prove to A that it
knows the shared key kAB . The principal A is then implicitly expected to per-
form a consistency check, whereby A verifies that the message it receives is the
encryption of a value x, where x−1 equals the nonce n that was originally sent
by A. However, the protocol narration does not describe who knows what, i.e.
which information is initially available to the individual principals and whether
some of the information is initially available to a potential attacker. It is also
important to specify whether the nonce is freshly generated for the protocol
run, since it is typically assumed that an attacker is able to replay any sent
message, even from previous protocol runs.

These implicit concepts can be formalized by an extended syntax and cor-
responding semantics for protocol narrations proposed by Briais and Nest-
mann[BN07]. The implicit decomposition and consistency checks are handled

11

12 CHAPTER 2. PRELIMINARIES

by their semantics, whereas the knowledge information is made explicit through
a declaration header in their syntax, which is shown in Table 2.2.

M,N ::= a
∣∣ A ∣∣ {M}N ∣∣ (M.N)

∣∣ pub(M)
∣∣ priv(M)

∣∣ H(M) (messages)

T ::= A; B : M (exchanges)

L ::= ε
∣∣ T ;L (narrations)

D ::= A knows M
∣∣ A generates n

∣∣ private k (declarations)

P ::= D;P
∣∣ L (protocol narrations)

Table 2.2: Formal syntax for protocol narrations.

Messages are based on the classic spi calculus[AG97] constructs. A message
can therefore be either a name a, a principal A, an encrypted message {M}N , a
pair (M.N), a public key pub(M), a private key priv(M), or a hashed message
H(M), which are all typically available in spi calculus. The declaration header
consists of three different constructs: The declaration A knows M denotes
that A initially knows M . The generation of a fresh name n by A for each
protocol run is defined by A generates n. Names that are not generated for
each protocol run will be initially available to an attacker, unless they are
declared to be private through the declaration private k. Both declarations
and exchanges are separated by semicolons.

The previous example in Table 2.1 is described in Table 2.3 using the formal
syntax.

private kAB ;
A knows kAB ;
B knows kAB ;
A generates n;
A; B : n;
B ; A : {n}kAB

; ε

Table 2.3: Example of a formal protocol narration.

To make the declaration header less verbose, Briais and Nestmann propose
the two macros defined in Table 2.4.

A1, · · · , An know M expands into A1 knows M ; · · · ;An knows M

A1, · · · , An share k expands into private k;A1 knows k; · · · ;An knows k

Table 2.4: Declaration macros.

Based on the work in [BN07], a compiler named spyer has been imple-
mented by Briais, which translates formal protocol narrations into correspond-
ing spi calculus processes[Bri08]. The syntax accepted by spyer contains some

2.2. CHECKS-ON-RECEPTION 13

further changes to the syntax in [BN07], such as support for tuples, the use of
line breaks as separators, and the omission of the trailing ε.

A,B know (A.B)
A,B share kAB
A generates n
A; B : n
B ; A : {n}kAB

Table 2.5: Example of a formal protocol narration in the spyer syntax.

The example in Table 2.1 is described using the syntax of spyer in Table 2.5.
Note that in Table 2.3 it is implicitly assumed that principals initially know
each other, whereas spyer requires this information to be explicitly defined in
the declaration header.

2.2 Checks-on-Reception

When translating, [BN07] and spyer divide an exchange A; B : M into three
components:

1. A constructing and sending M .

2. B receiving a message that could be M .

3. B verifying that the received message has the expected properties of M .

It is clear that the interesting aspect of translating protocol narrations is
which checks a recipient of a message is expected to perform. The extent of
these checks heavily depends on what knowledge the principal has previously
acquired, which we call the principal’s knowledge set K. We use the following
notation for a piece of knowledge k ∈ K throughout the report:

expectation • representation

The expectation is the intended message as described in the protocol narra-
tion. The representation defines how the principal is supposed to express the
expectation, i.e. when receiving a message M , the principal would store the
message in an unused variable a, resulting in the addition of M •a to the princi-
pal’s knowledge set. You can therefore say that the representation is supposed
to evaluate to the expectation. We denote a test for equality of the evaluation
of two representations a and b as [a = b]. We omit the definition of evaluation
as it is straightforward, however, note that a representation will evaluate to
⊥ when an unsuitable operation is attempted, e.g. decryption Db (a) with a
wrong key b, decryption Db (a) when a is not an encrypted value, or projection
πn(a) of the nth element when a is not a pair. If either of the representations
in an equality test evaluate to ⊥, the test will return false.

Given this notion of knowledge, one can imagine scenarios where checks
should be generated:

14 CHAPTER 2. PRELIMINARIES

� If you know multiple representations for the same expected value, e.g.
m • a and m • b, you would expect the representations to evaluate to the
same value, i.e. [a = b].

� When receiving a pair (m.n) • a, you would expect to be able to derive
m • π1(a) and n • π2(a), such that [a = (π1(a).π2(a))].

� When coming into possession of a valuem•a and its hashed value H(m)•b,
you would expect that [H(a) = b].

� When coming into possession of an encrypted message {m}k • a and its
corresponding key k • b, you would expect to be able to derive m•Db (a),
where [a = {Db (a)}b].

By applying a sequence of actions for every message exchange, Briais and
Nestmann define the generation of checks-on-reception as follows:

1. When a principal receives a message expected to be m, it is added to the
principal’s knowledge set K, producing K ′ = K∪{m • a } where the rep-
resentation a /∈ vars(K). For the knowledge set K ′, the set of knowledge
that can be derived is described through analysis A(K ′), which is defined
in Table 2.7. The associated synthesis S(K) is defined in Table 2.8 and is
the set of knowledge that can be constructed using K. The analysis and
synthesis are the key components of the checks-on-reception method.

2. The checks to be generated are denoted by Φ(A(K ′)) and are defined us-
ing the consistency formula in Table 2.6, which generates checks for every
expectation in A(K ′) that can be synthesised using A(K ′). inv(E,F) is
used to test whether a public key and a private key are a part of the
same key pair. Note that for every expectation E the check [E = E] will
be generated. Briais and Nestmann refer to these as well-formed tests,
which will fail iff E evaluates to ⊥. The well-formed tests verify whether
decryption and projection succeed. However, it should be noted that
these well-formed tests require that the cryptographic primitives used in
real world scenarios provide data integrity, i.e. produce errors for wrong
input.

Φ(K)
def
=

∧
M•E∈K ∧M•F∈S(K)

[E = F]

∧
∧

M•E∈K ∧M−1•F∈S(K)
inv(E,F)

Table 2.6: Consistency formula.

3. Finally, Briais and Nestmann propose several measures to minimise the
principals’ knowledge sets and avoid repeating checks. While making the
resulting spi calculus processes simpler, these measures are not essential
for the correctness of the translation.

2.2. CHECKS-ON-RECEPTION 15

Analysis A(K), given a knowledge set K, is the smallest set of
⋃
n∈NAn(K)

satisfying the following rules:

ana-ini
M • E ∈ K

M • E ∈ A0(K)

ana-fst
(M.N) • E ∈ An(K)

M • π1(E) ∈ An+1(K)
ana-snd

(M.N) • E ∈ An(K)

N • π2(E) ∈ An+1(K)

ana-dec
{M}N • E ∈ An(K) N−1 • F ∈ S(An(K))

M • DF (E) ∈ An+1(K)

ana-dec-rec
{M}N • E ∈ An(K) N−1 • F /∈ S(An(K))

{M}N • E ∈ An+1(K)

ana-nam-rec
M • E ∈ An(K) M ∈ N ∪A

M • E ∈ An+1(K)

ana-pub
pub(M) • E ∈ An(K)

pub(M) • E ∈ An+1(K)
ana-priv

priv(M) • E ∈ An(K)

priv(M) • E ∈ An+1(K)

ana-hash
H(M) • E ∈ An(K)

H(M) • E ∈ An+1(K)

Table 2.7: Analysis.

Synthesis S(K), given a knowledge set K, is defined as the smallest set satis-
fying the following rules:

syn-pair
M • E ∈ S(K) N • F ∈ S(K)

(M.N) • (E.F) ∈ S(K)

syn-enc
M • E ∈ S(K) N • F ∈ S(K)

{M}N • {E}F ∈ S(K)
syn-hash

M • E ∈ S(K)

H(M) • H(M) ∈ S(K)

syn-priv
M • E ∈ S(K)

priv(M) • priv(M) ∈ S(K)
syn-pub

M • E ∈ S(K)

pub(M) • pub(M) ∈ S(K)

Table 2.8: Synthesis.

16 CHAPTER 2. PRELIMINARIES

2.3 Applied Pi Calculus

The applied pi calculus[AF01], by Abadi and Fournet, provides a formal syntax
and semantics for describing and examining cryptographic protocols. It is a
generalisation of the spi calculus[AG97] and extends the π-calculus with func-
tion symbols and term equivalences, that allow for specification of arbitrary
cryptographic primitives.

The syntax of the applied pi calculus is defined in Table 2.9.

M,N ::= Terms

a Name∣∣ x Variable∣∣ f(M1, · · · ,Mn) Function application

P,Q ::= Processes

0 Null process∣∣ P |Q Parallel composition∣∣ !P Replication∣∣ νa.P Name restriction∣∣ if M = N then P else Q Conditional∣∣ u(x).P Message input∣∣ u〈M〉.P Message output

A,B,C ::= Extended processes

P Plain process∣∣ A |B Parallel composition∣∣ νu.P Restriction∣∣ {M/x} Active substitution

Table 2.9: The syntax of the applied pi calculus.

The extension to π-calculus is realised by terms, which consist of function
applications, names, and variables representing terms. Each term M must
comply with a signature Σ, which we denote by writing Σ `M , where for each
contained function application f(N1, · · · , Nn) in M , we have that the function
symbol f of arity n is in Σ. We let both u and v range over names and
variables. The set of processes is almost identical to those of the π-calculus,
but note that channels can be both names and variables. Further, equality
of terms is defined through an equational theory Θ, which is a set of pairs
(M,N) forming the corresponding term equivalences M = N . We have that
∀(M,N) ∈ Θ : Σ ` M ∧ Σ ` N . The set of extended processes consists of the
plain process, parallel composition, restriction, and active substitution {M/x},
which denotes the replacement of the variable x with the term M .

The equational theory Θ describes the behaviour of the functions in Σ,
and allows for modelling of cryptographic primitives. As an example, non-

2.3. APPLIED PI CALCULUS 17

deterministic symmetric encryption and decryption can be modelled as follows,
for a message x, key y, and nonce z:

dec(enc(x, y, z) , y) = x

Any extended process can be mapped to a frame φ(A), which consists only
of restrictions and active substitutions, by replacing every plain process with
the null process 0. A frame φ(A) represents the static information that is
exposed to a context of the extended process A.

A context is an extended process with a hole [·]. An evaluation context
is a context, whose hole is not under a replication, a conditional, a message
output, or a message input, i.e the context c〈x〉.P | c(x).[·] is a context, but not
an evaluation context as the hole is under a message input. When A in place
of the hole in a context is closed, we say that the context closes A.

If X is a syntactic entity in the applied calculus, e.g. a process, we denote
its set of free names fn(X), bound names bn(X), free variables fv(X), and
bound variables bv(X).

Structural congruence ≡ is defined as the least equivalence satisfying the
axioms in Table 2.10, and is closed by application of any evaluation context.

Internal message transfers and conditional branching is represented by re-
duction, whose semantics is shown in Table 2.11. Reduction is closed by struc-
tural congruence and application of any evaluation context.

The labelled semantics extends the rules of structural congruence and re-
duction, with the rules shown in Table 2.12. The transitions are of the form:
A

α−→ A′, i.e. an extended process A becomes the extended process A′, after
performing the action α. An action α can either be an input action a(M), a
bound output action νu.a〈u〉, or a free output action a〈u〉. Note that A{M/x}
denotes the substitution of x with M in the process A.

18 CHAPTER 2. PRELIMINARIES

α-Equiv A ≡ B if A and B are α-equivalent.

Par-0 A ≡ A
∣∣ 0

Par-A A
∣∣ (B

∣∣ C) ≡ (A
∣∣ B)

∣∣ C
Par-C A

∣∣ B ≡ B ∣∣ A
Repl !P ≡ P

∣∣ !P

New-0 νn.0 ≡ 0

New-C νu.νv.A ≡ νv.νu.A
Par-A A

∣∣ νu.B ≡ νu.(A ∣∣ B) when u /∈ fv(A) ∪ fn(A)

Alias νx.{M/x} ≡ 0

Subst {M/x}
∣∣ A ≡ {M/x} ∣∣ A{M/x}

Rewrite {M/x} ≡ {N/x} when Σ `M = N

Table 2.10: Axioms of structural congruence.

Comm a〈x〉.P
∣∣ a(x).Q→ P

∣∣ Q Then if M = M then P else Q→ P

Else
fv(M) = fv(N) = ∅ (M,N) /∈ Θ

if M = N then P else Q→ Q

Table 2.11: Internal reduction.

2.3. APPLIED PI CALCULUS 19

Input a(x).P
a(M)−−−→ P{M/x} Output a〈u〉.P a〈u〉−−−→ P

Open
A

a〈u〉−−−→ A′ u 6= a

νu.A
νu.a〈u〉−−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A|B α−→ A′|B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Table 2.12: The labelled semantics of the applied pi calculus.

Chapter 3

Analysis

Since we compile to applied pi processes, an equational theory must be supplied
with the protocol narrations, as it is required by the applied pi calculus. In this
chapter, we examine the obstacles of adding such equational theory to protocol
narrations.

3.1 Compilation

It is clear that the main result in [BN07] is Briais and Nestmann’s method
for generation of checks-on-reception. We can utilise this method to define
a compilation of protocol narrations with an attached equational theory, but
because the analysis and synthesis in section 2.2 is defined for a fixed equational
theory, we have to create new definitions of analysis and synthesis that allow
for derivation of terms using arbitrary equational theories.

3.2 Complexity

While the addition of an equational theory for deriving terms is useful for
modelling arbitrary cryptographic primitives, they can be the source of high
computational complexity. We now show that the problem of deriving terms
using an equational theory and a set of terms is NP-complete.

Definition 1 (Term Derivation Problem). Given a signature Σ, an equational
theory Θ, a set of terms T , and a term t, can a term be synthesised from Σ
and T that equals t in Θ?

Theorem 1. The term derivation problem is NP-Complete.

Proof. We argue that the term derivation problem is in NP, since given a
certificate C, which represents a sequence of terms, such that C = M → · · · →
N , it can be verified in polynomial time that N = t in Θ and that every step
in the sequence is constructed of function applications in Σ and terms in T .

We now show that the NP-Complete problem, SAT, is polynomial-time
reducible to the term derivation problem. Given a boolean formula X, we
define the input for term derivation as the signature ΣSAT , the equational
theory ΘSAT , the set of terms { a(m) }, and the term m.

21

22 CHAPTER 3. ANALYSIS

ΣSAT
def
=
{

tt 7→ 0,ff 7→ 0, and 7→ 2, or 7→ 2, neg 7→ 1, sat 7→ 2, a 7→ 1, b 7→ 1
}

ΘSAT
def
=

and(tt, tt) = tt

and(tt,ff) = ff

and(ff, tt) = ff

and(ff,ff) = ff

or(tt, tt) = tt

or(tt,ff) = tt

or(ff, tt) = tt

or(ff,ff) = ff

neg(tt) = ff

neg(ff) = tt

sat(X�, a(x)) = sat(X�, b(x))

sat(tt, b(x)) = x

X� denotes the trivial projection of X such that the boolean logic is substituted
with the equivalent and, or, and neg functions in ΣSAT , and we have that
x /∈ vars(X�). Is is clear from the equations for sat that a term equal to m can
be synthesised, iff X is satisfiable. Since X � can be trivially constructed in
polynomial-time, we have that SAT is polynomial-time reducible to the term
derivation problem.

We have shown that the term derivation problem is in NP and that SAT is
polynomial-time reducible to it. We therefore conclude that the term derivation
problem is NP-complete.

Even though the term derivation problem is shown to be NP-complete, we
argue that the practical use of a compiler is not affected significantly, as the
complexity of the equational theories will often be low enough to allow for rapid
computation.

Chapter 4

Design

In this chapter, we first define a syntax for equational protocol narrations. We
then define analysis, synthesis, and generation of checks. Using these defini-
tions, a compilation from equational protocol narrations to applied pi processes
is presented.

4.1 Syntax of Equational Protocol Narrations

The syntax for equational protocol narration is shown in Table 4.1. We simply
add equational theory to Briais and Nestmann’s syntax in Table 2.2.

M,N ::= a
∣∣ A ∣∣ f(M̃) (terms)

E ::= A; B : M
∣∣ E;E (exchanges)

D ::= A knows M
∣∣ A generates n

∣∣ private k
∣∣ D;D (declarations)

T ::= M = N
∣∣ f/i ∣∣ T ;T (equational theory)

P ::= T ;D;E; ε (equational protocol narrations)

Table 4.1: Generalised syntax for equational protocol narrations.

We use the notation f(M̃) to denote a function application of the function
f with a sequence of arguments M̃ , such that:

f(M1,M2, · · · ,Mn) = f(M̃)

For an equational protocol narration P , the signature Σ of P is the smallest
set of functions where f 7→ i ∈ Σ for any function declaration f/i in P .
Likewise, the equational theory Θ of P is the smallest set of term equivalence
pairs, where (M,N) ∈ Θ for any term equivalence M = N in P .

4.2 Knowledge Deduction

In this section, we define analysis and synthesis for an equational theory Θ and
a knowledge set K. We first introduce the formulae for synthesis and analysis,
followed by their dependent formulae in order of appearance.

23

24 CHAPTER 4. DESIGN

We consider the equational theory Θ to be a rewrite system, containing left-
to-right oriented rewrite rules. Any set of equations can be converted to an
equivalent rewrite system[DJ90]. We use a notation similar to the conventional
set-builder notation for applying a list of parameters x̃ to a function f , such
that:

f(x1, x2, · · · , xn) = f(x̃) = f(x
∣∣ x ∈ x̃)

Note that we let the membership operator ∈ preserve each element’s position
in the sequence. Somewhat unconventionally we let a substitution be a par-
tial mapping σ : V → M for variables V to terms M. For a substitution
σ = { t1/x1, t2/x2, · · · , tn/xn }, we thus only include the explicitly defined map-
pings ti/xi where 1 ≤ i ≤ n. The set of variables, with a defined mapping in σ,
is called the domain dom(σ), such that dom(σ) =

{
x
∣∣ t/x ∈ σ }. Note that the

application tσ of a substitution σ to a term t results in ⊥, when no mapping
exists in σ for some variable in t, i.e. vars(t) * dom(σ). As an example of a fail-
ing substitution application we have that f(a, b) { h(k)/a } = ⊥. A substitution
with containing mappings becomes ⊥, e.g. { b/a, c/a } = ⊥. A set containing ⊥
becomes ⊥.

Definition 2 (Synthesis). The synthesis formula S(t,K) returns the smallest
set satisfying the definition in Table 4.2. The result of the formula is the set
of a principal’s representations for a term t given the principal’s knowledge K.

S(t,K) 3

r if e • r ∈ K : e = t

f(s
∣∣ n ∈ ñ ∧ s ∈ S(n,K)) if t = f(ñ) and ∀n ∈ ñ : S(n,K) 6= ∅

S(erσ,K) if (el, er) ∈ Θ ∧ σ = U(el, ∅, t)

Table 4.2: Synthesis.

Case 1 The trivial case, where a representation for the term t can be found
in the knowledge K.

Case 2 If t is a function application f(ñ), the second case allows for recursive
synthesis of the arguments ñ, where the function f is applied on the
resulting representations, e.g. given the knowledge set {m • a }, it is
clear that the hashed term hash(m) can be represented by hash(a).

Example. For the equational theory Θ = { f(x) = g(x) }, knowledge set K =
{ h(f(m)) • a, g(m) • b }, and term t = h(f(m)), the synthesis S(t,K) is the set
of possible representations of t. Through the first case in the formula, it is
clear that t can be represented by a, because the representation of a equals
t. Using the second case, we can attempt the synthesis S(f(m) ,K) of t’s
subterm. We can then follow the third case, which through the equation in
Θ allows us to find the representation b for g(m) using the first case. Finally,
when stepping out of the recursion, the second case requires the function h to
be applied on b, resulting in the representation h(b) for t. We therefore have
that S(t,K) = { a, h(b) }.

4.2. KNOWLEDGE DEDUCTION 25

Definition 3 (Analysis). The analysis formula A(K) returns a set of knowl-
edge K ∪ K ′, where K ′ is the set of knowledge that can be derived from K.
A0(K) derives the variants of all terms. An iteration of An+1(K) derives
knowledge e • r, where the expectation e is the application of a substitution
of an equation’s left-hand side to its corresponding right-hand side, for each
possible representation r. The analysis is defined recursively, for a finite n such
that An(K) = An+1(K).

A0(K)
def
=
{
V(e) • r

∣∣ e • r ∈ K }

An+1(K)
def
= An(K) ∪

erσ • r
∣∣∣∣∣∣∣
∧ (el, er) ∈ Θ

σ ∈ F(el, er,An(K))

r ∈ S(elσ,An(K))

A(K)

def
=
⋃
n∈N
An(K)

Table 4.3: Analysis.

Example. For the equational theory representing symmetric encryption Θ =
{ f(g(x, y) , y) = x } and knowledge set K = { g(m, k) • a, k • b }, the analysis
A(K) is the set of knowledge that can be derived from K using Θ. Because the
terms in K have no variants, we have that A0(K) = K. In the second iteration,
the set find substitutions F(f(g(x, y) , y) , x,A0(K)) includes the substitution
σ = {m/x, k/y }. We have therefore deduced the term xσ = m. A representation
of the term is then found using synthesis of f(g(x, y) , y)σ = f(g(m, k) , k),
which yields the representation f(a, b). We therefore have that A1(K) = K ∪
{m • f(a, b) }, which is also the result of A(K), because no new knowledge can
be derived in further iterations.

Definition 4 (Term unification). Term unification U(t1, σ, t2) is defined by
the formula in Table 4.4, which unifies a term t1 with t2, while satisfying an
existing substitution σ by attempting to extend σ with a minimal substitution
σ′, such that t1(σ ∪ σ′) = t2. When the terms fail to unify, term unification
results in ⊥.

U(t1, σ, t2)
def
=

σ ∪ { t2/t1 } if t1 ∈ V ∧ (t1 /∈ dom(σ) ∨ t1σ = t2)

⋃
1≤ i≤ |m̃| U(mi, σ, ni)

if t1 = f(m̃) ∧ t2 = f(ñ)

where mi ∈ m̃ and ni ∈ ñ

⊥ otherwise

Table 4.4: Term unification.

Case 1 The first case covers the condition, where t1 is a variable and σ does
not contain a substitution conflicting with t2/t1.

26 CHAPTER 4. DESIGN

Case 2 When both t1 and t2 are instances of the same function application,
the second case is applied where the term unification function is called
pairwise on t1 and t2’s arguments. Recall that a substitution with con-
flicting mappings for the same variable becomes invalid, i.e. ⊥.

Case 3 When the first and second case are inapplicable, the result is ⊥.

Definition 5 (Term variants). The formula term variants V(e) returns the
smallest set satisfying the definition in Table 4.5. Given a term e, a set of
variants of the term is returned. The variants are based on the equational
theory. The formula ensures that variants of a term’s subterms are derived.

V(e) 3

e

f(V(n)
∣∣ n ∈ ñ) if e = f(ñ)

f(V(erσ)
∣∣ n ∈ ñ ∧ (el, er) ∈ Θ ∧ σ = U(el, ∅, n)) if e = f(ñ)

Table 4.5: Term variants.

Case 1 The trivial case simply includes e in the set.

Case 2 The formula is called recursively with the arguments of e, thereby
allowing for variants of subterms.

Case 3 The third case behaves like the second case, but the arguments of e
are exchanged with the right-hand side of an equation.

Example. For the equation theory Θ = { f(x, y) = f(y, x) }, and the piece of
knowledge e = h(f(m,n)) • a, the function adds the variant h(f(n,m)) • a to
the knowledge set by returning V(e) = { h(f(m,n)) • a, h(f(n,m)) • a }.

Definition 6 (Find substitutions). The formula find substitutions F(el, er,K)
returns a set of substitutions, where knowledge in K can derive a substitution
for the right-hand side of an equation er by fulfilling the left-hand side el.

F(el, er,K)
def
=
⋃
M({ el } , σ,K) where σ ∈

{
T (k, el, er)

∣∣ k • ∈ K }
Table 4.6: Find substitutions.

Definition 7 (Term fit). The formula term fit T (t, el, er), shown in Table 4.7,
returns a set of substitutions, where a substitution is the result of the unification
of the left-hand side of an equation el to t or the unification of el’s subterms
to t. When el unifies with t, the unification from el’s subterms is not included
in the resulting set. Informally the formula returns the outermost possible
unification(s) from el in t. Furthermore, for each substitution σ in the result,
it should be the case that vars(er) ⊆ dom(σ).

4.2. KNOWLEDGE DEDUCTION 27

T (t, el, er)
def
=

∅ if el ∈ V

{U(el, ∅, t) } if el /∈ V ∧ vars(U(el, ∅, t)) ⊇ vars(er){
T (t, x, er)

∣∣ x ∈ ñ} otherwise, where el = f(ñ)

Table 4.7: Term fit.

Case 1 The empty set ∅ is returned, when el is a variable, since no new knowl-
edge can be derived from a variable.

Case 2 The second case returns a singleton of the unification of el to a function
application t, if the substitution replaces all variables in er.

Case 3 When those cases are inapplicable, the formula is called recursively
for each argument of the function application t.

Example. Given t = g(a, b) and the equation f(g(x, y) , g(x, y)) = x, it is clear
that the term t “fits” in the two subterms of the equations left-hand side, pro-
ducing the set of substitutions: { { a/x, b/y } , { b/x, a/y } }. The reason is that the
third case is satisfied, which returns { T (t, g(x, y) , x) , T (t, g(x, y) , x) }, where
the two instances of the term fit function can be unified.

Definition 8 (Fulfil substitution). The fulfil substitution formula M(T, σ,K)
in Table 4.8 will ensure that the terms in T , that have variables in the domain
of σ, can be synthesised. Furthermore, the substitution will be extended if
necessary.

M(T, σ,K)
def
=

{σ } if ∀t ∈ T : t ∈ V ∧ t /∈ dom(σ)

M((T ∪ ñ) \ { f(ñ) } , σ,K) if f(ñ) ∈ T and the result 6= ⊥⋃
M(T \ { t } , σ′,K)

otherwise, where

t ∈ T ∧ σ′ ∈ K(t, σ,K)

Table 4.8: Fulfill substitution.

Case 1 The trivial case, where all terms (if any) in T are variables and not in
the domain of σ. They can therefore be ignored and a singleton set of σ
can be returned.

Case 2 The second case calls the formula recursively with t replaced with its
arguments in T . Note that the result must not be ⊥.

Case 3 When the first and the second case are inapplicable, the result is the
knowledge substitutions for the term t with substitution σ.

Example. Given the equation f(g(x, y) , g(y, z)) = x, a substitution {m/x, k/y },
and a knowledge set { g(m, k) • a, g(k, n) • b }, the substitution will be ex-
tended with n/z.

28 CHAPTER 4. DESIGN

Definition 9 (Knowledge substitutions). The knowledge substitutions formula
K(t, σ,K) in Table 4.9 returns a set of substitutions, each extending σ with a
substitution σ′, such that t(σ ∪ σ′) can be synthesised using the knowledge K.

K(t, σ,K)
def
=

{
{σ } if S(tσ,K) 6= ∅{
U(t, σ, k)

∣∣ k • ∈ K ∧ U(t, σ, k) 6= ⊥
}

otherwise

Table 4.9: Knowledge substitutions.

Case 1 A singleton of σ is returned, if tσ can be synthesised by the principal.

Case 2 When the condition in the first case is false, a set of unification sub-
stitutions, satisfying σ from t to the expected value of all pieces of knowl-
edge, is returned.

4.3 Generation of Checks

After deducing terms T , consistency checks are generated for any term t where
it is expected that t can be constructed using the remaining terms T \ t. To
formalise this behaviour, we define the set of consistency checks.

Definition 10 (Consistency checks). Given a set of knowledge K, its set of
consistency checks is described by Φ(A(K)) using the formula in Table 4.10.
For every piece of knowledge M • E ∈ K a check is generated for all possible
representations that can be synthesised for M . This includes the well-formed
test [E = E].

Φ(K)
def
=

∧
M•E∈K ∧ F∈S(M,K)

[E = F]

Table 4.10: Consistency checks.

While not necessary for the correctness of the translation, the knowledge set
can be reduced with no loss of information after checks have been generated,
by which repetition of some checks is avoided.

Definition 11 (Irreducibles). The formula for the irreducible knowledge set
I(K) of a knowledge set K is defined in Table 4.11. It recursively removes a
piece of knowledge k that can be synthesized by the remaining knowledge set
K \ { k } until no such k exists.

I(K)
def
=

{
I(K \ { e • r }) if e • r ∈ K ∧ S(e,K\ { e • r }) 6= ∅
K otherwise

Table 4.11: Irreducibles.

4.4. COMPILATION TO APPLIED PI 29

4.4 Compilation to Applied Pi

By utialising the previous definitions, we can now define the compilation of an
equational protocol narration P . We first define the projection of a principal
in P to its local description in the form of an applied pi process.

Definition 12 (Principal Projection). Given a signature Σ and an equational

theory Θ, the projection JP K(υ,κ)A of a principal A in a equational protocol
narration P into a corresponding applied pi calculus process is defined in Ta-
ble 4.12, where υ is a set of used variables and κ is a set of principals’ knowledge
sets represented as pairs A ×M • N . The knowledge of a principal A can be
projected from κ using κ(A), where κ(A) =

{
e • r

∣∣ (A, e • r) ∈ κ
}

.

JεK(υ,κ)A
def
= 0

Jf/i;P K(υ,κ)A
def
= JP K(υ,κ)A if @(f 7→ j) ∈ Σ : i 6= j

JM = N ;P K(υ,κ)A
def
= JP K(υ,κ)A if Σ `M ∧ Σ ` N

JA′ knows M ;P K(υ,κ)A
def
= JP K(υ∪vars(M),κ∪{A′,M•M})

A if Σ `M

JA′ generates n;P K(υ,κ)A
def
=

{
νn.JP K(υ∪{n},κ∪{A,n•n})A if A = A′ ∧ n /∈ υ
JP K(υ∪{n},κ∪{A

′,n•n})
A if A 6= A′ ∧ n /∈ υ

Jprivate k;P K(υ,κ)A
def
= JP K(υ,κ)A

JA′ ; B : M ;P K(υ,κ)A
def
=

B 〈M〉.JP K(υ,κ)A if A = A′

A(x).if φ then JP K(υ∪{x},κ
′)

A else 0 if A = B

JP K(υ,κ)A otherwise

where A′ 6= B ∧ S(M,κ(A′)) 6= ∅ ∧ x /∈ υ
and K = A(κ(A) ∪ {M • x})
and φ = Φ(K)

and κ′ = (κ \κ(A)) ∪
{
A, k

∣∣ k ∈ I(K)
}

Table 4.12: The projection of principals to processes.

By placing the projections of the principals of an equational protocol nar-
ration P in a parallel composition, we end up with an applied pi process that
represents the intended execution of P .

30 CHAPTER 4. DESIGN

Definition 13 (Compilation). The translation T JP K of a equational protocol
narration P into an applied pi calculus process is defined in Table 4.13, where
(νn)n∈I denotes n-ary restriction and

∏
n∈I denotes n-ary parallel composition.

Ag(P) is the set of principals acting in the narration P . R(P) is the set of
restricted names excluding generated names, as defined in Table 4.14.

T JP K def
= (νn)n∈R(P)

∏
A∈Ag(P)

! JP K(R(P),∅)
A

Table 4.13: The translation into applied pi calculus.

Unlike the translation to spi processes in [BN07], we have the projections
of the principals under replication, in order to simulate an arbitrary number of
protocol runs, which gives us a clear separation of generated and non-generated
restricted names.

R(ε)
def
= ∅

R(f/i;P)
def
= R(P)

R(M = N ;P)
def
= R(P)

R(A knows M ;P)
def
= R(P)

R(A generates n;P)
def
= R(P) if n /∈ R(P)

R(private k;P)
def
= { k } ∪R(P)

R(A; B : M ;P)
def
= R(P)

Table 4.14: The set of restricted names in a narration.

Chapter 5

Implementation

We have implemented the compilation in our compiler narcapi. The compiler
is written in OCaml[INR] and is available at https://github.com/samolesen/
narcapi. In this chapter, the derivations between the formal compilation and
the implemented compilation are presented.

5.1 Syntax

For convenience, we extend the formal syntax in Table 4.1 with some syntactical
sugar, resulting in the syntax shown in Table 5.1.

M,N ::= a
∣∣ A ∣∣ (M̃)

∣∣ f(M̃) (terms)

E ::= A; B : M
∣∣ E;E (exchanges)

D ::= Ã knows M
∣∣ A generates n

∣∣ private M
∣∣ Ã share M

∣∣ D;D
(declarations)

T ::= M = N
∣∣ f/i ∣∣ T ;T (equational theory)

P ::= T ;D;E; ε (equational protocol narrations)

Table 5.1: Implemented syntax for equational protocol narrations.

The implemented syntax supports the macros in Table 2.4, with the further
addition that the declarations private and share support terms instead of just
names, such that all the names in the terms become initially inaccessible to
an attacker. A function f with arity 0, i.e. a constant function, is written
with parentheses f() to catch some human errors, where the intended constant
function f is interpreted as a variable due to a missing function declaration f/0.
While tuples can be expressed through functions as, e.g. nested ordered pairs,
we explicitly support tuples for convenience, which requires special handling
for projection. For readability, we sometimes use line breaks as separators and
omit the trailing ε.

31

https://github.com/samolesen/narcapi
https://github.com/samolesen/narcapi

32 CHAPTER 5. IMPLEMENTATION

5.2 Data Representation

As a part of narcapi, we have implemented a parser for the syntax in Table 5.1
using ocamllex and ocamlyacc[Ler14]. The result of the parser is a structure
of the type narration, which is our internal representation of an equational
protocol narration. The type narration is defined in Listing 5.1 together with
its dependencies.

1 type term =
2 | Var iab le of s t r i n g
3 | Tuple of tup l e
4 | Function of s t r i n g * tup l e
5 and tup l e = term l i s t
6

7 type equat ion = Equation of term * term
8

9 type exchange = Exchange of s t r i n g * s t r i n g * term
10

11 type a c c e s s l e v e l =
12 | Publ ic
13 | Pr ivate
14

15 type s i g n a t u r e t a b l e = (s t r i n g , i n t) Hashtbl . t
16 type name table = (s t r i n g , a c c e s s l e v e l) Hashtbl . t
17 type knowledge tab le = (term, term) Hashtbl . t
18 type a g e n t t a b l e = (s t r i n g , knowledge tab le) Hashtbl . t
19

20 type nar ra t i on =
21 {
22 s i g n a t u r e s : s i g n a t u r e t a b l e ;
23 equat ions : equat ion l i s t ;
24 names : name table ;
25 agents : a g e n t t a b l e ;
26 exchanges : exchange l i s t
27 }

Listing 5.1: Abstract Syntax Tree.

Note that while OCaml is primarily a functional language, we use the mu-
table hash table Hashtbl from OCaml’s standard library[Ler14] to represent
mappings for both performance and convenience. The types int, string, and
'a list, are some of OCaml’s internal types[Ler14].

5.3 Deviations from the Formal Translation

While most of the formulae in chapter 3 are consistent with an implemented
counterpart in narcapi, some tricks are utilised only in the implementation.
The primary deviation being that checks are generated as a part of the analysis.

5.3. DEVIATIONS FROM THE FORMAL TRANSLATION 33

The analyse function

The analyse function shown in Listing 5.2 performs both term derivation and
check generation. The names of parametrised expressions have been highlighted
for readability.

1 l et analyse knowledge equat ions =
2 l et rec analyse knowledge equat ions checks =
3 l et t u p l e l e t s = divide tuples knowledge in
4 l et prune checks = prune knowledge equat ions in
5 l et o l d s i z e = Hashtbl . length knowledge in
6 l et new checks = t u p l e l e t s @ checks @ prune checks

@ analyse step knowledge equat ions in
7 l et new s i ze = Hashtbl . length knowledge in
8 i f o l d s i z e = new s i ze then new checks
9 else analyse knowledge equat ions new checks in

10 analyse knowledge equat ions []

Listing 5.2: Implementation of the analyse function.

analyse Given a knowledge set knowledge and an equational theory equations,
the analyse function returns a list of checks and tuple projections. The
analyse function builds the returned list recursively through the function
of the same name in line two, which takes an extra parameter checks for
the accumulated result.

divide tuples Tuple projections of a tuple t are possible in applied pi pro-
cesses through pattern-matching bindings of the following form:

let (x1, · · · , xn) = t in P

In conventional applied pi calculus theory, this process becomes the null
process, when t is not a tuple of length n, thereby acting as a well-formed
test for tuple projection. The tuple projections that can be generated for
a knowledge set are computed by the function divide tuples, which is
called in the third line of the analyse function.

prune The prune function is the implementation of the irreducibles formula
I(K), which removes terms t from the knowledge set K that can be
synthesised by the remaining terms K \ { t }, with the addition that a
check [r = r′] is generated for each removed term e • r such that r′ ∈
S(e,K\ { e • r }).

analyse step The formula An+1(K), corresponds to the analyse step func-
tion, which is shown in Listing 5.3 along with an accompanying descrip-
tion. It returns a well-formed test [r = r] for any deduced piece of
knowledge e • r that already exists in K.

@ operator The built-in infix binary operator @[Ler14] performs list concate-
nation.

34 CHAPTER 5. IMPLEMENTATION

The recursive analyse function terminates when the size of the knowledge
set is the same before and after attempted knowledge deduction using the
analyse step function. The structure of the analyse function limits the gen-
eration of unnecessary well-formed tests by only generating well-formed tests
for tuples in divide tuples and pieces of knowledge that are not removed by
the prune. We show this property in the two following examples:

Example (Symmetric Deterministic Encryption). We define the decryption dec
of a deterministic encrypted enc message x with key y scheme as follows:

dec(enc(x, y) , y) = x

Given the knowledge set { enc(m, k) • a, k • b }, an of the recursive analyse

function increases the knowledge set to { enc(m, k) • a, k • b,m • dec(a, b) } and
analyse is called with the new knowledge set. The prune function removes
enc(m, k) • a, because enc(m, k) it can be represented by enc(dec(a, b) , b) re-
sulting in the check [a = enc(dec(a, b) , b)]. This check is then returned because
no new knowledge can be deduced by analyse step. No well-formed test is
generated.

Example (Symmetric Non-deterministic Encryption). The equation for the sym-
metric deterministic encryption scheme becomes non-deterministic by adding
a nonce z:

dec(enc(x, y, z) , y) = x

Given the knowledge set { enc(m, k, n) • a, k • b }, an iteration of the analyse

function increases the knowledge set to { enc(m, k, n) • a, k • b,m • dec(a, b) }
and analyse is called with the new knowledge set. As the nonce n is not
in the knowledge set, the ciphertext a is not pruned, unlike in the previous
example. Because m • dec(a, b) can again be deduced from the knowledge set
by analyse step, the well-formed test dec(a, b) = dec(a, b) is generated, which
is then returned since no new knowledge is added to the knowledge set.

The analyse step function

The analyse step function corresponds to the formula An+1(K), but gen-
erates a well-formed test [r = r] for any e • r ∈ An(K) ∩ An+1(K). The
implementation of analyse step is shown in Listing 5.3.

analyse step Given a knowledge set knowledge and an equational theory
equations, the analyse step function performs an iteration of knowl-
edge derivation.

derive from equation The derive from equation function performs knowl-
edge derivation for an equation in the equational theory.

find substitutions Corresponding to the formula F(el, er,K) in Table 4.6,
the find substitutions function returns possible substitutions for an
equation’s right-hand side, where its left-hand side can be synthesised.

create representations Given a substitution and and equation, the function
create representations creates possible representations for the right-
hand side of the equation.

5.4. EXAMPLES 35

1 l et analyse step knowledge equat ions =
2 l et derive from equation r e s eq =
3 l et s u b s t i t u t i o n s =
4 f ind substitutions eq knowledge equat ions in
5 l et create representations r e s sub =
6 l et Equation (e q l e f t , e q r i g h t) = eq in
7 l et exp = apply substitution e q r i g h t sub in
8 l et r e p r e s e n t a t i o n s = synthesize knowledge
9 equat ions (apply substitution e q l e f t sub) in

10 List . f o ld l e f t
11 (add check or knowledge knowledge equat ions exp)
12 r e s r e p r e s e n t a t i o n s in
13 List . f o ld l e f t
14 create representations r e s s u b s t i t u t i o n s in
15 List . f o ld l e f t derive from equation [] equat ions

Listing 5.3: Implementation of the analyse step function.

apply substitution The application tσ of a substitution σ to a term t, is
implemented as the function apply substitution.

synthesize The synthesize function is the implementation of the synthe-
sis formula S(t,K), which generates representation for a term t given a
knowledge set K.

add check or knowledge Given a knowledge set K and piece of knowledge
e • r, the add check or knowledge function returns K ∪ { e • r } when e
cannot be synthesised from K, otherwise a well-formed test is generated.

List.fold left Given a function f , accumulator a, and a list of elements l,
the built-in function List.fold left[Ler14] will call the function f with
a and the first element in l producing a′. The function f is then called
with a′ and the next element in l, etc. When f has been called for each
element in l, the accumulated value is returned.

5.4 Examples

To showcase the narcapi compiler, we include the compilation of two different
protocols: the Wide Mouth Frog protocol[BAN90] and the Diffie-Hellman key
exchange[DH76].

The Wide Mouth Frog protocol

Briais and Nestmann use the Wide Mouth Frog protocol[BAN90] as an example
of their translation to spi calculus in [BN07]. By adding an equational theory
for symmetric encryption it becomes the equational protocol narration shown
in Listing 5.4. After compilation, it becomes the process in Listing 5.6.

36 CHAPTER 5. IMPLEMENTATION

1 dec (enc (x , y) , y) = x
2

3 A,B, S know (A,B, S)
4 A, S share kAS ; B, S share kBS
5 A generates kAB
6 A generates m
7

8 A−>S : (A, enc ((B, kAB) , kAS))
9 S−>B: enc ((A, B, kAB) , kBS)

10 A−>B: enc (m, kAB)

Listing 5.4: The Wide Mouth Frog protocol narration.

Diffie-Hellman Key Exchange

We use the Diffie-Hellman key exchange as an example of a simple protocol that
cannot be compiled by spyer, because it depends on Diffie-Hellman exponen-
tiation. Further more, we use non-deterministic symmetric encryption, which
is also not supported by spyer. Its equational protocol narration is shown in
Listing 5.5. Note that, the compiled process in Listing 5.7 only performs a
single check. This is a well-formed test, which verifies that the message sent
by A can be decrypted using the generated shared key exp(exp(g() , kA) , kB).

1 exp(exp(g () , x) , y) = exp(exp(g () , y) , x)
2 dec (enc (x , y , z) , y) = x
3

4 A,B know (A,B)
5 A generates kA; B generates kB
6 A generates m; A generates n
7

8 A−>B: exp(g () , kA)
9 B−>A: exp(g () , kB)

10 A−>B: enc (m, exp(exp(g () , kB) , kA) ,n)

Listing 5.5: Diffie-Hellman Key Exchange.

5.4. EXAMPLES 37

1 fun dec /2 .
2 fun enc /2 .
3 equation dec (enc (x , y) , y) = x .
4

5 l et A =
6 new kAB;
7 new m;
8 out (S , (A, enc ((B, kAB) , kAS))) ;
9 out (B, enc (m, kAB)) .

10

11 l et S =
12 in (S , x 4) ;
13 l et (B 7 , kAB 8) = dec (x 6 , kAS) in
14 l et (A 5 , x 6) = x 4 in
15 i f A 5 = A then
16 i f x 6 = enc ((B, kAB 8) , kAS) then
17 i f B 7 = B then
18 out (B, enc ((A, B, kAB 8) , kBS)) .
19

20 l et B =
21 in (B, x 9) ;
22 l et (A 10 , B 11 , kAB 12) = dec (x 9 , kBS) in
23 i f x 9 = enc ((A, B, kAB 12) , kBS) then
24 i f A 10 = A then
25 i f B 11 = B then
26 in (B, x 13) ;
27 i f x 13 = enc (dec (x 13 , kAB 12) , kAB 12) then 0 .
28

29 process
30 new kAS ;
31 new kBS ;
32 ! (A | S | B)

Listing 5.6: The Wide Mouth Frog process.

38 CHAPTER 5. IMPLEMENTATION

1 fun g/0 .
2 fun exp/2 .
3 equation exp(exp(g () , x) , y) = exp(exp(g () , y) , x) .
4 fun dec /2 .
5 fun enc /2 .
6 equation dec (enc (x , y) , y) = x .
7

8 l et A =
9 new kA;

10 new m;
11 out (B, exp(g () , kA)) ;
12 in (A, x 5) ;
13 out (B, enc (m, exp(x 5 , kA))) .
14

15 l et B =
16 new kB ;
17 in (B, x 4) ;
18 out (A, exp(g () , kB)) ;
19 in (B, x 6) ;
20 i f dec (x 6 , exp(x 4 , kB)) = dec (x 6 , exp(x 4 , kB))

then 0 .
21

22 process
23 ! (A | B)

Listing 5.7: Diffie-Hellman Key Exchange process.

Chapter 6

Conclusion

The focus of this report was to define a translation from protocol narrations
to applied pi processes, as well as automatic compilation to ease the process of
designing and analysing protocols.

After presenting th background theory for our work in chapter 2, we exam-
ine the obstacles of adding equational theory to protocol narrations chapter 3,
where we also proved that the term deriviation problem is NP-complete. The
syntax of equational protocol narrations is defined in section 4.1, which is fol-
lowed by the definition of analysis and synthesis in section 4.2, generation of
checks in section 4.3, and compilation to applied pi processes in section 4.4. The
compilation is implemented in our compiler narcapi, that compiles equational
protocol narrations into ProVerif’s applied pi syntax. The implementation is
described in chapter 5 with a focus on deviations to the formal translation.

6.1 Future Work

Due to time constraints, we had to make some compromises that could be
interesting to explore in future projects.

Correctness of compilation Due to the complexity of our compilation, and
the fact that we have nothing to compare it to, it is difficult to verify its
correctness.

Automatic conversion from equations to rewrite systems Our compi-
lation currently requires that the equational theory consists of left-to-
right oriented rewrite rules. This is also the case when defining equations
in ProVerif’s applied pi syntax[Bla01]. However, it should be possible
to automatically convert a set of equations to an equivalent rewrite sys-
tem[DJ90].

Order on terms By introducing an order on terms, it might be possible to
replace the formula for term variants with normalisation, which would
significantly reduce the space complexity for some input.

Bindings for complex terms For some equational protocol narrations, term
deduction results in some very complex terms. It will in some cases be
beneficial to bind these terms to a variable, in order to decrease the size
of the generated process.

39

40 CHAPTER 6. CONCLUSION

Simplifying checks The generated set of checks can, in many cases, be sim-
plified, which will decrease the size of the generated processes. We al-
ready avoid many redundant checks, but further reduction is possible, as
described in [BN07].

Bibliography

[AF01] Mart́ın Abadi and Cédric Fournet. “Mobile values, new names, and
secure communication”. In: ACM SIGPLAN Notices 36.3 (2001),
pp. 104–115.

[AG97] Mart́ın Abadi and Andrew D Gordon. “A calculus for cryptographic
protocols: The spi calculus”. In: Proceedings of the 4th ACM con-
ference on Computer and communications security. ACM. 1997,
pp. 36–47.

[BAN90] Michael Burrows, Mart́ın Abadi, and Roger Needham. “A logic of
authentication”. In: ACM Transactions on Computer Systems 8
(1990), pp. 18–36.

[Bla01] Bruno Blanchet. “An efficient cryptographic protocol verifier based
on Prolog rules”. In: Computer Security Foundations Workshop.
IEEE Computer Society. 2001, pp. 0082–0082.

[BN07] Sébastien Briais and Uwe Nestmann. “A formal semantics for pro-
tocol narrations”. In: Theoretical Computer Science 389.3 (2007),
pp. 484–511.

[Bri08] Sébastien Briais. spyer user’s guide. 2008. url: http://sbriais.
free.fr/tools/spyer/.

[DH76] Whitfield Diffie and Martin E Hellman. “New directions in cryptog-
raphy”. In: Information Theory, IEEE Transactions on 22.6 (1976),
pp. 644–654.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. “Rewrite Sys-
tems”. In: Handbook of Theoretical Computer Science. Vol. B: For-
mal Methods and Semantics. 1990, pp. 243–320.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. “Multiparty
asynchronous session types”. In: ACM SIGPLAN Notices 43.1
(2008), pp. 273–284.

[INR] INRIA. OCaml. url: https://ocaml.org.

[Ler14] Xavier Leroy. The OCaml system release 4.02: Documentation and
user’s manual. 2014. url: http://caml.inria.fr/pub/docs/
manual-ocaml/.

[Mod14] Paolo Modesti. “Efficient Java Code Generation of Security Proto-
cols Specified in AnB/AnBx”. In: Security and Trust Management.
Vol. 8743. Springer, 2014, pp. 204–208.

[Ole15] Sam Sepstrup Olesen. Cryptographic Protocols for Election Moni-
toring. 2015.

41

http://sbriais.free.fr/tools/spyer/
http://sbriais.free.fr/tools/spyer/
https://ocaml.org
http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/

	Introduction
	Outline of the Report

	Preliminaries
	Protocol Narrations
	Checks-on-Reception
	Applied Pi Calculus

	Analysis
	Compilation
	Complexity

	Design
	Syntax of Equational Protocol Narrations
	Knowledge Deduction
	Generation of Checks
	Compilation to Applied Pi

	Implementation
	Syntax
	Data Representation
	Deviations from the Formal Translation
	Examples

	Conclusion
	Future Work

	Bibliography

